WorldWideScience

Sample records for arsenazo previous liquid-liquid

  1. Spectrophotometric determination of uranium with arsenazo previous liquid-liquid extraction and colour development in organic medium

    International Nuclear Information System (INIS)

    The determination of uranium with arsenazo is hindered by a great number of cation which form stable complexes with the reactive and may given rise to serious interferences. By studying the optimum conditions of uranium the extraction be means of tributylphosphate solutions dissolved in methylisobuthylketone, under conditions for previous masking of the interfering cations, an organic extract was obtained containing all the uranium together with small amounts of iron. The possible interference derived from the latter element is avoided by reduction with hydroxylammoniumchlorid followed by complex formation of the Fe(II)-ortophenantroline compound in alcoholic medium. (Author) 17 refs

  2. Spectrophotometric determination of uranium with arsenazo previous liquid-liquid extraction and colour development in organic medium; Determinacion espectrofotometrica de uranio con arsenazo, previa extraccion y desarrollo del color en medio organico

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Delgado, F.; Vera Palomino, J.; Petrement Eguiluz, J. C.

    1964-07-01

    The determination of uranium with arsenazo is hindered by a great number of cation which form stable complexes with the reactive and may given rise to serious interferences. By studying the optimum conditions of uranium the extraction be means of tributylphosphate solutions dissolved in methylisobuthylketone, under conditions for previous masking of the interfering cations, an organic extract was obtained containing all the uranium together with small amounts of iron. The possible interference derived from the latter element is avoided by reduction with hydroxylammoniumchlorid followed by complex formation of the Fe(II)-ortophenantroline compound in alcoholic medium. (Author) 17 refs.

  3. Method for determining microamounts of uranium in solutions from copper ores, by liquid-liquid extraction and spectrophotometry with arsenazo III

    International Nuclear Information System (INIS)

    A spectrophotometric method is described for determining small amounts of uranium in aqueous solutions from copper ores. Uranium is quantitatively separated in a single extraction by a solution of tri-n-octylphosphine oxide in benzene, using ethylendiaminetetracetic acid and sodium fluoride as complexing agents, for improving the selectivity of the procedure. An aliquot of the extract is diluted with a hydrocolloidal solution of arsenazo III. Optical density is measured at 650 nm. (Author) 3 refs

  4. Method for determining microamounts of uranium in solutions from copper ores, by liquid-liquid extraction and spectrophotometry with arsenazo III.; Metodo para determinar microcantidades de uranio en disoluciones de minerales de cobre, por extraccion liquido-liquido y espectrofotometria con arsenazo III

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, B.

    1972-07-01

    A spectrophotometric method is described for determining small amounts of uranium in aqueous solutions from copper ores. Uranium is quantitatively separated in a single extraction by a solution of tri-n-octylphosphine oxide in benzene, using ethylendiaminetetracetic acid and sodium fluoride as complexing agents, for improving the selectivity of the procedure. An aliquot of the extract is diluted with a hydrocolloidal solution of arsenazo III. Optical density is measured at 650 nm. (Author) 3 refs.

  5. Liquid-liquid extraction of uranium (VI) using Cyanex 272 in kerosene from sodium salicylate medium

    International Nuclear Information System (INIS)

    Liquid-liquid extraction of uranium (VI) from sodium salicylate media using Cyanex 272 in kerosene has been carried out. Uranium (VI) was quantitatively extracted from 1x10-4 M sodium salicylate with 5x10-4 M Cyanex 272 in kerosene. It was stripped quantitatively from the organic phase with 4M HCl and determined spectrophotometrically with arsenazo(III) at 600 nm. The effects of concentrations of sodium salicylate, metal ions and strippants have been studied. Separation of uranium (VI) from other elements was achieved from binary as well as from multicomponent mixtures. The method is simple, rapid and selective with good reproducibility (approximately ±2%). (author)

  6. Liquid-liquid extraction columns

    International Nuclear Information System (INIS)

    The patent concerns liquid-liquid extraction columns in which solute transfer across the liquid-liquid interface sets up Marangoni instabilities which give rise to interfacial turbulence. The phenomenon has been observed to occur in the solvent extraction of uranium and/or plutonium from an aqueous nitric phase using tributyl phosphate with odourless kerosens. The invention provides a method of quantifying the degree of Marangoni instabilities in a column-type liquid-liquid extraction column, and determining a value for the solute free characteristic velocity parameter. The method also gives a measure of the extent to which the characteristic velocity is modified by the Marangoni instability. (U.K.)

  7. Liquid-liquid extraction columns

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W.; Lonie, S.J.; Thompson, P.J.; Thornton, J.D.

    1987-11-11

    The patent concerns liquid-liquid extraction columns in which solute transfer across the liquid-liquid interface sets up Marangoni instabilities which give rise to interfacial turbulence. The phenomenon has been observed to occur in the solvent extraction of uranium and/or plutonium from an aqueous nitric phase using tributyl phosphate with odourless kerosens. The invention provides a method of quantifying the degree of Marangoni instabilities in a column-type liquid-liquid extraction column, and determining a value for the solute free characteristic velocity parameter. The method also gives a measure of the extent to which the characteristic velocity is modified by the Marangoni instability. (U.K.).

  8. Liquid-liquid contractor columns

    International Nuclear Information System (INIS)

    A liquid-liquid contactor column has a solvent input and an aqueous phase input. Lighter phase liquid is discharged and heavier phase is moved by an air lift to a receiver. The air supply line to the air lift includes valve and a pressure sensing transducer senses pressure in line and sends electric signals to signal processing unit which may for example close down operation of the column, or effect other changes to maintain operating characteristics of the column. The column could be pulsed by means which also send signals to unit, and could deliver to an external settler. (author)

  9. Liquid-liquid extraction columns

    International Nuclear Information System (INIS)

    A liquid-liquid extraction for use for example, in the solvent extraction of uranium and/or plutonium from an aqueous phase, comprises a perforated plate packing in which each plate has flanges associated with its perforations, which flanges project upstream with respect to the disperse phase flow direction so as to define a collecting zone for disperse phase droplets which thereby form a film or layer of the disperse phase component on the upstream face of each plate. In this way, droplet formation at the perforations of each plate is not significantly influenced by variations of the wetting characteristics of the plate with time. (author)

  10. Liquid-liquid extraction columns

    Energy Technology Data Exchange (ETDEWEB)

    Lonie, S.J.

    1986-10-15

    A liquid-liquid extraction for use for example, in the solvent extraction of uranium and/or plutonium from an aqueous phase, comprises a perforated plate packing in which each plate has flanges associated with its perforations, which flanges project upstream with respect to the disperse phase flow direction so as to define a collecting zone for disperse phase droplets which thereby form a film or layer of the disperse phase component on the upstream face of each plate. In this way, droplet formation at the perforations of each plate is not significantly influenced by variations of the wetting characteristics of the plate with time.

  11. Liquid liquid extraction of Th(IV) and its complexation study by Calix(4)pyrole

    International Nuclear Information System (INIS)

    Due to increased demand for carbon-free energy, accelerated growth of nuclear power is foreseen in several countries, especially in China and India. This has made the sustainable use of fuel resources such as uranium and thorium very important. Today, uranium is the main-stay of the present generation of nuclear power plants. However, the anticipated growth in nuclear energy may require introducing thorium as a fuel in future. Meso-octamethyl calix(4)pyrole is known for anion receptor however the present study evaluate the effect of cation for complexation of thorium by liquid liquid extraction technique. Calix(4)pyrole was evaluated for extraction of Th(IV), and 97% extraction efficiency was obtained. Th(IV) was determine with arsenazo(III) at 655 nm. The effect of acid molarity of 0.1 M, 1:5 metal to ligand ratio found efficient for maximum extraction. The stoichiometry ratio 1:2 between metal to ligand is established

  12. Neptunium Binding Kinetics with Arsenazo(III)

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Aaron T. Johnson; Stephen P. Mezyk

    2014-08-01

    This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

  13. Homogeneous liquid-liquid extraction of uranium(VI) from acetate aqueous solution

    International Nuclear Information System (INIS)

    A selective and very effective concentration method for uranium(VI) was developed by the homogeneous liquid-liquid extraction method based on the ion-pair phase separation of perfluorooctanoate ion (PFOA-) with tetrabutylammonium ion (TBA+). Under the experimental conditions ([PFOA-]T=6.67x10-3 M, [TBA+]T=5.0x10-2 M, [acetate]T=0.17 M, pH 4.0), the extraction % of uranium(VI) was 96%, and the maximum concentration factor was approximately 330-fold (i.e., 90 μl of the sedimented phase was produced from 30 ml of the aqueous phase). The extracted species was estimated by the normal liquid-liquid extraction method in a water/ethyl acetate system to be UO2(CH3COO)-3·TBA+. The proposed homogeneous liquid-liquid extraction method was applied as a preconcentration method for the spectrophotometric determination of uranium(VI) with arsenazo III. The calibration graph was linear over the range 3.3x10-8-2.7x10-6 M. The relative standard deviation for the central value of the calibration graph was 1.4% (10 determinations), and the detection limit (S/N=3) was 6.0x10-10 M. When the proposed method was applied to the separation and determination of uranium(VI) added to sea water, the results were satisfactory. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Spectrophotometric determination of thorium using arsenazo III in water

    International Nuclear Information System (INIS)

    A spectrophotometric determination of thorium with arsenazo III (1,8 dihidroxynaphtaline - 3,6 sulfanic acid - 2,7 bis (azo-2) - phenil argonic acid) was carried out aiming to analyse this element in water. In order to eliminate possible interferences, a coprecipitation with lantanium fluoride was used followed by an extration with 0,2 M TTA (tenoil-trifluor - aceton) / Benzen. The results showed a good agreement with the ones obtained by alfa-spectrometry. (Author)

  15. Spectrophotometric determination of uranium(IV) with Arsenazo III

    International Nuclear Information System (INIS)

    A spectrophotometric procedure was developed for determining U(IV) in the presence of U(VI) by forming a colored complex with Arsenazo III in 4M HCl. The results compare satisfactorily with U(IV) determinations by ceric titration. Total uranium can be determined after reduction of U(VI) with metallic zinc. The concentration range for the absorbance cell solution is 0 to 2 μg U(IV)/mL. Other tetravalent ions, such as thorium, zirconium, hafnium, plutonium, and neptunium, will interfere

  16. Uranium monitoring tool for rapid analysis of environmental samples based on automated liquid-liquid microextraction.

    Science.gov (United States)

    Rodríguez, Rogelio; Avivar, Jessica; Ferrer, Laura; Leal, Luz O; Cerdà, Víctor

    2015-03-01

    A fully automated in-syringe (IS) magnetic stirring assisted (MSA) liquid-liquid microextraction (LLME) method for uranium(VI) determination was developed, exploiting a long path-length liquid waveguide capillary cell (LWCC) with spectrophotometric detection. On-line extraction of uranium was performed within a glass syringe containing a magnetic stirrer for homogenization of the sample and the successive reagents: cyanex-272 in dodecane as extractant, EDTA as interference eliminator, hydrochloric acid to make the back-extraction of U(VI) and arsenazo-III as chromogenic reagent to accomplish the spectrophotometric detection at 655 nm. Magnetic stirring assistance was performed by a specially designed driving device placed around the syringe body creating a rotating magnetic field in the syringe, and forcing the rotation of the stirring bar located inside the syringe. The detection limit (LOD) of the developed method is 3.2 µg L(-1). Its good interday precision (Relative Standard Deviation, RSD 3.3%), and its high extraction frequency (up to 6 h(-1)) makes of this method an inexpensive and fast screening tool for monitoring uranium(VI) in environmental samples. It was successfully applied to different environmental matrices: channel sediment certified reference material (BCR-320R), soil and phosphogypsum reference materials, and natural water samples, with recoveries close to 100%. PMID:25618721

  17. Automatic liquid-liquid extraction system

    International Nuclear Information System (INIS)

    This invention concerns an automatic liquid-liquid extraction system ensuring great reproducibility on a number of samples, stirring and decanting of the two liquid phases, then the quantitative removal of the entire liquid phase present in the extraction vessel at the end of the operation. This type of system has many applications, particularly in carrying out analytical processes comprising a stage for the extraction, by means of an appropriate solvent, of certain components of the sample under analysis

  18. Treatment of Arsenazo III contaminated heavy water stored at Darlington

    International Nuclear Information System (INIS)

    Darlington Nuclear Generating Station (DNGS) has accumulated over 48 drums of chemistry laboratory waste arising from analysis of heavy water (D2O). Several organic, including Arsenazo III, and inorganic contaminants present in these drums results in high total organic carbon (TOC) and conductivity. These drums have not been processed due to uncertainties related to clean-up of Arsenazo III contaminated heavy water. This paper provides details of chemical characterization as well as bench scale studies performed to demonstrate the feasibility of treating the downgraded D2O to the stringent target specifications of <1 ppm TOC and <0.1mS/m conductivity, required for feed to the Station Upgrading Plant (SUP). Both ionic organic species such as glycolate, acetate and formate as well as neutral organics such as acetone, methanol and ethylene glycol were detected in all the samples. Morpholine and propylene glycol were detected in one sample. Arsenazo III was determined to be not a major contaminant (maximum 8.4 ppm) in these waste drums, compared to the other organic contaminants present. Various unit processes such as pH adjustment, granular activated carbon (GAC), ion exchange resin (IX), UV-peroxide oxidation (UV-H2O2) treatments, nanofiltration (NF) as well as reverse osmosis (RO) were tested on a bench scale both singly as well as in various combinations to evaluate their ability to achieve the stringent target conductivity and TOC specifications. Among the various bench scale tests evaluated, the successive processing train used at DNGS and consisting of GAC+IX+UV/H2O2+IX (polishing) unit operations was found to meet target specifications for both conductivity and TOC. Unit processes comprising (GAC+IX) and (RO-double pass + GAC+IX) met conductivity targets but failed to meet TOC specifications. The results of GAC+IX tests clearly emphasize the importance of using low flow rates for successful reduction in both conductivity as well as TOC. Detailed assessment of

  19. Treatment of Arsenazo III contaminated heavy water stored at Darlington

    Energy Technology Data Exchange (ETDEWEB)

    Suryanarayan, S.; Husain, A., E-mail: sriram.s@kinectrics.com [Kinectrics Inc., Toronto, Ontario (Canada); Williams, D., E-mail: denny.williams@opg.com [Ontario Power Generation, Darlington Nuclear Generating Station, Bowmanville, Ontario (Canada)

    2010-07-01

    Darlington Nuclear Generating Station (DNGS) has accumulated over 48 drums of chemistry laboratory waste arising from analysis of heavy water (D{sub 2}O). Several organic, including Arsenazo III, and inorganic contaminants present in these drums results in high total organic carbon (TOC) and conductivity. These drums have not been processed due to uncertainties related to clean-up of Arsenazo III contaminated heavy water. This paper provides details of chemical characterization as well as bench scale studies performed to demonstrate the feasibility of treating the downgraded D{sub 2}O to the stringent target specifications of <1 ppm TOC and <0.1mS/m conductivity, required for feed to the Station Upgrading Plant (SUP). Both ionic organic species such as glycolate, acetate and formate as well as neutral organics such as acetone, methanol and ethylene glycol were detected in all the samples. Morpholine and propylene glycol were detected in one sample. Arsenazo III was determined to be not a major contaminant (maximum 8.4 ppm) in these waste drums, compared to the other organic contaminants present. Various unit processes such as pH adjustment, granular activated carbon (GAC), ion exchange resin (IX), UV-peroxide oxidation (UV-H{sub 2}O{sub 2}) treatments, nanofiltration (NF) as well as reverse osmosis (RO) were tested on a bench scale both singly as well as in various combinations to evaluate their ability to achieve the stringent target conductivity and TOC specifications. Among the various bench scale tests evaluated, the successive processing train used at DNGS and consisting of GAC+IX+UV/H{sub 2}O{sub 2}+IX (polishing) unit operations was found to meet target specifications for both conductivity and TOC. Unit processes comprising (GAC+IX) and (RO-double pass + GAC+IX) met conductivity targets but failed to meet TOC specifications. The results of GAC+IX tests clearly emphasize the importance of using low flow rates for successful reduction in both conductivity as

  20. Separation and spectrophotometric determination of uranium(VI) by extraction with arsenazo III and zephiramine

    International Nuclear Information System (INIS)

    Microgram quantitites of uranium(VI) can be determined at 655 nm after separation by chloroform extraction of its Arsenazo III complex with Zephiramine. The extracted uranium can be back-extracted with an aqueous solution of ammonium carbonate. Uranium can be separated from aluminium, iron(II), and some other elements. Probably the same species, i.e., the ion association compounds between the uranium(VI)-Arsenazo III complex and Zephiramine are involved during the extraction and the froth flotation. (author)

  1. Utilization of Arsenazo-III for spectrophotometric determination of thorium in soil samples

    International Nuclear Information System (INIS)

    The paper discusses the application of Arsenazo-III for thorium estimation in soil samples. The basic parameter as stability of complex, linear working range, method detection limit and conditioning for complex formation are discussed. Quality assurance parameter for thorium estimation in soil samples using this reagent is also discussed. The result demonstrates the utilization of Arsenazo-III for the accurate and reliable estimation of thorium in soil samples. (author)

  2. In vitro photoacoustic sensing of calcium dynamics with arsenazo III

    Science.gov (United States)

    Dana, N.; Fowler, R. A.; Allen, A.; Zoldan, J.; Suggs, L.; Emelianov, S.

    2016-07-01

    Imaging of cellular electric potential via calcium-ion sensitive contrast agents is a useful tool, but current techniques lack sufficient depth penetration. We explore contrast-enhanced photoacoustic (PA) imaging, using Arsenazo III dye, to visualize cardiac myocyte depolarization in vitro. Phantom results show strong linearity of PA signal with dye concentration (R 2  >  0.95), and agree spectrally with extinction measurements with varying calcium concentration. Cell studies indicate a significant (>100-fold) increase in PA signal for dye-treated cells, as well as a 10-fold increase in peak-to-peak variation during a 30 s window. This suggests contrast-enhanced PA imaging may have sufficient sensitivity and specificity for depth-resolved visualization of tissue depolarization in real-time.

  3. A novel aeration-assisted homogenous liquid-liquid microextration for determination of thorium and uranium in water and hair samples by inductively coupled plasma-mass spectroscopy.

    Science.gov (United States)

    Veyseh, Somayeh; Niazi, Ali

    2016-01-15

    A novel method based on aeration-assisted homogeneous liquid-liquid microextraction using high density solvent is presented, which is combined with inductively coupled plasma-mass spectroscopy in which simultaneous preconcentration and determination of thorium and uranium with arsenazo III as the chelating reagent is carried out. To achieve optimum conditions, several parameters such as pH, concentration of arsenazo III, extraction and homogenous solvent types and their volumes, salt concentration and extraction time were investigated. Under which, the calibration graphs were linear in the range of 0.5-600.0ng L(-1) for thorium and 0.3-550.0ng L(-1) for uranium. Good linearities were obtained for both analytes with R(2) values larger than 0.9990. The limits of detection (LOD, 3Sb/m, n=5) of this method were 0.12 and 0.09ng L(-1), and the enrichment factors were estimated to be 370 and 410 for thorium and uranium, respectively. The proposed method was applied to determine the thorium and uranium in human hair and different environmental water samples. Acceptable recoveries ranged from 99.4% to 100.7% with standard deviation of 0.05 to 0.17. PMID:26592585

  4. Electron transfer kinetics at polarized nanoscopic liquid/liquid interfaces.

    Science.gov (United States)

    Cai, Chenxin; Mirkin, Michael V

    2006-01-11

    Rapid kinetics of electron transfer (ET) reactions across the interface between water and 1,2-dichloroethane were measured by steady-state voltammetry at nanopipet electrodes (50- to 400-nm orifice radius). The origins of previously reported imperfect voltammetric responses of ET reactions at micropipets were investigated. Several new experimental systems were explored, and two of them yielded high-quality voltammograms suitable for kinetic experiments. The determined standard rate constants were compared to those measured previously at polarized and nonpolarized liquid/liquid interfaces. The effect of the interfacial dimensions on the magnitude of the apparent ET rate constant is discussed. A new approach to ET kinetic measurements based on the use of the scanning electrochemical microscope with a nanopipet tip and a metallic substrate has been developed and employed to check the validity of determined kinetic parameters. PMID:16390144

  5. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  6. Spectrophotometric determination of zirconium in nickel-base alloys with Arsenazo III after separation by froth flotation

    International Nuclear Information System (INIS)

    0.02-0.1% of zirconium can be determined in nickel alloys by spectrophotometry with Arsenazo III after its separation from the sample solution by means of froth flotation using Arsenazo III and Zephiramine. Nickel, chromium and iron do not interfere. Analysis of standard alloys yielded a standard deviation of 2.2%. (orig.)

  7. Beyond dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Leong, Mei-I; Fuh, Ming-Ren; Huang, Shang-Da

    2014-03-28

    Dispersive liquid-liquid microextraction (DLLME) and other dispersion liquid-phase microextraction (LPME) methods have been developed since the first DLLME method was reported in 2006. DLLME is simple, rapid, and affords high enrichment factor, this is due to the large contact surface area of the extraction solvent. DLLME is a method suitable for the extraction in many different water samples, but it requires using chlorinated solvents. In recent years, interest in DLLME or dispersion LPME has been focused on the use of low-toxicity solvents and more conveniently practical procedures. This review examines some of the most interesting developments in the past few years. In the first section, DLLME methods are separated in two categories: DLLME with low-density extraction solvent and DLLME with high-density extraction solvent. Besides these methods, many novel special devices for collecting low-density extraction solvent are also mentioned. In addition, various dispersion techniques with LPME, including manual shaking, air-assisted LPME (aspirating and injecting the extraction mixture by syringe), ultrasound-assisted emulsification, vortex-assisted emulsification, surfactant-assisted emulsification, and microwave-assisted emulsification are described. Besides the above methods, combinations of DLLME with other extraction techniques (solid-phase extraction, stir bar sorptive extraction, molecularly imprinted matrix solid-phase dispersion and supercritical fluid extraction) are introduced. The combination of nanotechnique with DLLME is also introduced. Furthermore, this review illustrates the application of DLLME or dispersion LPME methods to separate and preconcentrate various organic analytes, inorganic analytes, and samples. PMID:24582396

  8. Liquid-Liquid-Liquid Three Phase Extraction Apparatus: Operation Strategy and Influences on Mass Transfer Efficiency

    Institute of Scientific and Technical Information of China (English)

    何秀琼; 黄昆; 于品华; 张超; 谢铿; 李鹏飞; 王娟; 安震涛; 刘会洲

    2012-01-01

    Abstract A new mixer-settler-mixer three chamber integrated extractor is proposed in this work for liquid-liquid- liquid three phase countercurrent and continuous extraction. Experiments revealed the influences of the structural design of the three-liquid-phase extractor and some key operational parameters on three-phase partition of two phenolic isomers, p-nitrophenol (p-NP) and o-nitrophenol (o-NP). The model three-liquid-phase extraction system used here is nonane (organic top-plaase)-polyethylene glycol (PEG 20UU) (polymer mlddle-phase)-(NH4)2SO4 aqueous solution (aqueous bottom-phase). It is indicated that agitating speed and retention time in three-phase mixer are key parameters to extraction fraction of nitrophenol. Dispersion band behavior is related to agitating intensity, and its occurrence does not affect the extraction fraction of target compounds. The present work highlights the possibility of a feasible approach of scaling up of the proposed three-phase extraction apparatus for future in- dustrial-aimed applications.

  9. Studies on the sorption behaviour of arsenazo-I, U(Vi) and Th(IV) species from aqueous solutions of arsenazo-I on different types of ion exchangers

    International Nuclear Information System (INIS)

    Three different types of ion exchangers namely dowex-50 w x 8, Ag-2 x 8 and chelex-100 are used to study the sorption behaviour of Th(IV) and U(Vi) from solutions of arsenazo-I. The sorption behaviour of arsenazo-I itself is also studied. possible species sorbed on these resins or present in solutions of U(Vi)-and Th(IV)-arsenazo-I at different concentration and at different hydrogen ion concentrations are identified. From the obtained data, optimal conditions for separating the two elements are recommended. The possibility of individual concentration of Th(IV) and U(Vi) as coloured arsenazo-I complexes on Ag-2 x 8 is evaluated. 5 figs., 1 tab

  10. Thermodynamics of liquid-liquid crossover transition in liquid Si15Te85 eutectic alloy

    Directory of Open Access Journals (Sweden)

    Tsuchiya Y.

    2011-05-01

    Full Text Available Specific heat of liquid Si15Te85 was measured using both the adiabatic scanning calorimetry and modulation calorimetry. The specific heat has a very broad peak around 660°C of which the peak value is 46 J/mol.K. The results are totally different from the previous results that the specific heat is as large as 140 J/mol.K at the liquidus temperature and decreases rapidly with raising temperature. Combining the molar volume and sound velocity as a function of temperature, the thermodynamic susceptibilities, i.e. constant pressure specific heat, isothermal compressibility and thermal expansion coefficient, have been evaluated. Their temperature dependences and magnitudes are in good accordance with the predictions for a crossover transition in a liquid. Comparison is made to a liquid-liquid crossover transition in Ge15Te85 which is sharpest among crossover liquid-liquid transitions of this kind so far found.

  11. Separation of Asphaltenes by Polarity using Liquid-Liquid Extraction

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar

    1997-01-01

    In order to investigate the nature of petroleum asphaltenes in terms of polarity a process was developed using initial liquid-liquid extraction of the oil phase followed by precipitation of the asphaltenes using n-heptane. The liquid-liquid extraction was performed using toluene-methanol mixtures...... with increasing content of toluene. Although large fractions of the crude oil (Alaska ´93) was extracted in the higher polarity solvents (high concentration of methanol), the asphaltene content of the dissolved material was low. As the toluene content increased more asphaltenes were transferred to the...... extracted in the high polarity solvents....

  12. Spectrophotometric determination of uranium(VI) in bacterial leach liquors using arsenazo-III

    International Nuclear Information System (INIS)

    A highly sensitive and precise spectrophotometric method for the direct determination of uranium(VI) in bacterial leach liquors, obtained by the action of Thiobacillus ferrooxidans and T. thiooxidans, from low-grade sandstone uranium ores, has been developed. Arsenazo-III formed an intense pink-violet complex at pH 2·0±0·1, which showed maximum absorption at 655 nm. Interference due to different metal ions, such as Al, Ca, Co, Cr, Fe, Mn, Mo, Zn and Zr, was successfully masked by diethylenetriaminepenta-acetic acid without inhibiting the formation of the uranium(VI)-arsenazo-III complex. This method was also found suitable for detecting low levels of uranium(VI) in mine waters, acid leach liquors and tailings liquids. The results obtained were found to be in close agreement with the values determined by fluorometric and indirect spectrophotometric methods. (author)

  13. Iron (II) as reductant in the estimation of uranium with arsenazo III: application to leach liquors

    International Nuclear Information System (INIS)

    Arsenazo III is a selective reagent of U(IV) in acidic medium. Reduction of U with Mhor's salt in the presence of oxalic acid has been found to be suitable for its spectrophotometric measurement with the cited reagent. Various parameters viz. concentrations of Mhor's salt, oxalic acid, ascorbic acid, and initial hydrochloric acid at the time of reduction, and reduction time, were optimised. Suitable aliquot (3O8) is mixed with Mhor's salt, oxalic acid and ascorbic acid, and left aside for half an hour for reduction. Colour is developed with arsenazo III maintaining acidity 4M with respect to hydrochloric acid. Absorbance is measured within five minutes at 660 nm. The method is applied to leach liquors of various stages of uranium recovery. The results are in good agreement with fluorimetric measurement with an error of 5%. RSD of the method is 2-3% (n=10). (author). 7 refs., 3 figs., 1 tab

  14. Spectrophotometric determination of uranium and thorium with arsenazo III in the flow injection system

    International Nuclear Information System (INIS)

    A simple system for flow injection analysis (FIA) with double confluence was built using a filter photocolorimeter, an analogic potentiometer, 'plexiglass' flow cuvettes, polyethylene colls and tubes, 'plexiglass' commuter and peristaltic pump to introduce solutions and gravity as flow source. The system was dimensioned and studied using only Arsenazo III solutions. Spectrophotometric methods for uranium and thorium using Arsenazo III were studied using a scanning spectrophotometer and after chosing adequate red filter, adapted to photocolorimetry using flow cuvettes and FIA. Synthetic samples, phosphate rock, and process samples from uranium recovery of dolomites were analysed. Rocks of Morro do Ferro (MG, Brazil), Caldasite (Baddeleyte + Zirconite), Zirconite, Monazite from a program for certification and certified rocks (Dunite DC-1, CANMET) were analysed without chemical separation of Th (IV) and with ion exchange separation in semi-micro columns of cation exchange resin (Dowex 50). (Author)

  15. Regional distribution of calcium influx into bursting neurons detected with arsenazo III.

    OpenAIRE

    Graubard, K; Ross, W N

    1985-01-01

    Absorbance changes of the metallochromic indicator arsenazo III were used in conjunction with an array of 100 photodiodes to measure changes in intracellular calcium concentration at many positions simultaneously in identified neurons of the crab stomatogastric ganglion. When stimulated with intrasomatically injected current, several of these neurons showed calcium changes all over the cell, indicating that calcium channels were distributed widely in the neuropil and on the soma. When the mem...

  16. Enhanced flavour extraction in continuous liquid-liquid extractors.

    Science.gov (United States)

    Apps, Peter; Tock, Margaux Lim Ah

    2005-08-12

    Continuous liquid-liquid extraction is a versatile, reliable and robust sample preparation technique, but there is a tendency for the solvent to make channels through the sample, causing uneven and incomplete extraction. A simple, cheap magnetic stirrer that prevents channelling improves extraction efficiency by between 2.8 and 17.6 times. PMID:16078710

  17. Mechanism of Lecithin Adsorption at a Liquid/Liquid Interface

    Czech Academy of Sciences Publication Activity Database

    Mareček, Vladimír; Lhotský, Alexandr; Jänchenová, Hana

    2003-01-01

    Roč. 107, č. 19 (2003), s. 4573-4578. ISSN 1089-5647 R&D Projects: GA ČR GA203/00/0636 Institutional research plan: CEZ:AV0Z4040901 Keywords : adsorption * mechanism of lecithin * liquid/liquid interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  18. Redox-active Crosslinkable Poly(ionic liquid)s

    NARCIS (Netherlands)

    Sui, Xiaofeng; Hempenius, Mark A.; Vancso, G. Julius

    2012-01-01

    The synthesis of a new class of cross-linkable redox-responsive poly(ferrocenylsilane)-based poly(ionic liquid)s (PFS-PILs) is reported. PFS-PILs self-cross-link at low concentrations into nanogels or form macroscopic hydrogel networks at higher concentrations. PFS-PILs proved to be efficient disper

  19. Liquid-liquid extraction of tall soap by hexane

    Czech Academy of Sciences Publication Activity Database

    Heyberger, A.; Rousková, M.; Tříska, Jan; Volaufová, E.; Krtička, M.

    Praha : ČSCHI, 2006, s. 1-7. [International Congress of Chemical and Process Engineering/17./. Praha (CZ), 27.08.2006-31.08.2006] R&D Projects: GA AV ČR(CZ) 1QS400720504 Institutional research plan: CEZ:AV0Z60870520 Keywords : tall soap * liquid-liquid extraction * hexane Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  20. Polymer single crystal membrane from liquid/liquid interface

    Science.gov (United States)

    Wang, Wenda; Li, Christopher; Soft Matter Research Group-Drexel University Team

    2013-03-01

    Vesicles, mimicking the structure of cell membrane at the molecular scale, are small membrane-enclosed sacks that can store or transport substances. The weak mechanical properties and the nature of environment-sensitivity of the current available vesicles: liposomes, polymersomes, colloidsomes limit their applications as an excellent candidate for targeting delivery of drugs/genes in biomedical engineering and treatment. Recently, we developed an emulsion-based method to grow curved polymer single crystals. Varying the polymer concentration and/or the emulsification conditions (such as surfactant concentration, water-oil volume ratio), curved crystals with different sizes and different openness could be obtained. This growing process was attributed to polymer crystal growth along the liquid/liquid interface. In addition, the liquid/liquid interfacial crystal growth is promising for synthesis of enclosed hollow sphere.

  1. Liquid-liquid extraction by reversed micelles in biotechnological processes

    Directory of Open Access Journals (Sweden)

    Kilikian B. V.

    2000-01-01

    Full Text Available In biotechnology there is a need for new purification and concentration processes for biologically active compounds such as proteins, enzymes, nucleic acids, or cells that combine a high selectivity and biocompatibility with an easy scale-up. A liquid-liquid extraction with a reversed micellar phase might serve these purposes owing to its capacity to solubilize specific biomolecules from dilute aqueous solutions such as fermentation and cell culture media. Reversed micelles are aggregates of surfactant molecules containing an inner core of water molecules, dispersed in a continuous organic solvent medium. These reversed micelles are capable of selectively solubilizing polar compounds in an apolar solvent. This review gives an overview of liquid-liquid extraction by reversed micelles for a better understanding of this process.

  2. Optofluidic router based on tunable liquid-liquid mirrors.

    Science.gov (United States)

    Müller, Philipp; Kopp, Daniel; Llobera, Andreu; Zappe, Hans

    2014-02-21

    We present an electrically tunable 1 × 5 optofluidic router for on-chip light routing. The device can redirect light from an optical input channel into five output channels by exploiting total internal reflection (TIR) at a liquid-liquid interface. The liquid-liquid mirrors, demonstrated for the first time, are tuned using integrated electrowetting-on-dielectrics (EWOD) actuators. The router is assembled from two chips fabricated by standard MEMS techniques. Through a combination of microfluidic with micro-optical components on chip, reliable light routing is achieved with switching times of [1.5-3.3] s, efficiencies of coupling into channels of up to 12%, optical cross-talk as low as -24 dB, a required drive voltage of 50 V, and a low power consumption of router could thus lead to novel laboratory measurement systems. PMID:24287814

  3. Optimal synthesis of liquid-liquid multistage extractors

    OpenAIRE

    Reyes Labarta, Juan Antonio; Grossmann, Ignacio E.

    2001-01-01

    The purpose of this paper is to determine the optimal design of liquid-liquid countercurrent extractor systems. The proposed method calculates the optimum number of equilibrium stages and flowrates to obtain a specified product separation and recovery. Based on a superstructure representation, the problem is formulated as a Generalized Disjunctive Programming (GDP) model to minimize the total cost of the process subject to design specifications. The robustness and computational efficiency of ...

  4. Optimized Liquid-Liquid Extractive Rerefining of Spent Lubricants

    OpenAIRE

    2014-01-01

    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R 2 = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent rati...

  5. Liquid-Liquid Extraction of Phytosterols from Tall Soap

    Czech Academy of Sciences Publication Activity Database

    Heyberger, Aleš; Rousková, Milena; Čárský, M.

    - : -, 2009, s. 26. ISBN 978-1-920355-21-0. [South African Chemical Engineering Congress 2009. Somerset West (ZA), 20.09.2009-23.09.2009] R&D Projects: GA AV ČR 1QS400720504 Institutional research plan: CEZ:AV0Z40720504 Keywords : phytosterols * liquid-liquid extraction * vibrating plate extractor Subject RIV: CI - Industrial Chemistry, Chemical Engineering www.sacec2009.org

  6. Proton Transfer Controlled Reactions at Liquid-Liquid Interfaces

    OpenAIRE

    Peljo, Pekka

    2013-01-01

    Electrochemistry at liquid-liquid interfaces has been a versatile area of contemporary electrochemistry for almost 40 years, with research mainly focusing on the aqueous-organic solution interface. The Galvani potential difference across such an interface, controlling the distribution of ions between the phases, can be generated either chemically or with an external voltage source. An aqueous-organic solvent interface shares similarities with the cell membrane, where several important biologi...

  7. (Liquid + liquid) equilibria of perfluorocarbons with fluorinated ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • (Liquid + liquid) equilibria perfluorocarbons and fluorinated ionic liquids. • Non-Random Two Liquid model was successfully applied. • Thermodynamic functions that describe the solvation process were calculated. -- Abstract: In order to evaluate the feasibility of partially replace perfluorocarbons (PFCs) with fluorinated ionic liquids (FILs) in PFCs-in-water emulsions, usually used for biomedical purposes, herein the (liquid + liquid) phase equilibria of FILs containing fluorinated chains longer than four carbons with PFCs were carried out in a wide range of temperatures. With this goal in mind, two PFCs (perfluorooctane and perfluorodecalin) were selected and the (liquid + liquid) equilibria of the binary mixtures of these PFCs and FILs were studied at atmospheric pressure in a temperature range from T (293.15 to 343.15) K. For these studies, FILs containing ammonium, pyridinium and imidazolium cations and different anions with fluorocarbon alkyl chains between 4 and 8 were included. Additionally, Non-Random Two Liquid (NRTL) thermodynamic model was successfully applied to correlate the behaviour of the PFCs + FILs binary mixtures. Moreover, thermodynamic functions that describe the solvation process were calculated from the experimental data

  8. (Liquid + liquid) equilibria for benzene + cyclohexane + N,N-dimethylformamide + sodium thiocyanate

    International Nuclear Information System (INIS)

    Graphical abstract: On the left, the figure was phase diagram about the LLE date. On the right, the figure was about the effects of mass fraction of benzene in the raffinate phase to the selectivity(S) coefficient under different salt concentration. ■, the NaSCN and DMF in ratio of 5/95; • , the NaSCN and DMF in ratio of 10/90; ▴, the NaSCN and DMF in ratio of 15/85; ★, the NaSCN and DMF in ratio of 20/80; ▾, the NaSCN and DMF in ratio of 23/77. ♦, only DMF was used extractant (the selectivity coefficient was calculated by literature 17). w22, refer to the mass fraction of benzene in the raffinate phase (cyclohexane-rich phase). Highlights: • (Liquid + liquid) equilibrium for quaternary system was measured. • The components include benzene, cyclohexane, N,N-dimethylformamide, sodium thiocyanate. • The (liquid + liquid) equilibrium data can be well correlated by the NRTL model. • Separation of benzene and cyclohexane by NaSCN + DMF was discussed. -- Abstract: (Liquid + liquid) equilibrium (LLE) data for benzene + cyclohexane + N,N-dimethylformamide (DMF) + sodium thiocyanate (NaSCN) were measured experimentally at atmospheric pressure and 303.15 K. The selectivity coefficients from these LLE data were calculated and compared to those previously reported in the literature for the systems (benzene + cyclohexane + DMF) and (benzene + cyclohexane + DMF + KSCN). The NRTL equation was used to correlate the experimental data. The agreement between the predicted and experimental results was good. It was found that the selectivity coefficients of DMF + NaSCN for benzene ranged from 2.45 to 11.99. Considering the relatively high extraction capacity and selectivity for benzene, DMF + NaSCN may be used as a potential extracting solvent for the separation of benzene from cyclohexane

  9. Fine Drop Recovery in Batch Gas-Agitated Liquid-Liquid Dispersions

    Science.gov (United States)

    Shahrokhi, H.; Shaw, J. M.

    1996-11-01

    The hydrodynamics of batch gas-agitated liquid-liquid dispersions has received comparatively little attention in the open literature1-5. Such systems arise in diverse contexts but operate on the same basic principle. Two immiscible liquids form stratified layers initially and return to this stratified state at the end of a batch. Liquid from the lower liquid phase is entrained and then dispersed by gas bubbles passing from the lower to the upper liquid phase. At the end of a batch, the liquids separate under the influence of gravity. Fine drops separate slowly. For industrial processes such as nickel conversion, long settling periods reduce equipment productivity. Metal drops entrained in the lower density slag phase also pose leaching problems in slag heaps. We assessed fine drop production in such batch systems previously5. In this work, we address fine drop recovery. The net rate of fine drop recovery can be up to five times greater than Standard Settling experiments if low speed recirculation loops are imposed within the upper liquid phase that are perpendicular to the liquid-liquid interface. The principal mechanism for enhanced fine drop recovery, in this case, arises from improving drop liquid-liquid interface coalescence. 1. Hatzikiriakos et al., A.I.Ch.E. J., 36, 677-684 (1990). 2. Hatzikiriakos et al., Chem. Eng. Sci., 45, 2349-2356 (1990). 3. Konduru & Shaw, Proc. Int. Symp. Materials Handling in Pyromet., Hamilton, Cda, 14-24 (1991). 4. ibid, Can. J. Chem. Eng., 70, 381-384 (1992). 5. Shahrokhi & Shaw, Chem. Eng. Sci., 49, 5203-5213 (1994).

  10. Modeling of the (liquid + liquid) equilibrium of polydisperse hyperbranched polymer solutions by lattice-cluster theory

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Calculation of the (liquid + liquid) equilibrium of hyperbranched polymer solutions. • Description of branching effects by the lattice-cluster theory. • Consideration of self- and cross association by chemical association models. • Treatment of the molar-mass polydispersity by the use of continuous thermodynamics. • Improvement of the theoretical results by the incorporation of polydispersity. - Abstract: The (liquid + liquid) equilibrium of solutions of hyperbranched polymers of the Boltorn type is modeled in the framework of lattice-cluster theory. The association effects are described by the chemical association models CALM (for self association) and ECALM (for cross association). For the first time the molar mass polydispersity of the hyperbranched polymers is taken into account. For this purpose continuous thermodynamics is applied. Because the segment-molar excess Gibbs free energy depends on the number average of the segment number of the polymer the treatment is more general than in previous papers on continuous thermodynamics. The polydispersity is described by a generalized Schulz–Flory distribution. The calculation of the cloud-point curve reduces to two equations that have to be numerically solved. Conditions for the calculation of the spinodal curve and of the critical point are derived. The calculated results are compared to experimental data taken from the literature. For Boltorn solutions in non-polar solvents the polydispersity influence is small. In all other of the considered cases polydispersity influences the (liquid + liquid) equilibrium considerably. However, association and polydispersity influence phase equilibrium in a complex manner. Taking polydispersity into account the accuracy of the calculations is improved, especially, in the diluted region

  11. Selectivity enhancement of Arsenazo(III) reagent towards heavier lanthanides using polyaminocarboxylic acids: A spectrophotometric study

    Science.gov (United States)

    Matharu, Komal; Mittal, Susheel K.; Ashok Kumar, S. K.; Sahoo, Suban K.

    2015-06-01

    A new study has been conducted to quantify lanthanide(III) ions using Arsenazo III-polyaminocarboxylic acid (PACA) system. The study disclosed two different analytically important information: (i) λmax of lanthanide-Arsenazo III complexes for lighter lanthanides like Ce(III) and Nd(III) did not shift from its original position on addition of PACA and (ii) for heavier lanthanides like Dy(III), Tm(III) and Lu(III) a new λmax at 538 nm was observed, while wavelengths at 610 nm and 654 nm were disappeared in presence of ethylenediaminetertracetic acid (EDTA) and trans-1,2-Diaminocyclohexane-N,N,N‧,N‧-tetraacetic acid (DCTA), further the intensity of peak decreased with increase in lanthanide(III) ion concentration. Effect of ethylene glycol-bis(2-aminoethylether)-N,N,N‧,N‧-tetraacetic acid (EGTA) and N-(2-hydroxyethyl) ethylenediamine-N,N‧,N‧-triacetic acid (EDTA-OH) on Arsenzo(III)-Ln(III) complex is very weak and there is no analytically importance of such interaction. Moreover, this work confirms that Nd(III) and heavy lanthanides can be successfully determined with high accuracy in the working range of concentration of these metal ions.

  12. Liquid-liquid extraction in flow analysis: A critical review

    International Nuclear Information System (INIS)

    Liquid-liquid extractions (LLE) are a common sample pre-treatment in many analytical applications. This review aims at providing a critical overview of the distinct automated continuous flow-based approaches that were developed for liquid-liquid extraction with the purpose of pre-concentration and/or separation of multiple analytes, such as ultra-trace metal and metalloid species, phenolic compounds, surfactants, pharmaceuticals, etc., hyphenated with many detection technique such as UV/vis spectrophotometry, atomic spectrometric detection systems and luminescent detectors, including distinct extraction strategies and applications like single and multiple extraction schemes, wetting film extraction, supported liquid membrane extraction, back extraction, closed-loop systems and the utilisation of zone sampling, chromatomembranes and iterative reversal techniques. The analytical performance of the developed flow-based LLE methods and the influence of flow manifold components such as the segmenter, extraction coil and phase separator, is emphasised and object of discussion. An overall presentation of each system components, selectivity, advantages and shortcomings is carried out and exemplified with selected applications.

  13. Spectroscopic Detection of Chiral Aggregation at Liquid-Liquid Interfaces

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two new spectroscopic methods to detect the optical activity of liquid-liquid interfaces have been developed. The first one is the centrifugal liquid membrane (CLM) method combined with a conventional circular dichroism (CD) spectropolarimetry and the second one is a more interfacial specific second harmonic generation CD (SHG-CD) spectrometry. In the CLM-CD method, a cylindrical glass cell containing small amounts of organic and aqueous phases was rotated at about 7000 r/min in a sample chamber of a CD spectropolarimeter to generate an interface with a high specific interfacial area between the two-phase liquid membranes. The CD spectra of the J-aggregate of protonated 5,10,15, 20-tetraphenylporphyrin formed at the toluene-sulfuric acid interface have been measured. As for the SHG-CD, a circularly polarized wavelength-variable fs-laser system was constructed to measure the interfacial SHG spectra of a flat liquid-liquid interface. The ion-associated aggregation of a water-soluble anionic porphyrin promoted with a cationic amphiphile at the heptane-water interface was observed by this technique and the observed SHG-CD spectra proved the generation of a characteristic optical activity accompanied by the formation of the interfacial aggregate of inherently achiral porphyrin molecules. These methods will pioneer a new field of interfacial chiral chemistry in the studies of solvent extraction mechanisms.

  14. Study of the equilibrium of the reaction of uranyl ions with Arsenazo III

    International Nuclear Information System (INIS)

    A solvent containing 0.2M HCL, dioxane and ethanol in a volume ratio 1:2:2 was found to be well suited for the spectrophotometric determination of uranyl with Arsenazo III. The absorbance at the analytical wavelength of 652 nm is lowered in the presence of nitrate and, in particular, sulphate ions. Three models of the system composition were computer processed: the presence of M:L=1:1 complexes, of M:1=1:2 complexes, and of both of them simultaneously, and the latter was found to be most likely. The calculated stability constants were log β1=5.42 and log β2=9.75, the calculated absorption maxima lay at 604 and 650 nm for the 1:1 complex and at 606 and 652 nm for the 1:2 complex. (author). 5 figs., 1 tab., 4 refs

  15. Color-Fading Spectrophotometric Determination of Cerium with DBC-Arsenazo

    Institute of Scientific and Technical Information of China (English)

    翟庆洲; 张晓霞

    2004-01-01

    In the medium of 0.18~1.08 mol·L-1 sulfuric acid, cerium(Ⅳ) has the color-fading effect on DBC-arsenazo. The apparent molar absorptivity of the color-fading reaction is ε530 nm=1.03×104 L·mol-1·cm-1. Beer′s law is obeyed over the range of 1.20~12.0 μg·ml-1 of Ce (Ⅳ) which shows a linear relationship with the decrease in the absorbance of the colored solution. The effect of thirty-six coexisting ions was studied. The method was applied to the determination of the trace amount of cerium in water samples and has the advantage of high accuracy and good selectivity.

  16. Performance Characterization of a Microchannel Liquid/Liquid Heat Exchanger Throughout an Extended Duration Life Test

    Science.gov (United States)

    Sheth, Rubik B.; Stephan, Ryan A.; Hawkins-Reynolds Ebony

    2011-01-01

    Liquid/Liquid Heat Exchangers (L/L HX) are an integral portion of any spacecraft active thermal control system. For this study the X-38 L/L HX was used as a baseline. As detailed in a previous ICES manuscript, NASA paired with Pacific Northwest National Laboratory to develop a Microchannel L/L HX (MHX). This microchannel HX was designed to meet the same performance characteristics as the aforementioned X-38 HX. The as designed Microchannel HX has a 26% and 60% reduction in mass and volume, respectively. Due to the inherently smaller flow passages the design team was concerned about fouling affecting performance during extended missions. To address this concern, NASA has developed a test stand and is currently performing an 18 month life test on the MHX. This report will detail the up-to-date performance of the MHX during life testing.

  17. Thermal energy storage with liquid-liquid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santana, E.A.; Stiel, L.I. [Polytechnic Univ., Brooklyn, NY (United States)

    1989-03-01

    The use of liquid-liquid mixtures for heat and cool storage applications has been investigated. Suitable mixtures exhibit large changes in the heat of mixing above and below the critical solution temperature of the system. Analytical procedures have been utilized to determine potential energy storage capabilities of systems with upper or lower critical solution temperatures. It has been found that aqueous systems with lower critical solution temperatures in a suitable range can result in large increases in the effective heat capacity in the critical region. For cool storage with a system of this type, the cooling process results in a transformation from two liquid phases to a single phase. Heats of mixing have been measured with a flow calorimeter system for a number of potential mixtures, and the results are summarized.

  18. Microrheology and Particle Dynamics at Liquid-Liquid Interfaces

    Science.gov (United States)

    Song, Yanmei

    The rheological properties at liquid-liquid interfaces are important in many industrial processes such as manufacturing foods, pharmaceuticals, cosmetics, and petroleum products. This dissertation focuses on the study of linear viscoelastic properties at liquid-liquid interfaces by tracking the thermal motion of particles confined at the interfaces. The technique of interfacial microrheology is first developed using one- and two-particle tracking, respectively. In one-particle interfacial microrheology, the rheological response at the interface is measured from the motion of individual particles. One-particle interfacial microrheology at polydimethylsiloxane (PDMS) oil-water interfaces depends strongly on the surface chemistry of different tracer particles. In contrast, by tracking the correlated motion of particle pairs, two-particle interfacial microrheology significantly minimizes the effects from tracer particle surface chemistry and particle size. Two-particle interfacial microrheology is further applied to study the linear viscoelastic properties of immiscible polymer-polymer interfaces. The interfacial loss and storage moduli at PDMS-polyethylene glycol (PEG) interfaces are measured over a wide frequency range. The zero-shear interfacial viscosity, estimated from the Cross model, falls between the bulk viscosities of two individual polymers. Surprisingly, the interfacial relaxation time is observed to be an order of magnitude larger than that of the PDMS bulk polymers. To explore the fundamental basis of interfacial nanorheology, molecular dynamics (MD) simulations are employed to investigate the nanoparticle dynamics. The diffusion of single nanoparticles in pure water and low-viscosity PDMS oils is reasonably consistent with the prediction by the Stokes-Einstein equation. To demonstrate the potential of nanorheology based on the motion of nanoparticles, the shear moduli and viscosities of the bulk phases and interfaces are calculated from single

  19. Extraction/spectrophotometric determination of trace amounts of zirconium in niobium bearing steels using Arsenazo III

    International Nuclear Information System (INIS)

    A spectrophotometric method with Arsenazo III combined the extraction of Zr by thenoyltrifluoroacetone (TTA)-xylene was studied for the determination of trace amounts of Zr in Nb-containing steels and Ni-base alloys. Sample (0.5 g or 0.1 g) was dissolved in 10 ml of aqua regia, 2 ml of hydrofluoric acid and 15 ml of perchloric acid by heating, and the solution was evaporated until all perchloric acid fumes were expelled. After cooling, the salts were dissolved by adding 1 ml of hydrochloric acid and 2.0 ml sufuric acid (9 M) and by heating. The solution was evaporated until fumes of perchloric acid were visible. After cooling, the salts were dissolved by adding 20 ml of hydrochloric acid (4 M) and by heating. L-Ascoribic acid (0.5 g per 0.1 g of sample) was added for reduction of ferric ion and the solution was adjusted to 50 ml with hydrochloric acid (4 M). Zirconium was extracted into 10 ml of TTA (0.5 M)-xylene solution and then back-extracted into 10 ml of hydrofluoric acid (0.4 M)-nitric acid (0.4 M) mixture. The organic phase was washed with 5 ml of the acids mixture. The sample and washing solutions with 1 ml of nitric acid and 15 ml of perchloric acid were evaporated below 1 ml by heating. After cooling, 30 ml of nitric acid was added and the sample solution was heated just before boiling and cooled. After the sample solution was adjusted to 40 ml with water, 2.5 ml of urea solution (10 g/l) and 5.0 ml of Arsenazo III solution (1.5 x 10-3 M) were added and the solution was adjusted to 50.0 ml with water. Absorbance of the solution was measured at 670 nm with 10mm quartz cell against reagent blank. Niobium up to 3 mg did not interfere; at 4 mg Nb caused slightly negative error. The relative standard deviations were 3 % and 0.8 % for 0.004 % and 0.02 % of Zr content respectively. The limit of determination minimum by this method was 0.0004 %. (author)

  20. Theoretical considerations of laser induced liquid-liquid interface deformation

    CERN Document Server

    Aanensen, Nina Sasaki; Brevik, Iver

    2013-01-01

    In the increasingly active field of optofluidics, a series of experiments involving near-critical two-fluid interfaces have shown a number of interesting non-linear effects. We here offer, for the first time to our knowledge, an explanation for one such feature, observed in experiments by Casner and Delville [Phys. Rev. Lett. {\\bf 90}, 144503 (2003)], namely the sudden formation of "shoulder"-like shapes in a laser-induced deformation of the liquid-liquid interface at high laser power. Two candidate explanations are the following: firstly, that the shape can be explained by balancing forces of buoyancy, laser pull and surface tension only, and that the observed change of deformation shape is the sudden jump from one solution of the strongly nonlinear governing differential equation to another. Secondly, it might be that the nontrivial shape observed could be the result of temperature gradients due to local absorptive heating of the liquid. We report that a systematic search for solutions of the governing equa...

  1. Treatment of biomass gasification wastewaters using liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Bell, N.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) investigated liquid-liquid extraction as a treatment method for biomass gasification wastewaters (BGW). Distribution coefficients for chemical oxygen demand (COD) removal were determined for the following solvents: methylisobutyl ketone (MIBK), n-butyl acetate, n-butanol, MIBK/n-butyl acetate (50:50 vol), MIBK/n-butanol (50:50 vol), tri-butyl phosphate, tri-n-octyl phosphine oxide (TOPO)/MIBK (10:90 wt), TOPO/kerosene (10:90 wt), kerosene, and toluene. The best distribution coefficient of 1.3 was given by n-butanol. Chemical analysis of the wastewater by gas chromatography (GC) showed acetic acid and propionic acid concentrations of about 4000 mg/1. Methanol, ethanol, and acetone were identified in trace amounts. These five compounds accounted for 45% of the measured COD of 29,000 mg/1. Because of the presence of carboxylic acids, pH was expected to affect extraction of the wastewater. At low pH the acids should be in the acidic form, which increased extraction by MIBK. Extraction by n-butanol was increased at high pH, where the acids should be in the ionic form.

  2. Compartmentalized Droplets for Continuous Flow Liquid-Liquid Interface Catalysis.

    Science.gov (United States)

    Zhang, Ming; Wei, Lijuan; Chen, Huan; Du, Zhiping; Binks, Bernard P; Yang, Hengquan

    2016-08-17

    To address the limitations of batch organic-aqueous biphasic catalysis, we develop a conceptually novel method termed Flow Pickering Emulsion, or FPE, to process biphasic reactions in a continuous flow fashion. This method involves the compartmentalization of bulk water into micron-sized droplets based on a water-in-oil Pickering emulsion, which are packed into a column reactor. The compartmentalized water droplets can confine water-soluble catalysts, thus "immobilizing" the catalyst in the column reactor, while the interstices between the droplets allow the organic (oil) phase to flow. Key fundamental principles underpinning this method such as the oil phase flow behavior, the stability of compartmentalized droplets and the confinement capability of these droplets toward water-soluble catalysts are experimentally and theoretically investigated. As a proof of this concept, case studies including a sulfuric acid-catalyzed addition reaction, a heteropolyacid-catalyzed ring opening reaction and an enzyme-catalyzed chiral reaction demonstrate the generality and versatility of the FPE method. Impressively, in addition to the excellent durability, the developed FPE reactions exhibit up to 10-fold reaction efficiency enhancement in comparison to the existing batch reactions, indicating a unique flow interface catalysis effect. This study opens up a new avenue to allow conventional biphasic catalysis reactions to access more sustainable and efficient flow chemistry using an innovative liquid-liquid interface protocol. PMID:27429173

  3. Evolution of dispersive liquid-liquid microextraction method.

    Science.gov (United States)

    Rezaee, Mohammad; Yamini, Yadollah; Faraji, Mohammad

    2010-04-16

    Dispersive liquid-liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given. PMID:20005521

  4. Analysis of Zr in UZr (6%) alloy has been done by measuring complex compounds of Zr-Arsenazo III with spectrophotometric method

    International Nuclear Information System (INIS)

    Sample solutions were prepared by dissolving UZr 6% ingot using 1 M HF and 1 M HNO3 solvent at 95°C. Complex formation of UZr was made by the reaction of UZr (6%) with arsenazo III (0.1%). Verification of parameters for the formation and measurement of Zr-arsenazo III complex was performed by using standard solution of SRM SPEK Zr at various concentrations, arsenazo III (0.1%) and HCl. The result showed that the optimum condition for the formation of Zr-arsenazo III complex was at a wavelength of 666.3 nm, 9 N HCl, which was stable at 30 minutes to 3.5 hours and at a concentration of arsenazo III (0.1%) of 80 ppm. The analysis was done in the range of 0.04 ppm to 0.5 ppm with an accuracy and precision of 1.846% and 0.868% respectively. The Separation process of Zr from UZr alloy was required before the analysis because the presence of uranium in the sample might affect the analysis result significantly. The separation of Zr from uranium matrix was done by extraction using TBP/kerosene (7:3) with contacting time of 10 minutes. The analysis of Zr in the aqueous phase shows that the content of Zr is 5.28% with 91,84% recovery and 0,08% method precision (RSD). (author)

  5. Liquid-liquid extraction. Choice, calculation and design of devices; Extraction liquide-liquide. Choix, calcul et conception des appareils

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, J. [CEA Vallee du Rhone, Departement de Technologie du Cycle du combustible, 26 - Pierrelatte (France)

    2005-02-01

    The aim of this work is to study the problematic due to the choice of an equipment, to its size and to its industrial bringing into operation. Besides its efficiency to carry out a mass transfer, the economical interest of an industrial device will be proportional to its specific rate (volume treated by surface unit of the cross section of the extractor). Nevertheless, as it seems to be logic to maximize the three parameters which have an influence on it (transfer coefficient, interfacial surface and transfer potential), there exists no device which can modify separately any of these parameters. In order to satisfy these aims, a great diversity of devices have been put on the market. Indeed, it exists about twenty different industrial devices. This diversity leads the engineer, during the design of a solvent extraction device, to take difficult and subjective decisions without pilot experiment on the considered system. The main problem of an economical and optimized calculation of the liquid-liquid extractors from theoretical data has still not found totally satisfying solutions. Thus, except in some cases where we have empirical correlations, the recourse to prototype experiments is required and the most recent advances have resulted essentially to define more reliable rules for the extrapolation of these experiments for the size of industrial devices. (O.M.)

  6. A kinetic study of the complexation reaction between the dioxoururanium(VI) ion and arsenazo III

    International Nuclear Information System (INIS)

    The rates of formation of the 1:1 complexes between the aquo UO22+ ion and Arsenazo III were determined in 2.0 M perchloric acid solutions. The kinetic data are consistent with a first-order approach to equilibrium due to the concentration conditions under which the reaction was studied. Rate and activation parameters for the forward reaction at 25.0deg C are kf=2.14 ± (0.08)x105 M-1 sec-1, ΔH*f=30.1 ± (6.0) kJ/mol and ΔS*f=-42.2 ± (20.2) J/molxK, respectively. For the corresponding reverse reaction at 25.0deg C, kr=8.86 ± (0.44) sec-1, ΔH*r=48.2 ± (0.1) kJ/mol and ΔS*r=-65.3 ± (4.1) J/molxK. Equilibrium parameters are used to calculate at 25deg C, ΔG0=-25.0 ± (5.3) J/mol, ΔH0=-18.1 ± (0.3) kJ/mol, and ΔS0=23.1 ± (10.6) J/molxK. (orig.)

  7. Influence of organic additives on the colour reaction between trivalent americium and arsenazo III

    International Nuclear Information System (INIS)

    The colour reaction of Am(III) with arsenazo III in several hydroorganic media has been examined systematically on the addition of certain polar water-miscible organic solvents in the course of a search for improved and simple spectrophotometric methods for the estimation of americium. Addition of these substances resulted in the stabilization of colour and brought about a drastic enhancement in the absorbance values. The organic additives studied include acetone, acetonitrile, dimethylformamide, dioxane and ethanol. Among the many solvents tested, alcohol and dioxane proved to be the most effective, the highest sensitivity is obtained by using a 60% dioxane-ethanol (1:1) mixture. The apparent molar absorptivity based on Am content is 184616+-9931 mol-1 cm-1 at 655 nm which is about 3 times higher than that attained for the reaction in aqueous medium (65178+-1243). Moreover, this is the highest value reported as yet for its determination. Beer's law is obeyed both in mixed and aqueous media. The effects of some experimental variables on colour development have also been studied to optimize the conditions for the assay of Am. (author)

  8. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  9. Detection of food additives by voltammetry at the liquid-liquid interface.

    Science.gov (United States)

    Herzog, Grégoire; Kam, Victor; Berduque, Alfonso; Arrigan, Damien W M

    2008-06-25

    Electrochemistry at the liquid-liquid interface enables the detection of nonredoxactive species with electroanalytical techniques. In this work, the electrochemical behavior of two food additives, aspartame and acesulfame K, was investigated. Both ions were found to undergo ion-transfer voltammetry at the liquid-liquid interface. Differential pulse voltammetry was used for the preparation of calibration curves over the concentration range of 30-350 microM with a detection limit of 30 microM. The standard addition method was applied to the determination of their concentrations in food and beverage samples such as sweeteners and sugar-free beverages. Selective electrochemically modulated liquid-liquid extraction of these species in both laboratory solutions and in beverage samples was also demonstrated. These results indicate the suitability of liquid-liquid electrochemistry as an analytical approach in food analysis. PMID:18512937

  10. Behavior of Supercooled Aqueous Solutions Stemming from Hidden Liquid-Liquid Transition in Water

    OpenAIRE

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-01-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two...

  11. A surfactantless emulsion as a model for the liquid-liquid interface.

    OpenAIRE

    Knight, K. M.

    2006-01-01

    An electrochemically polarised liquid-liquid interface in the form of a surfactantless oil-in-water emulsion has been developed, and its creation, stabilisation and use as a model liquid-liquid system for structural characterisation using Small Angle Neutron Scattering (SANS) are described. The emulsion, composed of 1,2-dichloroethane (DCE)-in-D20, was created using a condensation method and the two main processes of destabilisation, sedimentation and coalescence, were minimised using density...

  12. Vortex-assisted liquid-liquid-liquid microextraction (VALLLME) technique: A new microextraction approach for direct liquid chromatography and capillary electrophoresis analysis.

    Science.gov (United States)

    Makahleh, Ahmad; Yap, Hui Fang; Saad, Bahruddin

    2015-10-01

    A new, rapid and sensitive microextraction technique named vortex-assisted liquid-liquid-liquid microextraction (VALLLME) is proposed. The complete extraction process involves two steps. First, a vortex-assisted liquid-liquid microextraction (VALLME) procedure was used to extract the analytes from a relatively large volume of sample (donor phase) to a small volume of organic solvent (intermediate phase). Next, a micro-vortex-assisted liquid-liquid extraction (µ-VALLE) was used to extract the target analytes from the intermediate phase to a smaller volume of aqueous solution (acceptor phase). The final extract (acceptor phase) can be directly injected into the high performance liquid chromatography or capillary electrophoresis units without any further treatments. The selection of the intermediate phase and the manipulation of pH are key parameters that ensure good extraction efficiency of the technique. The proposed technique has been successfully applied for the determination of carvedilol (used as model analyte) in biological fluid samples. The optimum extraction conditions were: toluene as intermediate phase (150 μL); pH of the donor phase, 9.5; vortex time of the VALLME, 45 s (maximum speed, 2500 rpm); 0.1M HCl (15 μL) as acceptor phase; vortexing time of the µ-VALLME, 75 s (maximum stirring speed, 2500 rpm) and salt concentration in the donor phase, 5% (w/v). Under these conditions, enrichment factors of 51- and 418-fold for VALLME step and VALLLME procedure, respectively, were achieved. PMID:26078176

  13. Membrane assisted liquid-liquid extraction of cerium

    International Nuclear Information System (INIS)

    Membrane assisted liquid-liquid extraction of cerium was investigated, with emphasis placed on the study of the reaction chemistry and the kinetics of non-dispersive solvent extraction and stripping with microporous membranes. A bulk liquid membrane process was developed for the purification of cerium(IV) from sulfate solutions containing other rare earth elements. The cerium process was studied in both a flat sheet contained liquid membrane configuration and with hollow fibre contactors. Di-2-ethylhexyl phosphoric acid (DEHPA) was identified as a suitable extractant for cerium(IV) from sulfuric acid solution, with due consideration of factors such as extraction ability, resistance to degradation, solvent selectivity and potential for sulfate transfer into a strip solution. A detailed study of the extraction of cerium(IV) with DEHPA defined the extraction reaction chemistry. The Ce/DEHPA/sulfate system was also investigated with a flat sheet bulk liquid membrane configuration, using both sulfuric and hydrochloric acid as receiver solutions. These tests identified that hydrophobic membranes provide better mass transfer for extraction and hydrophilic membranes are better for stripping. The presence of an impurity, mono 2-ethylhexyl phosphoric acid (MEHPA), was found to have a dramatic accelerating effect on the rate of the chemical extraction reaction. This was attributed to its higher interfacial activity and population compared to DEHPA, and the fact that MEHPA was also found to be an active carrier for cerium(IV). The mass transfer rate of membrane assisted extraction and stripping of cerium, using hydrophobic and hydrophilic microporous membranes, respectively, was investigated using a modified Lewis-type cell. It was quantitatively demonstrated that the extraction process was mainly controlled by membrane diffusion and the stripping process was controlled by the chemical reaction rate, with membrane diffusion becoming important at low distribution coefficients

  14. Properties of the metallochromic dyes Arsenazo III, Antipyrylazo III and Azo1 in frog skeletal muscle fibres at rest.

    Science.gov (United States)

    Baylor, S M; Hollingworth, S; Hui, C S; Quinta-Ferreira, M E

    1986-08-01

    Intact single twitch fibres from frog muscle were isolated and mounted in a normal Ringer solution (16 degrees C) on an optical bench apparatus for measuring fibre absorbance as a function of the wave-length and polarization of the incident light. Fibre absorbance was measured in resting fibres both in the absence and in the presence of one of three metallochromic dyes: Arsenazo III, Antipyrylazo III and Azo1. In the absence of dye, the fibre intrinsic absorbance, Ai(lambda), measured as a function of wave-length, lambda, was well described by the equation: Ai(lambda) = Ai(lambda long) (lambda long/lambda)X, where lambda long is a reference wave-length selected to lie beyond the absorbance band of the dyes and X is the exponential index. For wave-lengths between 480 and 810 nm, the average value of X was 1.1 for 0 deg polarized light (electric vector parallel to the fibre axis) and 1.3 for 90 deg polarized light (electric vector perpendicular to the fibre axis). The intrinsic absorbance at 0 deg, Ai,0(lambda), was somewhat larger than the intrinsic absorbance at 90 deg, Ai,90(lambda); for example, on average (n = 6), Ai,0 (810 nm) was 0.22, whereas Ai,90 (810 nm) was 0.016. Following dye injection, dye-related absorbance was estimated from the measured total fibre absorbance by subtracting the component attributable to the intrinsic absorbance; additionally, for comparison with in vitro calibrations as a function of wave-length, myoplasmic dye absorbance was corrected for the steady change in dye-concentration with time that was attributable to dye diffusion. In fibres injected with either Arsenazo III or Antipyrylazo III, the dye-related absorbance measured with 0 deg light, A0(lambda), was found to be significantly greater than that measured with 90 deg light, A90(lambda), indicating the presence of a resting 'dichroic' signal, A0(lambda)-A90(lambda), attributable to bound and oriented dye molecules. On average, the lower limit estimated for the percentage of

  15. Continuous back extraction operation by a single liquid-liquid centrifugal extractor

    International Nuclear Information System (INIS)

    We have developed a small, high-performance liquid-liquid countercurrent centrifugal extractor for the nuclear fuel cycle. The single extractor allows extraction with many multiple theoretical stages due to the formation of Taylor vortices. We have previously demonstrated multistage extraction for a forward extraction system. In this study, we have applied the centrifugal extractor to a continuous back extraction system with di(2-ethylhexyl)phosphoric acid. We examined the performance of our concept of the centrifugal extractor by varying the rotational speeds of the inner rotor and the nitric acid concentration in the stripping solution. The dispersion behavior, flow characteristics were determined and the back extraction performance was examined for a single chemical species and for multiple species. Complete back extraction by continuous process was achieved and it showed the possibility to minimize the volume and nitric acid concentration of the stripping solution. Our centrifugal extractors may provide a more effective separation system than the conventional separation process that uses many continuously connected extractors. (authors)

  16. Continuous back extraction operation by a single liquid-liquid centrifugal extractor

    Energy Technology Data Exchange (ETDEWEB)

    Nakase, M.; Takeshita, K. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology: 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2013-07-01

    We have developed a small, high-performance liquid-liquid countercurrent centrifugal extractor for the nuclear fuel cycle. The single extractor allows extraction with many multiple theoretical stages due to the formation of Taylor vortices. We have previously demonstrated multistage extraction for a forward extraction system. In this study, we have applied the centrifugal extractor to a continuous back extraction system with di(2-ethylhexyl)phosphoric acid. We examined the performance of our concept of the centrifugal extractor by varying the rotational speeds of the inner rotor and the nitric acid concentration in the stripping solution. The dispersion behavior, flow characteristics were determined and the back extraction performance was examined for a single chemical species and for multiple species. Complete back extraction by continuous process was achieved and it showed the possibility to minimize the volume and nitric acid concentration of the stripping solution. Our centrifugal extractors may provide a more effective separation system than the conventional separation process that uses many continuously connected extractors. (authors)

  17. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    Science.gov (United States)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  18. Simultaneous determination of uranium and plutonium at trace levels in process streams using Arsenazo III by derivative spectrophotometry

    International Nuclear Information System (INIS)

    A derivative spectrophotometric method has been developed for the simultaneous determination of uranium and plutonium at trace levels in various process streams in 3M HNO3 medium using Arsenazo III. The method was developed with the objective of measuring both uranium and plutonium in the same aliquot in fairly high burn-up fuels. The first derivative absorbances of the uranium and plutonium Arsenazo III complexes at 632 nm and 606.5 nm, respectively, were used for their quantification. Mixed aliquots of uranium (20-28 μg/ml) and plutonium (0.5-1.5 μg/ml) with U/Pu ratio varying from 25 to 40 were analysed using this technique. A relative error of about 5% was obtained for uranium and plutonium. The method is simple, fast and does not require separation of uranium and plutonium. The effect of presence of many fission products, corrosion products and complexing anions on determination of uranium and plutonium was also studied. (author)

  19. Active liquid/liquid interfaces: contributions of non linear optics and tensiometry

    International Nuclear Information System (INIS)

    Liquid-liquid extraction processes are widely used in the industrial fields of selective separation. Despite its numerous applications, the microscopic mechanisms which occur during a liquid-liquid extraction processes are really unknown specially at the liquid/liquid interface. Thus, this work deals on the understanding of the phenomena which drive the mass transfer across a liquid/liquid interface. Two experimental techniques were used in this work: dynamic interfacial tension measurement and non-linear optical experiments. Along with the use of this experimental approach, a numerical model describing the mass transfer dynamic has been developed. This model works under the assumption that both diffusion and a chemical step describing adsorption and desorption processes contribute to the global transfer kinetics. Model systems of surfactant molecules, chromophore molecules and complexing molecule were investigated at liquid/liquid and air/liquid interface. Interfacial phenomena like adsorption, surface aggregation and ion complexing were studied. Finally, the methodology developed in this work was applied to studied an extractant molecule with potential industrial application. (author)

  20. Studies on the extraction behavior of Zr(IV), Ce(III), Th(IV) and U(VI) from aqueous solutions of Arsenazo-I with HDEHP, HTTA, TDA and TCMA

    International Nuclear Information System (INIS)

    The extraction behavior of Zr(IV), Ce(III), Th(IV) and U(VI) from aqueous solutions containing Arsenazo-I with the organic solvents tridodecylamine (TDA), 1-[thenoyl-(2)[-3-3-3-trifluoroacetone (HTTA), di(2-ethylhexyl) phosphoric acid (HDEHP) and tricaprymethylammonium chloride (TCMA) in xylene has been investigated. Effect of hydrogen ion concentration in the aqueous phase, Arsenazo-I concentration, as well as the effect of solvent concentration on the extraction was studied. Some alternatives for separation of the elements studied were recommended enabling the spectrophotometric determination of these elements using Arsenazo-I without interference. (author). 21 refs., 10 figs

  1. Development and comparison of two dispersive liquid-liquid microextraction techniques coupled to high performance liquid chromatography for the rapid analysis of bisphenol A in edible oils.

    Science.gov (United States)

    Liu, Shuhui; Xie, Qilong; Chen, Jie; Sun, Janzhi; He, Hui; Zhang, Xiaoke

    2013-06-21

    In this study, two novel sample extraction methods for the analysis of bisphenol A (BPA) in edible oils were developed by using liquid-liquid extraction followed by a dispersive liquid-liquid microextraction (LLE-DLLME) and reversed-phase dispersive liquid-liquid microextraction (RP-DLLME). RP-DLLME showed a superior characteristic over LLE-DLLME and other previously reported procedures because of its easy operation, short extraction time, high sensitivity, low organic solvent consumption and waste generation. The optimized extraction conditions of RP-DLLME for 1.0 g of edible oil diluted in 4 mL of n-hexane were: extractant, 100 μL 0.2 M sodium hydroxide solution (80% methanol, v/v); extraction time, 1 min; centrifugation, 3 min. The determination of BPA was carried out by high performance liquid chromatography coupled with a DAD detector. The method offered excellent linearity over a range of 0.010-0.5 μg g(-1) with a correlation coefficient of r>0.997. Intra-day and inter-day repeatability values expressed as relative standard deviation were 1.9% and 5.9%, respectively. The quantitation limit and detection limit were 6.3 and 2.5 ng g(-1). The target analyte was detected in 5 out of 16 edible oil samples. The recovery rates in real samples ranged from 89.5 to 99.7%. PMID:23683892

  2. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, K.E. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  3. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    International Nuclear Information System (INIS)

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup

  4. (Liquid + liquid), (solid + liquid), and (solid + liquid + liquid) equilibria of systems containing cyclic ether (tetrahydrofuran or 1,3-dioxolane), water, and a biological buffer MOPS

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • MOPS buffer induced liquid phase splitting for mixtures of water with THF or 1,3-dioxolane. • Phase boundaries of LLE, SLE, and SLLE were determined experimentally. • Tie-lines at LLE and at SLLE were also measured. • Phase diagrams of MOPS + water + THF or 1,3-dioxolane are prepared. • LLE tie-line data are correlated satisfactorily with the NRTL model. - Abstract: Two liquid phases were formed as the addition of a certain amount of biological buffer 3-(N-morpholino)propane sulfonic acid (MOPS) in the aqueous solutions of tetrahydrofuran (THF) or 1,3-dioxolane. To evaluate the feasibility of recovering the cyclic ethers from their aqueous solutions with the aid of MOPS, we determined experimentally the phase diagrams of the ternary systems of {cyclic ether (THF or 1,3-dioxolane) + water + MOPS} at T = 298.15 K under atmospheric pressure. In this study, the solubility data of MOPS in water and in the mixed solvents of water/cyclic ethers were obtained from the results of a series of density measurements, while the (liquid + liquid) and the (solid + liquid + liquid) phase boundaries were determined by visually inspection. Additionally, the tie-line results for (liquid + liquid) equilibrium (LLE) and for (solid + liquid + liquid) equilibrium (SLLE) were measured using an analytical method. The reliability of the experimental LLE tie-line results data was validated by using the Othmer–Tobias correlation. These LLE tie-line values were correlated well with the NRTL model. The phase diagrams obtained from this study reveal that MOPS is a feasible green auxiliary agent to recover the cyclic ethers from their aqueous solutions, especially for 1,3-dioxolane

  5. Experimental and calculated liquid-liquid interfacial tension in demixing metal alloys

    Institute of Scientific and Technical Information of China (English)

    Walter Hoyer; Ivan Kaban

    2006-01-01

    Liquid-liquid interfacial tension in binary and ternary Al-based monotectic systems has been determined experimentally with a tensiometric method in a wide temperature interval. The temperature dependence of the interfacial tension is well described by a power law function of the type σαβ~ (1 - T/Tc)δ with the critical exponent δ = 1.3 and a critical tem perature TC. Theoretical models describing the liquid-liquid interface in monotectic alloys and their applicability for calculation of the interfacial tension and its temperature dependence in binary systems are considered.

  6. Prediction of liquid-liquid equilibria for polyethylene glycol based aqueous two-phase system by ASOG and UNIFAC method

    Directory of Open Access Journals (Sweden)

    M. Perumalsamy

    2009-03-01

    Full Text Available Liquid-Liquid equilibrium data were obtained for the polyethylene glycol2000(PEG2000-sodium citrate-water system at 298.15, 308.15 and 318.15 K. The effect of temperature on binodal and tie line data was studied and published in a previous article (Murugesan and Perumalsamy, 2005. The interaction parameters of ASOG and UNIFAC models were estimated using the LLE data of PEG2000-sodium citrate-water system and are used to predict the LLE data for PEG6000-sodium citrate-water system at 298.15, 308.15 and 318.15 K (literature data. The predicted LLE data by both ASOG and UNIFAC models showed good agreement with the experimental and literature data.

  7. Apparent First-Order Liquid-Liquid Transition with Pre-transition Density Anomaly, in Water-Rich Ideal Solutions.

    Science.gov (United States)

    Zhao, Zuofeng; Angell, C Austen

    2016-02-01

    The striking increases in response functions observed during supercooling of pure water have been the source of much interest and controversy. Imminent divergences of compressibility etc. unfortunately cannot be confirmed due to pre-emption by ice crystallization. Crystallization can be repressed by addition of second components, but these usually destroy the anomalies of interest. Here we study systems in which protic ionic liquid second components dissolve ideally in water, and ice formation is avoided without destroying the anomalies. We observe a major heat capacity spike during cooling, which is reversed during heating, and is apparently of first order. It occurs just before the glassy state is reached and is preceded by water-like density anomalies. We propose that it is the much-discussed liquid-liquid transition previously hidden by crystallization. Fast cooling should allow the important fluctuations/structures to be preserved in the glassy state for leisurely investigation. PMID:26756943

  8. (Liquid + liquid) equilibrium data for the system (propylene glycol + water + tetraoctyl ammonium 2-methyl-1-naphthoate)

    International Nuclear Information System (INIS)

    Highlights: ► Recovery of PG from water using a task specific ionic liquid [TOA MNaph]. ► LLE data was correlated using the NRTL and UNIQUAC at three different temperatures. ► Both models describe the system adequately RSMD: 1.51% NRTL and 1.20% UNIQUAC. - Abstract: Propylene glycol (PG) is an important low toxic glycol, widely used in the food, cosmetics, pharmaceutical and the chemical industries. The recovery of PG from aqueous streams using conventional unit operations such as evaporation is highly energy demanding because of the large amounts of water that need to be evaporated. An alternative, more energy efficient technology could be liquid–liquid extraction. The use of tetraoctyl ammonium 2-methyl-1-naphtoate [TOA MNaph], a previously reported tailor made ionic liquid, (L.Y. Garcia-Chavez, B. Schuur, A.B. de Haan, J. Chem. Thermodyn. (2012). Doi: 10.1016/j.jct.2012.03.009) , for the extraction of mono ethylene glycol, was experimentally investigated for the liquid–liquid extraction of PG from aqueous streams by measuring the (liquid + liquid) equilibrium data for the system PG + water + [TOA MNaph] at three different temperatures. The data were correlated with both the NRTL and UNIQUAC models. Both thermodynamic models were able to correlate the experimental data well, with root square mean deviations (RMSD) of 1.51% and 1.20% for NRTL and UNIQUAC, respectively. From the high distribution of PG compared to traditional solvents, it could be concluded that [TOA MNaph] is a promising solvent for PG recovery from aqueous broths.

  9. Oxygen Reduction Catalyzed by a Fluorinated Tetraphenylporphyrin Free Base at Liquid/Liquid Interfaces

    Czech Academy of Sciences Publication Activity Database

    Hatay, I.; Su, B.; Méndez, M. A.; Corminboeuf, C.; Khoury, T.; Gros, C. P.; Bourdillon, M.; Meyer, M.; Barbe, J.-M.; Ersöz, M.; Záliš, Stanislav; Samec, Zdeněk; Girault, H. H.

    2010-01-01

    Roč. 132, č. 39 (2010), s. 13733-13741. ISSN 0002-7863 R&D Projects: GA ČR(CZ) GA203/07/1257; GA MŠk OC 177 Institutional research plan: CEZ:AV0Z40400503 Keywords : tetraphenylporphyrin * electrocatalysis * liquid/liquid interfaces Subject RIV: CG - Electrochemistry Impact factor: 9.019, year: 2010

  10. Noise and ac impedance analysis of ion transfer kinetics at the micro liquid/liquid interface

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Holub, Karel; Mareček, Vladimír

    2015-01-01

    Roč. 56, JUL 2015 (2015), s. 43-45. ISSN 1388-2481 R&D Projects: GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : noise analysis * liquid/liquid interface * ion transfer kinetics Subject RIV: CG - Electrochemistry Impact factor: 4.847, year: 2014

  11. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  12. Proton transfer across a liquid/liquid interface facilitated by phospholipid interfacial films

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Jänchenová, Hana; Štulík, K.; Mareček, Vladimír

    2009-01-01

    Roč. 632, 1-2 (2009), s. 8-13. ISSN 1572-6657 R&D Projects: GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : liquid-liquid interface * proton transfer * phospholipid layers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.338, year: 2009

  13. Liquid-liquid equilibria for binary and ternary polymer solutions with PC-SAFT

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2004-01-01

    Two algorithms for evaluating liquid-liquid equilibria (LLE) for binary and ternary polymer solutions are presented. The binary algorithm provides the temperature versus concentration cloud-point curve at fixed pressure, whereas the ternary algorithm provides component 1 versus component 2...... accuracy, even by using interaction parameters obtained from binary vapor-liquid equlibrium data....

  14. The Potential Controlled Fenton Reaction at Liquid/Liquid Interfaces as the Source of Hydroxyl Radicals

    Czech Academy of Sciences Publication Activity Database

    Brusová, Z.; Štulík, K.; Mareček, Vladimír

    2004-01-01

    Roč. 563, 1/2 (2004), s. 277-281. ISSN 0022-0728 R&D Projects: GA MŠk ME 510 Institutional research plan: CEZ:AV0Z4040901 Keywords : liquid/liquid interfaces * homogeneous reaction * Fenton reaction Subject RIV: CG - Electrochemistry Impact factor: 2.228, year: 2004

  15. Ultrastable Liquid-Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules.

    Science.gov (United States)

    Vecchione, Raffaele; Iaccarino, Giulia; Bianchini, Paolo; Marotta, Roberto; D'autilia, Francesca; Quagliariello, Vincenzo; Diaspro, Alberto; Netti, Paolo A

    2016-06-01

    Liquid-liquid interfaces are highly dynamic and characterized by an elevated interfacial tension as compared to solid-liquid interfaces. Therefore, they are gaining an increasing interest as viable templates for ordered assembly of molecules and nanoparticles. However, liquid-liquid interfaces are more difficult to handle compared to solid-liquid interfaces; their intrinsic instability may affect the assembly process, especially in the case of multiple deposition. Indeed, some attempts have been made in the deposition of polymer multilayers at liquid-liquid interfaces, but with limited control over size and stability. This study reports on the preparation of an ultrastable liquid-liquid interface based on an O/W secondary miniemulsion and its possible use as a template for the self-assembly of polymeric multilayer nanocapsules. Such polymer nanocapsules are made of entirely biodegradable materials, with highly controlled size-well under 200 nm-and multi-compartment and multifunctional features enriching their field of application in drug delivery, as well as in other bionanotechnology fields. PMID:27060934

  16. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  17. Luminescence screening of enrofloxacin and ciprofloxacin residues in swine liver after dispersive liquid - liquid microextraction cleanup

    Science.gov (United States)

    A rapid luminescence method was developed to screen residues of enrofloxacin (ENRO) and its metabolite, ciprofloxacin (CIPRO), in swine liver. Target analytes were extracted in acetonitrile-2.5% trifluoroacetic acid-NaCl, cleaned up by dispersive liquid-liquid microextraction (DLLME), and finally de...

  18. Electroless deposition of palladium at bare and templated liquid/liquid interfaces.

    Science.gov (United States)

    Dryfe, Robert A W; Simm, Andrew O; Kralj, Brett

    2003-10-29

    A simple, electroless approach to metallize the liquid/liquid interface is reported. The method is illustrated with the deposition of Pd at the bare water/1,2-dichloroethane interface, and for the "templated" deposition of Pd within the 100 nm diameter pores of gamma-alumina membranes. PMID:14570460

  19. Liquid-liquid equilibria for glycols plus hydrocarbons: Data and correlation

    DEFF Research Database (Denmark)

    Derawi, Samer; Kontogeorgis, Georgios; Stenby, Erling Halfdan;

    2002-01-01

    Liquid-liquid equilibrium data for seven binary glycol-hydrocarbon systems have been measured in the temperature range 32 degreesC to 80 degreesC and at the pressure 1 bar. The measured systems are monoethylene glycol (MEG) + heptane, methyleyclohexane (MCH) + hexane, propylene glycol (PG...

  20. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  1. Numerical simulation of Marangoni effects of single drops induced by interphase mass transfer in liquid-liquid extraction systems by the level set method

    Institute of Scientific and Technical Information of China (English)

    WANG JianFeng; YANG Chao; MAO ZaiSha

    2008-01-01

    The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level of a scalar distance function defined in the whole computational domain. Numerical simulation of the Marangoni effect induced by interphase mass transfer to/from deformable single drops in unsteady motion in liquid-liquid extraction systems is performed in a Eulerian axisymmetric reference frame. The occurrence and development of the Marangoni effect are simulated, and the re-sults are in good agreement with the classical theoretical analysis and previous simulation.

  2. Numerical simulation of Marangoni effects of single drops induced by interphase mass transfer in liquid-liquid extraction systems by the level set method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level of a scalar distance function defined in the whole computational domain. Numerical simulation of the Marangoni effect induced by interphase mass transfer to/from deformable single drops in unsteady motion in liquid-liquid extraction systems is performed in a Eulerian axisymmetric reference frame. The occurrence and development of the Marangoni effect are simulated, and the re- sults are in good agreement with the classical theoretical analysis and previous simulation.

  3. Hollow fiber-based liquid-liquid-liquid microextraction followed by flow injection analysis using column-less HPLC for the determination of phenazopyridine in plasma and urine.

    Science.gov (United States)

    Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Farajmand, Bahman

    2011-07-01

    Hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) followed by flow injection analysis and diode array detection (FIA-DAD) was applied as a simple and sensitive quantitative method for the determination of phenazopyridine in urine and plasma samples. Flow injection system included a conventional HPLC system (without a chromatographic column) and a diode array detector. The extraction of phenazopyridine was carried out using diphenyl ether as the organic phase for filling the pores of the hollow fiber wall, and 0.1 M H(2)SO(4) solution as acceptor phase in the lumen of the fiber. The factors affecting the HF-LLLME and flow injection analysis including type of organic solvent, pH of donor phase, extraction temperature, extraction time, stirring rate, and pH of mobile phase were investigated and the optimal extraction conditions were established. With the consumption of 5 mL of sample solution, the enrichment factor was about 230. The limit of detection was 0.5 μg/L with inter- and intra-day precision being (RSD%) 6.9 and 4.9, respectively. Excellent linearity was found between 5 and 200 μg/L. PMID:21681956

  4. Analysis of amantadine in biological fluids using hollow fiber-based liquid-liquid-liquid microextraction followed by corona discharge ion mobility spectrometry.

    Science.gov (United States)

    Saraji, Mohammad; Khayamian, Taghi; Mirmahdieh, Shiva; Bidgoli, Ali Akbar Hajialiakbari

    2011-10-15

    A method based on liquid-liquid-liquid microextraction combined with corona discharge ion mobility spectrometry was developed for the analysis of amantadine in human urine and plasma samples. Amantadine was extracted from alkaline aqueous sample as donor phase through a thin phase of organic solvent (n-dodecane) filling the pores of the hollow fiber wall and then back extracted into the organic acceptor phase (methanol) located in the lumen of the hollow fiber. All variables affecting the extraction of analyte including acceptor organic solvent type, concentration of NaOH in donor phase, ionic strength of the sample and extraction time were studied. The linear range was 20-1000 and 5-250 ng/mL for plasma and urine, respectively (r(2)≥0.990). The limits of detection were calculated to be 7.2 and 1.6 ng/mL for plasma and urine, respectively. The relative standard deviation was lower than 8.2% for both urine and plasma samples. The enrichment factors were between 45 and 54. The method was successfully applied for the analysis of amantadine in urine and plasma samples. PMID:21956021

  5. Study on the Holdup and Mass Transfer Performances for Gas-Liquid-Liquid System in a Screen Plate Column

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gas and dispersed phase holdups and mass transfer coefficients of liquid-iquid were determined for gas-liquid-liquid three phase system in a screen plate column. The flow pattern of gas-liquid-liquid three phase system was studied under different gas velocities. The shape factors showed the geometric properties of screen plates and the corrected drop characteristic velocities were introduced. The phase holdup in two phases was correlated. The research results indicated that mass transfer coefficient for liquid-liquid system in a column with screen plates and gas agitation was found to increase apparently.

  6. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    Directory of Open Access Journals (Sweden)

    E. Ince

    2002-04-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  7. Micro-fluidic tools for the liquid-liquid extraction of radionuclides in analytical procedures

    International Nuclear Information System (INIS)

    The analyses of radionuclides are in great demand and a cost effective technique for the separation of analytes is required. A micro-scale reactor composed of microchannels fabricated in a microchip was chosen to investigate liquid-liquid extraction reactions driven by three different families of metal extractants: neutral, acidic and ion-pair extractants. The extraction conditions in the micro-fluidic device were considered. These investigations demonstrated that the conventional methodology used for solvent extraction in macro-scale reactors is not directly transposable to micro liquid-liquid extraction systems. However, it is expected that the understanding of the chemical and physical phenomena involved in a reference extraction systems studied in a given selected lab-on-chip will lead us to develop and validate a methodology suitable to miniaturized reactors. (authors)

  8. Theoretical background and the flow fields in downhole liquid-liquid hydrocyclone (LLHC

    Directory of Open Access Journals (Sweden)

    Osei Harrison

    2014-07-01

    Full Text Available Hydrocyclone system for downhole oil-water separation provides an effective technique of enhancing the economic viability of higher water-cut wells while at the same time reducing the risk of environmental pollution. This paper describes the hydrodynamics of the liquid-liquid hydrocyclones and the flow fields within it are paramount for achieving successful separation process. Some of the important hydrodynamic flow phenomenon within the liquid-liquid hydrocyclone and how they influence the separation efficiency of water/oil was analyzed through analytical solution. The properties of the liquids were based on Bayan offshore field measured properties. The results indicated that there are two swirling zones separated by stagnant flow field. The inner is the light liquid zone, while the outer is the heavy liquid zone.

  9. Poly(ionic liquid)s as phase splitting promoters in aqueous biphasic systems.

    Science.gov (United States)

    João, Karen G; Tomé, Liliana C; Isik, Mehmet; Mecerreyes, David; Marrucho, Isabel M

    2015-11-01

    Aqueous biphasic systems (ABSs) provide a sustainable and efficient alternative to conventional liquid-liquid extraction techniques with volatile organic solvents, and can be used for the extraction, recovery, and purification of diverse solutes. In this work, and for the first time, ABSs composed of poly(ionic liquid)s (PILs) and inorganic salts were measured at 25 °C and atmospheric pressure. New PILs having pyrrolidinium polycations combined with different counter-anions, namely acetate [Ac](-), trifluoroacetate [TFAc](-), hexanoate [Hex](-), adipate [Adi](-), and citrate [Cit](-) were synthesized, by a simple and environmentally-friendly procedure, and characterized. The effect of the PIL features, namely molecular weight and anionic character, and other experimental variables, such as temperature, on the phase splitting ability was researched. The aptitude of the studied ABS to be implemented as separation technologies was also evaluated through the use of a model biomolecule, tryptophan. PMID:26421939

  10. Determination of liquid-liquid critical point composition using 90∘ laser light scattering

    Science.gov (United States)

    Williamson, J. Charles; Brown, Allison M.; Helvie, Elise N.; Dean, Kevin M.

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90∘ light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90∘ light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  11. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  12. Development, Fabrication, and Testing of a Liquid/Liquid Microchannel Heat Exchanger for Constellation Spacecrafts

    Science.gov (United States)

    Hawkins-Reynolds, Ebony; Le, Hung; Stephan, Ryan

    2010-01-01

    Microchannel technology can be incorporated into heat exchanger designs to decrease the mass and volume of space hardware. The National Aeronautics and Space Administration at the Johnson Space Center (NASA JSC) partnered with Pacific Northwest National Laboratories (PNNL) to develop a liquid/liquid microchannel heat exchanger that has significant mass and volume savings without sacrificing thermal and pressure drop performance. PNNL designed the microchannel heat exchanger to the same performance design requirements of a conventional plate and fin liquid/liquid heat exchanger; 3 kW duty with inlet temperatures of 26 C and 4 C. Both heat exchangers were tested using the same test parameters on a test apparatus and performance data compared.

  13. Thermophysical properties of biodiesel and related systems: (Liquid + liquid) equilibrium data for castor oil biodiesel

    International Nuclear Information System (INIS)

    Highlights: ► (Liquid + liquid) equilibrium data for multicomponent castor oil FAME and FAEE castor oil. ► Tie-lines and solubility curves (binodal) by cloud-point method for FAME and FAEE systems. ► Experimental data correlated using the UNIQUAC model. -- Abstract: This work reports new liquid–liquid solubility values (binodal curves) as well as (liquid + liquid) equilibrium data for, ternary and quaternary systems containing fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) from castor oil, water, glycerol, methanol and anhydrous ethanol at T = (303.15, 318.15, and 333.15) K. Solubility curves (binodal) were also obtained by the cloud-point method for binary systems containing FAME, FAEE, water, or glycerol. All results obtained can be considered of good quality. The experimental values were correlated using the UNIQUAC model, whose results presented good performance and satisfactory fitting of equilibrium values

  14. LIQUID-LIQUID PHASE EQUILIBRIUM OF POLYMER SOLUTIONS AND POLYMER BLENDS UNDER POSITIVE AND NEGATIVE PRESSURE

    Institute of Scientific and Technical Information of China (English)

    Attila R.Imre

    2003-01-01

    In this paper we would like to give a brief review about the extensibility of the liquid-liquid locus into the negative pressure region. Negative pressure states are hardly explored; most researchers believe that the pressure scale ends at p = 0.We would like to show that this is not true, thep = 0 point is not a special point for liquids, it can be "easily" crossed. We are going to give a few example, where the extension of liquid-liquid locus for polymer blends and solutions below p = 0 gives us some interesting results, like the merging of UCST and LCST branches in weakly interacting polymer solutions or the reason why most UCST blends exhibit pressure induced immiscibility. Also, we will see what happens with the immiscibility island of aqueous polymer solutions when - reaching the critical molar mass - it "disappears".

  15. SIMULTANEOUS REACTION AND LIQUID-LIQUID EXTRACTION IN THE HYDROGEN PEROXIDE PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    Shuxiang L(u); Li Wang; Zhentao Mi; Yaquan Wang

    2004-01-01

    The gas-liquid-liquid reactive extraction system for preparing hydrogen peroxide via anthraquinone was investigated. The oxidation reaction of hydrogenated working solution was combined with the extraction of hydrogen peroxide from working solution in a sieve plate column. The reaction of 2-ethylanthrahydroquionone with oxygen and the liquid-liquid extraction of hydrogen peroxide take place simultaneously. The oxygen was introduced with hydrogenated working solution through a nozzle in the bottom of the column, which worked as agitated air as well as oxidation reagent. The results showed the oxidation and extraction do not hamper each other, on the contrary, the presence of oxidation gas in the column can promote the transfer of hydrogen peroxide from organic phase to aqueous phase, thus the reaction efficiency and extraction efficiency increased with increasing gas superficial velocity. Furthermore, the oxidation efficiency is almost 100% and the extraction efficiency is higher than 90% in this process.

  16. CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor

    Science.gov (United States)

    Gelves, R.

    2013-10-01

    In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.

  17. Thermophysical properties of biodiesel and related systems: (Liquid + liquid) equilibrium data for Jatropha curcas biodiesel

    International Nuclear Information System (INIS)

    Highlights: ► (Liquid + liquid) equilibrium data for multicomponent Jatropha curcas FAME and FAEE. ► Tie-lines, solubility curves (binodal curves) with low deviations from mass balance. ► Experimental data correlated with the UNIQUAC model. -- Abstract: Reported in this study are (liquid + liquid) equilibrium data for binary, ternary, and quaternary systems formed by fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) of Jatropha curcas oil, water, glycerol, methanol, and ethanol at temperatures of (303.15, 318.15, and 333.15) K. In general, all the systems investigated resulted in good agreement between phase compositions of crunodes of tie-lines, solubility curves (binodal curves) and overall compositions, hence indicating low deviations from mass balance. Experimental results were correlated with the UNIQUAC model, showing low deviations among experimental and calculated values

  18. SIMULTANEOUS REACTION AND LIQUID-LIQUID EXTRACTION IN THE HYDROGEN PEROXIDE PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    ShuxiangLǖ; LiWang; ZhentaoMi; YaquanWang

    2004-01-01

    The gas-liquid-liquid reactive extraction system for preparing hydrogen peroxide via anthraquinone was investigated. The oxidation reaction of hydrogenated working solution was combined with the extraction of hydrogen peroxide from working solution in a sieve plate column. The reaction of 2-ethylanthrahydroquionone with oxygen and the liquid-liquid extraction of hydrogen peroxide take place simultaneously. The oxygen was introduced with hydrogenated working solution through a nozzle in the bottom of the column, which worked as agitated air as well as oxidation reagent. The results showed the oxidation and extraction do not hamper each other, on the contrary, the presence of oxidation gas in the column can promote the transfer of hydrogen peroxide fi'om organic phase to aqueous phase, thus the reaction efficiency and extraction efficiency increased with increasing gas superficial velocity. Furthermore, the oxidation efficiency is almost 100% and the extraction efficiency is higher than 90% in this process.

  19. Liquid-Liquid Structure Transition in Metallic Melts: Experimental Evidence by Viscosity Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Qing; WU Yu-Qin; BIAN Xiu-Fang

    2007-01-01

    Temperature dependence of viscosity for more than ten kinds of metallic melts is analysed based on viscosity measurements. An obvious turning point is observed on the Arrhenius curves. Since viscosity is one of the physical properties sensitive to structure, its discontinuous change with temperature reveals the possible liquidliquid structure transition in the metallic melts. Furthermore, an integrated liquid structure transition diagram of the Sn-Bi system is presented. The universality of liquid-liquid structure transition is also discussed simply.

  20. Contribution to the study of liquid-liquid extraction kinetics for rapid transfers

    International Nuclear Information System (INIS)

    Recovery and purification of U and Pu from spent fuels by liquid-liquid extraction with TBP from a nitric solution are reviewed. Evolution of equipment is briefly examined, in pulsed columns and centrifuge extractors the time of contact is short and efficiency of the extraction process requires to take into account the kinetics of transfer of compounds in solution. Determination of the kinetics of U and Pu extraction is studied with laboratory centrifuge extractors

  1. Melittin Adsorption and Lipid Monolayer Disruption at Liquid-Liquid Interfaces

    OpenAIRE

    Mendez, Manuel A.; Nazemi, Zahra; Uyanik, Ibrahim; Lu, Yu; Girault, Hubert H.

    2011-01-01

    Melittin, a membrane-active peptide with antimicrobial activity, was investigated at the interface formed between two immiscible electrolyte solutions (ITIES) supported on a metallic electrode. Ion-transfer voltammetry showed well-defined semi-reversible transfer peaks along with adsorptive peaks. The reversible adsorption of melittin at the liquid-liquid interface is qualitatively discussed from voltammetric data and experimentally confirmed by real-time image analysis of video snapshots. It...

  2. Spectrophotometric determination of iron species using ionic liquid ultrasound assisted dispersive liquid--liquid microextraction

    OpenAIRE

    BAZMANDEGAN, ALIREZA; SHABANI, Ali Mohammad HAJI; DADFARNIA, SAYESSTEH; SAEIDI, MAHBOUBEH; MOGHADAM, MASOUD ROHANI

    2015-01-01

    A simple and efficient method for speciation and determination of iron in different water samples was developed. The method is based on ionic liquid ultrasound assisted dispersive liquid--liquid microextraction (IL-USA-DLLME) followed by spectrophotometric determination. Fe(II) is complexed with 2,4,6-tri(2'-pyridyl)-l,3,5-triazine (TPTZ{)}, neutralized through ion pair formation with sodium dodecyl sulfate (SDS) and extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate [C$_{6}$...

  3. Experimental and modelling studies on liquid-liquid slug flow capillary microreactors

    OpenAIRE

    Kashid, Madhvanand N.

    2008-01-01

    Microreactor technology, an important method of process intensification, offers potential benefits to the chemical process industries due to the well-defined high specific interfacial area available for heat and mass transfer, which increases transfer rates, and enhances safety resulting from low hold-ups. The liquid-liquid slug flow capillary microreactor intensifies the mass transfer in biphasic systems through internal circulation caused by the shear between continuous phase/wall surface a...

  4. Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review

    Directory of Open Access Journals (Sweden)

    Rahul Antony

    2014-10-01

    Full Text Available Mass transfer is a basic phenomenon behind many processes like reaction, absorption, extraction etc. Mass transfer plays a significant role in microfluidic systems where the chemical / biological process systems are shrinkened down to a micro scale. Micro reactor system, with its high compatibility and performance, gains a wide interest among the researchers in the recent years. Micro structured reac-tors holds advantages over the conventional types in chemical processes. The significance of micro re-actor not limited to its scalability but to energy efficiency, on-site / on-demand production, reliability, safety, highly controlled outputs, etc. Liquid-liquid two phase reaction in a microreactor system is highly demandable when both reactants are liquids or when air medium cannot be suitable. This arti-cle overviews various liquid-liquid flow regimes in a microchannel. Discussions on the hydrodynamics of flow in micro scale are made. Considering the importance of mass transfer in liquid-liquid systems and the advantage of slug regime over other regimes, the article focuses especially on the mass trans-fer between two liquid phases in slug flow and the details of experimental studies carried out in this area. The advantages of slug flow over other flow regimes in micro structured reactor applications are showcased. © 2014 BCREC UNDIP. All rights reservedReceived: 31st May 2014; Revised: 6th August 2014; Accepted: 14th August 2014How to Cite: Antony, R., Giri Nandagopal, M.S., Sreekumar, N., Rangabhashiyam, S., Selvaraju, N. (2014. Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review. Bulletin of Chemical Reaction Engineering & Catalysis,9(3: 207-223. (doi:10.9767/bcrec.9.3.6977.207-223Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6977.207-223

  5. Redox-active cross-linkable poly(ionic liquid)s.

    Science.gov (United States)

    Sui, Xiaofeng; Hempenius, Mark A; Vancso, G Julius

    2012-03-01

    The synthesis of a new class of cross-linkable redox-responsive poly(ferrocenylsilane)-based poly(ionic liquid)s (PFS-PILs) is reported. PFS-PILs self-cross-link at low concentrations into nanogels or form macroscopic hydrogel networks at higher concentrations. PFS-PILs proved to be efficient dispersants in the microemulsion polymerization of methyl methacrylate, producing stable PFS-poly(methyl methacrylate) latex suspensions. PMID:22353019

  6. Correlation of Liquid-Liquid Equilibria in Ternary Systems Containing Ionic Liquids

    Czech Academy of Sciences Publication Activity Database

    Bendová, Magdalena; Aim, Karel; Klusoň, Petr; Sedláková, Zuzana; Černá, I.; Vašinová, J.

    - : -, 2009, 41/21/. ISBN B. [Thermodynamics 2009. London (GB), 23.09.09-25.09.09] R&D Projects: GA ČR GA104/07/0444; GA ČR GP104/06/P066; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : liquid-liquid equilibria * ionic liquids * correlation Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Liquid-Liquid Equilibrium in Quaternary System [bmim][PF6] + Water + 1-Methylimidazole + 1-Chlorobutane

    Czech Academy of Sciences Publication Activity Database

    Bendová, Magdalena; Klusoň, P.; Sedláková, Zuzana; Wagner, Zdeněk; Černá, I.; Vašinová, J.

    Wageningen : De Vlinderstichting, 2008, s. 1. ISBN N. [13th International Symposium on Solubility Phenomena and Related Equilibrium Processes. Trinity College Dublin (IE), 28.07.2008-31.07.2008] R&D Projects: GA ČR GA104/07/0444; GA ČR GP104/06/P066; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : liquid-liquid equilibrium * ionic liquids * thermodynamics Subject RIV: CF - Physical ; Theoretical Chemistry

  8. Development of a computer code, PARC, for simulation of liquid-liquid extraction process in reprocessing

    International Nuclear Information System (INIS)

    A computer code PARC was developed for simulating liquid-liquid extraction process in the PUREX reprocessing plant. PARC is able to predict transient behavior and profiles at equilibrium of uranium, plutonium, neptunium and fission products in several units of pulsed columns and mixer-settlers, which are connected each other in the PUREX plant. In this report, mathematical models of mass transfer and chemical reactions employed in PARC are described and an example of PUREX simulation is given. (author)

  9. Structure and Depletion at Fluoro- and Hydro-carbon/Water Liquid/Liquid Interfaces

    OpenAIRE

    Kashimoto, Kaoru; Yoon, Jaesung; Hou, Binyang; Chen, Chiu-hao; Lin, Binhua; Aratono, Makoto; Takiue, Takanori; Schlossman, Mark L.

    2008-01-01

    The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vapor-like depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose super-hydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity. These...

  10. Computational Fluid Dynamics Aided Design of Stirred Liquid-Liquid Extraction Columns

    OpenAIRE

    Hlawitschka, Mark

    2013-01-01

    Aim of this work was the extension and development of a coupled Computational Fluid Dynamics (CFD) and population balance model (PBM) solver to enable a simulation aided design of stirred liquid-liquid extraction columns. The principle idea is to develop a new design methodology based on a CFD-PBM approach and verify it with existing data and correlations. On this basis, the separation performance in any apparatus geometry should be possible to predict without any experimental input. Reliable...

  11. An automated system for liquid-liquid extraction in monosegmented flow analysis

    OpenAIRE

    Facchin, Ileana; Jarbas J. R. Rohwedder; Pasquini, Celio

    1997-01-01

    An automated system to perform liquid-liquid extraction in monosegmented flow analysis is described. The system is controlled by a microcomputer that can track the localization of the aqueous monosegmented sample in the manifold. Optical switches are employed to sense the gas-liquid interface of the air bubbles that define the monosegment. The logical level changes, generated by the switches, are flagged by the computer through a home-made interface that also contains the analogue-to-digital ...

  12. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan;

    2011-01-01

    . The ultimate objective of this work is to develop a predictive thermodynamic model for the mutual solubility of oil, water, and polar chemicals. But for the development and validation of the model, experimental data are required. This work presents new experimental liquid-liquid equilibrium (LLE) data for 1......, but because of the presence of water, the solubility of condensate in the polar phase decreases, and some of the components were not detectable. © 2011 American Chemical Society....

  13. Process for the recovery of magnesium and/or nickel by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gabra, G.

    1984-02-14

    The recovery of substantially pure magnesium and/or nickel sulphite which is present in a solid starting meterial. The latter is treated with gaseous SO/sub 2/ in water, the solution obtained is treated by a liquid-liquid extraction, to give an aqueous phase and an organic phase and the magnesium and/or nickel sulphite is recovered from the aqueous phase. With this process, it is possible to obtain a magnesium salt of high purity.

  14. Thermokinetics of Liquid-Liquid Reaction of Dy(NO3)3 with Histidine

    Institute of Scientific and Technical Information of China (English)

    李仲谨; 陈三平; 房艳; 高胜利

    2003-01-01

    The thermokinetics of liquid-liquid reaction of dysprosium nitrate with histidine were studied using a microcalorimeter. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant, three kinetic parameters (the activation energy, the pre-exponential constant and the reaction order) were obtained. On the basis of thermodynamics and kinetics, the formation reaction of the complex was discussed.

  15. Liquid-liquid distribution of B group vitamins in polyethylene glycol-based systems

    Science.gov (United States)

    Korenman, Ya. I.; Zykov, A. V.; Mokshina, N. Ya.

    2011-05-01

    General regularities of the liquid-liquid distribution of B1, B2, B6, and B12 vitamins in aqueous polyethylene glycol (PEG-2000, PEG-5000) solution-aqueous salt solution systems are studied. The influence of the salting-out agent, the concentration of the polymer, and its molecular weight on the distribution coefficients and recovery factors of the vitamins are considered. Equations relating the distribution coefficients (log D) to the polymer concentration are derived.

  16. Equation of State for Supercooled Water Near the Liquid-Liquid Critical Point

    OpenAIRE

    Anisimov, M. A.; Fuentevilla, D. A.

    2006-01-01

    We have developed a scaled parametric equation of state to describe and predict thermodynamic properties of supercooled water. The equation of state, built on the growing evidence that the critical point of supercooled liquid-liquid water separation exists, is universal in terms of theoretical scaling fields and is shown to belong to the Ising-model class of universality. The theoretical scaling fields are postulated to be analytical combinations of the physical fields, pressure and temperatu...

  17. On the application of the NRTL method to ternary (liquid + liquid) equilibria

    International Nuclear Information System (INIS)

    The use of the NRTL method for correlating experimental data in ternary (liquid + liquid) equilibria is considered. It is concluded that parameters obtained by direct correlation techniques have not a direct physical meaning. Also, it is shown that the resulting values for these parameters depend on the number of experimental points considered and on the particular calculation method employed. Thus, it is very risky to employ such parameters in predicting equilibria of other ternary mixtures

  18. Dispersive liquid-liquid microextraction coupled to liquid chromatography for thiamine determination in foods.

    Science.gov (United States)

    Viñas, Pilar; López-García, Ignacio; Bravo-Bravo, María; Briceño, Marisol; Hernández-Córdoba, Manuel

    2012-05-01

    A miniaturized dispersive liquid-liquid microextraction (DLLME) procedure coupled to liquid chromatography (LC) with fluorimetric detection was evaluated for the preconcentration and determination of thiamine (vitamin B(1)). Derivatization was carried out by chemical oxidation of thiamine with 5 × 10(-5) M ferricyanide at pH 13 to form fluorescent thiochrome. For DLLME, 0.5 mL of acetonitrile (dispersing solvent) containing 90 μL of tetrachloroethane (extraction solvent) was rapidly injected into 10 mL of sample solution containing the derivatized thiochrome and 24% (w/v) sodium chloride, thereby forming a cloudy solution. Phase separation was carried out by centrifugation, and a volume of 20 μL of the sedimented phase was submitted to LC. The mobile phase was a mixture of a 90% (v/v) 10 mM KH(2)PO(4) (pH 7) solution and 10% (v/v) acetonitrile at 1 mL min(-1). An amide-based stationary phase involving a ligand with amide groups and the endcapping of trimethylsilyl was used. Specificity, linearity, precision, recovery, and sensitivity were satisfactory. Calibration graph was carried out by the standard additions method and was linear between 1 and 10 ng mL(-1). The detection limit was 0.09 ng mL(-1). The selectivity of the method was judged from the absence of interfering peaks at the thiamine elution time for blank chromatograms of unspiked samples. A relative standard deviation of 3.2% was obtained for a standard solution containing thiamine at 5 ng mL(-1). The esters thiamine monophosphate and thiamine pyrophosphate can also be determined by submitting the sample to successive acid and enzymatic treatments. The method was applied to the determination of thiamine in different foods such as beer, brewer's yeast, honey, and baby foods including infant formulas, fermented milk, cereals, and purees. For the analysis of solid samples, a previous extraction step was applied based on an acid hydrolysis with trichloroacetic acid. The reliability of the procedure was

  19. Review of algorithms for modeling metal distribution equilibria in liquid-liquid extraction processes

    Directory of Open Access Journals (Sweden)

    Lozano, L. J.

    2005-10-01

    Full Text Available This work focuses on general guidelines to be considered for application of least-squares routines and artificial neural networks (ANN in the estimation of metal distribution equilibria in liquid-liquid extraction process. The goal of the procedure in the statistical method is to find the values of the equilibrium constants (Kj for the reactions involved in the metal extraction which minimizes the differences between experimental distribution coefficient (Dexp and theoretical distribution coefficients according to the mechanism proposed (Dtheor- In the first part of the article, results obtained with the most frequently routine reported in the bibliography are compared with those obtained using the algorithms previously discussed. In the second part, the main features of a single back-propagation neural network for the same purpose are discussed, and the results obtained are compared with those obtained with the classical methods.

    El trabajo presenta las líneas generales a considerar para la estimación del equilibrio de distribución de metales en procesos de extracción líquido-líquido, según dos métodos: algoritmo clásico de mínimos cuadrados y redes neuronales artificiales. El objetivo del procedimiento, en el caso del método estadístico, es encontrar los valores de las constantes de equilibrio (Kj para las reacciones involucradas en la extracción del metal, que minimizan las diferencias entre el coeficiente de distribución experimental y el coeficiente de distribución teórico, de acuerdo al mecanismo propuesto. En la primera parte del artículo se comparan los resultados obtenidos a partir de los algoritmos usados más habitualmente en la bibliografía, con los datos obtenidos mediante el algoritmo previamente descrito. En la segunda parte, se presentan las características fundamentales para aplicar una red neuronal sencilla con algoritmo back-propagation y los

  20. Heat capacity singularity of binary liquid mixtures at the liquid-liquid critical point.

    Science.gov (United States)

    Méndez-Castro, Pablo; Troncoso, Jacobo; Peleteiro, José; Romaní, Luis

    2013-10-01

    The critical anomaly of the isobaric molar heat capacity for the liquid-liquid phase transition in binary nonionic mixtures is explained through a theory based on the general assumption that their partition function can be exactly mapped into that of the Ising three-dimensional model. Under this approximation, it is found that the heat capacity singularity is directly linked to molar excess enthalpy. In order to check this prediction and complete the available data for such systems, isobaric molar heat capacity and molar excess enthalpy near the liquid-liquid critical point were experimentally determined for a large set of binary liquid mixtures. Agreement between theory and experimental results-both from literature and from present work-is good for most cases. This fact opens a way for explaining and predicting the heat capacity divergence at the liquid-liquid critical point through basically the same microscopic arguments as for molar excess enthalpy, widely used in the frame of solution thermodynamics. PMID:24229116

  1. Radionuclide analysis based on lab-on-chip liquid-liquid extraction

    International Nuclear Information System (INIS)

    The analysis of radionuclides present in high and medium activity wastes is carried out according to operating protocols including the sequence of many steps of separation/purification. In order to improve these protocols, the micro-fluidic tools have their place. In particular the liquid-liquid extraction in micro-system shows various interests: very few solvent is consumed, the process can be automated and parallelized and the extraction and the stripping can be coupled on a single chip. Liquid-liquid extraction with continuous flow in microsystems has not been tackled until recently since only few chemical systems have been studied, in particular in the nuclear field. Thanks to the characteristics linked to the miniaturization (large specific area, short diffusion length, low reagents volumes), our objective is to control the fluid hydrodynamics for optimizing the contributions of diffusion and convection to the mass transfer in solutions. An exhaustive bibliographical review about the liquid-liquid extraction of metal species on lab-on-chips and preliminary experimental results will be presented and discussed. (authors)

  2. A comparison of various modes of liquid-liquid based microextraction techniques: determination of picric acid.

    Science.gov (United States)

    Burdel, Martin; Šandrejová, Jana; Balogh, Ioseph S; Vishnikin, Andriy; Andruch, Vasil

    2013-03-01

    Three modes of liquid-liquid based microextraction techniques--namely auxiliary solvent-assisted dispersive liquid-liquid microextraction, auxiliary solvent-assisted dispersive liquid-liquid microextraction with low-solvent consumption, and ultrasound-assisted emulsification microextraction--were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound-assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10(-5) mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02-0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples. PMID:23381802

  3. C. elegans uses Liquid-Liquid Demixing for the Assembly of Non-Membrane-Bound Compartments

    Science.gov (United States)

    Weber, Christoph A.; Juelicher, Frank; Diaz Delgadillo, Andres Felipe; Jawerth, Louise; Hyman, Anthony A.; Department Biological Physics Team; Hyman Lab Collaboration

    2015-03-01

    P granules are liquid cytoplasmic RNA/Protein condensates known to determine the germ lineage in Caenorhabditis elegans. They resemble striking similarities with liquid droplets, such as dripping, shearing and wetting. Assuming that P granules are liquid-like we consider how they form in the crowded cytoplasm. Using confocal and light-sheet microscopy, P granule formation in-vivo and in-vitro is shown to share all hallmarks with a liquid-liquid phase-separation. Specifically, demixing is determined by temperature and concentration, the droplet formation is reversible with respect to temperature quenches and there is evidence for droplet growth due to coalescence and Ostwald-ripening. Liquid-liquid demixing in-vivo breaks the paradigmatic view that a molecular machinery is necessary to build up organelles through complex biological pathways. Instead we propose that P granules form following a Flory-Huggins model. Liquid-liquid demixing could also serve as a mechanism for the assembly of non-membrane-bound compartments in other living organisms.

  4. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Anisimov, Mikhail A

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases. PMID:25149798

  5. Phase stability analysis of liquid-liquid equilibrium with stochastic methods

    Directory of Open Access Journals (Sweden)

    G. Nagatani

    2008-09-01

    Full Text Available Minimization of Gibbs free energy using activity coefficient models and nonlinear equation solution techniques is commonly applied to phase stability problems. However, when conventional techniques, such as the Newton-Raphson method, are employed, serious convergence problems may arise. Due to the existence of multiple solutions, several problems can be found in modeling liquid-liquid equilibrium of multicomponent systems, which are highly dependent on the initial guess. In this work phase stability analysis of liquid-liquid equilibrium is investigated using the NRTL model. For this purpose, two distinct stochastic numerical algorithms are employed to minimize the tangent plane distance of Gibbs free energy: a subdivision algorithm that can find all roots of nonlinear equations for liquid-liquid stability analysis and the Simulated Annealing method. Results obtained in this work for the two stochastic algorithms are compared with those of the Interval Newton method from the literature. Several different binary and multicomponent systems from the literature were successfully investigated.

  6. A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.

    Science.gov (United States)

    Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia

    2016-07-01

    Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents. PMID:27327198

  7. Numerical studies on the separation performance of liquid- liquid Hydrocyclone for higher water-cut wells

    Science.gov (United States)

    Osei, H.; Al-Kayiem, H. H.; Hashim, F. M.

    2015-12-01

    Liquid-liquid hydrocyclones have nowadays become very useful in the oil industry because of their numerous applications. They can be installed downhole in the case of a well that produces higher water-oil ratios. The design of a liquid-liquid hydrocyclone for such a task is critical and every geometric part of the hydrocyclone has a part to play as far as separation is concerned. This work, through validated numerical technique, investigated the liquid-liquid hydrocyclone performance for the cases of single-inlet and dual-inlets, with different upper cylindrical lengths, specifically, 30mm and 60mm.It was observed that the hydrocyclones with the 30mm upper cylindrical section perform better than the ones with 60 mm upper cylindrical section. It was again noted that, even though higher number of tangential inlets increases the swirl intensity, they have the tendency to break up the oil droplets within the hydrocyclone because of increasing shear and jet flow interaction.

  8. On the phase-field modelling of a miscible liquid/liquid boundary.

    Science.gov (United States)

    Xie, Ruilin; Vorobev, Anatoliy

    2016-02-15

    Mixing of miscible liquids is essential for numerous processes in industry and nature. Mixing, i.e. interpenetration of molecules through the liquid/liquid boundary, occurs via interfacial diffusion. Mixing can also involve externally or internally driven hydrodynamic flows, and can lead to deformation or disintegration of the liquid/liquid boundary. At the moment, the mixing dynamics remains poorly understood. The classical Fick's law, generally accepted for description of the diffusion process, does not explain the experimental observations, in particular, the recent experiments with dissolution of a liquid solute by a liquid solvent within a horizontal capillary (Stevar and Vorobev, 2012). We present the results of the numerical study aimed at development of an advanced model for the dissolution dynamics of liquid/liquid binary mixtures. The model is based on the phase-field (Cahn-Hilliard) approach that is used as a physics-based model for the thermo- and hydrodynamic evolution of binary mixtures. Within this approach, the diffusion flux is defined through the gradient of chemical potential, and, in particular, includes the effect of barodiffusion. The dynamic interfacial stresses at the miscible interface are also taken into account. The simulations showed that such an approach can accurately reproduce the shape of the solute/solvent boundary, and some aspects of the diffusion dynamics. Nevertheless, all experimentally-observed features of the diffusion motion of the solute/solvent boundary, were not reproduced. PMID:26609922

  9. Relationship between the liquid-liquid phase transition and dynamic behaviour in the Jagla model

    International Nuclear Information System (INIS)

    Using molecular dynamics simulations, we study a spherically symmetric 'two-scale' Jagla potential with both repulsive and attractive ramps. This potential displays a liquid-liquid phase transition with a positively sloped coexistence line ending at a critical point well above the equilibrium melting line. We study the dynamic behaviour in the vicinity of this liquid-liquid critical point. Below the critical point, we find that the dynamics in the more ordered high density liquid (HDL) are much slower then the dynamics in the less ordered low density liquid (LDL). Moreover, the behaviour of the diffusion constant and relaxation time in the HDL phase follows approximately an Arrhenius law, while in the LDL phase the slope of the Arrhenius fit increases upon cooling. Above the critical pressure, as we cool the system at constant pressure, the behaviour of the dynamics smoothly changes with temperature. It resembles the behaviour of the LDL at high temperatures and resembles the behaviour of the HDL at low temperatures. This dynamic crossover happens in the vicinity of the Widom line (the extension of the coexistence line into the one-phase region) which also has a positive slope. Our work suggests a possible general relation between a liquid-liquid phase transition and the change in dynamics

  10. Microsystems for liquid-liquid extraction of radionuclides in the analytical protocols

    International Nuclear Information System (INIS)

    Radiochemical analyses are necessary to numerous steps for nuclear wastes management and for the control of the environment. An analytical protocol generally includes different steps of chemical separations which are lengthy, manual and complicated to implement because of their confinement in glove boxes and because of the hostile chemical and radiochemical media. Thus there is a huge importance to propose innovative and robust solutions to automate these steps but also to reduce the volumes of the radioactive and chemical wastes at the end of the analytical cycle. One solution consists in the miniaturization of the analyses through the use of lab-on-chip. The objective of this thesis work was to propose a rational approach to the conception of separative microsystems for the liquid-liquid extraction of radionuclides. To achieve this, the hydrodynamic behavior as well as the extraction performances have been investigated in one chip for three different chemical systems: Eu(III)-HNO3/DMDBTDMA, Eu(III)-AcO(H,Na)-HNO3/HDEHP and U(VI)-HCl/Aliquat336. A methodology has been developed for the implementation of the liquid-liquid extraction in micro-system for each chemical system. The influence of various geometric parameters such as channel length or specific interfacial area has been studied and the comparison of the liquid-liquid extraction performances has led to highlight the influence of the phases viscosities ratio on the flows. Thanks to the modeling of both hydrodynamics and mass transfer in micro-system, the criteria related to physical and kinetic properties of the chemical systems have been distinguished to propose a rational conception of tailor-made chips. Finally, several examples of the liquid-liquid extraction implementation in micro-system have been described for analytical applications in the nuclear field: U/Co separation by Aliquat336, Eu/Sm separation by DMDBTDMA or even the coupling between a liquid-liquid extraction chip and the system of detection

  11. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.;

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after neu...... neutralisation. The extracts were analysed by capillary gas chromatography. Dual detection by flame Ionisation and electron capture was used to reduce analysis time....

  12. Direct determination of chlorophenols in water samples through ultrasound-assisted hollow fiber liquid-liquid-liquid microextraction on-line coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Chao, Yu-Ying; Tu, Yi-Ming; Jian, Zhi-Xuan; Wang, Hsaio-Wen; Huang, Yeou-Lih

    2013-01-01

    In this study we on-line coupled hollow fiber liquid-liquid-liquid microextraction (HF-LLLME), assisted by an ultrasonic probe, with high-performance liquid chromatography (HPLC). In this approach, the target analytes - 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 2,6-dichlorophenol (2,6-DCP), and 3,4-dichlorophenol (3,4-DCP) - were extracted into a hollow fiber (HF) supported liquid membrane (SLM) and then back-extracted into the acceptor solution in the lumen of the HF. Next, the acceptor solution was withdrawn on-line into the HPLC sample loop connected to the HF and then injected directly into the HPLC system for analysis. We found that the chlorophenols (CPs) could diffuse quickly through two sequential extraction interfaces - the donor phase - SLM and the SLM - acceptor phase - under the assistance of an ultrasonic probe. Ultrasonication provided effective mixing of the extracted boundary layers with the bulk of the sample and it increased the driving forces for mass transfer, thereby enhancing the extraction kinetics and leading to rapid enrichment of the target analytes. We studied the effects of various parameters on the extraction efficiency, viz. the nature of the SLM and acceptor phase, the compositions of the donor and acceptor phases, the fiber length, the stirring rate, the ion strength, the sample temperature, the sonication conditions, and the perfusion flow rate. This on-line extraction method exhibited linearity (r(2)≥0.998), sensitivity (limits of detection: 0.03-0.05 μg L(-1)), and precision (RSD%≤4.8), allowing the sensitive, simple, and rapid determination of CPs in aqueous solutions and water samples with a sampling time of just 2 min. PMID:23237709

  13. Studies on the extraction behaviour of Zr (IV), Ce (III), Th(IV), and U(Vi) from aqueous solutions of arsenazo-I with HDEHP, HTTA, TDA, and TCMA. Vol. 3

    International Nuclear Information System (INIS)

    The extraction behaviour of Zr(IV), Ce(III), Th(IV) and U(V I) from aqueous solutions containing arsenazo-I with organic solvents tri-n-butyl phosphate (TBP), tridodecylamine (TDA), 1-[thenoyl-(2)]-3,3,3-trifluoroacetone (TTA), diethyhexyl phosphoric acid (HDEHP), and tricapryl methyl ammonium chloride (TCMA) in different organic diluents has been investigated. effect of hydrogen ion concentration in the aqueous phase, arsenazo-I concentration, presence of masking agents such as EDTA, tartaric acid others, presence of inorganic salts as phosphate, sulfate, presence of some diverse ions as, Fe(III), Mo(V I), Co(II), and Zn(II), and the effect of solvent concentration on the extraction was studied. From the results obtained, some alternatives or separation of the elements studied were recommended which may enable the spectrophotometric determination of these elements using arsenazo-I without interference. 9 figs

  14. [Quality control in liquid-liquid extraction of Reduning injection using near-infrared spectroscopy technology].

    Science.gov (United States)

    Wu, Sha; Liu, Qi-an; Wang, Wei; Su, Guang; Wu, Jian-xiong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-02-01

    Quantitative models were established to analyze the content of chlorogenic acid and soluble solid content in the liquid-liquid extraction of Reduning injection by near-infrared (NIR) spectroscopy. Seven batches of extraction solution from the liquid-liquid extraction of Lonicerae Japonicae Flos and Artemisiae Annuae Herba were collected and NIR off-line spectra were acquired. The content of chlorogenic acid and soluble solid content were determined by the reference methods. The partial least square (PLS) and artificial neural networks (ANN) were used to build models to predict the content of chlorogenic acid and soluble solid content in the unknown samples. For PLS models, the R2 of calibration set were 0.9872, 0.9812, RMSEC were 0.1533, 0.7943, the R2 of prediction set were 0.9837, 0.9733, RMSEP were 0.2464, 1.2594, RSEP were 3.25%, 3.31%, for chlorogenic acid and soluble solid content, respectively. For ANN models, the R2 of calibration set were 0.9903, 0.9882, RMSEC were 0.0974, 0.4543, the R2 of prediction set were 0.9868, 0.9699, RMSEP were 0.1920, 0.9427, RSEP were 2.61%, 2.75%, for chlorogenic acid and soluble solid content, respectively. Both the RSEP values of chlorogenic acid and soluble solid content were lower than 6%, which can satisfy the quality control standard in the traditional Chinese medicine production process. The RSEP values of ANN models were lower than PLS models, which indicated the ANN models had better predictive performance for chlorogenic acid and soluble solid content. The established method can rapidly measure the content of chlorogenic acid and soluble solid content. The method is simple, accurate anc reliable, thus can be used for quality control of the liquid-liquid extraction of Reduning injection. PMID:26084166

  15. Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion

    International Nuclear Information System (INIS)

    We model the intercolloidal interaction by a hard-sphere Yukawa repulsion to which is added the long-range van der Waals attraction. In comparison with the Derjaguin-Landau-Verwey-Overbeek repulsion, the Yukawa repulsion explicitly incorporates the spatial correlations between colloids and small ions. As a result, the repulsive part can be expressed analytically and has a coupling strength depending on the colloidal volume fraction. By use of this two-body potential of mean force and in conjunction with a second-order thermodynamic perturbation theory, we construct the colloidal Helmholtz free energy and use it to calculate the thermodynamic quantities, pressure and chemical potential, needed in the determination of the liquid-liquid and liquid-solid phase diagrams. We examine, in an aqueous charged colloidal dispersion, the effects of the Hamaker constant and particle size on the conformation of a stable liquid-liquid phase transition calculated with respect to the liquid-solid coexistence phases. We find that there exists a threshold Hamaker constant or particle size whose value demarcates the stable liquid-liquid coexistence phases from their metastable counterparts. Applying the same technique and using the energetic criterion, we extend our calculations to study the flocculation phenomenon in aqueous charged colloids. Here, we pay due attention to determining the loci of a stability curve stipulated for a given temperature T0, and obtain the parametric phase diagram of the Hamaker constant vs the coupling strength or, at given surface potential, the particle size. By imposing T0 to be the critical temperature Tc, i.e., setting kBT0 (=kBTc) equal to a reasonable potential barrier, we arrive at the stability curve that marks the irreversible reversible phase transition. The interesting result is that there occurs a minimum size for the colloidal particles below (above) which the colloidal dispersion is driven to an irreversible (reversible) phase transition

  16. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  17. Proton transfer across a liquid/liquid interface facilitated by phospholipid interfacial films

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Jänchenová, Hana; Štulík, Karel; Mareček, Vladimír

    Ústí nad Labem: BEST servis, 2010 - (Navrátil, T.; Barek, J.), s. 70-72 ISBN 978-80-254-6710-7. [Modern Electroanalytical Methods /30./. Jetřichovice (CZ), 24.05.2010-28.05.2010] R&D Projects: GA AV ČR IAA400400806; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : liquid-liquid interface * proton transfer * phospholipid layers Subject RIV: CF - Physical ; Theoretical Chemistry

  18. In Situ Fluorescence Microscopic Measurements of Complexation Reactions at Liquid/Liquid Interface

    OpenAIRE

    TSUKAHARA, Satoshi

    2005-01-01

    In situ microscopic measurement is a novel approach to clarify the intrinsic mechanism of complexation reactions occurring at liquid/liquid interfaces. The present review was mainly focused on recent three topics of methodology of in situ fluorescence microscopic observation and measurement of interfacial complexation reactions: (1) two kinds of self-assemblies of Pd2+ and 5,10,15,20-tetra(4-pyridyl)-21H, 23H-porphine complexes formed at the toluene/water interface, (2) microextraction of Eu3...

  19. Liquid-liquid equilibria for binary and ternary polymer solutions with PC-SAFT

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2004-01-01

    concentration coexistence curves at fixed pressure and temperature. The algorithms automatically trace the entire liquid-liquid coexistence curves in steps by adjusting the step size, generating initial estimates, and subsequently solving the phase-equilibrium problem by a second-order method. The algorithms...... are used for investigating the correlative and predictive capabilities of the thermodynamic model PC-SAFT. The investigation shows that the model correlates well experimental LLE data for binary as well as ternary systems but further predicts the behavior of the ternary systems with reasonably good...

  20. Liquid-Liquid Equilibrium in Ternary Systems 1-Chlorobutane + 1-Methylimidazole + Water / [bmim][PF6

    Czech Academy of Sciences Publication Activity Database

    Bendová, Magdalena; Klusoň, Petr; Sedláková, Zuzana; Černá, I.; Vašinová, J.

    - : -, 2009, s. 61. ISBN N. [Encontro Nacional de Química Física / 1st Iberian Meeting on Ionic Liquids /9./. Aveiro (PT), 15.06.2009-16.06.2009] R&D Projects: GA ČR GA104/07/0444; GA ČR GP104/06/P066; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : liquid-liquid equilibrium * ionic liquids * extraction Subject RIV: CF - Physical ; Theoretical Chemistry

  1. Application of salting-out effect equation to modelling of liquid-liquid distribution systems

    International Nuclear Information System (INIS)

    Physicochemical interpretation of salting-out is reviewed and effects of the medium on liquid-liquid distribution equilibria are described by two non-specific parameters of salting-out agents: total concentration of species in the aqueous phase and water activity. Thus extraction of a given constituent in various media can be forecasted with few data. Different uranyl and technetium (VII) extraction systems are analyzed to show the potentiality of the method. Coextraction of nitric acid and uranyl nitrate by tributyl phosphate is used to show the possibility of modelling complex distribution systems in industrial conditions

  2. Noise Analysis of Ion Transfer Kinetics at the Micro Liquid/Liquid Interface

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Holub, Karel; Mareček, Vladimír

    Ústí nad Labem : Srsenová Lenka - Best Servis, 2015 - (Navrátil, T.; Fojta, M.; Schwarzová, K.), s. 95-99 ISBN 978-80-905221-3-8. [Moderní elektrochemické metody /35./. Jetřichovice (CZ), 18.05.2015-22.05.2015] R&D Projects: GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : noise analysis * liquid/liquid interface * ion transfer kinetics Subject RIV: CF - Physical ; Theoretical Chemistry

  3. Spectrophotometric determination of Sudan Blue II in environmental samples after dispersive liquid-liquid microextraction

    Directory of Open Access Journals (Sweden)

    Yunus Emre Unsal

    2014-01-01

    Full Text Available A dispersive liquid-liquid microextraction procedure coupled to spectrophotometry is described for the determination of the trace levels of Sudan Blue II. Analytical parameters, such as pH, volume of extraction solvent (carbon tetrachloride, volume of dispersant (ethanol, volume of sample, and extraction time, were optimized. Matrix effects were also investigated. Preconcentration factor was found to be 200. Detection limit and relative standard deviation (RSD were 0.55 µg L-1 and 3.9%, respectively. The procedure was successfully used for the determination of trace levels of Sudan Blue II in food, ink, antifreeze, and industrial waste-water samples.

  4. Measurement of vapor-liquid-liquid phase equilibrium-Equipment and results

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; von Solms, Nicolas; Richon, Dominique;

    2015-01-01

    -water-gas hydrate inhibitor systems, at temperatures ranging from 283 to 353 K and at pressures up to 40 MPa. The core of the equipment is an equilibrium cell, equipped with sapphire windows and connected to an analytical system by capillary samplers.New vapor-liquid-liquid equilibrium data are reported for methane...... optimization is dependent on phase equilibrium data.The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols and water. A new experimental equipment was designed and constructed for measurement of multi-phase equilibrium in hydrocarbon...

  5. The use of selective extraction chromatographic columns as an alternative to solvent extraction for the separation of uranium followed by the use of Arsenazo III as a colorimetric reagent for uranium determination

    International Nuclear Information System (INIS)

    The use of U/TEVA reg-sign Spec columns as an alternative to solvent extraction for separation of uranium prior to its determination by various techniques (calorimetric, phosphorescence, and mass spectroscopy) was investigated. U/TEVA reg-sign Spec columns have several advantages over the widely used 4-methyl-2-pentanone solvent extraction method. Among the advantages are: (1) no hazardous liquid organic waste, that creates regulatory waste disposal problems, is generated; (2) a clean separation of U from Zr, F, and fission products is obtained; (3) the sample preparation time is reduced; and (4) the exposure of analysts to ionizing radiation is reduced because the entire procedure may be performed in a hot cell using remote operations. This study also investigated the use of Arsenazo III (1,8-dihydroxynapthalene-3,6-disulfonic acid-2,7-bis [-phenylarsonic acid]) as a calorimetric reagent to determine uranium concentrations over a wide range in waste streams and product streams at the Idaho Chemical Processing Plant. Process and waste stream samples were passed through a U/TEVA reg-sign Spec column to selectively remove the uranium. The uranium bearing fraction is compatible with the pH range for color development with Arsenazo III. Arsenazo III may be added to the uranium fraction, at a 3:1 mole ratio (Arsenazo:Uranium) at the high end of the method (10 μ/mL). Arsenazo III forms a highly stable complex with uranium. Stability tests from this and other studies show that the colored complex of Arsenazo III with U(VI) forms within one minute and remains stable for several hours. The complex with U(VI) varies in color with pH. However, with excess reagent, the color is varying shades of purple. Since the samples were passed through a highly selective extraction chromatographic column prior to adding the calorimetric reagent, no interferences were observed

  6. STUDY ON ENRICHMENT AND SEPARATION OF TRACE Pd(Ⅱ) WHITH SILICA GEL BONDED BY (BENZOYLAZO—ARSENAZO I)—AMINOPROPYL

    Institute of Scientific and Technical Information of China (English)

    LIUFeng; LIKean; 等

    1992-01-01

    This Paper reports enrichment and sepqration of trace Pd(Ⅱ)with silica gel bonded by (benzolyazo-arsenazo I)-aminopropyl(BAAI·SG).BAAI·SG is stable in solution between 6 mol/L HCl and pH 9.0.The maximum adsorptive capacities of BAAI·SG and SG are 52.7,23.5μmol/g respectively.After preconcentration through BAII·SG column,Pd(Ⅱ)of ppb level in artificial water samples can be measured by spectrophotometry.

  7. Active colloids at liquid-liquid interfaces: dynamic self-assembly and functionality

    Science.gov (United States)

    Snezhko, Alexey; Aranson, Igor

    2012-02-01

    Self-assembled materials must actively consume energy and remain out of equilibrium in order to support structural complexity and functional diversity. Colloids of interacting particles suspended at liquid-liquid interfaces and maintained out of equilibrium by external alternating electromagnetic fields develop nontrivial collective dynamics and self-assembly. We use ferromagnetic colloidal micro-particles (so the magnetic moment is fixed in each particle and interactions between colloids is highly anisotropic and directional) suspended over an interface of two immiscible liquids and energized by vertical alternating magnetic fields to demonstrate novel dynamic and active self-assembled structures (``asters'') which are not accessible through thermodynamic assembly. Structures are attributed to the interplay between surface waves, generated at the liquid/liquid interface by the collective response of magnetic microparticles to the alternating magnetic field, and hydrodynamic fields induced in the boundary layers of both liquids forming the interface. Two types of magnetic order are reported. We demonstrate that asters develop self-propulsion in the presence of a small in-plane dc magnetic field. We show that asters can capture, transport, and position target microparticles.

  8. Ternary (liquid + liquid) equilibria of {trifluorotris(perfluoroethyl)phosphate based ionic liquids + thiophene + heptane}: Part 2

    International Nuclear Information System (INIS)

    Highlights: • Ternary (liquid + liquid) equilibria for 3 ionic liquid + thiophene + heptane systems. • The influence of ionic liquid structure on phase diagrams is discussed. • Influence of IL structure on S and β for heptane/thiophene separation is discussed. - Abstract: Ternary (liquid + liquid) equilibria for 3 systems containing ionic liquids {(1-ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate, 1-(2-hydroxyethyl)-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate, ethyl-dimethyl-(2-methoxyethyl)ammonium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. The selectivity and solute distribution ratio were calculated for investigated systems and compared with literature values obtained for other systems containing ionic liquids with [FAP]− anions and [emim]+ cations. In each system, high solubility of thiophene and low solubility of heptane in the ionic liquid are observed. The experimental results have been correlated using NRTL model. The influence of the structure of ionic liquid on phase equilibria, selectivity and solute distribution ratio is discussed

  9. Thermophysical properties of biodiesel and related systems: (Liquid + liquid) equilibrium data for soybean biodiesel

    International Nuclear Information System (INIS)

    Highlights: ► (Liquid + liquid) equilibrium data for the systems of biodiesel production. ► LLE data for multicomponent FAME and FAEE from (303.15 to 333.15) K. ► Experimental data correlated using the UNIQUAC model. -- Abstract: This work reports (liquid + liquid) equilibrium (LLE) data for the systems of interest in soybean biodiesel production. Numerical data for LLE were obtained for binary, ternary and quaternary systems comprising fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) from soybean oil, water, glycerol, methanol, and ethanol at temperatures of (303.15, 318.15, and 333.15) K. Quantification of compounds in equilibrium in both phases was determined by analytical methods whereas solubility curves (binodal) were obtained by the cloud-point method. For all systems investigated, good alignments were obtained between phase compositions and the initial as well as overall compositions hence indicating low deviations from the mass balance. Experimental results were correlated using the UNIQUAC model with satisfactory agreement between experiment and theory

  10. Application of liquid-liquid extraction in uranium hydrometallurgy [Paper No. : V-1

    International Nuclear Information System (INIS)

    Uranium recovery from the ores is carried out exclusively by hydrometallurgical techniques. The initial solubilisation of uranium is achieved by either sodium carbonate or sulphuric acid leaching, the latter being more common. Further purification and upgrading of uranium from the sulphate liquors is carried out by an ion-exchange process. Solid resin type anion exchangers or liquid ion-exchangers are employed. The processing of uranium liquors is, perhaps, the first major application of liquid-liquid extraction in metal recovery. Organophosphoric acids were initially used but later the long-chain aliphatic amines have superseded them. The amine extraction system has been widely studied and several variations are now known. Chloride, nitrate, carbonate or sulphate or acid stripping can be used for getting back the uranium into the aqueous phase. Combination of ion exchange (resin type) and solvent extraction processes called Eluex processes are developed for special applications. Studies have also been made of solvent extraction of uranium from leach pulps instead of clear liquors. Tributylphosphate has found wide application in the refining of uranium concentrates to meet the stringent needs of nuclear purity. liquid-liquid extraction is, perhaps, the only successful technique for the recovery of uranium, as by-product, from wet-process phosphoric acid. This has opened up a new source of uranium. (author)

  11. Indication of liquid-liquid phase transition in CuZr-based melts

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.;

    2013-01-01

    We study the dynamic behavior of CuZr-based melts well above the liquidus temperature. The results show a discontinuous change in viscosity during cooling, which is attributed to an underlying liquid-liquid phase transition (LLPT) in these melts. The LLPT is further verified by thermodynamic resp...... liquids to the weakly ordered low-density liquids upon cooling.......We study the dynamic behavior of CuZr-based melts well above the liquidus temperature. The results show a discontinuous change in viscosity during cooling, which is attributed to an underlying liquid-liquid phase transition (LLPT) in these melts. The LLPT is further verified by thermodynamic...... response in the same superheated region. We find that the LLPT in the Cu46Zr46Al8 melt is reversible above 1350 K upon repeated heating and cooling. Based on the concept of fluid clustering in metallic melts, the reversible LLPT is attributed to the structural transition from the strongly ordered high-density...

  12. (Liquid + liquid) equilibrium for the system (hydrolyzed palm oil + ethanol + water) for diacylglycerol enrichment

    International Nuclear Information System (INIS)

    Highlights: ► We measured LLE for the system (hydrolyzed palm oil + ethanol + water). ► The experimental data were well correlated with UNIQUAC and NRTL models. ► Gibbs free energy minimization was used. ► Hydrolyzed palm oil can be diacylglycerol-enriched from a LL extraction process. -- Abstract: This work reports experimental results and the thermodynamic modelling of the (liquid + liquid) equilibrium of hydrolyzed palm oil (which contains triacylglycerols, diacylglycerols, monoacylglycerols and free fatty acids in its composition) with water and ethanol. The LLE values were obtained with the aim of enriching the palm oil diacylglycerol content by LLE extraction. The LLE experimental data were used to estimate UNIQUAC and NRTL parameters, which were used for (liquid + liquid) calculations employing the Gibbs free energy minimization approach. Experimental data were well correlated using UNIQUAC and NRTL models, in which the maximum value of root mean square deviation maximum of 0.75 wt.% was obtained. From the results obtained in this study, it was possible to demonstrate the feasibility of the palm oil diacylglycerol enrichment through liquid–liquid phase separation following the esterification procedure

  13. Predicting apparent slip at liquid-liquid interfaces without an interface slip condition

    Science.gov (United States)

    Poesio, Pietro; Damone, Angelo; Matar, Omar

    2015-11-01

    We show that if we include a density-dependent viscosity into the Navier-Stokes equations then we can describe, naturally, the velocity profile in the interfacial region, as we transition from one fluid to another. This requires knowledge of the density distribution (for instance, via Molecular Dynamics [MD] simulations, a diffuse-interface approach, or Density Functional Theory) everywhere in the fluids, even at liquid-liquid interfaces where regions of rapid density variations are possible due to molecular interactions. We therefore do not need an artificial interface condition that describes the apparent velocity slip. If the results are compared with the computations obtained from MD simulations, we find an almost perfect agreement. The main contribution of this work is to provide a simple way to account for the apparent slip at liquid-liquid interfaces without relying upon an additional boundary condition, which needs to be calculated separately using MD simulations. Examples are provided involving two immiscible fluids of varying average density ratios, undergoing simple Couette and Poisseuille flows. MIUR through PRIN2012-NANOBridge; Royal Society International Exchange Scheme (IE141486).

  14. Study of liquid-liquid interfaces by an easily implemented localized NMR sequence

    International Nuclear Information System (INIS)

    To selectively extract heavy metals from solutions containing fission products, it is essential to optimize the liquid-liquid extraction processes. Such an objective requires improving the fundamental knowledge of the different mechanisms that are involved in these processes. In that respect, we propose a localized NMR sequence named LOCSY to assess the concentration profiles of different species involved in these processes. One of the goals of this sequence is to study the products as close as possible to the liquid-liquid interface with the help of a standard NMR spectrometer of chemistry labs. The one-dimensional spatial localization along the NMR tube is obtained by a discrete stepping of the frequency-selective excitation pulses under a pulsed field gradient. Specific data processing has been developed to obtain the 1D NMR spectra as a function of the vertical position in the NMR tube. The LOCSY sequence has been tested and evaluated on three different systems: (i) a cylindrical phantom inserted in the NMR tube containing 4-methylsalicylic acid solution, (ii) D2O/olive oil biphasic system, and (iii) the dissolution of solid saccharose in D2O. These examples illustrate potential applications of the LOCSY sequence, particularly the possibility to measure concentration profiles and to study phenomena such as diffusion, provided the dynamic range is compatible with NMR timescale and sensitivity. (authors)

  15. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    Science.gov (United States)

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-01

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions. PMID:27017836

  16. (Liquid + liquid) equilibrium for the system {ethyl stearate(1) + ethanol(2) + glycerol(3)}

    International Nuclear Information System (INIS)

    Highlights: ► We measured LLE for the ternary system (ethyl stearate + ethanol + glycerol) with and without NaCl. ► Phase equilibrium data for the biodiesel separation process are presented. ► The experimental data were modelled using NRTL, UNIQUAC and UNIFAC models. - Abstract: This paper reports the results of a new experimental study on the (liquid + liquid) equilibrium of the system {ethyl stearate(1) + ethanol(2) + glycerol(3)} at atmospheric pressure and at T = (313.15 and 323.15) K. The equilibrium compositions were measured by gas chromatography. Ternary diagrams were obtained for each temperature and the equilibrium data were compared to the system in the presence of salt (NaCl) at T = 323.15 K. The experimentally determined (liquid + liquid) equilibrium data were satisfactorily correlated with NRTL and UNIQUAC equations. A comparative analysis was performed using the UNIFAC-LLE group contribution method. From the results presented herein good predictions were obtained for this ternary system.

  17. Thermodynamic precursors, liquid-liquid transitions, dynamic and topological anomalies in densified liquid germania

    International Nuclear Information System (INIS)

    The thermodynamic, dynamic, structural, and rigidity properties of densified liquid germania (GeO2) have been investigated using classical molecular dynamics simulation. We construct from a thermodynamic framework an analytical equation of state for the liquid allowing the possible detection of thermodynamic precursors (extrema of the derivatives of the free energy), which usually indicate the possibility of a liquid-liquid transition. It is found that for the present germania system, such precursors and the possible underlying liquid-liquid transition are hidden by the slowing down of the dynamics with decreasing temperature. In this respect, germania behaves quite differently when compared to parent tetrahedral systems such as silica or water. We then detect a diffusivity anomaly (a maximum of diffusion with changing density/volume) that is strongly correlated with changes in coordinated species, and the softening of bond-bending (BB) topological constraints that decrease the liquid rigidity and enhance transport. The diffusivity anomaly is finally substantiated from a Rosenfeld-type scaling law linked to the pair correlation entropy, and to structural relaxation

  18. Liquid-liquid extraction from molten alkaline nitrates by using nitrogenous and organophosphorus derivatives

    International Nuclear Information System (INIS)

    This research thesis reports the use of a system made of the LiNO3-KNO3 eutectic at 160 deg. C and poly-phenyls in order to study the behaviour of phosphine and arsine oxides as extracting agents in a liquid-liquid process. In a first part, the author presents the studied system, its physical characteristics and its preparation, and the various analytical methods which have used. He discusses existing computation methods adapted to the separation of molten salts and organic phase, and proposes a specific method. Then, he reports the study of the behaviour of a phosphine oxide with Cobalt II and Nickel II, and discusses its application to the separation of this pair, Co II and Ni II. He highlights the different possibilities of three agents which are derivatives of phosphine and arsine in their ability to extract rare earths. A study of separation of rare earths is then addressed. The author reports the application of extraction equilibriums to the study of equilibriums in environments of molten salts with the Co II - chloride ions system. The author finally addresses the synergic phenomenon that pairs of neutral complexing agents of neighbouring structure or different donor central atom may display in liquid-liquid extraction

  19. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    International Nuclear Information System (INIS)

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included

  20. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  1. Liquid/liquid metal extraction: Phase diagram topology resulting from molecular interactions between extractant, ion, oil and water

    International Nuclear Information System (INIS)

    We consider the class of surfactants called 'extractants' since they specifically interact with some cations and are used in liquid-liquid separation processes. We review here features of water-poor reverse micelles in water/oil/extractant systems as determined by combined structural studies including small angle scattering techniques on absolute scale. Origins of instabilities, liquid-liquid separation as well as emulsification failure are detected. Phase diagrams contain the same multi-phase domains as classical microemulsions, but special unusual features appear due to the high spontaneous curvature directed towards the polar cores of aggregates as well as rigidity of the film made by extracting molecules. (authors)

  2. Using cyclic liquid-liquid extraction method for isolation and identification of relative compounds during lignin biodegradation

    Institute of Scientific and Technical Information of China (English)

    黄峰; 高培基; 陈嘉翔

    1999-01-01

    By using the cyclic liquid-liquid extraction method the lignin biodegradated derivatives can be effectively extracted from the effluent liquors in ligninolytic enzymes treated kraft pulps. More than forty compounds were identified from the extractives by gas chromatography-mass spectrometry analysis. The result showed that lignin is treated with different ligninolytic enzymes, and the composition and content of the extractives differ obviously. These results suggest that the cyclic liquid-liquid extraction method can be used effectively as one new technique for the study of lignin biodegrada-tion mechanisms.

  3. Liquid/liquid metal extraction: Phase diagram topology resulting from molecular interactions between extractant, ion, oil and water

    Science.gov (United States)

    Bauer, C.; Bauduin, P.; Dufrêche, J. F.; Zemb, T.; Diat, O.

    2012-11-01

    We consider the class of surfactants called "extractants" since they specifically interact with some cations and are used in liquid-liquid separation processes. We review here features of water-poor reverse micelles in water/oil/ extractant systems as determined by combined structural studies including small angle scattering techniques on absolute scale. Origins of instabilities, liquid-liquid separation as well as emulsification failure are detected. Phase diagrams contain the same multi-phase domains as classical microemulsions, but special unusual features appear due to the high spontaneous curvature directed towards the polar cores of aggregates as well as rigidity of the film made by extracting molecules.

  4. Thermal Fluctuations of a Metal Disk Levitated by the Casimir Force above a Liquid-Liquid Interface

    Science.gov (United States)

    Inui, Norio; Goto, Kosuke

    2015-04-01

    The thermal fluctuations in the tilt angles of a disk levitated above a liquid-liquid interface by a repulsive Casimir force are compared with those of a disk suspended by surface tension at the interface. By using a proximity force approximation, the probability density function of the tilt angle of a copper disk immersed in cyclohexane in contact with water is calculated. We show that the tilt angle of the levitated disk of micron-order radius exhibits comparatively large fluctuations. Observance of the difference in the amplitude of the fluctuations could be helpful in determining the position of the disk relative to the liquid-liquid interface.

  5. Spectrophotometric determination of uranium with arsenazo-III in the presence of N-cetyl-N,N,N-tri-methylammonium bromide as surfactant

    International Nuclear Information System (INIS)

    A simple, sensitive and efficient spectrophotometric method is proposed for rapid determination of uranium using arsenazo-III in perchloric acid. The reaction between arsenazo-III and U(VI) was instantaneous in 3 mol L-1 HClO4. N-cetyl-N,N,N-trimethylammonium bromide was used for increasing the sensitivity and selectivity of the complex. The absorbance remains stable for over 48 h in the presence of surfactant. The method allows the determination of uranium in the range of 1-20 μg g-1 with a molar absorptivity of 3.9 x 105 dm3 mol-1 cm-1 at 681 nm. Sandell's sensitivity of the complex was calculated to be 6.4 ng cm-2 at λmax 681 nm. A significant enhancement was achieved in the sensitivity of the proposed method whereas, Relative Standard Deviation was reduced from 4.5 to 1.7% in the presence of surfactant. Among various diverse ions studied, fluoride, cyanide, citrate, sulfate and phosphate interfere beyond the tolerance limit. Among cations only Cr3+ and Co2+ decreased the normal absorbance. The validity of the reported method was tested by determining uranium in the environmental water samples and Standard Reference Material. The results agreed closely with the reported values. The proposed method is new, easy in operation and better in sensitivity than many of the existing methods. (author)

  6. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    International Nuclear Information System (INIS)

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ11 = σ22, with the same dispersive energy between like species, ϵ11 = ϵ22, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances rc and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance rc is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules

  7. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain)

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  8. Determination of spirocyclic tetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2016-07-01

    Dispersive liquid-liquid microextraction was used to preconcentrate three spirocyclic tetronic/tetramic acid derivatives (spirotetramat, spiromesifen and spirodiclofen) and five neonicotinoid (thiamethoxam, chlotianidin, imidacloprid, acetamiprid and thiacloprid) insecticides previously extracted from fruit and vegetable matrices with acetonitrile. The organic enriched phase was evaporated, reconstituted in 25μL acetonitrile and analyzed by reversed-phase liquid chromatography with tandem mass spectrometry using a triple quadrupole in selected reaction monitoring mode. Enrichment factors in the 15-100 range were obtained. A matrix effect was observed, the detection limits varying between 0.025 and 0.5ngg(-1), depending on the compound and the sample matrix. The developed method was applied to the analysis of 25 samples corresponding to five different fruit and vegetable matrices. Only thiamethoxam was detected in a lemon sample at a concentration close to the quantification limit, and spiromesifen and spirotetramat at concentrations between 11.6 and 54.5ngg(-1). PMID:26920309

  9. Liquid-liquid extraction of Zr (IV) from HCl medium using Cyanex 921 in kerosene

    International Nuclear Information System (INIS)

    The liquid - liquid extraction of Zr (IV) from acidic chloride solutions was carried out with Cyanex 921 as an extractant diluted in kerosene. The extraction of Zr(IV) from 5M HCl increases with increase in chloride ion concentration using ammonium chloride or potassium chloride in the aqueous phase. The positive enthalpy change and positive entropy change using 0.01M Cyanex 921 shows endothermic process with increase in randomness. The percentage of extraction of Zr (IV) increased with increase in concentration of metal ion concentration up to 0.01 M and thereafter remains constant. Study on effect of diluents revealed that extraction of Zr (IV) using kerosene as diluent was maximum. (author)

  10. Pre-concentration of uranium from water samples by dispersive liquid-liquid micro-extraction

    International Nuclear Information System (INIS)

    In this study, a simple and rapid dispersive liquid-liquid microextraction (DLLME) was developed for the determination of uranium in water samples prior to high performance liquid chromatography with diode array detection. 1-(2-pyridylazo)-2-naphthol (PAN) was used as complexing agent. The effect of various parameters on the extraction step including type and volume of extraction and dispersive solvents, pH of solution, concentration of PAN, extraction time, sample volume and ionic strength were studied and optimized. Under the optimum conditions, the limit of detection (LOD) and preconcentration factor were 0.3 μg L-1 and 194, respectively. Furthermore, the relative standard deviation of the ten replicate was <2.6%. The developed procedure was then applied to the extraction and determination of uranium in the water samples.

  11. Generalized breakup and coalescence models for population balance modelling of liquid-liquid flows

    CERN Document Server

    Traczyk, Marcin; Thompson, Chris

    2015-01-01

    Population balance framework is a useful tool that can be used to describe size distribution of droplets in a liquid-liquid dispersion. Breakup and coalescence models provide closures for mathematical formulation of the population balance equation (PBE) and are crucial for accu- rate predictions of the mean droplet size in the flow. Number of closures for both breakup and coalescence can be identified in the literature and most of them need an estimation of model parameters that can differ even by several orders of magnitude on a case to case basis. In this paper we review the fundamental assumptions and derivation of breakup and coalescence ker- nels. Subsequently, we rigorously apply two-stage optimization over several independent sets of experiments in order to identify model parameters. Two-stage identification allows us to estab- lish new parametric dependencies valid for experiments that vary over large ranges of important non-dimensional groups. This be adopted for optimization of parameters in breakup...

  12. Synergism by co-assembly at the origin of ion selectivity in liquid-liquid extraction

    International Nuclear Information System (INIS)

    In liquid-liquid extraction, synergism emerges when for a defined formulation of the solvent phase, there is an increase of distribution coefficients for some cations in a mixture. To characterize the synergistic mechanisms, we determine the free energy of mixed co-assembly in aggregates. Aggregation in any point of a phase diagram can be followed not only structurally by SANS, SAXS, and SLS, but also thermodynamically by determining the concentration of monomers coexisting with reverse aggregates. Using the industrially used couple HDEHP/TOPO forming mixed reverse aggregates, and the representative couple U/Fe, we show that there is no peculiarity in the aggregates microstructure at the maximum of synergism. Nevertheless, the free energy of aggregation necessary to form mixed aggregates containing extracted ions in their polar core is comparable to the transfer free energy difference between target and nontarget ions, as deduced from the synergistic selectivity peak. (authors)

  13. Liquid-liquid extraction separation and determination of plutonium and americium

    International Nuclear Information System (INIS)

    A procedure is described for the determination of plutonium and americium after their initial separation on barium sulfate. The barium sulfate is dissolved in perchloric acid and the antinides and lanthanides are extracted into bis(2-ethylhexyl)phosphoric acid (HDEHP). Americium along with other tervalent actinides and lanthanides is stripped from HDEHP with nitric acid. The lanthanides are removed on a column of HDEHP supported on Teflon powder, and the americium and other tervalent actinides are electrodeposited for their determination by α spectrometry. The plutonium is stripped with nitric acid after reduction to the tervalent state with 2,5-di-tert-butylhydroquinone and electrodeposited for α spectrometry. Decontamination factors for plutonium and americium from each other and from other α emitters are 104 to 105. Two hours are required for the liquid-liquid extraction separations of plutonium and americium from eight samples. Recoveries of americium and plutonium through the HDEHP separatons are 99% and 95%, respectively

  14. Experimental studies of liquid-liquid dispersion in a turbulent shear flow

    CERN Document Server

    Ravelet, Florent; Westerweel, Jerry

    2007-01-01

    We study liquid-liquid dispersions in a turbulent Taylor{Couette ow, produced between two counterrotating coaxial cylinders. In pure Water and in counterrotation, Reynolds numbers up to 1.4 10^5 are reached. The liquids we use are a low-viscous Oil and pure Water or a Sodium Iodide solution with a refractive index matched to that of Oil, in order to get transparent dispersions. We firrst characterize the singlephase ow, in terms of threshold for transition to turbulence, scaling of the torque and measurements of the mean ow and of the Reynolds stress by stereoscopic PIV. We then study the increase of the dissipation in the two-phase ows and find that the torque per unit mass can be twice the torque for a single-phase ow. Long-time behaviours are also reported.

  15. Experimental studies of turbulent Taylor-Couette flows: single phase and liquid-liquid dispersions

    CERN Document Server

    Ravelet, Florent; Westerweel, Jerry

    2007-01-01

    We study liquid-liquid dispersions in a turbulent Taylor-Couette flow, produced between two counterrotating coaxial cylinders. In pure Water and in counterrotation, Reynolds numbers up to 1.4 10^5 are reached. The liquids we use are a low-viscous Oil and pure Water or a Sodium Iodide solution with a refractive index matched to that of Oil, in order to get transparent dispersions. We first characterize the single-phase flow, in terms of threshold for transition to turbulence, scaling of the torque and measurements of the mean flow and of the Reynolds stress by stereoscopic PIV. We then study the increase of the dissipation in the two-phase flows and find that the torque per unit mass can be twice the torque for a single-phase flow. Long-time behaviours are also reported.

  16. Separation of phosphorous by liquid-liquid extraction for the measurement of 32P

    International Nuclear Information System (INIS)

    Phosphorous containing radioisotope waste was separated and determined by liquid-liquid extraction method through liquid scintillation counter (LSC). In this process, ammonium phosphate was converted to phosphomolybdate (PMo) by the reaction of ammonium molybdate (Mo) in HCl solution (0.02 M) and maximum UV/VIS absorbance (λmax) 218 nm was observed. The PMo solution was extracted with TOA (Tri-n-Octylamine)/xylene mixture and λmax 290 nm was found for this organic layer. Absorbance of aqueous and organic layer was linear through concentration. The impurities such as Co, Cr, Gd, etc. remain in aqueous layer by treating with Mo which was determined by ICP-AES and AAS. The quenching correction curve for 32P was calculated using LSC results. No counting change was observed as the volume of quenchers increased. The recovery was 98% and 81% for the extraction and separation process from the test using H332PO4 as standard tracer. (author)

  17. CFD simulation on the turbulent mixing flow performance of the liquid-liquid ejector

    Science.gov (United States)

    An, W. Z.; Bie, H. Y.; Liu, C. C.; Hao, Z. R.

    2016-05-01

    In order to study the flow performance of the liquid-liquid ejector, 3D ejector simulation models were established to investigate the influences of suction angle, suction number and working condition on the ejector performance. The simulation results showed that when the suction angle was 60°, the total pressure was in equilibrium state. The double suction ejector would induced more vortexes in the suction chamber than that of the single suction ejector, and the turbulent intensity of the fluid inside the ejector was bigger, however, it also caused much more loss in energy. When the working pressure was lower than 0.6 MPa, the liquid entrainment ratio increased rapidly. Once the working pressure reached 0.6 MPa, the liquid entrainment ratio basically remained unchanged. The mass flow rate of the suction medium increased with the increasing of suction pressure, and the differential pressure between the suction pressure and the working pressure at the nozzle also increased simultaneously.

  18. Effect of liquid-liquid structure transition on solidification of Sn-Bi alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of the liquid-liquid structure transition(L-LST) on the solidification behaviors and morphologies of Sn-Bi alloys was studied further. The results show that the undercooling of the primary and eutectic phase increases and the microstructure becomes finer after solidifying from the melt experiencing the L-LST. In the meantime, in hypoeutectic alloy, when solidifying from the melt experiencing the L-LST, the morphology of primary phase changes from the fir-tree crystal into the equiaxed crystal, and less primary phase and more eutectic structure are observed. Moreover, in eutectic alloy, the spacing of eutectic phase decreases markedly. These investigations would be beneficial to further exploration of the correlation between the melt structure and the micro mechanism of solidification.

  19. Liquid-liquid phase separation in highly undercooled Ni-Pb hypermonotectic alloys

    Institute of Scientific and Technical Information of China (English)

    YANG Gen-cang; XIE Hui; HAO Wei-xin; ZHANG Zhong-ming; GUO Xue-feng

    2006-01-01

    Liquid-liquid phase separation in the undercooled Ni-20%Pb(mole fraction, the same below if not mentioned)hypermonotectic melts was investigated by the observation of the water-quenched structure and DTA analysis. The results indicate that the number of spherical cells in the water-quenched microstructure increases with dropping temperature, and the cells gather and grow up obviously. The spherical cell origins from L1 phase separated from homogeneous melt, and is the product of monotectic reaction. Both results of the water-quenched structures and DTA analysis prove that liquid phase separation still occurs in the highly undercooled Ni-Pb hypermonotectic alloy melts, and liquid phase separation in the immiscible gap can not be fully inhibited by high undercooling and rapid solidification.

  20. Determination of Pyrethroids through Liquid-Liquid Extraction and GC-ECD

    Science.gov (United States)

    Ding, B.

    2010-12-01

    Storm water samples from various locations in San Diego Creek and Newport Bay watershed, southern California, were taken to study the occurrence and fate of pyrethroids. This study focused on four commonly used pyrethroids: bifenthrin, cypermethrin, permethrin, and fenpropathrin. Since the ban of DDT, usage of pyrethroids became an effective second choice. However, pyrethroids are extremely toxic to fish and aquatic organisms. They can pass through secondary wastewater treatment system, causing the final effluent to be in lethal doses to aquatic invertebrates and some insects such as mayflies. Hence, it is necessary to monitor the amount of pyrethroid concentration in storm water. As a part of this study, I attended the RISE internship program at Stanford University in this summer. In the seven weeks, I learned liquid-liquid extraction, water-bath evaporation, nitrogen evaporation, and gas chromatography-electron capture detector techniques to extract and detect the pyrethroid residues in the water sample.

  1. (Liquid + liquid) equilibria of (water + butyric acid + isoamyl alcohol) ternary system

    International Nuclear Information System (INIS)

    (Liquid + liquid) equilibrium (LLE) data for the ternary system (water + butyric acid + isoamyl alcohol) have been determined experimentally at T (298.15, 308.15 and 318.15) K. Complete phase diagrams were obtained by determining solubility and the tie-line data. Tie-line compositions were correlated by Othmer-Tobias method. The UNIFAC method was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between groups CH3, CH2, CH, COOH, OH and H2O. It is found that UNIFAC group interaction parameters used for LLE could not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region

  2. The Liquid-Liquid Extraction of Toxic Metals (Cd, Hg and Pb by Calixarenes

    Directory of Open Access Journals (Sweden)

    D. Max Roundhill

    2009-12-01

    Full Text Available Toxic metals (Cd, Hg and Pb are mostly present in the environment due to natural phenomenon and human activities as well. Exposure of these non-essential elements in the environment causes severe effects. They are known to cause problems in humans as well as in aquatic life. In this work, we demonstrate various studies regarding liquid-liquid extraction of selected ions with different functionalized calixarenes. This review article briefly discusses several molecular designs of calixarenes for divalent ion (Cd2+, Hg2+ and Pb2+ recognition; as well as the relationship between structure and selectivity of the macrocycles is elaborated. The article does not, however, attempt to cover all of the different approaches to these toxic metal ions extraction.

  3. Prediction of Liquid-Liquid Equilibrium Using the Group Solubility Parameter Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Mo; CHEN Fuming

    2005-01-01

    The group solubility parameter (GSP) model was used to analyze the liquid-liquid equilibrium (LLE) of ternary and quaternary systems. The GSP parameters are divided into four dimensions representing the four major intermolecular forces. The values of the parameters were determined by regression using the nonlinear SIMPLEX optimization method to fit the LLE data of 548 ternary and 26 quaternary systems selected from the literature. LLE predictions of 8 ternary systems were then made using the fit parameters. Comparison of the results with predictions using the modified UNIFAC model shows that the GSP model has less adjustable parameters to achieve a similar accuracy and that the parameter values are easily acquired by analysis of available data.

  4. Tilt dynamics of an electrostatically actuated microoscillator at a liquid-liquid interface

    International Nuclear Information System (INIS)

    We investigate the time-domain tilt response of an electrostatically actuated mechanical microoscillator positioned at a liquid-liquid interface. An analytical model is presented to simulate the microoscillator's rotational motion inside a microchannel completely filled with two immiscible liquids. The model considers two coupled ordinary differential equations; one simulates the mechanical response of the microplate-microbeam assembly making-up the mi-crooscillator and the other provides the behaviour of the electrical charge responsible for the electrostatic moment that tilts the microplate. Results show that remarkable improvements in sampling time and sensitivity can be obtained using a bi-liquid configuration versus its single-liquid counterpart. Therefore, enhanced performance of mechanical microsensors for liquids could be achieved.

  5. Removal of non-ionic organic pollutants from water via liquid-liquid extraction.

    Science.gov (United States)

    López-Montilla, Juan C; Pandey, Samir; Shah, Dinesh O; Crisalle, Oscar D

    2005-05-01

    The removal of model pollutants bromocresol green (BG) and phenol from water is demonstrated via two liquid-liquid extraction methods. Both methods exploit selective interactions established by the pollutant molecule with a surfactant, oil, or alcohol, and are variants of the more general Winsor systems where the phases are in contact along an extremely large interfacial area. In the first method the surfactant and the co-surfactant move from a predominantly oil-in-water microemulsion (Winsor I), to a middle phase microemulsion (Winsor III), and finally to a water-in-oil microemulsion (Winsor II), as the physicochemical conditions of salinity, temperature or hydrophilic-lipophilic balance of the surfactant system are varied. This method achieves better than 99% removal of the pollutant BG from water. It is argued that the removal is produced upon increasing the salinity of the system because the interaction of BG with a medium chain-length alcohol drives it to move along with the alcohol to another phase. The second method, which is scalable to industrial levels, uses a spontaneously produced water-in-oil microemulsion with large interfacial area that appears after bringing in contact water and a pre-formed Winsor II or Winsor III microemulsion system containing different surfactants and oils. The method is applied to the removal of phenol from water, and it is found that systems with polar oils such as ethyl butyrate or with cationic surfactants such as stearyl trimethylammonium chloride are more efficient in removing phenol than systems with normal alkanes or anionic surfactants. It is also shown that a microemulsion formed using a polar oil performs better than using only the polar oil as the extraction solvent. Finally, the efficiency of the second liquid-liquid extraction method can be increased from 69% in a single-stage process to 83% in a two-stage process, using the same total amount of extraction solvent. PMID:15899289

  6. Instability due to interfacial tension in parallel liquid-liquid flow

    Science.gov (United States)

    Rodriguez, Oscar M. H.

    2016-06-01

    The frequent occurrence of multiphase flows in pipes has motivated a great research interest over the last decades. The particular case of liquid-liquid flow is commonly encountered in the petroleum industry, where a number of applications involve oil-water flow such as crude oil production in directional wells. However, it has not received the same attention when compared to gas-liquid flow. In addition, most of the available information has to do with flow in pipes. When it comes to flows in annular ducts the data are scanty. A general transition criterion has been recently proposed in order to obtain the stratified and core-annular flow-pattern transition boundaries in viscous oil-water flow. The proposed criterion was based on an one-dimensional two-fluid model of liquid-liquid two-phase flow. A stability analysis was carried out and interfacial tension is considered. A new destabilizing term arises, which is a function of the cross-section curvature of the interface. It is well accepted that interfacial tension favors the stable condition. However, the analysis of the new interfacial-tension term shows that it can actually destabilize the basic flow pattern, playing an important role in regions of extreme volumetric fractions. Such an interesting effect seems to be more pronounced in flows of viscous fluids and in annular-duct flow. The effect of interfacial tension is explored and the advantages of using a more complete model are discussed and illustrated through comparisons with experimental data from the literature. The evaluation of the effects of fluid viscosity and interfacial tension allows the correction and enhancement of transition models based essentially on data of pipe flow of low viscosity fluids.

  7. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction.

    Science.gov (United States)

    Goyal, Sachit; Desai, Amit V; Lewis, Robert W; Ranganathan, David R; Li, Hairong; Zeng, Dexing; Reichert, David E; Kenis, Paul J A

    2014-01-01

    Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE. Fabrication of silicon and glass-based LLE platforms typically requires extensive use of photolithography, plasma or laser-based etching, high temperature (anodic) bonding, and/or wet etching with KOH or HF solutions. In contrast, polymeric microfluidic platforms can be fabricated using less involved processes, typically photolithography in combination with replica molding, hot embossing, and/or bonding at much lower temperatures. Here we report the fabrication and testing of microfluidic LLE platforms comprised of thiolene or a perfluoropolyether-based material, SIFEL, where the choice of materials was mainly guided by the need for solvent compatibility and fabrication amenability. Suitable designs for polymer-based LLE platforms that maximize extraction efficiencies within the constraints of the fabrication methods and feasible operational conditions were obtained using analytical modeling. To optimize the performance of the polymer-based LLE platforms, we systematically studied the effect of surface functionalization and of microstructures on the stability of the liquid-liquid interface and on the ability to separate the phases. As demonstrative examples, we report (i) a thiolene-based platform to determine the lipophilicity of caffeine, and (ii) a SIFEL-based platform to extract radioactive copper from an acidic aqueous solution. PMID:25246730

  8. Evaluation of Liquid-Liquid Extraction Method with radioactive indicators for the study of metal complexes of interest in Radiopharmacy

    International Nuclear Information System (INIS)

    Many of radiopharmaceuticals used as diagnostic or therapeutic agents are coordination complexes of metal ions and thus the chemical equilibrium in solution of these types of agents is important as it can affect their behaviour in vivo. The possibility exists that, upon injection, the agent may dissociate and interact with ions present in plasma to give a totally different set of chemical species in solution. The behaviour of these agents is then a function of this new speciation. In dynamic systems such as blood plasma it is impossible to determine the speciation of an element without using powerful computer models. But screening of the potential radiopharmaceutical using any of available computer blood plasma model involve the determination of formation constants for the ligand of interest with important blood plasma metal-ions. Several works have been reported concerning the determination of formation constants using potentiometric method. However this method failure in systems where precipitates are formed at investigated ligand-to-metal ratios. To avoid precipitate formation and to study systems with high ligand-to-metal ratios (the most common situation in Radiopharmacy) we have used in this work the liquid-liquid extraction method with radioactive indicators for the determination of formation constants. The method is based on the competition of a well known so call 'competitive' ligand and the ligand under study. Briefly it can be described as followed: An organic solution of a competitive ligand is agitated with an aqueous solution of the desired metal complex. After achieving certain degree of equilibrium the distribution coefficient (E) as a function of the concentration of the ligand of interest is determined. Then the desired formation constant are calculated. This method has been used in this work for 153Sm-EDTMP, 90Y-citrate and 90Y-EDTA and the results are compared with previously reported values. 8-Hydroxiquinoline was used as competitive ligand

  9. Studies on liquid-liquid extraction of carrier free 169Lu produced in proton activated ytterbium with HDEHP

    International Nuclear Information System (INIS)

    Nuclear activation of Yb2O3 with proton results in the formation of carrier free 169Lu in the matrix. The liquid cation exchanger, HDEHP, has effectively been utilized as an extractant in the liquid-liquid extraction (LLX) separation of the carrier-free 169Lu from the target. (author). 1 fig

  10. Contribution to the modelisation of liquid-liquid extraction systems. Application to metallic nitrate extraction by TBP in nitric medium

    International Nuclear Information System (INIS)

    Modelisation of liquid-liquid extraction systems used in nuclear industry allows the forecasting of chemical repartition in organic and aqueous phase and also adaptation of known processes to new conditions. After a brief review of the PUREX process extraction of nitric acid, uranyl nitrate and palladium nitrate are examined

  11. Rapid screening of oxytetracycline residue in catfish muscle by dispersive liquid-liquid microextraction and europium-sensitized luminescence

    Science.gov (United States)

    Oxytetracycline (OTC) residue in catfish muscle was screened by dispersive liquid-liquid microextraction (DLLME) and europium-sensitized luminescence (ESL). After extraction in EDTA, HCl, and acetonitrile, cleanup was carried out by DLLME, and ESL was measured at microgram = 385 nm and wavelength = ...

  12. Preparation of a silicate membrane at a liquid/liquid interface and its doping with a platinum ion

    Czech Academy of Sciences Publication Activity Database

    Jänchenová, Hana; Štulík, K.; Mareček, Vladimír

    2006-01-01

    Roč. 591, č. 1 (2006), s. 41-45. ISSN 0022-0728 R&D Projects: GA ČR GA203/03/0822 Institutional research plan: CEZ:AV0Z40400503 Keywords : liquid/liquid interfaces * sol-gel * silicate membrane * composite layers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.339, year: 2006

  13. Analysis of the transient rotating cylinder apparatus for the measurement of liquid-liquid interface shear viscosity

    DEFF Research Database (Denmark)

    Hassager, Ole; Westborg, H

    1987-01-01

    An analysis of the transient rotating cylinder apparatus for the measurement of liquid-liquid interface viscosity is given. An analytical expression that allows the determination of the interfacial viscosity from observations of the interface movement is given. The expression is presented in...

  14. Understanding voltage-induced localization of nanoparticles at a liquid-liquid interface

    International Nuclear Information System (INIS)

    Functionalization of liquid-liquid interfaces is a hot area, driven by aspirations to build self-assembled interfacial structures with unique properties, in particular accessible to light from both sides of the interface. Adsorption of nanoparticles is an example of such functionalization. Interesting new developments take place in electrochemical liquid-liquid systems, consisting of two immiscible electrolytic solutions that form an interface impermeable to ions until a sufficiently high voltage is applied across the interface. The voltage drops across a nanoscale region near the interface due to the formation of two back-to-back electrical double layers on the two sides of the interface. This highly localized voltage drop opens a new possibility for the stabilization and control of interfacial architectures. This appears to be particularly important for metal and even semiconductor nanoparticles, because they are, in turn, 'functionalized'. They are covered by surfactants with acidic groups, some of which dissociate in water. Coverage with surfactants is required to avoid particle-particle agglomeration in the bulk. An electric field can push such nanoparticles to the interface or move them away, depending on the direction of the field. This, together with the change of the free energy of solvation of nanoparticles when they move from the bulk to the surface, are the two new decisive factors affecting their adsorption and desorption. We discuss these effects together with the more familiar ones that are known to determine interfacial localization of uncharged nanoparticles. The presented critical analysis is qualitative. Although we will try to rationalize the main effects by some simplified formulae, they should not be taken literally: they pave the way towards understanding of nanoparticle localization in these systems, rather than give exact answers. These equations will, however, help us to 'visualize' how a properly applied electric field, assisted by the

  15. Characterization and modelling of the dispersed phase behaviour in liquid-liquid pulsed columns

    International Nuclear Information System (INIS)

    In a context that requires the reduction of human impact on the environment, optimizing the recycling of nuclear spent fuel is of increasing importance. The liquid-liquid extraction, one of the main processes of spent fuel recycling, brings together two immiscible phases one of which dispersed into droplets. The mass exchange between both liquids is closely linked to interfacial area produced by the equipment used. Already operated on an industrial scale, the pulsed column is the subject of this work which aims at providing a mathematical model for the prediction of the amount of interfacial area produced so as to allow a better design of devices. The work in this thesis focuses on two main themes: the characterization of emulsions produced by pulsed columns and modelling the dispersed phase behaviour. The characterization step is intended to measure the data required for a better understanding of the emulsion and to calibrate the model. In order to comply with the Eulerian nature of the model, measures were synchronized with the pulsation cycle. Innovative measurement techniques based on image processing and exploiting this synchronization have been developed to assess the average hold-up rate, the drop sizes distribution, the anisotropy and the average interfacial area density. These experimental works have been the subject of an oral presentation at the International Conference on Multi-phase Flows (ICMF 2010). The modelling was based on D. LHUILLIER's work that provides an Eulerian mixture model for the emulsion. The emulsion is perceived as a pseudo-continuous single phase whose properties are weighted by the respective volume fraction of each present phase. The novelty of the model lies on the use of a transport equation for interfacial area density which is the keystone of the design and the assessment of the efficiency of liquid-liquid extraction devices. The evolution of Interfacial area density is the result of the competition between four main phenomena

  16. Liquid-liquid extraction of thorium(IV) by fatty acids. A comparative study

    International Nuclear Information System (INIS)

    In this paper, extractants that have the potential to be sustainably regenerated, are proposed for thorium(IV) removal from nitrate aqueous phases. These extractants are oleic (OA), palmitic (PA) and lauric (LA) acids. The advantages of using these acids are their sustainability, their biocompatibility and their non-toxicity, this makes these simpler and greener compared to other extractants (organophosphorus, azote derivatives, macrocyclic crown, etc.) used for metal extraction. These acids were applied as chelating agent for Th(IV) liquid-liquid extraction. The extractions were carried out in chloroform as an organic phase through the formation of thorium-OA, thorium-PA and thorium-LA complexes. The synergistic extraction of Th(IV) with these extractants in the presence of tributhylphosphine (TBP) has been investigated. The effect of different variables, such as time contact, pH of the aqueous phase, concentration of fatty acid, TBP addition on fatty acids, ionic strength and temperature, is reported. The results showed that the extraction kinetics using LA and OA were fast than with PA. The KNO3 addition does not seem to highly influence the extraction yield, and no important synergy effect was noticed in the presence of TBP. Thermodynamic data for Th(IV) solvent extraction are also reported in this paper. (author)

  17. (Liquid + liquid) extraction of methanol from alkanes using dialkylphosphate-based ionic liquids as solvents

    International Nuclear Information System (INIS)

    Highlights: • Several ILs were studied as solvents to extract methanol from alkanes. • LLE data for ternary systems were measured at T = 298.2 K and atmospheric pressure. • LLE data for ternary systems were successfully correlated by using the NRTL model. • Results of solute distribution ratio and selectivity were compared with literature. • The [MMIM][DMP] showed the best extraction effectiveness in the studied ILs. - Abstract: In this work, the feasibility of ionic liquids (ILs), 1,3-dimethylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), and 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]), as solvents for the extraction of methanol from its mixtures with hexane and heptane was analyzed. The knowledge of (liquid + liquid) equilibria (LLE) of these mixtures is necessary for the design of the extraction separation process. Hence, the LLE data for the ternary systems, {methanol + hexane + ([MMIM][DMP], or [EMIM][DEP], or [BMIM][DBP])}, and {methanol + heptane + ([MMIM][DMP], or [EMIM][DEP], or [BMIM][DBP])}, were measured at T = 298.2 K and atmospheric pressure. The experimental results were correlated with the thermodynamic nonrandom two-liquid (NRTL) model. The solute distribution ratios of methanol and methanol/alkane selectivities, derived from the experimental LLE data, were calculated and analyzed to evaluate the capability of the studied ILs to accomplish the separation target. Meanwhile, these capabilities were also compared with that of other ILs obtained from the literature

  18. Sequential dispersive liquid-liquid microextraction for the determination of aryloxyphenoxy-propionate herbicides in water.

    Science.gov (United States)

    Li, Songqing; Gao, Peng; Zhang, Jiaheng; Li, Yubo; Peng, Bing; Gao, Haixiang; Zhou, Wenfeng

    2012-12-01

    A novel dispersive liquid-liquid microextraction (DLLME) method followed by HPLC analysis, termed sequential DLLME, was developed for the preconcentration and determination of aryloxyphenoxy-propionate herbicides (i.e. haloxyfop-R-methyl, cyhalofop-butyl, fenoxaprop-P-ethyl, and fluazifop-P-butyl) in aqueous samples. The method is based on the combination of ultrasound-assisted DLLME with in situ ionic liquid (IL) DLLME into one extraction procedure and achieved better performance than widely used DLLME procedures. Chlorobenzene was used as the extraction solvent during the first extraction. Hydrophilic IL 1-octyl-3-methylimidazolium chloride was used as a dispersive solvent during the first extraction and as an extraction solvent during the second extraction after an in situ chloride exchange by bis[(trifluoromethane)sulfonyl]imide. Several experimental parameters affecting the extraction efficiency were studied and optimized with the design of experiments using MINITAB® 16 software. Under the optimized conditions, the extractions resulted in analyte recoveries of 78-91%. The correlation coefficients of the calibration curves ranged from 0.9994 to 0.9997 at concentrations of 10-300, 15-300, and 20-300 μg L(-1). The relative SDs (n = 5) ranged from 2.9 to 5.4%. The LODs for the four herbicides were between 1.50 and 6.12 μg L(-1). PMID:23109344

  19. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  20. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    Science.gov (United States)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  1. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Victor; Garcia, Mario [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.es [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Garcia De La Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain)

    2011-07-10

    Highlights: {yields} LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. {yields} UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. {yields} For the latter mixtures, UCST increases with the size of the alkyl group attached. {yields} Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  2. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  3. Stabilization of Pickering emulsions by generating complex colloidal layers at liquid-liquid interfaces.

    Science.gov (United States)

    Lee, Geun Ju; Son, Han Am; Cho, Jang Woo; Choi, Sang Koo; Kim, Hyun Tae; Kim, Jin Woong

    2014-01-01

    Typical Pickering emulsions accumulate particles to form a robust colloidal layer at an immiscible liquid-liquid interface. However, if the particles are smaller than tens of nanometers, they have a tendency toward coming off from the interface, thereby destabilizing emulsion drops. To solve this problem, a technique that can make the adsorbed nanoparticles stay at the interface should be developed. This study introduces a practical method that allows us to obtain a mechanically stable Pickering emulsions; n-decane was emulsified to form an oil-in-water emulsion of which interface was stabilized with a complex colloidal layer consisting of 12 nm-sized silica nanoparticles, a poly(vinyl alcohol) binder, and an alkyl-chained silane coupling agent. We have found that in the conditions of high salinity, the emulsion drops attract each other and form an emulsion gel phase. However, even in such harsh conditions, the complex silica layer maintains its original structure at the interface, thus stabilizing the emulsion drop against coalescence. PMID:24183436

  4. OIL/WATER SEPARATION IN A LIQUID-LIQUID CYLINDRICAL CYC-LONE

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-fei; XU Jing-yu; ZHANG Jun; SUN Huan-qiang; ZHANG Jian; WU Ying-xiang

    2012-01-01

    The oil/water separation in a liquid-liquid cylindrical cyclone is experimentally studied in this article.The effects of the flow split-ratio and the flow rate on the oil/water separation performance are determined.From the experimental results,it is shown that with the increase of the flow split-ratio,the oil/water separation efficiency is enhanced at first,and an optimal flow split-ratio exists,beyond that optimal split-ratio,the watercut in the underflow keeps constant,while the oil content in the overflow begins to decrease.The process of the oil core structure formation and the phase distribution in the cyclone are determined by numerical simulations.Furthermore,the dependence of the separation efficiency on the Reynolds number and the flow split-ratio is investigated based on a dimensional analysis.A comparison between the predicted values and the experimental data shows a good agreement.

  5. Aflatoxin B1 in eggs and chicken livers by dispersive liquid-liquid microextraction and HPLC.

    Science.gov (United States)

    Amirkhizi, Behzad; Arefhosseini, Seyed Rafie; Ansarin, Masoud; Nemati, Mahboob

    2015-01-01

    A rapid, low-cost and simple technique has been developed for the determination of aflatoxin B1 (AFB1) in eggs and livers using high-performance liquid chromatography (HPLC) with UV detection. In this study, the presence of AFB1 was investigated in 150 eggs and 50 chicken livers from the local market of Tabriz, Iran. AFB1 was extracted with a mixture of acetonitrile:water (80:20) and cleaned up by dispersive liquid-liquid microextraction which is a very economical, fast and sensitive method. AFB1 was quantified by HPLC-UV without need for any complex derivatisation in samples to enhance the detection. The results showed that 72% of the liver and 58% of the egg samples were contaminated with AFB1 ranging from 0.30 to 16.36 µg kg (̶1). limit of detection and limit of quantification for AFB1 were 0.08 and 0.28 µg kg (̶ 1), respectively. The proposed method is suitable for fast analysing of AFB1 in egg and liver samples. PMID:26160230

  6. (Liquid + liquid) equilibria for mixtures of dodecane and ethanol with alkylsulfate-based ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • LLE data for dodecane + ethanol + 1-alkyl-imidazoluim-based ionic liquids (ILs). • ILs are [Mmim][MeSO4], [Emim][MeSO4], and [Bmim][MeSO4]. • Measurements at T = 298.15 K and 0.101 MPa, as well as at T = 313.15 K for [Mmim][MeSO4]. • Consistency of the tie-lines checked with the Othmer–Tobias and Hand equations. • Data correlated with the NRTL model. - Abstract: The ternary (liquid + liquid) equilibrium (LLE) data for mixtures of dodecane (C12H26) and ethanol with ionic liquids 1,3-dimethylimidazolium methylsulfate [Mmim][MeSO4], 1-ethyl-3-methylimidazolium methylsulfate, [Emim][MeSO4] and 1-butyl-3-methylimidazolium methylsulfate, [Bmim][MeSO4], were studied at T = 298.15 K and 0.101 MPa. The selectivity and solute distribution coefficient ratios determined from the data were used to examine the possibility of using these ionic liquids for extraction of ethanol from dodecane. The temperature dependency was investigated by measuring the LLE data for {dodecane + ethanol + [Mmim][MeSO4]} at T = 313.15 K and 0.101 MPa. The Othmer–Tobias and Hand equations were used to test the consistency of the tie-line data. The tie-line data were correlated with the Non-Random Two Liquid (NRTL) equation which provided a good model and representation for the experimental results

  7. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al2O3 substrates indicated polycrystalline films with a LiAlO2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  8. Lipophilic ternary complexes in liquid-liquid extraction of trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Levitskaia, Tatiana G.; Latesky, Stanley; Henderson, Renesha V.; Edwards, Emilio A.; Braley, Jenifer C.; Sinkov, Sergey I.

    2012-03-01

    The formation of ternary complexes between lanthanide ions [Nd(III) or Eu(III)], octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO), and bis-(2-ethylhexyl)phosphoric acid (HDEHP) was probed by liquid-liquid extraction and spectroscopic techniques. Equilibrium modeling of data for the extraction of Nd(III) or Eu(III) from lactic acid media into n-dodecane solutions of CMPO and HDEHP indicates the predominant extracted species are of the type [Ln(AHA){sub 2}(A)] and [Ln(CMPO)(AHA){sub 2}(A)], where Ln = Nd or Eu and A represents the DEHP{sup -} anion. FTIR (for both Eu and Nd) and visible spectrophotometry (in the case of Nd) indicate the formation of the [Ln(CMPO)(A){sup 3}] complexes when CMPO is added to n-dodecane solutions of the LnA{sub 3} compounds. Both techniques indicate a stronger propensity of CMPO to complex Nd(III) versus Eu(III).

  9. Determination of phenolic compounds in honey using dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Campone, Luca; Piccinelli, Anna Lisa; Pagano, Imma; Carabetta, Sonia; Di Sanzo, Rosa; Russo, Mariateresa; Rastrelli, Luca

    2014-03-21

    Honey is a valuable functional food rich in phenolic compounds with a broad spectrum of biological activities. Analysis of the phenolic compounds in honey is a very promising tool for the quality control, the authentication and characterization of botanical origin, and the nutraceutical research. This work describes a novel approach for the rapid analysis of five phenolic acids and 10 flavonoids in honey. Phenolic compounds were rapidly extracted and concentrated from diluted honey by dispersive liquid-liquid microextraction (DLLME) and then analyzed using high performance liquid chromatography with UV absorbance detection (HPLC-UV). Some important parameters, such as the nature and volume of extraction and dispersive solvents, pH and salt effect were carefully investigated and optimized to achieve the best extraction efficiency. Under the optimal conditions, an exhaustive extraction for twelve of the investigated analytes (recoveries >70%), with a precision (RSDhoney, provided similar or higher extraction efficiency, except in the case of the most hydrophilic phenolic acids. The capability of DLLME to the extraction of other honey phytochemicals, such as abscisic acid, was also demonstrated. The main advantages of developed method are the simplicity of operation, the rapidity to achieve a very high sample throughput and low cost. PMID:24565235

  10. Homogeneous liquid-liquid extraction of uranium (VI) using tri-n-octylphosphine oxide

    International Nuclear Information System (INIS)

    A simple and efficient method for the selective separation and preconcentration of uranium (VI) using homogeneous liquid-liquid extraction was developed. Tri-n-octylphosphine oxide (TOPO) and tri-n-butylphosphate (TBP) were investigated as complexing ligands, and perfluorooctanoate ion (PFOA-) was applied as a phase separator agent under strongly acidic conditions. Under the optimal conditions ([PFOA-] = 1.7 x 10-3M, [TOPO] 5.4 x 10-4 M, [HNO3] = 0.3 M, [acetone] = 3.2% v/v) 10 μg of uranium in 40 ml aqueous phase could be extracted quantitatively into 8 μl of the sedimented phase. The maximum concentration factor was 5000-fold. However, an effort for the quantitative extraction using TBP was inefficient and the percent recovery was at most 56.7. The influence of the type and concentration of acid solution, optimum amount of the ligand, type and volume of the organic solvent, concentration of PFOA, volume of the aqueous sample and effect of different diverse ions on the extraction and determination of uranium (VI) were investigated. The proposed method was applied to the extraction and determination of uranium (VI) in natural water samples. (author)

  11. (Liquid + liquid) equilibria for the ternary system (water + dodecane + propylene glycol n-propyl ether)

    International Nuclear Information System (INIS)

    Highlights: ► A ternary system (water + dodecane + propylene glycol n-propyl ether) was chosen. ► LLE data for this ternary system were determined at T = (288.15, 298.15, and 308.15) K. ► The system exists one three-liquid-phase-coexisting tie triangle at T = 298.15 K. ► The NRTL model was applied to correlate the experimental data. - Abstract: The (liquid + liquid) equilibria of a ternary system (water + dodecane + propylene glycol n-propyl ether) were measured at T = (288.15, 298.15, and 308.15) K under atmospheric pressure. At T = 298.15 K, the system exhibits one three-liquid-phase-coexisting tie triangle and three two-liquid-phase-coexisting envelopes in the triangle phase diagram. There is only one two-liquid-phase-coexisting envelope in the triangle phase diagram at T = (288.15 and 308.15) K. The experimental data were further correlated with the NRTL model.

  12. Spectroscopic analysis of bosentan in biological samples after a liquid-liquid microextraction

    Science.gov (United States)

    Sajedi-Amin, Sanaz; Assadpour-Zeynali, Karim; Panahi-Azar, Vahid; Kebriaeezadeh, Abbas; Khoubnasabjafari, Maryam; Ansarin, Khalil; Jouyban-Gharamaleki, Vahid; Jouyban, Abolghasem

    2015-01-01

    Introduction:Microextraction processes with UV-Vis measurement have been developed and validated for analysis of bosentan in biological samples. Methods:In this work, liquid–liquid microextraction procedures (DLLME & USAEME) were employed for cleanup, pre-concentration, and determination of bosentan in biological samples by UV-Vis spectroscopy at 270 nm. The method was validated and applied to the determination of bosentan in spiked serum, exhaled breath condensate and urine samples. Results:Various experimental factors including type of extraction and dispersive solvents and their volumes, pH, sonication time and centrifuging time were investigated. Under the optimum conditions, the method was linear in the range of 1.0–5.0 μg.mL-1, with coefficient of determination (R2) of > 0.998. The limit of detection (LOD) was 0.07 mg.L-1. Recovery of the target analyte in biological samples was 106.2%. The method could be easily applied for higher concentration of bosentan and needs more improvement for application in the pharmacokinetic investigations where more sensitive methods are required. Conclusion:A simple, low cost, precise and accurate spectrophotometric analysis of bosentan in biological samples after liquid-liquid microextraction were developed and validated for routine analyses. PMID:26929923

  13. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.

    Science.gov (United States)

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-03-01

    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems. PMID:26744846

  14. Development of liquid-liquid cylindrical cyclone (LLCC) separator for oil-water separation

    Science.gov (United States)

    Dharma, Irfan Aditya; Arffan, Fuad; Prambudi, Anggi Riyo; Widyaparaga, Adhika; Pranoto, Indro; Khasani

    2016-06-01

    This study aims to determine the phenomena of water and oil separation and the performance of the Liquid-Liquid Cylindrical Cyclone (LLCC). The experiments were conducted with water and oil in a transparent LLCC separator that allows the visualization of the mixture. Series of experiments for various of inlet mixture velocity (Vm), inlet oil volume fraction (α), and split-ratio have been performed. Volume fraction of oil in the inlet were 0.06 (6 %), 0.1 (10%), and 0.15 (15 %). The examined inlet mixture velocity variations were 1.0 m / s, 1.5 m / s, and 2.0 m / s. Split-ratio was made in the range 25-70 %. The watercut in underflow were the variables measured. The experimental results show that the LLCC was able to separate water and oil and produced free water with concentration up to 98%. By increasing the value of the split-ratio, watercut in underflow increase and reached the optimum point. Optimal split-ratio observed is between 60 % and 70 % depend on the inlet oil volume fraction.

  15. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    Directory of Open Access Journals (Sweden)

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  16. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    International Nuclear Information System (INIS)

    Highlights: → LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. → UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. → For the latter mixtures, UCST increases with the size of the alkyl group attached. → Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  17. Identification of chemical compounds in a liquid-liquid extraction system

    International Nuclear Information System (INIS)

    The objective of the present work is to identify the chemical compounds that are distributed in a liquid-liquid extraction system in which the third phase is observed; for this purpose the FeCl3 (0.12M) - HCl (8.43M) - Diisopropilic ether - system was used, for the quantitative determination of the chemical compounds, FeCl3 solutions labelled with 59Fe or witH 38Cl were used; the Karl Fischer method for the determination of the water concentration at the organic phases was used, the obtained data was used for the calculations of the H+ distribution in each phase. The results are that when the distribution equilibrium is reached, the aqueous phase is a 7.5M HCl solution; the light organic phase contains 2 H[FeCl4].6H2O and the dense organic phase contains 2 H[FeCl4].6H2O.3HCl.12H2O. The differences between these compounds are due to a high concentration of water and the HCl in the organic solvent. This causes a heterogeneous physic field, and then the third phase formation. (author)

  18. Predictions of phase distribution in liquid-liquid two-component flow using FLUENT

    International Nuclear Information System (INIS)

    Eulerian multiphase model in FLUENT with a one-group interfacial area transport equation (IATE) (named 'FLUENT-IATE model' hereafter) takes into account fluid particle interactions, such as coalescence and disintegration, and therefore is expected to dynamically capture changes in the interfacial structure. In this study, the FLUENT-IATE model was applied to a liquid-liquid two-component vertical flow in a 25-mm inner diameter pipe. The two liquids were immiscible with similar densities, namely water as the continuous phase and Therminol 59 as the dispersed phase, which were used in a ground-based facility to simulate reduced-gravity two-phase flows. This study covered bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons with the experimental data indicated that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model were generally more accurate than those using the model without the IATE. In addition, it was demonstrated that the coalescence of fluid particles was dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, predictions showed disagreement with experimental data in some flow conditions for larger void fraction conditions, which fell into the bubbly-to-slug flow transition regime and might involve additional fluid particle interaction mechanisms due to the change of flow regimes. (author)

  19. Ionic liquid based dispersive liquid-liquid microextraction of aromatic amines in water samples

    Institute of Scientific and Technical Information of China (English)

    Yun Chang Fan; Zheng Liang Hu; Mei Lan Chen; Chao Shen Tu; Yan Zhu

    2008-01-01

    In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.

  20. In situ recovery of 2,3-butanediol from fermentation by liquid-liquid extraction.

    Science.gov (United States)

    Anvari, Masumeh; Pahlavanzadeh, Hassan; Vasheghani-Farahani, Ebrahim; Khayati, Gholam

    2009-02-01

    End-product conversion, low product concentration and large volumes of fermentation broth, the requirements for large bioreactors, in addition to the high cost involved in generating the steam required to distil fermentation products from the broth largely contributed to the decline in fermentative products. These considerations have motivated the study of organic extractants as a means to remove the product during fermentation and minimize downstream recovery. The aim of this study is to assess the practical applicability of liquid-liquid extraction in 2,3-butanediol fermentations. Eighteen organic solvents were screened to determine their biocompatibility, and bioavailability for their effects on Klebsiella pneumoniae growth. Candidate solvents at first were screened in shake flasks for toxicity to K. pneumoniae. Cell density and substrate consumption were used as measures of cell toxicity. The possibility of employing oleyl alcohol as an extraction solvent to enhance end product in 2,3-butanediol fermentation was evaluated. Fermentation was carried out at an initial glucose concentration of 80 g/l. Oleyl alcohol did not inhibit the growth of the fermentative organism. 2,3-Butanediol production increased from 17.9 g/l (in conventional fermentation) to 23.01 g/l (in extractive fermentation). Applying oleyl alcohol as the extraction solvent, about 68% of the total 2,3-butanediol produced was extracted. PMID:19037672

  1. Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application

    International Nuclear Information System (INIS)

    This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26R and LIX84R to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR2, where Me denotes Hg2+, Cd2+, Zn2+, Cu2+, and Ni2+, and R denotes LIX84R. This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84R for the various metal ions is evident in the succession Cu2+, Ni2+ >> Zn2+ > Hg2+ > Cd2+. These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m2), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m2). Organic solvents solvate the complexer so well, that it is even removed from the air side of the phase boundary. The differing accumulation of the complexer at the water/oil phase boundary explains the differing increase of phase separation time for polar and unpolar solvents. (orig.)

  2. A technical review of liquid/liquid and solid/liquid separation equipment in the field of nuclear-fuel reprocessing

    International Nuclear Information System (INIS)

    Liquid/liquid extraction is generally accepted as the preferred method in nuclear-fuel reprocessing. However, although many types of liquid/liquid contactors are available, only a few meet the stringent specifications set by the nuclear industry. This report discusses the criteria for contactor selection and then reviews the most important types, namely packed columns, pulsed columns, mixer-setters and centrifugal contactors. Finally, a short section concerned with solid/liquid separations is included because of the possible deleterious effects caused by solids in liquid/liquid contactors

  3. CONTRIBUTION TO THE DEVELOPMENT OF A SIMULATION SOFTWARE PERFORMANCE AND SHARING RATIO IN LIQUID-LIQUID EXTRACTION

    Directory of Open Access Journals (Sweden)

    A. Hadj Seyd

    2015-07-01

    Full Text Available The present work is to develop software to predict the value yield and the distribution coefficient in the process of liquid-liquid extraction of components of a mixture, from mathematical models expressing these entities, based on equations equilibrium between liquid-liquid phases, and predict the conditions under which the extraction operation is favorable, unfavorable or impossible to realize, by studying the variation of the entities cited, based on the parameters influencing the extraction, which are: initial concentrations, rate of solvent and pH, in the case of a simple extraction (extraction of neutral products or when it is reactive (extraction of complex acids or bases for one or more components.The programming language used is "Delphi" which is a very powerful oriented object programming under Windows.

  4. Anomalous effect of flow rate on the electrochemical behavior at a liquid|liquid interface under microfluidic conditions.

    Science.gov (United States)

    Kaluza, Dawid; Adamiak, Wojciech; Kalwarczyk, Tomasz; Sozanski, Krzysztof; Opallo, Marcin; Jönsson-Niedziolka, Martin

    2013-12-23

    We have investigated the oxidation of ferrocene at a flowing organic solvent|aqueous electrolyte|solid electrode junction in a microfluidic setup using cyclic voltammetry and fluorescent laser scanning confocal microscopy. At low flow rates the oxidation current decreases with increasing flow, contrary to the Levich equation, but at higher flow rates the current increases linearly with the cube root of the flow rate. This behavior is explained using a simple model postulating a smallest effective width of the three-phase junction, which after fitting to the data comes to be ca. 20 μm. The fluorescence microscopy reveals mixing of the two phases close to the PDMS cover, but the liquid|liquid junction is stable close to the glass support. This study shows the importance of the solid|liquid|liquid junctions for the behavior of multiphase systems under microfluidic conditions. PMID:24328179

  5. Isolating Reactions at the Picoliter Scale: Parallel Control of Reaction Kinetics at the Liquid-Liquid Interface.

    Science.gov (United States)

    Phan-Quang, Gia Chuong; Lee, Hiang Kwee; Ling, Xing Yi

    2016-07-11

    Miniaturized liquid-liquid interfacial reactors offer enhanced surface area and rapid confinement of compounds of opposite solubility, yet they are unable to provide in situ reaction monitoring at a molecular level at the interface. A picoreactor operative at the liquid-liquid interface is described, comprising plasmonic colloidosomes containing Ag octahedra strategically assembled at the water-in-decane emulsion interface. The plasmonic colloidosomes isolate ultrasmall amounts of solutions (<200 pL), allowing parallel monitoring of multiple reactions simultaneously. Using the surface-enhanced Raman spectroscopy (SERS) technique, in situ monitoring of the interfacial protonation of dimethyl yellow (p-dimethylaminoazobenzene (DY)) is performed, revealing an apparent rate constant of 0.09 min(-1) for the first-order reaction. The presence of isomeric products with similar physical properties is resolved, which would otherwise be indiscernible by other analytical methods. PMID:27239973

  6. Stopped-flow injection liquid-liquid extraction spectrophotometric determination of palladium in airborne particulate matter and automobile catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anthemidis, A.N.; Themelis, D.G.; Stratis, J.A. [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece)

    2001-03-30

    A stopped-flow injection liquid-liquid extraction (SF-EX-FIA) spectrophotometric method is reported for the determination of palladium(II), using the 2,2'-dipyridyl-2-pyridylhydrazone (DPPH) as a color forming reagent. The colored complex Pd(II)-DPPH was extracted in CHCl{sub 3} and the absorbance was monitored at 560 nm. An injection valve was used as a commutator in order to combine the stopped-flow technique with liquid-liquid extraction FI system. The calibration graph was linear up to 12 mg l{sup -1} (s{sub r}=0.27%; r=0.9999) with a detection limit of c{sub L}=0.007 mg l{sup -1}. The sampling rate was 20 injections per hour. The proposed method has been successfully applied to the determination of palladium in airborne particulate matter (APM) and in automobile exhaust gas converter catalysts.

  7. Studies of intensified small-scale processes for liquid-liquid separations in spent nuclear fuel reprocessing

    OpenAIRE

    Tsaoulidis, D.

    2014-01-01

    The main contribution of the thesis is to study and develop small-scale processes for ionic liquid-based extractions that can intensify the liquid-liquid separations in the spent nuclear fuel reprocessing cycle. The industrial application of small scale processes requires that their hydrodynamics and mass transfer behaviour are well characterised and predicted. In addition, modelling methodologies are proposed to evaluate the applicability of the small scale extractors in reprocessing the lar...

  8. Study of the liquid-liquid extraction of phytosterols from tall oil/soap by organic solvents

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Heyberger, A.; Rousková, M.; Krtička, M.

    Durban : South African Institution of Chemical Engineers, 2006, s. 1-6. [SACEC 2006. Engineering Africa in the 21st Century. Durban (ZA), 20.09.2006-22.09.2006] R&D Projects: GA AV ČR(CZ) 1QS400720504 Institutional research plan: CEZ:AV0Z60870520 Keywords : Tall soap * liquid-liquid extraction * hexane Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  9. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    OpenAIRE

    Teslima Daşbaşı; Şenol Kartal; Şerife Saçmacı; Ahmet Ülgen

    2016-01-01

    A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4 − complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time ...

  10. Validation of a Liquid-liquid Extraction Method for Analysis of Wine Aroma Compounds with GC-MS

    OpenAIRE

    Ivanova, Violeta; Stefova, Marina; Stafilov, Trajče; Vojnoski, Borimir; Bíró, Ildiko; Bufa, Anita; Kilár, Ferenc

    2012-01-01

    A validated method for identification and quantification of volatile compounds in wine was developed using liquid-liquid extraction followed by gas chromatography coupled to mass spectrometry (Ivanova et al., 2012a, 2012b). Dichloromethane was used as an extraction solvent, with good repeatability and reproducibility (RSD < 10%). The correlation coefficients (R2) ranged from 0.9951 to 0.9992, showing linear calibration curves of the used reference compounds (2-phenyl ethanol, ethyl nonanoate,...

  11. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    OpenAIRE

    Ngoc Hoan Nguyen; Hyung Jun Park; Sang Sik Yang; Kyeong Sook Choi; Jong-Soo Lee

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-...

  12. Dynamic Modelling and Simulation of (Pulsed and Stirred) Liquid-Liquid Extraction Columns using the Population Balance Equation

    OpenAIRE

    Jaradat, Moutasem

    2012-01-01

    The discrete nature of the dispersed phase (swarm of droplet) in stirred and pulsed liquid-liquid extraction columns makes its mathematical modelling of such complex system a tedious task. The dispersed phase is considered as a population of droplets distributed randomly with respect to their internal properties (such as: droplet size and solute concentration) at a specific location in space. Hence, the population balance equation has been emerged as a mathematical tool to model and describe ...

  13. Study on Osmotic Pressure and Liquid-Liquid Equilibria for Micelle, Colloid and Microemulsion Systems by Yukawa Potential

    Institute of Scientific and Technical Information of China (English)

    FU,Dong(付东); LU,Jiu-Fang(陆九芳); WU,Wei(吴畏); Li,Yi-Gui(李以圭)

    2004-01-01

    An equation of state (EOS) was established to study the osmotic pressure and liquid-liquid equilibria for micelle,colloid and microemulsion systems. The Carnahan-Starling equation was used for the hard sphere repulsion. The Yukawa potential was used to describe both the attractive dispersion and the double-layer repulsion. By using the established EOS, the osmotic pressures for charged colloid, uncharged micelle, uncharged and weakly charged microemuslion, the phase equilibria for uncharged micelle and charged colloid systems were studied.

  14. Optimized determination of polybrominated diphenyl ethers by ultrasound-assisted liquid-liquid extraction and high-performance liquid chromatography.

    Science.gov (United States)

    He, Kuang; Lv, YuanCai; Chen, YuanCai

    2014-10-01

    A method based on ultrasound-assisted liquid-liquid extraction and high-performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound-assisted liquid-liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R(2) > 0.9962 over a concentration range of 1-100 μg/L) and repeatability (relative standard deviation ultrasound-assisted liquid-liquid extraction coupled with high-performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples. PMID:25142014

  15. Studies on the liquid-liquid extraction and ion and precipitate flotation of Co(II) with decanoic acid

    International Nuclear Information System (INIS)

    The liquid-liquid extraction, ion and precipitate flotation of Co(II) from chloride media of 1*10-4 M initial Co(II) concentration and μ = 0.1 have been investigated using decanoic acid and the results are compared. Organic solvents used were chloroform in the case of liquid-liquid extraction and ethanol (used as a solvent for the collector and a frother) in the case of flotation. From the results it appears that liquid-liquid extraction takes place through the formation of the complex: (CoR2)2(HR)2 but flotation occurs through the formation of a surface active product which has the empirical formula CoR2. The effects of pH and of decanoic acid concentration on the three separation processes were also investigated and the results discussed. Good agreement was observed between the experimental precipitate flotation curves and the theoretical curve calculated from the data published for Co(II) hydrolysis. (author) 30 refs.; 4 figs.; 1 tab

  16. Theoretical and Computational Studies of Condensed-Phase Phenomena: The Origin of Biological Homochirality, and the Liquid-Liquid Phase Transition in Network-Forming Fluids

    Science.gov (United States)

    Ricci, Francesco

    ) model of silicon. A similar analysis is also presented for the generalized SW family of models by varying the "tetrahedrality" of the potential. Contrary to previously published findings, we do not find any evidence of the existence of an LLPT for SW silicon, nor for the generalized family of SW models over the range of parameters studied. Our results for the original parameterization of SW silicon are in semi-quantitative agreement with previous free energy calculations for this model, which were only provided at three state points. Explanations for the discrepancies between previous independent studies are provided, along with explicit demonstrations of how these discrepancies may have occurred. Finally, in the fourth part of this dissertation, we perform free energy calculations to demonstrate the existence of an LLPT in the Jagla potential. We also utilize finite-size scaling analysis to calculate the surface tension associated with the LLPT. In addition to the thermodynamics of the model, we investigate the relaxation times for density and bond-orientational order and show that, contrary to assertions in the literature, the characteristic relaxation time of bond-orientational order is not orders of magnitude slower than that of density. We compare our results for the Jagla model with those found in the literature for the ST2 model of water (which has also been rigorously shown to exhibit an LLPT) in order to emphasize key similarities and differences between two models that exhibit pure-component liquid-liquid phase separation.

  17. Phase diagrams for (liquid + liquid) and (liquid + solid) equilibrium of aqueous two-phase system containing {polyvinylpyrrolidone 3500 (PVP3500) + sodium sulfite (Na2SO3) + water} at different temperatures

    International Nuclear Information System (INIS)

    Highlights: • LLE of (polyvinylpyrrolidone + sodium sulfite + water) was studied. • The complete phase diagram for PVP3500 + Na2SO3 + H2O was determined at T = 298.15 K. • Binodal data were correlated with two empirical equations. • Tie-lines were fitted to several models including extended NRTL and modified NRTL. • The entropy is driving force for aqueous two-phase formation. - Abstract: The (liquid + liquid) equilibrium (LLE) for the {polyvinylpyrrolidone (PVP3500) + Na2SO3 + H2O} system has been determined experimentally at T = (298.15, 308.15 and 318.15) K. The (liquid + liquid + solid) equilibrium (LLSE) and complete phase diagram of this system were also obtained at T = 298.15 K. The effect of temperature on the binodal curves and the tie-lines for the investigated aqueous two-phase system (ATPS) have been studied. The Merchuk equation and an empirical equation that we proposed in our previous work were used for reproducing the experimental binodal results, and their three fitting parameters were obtained with the temperature dependence expressed in the linear form with (T − T0) K as a variable. Furthermore, the Othmer–Tobias and Bancroft, a temperature dependent Setschenow-type equation and osmotic virial model, the segment-based local composition models (i.e. the extended NRTL (E-NRTL) and modified NRTL (M-NRTL)) were used for the correlation of the (liquid + liquid) phase behavior of the studied system. Also, we estimated plait point, slope and the length of tie-lines at T = (298.15, 308.15 and 318.15) K

  18. Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author)

  19. Lanthanides and trivalent actinides complexation by tripyridyl triazine, applications to liquid-liquid extraction

    International Nuclear Information System (INIS)

    The protonation constants of TPTZ (tripyridyl (2) - 2,4,6 triazine 1,3,5) have been measured: pKa1 = 3.8 and pKa2 = 2.7. (I = 1M, KCl). TPTZ can be autoassociated as (HTPTZ)sub(x)sup(x+) (x=3 or 4). The Am TPTZ3+ formation constant (log β = 4.22) is more stable than the lanthanides ones: log β1 = 2.23/3.16/2.81/3.35/3.11/3.00/2.50/2.43/2.43/2.03./2.00/2.09 and 2.3 respectively for La/Pr/Nd/Sm/Eu/Gd/Tb/Dy/Ho/Er/Tm/Yb and Lu. The selectivity of TPTZ is applied to investigate the groups separation actinides (III)-lanthanides by a liquid-liquid extraction procedure, from nitric acid into several diluents. Acidic extractants dibutylthiophosphoric, di-2 ethylhexyldithiophosphoric, α-bromocapric (H α B Cr10) or dinonylnaphtalensulfonic (HDNNS) acid were used to insure the organic complexes electroneutrality. Am(III) and Cm(III) and lanthanides are extracted into decanol as M(α Br C10)3 and MTPZ (α Br C10)3 this last complex is more stable with actinides (III) than with lanthanides (log Kew = -3,1 and -3,9 respectively). HDNNS-TPTZ mixtures form inverted micelles in t-butylbenzene and can extract the actinides 20 times better than the lanthanides from 0.3 M HNO3. We explained qualitatively and quantitatively the extraction data, by assuming that HDNNS-TPTZ micelles behave like a 3rd phase

  20. Exploring the nature of the liquid-liquid transition in silicon: a non-activated transformation.

    Science.gov (United States)

    Lü, Y J; Zhang, X X; Chen, M; Jiang, Jian-Zhong

    2015-10-28

    In contrast to other glass formers, silicon exhibits a thermodynamic discontinuity between its liquid and amorphous solid states. Some researchers have conjectured that a first-order phase transition occurs between two forms of liquid silicon: the high-density liquid (HDL) and the low-density liquid (LDL). Despite the fact that several computer simulations have supported a liquid-liquid phase transition (LLPT) in silicon, recent work based on surface free energy calculations contradicts its existence and the authors of this work have argued that the proposed LLPT has been mistakenly interpreted [J. Chem. Phys., 2013, 138, 214504]. A similar controversy has also arisen in the case of water because of discrepancies in the calculation of its free energy surface [Nature, 2014, 510, 385; J. Chem. Phys., 2013, 138, 214504]. Current evidence supporting or not supporting the LLPT is mostly derived from the thermodynamic stability of the LDL phase. Provided that the HDL-LDL transition is a first-order transition, the formation of LDL silicon should be an activated process. Following this idea, the nature of the LLPT should be clarified by tracing the kinetic path toward LDL silicon. In this work, we focus on the transformation process from HDL to LDL phases and use the mean first passage time (MFPT) method to examine thermodynamic and dynamic trajectories. The MFPT results show that the presumed HDL-LDL transition is not characterized by a thermodynamic activated process but by a continuous dynamic transformation. LDL silicon is actually a mixture of the high-density liquid and a low-density tetrahedral network. We show that the five-membered Si-Si rings in the LDL network play a critical role in stabilizing the low-density network and suppressing the crystallization. PMID:26415631

  1. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas.

    Science.gov (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel

    2009-10-23

    This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water. PMID:19700165

  2. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel

    2009-12-01

    Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type). PMID:19779926

  3. Electrostatic Assembly of Polymers and Nanoparticles at Liquid-Liquid Interfaces

    Science.gov (United States)

    Hoagland, David

    The electrostatic attraction between charged solutes on opposite sides of the interface between immiscible liquids offers an efficient route to the self-assembly of two-dimensional films. As implemented by us, a hydrophobic polymer with amine end(s) or block(s) is presented in an oil phase, and a negatively charged nanoparticle is presented in an aqueous phase; both solutes are insoluble in the opposite phase but efficiently driven to the liquid-liquid interface by mutual electrostatically attraction to the solute in the opposite phase. Depending on experimental conditions (salt concentration, pH, solute concentrations, etc.), a continuous, nanoscopically thin composite film builds at the oil-water interface over the timescale of minutes, often accompanied by a dramatic reduction of interfacial tension akin to that observed for a surfactant. Film formation and properties by the new route will be discussed, as principally probed through pendant drop interfacial tensiometry and pendant drop interfacial rheometry. Components of model system are toluene-dissolved amine end-capped polystyrene and water-dispersed acid-treated carbon nanotubes or citrate-treated gold nanospheres. Film structures are complicated, as are crucial electrostatic interactions near the interface. With amine end-capped polystyrene partnered with acid-treated carbon nanotubes, high pH (above 5) and high polystyrene molecular weight (above 5000 g/mol) strongly hinder film formation. These films, which are liquid-like, show two viscoelastic relaxations, a fast relaxation (about 10 s) associated with polystyrene chain rearrangements (slightly impacted by carbon nanotube association) and a slow relaxation (about 20 min) associated with polystyrene adsorption/desorption; at intermediate times (or frequencies), the two-dimensional storage and loss moduli follow approximately the same power law dependences. Support by NSF through the Univ. of Massachusetts MRSEC.

  4. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    OpenAIRE

    A. Zuend; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-01-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase...

  5. Speciation analysis of mercury in sediments using ionic-liquid-based vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography and cold vapor atomic fluorescence spectrometry.

    Science.gov (United States)

    Leng, Geng; Chen, Wenjin; Wang, Yong

    2015-08-01

    An improved novel method based on ionic liquid vortex-assisted liquid-liquid microextraction has been developed for the extraction of methylmercury, ethylmercury and inorganic mercury in sediment samples prior to analysis by high-performance liquid chromatography with cold vapor atomic fluorescence spectrometry. In this work, mercury species were firstly complexed with dithizone, and the complexes were extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate. Key factors that affect the extraction efficiency of mercury species, such as type and amount of ionic liquid and chelatants, extraction time, sample pH, salt effect and matrix effect were investigated. Under the optimum conditions, linearity was found in the concentration range from 0.1-70 ng/g. Limits of detection ranged from 0.037-0.061 ng/g. Reproducibility and recoveries were assessed by extracting a series of six independent sediment samples that were spiked with different concentration levels. Finally, the proposed method was successfully applied in analysis of real sediment samples. In this work, ionic liquids vortex-assisted liquid-liquid microextraction was for the first time used for the extraction of mercury species in sediment samples. The proposed method was proved to be much simpler and more rapid, as well as more environmentally friendly and efficient compared with the previous methods. PMID:25998155

  6. Tandem dispersive liquid-liquid microextraction as an efficient method for determination of basic drugs in complicated matrices.

    Science.gov (United States)

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Saffarzadeh, Zahra; Asghari, Alireza

    2016-01-15

    A simple and efficient approach is introduced for the improvement of the clean-up and applicability of the dispersive liquid-liquid microextraction (DLLME) method in complicated matrices. For this purpose, two dispersive microextraction methods were combined, and the tandem dispersive liquid-liquid microextraction (TDLLME) method was provided. At first, using the ultrasound-assisted emulsification microextraction (USAEME) method, the tricyclic anti-depressant (TCA) drugs nortriptyline, imipramine, and amitriptyline, as the model compounds, contained in an aqueous sample solution (8.0 mL), were extracted into an organic solvent (35 μL). Then by utilizing the air-agitated liquid-liquid microextraction (AALLME) method, these analytes were simply back-extracted into 50 μL of an aqueous acceptor phase. By performing this convenient extraction method, a high sample clean-up was obtained; the overall extraction time was 7 min. The back-extraction step could be performed in less than 2 min, and very simple tools were required for this purpose. The response surface methodology (RSM) was used for the optimization of the experimental parameters so that the volumes 95 and 50 μL were obtained for the organic solvent and the acceptor phase, respectively, and the pH values of 11.25 and 1.75 were obtained for the donor and acceptor phases, respectively, as the optimal extraction conditions. Under the optimized conditions, TDLLME-HPLC-UV provided a good linearity in the range of 2.5-5000 ng mL(-1), low limits of detection (0.7-1.0 ng mL(-1)), good extraction repeatabilities (relative standard deviations below 6.2%, n=5), and enrichment factors (EFs) of 50-101. Finally, the developed method was successfully used for the determination of the mentioned drugs in the wastewater and human plasma samples. PMID:26711155

  7. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles

    OpenAIRE

    Song, M.; Marcolli, C.; U. K. Krieger; A. Zuend; Peter, T

    2012-01-01

    Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS) and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5–7 carbon atoms (C5, C6 and C7) having oxygen-to-carbon atomic ratios (O:C) of 0.80, 0.67, and 0.57, respectively, mixed with ammonium sulfate (AS). With mi...

  8. Liquid-Liquid Equilibria of Aqueous Two-phase Systems Containing Polyethylene Glycol 4000 and Two Different Salts of Ammonium

    Directory of Open Access Journals (Sweden)

    G. Khayati

    2011-02-01

    Full Text Available The aim of this study was to survey on phase diagrams and Liquid-Liquid Equilibrium (LLE data of the aqueous PEG4000 - (NH42HPO4 and PEG4000 - (NH42SO4 systems experimentally at 298.15 K. The salting-out effect was also discussed on the basis of the Gibbs free energy of hydration of ions. The experimental binodal data were satisfactorily correlated with the Merchuk equation. Tie line compositions were correlated using the Othmer-Tobias and Bancroft equations, and the parameters have also reported. Good agreement was obtained with the experimental data with the model equations.

  9. Effect of channel size on mass transfer during liquid-liquid plug flow in small scale extractors

    OpenAIRE

    Tsaoulidis, D.; Angeli, P

    2015-01-01

    In this paper the effect of channel size on the mass transfer characteristics of liquid-liquid plug flow was investigated for capillaries with internal diameter ranging from 0.5 to 2 mm. The extraction of {UO2}2+ ions from nitric acid solutions into TBP/IL mixtures, relevant to spent nuclear fuel reprocessing, was studied for different residence times, dispersed phase fractions, and mixture velocities. It was found that extraction efficiencies increased as the channel size decreased. For a gi...

  10. Modeling the liquid-liquid equilibria of water plus fluorocarbons with the cubic-plus-association equation of state

    DEFF Research Database (Denmark)

    Oliveira, Mariana B.; Freire, Mara G.; Marrucho, Isabel M.;

    2007-01-01

    -plus-association equation of state (CPA EoS) has been extended to binary mixtures of water with several linear, cyclic, aromatic, and substituted fluorocarbons. The CPA EoS was successfully used to model the liquid-liquid equilibria of aqueous mixtures that contain FCs, while also being able to describe the cross...... dioxide, making them interesting for several biomedical applications. In most of these applications, water or aqueous systems are present for which the knowledge of the mutual solubilities between the fluorocarbons and the aqueous phases is important. In this work, the application of the cubic...

  11. APPLICATION OF A GENERALIZED MAXIMUM LIKELIHOOD METHOD IN THE REDUCTION OF MULTICOMPONENT LIQUID-LIQUID EQUILIBRIUM DATA

    Directory of Open Access Journals (Sweden)

    L. STRAGEVITCH

    1997-03-01

    Full Text Available The equations of the method based on the maximum likelihood principle have been rewritten in a suitable generalized form to allow the use of any number of implicit constraints in the determination of model parameters from experimental data and from the associated experimental uncertainties. In addition to the use of any number of constraints, this method also allows data, with different numbers of constraints, to be reduced simultaneously. Application of the method is illustrated in the reduction of liquid-liquid equilibrium data of binary, ternary and quaternary systems simultaneously

  12. Use of Dispersive Liquid-Liquid Microextraction and UV-Vis Spectrophotometry for the Determination of Cadmium in Water Samples

    OpenAIRE

    J. Pérez-Outeiral; E. Millán; R. Garcia-Arrona

    2014-01-01

    A simple and inexpensive method for cadmium determination in water using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry was developed. In order to obtain the best experimental conditions, experimental design was applied. Calibration was made in the range of 10–100 μg/L, obtaining good linearity (R2 = 0.9947). The obtained limit of detection based on calibration curve was 8.5 μg/L. Intra- and interday repeatability were checked at two levels, obtaining relat...

  13. Liquid-liquid and solid-liquid equilibria of 2-isopropoxyethanol-H{sub 2}O-NaCl mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zijlema, T.G.; Witkamp, G.J.; Rosmalen, G.M. van

    1999-12-01

    Liquid-liquid equilibria experiments demonstrated that mixtures of 2-isopropoxyethanol and water saturated with NaCl are partially miscible. The lower critical solution temperature was estimated to be 29.2 C at a 2-isopropoxyethanol concentration of 0.399 (m{sub IPE}/(m{sub IPE} + m{sub H{sub 2}O})). Solid-liquid equilibria experiments showed that the solubility of NaCl in water is reduced significantly by the presence of 2-isopropoxyethanol. As in pure water, the NaCl solubility in 2-isopropoxyethanol-H{sub 2}O mixtures increases weakly with temperature.

  14. Combination of corona discharge ion mobility spectrometry with a novel reagent gas and two immiscible organic solvent liquid-liquid-liquid microextraction for analysis of clomipramine in biological samples.

    Science.gov (United States)

    Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Khayamian, Taghi; Moradmand, Ali

    2011-12-01

    A novel and sensitive method based on combination of two immiscible organic solvents hollow fiber-based liquid-liquid-liquid microextraction and corona discharge ion mobility spectrometry (HF-LLLME-CD-IMS) was employed for the analysis of clomipramine in human urine and plasma. The effect of formic, acetic and propionic acid as the reagent gas (dopant) on the corona discharge ion mobility signal was investigated. The influence of dopant amount was also studied. Optimum mass flow rates of the dopants were 3.7, 1.1 and 1.0 μmol min(-1) for formic, acetic and propionic acid, respectively. Experimental parameters influencing the extraction efficiency of HF-LLLME, such as NaOH concentration as donor solution, ionic strength of the sample, stirring rate, and extraction time were investigated and optimized. Under the optimum conditions, analytical parameters such as linearity, precision and limit of detection were also evaluated. The linear dynamic range was from 1 to 100 μg L(-1) (r(2)=0.9980) and the limit of detection was 0.35 μg L(-1). Intra- and inter-day precisions were satisfactory with a relative standard deviation (RSD) of 5.9 and 6.7%, respectively. The proposed method was satisfactorily applied for the determination of clomipramine in human plasma and urine. PMID:22041141

  15. Quaternary (liquid + liquid) equilibrium data for the extraction of toluene from alkanes using the ionic liquid [EMim][MSO4

    International Nuclear Information System (INIS)

    Highlights: • EMim[MSO4] was proposed as solvent for the extraction of toluene from alkanes. • The quaternary system {heptane + cyclohexane + toluene + [EMim][MSO4]} was evaluated. • The extraction of toluene would be facilitated in the presence of one alkane. • Experimental LLE data were successfully correlated with the NRTL model. - Abstract: (Liquid + liquid) equilibrium (LLE) studies for the extraction of aromatics from alkanes present in the petroleum fractions are important to develop theoretical/semiempirical (liquid + liquid) equilibrium models, which are used in the design of extraction processes. In this work, the ionic liquid 1-ethyl-3-methylimidazolium methylsulfate, [EMim][MSO4], was evaluated as potential solvent for the separation of toluene from heptane and cyclohexane. The LLE data for the quaternary system {heptane (1) + cyclohexane (2) + toluene (3) + [EMim][MSO4] (4)} were experimentally determined at T = 298.15 K and atmospheric pressure. Moreover, the LLE data for the ternary systems {heptane or cyclohexane (1) + toluene (2) + [EMim][MSO4] (3)} were also determined. Solute distribution ratios and selectivities were calculated and analysed in order to evaluate the capability of the ionic liquid to accomplish the separation target. A comparison between the solute distribution ratios and selectivities for the quaternary and the ternary systems was also made. Finally, the experimental tie-line data were correlated with the NRTL model

  16. Determination of fenvalerate in tomato by ultrasound-assisted solvent extraction combined with dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Pirsaheb, Meghdad; Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba

    2014-09-01

    Ultrasound-assisted solvent extraction (UASE) combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) has been developed for extraction and determination of fenvalerate from tomato samples. Fenvalerate was determined by high-performance liquid-liquid chromatography-ultraviolet detector. Effects of parameters such as type and volume of extraction solvent in the UASE stage, sonication time, type and volume of extraction solvent and disperser solvent in the DLLME-SFO stage, salt addition and pH effect on extraction were studied and optimized. Under the optimum conditions, the calibration graph was linear in the range of 5-500 µg kg(-1) with a detection limit of 0.6 µg kg(-1). The relative standard deviation for five replicate measurements of 100 µg kg(-1) of fenvalerate was 6.5%. The relative recovery of fenvalerate in different tomato samples at a spiking level of 10, 20 and 50 µg kg(-1) is in the range of 93.5-108%. The obtained results show that UASE-DLLME-SFO is a sensitive, fast and simple method for the determination of fenvalerate in tomato samples. PMID:24025187

  17. Determination of abamectin in citrus fruits using SPE combined with dispersive liquid-liquid microextraction and HPLC-UV detection.

    Science.gov (United States)

    Rezaee, Mohammad; Mashayekhi, Hossein Ali; Saleh, Abolfazl; Abdollahzadeh, Yaser; Naeeni, Mohammad Hosein; Fattahi, Nazir

    2013-08-01

    A new pretreatment method, SPE combined with dispersive liquid-liquid microextraction, was proposed for the determination of abamectin in citrus fruit samples for the first time. In this method, fruit samples were extracted by ultrasound-assisted extraction followed by SPE. Then, the SPE was used as a disperser solvent in the next dispersive liquid-liquid microextraction step for further purification and enrichment of abamectin. The effects of various parameters on the extraction efficiency of the proposed method were investigated and optimized. Good linearity of abamectin was obtained from 0.005 to 10.0 mg/kg for B1a and from 0.05 to 10.0 mg/kg for B1b with correlation coefficient (r(2)) of 0.998 for B1a and 0.991 for B1b, respectively. The LODs were 0.001 and 0.008 mg/kg (S/N = 3) for B1a and B1b, respectively. The relative recoveries at three spiked levels were ranged from 87 to 96% with the RSD less than 11% (n = 3). The method has been successfully applied to the determination of abamectin in citrus fruit samples. PMID:23913592

  18. Studies of extractant molecules in solution and at liquid-liquid interfaces: structural and mechanistic aspects of synergy effects

    International Nuclear Information System (INIS)

    Molecular dynamics simulations reported herein provide new important insights into cation recognition and complexation in solution as well as liquid-liquid extraction, with a particular focus on the microscopic events taking place at the interface between two immiscible liquids. Preliminary studies concerned the representation of the trivalent rare earth cations La3+, Eu3+ and Yb3+ in force field simulations, probing structural and energetic features on an experimentally characterized model system based on substituted pyridine dicarboxamide ligands. Complexation of such cations by a novel calixarene derivative was investigated showing unexpected features, such as the position of the cation in the complex. Independent experimental studies published subsequently support these findings. Another part of the work is related to industrial liquid-liquid extraction systems using tri-n-butyl phosphate (TBP) as co-solvent, extractant, surfactant and synergist. We investigate 1) concentration effects simulating up to 60 TBP at a water/chloroform interface, 2) acidity using a neutral and ionic model of HNO3 and 3) synergistic aspects of mixed TBP/calixarene extraction systems. These simulations provide the first microscopic insights into such issues. We finally addressed the topic of solute transfer across the water/chloroform interface. The potential of mean force for such a process has been calculated by both standard methods and novel approaches

  19. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  20. Two-phase stopped-flow measurement of the protonation of tetraphenylporphyrin at the liquid-liquid interface.

    Science.gov (United States)

    Nagatani, H; Watarai, H

    1996-04-01

    The formation rate of the protonated form of tetraphenylporphyrin (TPP) in a dispersed two-phase system composed of dodecane and aqueous trichloroacetic acid (TCA) was studied by means of a stopped-flow method. The protonation reaction took place at the liquid-liquid interface, and the diprotonated TPP (H(2)TPP(2+)) formed was adsorbed there. In order to determine the rate-determining process, changes in absorbance at the absorption maximum wavelengths of TPP and H(2)TPP(2+) were analyzed. The obtained rate constant for the decrease of TPP in the organic phase, 21 ± 2 s(-1), was in agreement with that for the increase of diprotonated TPP at the interface, 20 ± 3 s(-1). The observed rate constants did not show any dependence on concentrations of both TPP and the acid. The experimental results suggested the rate-determining step to be the molecular diffusion process of TPP in the stagnant layer in the organic phase side at the liquid-liquid interface, and the thickness of the stagnant layer was estimated as 1.4 × 10(-4) cm. PMID:21619156

  1. Using dispersive liquid-liquid microextraction and liquid chromatography for determination of guaifenesin enantiomers in human urine.

    Science.gov (United States)

    Hatami, Mehdi; Farhadi, Khalil; Abdollahpour, Assem

    2011-11-01

    A simple, rapid, and efficient method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0-2, 2-4, and 4-6 h and concentration and ratio of two enantiomers was determined. The ratio of R-(-) to S-(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH(2)Cl(2). After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid-liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers. PMID:21972192

  2. Aluminium sensitized spectrofluorimetric determination of fluoroquinolones in milk samples coupled with salting-out assisted liquid-liquid ultrasonic extraction

    Science.gov (United States)

    Xia, Qinghai; Yang, Yaling; Liu, Mousheng

    2012-10-01

    An aluminium sensitized spectrofluorimetric method coupled with salting-out assisted liquid-liquid ultrasonic extraction for the determination of four widely used fluoroquinolones (FQs) namely norfloxacin (NOR), ofloxacin (OFL), ciprofloxacin (CIP) and gatifloxacin (GAT) in bovine raw milk was described. The analytical procedure involves the fluorescence sensitization of aluminium (Al3+) by complexation with FQs, salting-out assisted liquid-liquid ultrasonic extraction (SALLUE), followed by spectrofluorometry. The influence of several parameters on the extraction (the salt species, the amount of salt, pH, temperature and phase volume ratio) was investigated. Under optimized experimental conditions, the detection limits of the method in milk varied from 0.009 μg/mL for NOR to 0.016 μg/mL for GAT (signal-to-noise ratio (S/N) = 3). The relative standard deviations (RSD) values were found to be relatively low (0.54-2.48% for four compounds). The calibration graph was linear from 0.015 to 2.25 μg/mL with coefficient of determinations not less than 0.9974. The methodology developed was applied to the determination of FQs in bovine raw milk samples. The main advantage of this method is simple, accurate and green. The method showed promising applications for analyzing polar analytes especially polar drugs in various sample matrices.

  3. Viscosities and densities of systems involved in the deterpenation of essential oils by liquid-liquid extraction: New UNIFAC-VISCO parameters

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Physical properties of systems from deterpenation of essential oils were measured. • Viscosities were used to get new interaction parameters for the UNIFAC-VISCO model. • Parameters were optimized using a genetic algorithm. • A global average relative deviation of 0.68% was obtained considering all systems. • New parameters also presented a good predictive capability, with a ARD of 1.83%. - Abstract: This work reports viscosities and densities, at T = 298.15 K, of the phases formed after deterpenation of bergamot, lemon and mint essential oils, by (liquid + liquid) extraction (LLE). Samples of mixtures containing the main components of each essential oil (terpenes and oxygenated compounds), plus ethanol and water, were obtained from studies of phase equilibrium performed previously by our research group. Experimental viscosities were also correlated to the UNIFAC VISCO model, based on the group contribution method. Correlations were accomplished using two approaches: in the first one, functional groups already described by previous studies in the literature and new ones obtained in this work were considered, providing a global average relative deviation (ARD) equal to 1.70%; in a second approach, all functional groups were fitted to our experimental data, which provided a global average relative deviation equal to 0.68%. The predictive capability of the UNIFAC-VISCO were tested for systems involved in the deterpenation of eucalyptus essential oil, giving ARD values of (3.56 and 1.83)%, for parameters from first and second approach, respectively. These results indicate that, for more accurate calculation of viscosities, it is important to consider the particularities and the complexity of each system

  4. Extraction behaviour of Zr(IV), Ce(III), Tu(IV) and U(VI) from Acidic Solutions of arsenazo-III using HDEHP, HTTA, TDA and TCMA

    International Nuclear Information System (INIS)

    The organic extractants, di(2-ethylhexyl) phosphoric acid(HDEHP), 1-[thenoyl-(2)]-3,3,3-trifluoroacetone (HTTA),tridodecylamine(TDA) and tricaprylmethyl-ammonium chloride (TCMA) in xylene have been used to study the extraction extraction behaviour of Zr(IV), Ce(III), Th(IV) and from acidic solutions of arsenazo-III. Effect of concentration of different mineral acids on the extraction of the aforementioned elements has been investigated. From the obtained results, some separation alternatives were recommended, which are useful in the spectrophotometric determination of some of the studied elements in the organic phase without interference from the other elements. 4 figs., 1 tab

  5. Double-salting out assisted liquid-liquid extraction (SALLE) HPLC method for estimation of temozolomide from biological samples.

    Science.gov (United States)

    Jain, Darshana; Athawale, Rajani; Bajaj, Amrita; Shrikhande, Shruti

    2014-11-01

    The role of temozolomide (TMZ) in treatment of high grade gliomas, melanomas and other malignancies is being defined by the current clinical developmental trials. Temozolomide belongs to the group of alkylating agents and is prescribed to patients suffering from most aggressive forms of brain tumors. The estimation techniques for temozolomide from the extracted plasma or biological samples includes high-performance liquid chromatography with UV detection (HPLC-UV), micellar electrokinetic capillary chromatography (MKEC) and liquid chromatography coupled to mass spectroscopy (LC-MS). These methods suffer from disadvantages like low resolution, low sensitivity, low recovery or cost involvement. An analytical method possessing capacity to estimate low quantities of TMZ in plasma samples with high extraction efficiency (%) and high resolution with cost effectiveness needs to be developed. Cost effective, robust and low plasma component interfering HPLC method using salting out liquid-liquid extraction (SALLE) technique was developed and validated for estimation of drug from plasma samples. The extraction efficiency (%) with conventional LLE technique with methanol, ethyl acetate, dichloromethane and acetonitrile was found to be 5.99±2.45, 45.39±4.56, 46.04±1.14 and 46.23±3.67 respectively. Extraction efficiency (%) improved with SALLE where sodium chloride was used as an electrolyte and was found to be 6.80±5.56, 52.01±3.13, 62.69±2.11 and 69.20±1.18 with methanol, ethyl acetate, dichloromethane and acetonitrile as organic solvent. Upon utilization of two salts for extraction (double salting liquid-liquid extraction) the extraction efficiency (%) was further improved and was twice of LLE. It was found that double salting liquid-liquid extraction technique yielded extraction efficiency (%) of 11.71±5.66, 55.62±3.44, 77.28±2.89 and 87.75±0.89. Hence a method based on double SALLE was developed for quantification of TMZ demonstrating linearity in the range of

  6. Hollow fiber liquid-liquid-liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection.

    Science.gov (United States)

    Saraji, Mohammad; Ghani, Milad

    2015-10-30

    A method based on the combination of hollow fiber liquid-liquid-liquid microextraction and solid-phase microextraction (SPME) followed by gas chromatography-electron capture detection was developed for the determination of chlorophenols in water and wastewater samples. Silica microstructures fabricated on the surface of a stainless steel wire were coated by an organic solvent and used as a SPME fiber. The analytes were extracted through a hollow fiber membrane containing n-decane from sample solution to an alkaline aqueous acceptor phase. They were then extracted and in situ derivatized on the SPME fiber using acetic anhydride. Experimental parameters such as the type of extraction solvent, acceptor phase NaOH concentration, donor phase HCl concentration, the amount of derivatizing reagent, salt concentration, stirring rate and extraction time were investigated and optimized. The precision of the method for the analytes at 0.02-30μgL(-1) concentration level ranged from 7.1 to 10.2% (as intra-day relative standard deviation) and 6.4 to 9.8% (as inter-day relative standard deviation). The linear dynamic ranges were in the interval of 5-500μgL(-1), 0.05-5μgL(-1), 0.02-1μgL(-1) and 0.001-0.5μgL(-1) for 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol, respectively. The enrichment factors were between 432 and 785. The limits of detection were in the range of 0.0004-1.2μgL(-1). Tap water, well water and wastewater samples were also analyzed to evaluate the method capability for real sample analysis. PMID:26411480

  7. Membrane supported liquid-liquid-liquid microextraction combined with field-amplified sample injection CE-UV for high-sensitivity analysis of six cardiovascular drugs in human urine sample.

    Science.gov (United States)

    Zhou, Xiaoqing; He, Man; Chen, Beibei; Yang, Qing; Hu, Bin

    2016-05-01

    An effective dual preconcentration method involving off-line membrane supported liquid-liquid-liquid microextraction (MS-LLLME) and on-line field-amplified sample injection (FASI) was proposed for the extraction of six cardiovascular drugs, including mexiletine, xylocaine, propafenone, propranolol, metoprolol, and carvedilol from aqueous solution prior to CE-UV. In MS-LLLME, the analytes were extracted from 9 mL sample solution into toluene, and then back extracted into a drop of acceptor phase of 10 μL 20 mmol/L acetic acid. After that, the acceptor phase was directly introduced into CE for FASI without any modification. In FASI process, water plug was hydrodynamically injected (50 mbar, 3 s) into the capillary prior to sample injection (+6 kV, 18 s). Six target analytes were separated in less than 10 min at 25°C with a BGE consisting of 70 mmol/L Tris-H3 PO4 (pH 2.2) containing 10% v/v methanol. Under the optimized conditions, LODs obtained by the proposed MS-LLLME-FASI-CE-UV method were in the range of 0.02-0.82 μg/L (based on S/N = 3) with enrichment factors of 546- to 7300-fold for the target analytes. The RSDs of the developed method were in the range of 6.7-12.9% (n = 7). Good linearity (R(2) = 0.9928-0.9997) was obtained in concentration range of 0.1-100 μg/L for mexiletine and propranolol, 0.2-100 μg/L for xylocaine and metoprolol, 0.5-100 μg/L for propafenone and 2.0-100 μg/L for carvedilol, respectively. The developed method was successfully applied for real-time determination of metoprolol in human urine samples within 26 h after uptake. PMID:26763094

  8. Determination of trace amount of lead in industrial and municipal effluent water samples based on dispersive liquid-liquid extraction

    International Nuclear Information System (INIS)

    In this study, a simple, sensitive and accurate method was developed for the determination of lead ion by combining ionic liquid dispersive liquid-liquid extraction (Il-DLL E) with flame atomic absorption spectrometry. Tetraethyl thiuram disulfide (Tetd), acetone and 1-octyl-3m ethylimidazolium hexafluorophosphate [(C8MIM) (PF6)] were used as the chelating agent, dispersive and extraction solvent, respectively. Under the optimal conditions, the calibration graph was linear in the range of 5-190 μg L-1 of lead and the detection limit was 0.8 μg L-1 with a sample volume of 200 ml. The proposed method was validated by the analysis of one certified reference material and applied successfully to the determination of lead in real water samples. (Author)

  9. Facilitated Ion Transfer Across the Micro-liquid/Liquid Interface Supported at the Tip of a Silanized Micropipette

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Glass micropipettes with silanized inner walls can be filled with an organic solvent for voltammetric measurements in an aqueous solution. This arrangement was employed to investigate systematically the mechanism of facilitated potassium ion transfer by an ionophore dibenzo-18-crown-6(DB18C6) across a micro-water/1,2-dichloroethane(W/DCE) interface supported at the tip of a silanized micropipette. Our experimental results verify that this facilitated ion transfer across the liquid/liquid interface did occur by an interfacial complexation-dissociation process(TIC-TID mechanism). The ratio of the diffusion coefficient of DB18C6 to that of its complexed ion in the DCE phase was calculated to be 1.74±0.07.

  10. Salt effect on (liquid + liquid) equilibrium of (water + tert-butanol + 1-butanol) system: Experimental data and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Milton A.P. [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, Campinas-SP 13081-970 (Brazil); Aznar, Martin [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, Campinas-SP 13081-970 (Brazil)]. E-mail: maznar@feq.unicamp.br

    2006-01-15

    (Liquid + liquid) equilibrium data for the quaternary systems (water + tert-butanol + 1-butanol + KBr) and (water + tert-butanol + 1-butanol + MgCl{sub 2}) were experimentally determined at T = 293.15 K and T = 313.15 K. For mixtures with KBr, the overall salt concentrations were 5 and 10 mass percent; for mixtures with MgCl{sub 2}, the overall salt concentrations were 2 and 5 mass percent. The experimental results were used to estimate molecular interaction parameters for the NRTL activity coefficient model, using the Simplex minimization method and a concentration-based objective function. The correlation results are extremely satisfactory, with deviations in phase compositions below 1.7%.

  11. Numerical simulation of strongly swirling turbulent flows in a liquid-liquid hydrocyclone using the Reynolds stress transport equation model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Reynolds stress transport equation model (DSM) is used to predict the strongly swirling turbulent flows in a liquid-liquid hydrocyclone, and the predictions are compared with LDV measurements. Predictions properly give the flow behavior observed in experiments, such as the Rankine-vortex structure and double peaks near the inlet region in tangential velocity profile, the downward flow near the wall and upward flow near the core in axial velocity profiles. In the inlet or upstream region of the hydrocyclone, the reverse flow near the axis is well predicted, but in the region with smaller cone angle and cylindrical section, there are some discrepancies between the model predictions and the LDV measurements. Predictions show that the pressure is small in the near-axis region and increases to the maximum near the wall. Both predictions and measurements indicate that the turbulence in hydrocyclones is inhomogeneous and anisotropic.

  12. High-performance extraction operation using emulsion flow protected by surfactants in a liquid-liquid countercurrent centrifugal extractor

    International Nuclear Information System (INIS)

    A small-size countercurrent centrifugal extractor with Taylor vortices in a narrow fluid region between an inner rotor and a stationary outer wall has been developed for high-performance liquid-liquid extraction. The extractor enables fast multistage extraction, and control of the emulsion flow is important for achieving superior extraction performance. To achieve a higher number of theoretical stages, rotation speed is initially increased to 1500 rpm to form an emulsion flow and subsequently decreased to the required level. The addition of (1) two types of surface-activating agents (sodium di(2-ethylhexyl) sulfosuccinate and sodium dodecyl sulfate) and (2) polymer protective agents (polyethylene glycol) was tested for maintaining a stable emulsion flow without sacrificing effective oil-water contact at lower rotation speeds. It was found that addition of a small amount of such agents allows for multistage extraction with a higher number of theoretical stages. (author)

  13. Liquid-liquid extraction of ion-association complexes of cobalt(II-4-(2-pyridylazoresorcinol with ditetrazolium salts

    Directory of Open Access Journals (Sweden)

    Divarova Vidka V.

    2015-01-01

    Full Text Available The formation and liquid-liquid extraction of ion-association complexes between Co(II-4-(2-Pyridylazoresorcinol (PAR anionic chelates and cations of three ditetrazolium chlorides were studied: Blue Tetrazolium chloride (BTC, Neotetrazolium chloride (NTC and Nitro Blue Tetrazolium chloride (NBT. The optimum conditions for the formation and solvent extraction of the ion-association comlpex chelates were determined. It has been found that in the systems of Co(II-PAR-DTS, the reactants are reacted in molar ratios 1:2:1 and the general formula of complexes was suggested. The extraction equilibria were investigated and quantitatively characterized by the equilibrium constants and the recovery factors. The analytical characteristics of the complexes were calculated.

  14. Numerical simulation of strongly swirling turbulent flows in a liquid-liquid hydrocyclone using the Reynolds stress transport equation model

    Institute of Scientific and Technical Information of China (English)

    陆耀军; 周力行; 沈熊

    2000-01-01

    The Reynolds stress transport equation model (DSM) is used to predict the strongly swirling turbulent flows in a liquid-liquid hydrocyclone, and the predictions are compared with LDV measurements . Predictions properly give the flow behavior observed in experiments, such as the Rankine-vortex structure and double peaks near the inlet region in tangential velocity profile, the downward flow near the wall and upward flow near the core in axial velocity profiles. In the inlet or upstream region of the hydrocyclone, the reverse flow near the axis is well predicted, but in the region with smaller cone angle and cylindrical section, there are some discrepancies between the model predictions and the LDV measurements. Predictions show that the pressure is small in the near-axis region and increases to the maximum near the wall. Both predictions and measurements indicate that the turbulence in hydrocy-clones is inhomogeneous and anisotropic.

  15. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  16. MicroSISAK. A new device for fast and continuous liquid-liquid-extractions on a microliter scale

    International Nuclear Information System (INIS)

    The investigation of the chemical properties of the heaviest (transactinide) elements is of great interest in order to assess the significance of relativistic effects on the electron configuration of the transactinide elements. The main problems in studies of the transactinide elements are small production cross sections ranging from the nb'-level down to a few pb and their decay properties, predominantly α-particle emission or spontaneous fission (SF) with half-lives in the order of seconds. Thus, efficient and very fast separation techniques in combination with suitable detection systems have to be applied. In order to overcome these problems, a new device for continuous liquid-liquid-extraction on a microliter scale has been developed in a cooperation between the Chalmers University of Technology in Goeteborg, the Institut fuer Mikrotechnik Mainz (IMM), and the Institut fuer Kernchemie in Mainz. MicroSISAK consists of a stack of micro-structured discs sealed in a Ti-housing. (orig.)

  17. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  18. Trace recovery of uranium and rare earth contained in phosphates by liquid-liquid extraction in sulfuric attack liquor

    International Nuclear Information System (INIS)

    Uranium and rare earths can be recovered in sedimentary phosphates during the wet processing of the ore by sulfuric acid giving raw phosphoric acid at 30 per cent of P2O5. Practically all the uranium contained and only part of rare earths are put into solution in this treatment. Separation of these elements in the phosphoric solution is obtained by liquid-liquid extraction with alkylphosphoric acids and especially with their mono and di esters. Partition isotherms are determined and counter-current tests are effected. Uranium and rare earths reextraction from these solvents can be simultaneous or separate with aqueous solutions alkaline or containing HF or by antisynergism. Pros and cons of each reextraction process are discussed. In conclusion HDEHP or OPPA are recommended because of availability, stability and hydrodynamic, OPPA less selective with rare earths allows the recovery with uranium of ceric earths, yttrium and yttric earths

  19. Effect of temperature on the (liquid + liquid) equilibrium for aqueous solution of nonionic surfactant and salt: Experimental and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Enghelab Avenue, Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2008-07-15

    The effect of temperature on the (liquid + liquid) equilibrium of the aqueous solution of surfactant polyoxyethylene cetylether (with abbreviation name Brij 58) and diammonium hydrogen phosphate has been investigated at T = (303.15, 313.15, 323.15, and 333.15) K. The Flory-Huggins equation with two electrostatic terms (Debye-Huckle and Pitzer-Debye-Huckle equations) was used to correlate the phase behavior of this system. Good agreement has been found between experimental and calculated data from both models. The results indicated that the enlargement of the two-phase region upon increasing the temperature. Additionally temperature dependency of the parameters of the Flory-Huggins model has been calculated.

  20. Effect of temperature on the (liquid + liquid) equilibrium for aqueous solution of nonionic surfactant and salt: Experimental and modeling

    International Nuclear Information System (INIS)

    The effect of temperature on the (liquid + liquid) equilibrium of the aqueous solution of surfactant polyoxyethylene cetylether (with abbreviation name Brij 58) and diammonium hydrogen phosphate has been investigated at T = (303.15, 313.15, 323.15, and 333.15) K. The Flory-Huggins equation with two electrostatic terms (Debye-Huckle and Pitzer-Debye-Huckle equations) was used to correlate the phase behavior of this system. Good agreement has been found between experimental and calculated data from both models. The results indicated that the enlargement of the two-phase region upon increasing the temperature. Additionally temperature dependency of the parameters of the Flory-Huggins model has been calculated

  1. (Liquid + liquid) equilibria in ternary aqueous mixtures of phosphoric acid with organic solvents at T = 298.2 K

    International Nuclear Information System (INIS)

    (Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of {water (1) + phosphoric acid (2) + organic solvents (3)} were determined at T = 298.2 K and atmospheric pressure. The organic solvents were cyclohexane, 2-methyl-2-butanol (tert-amyl alcohol), and isobutyl acetate. All the investigated systems exhibit Type-1 behaviour of LLE. The immiscibility region was found to be larger for the (water + phosphoric acid + cyclohexane) ternary system. The experimental LLE results were correlated with the NRTL model, and the binary interaction parameters were obtained. The reliability of the experimental tie-line results was tested through the Othmer-Tobias and Bachman correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to these factors. The experimental results indicate the superiority of cyclohexane as the preferred solvent for the extraction of phosphoric acid from its aqueous solutions.

  2. (Liquid + liquid) equilibria in ternary aqueous mixtures of phosphoric acid with organic solvents at T = 298.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Ghanadzadeh, H., E-mail: hggilani@guilan.ac.i [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of); Department of Chemical Engineering, University of Guilan, Rasht (Iran, Islamic Republic of); Ghanadzadeh, A., E-mail: aggilani@guilan.ac.i [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of); Aghajani, Z.; Abbasnejad, S.; Shekarsaraee, S. [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of)

    2010-06-15

    (Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of left bracewater (1) + phosphoric acid (2) + organic solvents (3)right brace were determined at T = 298.2 K and atmospheric pressure. The organic solvents were cyclohexane, 2-methyl-2-butanol (tert-amyl alcohol), and isobutyl acetate. All the investigated systems exhibit Type-1 behaviour of LLE. The immiscibility region was found to be larger for the (water + phosphoric acid + cyclohexane) ternary system. The experimental LLE results were correlated with the NRTL model, and the binary interaction parameters were obtained. The reliability of the experimental tie-line results was tested through the Othmer-Tobias and Bachman correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to these factors. The experimental results indicate the superiority of cyclohexane as the preferred solvent for the extraction of phosphoric acid from its aqueous solutions.

  3. Development of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of trace nickel.

    Science.gov (United States)

    Wang, Yukun; Zhang, Jingwen; Zhao, Bin; Du, Xin; Ma, Jingjun; Li, Jingci

    2011-12-01

    A liquid-phase microextraction technique was developed using dispersive liquid-liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of nickel in water samples. Microextraction efficiency factors, such as the type and volume of extraction and dispersive solvents, pH, extraction time, the chelating agent amount, and ionic strength, were investigated and optimized. Under optimum conditions, the calibration graph was linear in the range of 4.23-250 μg L(-1) with a detection limit of 1.27 μg L(-1). The relative standard deviation for ten replicate measurements of 10 and 100 μg L(-1) of nickel were 3.21% and 2.55%, respectively. The proposed method was assessed through the analysis of certified reference water or recovery experiments. PMID:21598026

  4. The status of research on CFD-PBM simulation of liquid-liquid two-phase flow in extraction columns

    International Nuclear Information System (INIS)

    Computational fluid dynamics (CFD) simulation has gained more and more interest in the chemical engineering researchers and is becoming a useful tool for the chemical engineering research. The research on liquid-liquid two-phase flow CFD simulation in extraction columns is now in its initial stage. There is much work to do for the developing of this research field. The purpose of this article is to review the CFD simulation methods for two-phase flow in extraction column. The population balance model (PBM) is detailedly described in this article because it is the main method used in the two-phase flow CFD simulation currently. Then some examples for the two-phase flow simulation in extraction columns are briefly introduced. The strategy for the research on CFD simulation of two-phase flow in extraction columns is suggested at last. (authors)

  5. Determination of trace amount of lead in industrial and municipal effluent water samples based on dispersive liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shirkhanloo, H. [Iranian Petroleum Industry Health Research Institute, Occupational and Environmental Health Research Center, Tehran (Iran, Islamic Republic of); Sedighi, K.; Mousavi, H. Z., E-mail: hzmousavi@semnan.ac.ir [Semnan University, College of Science, Department of Chemistry, Semnan (Iran, Islamic Republic of)

    2014-10-01

    In this study, a simple, sensitive and accurate method was developed for the determination of lead ion by combining ionic liquid dispersive liquid-liquid extraction (Il-DLL E) with flame atomic absorption spectrometry. Tetraethyl thiuram disulfide (Tetd), acetone and 1-octyl-3m ethylimidazolium hexafluorophosphate [(C{sub 8}MIM) (PF{sub 6})] were used as the chelating agent, dispersive and extraction solvent, respectively. Under the optimal conditions, the calibration graph was linear in the range of 5-190 μg L{sup -1} of lead and the detection limit was 0.8 μg L{sup -1} with a sample volume of 200 ml. The proposed method was validated by the analysis of one certified reference material and applied successfully to the determination of lead in real water samples. (Author)

  6. Quantitation of tetrabromobisphenol-A from dust sampled on consumer electronics by dispersed liquid-liquid microextraction

    International Nuclear Information System (INIS)

    Tetrabromobisphenol-A (TBBPA) is a brominated flame retardant used worldwide. Despite its widespread use, there are few data concerning environmental concentrations of TBBPA. Thus, the objective of this work was to optimize an ultrasound-assisted dispersed liquid-liquid microextraction (DLLME) method to analyze swabbed surfaces of consumer electronics to determine TBBPA concentrations. Upon sample preparation with DLLME, TBBPA was derivatized with acetic anhydride and then analyzed by gas chromatography–mass spectrometry (GC/MS). Using a 13C12-TBBPA internal standard to improve precision and quantitation, a recovery study was performed. At concentrations of 250–1000 ng/mL, recoveries were 104–106%. Sample preparation with solid phase extraction had comparable recoveries, although overall, improved analyte recovery and precision were achieved with DLLME. In a small survey study, TBBPA concentrations in dust collected from 100 cm2 areas on electronic surfaces (monitor, microwave, refrigerator, and TV) were determined to range from less than the LOQ to 523 ng/mL. -- Highlights: •Tetrabromobisphenol-A (TBBPA) concentrations in dust samples were determined. •Dust samples were collected from surfaces of consumer electronics. •Dispersed liquid-liquid microextraction was used to prepare samples for GC/MS. •A 13C12-labeled internal standard was used to improve precision and quantitation. •TBBPA was found in dust samples at levels below LOQ to 523 ng/mL. -- This work describes the analysis of the brominated flame retardant, tetrabromobisphenol-A (TBBPA), from dust sampled on surfaces of consumer electronics

  7. Optimization of ultrasound assisted dispersive liquid-liquid microextraction of six antidepressants in human plasma using experimental design.

    Science.gov (United States)

    Fernández, P; Taboada, V; Regenjo, M; Morales, L; Alvarez, I; Carro, A M; Lorenzo, R A

    2016-05-30

    A simple Ultrasounds Assisted-Dispersive Liquid Liquid Microextraction (UA-DLLME) method is presented for the simultaneous determination of six second-generation antidepressants in plasma by Ultra Performance Liquid Chromatography with Photodiode Array Detector (UPLC-PDA). The main factors that potentially affect to DLLME were optimized by a screening design followed by a response surface design and desirability functions. The optimal conditions were 2.5mL of acetonitrile as dispersant solvent, 0.2mL of chloroform as extractant solvent, 3min of ultrasounds stirring and extraction pH 9.8.Under optimized conditions, the UPLC-PDA method showed good separation of antidepressants in 2.5min and good linearity in the range of 0.02-4μgmL(-1), with determination coefficients higher than 0.998. The limits of detection were in the range 4-5ngmL(-1). The method precision (n=5) was evaluated showing relative standard deviations (RSD) lower than 8.1% for all compounds. The average recoveries ranged from 92.5% for fluoxetine to 110% for mirtazapine. The applicability of DLLME/UPLC-PDA was successfully tested in twenty nine plasma samples from antidepressant consumers. Real samples were analyzed by the proposed method and the results were successfully submitted to comparison with those obtained by a Liquid Liquid Extraction-Gas Chromatography - Mass Spectrometry (LLE-GC-MS) method. The results confirmed the presence of venlafaxine in most cases (19 cases), followed by sertraline (3 cases) and fluoxetine (3 cases) at concentrations below toxic levels. PMID:26955756

  8. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    International Nuclear Information System (INIS)

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light

  9. Speciation of Chromium in Water Samples with Homogeneous Liquid-Liquid Extraction and Determination by Flame Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    A novel method was developed for the speciation of chromium in natural water samples based on homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry (FAAS). In this method, Cr(III) reacts with a new Schiff's base ligand to form the hydrophobic complex, which is subsequently entrapped in the sediment phase, whereas Cr(VI) remained in aqueous phase. The Cr(VI) assay is based on its reduction to Cr(III) by the addition of sodium sulfite to the sample solution. Thus, separation of Cr(III) and Cr(VI) could be realized. Homogeneous liquid-liquid extraction based on the pH-independent phase-separation process was investigated using a ternary solvent system (water-tetrabutylammonium ion (TBA+)-chloroform) for the preconcentration of chromium. The phase separation phenomenon occurred by an ion-pair formation of TBA and perchlorate ion. Then sedimented phase was separated using a 100 μL micro-syringe and diluted to 1.0 mL with ethanol. The sample was introduced into the flame by conventional aspiration. After the optimization of complexation and extraction conditions such as pH = 9.5, [ligand] = 1.0 x 10-4 M, [TBA+] = 2.0 x 10-2 M, [CHCl3] = 100.0 μL and [ClO4-] = 2.0 x 10-2 M, a preconcentration factor (Va/Vs) of 100 was obtained for only 10 mL of the sample. The relative standard deviation was 2.8% (n = 10). The limit of detection was sufficiently low and lie at ppb level. The proposed method was applied for the extraction and determination of chromium in natural water samples with satisfactory results

  10. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase

    International Nuclear Information System (INIS)

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K+, Cl-, UO22+, Na+, NO3-) whereas others adsorb (amphiphilic molecules and also ClO4-, SCN-, guanidinium Gu+ and picrate Pic-). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H3O+/NO3-). HNO3 and H3O+ display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu+ and Pic- adsorb much less at the supercritical CO2/water interface than at the chloroform/water interface. In the second part, complexes of La3+, Eu3+ and Yb3+ with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  11. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, David T.; Chandler, David, E-mail: chandler@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  12. Determination of 13 endocrine disrupting chemicals in sediments by gas chromatography-mass spectrometry using subcritical water extraction coupled with dispersed liquid-liquid microextraction and derivatization.

    Science.gov (United States)

    Yuan, Ke; Kang, Haining; Yue, Zhenfeng; Yang, Lihua; Lin, Li; Wang, Xiaowei; Luan, Tiangang

    2015-03-25

    In this study, a sample pretreatment method was developed for the determination of 13 endocrine disrupting chemicals (EDCs) in sediment samples based on the combination of subcritical water extraction (SWE) and dispersed liquid-liquid microextraction (DLLME). The subcritical water that provided by accelerated solvent extractor (ASE) was the sample solution (water) for the following DLLME and the soluble organic modifier that spiked in the subcritical water was also used as the disperser solvent for DLLME in succession. Thus, several important parameters that affected both SWE and DLLME were investigated, such as the extraction solvent for DLLME (chlorobenzene), extraction time for DLLME (30s), selection of organic modifier for SWE (acetone), volume of organic modifier (10%) and extraction temperature for SWE (150 °C). In addition, good chromatographic behavior was achieved for GC-MS after derivatisation by using N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA). As a result, proposed method sensitive and reliable with the limits of detection (LODs) ranging from 0.006 ng g(-1) (BPA) to 0.639 ng g(-1) (19-norethisterone) and the relative standard deviations (RSDs) between 1.5% (E2) and 15.0% (DES). Moreover, the proposed method was compared with direct ASE extraction that reported previously, and the results showed that SWE-DLLME was more promising with recoveries ranging from 42.3% (dienestrol) to 131.3% (4,5α-dihydrotestosterone), except for diethylstilbestrol (15.0%) and nonylphenols (29.8%). The proposed method was then successfully applied to determine 13 EDCs sediment of Humen outlet of the Pearl River, 12 of target compounds could be detected, and 10 could be quantitative analysis with the total concentration being 39.6 ng g(-1), and which indicated that the sediment of Humen outlet was heavily contaminated by EDCs. PMID:25732691

  13. Techno-economic analysis for incorporating a liquid-liquid extraction system to remove acetic acid into a proposed commercial scale biorefinery.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Engelberth, Abigail S

    2016-07-01

    Mitigating the effect of fermentation inhibitors in bioethanol plants can have a great positive impact on the economy of this industry. Liquid-liquid extraction (LLE) using ethyl acetate is able to remove fermentation inhibitors-chiefly, acetic acid-from an aqueous solution used to produce bioethanol. The fermentation broth resulting from LLE has higher performance for ethanol yield and its production rate. Previous techno-economic analyses focused on second-generation biofuel production did not address the impact of removing the fermentation inhibitors on the economic performance of the biorefinery. A comprehensive analysis of applying a separation system to mitigate the fermentation inhibition effect and to provide an analysis on the economic impact of removal of acetic acid from corn stover hydrolysate on the overall revenue of the biorefinery is necessary. This study examines the pros and cons associated with implementing LLE column along with the solvent recovery system into a commercial scale bioethanol plant. Using details from the NREL-developed model of corn stover biorefinery, the capital costs associated with the equipment and the operating cost for the use of solvent were estimated and the results were compared with the profit gain due to higher ethanol production. Results indicate that the additional capital will add 1% to the total capital and manufacturing cost will increase by 5.9%. The benefit arises from the higher ethanol production rate and yield as a consequence of inhibitor extraction and results in a $0.35 per gallon reduction in the minimum ethanol selling price (MESP). © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:971-977, 2016. PMID:27390294

  14. (Liquid + liquid) equilibrium of the ternary aqueous system containing poly ethylene glycol dimethyl ether 2000 and tri-potassium citrate at different temperatures

    International Nuclear Information System (INIS)

    Highlights: ► LLE of (poly ethylene glycol dimethyl ether + tri potassium citrate + H2O) was studied. ► The effect of temperature on the binodals and tie-lines were investigated. ► Binodal data were correlated with two empirical equations. ► Tie-lines were fitted to several models including extended NRTL and modified NRTL. ► The entropy is driving force for aqueous two-phase formation. - Abstract: (Liquid + liquid) equilibria (LLE) of the {poly ethylene glycol di-methyl ether 2000 (PEGDME2000) + tri-potassium citrate + H2O} system have been determined experimentally at T = (298.15, 303.15, 308.15, and 318.15) K. The effect of temperature on the binodals and tie-lines for the investigated aqueous two-phase system (ATPS) has also been studied. In this work, the three fitting parameters of the Merchuk equation and an empirical equation that we proposed in our previous work were obtained with the temperature dependence expressed in the linear form with (T − T0) K as a variable. Furthermore, the Othmer–Tobias and Bancroft, a temperature dependent Setschenow-type equation and osmotic virial model, the segment-based local composition models (the extended NRTL and the modified NRTL) were used for the correlation and prediction of the liquid–liquid phase behavior of the system studied. In addition, the effect of the polymers PEGDME2000 and poly ethylene glycol 2000 on the phase forming ability were studied. Also, the free energies of cloud points for this system were calculated from which it was concluded that the increase of the entropy is driving force for formation of studied aqueous two-phase system.

  15. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.

    Science.gov (United States)

    Goraltchouk, Alex; Freier, Thomas; Shoichet, Molly S

    2005-12-01

    Biodegradable nerve guidance channels are advantageous, obviating the need for their removal after regeneration; however, most channels lack the appropriate mechanical properties for soft tissue implantation and/or degrade too quickly, resulting in reduced regeneration and necessitating the need for the design of polymers with tunable degradation profiles and mechanical properties. We designed a series of biodegradable polymeric hydrogel tubes consisting of L-lactide (LLA) and polyethylene glycol (PEG) where both the ratio of LLA to PEG and PEG molar mass were varied. By adjusting the PEG:LLA ratio and the molecular weight of the PEG oligomer we were able to control degradation and mechanical properties of our polymers. By incorporating methacrylate (MA) groups on both termini of the linear oligomers, porous tubes were synthesized by a redox-initiated free radical mechanism during a liquid-liquid centrifugal casting process. The tube wall had a bead-like morphology, as determined by SEM, which was reminiscent of previous porous hydrogel tubes synthesized by the same method. Tubes swelled with degradation to 160 vol%, or 640 wt%, and an increased radius calculated at 1.26 times. Those tubes with greater PEG content and PEG molar mass degraded faster than those with greater LLA content, as was expected. Interestingly, the wall morphology changed with degradation to a fiber-like structure and the mechanical properties decreased with degradation. By correlating the accelerated degradation study to a physiologic one, these porous hydrogel tubes were stable for an equivalent of 1.5 months, after which the mechanical properties began to deteriorate. This study demonstrates how porous hydrogel tubes can be designed to meet tissue regeneration criteria by tuning the formulation chemistry and specifically how the ratio of hydrophobic/crystalline LLA and hydrophilic/amorphous PEG impact tube properties. PMID:16005955

  16. Development and validation of an automated liquid-liquid extraction GC/MS method for the determination of THC, 11-OH-THC, and free THC-carboxylic acid (THC-COOH) from blood serum.

    Science.gov (United States)

    Purschke, Kirsten; Heinl, Sonja; Lerch, Oliver; Erdmann, Freidoon; Veit, Florian

    2016-06-01

    The analysis of Δ(9)-tetrahydrocannabinol (THC) and its metabolites 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) from blood serum is a routine task in forensic toxicology laboratories. For examination of consumption habits, the concentration of the phase I metabolite THC-COOH is used. Recommendations for interpretation of analysis values in medical-psychological assessments (regranting of driver's licenses, Germany) include threshold values for the free, unconjugated THC-COOH. Using a fully automated two-step liquid-liquid extraction, THC, 11-OH-THC, and free, unconjugated THC-COOH were extracted from blood serum, silylated with N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), and analyzed by GC/MS. The automation was carried out by an x-y-z sample robot equipped with modules for shaking, centrifugation, and solvent evaporation. This method was based on a previously developed manual sample preparation method. Validation guidelines of the Society of Toxicological and Forensic Chemistry (GTFCh) were fulfilled for both methods, at which the focus of this article is the automated one. Limits of detection and quantification for THC were 0.3 and 0.6 μg/L, for 11-OH-THC were 0.1 and 0.8 μg/L, and for THC-COOH were 0.3 and 1.1 μg/L, when extracting only 0.5 mL of blood serum. Therefore, the required limit of quantification for THC of 1 μg/L in driving under the influence of cannabis cases in Germany (and other countries) can be reached and the method can be employed in that context. Real and external control samples were analyzed, and a round robin test was passed successfully. To date, the method is employed in the Institute of Legal Medicine in Giessen, Germany, in daily routine. Automation helps in avoiding errors during sample preparation and reduces the workload of the laboratory personnel. Due to its flexibility, the analysis system can be employed for other liquid-liquid extractions as

  17. Vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria calculations for polystyrene plus methyleyclohexane and polystyrene plus cyclohexane solutions

    DEFF Research Database (Denmark)

    Wilczura-Wachnik, H.; Jonsdottir, Svava Osk

    2006-01-01

    This paper presents the vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria predictions for polystyrene in two theta solvents: cyclohexane and methylcyclohexane. VLE calculations were performed with the Elbro free volume method and a modified version of the PC-SAFT method, as well as with...

  18. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    Science.gov (United States)

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. PMID:25676868

  19. A Microfluidic Approach for Screening Submicroliter Volumes against Multiple Reagents by Using Preformed Arrays of Nanoliter Plugs in a Three-Phase Liquid/Liquid/Gas Flow

    OpenAIRE

    Zheng, Bo(School of Science, Guangxi University of Science and Technology, Liuzhou 545006, China); Ismagilov, Rustem F.

    2005-01-01

    Plugging a gap in screening: Arrays of nanoliter-sized plugs of different compositions can be preformed in a three-phase liquid/liquid/gas flow. The arrays can be transported into a microfluidic channel to test against a target (see schematic representation), as demonstrated in protein crystallization and an enzymatic assay.

  20. Changing Hydrogen-Bond Structure during an Aqueous Liquid-Liquid Transition Investigated with Time-Resolved and Two-Dimensional Vibrational Spectroscopy

    NARCIS (Netherlands)

    J.R. Bruijn; T.H. van der Loop; S. Woutersen

    2016-01-01

    We investigate the putative liquid-liquid phase transition in aqueous glycerol solution, using the OD-stretch mode in dilute OD/OH isotopic mixtures to probe the hydrogen-bond structure. The conversion exhibits Avrami kinetics with an exponent of n = 2.9 +/- 0.1 (as opposed to n = 1.7 observed upon

  1. Analysis of Whiskey by Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography/Mass Spectrometry: An Upper Division Analytical Chemistry Experiment Guided by Green Chemistry

    Science.gov (United States)

    Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.

    2016-01-01

    Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…

  2. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2010-08-01

    Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six

  3. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2010-05-01

    Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six

  4. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Science.gov (United States)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-08-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system

  5. Thermodynamic equilibrium model to predict the cobalt distribution coefficient in the CoCl2--HCl--H2O--TBP liquid--liquid extraction system

    International Nuclear Information System (INIS)

    The development of a thermodynamic equilibrium model to predict the cobalt distribution coefficient in the CoCl2-HCl-H2O-TBP system is described. The model makes use of the various aqueous phase cobaltous chloride complexes stoichiometric stability constants expressed as their degree of formation, their mechanism of extraction into the organic phase, and the equilibrium constant for the extraction reaction. The model was verified by the good agreement between the calculated cobalt distribution coefficients and those obtained experimentally both in the present study and published by other investigators. The optimum extraction of cobalt by the TBP occurred at an HCl equilibrium aqueous place concentration between 8.5 and 9.5M. The development of efficient procedures for the separation and concentration of important industrial metals from their aqueous solutions by liquid-liquid extraction has recently been given impetus by the realization of an impending shortage of energy and mineral resources. Liquid-liquid extraction is one of the few methods by which it is possible to quantitatively separate elements which are similar in properties. The use of liquid-liquid extraction to separate cobalt and nickel, which very frequently occur in nature together, is an important separation problem in nonferrous metallurgy. There is some fundamental information available in the chemical literature regarding the mechanism and equilibrium thermodynamic properties of selected liquid-liquid extraction systems. This research effort shows how this available information can be utilized to improve existing separation and concentration theory and technique. The development and application of a thermodynamic equilibrium model for describing the liquid-liquid extraction of cobaltous chloride from aqueous HCl solutions by tributyl phosphate (TBP) using experimental data obtained in this investigation and from the literature are presented

  6. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase; Simulations d'electrolytes a l'interface liquide/liquide et de complexes de cations lanthanides en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Berny, F

    2000-07-01

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K{sup +}, Cl{sup -}, UO{sub 2}{sup 2+}, Na{sup +}, NO{sub 3}{sup -}) whereas others adsorb (amphiphilic molecules and also ClO{sub 4}{sup -}, SCN{sup -}, guanidinium Gu{sup +} and picrate Pic{sup -}). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H{sub 3}O{sup +}/NO{sub 3}{sup -}). HNO{sub 3} and H{sub 3}O{sup +} display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu{sup +} and Pic{sup -} adsorb much less at the supercritical CO{sub 2}/water interface than at the chloroform/water interface. In the second part, complexes of La{sup 3+}, Eu{sup 3+} and Yb{sup 3+} with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  7. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Feriduni, Behruz; Mogaddam, Mohammad Reza Afshar

    2016-01-01

    In this paper, a new extraction method based on counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction and preconcentration of widely used pesticides in fruit juice samples prior to their analysis by gas chromatography-flame ionization detection (GC-FID). In this method, initially, sodium chloride as a separation reagent is filled into a small column and a mixture of water (or fruit juice) and acetonitrile is passed through the column. By passing the mixture sodium chloride is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected organic phase (acetonitrile) is removed with a syringe and mixed with 1,1,2,2-tetrachloroethane (extraction solvent at µL level). In the second step, for further enrichment of the analytes the above mixture is injected into 5 mL de-ionized water placed in a test tube with conical bottom in order to dissolve acetonitrile into water and to achieve a sedimented phase at µL-level volume containing the enriched analytes. Under the optimal extraction conditions (extraction solvent, 1.5 mL acetonitrile; pH, 7; flow rate, 0.5 mL min(-1); preconcentration solvent, 20 µL 1,1,2,2-tetrachloroethane; NaCl concentration; 5%, w/w; and centrifugation rate and time, 5000 rpm and 5 min, respectively), the extraction recoveries and enrichment factors ranged from 87% to 96% and 544 to 600, respectively. Repeatability of the proposed method, expressed as relative standard deviations, ranged from 2% to 6% for intra-day (n=6, C=250 or 500 µg L(-1)) and inter-days (n=4, C=250 or 500 µg L(-1)) precisions. Limits of detection are obtained between 2 and 12 µg L(-1). Finally, the proposed method is applied for the determination of the target pesticide residues in the juice samples. PMID:26695329

  8. A new coupling of spectrophotometric determination with ultrasound-assisted emulsification dispersive liquid-liquid microextraction of trace silver

    Science.gov (United States)

    Wen, Xiaodong; Kong, Lamei; Chen, Meihui; Deng, Qingwen; Zhao, Xia; Guo, Jie

    2012-11-01

    In this work, a new coupling of spectrophotometric determination with preconcentration method named as ultrasound-assisted emulsification dispersive liquid-liquid microextraction (UAE-DLLME) for trace silver was firstly established. Disperser solvent in traditional DLLME was substituted by ultrasound-assisted emulsification, which could afford more effective emulsification and make the extraction method greener. The extraction was accomplished efficiently in only 3 min during ultrasound-assisted emulsification. Compared to traditional DLLME, the established pretreatment was simpler, greener and more effective. The UAE-DLLME technique was effectively coupled with ordinary spectrophotometer to improve the analytical performance and expand the application of spectrophotometric determination. The factors influencing UAE-DLLME, such as concentration of chelating agent, kind and volume of extractant, pH, conditions of phase separation, ultrasound extraction time and instrumental conditions, were studied in detail. Under the optimal conditions, the limit of detection (LOD) for silver was 0.45 μg L-1, with sensitivity enhancement factor (EF) of 35. The established method was applied to the determination of trace silver in real and certified reference samples with satisfactory analytical results.

  9. Response surface methodology for the optimization of dispersive liquid-liquid microextraction of chloropropanols in human plasma.

    Science.gov (United States)

    Gonzalez-Siso, Paula; Lorenzo, Rosa A; Regenjo, María; Fernández, Purificación; Carro, Antonia M

    2015-10-01

    Chloropropanols are processing toxicants with a potential risk to human health due to the increased intake of processed foods. A rapid and efficient method for the determination of three chloropropanols in human plasma was developed using ultrasound-assisted dispersive liquid-liquid microextraction. The method involved derivatization and extraction in one step followed by gas chromatography with tandem mass spectrometry analysis. Parameters affecting extraction, such as sample pH, ionic strength, type and volume of dispersive and extraction solvents were optimized by response surface methodology using a pentagonal design. The linear range of the method was 5-200 ng/mL for 1,3-dichloro-2-propanol, 10-200 ng/mL for 2,3-dichloro-2-propanol and 10-400 ng/mL for 3-chloropropane-1,2-diol with the determination coefficients between 0.9989 and 0.9997. The limits of detection were in the range of 0.3-3.2 ng/mL. The precision varied from 1.9 to 10% relative standard deviation (n = 9). The recovery of the method was between 91 and 101%. Advantages such as low consumption of organic solvents and short time of analysis make the method suitable for the biomonitoring of chloropropanols. PMID:26205350

  10. Quantitation of tetrabromobisphenol-A from dust sampled on consumer electronics by dispersed liquid-liquid microextraction.

    Science.gov (United States)

    Di Napoli-Davis, Gina; Owens, Janel E

    2013-09-01

    Tetrabromobisphenol-A (TBBPA) is a brominated flame retardant used worldwide. Despite its widespread use, there are few data concerning environmental concentrations of TBBPA. Thus, the objective of this work was to optimize an ultrasound-assisted dispersed liquid-liquid microextraction (DLLME) method to analyze swabbed surfaces of consumer electronics to determine TBBPA concentrations. Upon sample preparation with DLLME, TBBPA was derivatized with acetic anhydride and then analyzed by gas chromatography-mass spectrometry (GC/MS). Using a (13)C12-TBBPA internal standard to improve precision and quantitation, a recovery study was performed. At concentrations of 250-1000 ng/mL, recoveries were 104-106%. Sample preparation with solid phase extraction had comparable recoveries, although overall, improved analyte recovery and precision were achieved with DLLME. In a small survey study, TBBPA concentrations in dust collected from 100 cm(2) areas on electronic surfaces (monitor, microwave, refrigerator, and TV) were determined to range from less than the LOQ to 523 ng/mL. PMID:23792388

  11. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingxiang, E-mail: zhouqx@cup.edu.cn [School of Chemistry and Environmental Sciences, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007 (China); State Laboratory of Petroleum Resource and Prospecting, College of Geosciences, China University of Petroleum Beijing, Beijing 102249 (China); Zhao, Na [State Laboratory of Petroleum Resource and Prospecting, College of Geosciences, China University of Petroleum Beijing, Beijing 102249 (China); Xie, Guohong [College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003 (China)

    2011-05-15

    This paper established a new, rapid and sensitive method for the determination of lead in water samples preconcentrated by dispersive liquid-liquid microextraction (DLLME) prior to atomic fluorescence spectrometry. Dithizone was used as the chelating agent. In the DLLME procedure, lead formed lead-dithizone complex and migrated into the carbon tetrachloride micro-droplets. Important factors that would affect the extraction efficiency had been investigated including the kind and volume of extraction solvent and dispersive solvent, sample pH, the amount of chelating agent, extraction time and centrifugation time. The results showed that the coexisting ions containing in water samples had no obvious negative effect on the determination of lead. The experimental results indicated that the proposed method had a good linear range of 0.01-100 ng mL{sup -1} (r{sup 2} = 0.9990). The precision was 2.12% (RSD, n = 7) and the detection limit was 0.95 ng L{sup -1}. Proposed method was validated with four real environmental samples and the results indicated that the proposed method was excellent for the future use and satisfied spiked recoveries were in the range of 92.9-97.4%.

  12. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry.

    Science.gov (United States)

    Zhou, Qingxiang; Zhao, Na; Xie, Guohong

    2011-05-15

    This paper established a new, rapid and sensitive method for the determination of lead in water samples preconcentrated by dispersive liquid-liquid microextraction (DLLME) prior to atomic fluorescence spectrometry. Dithizone was used as the chelating agent. In the DLLME procedure, lead formed lead-dithizone complex and migrated into the carbon tetrachloride micro-droplets. Important factors that would affect the extraction efficiency had been investigated including the kind and volume of extraction solvent and dispersive solvent, sample pH, the amount of chelating agent, extraction time and centrifugation time. The results showed that the coexisting ions containing in water samples had no obvious negative effect on the determination of lead. The experimental results indicated that the proposed method had a good linear range of 0.01-100 ng mL(-1) (r(2) = 0.9990). The precision was 2.12% (RSD, n = 7) and the detection limit was 0.95 ng L(-1). Proposed method was validated with four real environmental samples and the results indicated that the proposed method was excellent for the future use and satisfied spiked recoveries were in the range of 92.9-97.4%. PMID:21398026

  13. In-syringe-stirring: a novel approach for magnetic stirring-assisted dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Horstkotte, Burkhard; Suárez, Ruth; Solich, Petr; Cerdà, Víctor

    2013-07-25

    For the first time, the use of a magnetic stirrer within the syringe of an automated syringe pump and the resulting possible analytical applications are described. A simple instrumentation following roughly the one from sequential injection analyzer systems is used in combination with an adaptor, which is placed onto the barrel of a glass syringe. Swirling around the longitudinal axis of the syringe and holding two strong neodymium magnets, it causes a rotating magnetic field and serves as driver for a magnetic stirring bar placed inside of the syringe. In a first study it was shown that this approach leads to a sealed but also automatically adaptable reaction vessel, the syringe, in which rapid and homogeneous mixing of sample with the required reagents within short time can be carried out. In a second study in-a-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (MSA-DLLME) was demonstrated by the application of the analyzer system to fluorimetric determination of aluminum in seawater samples using lumogallion. A linear working range up to 1.1 μmol L(-1) and a limit of detection of 6.1 nmol L(-1) were found. An average recovery of 106.0% was achieved for coastal seawaters with a reproducibility of 4.4%. The procedure lasted 210 s including syringe cleaning and only 150 μL of hexanol and 4.1 mL of sample were required. PMID:23845481

  14. Low cost methodology for estrogens monitoring in water samples using dispersive liquid-liquid microextraction and HPLC with fluorescence detection.

    Science.gov (United States)

    Lima, Diana L D; Silva, Carla Patrícia; Otero, Marta; Esteves, Valdemar I

    2013-10-15

    A new low cost methodology for estrogens' analysis in water samples was developed in this work. Based on dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection, the developed method is fast, cheap, easy-to-use, uses low volumes of organic solvents and has the possibility of a large number of samples to be extracted in parallel. Under optimum conditions (sample volume: 8 mL; extraction solvent: 200 μL of chlorobenzene; dispersive solvent: 2000 μL of acetone), the enrichment factor and extraction recoveries were 145 and 72% for 17β-estradiol (E2) and 178 and 89% for 17α-ethinylestradiol (EE2), respectively. Limits of detection of 2.0 ng L(-1) for E2 and 6.5 ng L(-1) for EE2 were achieved, allowing the detection and quantification of these compounds in surface and waste water samples with concentrations from 12 to 32 ng L(-1) for E2 and from 11 to 18 ng L(-1) for EE2. Also, recovery tests were performed to evaluate possible matrix effects. Recoveries between 98% and 106% were obtained using humic acids (HA) to simulate the effect of organic matter, and between 86% and 120% in real water samples. PMID:24054691

  15. Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes

    Science.gov (United States)

    Zhao, Weifeng; Tang, Yusheng; Xi, Jia; Kong, Jie

    2015-01-01

    Graphene sheets were covalently functionalized with poly(1-vinylimidazole) (PVI) type poly(ionic liquid), by utilizing a diazonium addition reaction and the subsequent grafting of PVI polymers onto the graphene sheet surface by a quaternarization reaction. The resultant modified graphene sheets showed improved dispersion property when being dissolved in DMF and ethanol. FTIR, XPS, XRD and TEM observations confirmed the success of the covalent functionalization, and thermogravimetric analysis revealed that the grafting ratio of PVI was ∼12 wt%. The obtained PVI-functionalized graphene showed a high capability for removing anionic dyes such as methyl blue (MB) from water solution. The experimental data of isotherm fitted well with the Langmuir adsorption model. The adsorption capacity of 1910 mg g-1 for methyl blue (MB) dye was observed for functionalized graphene sheets with poly(ionic liquid)s, which was higher than that of unmodified graphene. The high adsorption capacity observed in this study emphasizes that poly(ionic liquid)s-modified graphene materials have a great potential for water purification as they are highly efficient and stable adsorbents for sustainability.

  16. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Teslima Daşbaşı

    2016-01-01

    Full Text Available A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4- complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040–1.00 mg L−1 with detection limit of 4.0 μg L−1 (n=13. The precision as relative standard deviation was 3% (n=11, 0.20 mg L−1 and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water.

  17. Rapid removal of nitrobenzene in a three-phase ozone loaded system with gas-liquid-liquid

    Science.gov (United States)

    Li, Shiyin; Zhu, Jiangpeng; Wang, Guoxiang; Ni, Lixiao; Zhang, Yong; Green, Christopher T.

    2015-01-01

    This study explores the removal rate of nitrobenzene (NB) using a new gas-liquid-liquid (G-L-L) three-phase ozone loaded system consisting of a gaseous ozone, an aqueous solvent phase, and a fluorinated solvent phase (perfluorodecalin, or FDC). The removal rate of NB was quantified in relation to six factors including 1) initial pH, 2) initial NB dosage, 3) gaseous ozone dosage, 4) free radical scavenger, 5) FDC pre-aerated gaseous ozone, and 6) reuse of FDC. The NB removal rate is positively affected by the first three factors. Compared with the conventional gas-liquid (water) (G-L) two-phase ozonation system, the free radical scavenger (tertiary butyl alcohol) has much less influence on the removal rate of NB in the G-L-L system. The FDC loaded ozone acts as an ozone reservoir and serves as the main reactive phase in the G-L-L three-phase system. The reuse of FDC has little influence on the removal rate of NB. These experimental results suggest that the oxidation efficiency of ozonation in the G-L-L three-phase system is better than that in the conventional G-L two-phase system.

  18. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry.

    Science.gov (United States)

    Daşbaşı, Teslima; Kartal, Şenol; Saçmacı, Şerife; Ülgen, Ahmet

    2016-01-01

    A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4 (-) complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040-1.00 mg L(-1) with detection limit of 4.0 μg L(-1) (n = 13). The precision as relative standard deviation was 3% (n = 11, 0.20 mg L(-1)) and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water). PMID:26881186

  19. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior silylation and gas chromatography.

    Science.gov (United States)

    González, Alba; Avivar, Jessica; Cerdà, Víctor

    2015-09-25

    A new procedure for the extraction, preconcentration and simultaneous determination of the estrogens most used in contraception pharmaceuticals (estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol), cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA), is proposed. The developed system performs an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (in-syringe-MSA-DLLME) prior derivatization and gas chromatography (GC-MS). Different extraction (carbon tetrachloride, ethyl acetate, chloroform and trichloroethylene) and disperser solvents (acetone, acetonitrile and methanol) were tested. Chloroform and acetone were chosen as extraction and disperser solvent, respectively, as they provided the best extraction efficiency. Then, a multivariate optimization of the extraction conditions was carried out. Derivatization conditions were also studied to ensure the conversion of the estrogens to their respective trimethylsilyl derivatives. Low LODs and LOQs were achieved, i.e. between 11 and 82ngL(-1), and 37 and 272ngL(-1), respectively. Good values for intra and inter-day precision were obtained (RSDs≤7.06% and RSD≤7.11%, respectively). The method was successfully applied to wastewater samples. PMID:26319623

  20. Determination of calcium stearate in polyolefin samples by gas chromatographic technique after performing dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Ranji, Ali; Ghorbani Ravandi, Mahboobeh; Farajzadeh, Mir Ali

    2008-05-01

    In this study, a gas chromatographic method is presented for the determination of calcium stearate after its conversion to stearic acid in a polymeric matrix. A solution of hydrochloric acid in 2-propanol is used as an extracting solvent of calcium stearate and its converter to stearic acid. For stearic acid preconcentration before its injection to a separation system, a recently presented extraction method, dispersive liquid-liquid microextraction, using carbon tetrachloride as an extracting solvent is used. Finally, 1 microL of the organic phase collected at the bottom of a conical test tube after centrifuging is injected into a gas chromatograph (GC) for quantification. This method has a relatively broad linear dynamic range (50 - 2000 mg/L) with a limit of detection (LOD) of 15 mg/L for stearic acid in solution. The LOD of the proposed method in a polymeric sample using 10 mg of polymer is 60 ppm as calcium stearate. Some effective parameters, such as the time and temperature of heating, the concentration of hydrochloric acid and the volume of distilled water, were studied. PMID:18469468

  1. Vortex-assisted liquid-liquid microextraction of bisphenol S prior to its determination by HPLC with UV detection

    International Nuclear Information System (INIS)

    Vortex-assisted liquid-liquid microextraction (VALLME) for the rapid extraction of trace bisphenol S (BPS) in environmental water is presented. In order to simplify the procedure, an in-house fabricated glass dropper with different internal diameters of the two ends is exploited. The solidification-melt step was cut in VALLME by means of the in-house fabricated glass dropper. After extraction with 2-ethylhexanol, BPS was detected by high performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Factors such as type and volume of extraction solvent, extraction time, sample pH and ionic strength were evaluated. Under optimized conditions, the linearity range varied from 0.10 to 50 μg L−1 with a squared regression coefficient r2 of 0.9995. The relative standard deviation (RSD) is 2.3 % (n = 7). The limit of detection (LOD) and limit of quantification (LOQ) are 0.02 and 0.06 μg L−1, respectively. The presented method was employed for the determination of BPS in real water samples. The relative recoveries are 81.8–87.3 % for the two real water samples. The method is shown to be economical, fast and can be routinely performed. (author)

  2. Surfactant-enhanced liquid-liquid microextraction coupled to micro-solid phase extraction onto highly hydrophobic magnetic nanoparticles

    International Nuclear Information System (INIS)

    We are presenting a simplified alternative method for dispersive liquid-liquid microextraction (DLLME) by resorting to the use of surfactants as emulsifiers and micro solid-phase extraction (μ-SPE). In this combined procedure, DLLME of hydrophobic components is initially accomplished in a mixed micellar/microemulsion extractant phase that is prepared by rapidly mixing a non-ionic surfactant and 1-octanol in aqueous medium. Then, and in contrast to classic DLLME, the extractant phase is collected by highly hydrophobic polysiloxane-coated core-shell Fe2O3(at)C magnetic nanoparticles. Hence, the sample components are the target analyte in the DLLME which, in turn, becomes the target analyte of the μ-SPE step. This 2-step approach represents a new and simple DLLME procedure that lacks tedious steps such as centrifugation, thawing, or delicate collection of the extractant phase. As a result, the analytical process is accelerated and the volume of the collected phase does not depend on the volume of the extraction solvent. The method was applied to extract cadmium in the form of its pyrrolidine dithiocarbamate chelate from spiked water samples prior to its determination by FAAS. Detection limits were brought down to the low μg L−1 levels by preconcentrating 10 mL samples with satisfactory recoveries (96.0–108.0 %). (author)

  3. Determination of fluoroquinolones in chicken feces - a new liquid-liquid extraction method combined with LC-MS/MS.

    Science.gov (United States)

    Janusch, Franziska; Scherz, Gesine; Mohring, Siegrun A I; Hamscher, Gerd

    2014-11-01

    The application of antibiotics including fluoroquinolones to farming animals is widespread and may lead to the development of antibiotic resistance and other environmental effects. To calculate environmental loads and for a proper risk assessment it is necessary to determine the antibiotic concentration in feces. Therefore, a new liquid-liquid extraction method combined with HPLC-MS/MS for the detection of marbofloxacin, ciprofloxacin, enrofloxacin and difloxacin in chicken feces was developed. Recoveries ranged from 51.0% to 83.5%. LOQs were between 0.10 and 1.09μg/kg. Feces of chickens treated with an enrofloxacin dosage of 10mg/kg bodyweight revealed maximum enrofloxacin and ciprofloxacin concentrations of 61.3 and 18.8mg/kg. Both antibiotics could be detected in feces up to two days after the last application in notable amounts (∼1mg/kg). Thus, feces of recently medicated chickens should not be used as a fertilizer without any further processing. PMID:25305740

  4. Dispersive liquid-liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters.

    Science.gov (United States)

    Herrera-Herrera, Antonio V; Hernández-Borges, Javier; Borges-Miquel, Teresa M; Rodríguez-Delgado, Miguel Á

    2010-10-01

    Dispersive liquid-liquid microextraction (DLLME) was combined for the first time with NACE-UV for the selective determination of eight fluoroquinolone antibiotics (lomefloxacin, levofloxacin, marbofloxacin, ciprofloxacin, sarafloxacin, enrofloxacin, danofloxacin and difloxacin) in mineral and run-off waters. Field-enhanced sample injection was carried out in order to improve the sensitivity, whereas pipemidic acid was used as internal standard. The BGE that provided complete separation of the eight analytes and the internal standard was composed of 3 M acetic acid, 49 mM ammonium acetate in 55:45 v/v methanol:ACN. Optimum DLLME conditions (extraction of 5 mL of water at pH 7.6 with 685 μL of CHCl(3) and 1250 μL of ACN, extractant and disperser solvents, respectively) were achieved by means of experimental design methodology. Calibration curves of the whole method were obtained with correlation coefficients (R) higher than 0.994 in all cases. An accuracy and precision study was carried out at different levels of concentration, finding that there were no significant differences (Student's t-test) between real and spiked concentrations. PMID:20859952

  5. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    Science.gov (United States)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  6. Preparation of high purification and food grade phosphoric acid from technical grade phosphoric acid by liquid-liquid detraction method

    International Nuclear Information System (INIS)

    Pay attention to increasing consumption of high purification and food grade phosphoric acid in various industries and food industries and on in on hand and lack of preparation between production and distribution of this products its purification is so vital. In this article of liquid-liquid extraction method with normal hexane-mixture of ammonia and acetone-diisopropyl alcohol and normal butanol solvents and these determination of distribution coefficient each one with ph-me try titration we can evaluate effectiveness and sufficiency each one. Because of proper coefficient distribution and its local production of normal butanol solvent and low price is the best solvent. To phosphoric acid modifying coefficient distribution for extraction of phosphoric acid we can add a little value sulfuric acid to the mixture and to remove flouride impurity we add a little Na2O. After extraction stage extracted phosphoric acid in the normal strips by evaluating with distilled water and then by passing the carbon active bed and following passes of cationic resine column and concentrated with vacuum distillation. Conclusion of this article is produce of phosphoric acid 85% w/w and food grade from impure phosphoric acid 52% w/w with technical grade

  7. Dispersive liquid-liquid microextraction of phenolic compounds using solidified floating organic droplets, and their determination by HPLC

    International Nuclear Information System (INIS)

    We have developed a simple and efficient method for dispersive liquid-liquid microextraction of 4-nitrophenol, 2-naphthol and bisphenol A in real water samples. It is making use of solidified floating organic droplets of 1-dodecanol which has low density and a proper melting point. The type and volume of extraction solvent and dispersive solvent, the effect of salts, pH value and extraction time were optimized and resulted in enrichment factors of 84 for 4-nitrophenol, 123 for 2-naphthol, and 97 for bisphenol A. The limits of detection by HPLC are 1.50, 0.10 and 1.02 ng · mL-1, respectively. Excellent linearity is observed in the concentration range from 10 to 800 ng · mL-1, with coefficients of correlation ranging from 0.9988 to 0.9999. The relative standard deviations (for n = 5) are from 3.2 to 5.3 %, and relative recoveries for the three phenols in tap, river and spring water range from 85.0 to 105.0 %, 98.3 to 110.0 %, and 98.6 to 109.0 %, respectively. (author)

  8. (Vapour + liquid + liquid) equilibria and excess molar enthalpies of binary and ternary mixtures of isopropanol, water, and propylene

    International Nuclear Information System (INIS)

    A static VLE apparatus has been used for the measurement of the (vapour + liquid + liquid) equilibrium of the (propylene + isopropanol + water) system at T = 313.15 K and pressures between (1.381 and 1.690) MPa. Using an isothermal flow calorimeter, HE values have been obtained for the binary system (isopropanol + water) over the temperature range from (313.15 to 353.15) K and pressures from (3.8 to 4.19) MPa. For the pseudo-binary mixture (propylene + (isopropanol + water)), HE values have been measured in the temperature range from (313.15 to 353.15) K and pressures from (1.997 to 5.89) MPa. This last mixture was studied starting from (isopropanol + water) at 0.25, 0.50, and 0.75 molar compositions in isopropanol. The new data, together with the available phase equilibrium and HE data from the literature, have been regressed by a conventional GE-EoS model reaching satisfactory results, except for the VLLE representation

  9. Supramolecular-based dispersive liquid-liquid microextraction: a novel sample preparation technique utilizes coacervates and reverse micelles.

    Science.gov (United States)

    Jafarvand, Sanaz; Shemirani, Farzaneh

    2011-02-01

    The present study reports a novel sample enrichment method termed supramolecular-based dispersive liquid-liquid microextraction (SM-DLLME). The SM solvent selected was made up of reversed micelles of decanoic acid dispersed in tetrahydrofuran (THF)-water. THF plays double role, not only acts as a disperser solvent but also causes self-assembly of decanoic acid. The contaminant used as a model was Malachite Green (MG). It was a cationic dye and was preconcentrated without any derivatization or ion-pair formation reaction. In SM-DLLME, the most important advantages of DLLME technique and preconcentration strategy based on the coacervation and reverse micelles have come together. Moreover, in this method, disadvantages of DLLME such as extraction capability of only hydrophobic analytes and hiring toxic and hazardous organic solvents as the extraction solvent and disadvantages of coacervation-based extraction method such as tedious, labor-intensive and time-consuming stirring procedure have been avoided. Several variables affecting the microextraction efficiency were investigated and optimized. Under the optimized conditions and preconcentration of only 5.00 mL of sample, the enhancement factor was 52, limit of detection (LOD) was 4 μg/L and relative standard deviations (RSDs) for 145 and 36 μg/L of MG in textile industry wastewater were 1.8 and 3.2%, respectively (n = 6). PMID:21254398

  10. Detection of sulfonamide drug in urine using liquid-liquid extraction and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Markina, Natalia E.; Shalabay, Victoria V.; Zakharevich, Andrey M.; Markin, Alexey V.

    2016-04-01

    In this article we have applied liquid-liquid extraction (LLE) as a sample preparation technique for detection of sulfadimethoxine (one of sulfonamide drugs) in urine using surface-enhanced Raman spectroscopy (SERS). SERS substrate based on silver nanoparticles has been prepared by citrate reduction of silver nitrate. Obtained calibration curve (SERS intensity vs. sulfadimethoxine concentration) has been used for detection of sulfadimethoxine in human urine samples artificially contaminated by sulfadimethoxine. Three different solvents (ethyl acetate, diethyl ether, chloroform) have been used for LLE performance tests. Chloroform being found as the most effective one based on calculation of recoveries after SERS measurements. Thus we would like to propose fast (less than 20 minutes), simple and sensitive (detection limit up to 1 μg/ml) test for detecting sulfa drugs in urine using a combination of SERS with LLE with sample volume as low as 100 μL. Such test can be applied for evaluation of the degree of drug extraction from human body and half-life of such drug applied in the course of therapeutic treatments of certain diseases.

  11. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    International Nuclear Information System (INIS)

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {MW = (1000, 6000, and 35,000) g . mol-1} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed

  12. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2009-02-15

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {l_brace}M{sub W} = (1000, 6000, and 35,000) g . mol{sup -1}{r_brace} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed.

  13. Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water

    International Nuclear Information System (INIS)

    Using a 23 experimental design, liquid-liquid extraction with low temperature partitioning (LLE-LTP) was optimized and validated for analysis of three carbamates (aldicarb, carbofuran and carbaryl) in water samples. In this method, 2.0 mL of sample is placed in contact with 4.0 mL of acetonitrile. After agitation, the sample is placed in a freezer for 3 h for phase separation. The organic extract is analyzed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). For validation of the technique, the following figures of merit were evaluated: accuracy, precision, detection and quantification limits, linearity, sensibility and selectivity. Extraction recovery percentages of the carbamates aldicarb, carbofuran and carbaryl were 90%, 95% and 96%, respectively. Even though extremely low volumes of sample and solvent were used, the extraction method was selective and the detection and quantification limits were between 5.0 and 10.0 μg L-1, and 17.0 and 33.0 μg L-1, respectively.

  14. Liquid-Liquid Equilibrium for 1-Butanol-Water-KF and 1-Butanol-Water-K2CO3 Systems

    Institute of Scientific and Technical Information of China (English)

    XU Wen-you; JI Min

    2005-01-01

    KF or K2CO3 was added into the 1-butanol-water system and two phases were formed: water-rich phase (water phase) and 1-butanol-rich phase (1-butanol phase). The liquid-liquid equilibrium (LLE) data for 1-butanol-water-KF and 1-butanol-water-K2 CO3 systems were measured at 25 C and showed that 1-butanol phase contained negligible salt and water phase contained negligible 1-butanol when the concentrations of KF and K2CO3 in the water phase were equal to or higher than 27. 11% and 31. 68%, respectively. Thus water could be separated efficiently from 1-butanol-water by adding KF or K2CO3 into the system. A theoretical calculation of LLE data was calculated by using the Pitzer theory to get water activity in the water phase, and by the models, such as the Wilson, NRTL or the UNIQUAC for the 1-butanol phase.For 1-butanol-water-KF system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and Wilson equation, while for 1-butanol-water-K2CO3 system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and UNIQUAC equation.

  15. A novel procedure for phase separation in dispersive liquid-liquid microextraction based on solidification of the aqueous phase.

    Science.gov (United States)

    March, J G; Cerdà, V

    2016-08-15

    In this paper, an alternative for handling the organic phase after a dispersive liquid-liquid microextraction using organic solvents lighter than water is presented. It is based on solidification (at -18°C) of the aqueous phase obtained after centrifugation, and the decantation, collection and analysis of the liquid organic layer. The extraction of nicotine in toluene, and its determination in eggplant samples was conducted as a proof of concept. The study has been carried out using standards prepared in water and the formation of the dispersion was assisted by sonication. The organic extract was analysed using gas chromatography coupled to mass spectrometry. Satisfactory analytical figures of merit as: limit of detection (0.4µgL(-1), 2ngg(-1) wet sample), limit of quantification (1.2µgL(-1), 6.5ngg(-1) wet sample), within-day precision (RSD=7%), and linearity interval (up to 384µgL(-1) nicotine) were achieved. It constituted a contribution to the handling of organic extracts after microextraction processes. PMID:27260454

  16. Research On The Purification Of Zirconium From Zirconium Dioxide By Liquid-Liquid Extraction Method With Tributyl Phosphate Solvent

    International Nuclear Information System (INIS)

    The study of hafnium separation from zirconium and purification of zirconium by liquid-liquid solvent extraction method bases on the selective extraction, capacity and high stability of tributyl phosphate solvent (TBP). Technical grade ZrO2 powder, imported product (about 2% Hf content), is mixed with NaOH by 1:6 mole ratio, baked at 700oC in 2 hours. The mixture of zirconate and hafnate Na2Zr(Hf)O3 was dissolved in water, acidified by HNO3 to transfer to Zr(Hf)O(NO3)2. The obtained solution is used for the hafnium separation and purification of zirconium investigation. The influence of acid concentration (HNO3) in initial solution (feed solution) on the efficiency of zirconium extraction, the effect of the extraction solvent concentration (TBP) to zirconium distribution ratio and the effect of concentrations of mixture of components (Zr and Hf) in initial solution on zirconium extraction performance and also effect of the ratio between organic and aqueous phase to zirconium distribution coefficient were carried out in this paper. Established optimum conditions of the interruptive solvent extraction in experimental scale including metal contents in initial solution CHf/Zr is 30 g/L; TBP concentration in kerosene is 60% by volume; the acid (HNO3) concentration in initial solution [H+] = 6 M; and organic : aqueous phases rate equal by 1:1. Conditions of the extracted scrubbing and extracted tripping also the continuous extraction process were studied as a first step. (author)

  17. An automatic countercurrent liquid-liquid micro-extraction system coupled with atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Mitani, Constantina; Anthemidis, Aristidis N

    2015-02-01

    A novel and versatile automatic sequential injection countercurrent liquid-liquid microextraction (SI-CC-LLME) system coupled with atomic absorption spectrometry (FAAS) is presented for metal determination. The extraction procedure was based on the countercurrent flow of aqueous and organic phases which takes place into a newly designed lab made microextraction chamber. A noteworthy feature of the extraction chamber is that it can be utilized for organic solvents heavier or lighter than water. The proposed method was successfully demonstrated for on-line lead determination and applied in environmental water samples using an amount of 120 μL of chloroform as extractant and ammonium diethyldithiophosphate as chelating reagent. The effect of the major experimental parameters including the volume of extractant, as well as the flow rate of aqueous and organic phases were studied and optimized. Under the optimum conditions for 6 mL sample consumption an enhancement factor of 130 was obtained. The detection limit was 1.5 μg L(-1) and the precision of the method, expressed as relative standard deviation (RSD) was 2.7% at 40.0 μg L(-1) Pb(II) concentration level. The proposed method was evaluated by analyzing certified reference materials and spiked environmental water samples. PMID:25435230

  18. High Cr white cast iron/carbon steel bimetal liner by lost foam casting with liquid-liquid composite process

    Directory of Open Access Journals (Sweden)

    Xiao Xiaofeng

    2012-05-01

    Full Text Available Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness > 61 HRC, fracture toughness αk >16.5 J·cm-2 and bending strength >1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.

  19. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Jafari, Mohammad T; Riahi, Farhad

    2014-05-23

    The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS. PMID:24742534

  20. An Electrochemical Sensing Platform Based on Liquid-Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes.

    Science.gov (United States)

    Alvarez de Eulate, Eva; Strutwolf, Jörg; Liu, Yang; O'Donnell, Kane; Arrigan, Damien W M

    2016-03-01

    Arrays of microscale interfaces between two immiscible electrolyte solutions (μITIES) were formed using glass membranes perforated with microscale pores by laser ablation. Square arrays of 100 micropores in 130 μm thick borosilicate glass coverslips were functionalized with trichloro(1H,1H,2H,2H-perfluorooctyl)silane on one side, to render the surface hydrophobic and support the formation of aqueous-organic liquid-liquid microinterfaces. The pores show a conical shape, with larger radii at the laser entry side (26.5 μm) than at the laser exit side (11.5 μm). The modified surfaces were characterized by contact angle measurements and X-ray photoelectron spectroscopy. The organic phase was placed on the hydrophobic side of the membrane, enabling the array of μITIES to be located at either the wider or narrower pore mouth. The electrochemical behavior of the μITIES arrays were investigated by tetrapropylammonium ion transfer across water-1,6-dichlorohexane interfaces together with finite element computational simulations. The data suggest that the smallest microinterfaces (formed on the laser exit side) were located at the mouth of the pore in hemispherical geometry, while the larger microinterfaces (formed on the laser entry side) were flatter in shape but exhibited more instability due to the significant roughness of the glass around the pore mouths. The glass membrane-supported μITIES arrays presented here provide a new platform for chemical and biochemical sensing systems. PMID:26853853

  1. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    Science.gov (United States)

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity. PMID:27364630

  2. Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages.

    Science.gov (United States)

    Frizzarin, Rejane M; Maya, Fernando; Estela, José M; Cerdà, Víctor

    2016-12-01

    A novel fully-automated magnetic stirring-assisted lab-in-syringe analytical procedure has been developed for the fast and efficient dispersive liquid-liquid microextraction (DLLME) of caffeine in coffee beverages. The procedure is based on the microextraction of caffeine with a minute amount of dichloromethane, isolating caffeine from the sample matrix with no further sample pretreatment. Selection of the relevant extraction parameters such as the dispersive solvent, proportion of aqueous/organic phase, pH and flow rates have been carefully evaluated. Caffeine quantification was linear from 2 to 75mgL(-1), with detection and quantification limits of 0.46mgL(-1) and 1.54mgL(-1), respectively. A coefficient of variation (n=8; 5mgL(-1)) of a 2.1% and a sampling rate of 16h(-1), were obtained. The procedure was satisfactorily applied to the determination of caffeine in brewed, instant and decaf coffee samples, being the results for the sample analysis validated using high-performance liquid chromatography. PMID:27374593

  3. Trace level determination of molybdenum in environmental and biological samples using surfactant-mediated liquid-liquid extraction

    International Nuclear Information System (INIS)

    A novel and sensitive spectrophotometric method for the determination of molybdenum at trace levels in environmental and biological samples is proposed. The method is based on the reaction of Mo (V) with thiocyanate (SCN-) and methyltrioctyl ammonium chloride (MTOAC) in acidic medium. The red colored complex of molybdenum is extracted with N-phenylbenzimidoyl thiourea (PBITU) in 1-pentanol for its determination by spectrophotometry. The sensitivity of the present method is higher than other conventional thiocyanate method, due to the use of MTOAC in liquid-liquid extraction. The value of molar absorptivity of the complex with respect to molybdenum is 7.6 x 104 L mol-1 cm-1 at 470 nm. The limit of detection of the metal is 5 ng mL-1. The system obeys Beer's law between 20 and 1000 ng mL-1 with slope, intercept and correlation coefficient values of 0.81, 2.5 x 10-3 and +0.999, respectively. Most of the metal ions tested did not interfere in the determination of molybdenum. The proposed method has been successfully applied for the determination of the molybdenum in environmental and biological samples

  4. Trace level determination of molybdenum in environmental and biological samples using surfactant-mediated liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shrivas, Kamlesh [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)], E-mail: shrikam@rediffmail.com; Agrawal, Kavita [Department of Chemistry, Raipur Institute of Technology, Mandir Hasaud, Chhatauna Raipur, CG 492101 (India); Harmukh, Neetu [Chhattisgarh State Minor Forest Produce, Co-operative Federation Ltd., Raipur, CG (India)

    2009-01-15

    A novel and sensitive spectrophotometric method for the determination of molybdenum at trace levels in environmental and biological samples is proposed. The method is based on the reaction of Mo (V) with thiocyanate (SCN{sup -}) and methyltrioctyl ammonium chloride (MTOAC) in acidic medium. The red colored complex of molybdenum is extracted with N-phenylbenzimidoyl thiourea (PBITU) in 1-pentanol for its determination by spectrophotometry. The sensitivity of the present method is higher than other conventional thiocyanate method, due to the use of MTOAC in liquid-liquid extraction. The value of molar absorptivity of the complex with respect to molybdenum is 7.6 x 10{sup 4} L mol{sup -1} cm{sup -1} at 470 nm. The limit of detection of the metal is 5 ng mL{sup -1}. The system obeys Beer's law between 20 and 1000 ng mL{sup -1} with slope, intercept and correlation coefficient values of 0.81, 2.5 x 10{sup -3} and +0.999, respectively. Most of the metal ions tested did not interfere in the determination of molybdenum. The proposed method has been successfully applied for the determination of the molybdenum in environmental and biological samples.

  5. Ionic liquid matrix-based dispersive liquid-liquid microextraction for enhanced MALDI-MS analysis of phospholipids in soybean.

    Science.gov (United States)

    Shrivas, Kamlesh; Tapadia, Kavita

    2015-09-15

    Ionic liquid matrix (ILM) is found to be a very versatile substance for analysis of broad range of organic molecules in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) due to good solubility for a variety of analytes, formation of homogenous crystals and high vacuum stability of the matrix. In the present work, an ILM, cyno-4-hydroxycinnamic acid-butylamine (CHCAB) was employed in dispersive liquid-liquid microextraction (DLLME) as sample probe and matrix for extraction and ionization of phospholipids from food samples (soybean) prior to MALDI-MS analysis. With the employed technique, 8-125 fold improvement in signal intensity and limit of detection were achieved for the analysis of phospholipids. The best extraction efficiency of phospholipids in ILM-DLLME was obtained with 5min extraction time in presence 30mg/mL CHCAB and 1.2% NaCl using chloroform as an extracting solvent and methanol as a dispersing solvent. Further, the developed ILM-DLLME procedure has been successfully applied for the analysis of phospholipids in soybean samples in MALDI-MS. PMID:26276066

  6. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    International Nuclear Information System (INIS)

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model

  7. Tar removal from biosyngas in the biomass gasification process. (Liquid + liquid) equilibrium {water + solvent (paraxylene and methyl hexadecanoate) + model molecules of tar (benzene, toluene, phenol)}

    International Nuclear Information System (INIS)

    Highlights: ► (Liquid + liquid) equilibria at atmospheric pressure. ► Solubility of benzene (or toluene or phenol) in paraxylene at (303 to 343) K. ► Solubility of benzene (or toluene or phenol) in methyl palmitate or methyl hexadecanoate at (303 to 343) K. ► Correlation of LLE using NRTL model. - Abstract: Tar is generated in the process by the condensation of the gas resulting from biomass gasification. The objective of this work is a contribution to the database on thermodynamic quantity which will be useful at the operation of tar removal from aqueous medium. With this aim, (liquid + liquid) equilibrium of {water + solvent (paraxylene and methyl hexadecanoate) + model molecules of tar (benzene, toluene, phenol)} was studied at temperatures (303.2, 323.2, and 343.2) K. The data obtained were correlated with the non-random two-liquid (NRTL) model.

  8. Complex Formation in a Liquid-Liquid Extraction System Containing Co(II), 4-(2-Thiazolylazo)resorcinol and Monotetrazolium Salt.

    Science.gov (United States)

    Divarova, Vidka; Stojnova, Kirila; Racheva, Petya; Lekova, Vanya

    2016-01-01

    The ion-associated complex formed between anionic chelate of Co(II)-4-(2-Thiazolylazo)resorcinol (TAR) with the monotetrazolium cation of 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT) in the liquid-liquid extraction system Co(II)-TAR-INT-H(2)O-CHCl(3) was studied by the spectrophotometric method. The optimum extraction conditions of Co(II) were found. The extraction equilibria were studied. The equilibrium constants, the recovery factor and some analytical characteristics were calculated. The validity of Beer's law was checked. The molar ratio of the components in the ternary ion-associated complex Co(II)-TAR-INT was determined. The general formula of the complex was suggested. The effect of various foreign ions and reagents on the process of complex formation in the liquid-liquid extraction system was studied. PMID:26970793

  9. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG...... correlations are obtained for the binary systems using temperature-independent interaction parameters, while adequate predictions are achieved for multicomponent water + glycol + aromatic hydrocarbons systems when accounting for the solvation between the aromatic hydrocarbons and glycols or water....... + water + benzene, MEG + water + toluene, and TEG + water + toluene. The binary systems are correlated with the Cubic-Plus-Association (CPA) equation of state while the ternary systems are predicted from interaction parameters obtained from the binary systems. Very satisfactory liquid-liquid equilibrium...

  10. (Liquid + liquid) equilibrium of (water + 2-propanol + 1-butanol + salt) systems at T = 313.15 K and T = 353.15 K: Experimental data and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Milton A.P. [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, 13081-970 Campinas-SP (Brazil); Aznar, Martin [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, 13081-970 Campinas-SP (Brazil)]. E-mail: maznar@feq.unicamp.br

    2006-06-15

    (Liquid + liquid) equilibrium data for the quaternary systems (water + 2-propanol + 1-butanol + potassium bromide) and (water + 2-propanol + 1-butanol + magnesium chloride) were measured at T = 313.15 K and T = 353.15 K. The overall salt concentrations were 5 and 10 mass percent. Ternary (liquid + liquid) equilibrium data for the salt-free system (water + 2-propanol + 1-butanol) were also determined and found to be in good agreement with data from the literature. The NRTL model for the activity coefficient was used to correlate the data. New interaction parameters were estimated, using the Simplex minimization method and a concentration-based objective function. The results are very satisfactory, with root mean square deviations between experimental and calculated compositions of both phases being less than 0.5%.

  11. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  12. Measurement and Correlation of Liquid-Liquid Equilibrium Data for Ethanol-Water-KF and Ethanol-Water-K2CO3 Systems

    Institute of Scientific and Technical Information of China (English)

    许文友; 袁希纲

    2002-01-01

    The liquid-liquid equilibrium data for two ternary systems, ethanol-water-KF and ethanol- water-K2CO3, were determined at 25oC. Experiments show that by adding KF or K2CO3 into the ethanol-water system two phases are formed: an ethanol-rich phase with negligible salt and a water-rich phase with negligible ethanol, thus water can be separated out easily. A mathematical calculation of the liquid-liquid equilibrium data was carried out with the Pitzer theory on water activity in the aqueous phase, and with the Wilson or NRTL or UNIQUAC equations for that in the ethanol phase, which is in good agreement with experimental data.

  13. Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model

    Directory of Open Access Journals (Sweden)

    Pessôa Filho P. A.

    2004-01-01

    Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.

  14. Determination of some B Vitamins in Sour Cherry Juice Using Dispersive Liquid-liquid Microextraction Followed by High-performance Liquid Chromatography

    OpenAIRE

    Parsaei, Parvin; Bahmaei, Manouchehr; Ghannadi, Alireza

    2014-01-01

    Dispersive liquid-liquid microextraction method (DLLME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine thiamine (B1), nicotinamide (B3) and pyridoxine (B6) in sour cherry juice. This method was rapid, simple and sensitive. Separation was accomplished using a C18 column. The optimum chromatographic conditions were found to be: mobile phase consisted of 8% methanol and 92% aqueous phase (1% (V/V) acetic acid water solution); flow rate,...

  15. Determination of cyclic and linear siloxanes in wastewater samples by ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry

    OpenAIRE

    Cortada Cortés, Carolina; Costa dos Reis, Luciana; Vidal Martínez, Lorena; Llorca, Julio; Canals Hernández, Antonio

    2013-01-01

    A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was la...

  16. A phase separation method for analyses of fluoroquinones in meats based on ultrasound-assisted salt-induced liquid-liquid microextraction and a new integrated device

    OpenAIRE

    Wang, H; Gao, M.; Xu, Y; W. Wang; Zheng, L; Dahlgren, RA; Wang, X.

    2015-01-01

    © 2015 Elsevier Ltd. Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted, salt-induced, liquid-liquid microextraction for determination of five fluoroquinones in meats by HPLC analysis. The novel integrated device consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surfa...

  17. Integration of phase separation with ultrasound-assisted salt-induced liquid-liquid microextraction for analyzing the fluoroquinones in human body fluids by liquid chromatography

    OpenAIRE

    Wang, H; Gao, M.; Wang, M.; Zhang, R.; W. Wang; Dahlgren, RA; Wang, X.

    2015-01-01

    © 2015 Elsevier B.V. Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on centr...

  18. On-line quantitative monitoring of liquid-liquid extraction of Lonicera japonica and Artemisia annua using near-infrared spectroscopy and chemometrics

    Directory of Open Access Journals (Sweden)

    Sha Wu

    2015-01-01

    Full Text Available Background: Liquid liquid extraction of Lonicera japonica and Artemisia annua (JQ plays a significant role in manufacturing Reduning injection. Many process parameters may influence liquid liquid extraction and cause fluctuations in product quality. Objective: To develop a near infrared (NIR spectroscopy method for on line monitoring of liquid liquid extraction of JQ. Materials and Methods: Eleven batches of JQ extraction solution were obtained, ten for building quantitative models and one for assessing the predictive accuracy of established models. Neochlorogenic acid (NCA, chlorogenic acid (CA, cryptochlorogenic acid (CCA, isochlorogenic acid B (ICAB, isochlorogenic acid A (ICAA, isochlorogenic acid C (ICAC and soluble solid content (SSC were selected as quality control indicators, and measured by reference methods. NIR spectra were collected in transmittance mode. After selecting the spectral sub ranges, optimizing the spectral pretreatment and neglecting outliers, partial least squares regression models were built to predict the content of indicators. The model performance was evaluated by the coefficients of determination (R2, the root mean square errors of prediction (RMSEP and the relative standard error of prediction (RSEP. Results: For NCA, CA, CCA, ICAB, ICAA, ICAC and SSC, R2 was 0.9674, 0.9704, 0.9641, 0.9514, 0.9436, 0.9640, 0.9809, RMSEP was 0.0280, 0.2913, 0.0710, 0.0590, 0.0815, 0.1506, 1.167, and RSEP was 2.32%, 4.14%, 3.86%, 5.65%, 7.29%, 6.95% and 4.18%, respectively. Conclusion: This study demonstrated that NIR spectroscopy could provide good predictive ability in monitoring of the content of quality control indicators in liquid liquid extraction of JQ.

  19. In situ derivatization-liquid liquid extraction as a sample preparation strategy for the determination of urinary biomarker prolyl-4-hydroxyproline by liquid chromatography-tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Cimlová, Jana; Kružberská, Pavla; Švagera, Z.; Hušek, Petr; Šimek, Petr

    2012-01-01

    Roč. 47, č. 3 (2012), s. 294-302. ISSN 1076-5174 R&D Projects: GA ČR GA203/09/2014; GA MZd NS9755; GA MŠk 7F09028 Institutional research plan: CEZ:AV0Z50070508 Keywords : alkyl chloroformate derivatization * liquid liquid extraction * urine Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.214, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/jms.2952/full

  20. Liquid-liquid extraction of ion-association complexes of cobalt(II)-4-(2-pyridylazo)resorcinol with ditetrazolium salts

    OpenAIRE

    Divarova Vidka V.; Stojnova Kirila T.; Racheva Petya V.; Lekova Vanya D.; Dimitrov Atanas N.

    2015-01-01

    The formation and liquid-liquid extraction of ion-association complexes between Co(II)-4-(2-Pyridylazo)resorcinol (PAR) anionic chelates and cations of three ditetrazolium chlorides were studied: Blue Tetrazolium chloride (BTC), Neotetrazolium chloride (NTC) and Nitro Blue Tetrazolium chloride (NBT). The optimum conditions for the formation and solvent extraction of the ion-association comlpex chelates were determined. It has been found that in the systems ...

  1. Recovery of aromatic aglycones from grape pomace winemaking by-products by using liquid-liquid and pressurized-liquid extraction

    OpenAIRE

    Muñoz-González, Carolina; Rodríguez-Bencomo, Juan José; Martín-Álvarez, Pedro J.; Moreno-Arribas, M. Victoria; Pozo-Bayón, Mª Ángeles

    2014-01-01

    The potential of winemaking grape pomace by-products as a source of glycosidic aroma precursors that under enzymatic hydrolysis might release aroma compounds has been evaluated. Two different extraction methodologies, liquid-liquid and pressurized liquid extraction (LLE and PLE) were employed. Solid phase extraction (SPE)-GC-MS analysis of the hydrolyzed LLE glycosidic extract revealed 22 aroma compounds belonging to different chemical families (terpenes, C13 norisoprenoids, vanillines, etc.)...

  2. Thermodynamic Description of Liquid-Liquid Equilibria in Systems 1-Ethyl-3-methylimidazolium Ethylsulfate + C7-Hydrocarbons by Polymer-Solution Models

    Czech Academy of Sciences Publication Activity Database

    Bendová, Magdalena; Wagner, Zdeněk

    2009-01-01

    Roč. 284, č. 2 (2009), s. 80-85. ISSN 0378-3812 R&D Projects: GA ČR GA104/07/0444; GA ČR GP104/06/P066; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : liquid-liquid equilibrium * ionic liquids * thermodynamic model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.857, year: 2009

  3. Determination of Gemfibrozil (Lipitor and Lopid) in Water, Biological Fluids and Drug Matrix by Dispersive Liquid-Liquid micro Extraction (DLLME) and Liquid Chromatography

    OpenAIRE

    Ghorbani A.; Dayani M.

    2014-01-01

    In this study Dispersive liquid-liquid micro extraction (DLLME) coupled with High performance liquid chromatography was applied for the determination of Gemfibrozil in water, drug`s matrix and biological liquids (human plasma and urine). In this method, the appropriate mixture of extraction solvent (200 μl chlorophorm) and disperser solvent (1 ml methanol) are injected rapidly into the aqueous sample (10.0 ml) by syringe, cloudy solution is formed that consisted of fine particles of extractio...

  4. Tall Soap Liquid-Liquid Extraction - Study of the Different Parameters during the Process and Their Influence to the Extract Composition

    Czech Academy of Sciences Publication Activity Database

    Heyberger, Aleš; Tříska, Jan; Rousková, Milena; Růžičková, Kamila; Volaufová, Eva; Krtička, M.

    Praha : Process Engineering Publisher, 2008, S.378. ISBN 978-80-02-02049-3. [18th International Congress of Chemical and Process Engineering CHISA 2008. Praha (CZ), 24.08.2008-28.08.2008] R&D Projects: GA AV ČR 1QS400720504 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z60870520 Keywords : tall soap/oil * liquid-liquid extraction * phytosterols Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  5. Local viscosity of binary water+glycerol mixtures at liquid/liquid interfaces probed by time-resolved surface second harmonic generation

    OpenAIRE

    Fita, Piotr; Punzi, Angela; Vauthey, Eric

    2009-01-01

    The excited-state relaxation of malachite green and brilliant green in solvents of various viscosity has been investigated at liquid/liquid interfaces and in bulk solutions by surface second harmonic generation and transient absorption spectroscopy. Mixtures of water and glycerol in various proportions have been used as solvents of variable viscosity. Transient absorption measurements in bulk revealed that both dyes are suitable as a probe of local viscosity for water+glycerol mixtures and th...

  6. RAPID AND SENSITIVE DETERMINATION OF PALLADIUM USING HOMOGENEOUS LIQUID-LIQUID MICROEXTRACTION VIA FLOTATION ASSISTANCE FOLLOWED BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

    OpenAIRE

    Mohammad Rezaee; Reyhaneh Shadaniyan; Majid Haji Hosseini; Faezeh Khalilian

    2015-01-01

    A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) followed by graphite furnace atomic absorption spectrometry (GFAAS). Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No...

  7. Screening and quantitative determination of twelve acidic and neutral pharmaceuticals in whole blood by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Steentoft, Anni; Buck, Maike;

    2010-01-01

    . The method was fully validated for salicylic acid, paracetamol, phenobarbital, carisoprodol, meprobamate, topiramate, etodolac, chlorzoxazone, furosemide, ibuprofen, warfarin, and salicylamide. The method also tentatively includes thiopental, theophylline, piroxicam, naproxen, diclophenac, and modafinil......We describe a multi-method for simultaneous identification and quantification of 12 acidic and neutral compounds in whole blood. The method involves a simple liquid-liquid extraction, and the identification and quantification are performed using liquid chromatography-tandem mass spectrometry...

  8. Self-healing gold mirrors and filters at liquid-liquid interfaces

    Science.gov (United States)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.

    2016-03-01

    The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing

  9. Comparison of air-agitated liquid-liquid microextraction and ultrasound-assisted emulsification microextraction for polycyclic aromatic hydrocarbons determination in hookah water.

    Science.gov (United States)

    Rajabi, Maryam; Bazregar, Mohammad; Daneshfar, Ali; Asghari, Alireza

    2015-07-01

    In this work, two disperser-free microextraction methods, namely, air-agitated liquid-liquid microextraction and ultrasound-assisted emulsification microextraction are compared for the determination of a number of polycyclic aromatic hydrocarbons in aqueous samples, followed by gas chromatography with flame ionization detection. The effects of various experimental parameters upon the extraction efficiencies of both methods are investigated. Under the optimal conditions, the enrichment factors and limits of detection were found to be in the ranges of 327-773 and 0.015-0.05 ng/mL for air-agitated liquid-liquid microextraction and 406-670 and 0.015-0.05 ng/mL for ultrasound-assisted emulsification microextraction, respectively. The linear dynamic ranges and extraction recoveries were obtained to be in the range of 0.05-120 ng/mL (R(2) ≥ 0.995) and 33-77% for air-agitated liquid-liquid microextraction and 0.05-110 ng/mL (R(2) ≥ 0.994) and 41-67% for ultrasound-assisted emulsification microextraction, respectively. To investigate this common view among some people that smoking hookah is healthy due to the passage of smoke through the hookah water, samples of both the hookah water and hookah smoke were analyzed. PMID:25989415

  10. Studies on the liquid-liquid extraction and precipitate flotation of the second kind of Co(II) using 8-hydroxy quinoline

    International Nuclear Information System (INIS)

    The liquid-liquid extraction and precipitate flotation of the second kind (i.e., without the use of surfactant collectors) have been investigated for Co(II) using 8-hydroxy quinoline (Hq) and the results are compared. Organic solvents used were chloroform in the case of liquid-liquid extraction and ethanol (used as solvent for the collector and as a frothier) in the case of flotation. From the results it appears that liquid-liquid extraction occurs through the formation of the adduct Coq2(Hq) but flotation takes place trough the formation of the precipitate Coq2. Unlike precipitate flotation of the first kind, precipitate flotation of the second kind has the advantage that the recovery is not affected by the ionic strength of the medium. An induction time of about 5 minutes is required to attain the maximum flotation results. The effects of pH and Hq concentration on both of the extraction processes were also investigated and the results are discussed. (author). 45 refs., 8 figs

  11. Directly light scattering imaging of the aggregations of biopolymer bound chromium(III) hydrolytic oligomers in aqueous phase and liquid/liquid interface

    International Nuclear Information System (INIS)

    Investigations of inorganic oligomers are important in both chemistry and physiology. In this contribution, we propose a laser induced light scattering imaging (LSI) and a total internal reflected light scattering imaging (TIR-LSI) technique, and apply them to characterize the interactions of inorganic oligomers with biopolymer in aqueous phase and at liquid/liquid interface, respectively. In aqueous medium, synthetic chromium(III) hydrolytic oligomers (CrHO) react with DNA, and the resultant binary could be extracted into the H2O/CCl4 interface in the presence of triocyctyl phosphine oxide (TOPO), forming a DNA-CrHO-TOPO ternary amphipathic complex at the interface with the associate constant of 1.32 x 103 mol-1 dm4 for a given 1.0 x 10-4 mol l-1 TOPO. Under the excitation of a 441-nm He-Cd laser light beam, the resultant light scattering and total internal reflected light scattering (TIR-LS) signals of the formed binary in aqueous phase and ternary at liquid/liquid interface could be easily captured using a common microscope coupled with a CCD camera. By digitally analyzing the CCD captures, we demonstrate that aggregations of the CrHO-DNA binary in aqueous phase and DNA-CrHO-TOPO ternary at liquid/liquid interface have occurred, respectively

  12. Rapid analysis of aflatoxins B1, B2, and ochratoxin A in rice samples using dispersive liquid-liquid microextraction combined with HPLC.

    Science.gov (United States)

    Lai, Xian-Wen; Sun, Dai-Li; Ruan, Chun-Qiang; Zhang, He; Liu, Cheng-Lan

    2014-01-01

    A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid-liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid-liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid-liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06-0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9-112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China. PMID:24243826

  13. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid-liquid phase separation.

    Science.gov (United States)

    Wang, Ying; Latypov, Ramil F; Lomakin, Aleksey; Meyer, Julie A; Kerwin, Bruce A; Vunnum, Suresh; Benedek, George B

    2014-05-01

    Colloidal stability of antibody solutions, i.e., the propensity of the folded protein to precipitate, is an important consideration in formulation development of therapeutic monoclonal antibodies. In a protein solution, different pathways including crystallization, colloidal aggregation, and liquid-liquid phase separation (LLPS) can lead to the formation of precipitates. The kinetics of crystallization and aggregation are often slow and vary from protein to protein. Due to the diverse mechanisms of these protein condensation processes, it is a challenge to develop a standardized test for an early evaluation of the colloidal stability of antibody solutions. LLPS would normally occur in antibody solutions at sufficiently low temperature, provided that it is not preempted by freezing of the solution. Poly(ethylene glycol) (PEG) can be used to induce LLPS at temperatures above the freezing point. Here, we propose a colloidal stability test based on inducing LLPS in antibody solutions and measuring the antibody concentration of the dilute phase. We demonstrate experimentally that such a PEG-induced LLPS test can be used to compare colloidal stability of different antibodies in different solution conditions and can be readily applied to high-throughput screening. We have derived an equation for the effects of PEG concentration and molecular weight on the results of the LLPS test. Finally, this equation defines a binding energy in the condensed phase, which can be determined in the PEG-induced LLPS test. This binding energy is a measure of attractive interactions between antibody molecules and can be used for quantitative characterization of the colloidal stability of antibody solutions. PMID:24679215

  14. Laser induced-thermal lens spectrometry in combination with dispersive liquid-liquid microextraction for trace analysis.

    Science.gov (United States)

    Shokoufi, Nader; Hamdamali, Amir

    2010-11-29

    A new combination method including laser induced-thermal lens spectrometry (LI-TLS) and dispersive liquid-liquid micro extraction (DLLME) was developed and used for determination and preconcentration of trace amount of lead in liquid samples. Thermal lens spectrometry is suitable for determination of analyte after DLLME because of the low volume of the remained phase after DLLME and increasing of the enhancement factor for the non polar organic solvents. Non polar organic solvents have the ideal conditions for this combination because of low thermal conductivity and large variation in refractive index with temperature. In this method; ethanol, carbon tetrachloride and 1,5-diphenyl thiocarbazone (dithizone), were used as disperser solvent, extraction solvent and chelating agent, respectively. Some effective parameters on the micro extraction, complex formation and combination were selected and optimized. Under optimum conditions, the calibration graphs were linear in the range of 0.1-75 μg L(-1) with the detection limit of 0.01 μg L(-1). The relative standard deviation (RSD) for 5 and 50 μg L(-1) of lead was 3.2 and 2.5, respectively. The enhancement factor of 1000 was obtained from a sample volume of 10.0 mL and determination volume of 25 μL. DLLME/LI-TLS method was applied to the analysis of human blood serums and real water samples. Accuracy of the method was proved by using of standard reference materials. Also, the proposed method was compared with other trace analysis methods. PMID:21035603

  15. Speciation analysis of mercury in water samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography.

    Science.gov (United States)

    Gao, Zhongben; Ma, Xiaoguo

    2011-09-19

    A novel approach for preconcentration and speciation analysis of trace amount of mercury from water samples was proposed by dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography with diode array detection (HPLC-DAD). Mercury species (Hg(2+), methylmercury (MeHg(+)) and phenylmercury (PhHg(+))) were complexed with dithizone (DZ) to form hydrophobic chelates and then extracted into the fine drops of extraction solvent dispersed in the aqueous sample by dispersive solvent. After extraction, the sedimented phase was analyzed by HPLC-DAD. Some important parameters affecting the DLLME such as extraction solvent and dispersive solvent type and volume, concentration of dithizone solution, sample pH, extraction time and salt effect were investigated. Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF(6)]) was found to be a suitable extractant for the chelates. Under the optimized conditions (extraction solvent: 70 μL of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF(6)]); dispersive solvent: 0.75 mL of methanol containing dithizone (0.02%, m/v); pH: 4; extraction time: 5 min; and without salt addition), the limits of detection for Hg(2+), MeHg(+) and PhHg(+) were 0.32, 0.96 and 1.91 μg L(-1) (SN(-1)=3) respectively, and the relative standard deviation (RSD) was between 4.1 and 7.3% (n=5). Three real water samples (tap water, river water and lake water) spiked with mercury species were detected by the developed method, and the relative recoveries obtained for Hg(2+), MeHg(+) and PhHg(+) were 89.6-101.3%, 85.6-102.0% and 81.3-97.6%, respectively. PMID:21819859

  16. Liquid-liquid extraction of uranium from nitric acid solution using di-n-butylsulfoxide in petroleum ether as extractant

    International Nuclear Information System (INIS)

    A simple, efficient and economical liquid-liquid extraction method has been developed for quantitative extraction of uranium from 2 M HNO3 using di-n-butyl sulfoxide in petroleum ether. The dependence of the partition reaction of U(VI) on the concentration of HNO3, extractant and temperature was studied. The reaction was found to be inversely dependent upon the temperature and the values for related thermodynamics functions (ΔH, ΔS, ΔG) for extraction equilibrium were determined to be -33.6 kJ/mol, -1.29 kJ/mol/degree and -0.11 kJ/mol/degree, respectively. The effect of Al(NO3)3 as salting-out agent and diverse ions on the extraction was examined. The salting-out agent slightly enhanced the extraction. All cations studied have showed negligible effect on the extraction, whereas phosphate and fluoride interfered seriously. Among others, oxalate, citrate and sulphide ions affect the extraction to a lesser extent. Uranium was successfully extracted from a synthetic mixture of Ti+4, Zr+4, Hf+4 and Th+4 using EDTA as masking agent. Among strippants, deionized water was found most suitable, and the recovery of uranium was noted to be ≥ 96%. The stoichiometric composition of the extracted species was found to be UO2(NO3)2 . 2DBSO. The extraction mechanism is discussed on the basis of the results obtained. The extractant has high loading as well as recycling capacity without any degradation. The method was also applied to the Standard Reference Material (NBL-49) and the measured value was found to be in agreement with the reported value within ±2% deviation. (orig.)

  17. Liquid-liquid extraction of molybdenum and its ultra-trace determination by graphite furnace atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    A highly sensitive and reliable method for the determination of molybdenum at nanogram level in rocks, ores, minerals, soils and hydrogeochemical samples has been developed by liquid-liquid extraction of the metal into a suitable organic solvent, followed by its measurement by Graphite Furnace Atomic Absorption Spectrophotometer. Molybdenum in the sample (∼200 mesh) was opened by NH4HF2 and H2SO4 dissolution. At pH 4-6, major matrix elements like Fe, Ti, Nb, Cu, Th, REEs etc are removed by the solvent extraction of the complexes of these elements with the, O-O' type of ligand, 2,3 dihydroxynaphthalene (2,3 H2ND) leaving Mo (VI) in aqueous solution. Subsequently, Mo (VI) was reduced with hydroxylamine hydrochloride to Mo (V) which was allowed to form a 1:2 complex with the cited ligand, 2,3 H2ND at pH 2-4. At this very pH, the Mo (V)-2,3 H2ND neutral complex was readily extracted in ethyl or butyl acetate. Then Mo (V) was stripped off into aqueous solution (minimum volume). This solution was fed into the graphite furnace through an auto sampler. The concentration of the analyte in the sample was found out/read from the calibration curve prepared against known standards. The method was validated by applying it on a host of rock samples including Geological Reference Materials and water samples. Molybdenum can be estimated up to 1 μg per gram rock sample with a precision of 2.0% and 2 ppb in water samples with a precision of ±5%. (author)

  18. Rapid and sensitive analysis of microcystins using ionic liquid-based in situ dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Yu, Honglian; Clark, Kevin D; Anderson, Jared L

    2015-08-01

    Three structurally different ionic liquids (ILs), namely 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), 1-(6-hydroxyethyl)-3-methylimidazolium chloride ([HeOHMIM][Cl]) and 1-benzyl-3-(2-hydroxyethyl)imidazolium bromide ([BeEOHIM][Br]), were applied as extraction solvents using in situ dispersive liquid-liquid microextraction (in situ DLLME) for the preconcentration of two microcystin variants, microcystin-RR (MC-RR) and microcystin-LR (MC-LR) from aqueous samples. Extraction parameters including sample solution pH, ratio of IL to metathesis reagent, sample volume, IL quantity, and salt concentration were optimized to achieve the best extraction efficiency. The [BeEOHIM][Br] IL, which contains both an aromatic moiety and a hydroxyl group within its chemical structure, exhibited superior extraction efficiency compared to the other two ILs. The analytical performance of the [BeEOHIM][Br] IL as an extraction solvent for in situ DLLME of microcystins was investigated using HPLC-UV and HPLC-MS. The limits of detection (LODs) for MC-RR and MC-LR were 0.7μgL(-1) using UV detection with a linear range from 1 to 50μgL(-1). The separation method was successfully adapted for ESI-MS/SIM detection, wherein the LODs for MC-RR and MC-LR were greatly improved to 0.005 and 0.003μgL(-1), respectively. The accuracy of the method was demonstrated by examining the relative recovery using tap water and river water and produced recoveries ranging from 45.0 to 109.7% and from 46.3 to 103.2%, respectively. PMID:26087964

  19. Automated on-line liquid-liquid extraction system for temporal mass spectrometric analysis of dynamic samples.

    Science.gov (United States)

    Hsieh, Kai-Ta; Liu, Pei-Han; Urban, Pawel L

    2015-09-24

    Most real samples cannot directly be infused to mass spectrometers because they could contaminate delicate parts of ion source and guides, or cause ion suppression. Conventional sample preparation procedures limit temporal resolution of analysis. We have developed an automated liquid-liquid extraction system that enables unsupervised repetitive treatment of dynamic samples and instantaneous analysis by mass spectrometry (MS). It incorporates inexpensive open-source microcontroller boards (Arduino and Netduino) to guide the extraction and analysis process. Duration of every extraction cycle is 17 min. The system enables monitoring of dynamic processes over many hours. The extracts are automatically transferred to the ion source incorporating a Venturi pump. Operation of the device has been characterized (repeatability, RSD = 15%, n = 20; concentration range for ibuprofen, 0.053-2.000 mM; LOD for ibuprofen, ∼0.005 mM; including extraction and detection). To exemplify its usefulness in real-world applications, we implemented this device in chemical profiling of pharmaceutical formulation dissolution process. Temporal dissolution profiles of commercial ibuprofen and acetaminophen tablets were recorded during 10 h. The extraction-MS datasets were fitted with exponential functions to characterize the rates of release of the main and auxiliary ingredients (e.g. ibuprofen, k = 0.43 ± 0.01 h(-1)). The electronic control unit of this system interacts with the operator via touch screen, internet, voice, and short text messages sent to the mobile phone, which is helpful when launching long-term (e.g. overnight) measurements. Due to these interactive features, the platform brings the concept of the Internet-of-Things (IoT) to the chemistry laboratory environment. PMID:26423626

  20. Comparison of liquid-liquid extraction and solid phase extraction for manganese in water analysed by neutron activation analysis

    International Nuclear Information System (INIS)

    Full text: The concentrations of total manganese in most natural water systems are in the range of 0.001 to 1.0 mgl-1. The maximum contaminant level (MCL) of manganese in drinking water as recommended by US Environmental Protection Agency (EPA) is 0.05 mg/l. Analytical methods capable of measuring the low level of manganese are necessary for evaluating the quality of natural water. Neutron activation analysis (NAA) is one of the most sensitive techniques for the determination of trace elements. However, direct application of neutron activation for analysis of trace elements in a complex system such as natural waters is generally difficult because of matrix interference. Preconcentration and/or matrix separation procedures are often required before irradiation to eliminate such interferences. In this study two methods based on solid phase extraction (SPE) and liquid-liquid extraction (LLE) has been developed for the extraction of manganese in water prior to irradiation. Experimental parameters such as effect of pH, type and volume of the chelating agent and flow rate were studied and optimized. Analytical parameters such as linearity, precision, accuracy, detection and quantitation limits, and matrix effects for SPE and LLE methods were evaluated for comparison purposes with the aim of selecting the most appropriate depending on the high recoveries and lower detection capabilities required. Both methods can be applied to real samples and give the same results, but SPE allows the high recovery of 99.8 % of manganese with lower detection limit of 0.001 μgl-1 as compared to LLE (90.5 % of manganese recovery with lower detection limit of 0.73 μgl-1). Furthermore, the SPE is easily used compared with LLE and not time consuming which allows analysis of a large number of samples. (author)

  1. Determination of suvorexant in human plasma using 96-well liquid-liquid extraction and HPLC with tandem mass spectrometric detection.

    Science.gov (United States)

    Breidinger, S A; Simpson, R C; Mangin, E; Woolf, E J

    2015-10-01

    A method, using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), was developed for the determination of suvorexant (MK-4305, Belsomra(®)), a selective dual orexin receptor antagonist for the treatment insomnia, in human plasma over the concentration range of 1-1000ng/mL. Stable isotope labeled (13)C(2)H3-suvorexant was used as an internal standard. The sample preparation procedure utilized liquid-liquid extraction, in the 96-well format, of a 100μL plasma sample with methyl t-butyl ether. The compounds were chromatographed under isocratic conditions on a Waters dC18 (50×2.1mm, 3μm) column with a mobile phase consisting of 30/70 (v/v %) 10mM ammonium formate, pH3/acetonitrile at a flow rate of 0.3mL/min. Multiple reaction monitoring of the precursor-to-product ion pairs for suvorexant (m/z 451→186) and (13)C(2)H3-suvorexant (m/z 455→190) on an Applied Biosystems API 4000 tandem mass spectrometer was used for quantitation. Intraday assay precision, assessed in six different lots of control plasma, was within 10% CV at all concentrations, while assay accuracy ranged from 95.6 to 105.0% of nominal. Quality control (QC) samples in plasma were stored at -20°C. Initial within day analysis of QCs after one freeze-thaw cycle showed accuracy within 9.5% of nominal with precision (CV) of 6.7% or less. The plasma QC samples were demonstrated to be stable for up to 25 months at -20°C. The method described has been used to support clinical studies during Phase I through III of clinical development. PMID:26343269

  2. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages.

    Science.gov (United States)

    Wang, Xiaojun; Wu, Long; Cao, Jiaqi; Hong, Xincheng; Ye, Rui; Chen, Weiji; Yuan, Ting

    2016-07-01

    A novel, simple and rapid method based on magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction (MEA-IL-DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) determination was established for the speciation of selenium in various food and beverage samples. In the procedure, a special magnetic effervescent tablet containing CO2 sources (sodium carbonate and sodium dihydrogenphosphate), ionic liquids and Fe3O4 magnetic nanoparticles (MNPs) was used to combine extractant dispersion and magnetic recovery procedures into a single step. The parameters influencing the microextraction efficiency, such as pH of the sample solution, volume of ionic liquid, amount of MNPs, concentration of the chelating agent, salt effect and matrix effect were investigated and optimised. Under the optimised conditions, the limits of detection (LODs) for Se(IV) were 0.021 μg l(-)(1) and the linear dynamic range was 0.05-5.0 μg l(-)(1). The relative standard deviation for seven replicate measurements of 1.0 μg l(-)(1) of Se(IV) was 2.9%. The accuracy of the developed method was evaluated by analysis of the standard reference materials (GBW10016 tea, GBW10017 milk powder, GBW10043 Liaoning rice, GBW10046 Henan wheat, GBW10048 celery). The proposed method was successfully applied to food and beverage samples including black tea, milk powder, mushroom, soybean, bamboo shoots, energy drink, bottled water, carbonated drink and mineral water for the speciation of Se(IV) and Se(VI) with satisfactory relative recoveries (92.0-108.1%). PMID:27181611

  3. Exploitation of pulsed flows for on-line dispersive liquid-liquid microextraction: Spectrophotometric determination of formaldehyde in milk.

    Science.gov (United States)

    Nascimento, Carina F; Brasil, Marcos A S; Costa, Susana P F; Pinto, Paula C A G; Saraiva, Maria Lúcia M F S; Rocha, Fábio R P

    2015-11-01

    Formaldehyde is often added to foods as a preservative, but it is highly toxic to humans, having been identified as a carcinogenic substance. It has also been used for the adulteration of milk in order to diminish the bacteria count and increase the shelf life of the product. Herein, we present a green dispersive liquid-liquid microextraction procedure in a flow-batch system for the determination of formaldehyde in milk. Pulsed flows were exploited for the first time to improve the dispersion of the extractant in the aqueous phase. The Hantzsch reaction was used for the derivatization of formaldehyde and the product was extracted with the ionic liquid (IL) trihexyltetradecylphosphonium chloride with methanol as the disperser. The flow-batch chamber was made of stainless steel with the facility for resistive heating to speed up the derivatization reaction. Spectrophotometric measurements were directly carried out in the organic phase using an optical fiber spectrophotometer. The limit of detection and coefficient of variation were 100 μg L(-1) and 3.1% (n=10), respectively, with a linear response from 0.5 to 5.0 mg L(-1), described by the equation A=0.088+0.116CF (mg L(-1)) in which A is absorbance and CF is formaldehyde concentration in mg L(-1). The estimated recoveries of formaldehyde from spiked milk samples ranged from 91% to 106% and the slopes of the analytical curves obtained with reference solutions in water or milk were in agreement, thus indicating the absence of matrix effects. Accuracy was demonstrated by the agreement of the results with those achieved by the reference fluorimetric procedure at the 95% confidence level. The proposed procedure allows for 10 extractions per hour, with minimized reagent consumption (120 μL of IL and 3.5 μL acetylacetone) and generation of only 6.7 mL waste per determination, which contribute to the eco-friendliness of the procedure. PMID:26452946

  4. Determination of species activities in organic phase. Modelling of liquid-liquid extraction system using uniquac and unifac models

    International Nuclear Information System (INIS)

    The aim of nuclear fuel reprocessing is to separate reusable elements, uranium and plutonium from the other elements, fission products and minor actinides. PUREX process uses liquid-liquid extraction as separation method. Numerical codes for modelling the extraction operations of PUREX process use a semi-empirical model to represent the partition of species. To improve the precision and precision and predictive nature of the models, we looked for a theoretical tool which permits to quantify medium effects, especially in the organic phase, for which few models are available. The Sergeivskii-Dannus model permits to quantify deviations from ideality in organic phase equilibrated with aqueous phase, but with parameters depending on extractant/diluent ratio. We decided to investigate UNIQUAC and UNIFAC models which permit to estimate activity coefficients in non-electrolytic phases taking account of the mutual interactions of molecules and their morphology. UNIFAC is based on UNIQUAC but molecules are considered as structural groups assemblies. Before applying these model to extraction systems, we investigate their abilities to describe simple systems, binary and ternary systems. UNIQUAC has been applied to TBP/diluent mixtures and permits to estimate activity coefficients for diluents whose interactions with TPB are very different in nature and strength. Group contribution (UNIFAC) applied to TBP/alkane mixtures permits to represent the effect of lengthening alkane chain but not the effect of branching. UNIQUAC fails to describe the TBP/diluent/water/non-extractable-salt systems in case of strong TBP diluent interactions. In order to obtain a correct description of these systems, we used the Chem-UNIFAC model, where the INIFAC equation is supplemented with chemical equilibria allowing explicitly for complexes formation and where group contribution is used to describes complexes. We have with Chem-UNIFAC a model available which can take the effect of the diluent into

  5. A new device for magnetic stirring-assisted dispersive liquid-liquid microextraction of UV filters in environmental water samples.

    Science.gov (United States)

    Zhang, Ping-Ping; Shi, Zhi-Guo; Yu, Qiong-Wei; Feng, Yu-Qi

    2011-02-15

    A new method based on dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography (HPLC) has been developed for the analysis of UV filters. A specially designed flask, which has two narrow open necks with one of them having a capillary tip, was employed to facilitate the DLLME process. By adopting such a device, the extraction and subsequent phase separation were conveniently achieved. A binary solvent system of water sample and low-density extraction solvent (1-octanol) was used for the DLLME and no disperser solvent was involved. The extraction was accelerated by magnetic agitation of the two phases. After extraction, phase separation of the extraction solvent from the aqueous sample was easily achieved by leaving the extraction system statically for a while. No centrifugation step involving in classical DLLME was necessary. The analyte-enriched phase, floating above the sample solution, was elevated and concentrated into the narrow open tip of the flask by adding pure water into it via the other port, which was withdrawn with a microsyringe for the subsequent HPLC analysis. Under the optimized conditions, the limits of detection for the analytes were in range of 0.2-0.8ngmL(-1) .The linearity ranges were 8-20,000 ng mL(-1) for HB, 7-20,000 ng mL(-1) for DB, 8-10,000 ng mL(-1) for BP and 5-20,000 ng mL(-1) for HMB, respectively. Enrichment factors ranging from 59 to 107 folders were obtained for the analytes. The relative standard deviations (n=3) at a spiked level of 80 ng mL(-1) were between 1.4 and 4.8%. The proposed magnetic stirring-assisted DLLME method was successfully applied to the analysis of lake water samples. PMID:21238773

  6. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  7. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles

    Directory of Open Access Journals (Sweden)

    M. Song

    2012-03-01

    Full Text Available Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5, 6, and 7 carbon atoms (C5, C6 and C7 having oxygen-to-carbon atomic ratios (O:C of 0.80, 0.67, and 0.57, respectively, mixed with ammonium sulfate (AS. With micrometer-sized particles of C5/AS/H2O, C6/AS/H2O and C7/AS/H2O as model systems deposited on a hydrophobically coated substrate, laboratory experiments were conducted for various organic-to-inorganic dry mass ratios (OIR using optical microscopy and Raman spectroscopy. When exposed to cycles of relative humidity (RH, each system showed significantly different phase transitions. While the C5/AS/H2O particles showed no LLPS with OIR = 2:1, 1:1 and 1:4 down to 20% RH, the C6/AS/H2O and C7/AS/H2O particles exhibit LLPS upon drying at RH 50 to 85% and ~90%, respectively, via spinodal decomposition, growth of a second phase from the particle surface or nucleation-and-growth mechanisms depending on the OIR. This suggests that LLPS commonly occurs within the range of O:C < 0.7 in tropospheric organic/inorganic aerosols. To support the comparison and interpretation of the experimentally observed phase transitions, thermodynamic equilibrium calculations were performed with the AIOMFAC model. For the C7/AS/H2O and C6/AS/H2O systems, the calculated phase diagrams agree well with the observations while for the C5/AS/H2O system LLPS is predicted by the model at RH below 60% and higher AS concentration, but was not observed in the experiments. Both core-shell structures and partially engulfed structures were observed for the investigated particles, suggesting that such

  8. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles

    Directory of Open Access Journals (Sweden)

    M. Song

    2011-10-01

    Full Text Available Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5–7 carbon atoms (C5, C6 and C7 having oxygen-to-carbon atomic ratios (O:C of 0.80, 0.67, and 0.57, respectively, mixed with ammonium sulfate (AS. With micrometer-sized particles of C5/AS/H2O, C6/AS/H2O and C7/AS/H2O as model systems deposited on a hydrophobically coated substrate, laboratory experiments were conducted for various organic-to-inorganic dry mass ratios (OIR using optical microscopy and Raman spectroscopy. When exposed to cycles of relative humidity (RH, each system showed significantly different phase transitions. While the C5/AS/H2O particles showed no LLPS with OIR = 2:1, 1:1 and 1:4 down to 20% RH, the C6/AS/H2O and C7/AS/H2O particles exhibit LLPS upon drying at RH 50% to 85% and ~90%, respectively, via spinodal decomposition, growth of a second phase from the particle surface or nucleation-and-growth mechanisms depending on the OIR. This suggests that LLPS commonly occurs within the range of O:C<0.7 in tropospheric organic-inorganic aerosols. To support the comparison and interpretation of the experimentally observed phase transitions, thermodynamic equilibrium calculations were performed with the AIOMFAC model. For the C7/AS/H2O and C6/AS/H2O systems, the calculated phase diagrams agree well with the observations while for the C5/AS/H2O system LLPS is predicted by the model at RH below 60% and higher AS concentration, but was not observed in the experiments. Both core-shell structures and partially engulfed structures were observed for the investigated particles, suggesting that such morphologies

  9. MicroSISAK. Continuous liquid-liquid extractions of radionuclides at ≥ 0.2 mL/min

    International Nuclear Information System (INIS)

    Continuous liquid-liquid extraction of short-lived radionuclides has traditionally been performed with the SISAK system consisting of static mixers and H-centrifuges for phase separation. SISAK operates at flow rates of typically 1 mL/s. Thus, it produces large volumes of radioactive liquid waste that is difficult to dispose of. Therefore, it has been aimed to develop and use a further miniaturised extraction unit based on microtechnology and precision engineering to reduce the flow rate by at least two orders of magnitude. The accordingly developed MicroSISAK device is a micro membrane extractor in which a micromixer element with 2 x 16 feed channels of 30 μm width followed by a 60 μm high mixing chamber is used for intimately contacting the aqueous and organic phase. Subsequent phase separation is achieved via hydrophobic Teflon membranes with a pore size of 1 μm. The MicroSISAK device has been tested and optimized with radiotracers of the group-4 elements Zr and Hf in the system H2SO4/trioctyl amine (TOA) in toluene. At a temperature of 58 C and a flow rate of 0.2 mL/min of both phases, extraction yields of 87 ± 3% were achieved. The transport time from the micromixer to the first Teflon membrane was in this case 3.9s. It can be shortened to 1.56s at a flow rate of 0.5 mL/min. Under similar conditions, the extraction yield of 99mTc milked from a 99Mo generator in the system HNO3/tetraphenyl arsonium chloride (TPAC) in chloroform was 83 ± 3%. In an on-line experiment at the TRIGA Mainz reactor, short-lived Tc isotopes produced in the fission of 235U with thermal neutrons were transported by a He/KCl gas-jet to the chemistry apparatus, deposited by impaction, dissolved in 0.01 mol/L HNO3/KBrO3, and extracted into 10-4 mol/L TPAC in chloroform in MicroSISAK. The separated phases were transported via capillaries to two separate flow-through cells positioned in front of two Ge detectors. The extraction yield determined as the ratio of the Tc γ-ray activities in

  10. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    Science.gov (United States)

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular

  11. A Monolithic Hybrid Cellulose-2.5-Acetate/Polymer Bioreactor for Biocatalysis under Continuous Liquid-Liquid Conditions Using a Supported Ionic Liquid Phase.

    Science.gov (United States)

    Sandig, Bernhard; Michalek, Lukas; Vlahovic, Sandra; Antonovici, Mihaela; Hauer, Bernhard; Buchmeiser, Michael R

    2015-10-26

    Mesoporous monolithic hybrid cellulose-2.5-acetate (CA)/polymer supports were prepared under solvent-induced phase separation conditions using cellulose-2.5-acetate microbeads 8-14 μm in diameter, 1,1,1-tris(hydroxymethyl)propane and 4,4'-methylenebis(phenylisocyanate) as monomers as well as THF and n-heptane as porogenic solvents. 4-(Dimethylamino)pyridine and dibutyltin dilaurate (DBTDL), respectively, were used as catalysts. Monolithic hybrid supports were used in transesterification reactions of vinyl butyrate with 1-butanol under continuous, supported ionic liquid-liquid conditions with Candida antarctica lipase B (CALB) and octylmethylimidazolium tetrafluoroborate ([OMIM(+) ][BF4 (-) ]) immobilized within the CA beads inside the polymeric monolithic framework and methyl tert-butyl ether (MTBE) as the continuous phase. The new hybrid bioreactors were successfully used in dimensions up to 2×30 cm (V=94 mL). Under continuous biphasic liquid-liquid conditions a constant conversion up to 96 % was achieved over a period of 18 days, resulting in a productivity of 58 μmol mg(-1) (CALB) min(-1) . This translates into an unprecedented turnover number (TON) of 3.9×10(7) within two weeks, which is much higher than the one obtained under standard biphasic conditions using [OMIM(+) ][BF4 (-) ]/MTBE (TON=2.7×10(6) ). The continuous liquid-liquid setup based on a hybrid reactor presented here is strongly believed to be applicable to many other enzyme-catalyzed reactions. PMID:26493884

  12. Deterpenation of eucalyptus essential oil by liquid + liquid extraction: Phase equilibrium and physical properties for model systems at T = 298.2 K

    International Nuclear Information System (INIS)

    Highlights: • Fractionation of essential oil compounds. • Liquid + liquid equilibria of limonene, citronellal, ethanol and water were studied. • Distribution coefficients of limonene and citronellal were evaluated. • Densities and viscosities of the phases were experimentally determined. • Solvent selectivities and physical properties were dependent on citronellal and water mass fractions. -- Abstract: As the principal source in Brazil of eucalyptus essential oil extracts, Eucalyptus citriodora contains citronellal, an oxygenated compound responsible for the flavour characteristics. Deterpenation processes, consisting of the removal of terpenic hydrocarbons with the subsequent concentration of the oxygenated compounds, can be used to improve the aromatic characteristics of this essential oil. The purpose of this work was to perform a study of the technical feasibility of using a liquid + liquid extraction process to deterpenate eucalyptus essential oil. Model systems with various mixtures of limonene and citronellal (representing eucalyptus essential oil) as well as solvent (ethanol with various water mass fractions) were used to obtain liquid + liquid equilibrium data. The raffinate and extract phases were also analyzed to characterize the physical properties (density and viscosity). The equilibrium data were used to adjust the NRTL and UNIQUAC parameters. Two empirical models, the simple mixing rule and the Grunberg–Nissan model, were evaluated for use in the descriptions of the densities and viscosities, respectively, of the samples. Increasing the water content in the solvent resulted in decreases in the limonene and citronellal distribution coefficients, with consequential increases in the solvent selectivity values. Increasing values of the densities and viscosities, especially for the solvent-rich phases, were associated with systems using high amounts of hydrated ethanolic solvents

  13. Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt.

    Science.gov (United States)

    D'Orazio, Giovanni; Asensio-Ramos, María; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel; Fanali, Salvatore

    2015-02-01

    In this work, the suitability of a methodology based on dispersive liquid-liquid microextraction (DLLME) has been evaluated for the extraction of four endoestrogens (estriol, 17α-estradiol, 17β-estradiol, and estrone), an exoestrogen (17α-etynylestradiol), and a mycotoxin (zearalenone), together with some of their major metabolites (2-methoxyestradiol, α-zearalanol, β-zearalanol, α-zearalenol, and β-zearalenol) from different types of milk (whole and skimmed cow milk and semiskimmed goat milk) and whole natural yogurt. The methodology includes a previous protein precipitation with acidified ACN and a defatting step with n-hexane. Separation of the analytes, determination, and quantification were developed by MEKC coupled to ESI-MS using a BGE containing an aqueous solution of ammonium perfluorooctanoate as MS friendly surfactant. Calibration, precision, and accuracy studies of the described DLLME-MEKC-MS/MS method were evaluated obtaining a good linearity and LODs in the low micrograms per liter range. PMID:25394185

  14. Complex Formation in a Liquid-Liquid Extraction System Containing Cobalt(II), 4-(2-Pyridylazo)resorcinol, and Nitron

    OpenAIRE

    Petya Vassileva Racheva; Kiril Blazhev Gavazov; Vanya Dimitrova Lekova; Atanas Nikolov Dimitrov

    2013-01-01

    Complex formation and liquid-liquid extraction were studied in a system containing cobalt(II), 4-(2-pyridylazo)resorcinol (PAR), 1,4-diphenyl-3-(phenylamino)-1H-1,2,4-triazole (Nitron, Nt), water, and chloroform. The effect of some experimental parameters (pH, shaking time, concentration of PAR, and concentration of Nt) was systematically investigated, and the optimum conditions for cobalt extraction as an ion-association complex, (NtH+)[Co3+(PAR)2], were found. The following key equilibrium ...

  15. Simplified determination of uranium in contaminated sea sand samples by alpha-spectroscopy after acidic desorption and liquid-liquid extraction

    International Nuclear Information System (INIS)

    For the determination of uranium in contaminated sea sand samples by alpha-spectroscopy, we have investigated the applicability of different pre-analytical procedures. The direct electrodeposition after acidic dissolution of uranium from sea sand particles can be successfully applied only to relatively pure silica sands. Analysis of uranium in sand samples containing increased amounts of limestone and iron minerals requires the additional liquid-liquid extraction step to separate uranium from iron and calcium. The overall efficiency of the proposed method is above 70 % and the detection limit of alpha-spectroscopy is 70 Bq kg-1. (author)

  16. A new liquid-liquid extraction method for determination of montelukast in small volume human plasma samples using HPLC with fluorescence detector

    OpenAIRE

    Chauhan B; Rani Shubha; Nivsarkar M; Padh H

    2006-01-01

    Montelukast is a potent orally active cysteinyl leukotriene receptor antagonist that significantly improves parameters of asthmatics. A new liquid-liquid extraction based reverse phase liquid chromatography method has been developed and subsequently validated for the determination of montelukast in human plasma. The separation was achieved with C8 column (150x4.6 mm, 5 micron) and a mobile phase comprising of a mixture of 10 mM ammonium acetate buffer (pH 3.0) and acetonitrile in a ratio of 3...

  17. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified

  18. (Liquid + liquid) equilibrium of {l_brace}water + phenol + (1-butanol, or 2-butanol, or tert-butanol){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadlich de Oliveira, Leonardo [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil)

    2010-11-15

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  19. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    International Nuclear Information System (INIS)

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl4. Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl4− ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH4 aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH4 in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and at air/water interface.

  20. In situ liquid-liquid extraction as a sample preparation method for matrix-assisted laser desorption/ionization MS analysis of polypeptide mixtures

    DEFF Research Database (Denmark)

    Kjellström, Sven; Jensen, Ole Nørregaard

    2003-01-01

    A novel liquid-liquid extraction (LLE) procedure was investigated for preparation of peptide and protein samples for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). LLE using ethyl acetate as the water-immiscible organic solvent enabled segregation of hydrophobic and...... matrix to the organic solvent enhanced the efficiency of the LLE-MALDI MS method for analysis of hydrophobic peptides and proteins. LLE-MALDI MS enabled the detection of the hydrophobic membrane protein bacteriorhodopsin as a component in a simple protein mixture. Peptide mixtures containing...

  1. Evaluation of dispersive liquid-liquid microextraction for the determination of cobalt and cadmium by flame atomic absorption spectrometry: application in water and food samples

    OpenAIRE

    Bosch Ojeda C.; Sánchez Rojas F.

    2014-01-01

    Dispersive liquid-liquid microextraction (DLLME) was applied to the separation and preconcentration of Cd(II) and Co(II) from water and food samples. The influence of the following analytical parameters on the quantitative recoveries of cadmium and cobalt were investigated: pH, extraction solvent volume, dispersing solvent volume and type, and concentration of chelating agent. Under the optimized conditions, the detection limits were 2 μg L-1 and 13 μg L-1 for Cd(II) a...

  2. Vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria calculations for polystyrene plus methyleyclohexane and polystyrene plus cyclohexane solutions

    DEFF Research Database (Denmark)

    Wilczura-Wachnik, H.; Jonsdottir, Svava Osk

    2006-01-01

    This paper presents the vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria predictions for polystyrene in two theta solvents: cyclohexane and methylcyclohexane. VLE calculations were performed with the Elbro free volume method and a modified version of the PC-SAFT method, as well as with...... three UNIFAC type group contribution models: Entropic Free Volume + UNIFAC VLE 1 coeff., Entropic Free Volume + UNIFAC VLE 2coeff., and Oishi-Prausnitz + UNIFAC VLE 2coeff. Solvent activities were calculated for the polystyrene + cyclohexane and polystyrene + methylcyclohcxane solutions, and compared...

  3. Liquid liquid extraction based separation of copper and molybdenum consists of application of e.g. commercial oximes, and sulphuric acid and ammoniacal solutions.

    OpenAIRE

    Alguacil, Francisco José; Sastre Requena, Ana María

    2001-01-01

    [EN]The liquid-liquid extraction based separation of copper and molybdenum comprises application of e.g. commercial oximes to extract Cu (II) and Mo (VI) from aqueous acid media. The selective reextraction of Cu and Mo employs sulphuric acid and ammoniacal solutions respectively. [ES]Procedimiento para la separación cobre (II)-molibdeno (IV) de medios acuosos ácidos mediante extracción líquido-líquido, que permite la co-extracción de ambos elementos metálicos con un mismo agente de extracción...

  4. Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron(III) Extraction

    OpenAIRE

    Jamileh Amin; Roshanak Rafiee-Moghaddam; Behnam Mahdavi; Mazyar Peyda; Anuar Kassim; Nor Azah Yusof; Md Jelas Haron; Hossein Jahangirian; Yadollah Abdollahi; Sidik Silong

    2012-01-01

    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1%...

  5. Liquid-liquid extraction of uranium(VI) from colofanite of Itataia (Santa Quiteria, Ceara) by organic extractants in the presence of phosphoric acid

    International Nuclear Information System (INIS)

    This work describes the liquid-liquid extraction of uranium after digestion of colofanite (a fluoroapatite) from Itataia with sulfuric acid. The experiments were run at room temperature in one stage. Among the solutions tested the highest distribution coefficient (D > 60) was found for 40%vol. DEHPA (di(2-ethyl-hexyl)phosphoric acid) + 20% vol. TOPO (trioctylphosphine oxide) in kerosene. Thorium in the raffinate was quantitatively extracted by TOPO (0.1% vol.) in cyclohexane. Uranium stripping and separation from iron was possible using 1.5 mol L-1 ammonium or sodium carbonate (room temperature, one stage). However, pH control is essential for a good separation. (author)

  6. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants; Cinetique d`extraction liquide-liquide du nitrate d`uranyle et des nitrates d`actinides (III) et de lanthanides (III) par des extractants a fonction amide

    Energy Technology Data Exchange (ETDEWEB)

    Toulemonde, V. [CEA Centre d`Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France)]|[CEA Centre d`Etudes de la Vallee du Rhone, 30 -Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement

    1995-12-20

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author). 89 refs.

  7. MicroSISAK. Continuous liquid-liquid extractions of radionuclides at {>=} 0.2 mL/min

    Energy Technology Data Exchange (ETDEWEB)

    Hild, D.; Eberhardt, K.; Kratz, J.V.; Wiehl, N. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Even, J. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Helmholtz-Institut Mainz, Mainz (Germany); Loeb, P.; Werner, B.; Hofmann, C. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany)

    2013-07-01

    Continuous liquid-liquid extraction of short-lived radionuclides has traditionally been performed with the SISAK system consisting of static mixers and H-centrifuges for phase separation. SISAK operates at flow rates of typically 1 mL/s. Thus, it produces large volumes of radioactive liquid waste that is difficult to dispose of. Therefore, it has been aimed to develop and use a further miniaturised extraction unit based on microtechnology and precision engineering to reduce the flow rate by at least two orders of magnitude. The accordingly developed MicroSISAK device is a micro membrane extractor in which a micromixer element with 2 x 16 feed channels of 30 {mu}m width followed by a 60 {mu}m high mixing chamber is used for intimately contacting the aqueous and organic phase. Subsequent phase separation is achieved via hydrophobic Teflon membranes with a pore size of 1 {mu}m. The MicroSISAK device has been tested and optimized with radiotracers of the group-4 elements Zr and Hf in the system H{sub 2}SO{sub 4}/trioctyl amine (TOA) in toluene. At a temperature of 58 C and a flow rate of 0.2 mL/min of both phases, extraction yields of 87 {+-} 3% were achieved. The transport time from the micromixer to the first Teflon membrane was in this case 3.9s. It can be shortened to 1.56s at a flow rate of 0.5 mL/min. Under similar conditions, the extraction yield of {sup 99m}Tc milked from a {sup 99}Mo generator in the system HNO{sub 3}/tetraphenyl arsonium chloride (TPAC) in chloroform was 83 {+-} 3%. In an on-line experiment at the TRIGA Mainz reactor, short-lived Tc isotopes produced in the fission of {sup 235}U with thermal neutrons were transported by a He/KCl gas-jet to the chemistry apparatus, deposited by impaction, dissolved in 0.01 mol/L HNO{sub 3}/KBrO{sub 3}, and extracted into 10{sup -4} mol/L TPAC in chloroform in MicroSISAK. The separated phases were transported via capillaries to two separate flow-through cells positioned in front of two Ge detectors. The

  8. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Heat transfer on the liquid-liquid interface between molten core pool and coolant. JAERI's nuclear research promotion program, H10-027-6. Contract research

    International Nuclear Information System (INIS)

    Heat transfer experiments under steady and transient conditions were performed using molten Wood's metal and distilled water to study heat transfer on the liquid-liquid interface between molten fuel pool and coolant under severe accident conditions. In the steady state experiment, boiling curve was measured over the range from natural convection region to film boiling region. The boiling behavior was observed using a high-speed video camera. In the transient experiment, distilled water was poured onto the hot molten metal surface, and the boiling curve was obtained in the cooling process. Comparing the measured boiling curve with existing correlations and experimental data for solid-liquid and liquid-liquid systems, the following conclusions were drawn: (a) When the interface surge is negligible and oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface could be approximately reproduced by the heat transfer correlations for nucleate boiling and film boiling regions and the critical heat flux correlation for a liquid-solid system. (b) When no oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface moved towards higher wall superheat than that at the liquid-solid surface, as Novakovic et al. observed in their experiment using mercury. (c) Transient heat transfer coefficient for film boiling at the liquid-liquid surface was about 100% higher than that predicted by the heat transfer correlation for a solid-liquid system. (author)

  9. Sensitive quantitation of polyamines in plant foods by ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction with the aid of experimental designs.

    Science.gov (United States)

    Pinto, Edgar; Melo, Armindo; Ferreira, Isabel M P L V O

    2014-05-14

    A new method involving ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction was optimized with the aid of chemometrics for the extraction, cleanup, and determination of polyamines in plant foods. Putrescine, cadaverine, spermidine, and spermine were derivatized with 3,5-dinitrobenzoyl chloride and extracted by dispersive liquid-liquid microextraction using acetonitrile and carbon tetrachloride as dispersive and extraction solvents, respectively. Two-level full factorial design and central composite design were applied to select the most appropriate derivatization and extraction conditions. The developed method was linear in the 0.5-10.0 mg/L range, with a R(2) ≥ 0.9989. Intra- and interday precisions ranged from 0.8 to 6.9% and from 3.0 to 10.3%, respectively, and the limit of detection ranged between 0.018 and 0.042 μg/g of fresh weight. This method was applied to the analyses of six different types of plant foods, presenting recoveries between 81.7 and 114.2%. The method is inexpensive, versatile, simple, and sensitive. PMID:24773181

  10. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

    International Nuclear Information System (INIS)

    In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 μL ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL-1, the detection limit was 0.37 ng mL-1 (3Sb/m, n = 7) and the relative standard deviation was ±1.63% (n = 7, C = 200 ng mL-1). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

  11. A new liquid-liquid extraction method for determination of montelukast in small volume human plasma samples using HPLC with fluorescence detector

    Directory of Open Access Journals (Sweden)

    Chauhan B

    2006-01-01

    Full Text Available Montelukast is a potent orally active cysteinyl leukotriene receptor antagonist that significantly improves parameters of asthmatics. A new liquid-liquid extraction based reverse phase liquid chromatography method has been developed and subsequently validated for the determination of montelukast in human plasma. The separation was achieved with C8 column (150x4.6 mm, 5 micron and a mobile phase comprising of a mixture of 10 mM ammonium acetate buffer (pH 3.0 and acetonitrile in a ratio of 35:65 v/v. Montelukast was extracted from human plasma using a liquid-liquid extraction technique with ter-butylmethylether. The limit of detection and lowest limit of quantification were 5 and 10 ng/ml respectively. This method was found to be linear over the range of 10 to 1000 ng/ml with a recovery of 53 to 62%. Intraday and interday precision (% CV was < 15% and accuracy ranged from 96.23 to 108.39%. Stability studies showed that montelukast in human plasma is stable during the short-term period of sample preparation and analysis. This method can be used with small volume sample during pharmacokinetic studies.

  12. Suitability of dispersive liquid-liquid microextraction for the in situ silylation of chlorophenols in water samples before gas chromatography with mass spectrometry.

    Science.gov (United States)

    Saraji, Mohammad; Ghambari, Hoda

    2015-10-01

    Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid-liquid microextraction was carried out using an organic solvent lighter than water (n-hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05-100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, respectively. The values of intra- and inter-day relative standard deviations were in the range of 3.0-6.4 and 6.1-9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples. PMID:26257251

  13. Rapid determination of polycyclic aromatic hydrocarbons in rainwater by liquid-liquid microextraction and LC with core-shell particles column and fluorescence detection.

    Science.gov (United States)

    Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella

    2013-02-01

    Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples. PMID:23303536

  14. Determination of four sulfonylurea herbicides in tea by matrix solid-phase dispersion cleanup followed by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Liang, Pei; Wang, Jinjin; Liu, Guojiao; Guan, Jinyan

    2014-09-01

    Matrix solid-phase dispersion combined with dispersive liquid-liquid microextraction has been developed as a new sample pretreatment method for the determination of four sulfonylurea herbicides (chlorsulfuron, bensulfuron-methyl, chlorimuron-ethyl, and pyrazosulfuron) in tea by high-performance liquid chromatography with diode array detection. The extraction and cleanup by matrix solid-phase dispersion was carried out by using CN-silica as dispersant and carbon nanotubes as cleanup sorbent eluted with acidified dichloromethane. The eluent of matrix solid-phase dispersion was evaporated and redissolved in 0.5 mL methanol, and used as the dispersive solvent of the following dispersive liquid-liquid microextraction procedure for further purification and enrichment of the target analytes before high-performance liquid chromatography analysis. Under the optimum conditions, the method yielded a linear calibration curve in the concentration range from 5.0 to 10 000 ng/g for target analytes with a correlation coefficients (r(2)) ranging from 0.9959 to 0.9998. The limits of detection for the analytes were in the range of 1.31-2.81 ng/g. Recoveries of the four sulfonylurea herbicides at two fortification levels were between 72.8 and 110.6% with relative standard deviations lower than 6.95%. The method was successfully applied to the analysis of four sulfonylurea herbicides in several tea samples. PMID:24956010

  15. Development of a dispersive liquid-liquid microextraction method with a new sequence of steps and its comparison with a conventional method.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Asghari, Azam; Feriduni, Behruz

    2016-08-01

    In this paper, a dispersive liquid-liquid microextraction method with a new sequence of steps from the view of salt addition has been developed for the extraction and preconcentration of some organophosphorous pesticides from aqueous samples before analysis by gas chromatography with flame ionization detection. In this method, an appropriate mixture of extraction and disperser solvents is rapidly injected by a syringe into the aqueous sample. Then, sodium chloride is added into the solution to increase its ionic strength. The obtained results by the proposed method are compared with those of the conventional dispersive liquid-liquid microextraction in which the salt is added into the aqueous phase before dispersion of the extraction solvent. Some effective parameters on the method efficiency including type and volume of extraction and disperser solvents, type and percent of salt, etc. are investigated. Under the optimal conditions, limits of detection and quantification of the proposed method compared to conventional one were improved by a factor between 1.4-2.2 and 1.3-2.3, respectively. Extraction recoveries and enrichment factors of the proposed method with respect to conventional one enhanced from 43-60 to 72-99% and 1433-2000 to 2404-3285, respectively. PMID:27311791

  16. Development of an ionic liquid based dispersive liquid-liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples.

    Science.gov (United States)

    Pena, M Teresa; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2009-09-01

    A simple, rapid and efficient method, ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME), has been developed for the first time for the determination of 18 polycyclic aromatic hydrocarbons (PAHs) in water samples. The chemical affinity between the ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate) and the analytes permits the extraction of the PAHs from the sample matrix also allowing their preconcentration. Thus, this technique combines extraction and concentration of the analytes into one step and avoids using toxic chlorinated solvents. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, extraction time, dispersion stage, centrifuging time and ionic strength, were optimised. Analysis of extracts was performed by high performance liquid chromatography (HPLC) coupled with fluorescence detection (Flu). The optimised method exhibited a good precision level with relative standard deviation values between 1.2% and 5.7%. Quantification limits obtained for all of these considered compounds (between 0.1 and 7 ng L(-1)) were well below the limits recommended in the EU. The extraction yields for the different compounds obtained by IL-DLLME, ranged from 90.3% to 103.8%. Furthermore, high enrichment factors (301-346) were also achieved. The extraction efficiency of the optimised method is compared with that achieved by liquid-liquid extraction. Finally, the proposed method was successfully applied to the analysis of PAHs in real water samples (tap, bottled, fountain, well, river, rainwater, treated and raw wastewater). PMID:19646707

  17. Changing Hydrogen-Bond Structure during an Aqueous Liquid-Liquid Transition Investigated with Time-Resolved and Two-Dimensional Vibrational Spectroscopy.

    Science.gov (United States)

    Bruijn, Jeroen R; van der Loop, Tibert H; Woutersen, Sander

    2016-03-01

    We investigate the putative liquid-liquid phase transition in aqueous glycerol solution, using the OD-stretch mode in dilute OD/OH isotopic mixtures to probe the hydrogen-bond structure. The conversion exhibits Avrami kinetics with an exponent of n = 2.9 ± 0.1 (as opposed to n = 1.7 observed upon inducing ice nucleation and growth in the same sample), which indicates a transition from one liquid phase to another. Two-dimensional infrared (2D-IR) spectroscopy shows that the initial and final phases have different hydrogen-bond structures: the former has a single Gaussian distribution of hydrogen-bond lengths, whereas the latter has a bimodal distribution consisting of a broad distribution and a narrower, ice-like distribution. The 2D-IR spectrum of the final phase is identical to that of ice/glycerol at the same temperature. Combined with the kinetic data this suggests that the liquid-liquid transformation is immediately followed by a rapid formation of small (probably nanometer-sized) ice crystals. PMID:26891098

  18. Assessment of dispersive liquid-liquid microextraction conditions for gas chromatography time-of-flight mass spectrometry identification of organic compounds in honey.

    Science.gov (United States)

    Moniruzzaman, M; Rodríguez, I; Rodríguez-Cabo, T; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-14

    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas. PMID:25441341

  19. Something new from something old: Aceto-hydroxamic acid for complete and efficient separation of technetium from uranium using liquid-liquid extraction

    International Nuclear Information System (INIS)

    Full text of publication follows: Technetium-99 is a long-lived radioactive isotope that is a major constituent of spent fuel. Its efficient separation during fuel recovery is of ongoing concern; current strategies include liquid-liquid extractions and ion exchange columns. Aceto-hydroxamic acid (AHA) is a reductant/complexant being considered for use in the recovery process. It is known to selectively reduce neptunium and plutonium in the presence of U, enabling actinide separation during liquid-liquid extractions. We have demonstrated for the first time that AHA is also capable of reducing pertechnetate (TcO4-) in nitric and perchloric acid to form the extremely hydrophilic and stable technetium(II) trans-aquo-nitrosyl-di-aceto-hydroxamate, [TcNO(AHA)2.H2O]+, which is not extracted into TBP/dodecane to any measurable extent. This reaction has the potential to enable the separation of Tc from U without additional material or equipment to the UREX process or its derivatives. The synthesis, kinetics of formation, and characterization of this molecule and its extraction behavior in the presence of up to 2,000 times molar excess uranyl will be presented. (authors)

  20. Interfacial-tension-force model for the wavy stratified liquid-liquid flow pattern transition: The usage of two different approaches

    Science.gov (United States)

    de Castro, Marcelo Souza; Rodriguez, Oscar Mauricio Hernandez

    2016-06-01

    The study of the hydrodynamic stability of flow patterns is important in the design of equipment and pipelines for multiphase flows. The maintenance of a particular flow pattern becomes important in many applications, e.g., stratified flow pattern in heavy oil production avoiding the formation of emulsions because of the separation of phases and annular flow pattern in heat exchangers which increases the heat transfer coefficient. Flow maps are drawn to orientate engineers which flow pattern is present in a pipeline, for example. The ways how these flow maps are drawn have changed from totally experimental work, to phenomenological models, and then to stability analysis theories. In this work an experimental liquid-liquid flow map, with water and viscous oil as work fluids, drawn via subjective approach with high speed camera was used to compare to approaches of the same theory: the interfacial-tension-force model. This theory was used to drawn the wavy stratified flow pattern transition boundary. This paper presents a comparison between the two approaches of the interfacial-tension-force model for transition boundaries of liquid-liquid flow patterns: (i) solving the wave equation for the wave speed and using average values for wave number and wave speed; and (ii) solving the same equation for the wave number and then using a correlation for the wave speed. The results show that the second approach presents better results.

  1. (Liquid + liquid) equilibria for the ternary mixtures (alkane + toluene + ionic liquid) at T = 298.15 K: Influence of the anion on the phase equilibria

    International Nuclear Information System (INIS)

    Highlights: ► [BMpyr][NTF2] and [BMpyr][TFO] were studied as solvents to extract aromatics from alkanes. ► (Liquid + liquid) equilibrium data were measured at 298.15 K for six ternary systems. ► Selectivity and solute distribution ratio were calculated and compared. ► The influence of the structure of anion of the ionic liquid was analyzed. ► Experimental data were satisfactorily correlated using NRTL model. - Abstract: (Liquid + liquid) equilibrium data for the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMpyr][NTf2], and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, [BMpyr][TFO], with toluene, and heptane or cyclohexane were determined at T = 298.15 K and atmospheric pressure. In order to check if these ILs can be used as potential solvents for the extraction of toluene from aliphatic compounds, the ability of the ILs as solvents was evaluated in terms of selectivity and solute distribution ratio. The experimental data were correlated accurately with the Non Random Two-Liquid model.

  2. a System which Uses a Continuous Optimization Approach for the Design of AN Optimum Extractant Molecule for Use in Liquid-Liquid Extraction.

    Science.gov (United States)

    Naser, Samer Fahim

    The design of an extractant molecule for use in liquid-liquid extraction, traditionally a combinatorial optimization problem, has been solved using continuous optimization. UNIFAC, a thermodynamic group contribution method which allows the calculation of an activity coefficient of a component from its chemical structure, was used as the basis for all calculations. A computer system was developed which employs a three step procedure. First, the error in the liquid-liquid equilibrium relations resulting from the specification of a target separation criteria is minimized by continuously varying the functional groups in the design group pool. Second, the theoretical molecule obtained from the first step is used as a starting point to optimize up to seven separation criteria by variation of functional groups and mole fractions to obtain the optimum theoretical extractant molecule which satisfies the equilibrium relations. Third, the theoretical molecule is used to generate alternative extractant molecules which contain integer functional group values only. Numeric molecular structure constraints were developed which help maintain the feasibility of molecules in the first two steps, and allow the rejection of infeasible molecules in the third step. These constraints include limits on boiling point and molecular weight. The system developed was successfully tested on several separation problems and has suggested extractants as good or better than ones currently in use. This is the first reported use of continuous optimization in molecular design. For large design pools, this approach, as opposed to combinatorial optimization, is several orders of magnitude faster.

  3. Determination of atranol and chloroatranol in perfumes using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.

    Science.gov (United States)

    López-Nogueroles, Marina; Chisvert, Alberto; Salvador, Amparo

    2014-05-15

    A new analytical method based on simultaneous derivatization and dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS), for the determination of the allergenic compounds atranol and chloroatranol in perfumes, is presented. Derivatization of the target analytes by means of acetylation with anhydride acetic in carbonate buffer was carried out. Thereby volatility and detectability were increased for improved GC-MS sensitivity. In addition, extractability by DLLME was also enhanced due to a less polar character of the solutes. A liquid-liquid extraction was performed before DLLME to clean up the sample and to obtain an aqueous sample solution, free of the low polar matrix from the essential oils, as donor phase. Different parameters, such as the nature and volume of both the extraction and disperser solvents, the ionic strength of the aqueous donor phase or the effect of the derivatization reagent volume, were optimized. Under the selected conditions (injection of a mixture of 750μL of acetone as disperser solvent, 100μL of chloroform as extraction solvent and 100μL of anhydride acetic as derivatization reagent) the figures of merit of the proposed method were evaluated. Limits of detection in the low ngmL(-1) range were obtained. Matrix effect was observed in real perfume samples and thus, standard addition calibration is recommended. PMID:24793850

  4. Stir-membrane solid-liquid-liquid microextraction for the determination of parabens in human breast milk samples by ultra high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Rodríguez-Gómez, Rocío; Roldán-Pijuán, Mercedes; Lucena, Rafael; Cárdenas, Soledad; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Valcárcel, Miguel

    2014-08-01

    In this article, stir-membrane solid-liquid-liquid microextraction (SM-SLLME) is tailored for the analysis of solid matrices and it has been evaluated for the determination of parabens in l breast milk samples. A three-phase microextraction mode was used for the extraction of the target compounds taking advantage of their acid-base properties. The unit allows the simultaneous extraction of the target compounds from the solid sample to an organic media and the subsequent transference of the analytes to an aqueous acceptor phase. The method includes the identification and quantification of the analytes by ultra high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). All the variables involved in the extraction procedure have been accurately studied and optimized. The analytes were detected and quantified using a triple quadrupole mass spectrometer (QqQ). The selection of two specific fragmentation transitions for each compound allowed simultaneous quantification and identification. The method has been analytically characterized on the basis of its linearity, sensitivity and precision. Limits of detection ranged from 0.1 to 0.2ngmL(-1) with precision better than 8%, (expressed as relative standard deviation). Relative recoveries were in the range from 91 to 106% which demonstrated the applicability of the stir-membrane solid-liquid-liquid microextraction for the proposed analytical problem. Moreover, the method has been satisfactorily applied for the determination of parabens in lyophilized breast milk samples from 10 randomly selected individuals. PMID:24935266

  5. Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry.

    Science.gov (United States)

    Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong

    2015-10-01

    In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually solvent (extraction and analysis of essential oil. PMID:26304788

  6. Reconstruction in previously irradiated patients

    Directory of Open Access Journals (Sweden)

    Chaudhari Charudatta

    2007-12-01

    Full Text Available Radiation therapy, which forms the mainstay of the treatment in many head and neck cancers, is viewed by many surgeons with skepticism. But many are not fully conversant with radiobiology and the effect of the radiation in tissues. This article aims at bringing the reader acquainted with the beneficial and harmful effects of radiation on the tissues. The alterations in tissue healing with radiation and the problems associated with surgery in a previously irradiated patient is discussed din detail. The role of free tissue transfer, in this setting is also dealt with.

  7. Accounting robustly for instantaneous chemical equilibriums in reactive transport: A numerical method and its application to liquid-liquid extraction modeling

    International Nuclear Information System (INIS)

    Reactive transport equations are used in numerous application fields: CO2 or nuclear waste storage monitoring, separation processes in chemical engineering. We present a general method to account robustly for instantaneous chemical equilibriums in reactive transport. This method is adapted to all kinds of hydraulic transport models including 1D to 3D convection-diffusion equations. This leads to the resolution of a bound constrained system of Differential Algebraic Equations (DAEs). The algebraic constraints come from the adjunction of mass action laws related to the equilibriums, whereas the bounds account for the positivity of the computed quantities. In order to solve the numerical system associated with our method, we use an adaptation of the DASSL solver, CDASSL, that can handle the resolution of bound constrained DAE systems. We present an application of this method to liquid-liquid extraction modeling. Numerical experiments demonstrate the interest of using the CDASSL solver to ensure the bound constraints are satisfied. (authors)

  8. The Study of a New Method to Determine Copper Ion by Square-Wave Voltammetry-Extraction Iodometry at the Liquid/Liquid Interfaces

    OpenAIRE

    Jinping Jia; Shaoai Xie; Changyan Shi

    2008-01-01

    A new method of indirect determination of Cu2+ was developed based on square-wave voltammetry by the oxidation of iodide in organic solvent at the liquid/liquid (L/L) interface. The limit of detection for the determination of Cu2+ in this method was found to be 5×10−4 mol/L, and the concentration ranged up to 1×10−2 mol/L gave a linear limiting current versus concentration response. For the same simulated wastewater, this method showed high accuracy compared with the...

  9. Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography.

    Science.gov (United States)

    Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi

    2013-03-01

    Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6. PMID:23375769

  10. Comparison of ultrasound-assisted cloud point extraction and ultrasound-assisted dispersive liquid liquid microextraction for copper coupled with spectrophotometric determination

    Science.gov (United States)

    Yang, Shengchun; Fang, Xiang; Duan, Liju; Yang, Shu; Lei, Zirong; Wen, Xiaodong

    2015-09-01

    In this work, ultrasound-assisted cloud point extraction (UA-CPE) and ultrasound-assisted dispersive liquid liquid microextraction (UA-DLLME) were investigated and compared firstly as ultrasound-assisted liquid phase microextraction methods, which were coupled with spectrophotometer for copper preconcentration and detection. Compared to conventional CPE and DLLME, the extraction patterns were changed and improved by the effect of ultrasound. As novel methods, their applications were expanded and the analytical performance of spectrophotometric determination for copper was considerably improved. The influence factors of UA-CPE and UA-DLLME were studied in detail. Under the optimal conditions, the limits of detection (LODs) for copper were 0.7 μg L-1 of UA-CPE and 0.8 μg L-1 of UA-DLLME with sensitivity enhancement factors (EFs) of 17 and 16. The developed methods were applied to the determination of trace copper in real water samples with satisfactory analytical results.

  11. Ionic liquid-based dispersive liquid-liquid microextraction and enhanced spectrophotometric determination of molybdenum (VI) in water and plant leaves samples by FO-LADS.

    Science.gov (United States)

    Gharehbaghi, Maysam; Shemirani, Farzaneh

    2011-02-01

    A new simple and rapid ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) has been applied to preconcentrate trace levels of molybdenum (VI) as a prior step to its enhanced determination by fiber optic-linear array detection spectrophotometry (FO-LADS). In this method, a small amount of [Hmim][Tf(2)N] (1-hexyl-3-methylimmidazolium bis (trifluormethylsulfonyl) imid) as an extraction solvent was applied to extract molybdenum - pyrogallol red complex, which was formed in an aqueous solution in the presence of N-cetyl-N-N-N-trimethyl ammonium chloride as a sensitizing agent. Under optimum conditions, enhancement factor, detection limit and relative standard deviation (n=5, for 30 μg L(-1) of molybdenum (VI)) in 10 mL water sample were 72.6, 1.43 μg L(-1) and 2.8%, respectively. PMID:21092750

  12. Toxicological evaluation of liquids proposed for use in direct contact liquid--liquid heat exchangers for solar heated and cooled buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, R.M.; Majestic, J.R.; Billau, R.

    1976-09-01

    This report contains the results of the toxicological evaluation part of the project entitled, ''Direct Contact Liquid-Liquid Heat Exchangers for Solar Heated and Cooled Buildings.'' Obviously any liquid otherwise suitable for use in such a device should be subjected to a toxicological evaluation. 34 liquids (24 denser than water, 10 less dense) have physical and chemical properties that would make them suitable for use in such a device. In addition to the complexity involved in selecting the most promising liquids from the standpoint of their chemical and physical properties is added the additional difficulty of also considering their toxicological properties. Some of the physical and chemical properties of these liquids are listed. The liquids are listed in alphabetical order within groups, the denser than water liquids are listed first followed by those liquids less dense than water.

  13. Vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction for the determination of carbamates in juices by micellar electrokinetic chromatography tandem mass spectrometry.

    Science.gov (United States)

    Moreno-González, David; Huertas-Pérez, José F; García-Campaña, Ana M; Gámiz-Gracia, Laura

    2015-07-01

    A new method based on vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction has been developed for the extraction of carbamate pesticides in juice samples prior to their determination by micellar electrokinetic chromatography coupled to tandem mass spectrometry. This sample treatment allowed the satisfactory extraction and the extract clean-up of 25 carbamates from different fruit and vegetal juices (banana, tomato, and peach). In this study, the addition of ammonium perfluorooctanoate in the aqueous sample in combination with vortex agitation, provided very clean extracts with short extraction times. Under optimized conditions, recoveries of the proposed method for these pesticides from fortified juice samples ranged from 81% to 104%, with relative standard deviations lower than 15%. Limits of quantification were between 2.3µgkg(-)(1) and 4.7µgkg(-)(1), showing the high sensitivity of this fast and simple method. PMID:25882424

  14. Modeling the liquid-liquid equilibrium of petroleum fluid and polar compounds containing systems with the PC-SAFT equation of state

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Yan, Wei; Thomsen, Kaj;

    2015-01-01

    A critical test for the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (FOS) is the modeling of systems containing petroleum fluid and polar compounds. In this work, two approaches are proposed for the simplified PC-SAFT EOS to obtain the necessary pure component...... parameters for the characterized non-associating pseudo-components of petroleum fluids. New pure component parameters of mono-ethylene glycol (MEG) are obtained by considering the liquid liquid equilibrium (LLE) data of MEG with normal hydrocarbons in the estimation process and a simple binary interaction...... scheme of MEG with pseudo-components is proposed. These new parameters are applied to model LLE of the systems of petroleum fluid + MEG with or without water. The results show that the simplified PC-SAFT EOS yields promising predictions of the key mutual solubility of these systems: 15-18% overall...

  15. Ternary liquid-liquid equilibria of dimethyl carbonate + 2-propanol + water system at 303.15 and 313.15 K

    Science.gov (United States)

    Ginting, Rizqy Romadhona; Mustain, Asalil; Tetrisyanda, Rizki; Gunardi, Ignatius; Wibawa, Gede

    2015-12-01

    In this work, liquid-liquid equilibria data of dimethyl carbonate (DMC) + 2-propanol + water system were accurately determined at 303.15 and 313.15 K using stirred and jacketed equilibrium cell under atmospheric pressure. The reliabilities of the experimental data were confirmed using Bachman-Brown correlation giving r-squared value of 0.9993 and 0.9983 at 303.15 and 313.15 K, respectively. Experimental data obtained in this work exhibit Treybal's Type I ternary phase behavior. The selectivity and distribution coefficient of DMC increases with addition of DMC concentration in the organic phase. On the other hand, the effect of temperature to phase boundary was found to be not significant. The data were correlated well using the Non-Random Two Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coefficient models with root-mean-square deviation of 1.5% and 1.3%, respectively.

  16. Baseline-Corrected Second-Order Derivative Electroanalysis Combined With Ultrasound-Assisted Liquid-Liquid Microextraction: Simultaneous Quantification of Fluoroquinolones at Low Levels.

    Science.gov (United States)

    de Oliveira, Luiz Henrique; Trindade, Magno Aparecido Gonçalves

    2016-06-21

    A baseline-corrected second-order derivative procedure and a miniaturized sample preparation based on low-density solvent and ultrasound-assisted liquid-liquid microextraction (LDS-UA-LLME) was combined to provide the simultaneous electroanalysis of three fluoroquinolones (FQ) as emerging contaminants (ECs). The enhanced mathematical processing provided the best separation with an accurate measurement of the overlapping peaks during the simultaneous electro-oxidation of target FQs that were directly dropped on the surface of carbon nanofiber-modified screen-printed electrodes. The adapted LDS-UA-LLME protocol was the key step involved in the sample preparation, which preconcentrate target analytes from diluted tap water samples with an enrichment factor of around 80×, allowing their quantification at trace levels. This combined feature demonstrated the unique application of an electroanalytical technique for the simultaneous electroanalysis of three FQs in spiked tap water samples, with recovery values remarkably close to 100%. PMID:27249314

  17. Molecular dynamics simulations of hydrophobous ions at the liquid-liquid interfaces: case of dicarbollide anions as synergy agents and of ionic liquids as extracting medium

    International Nuclear Information System (INIS)

    Based on molecular dynamics simulations, we first describe the distribution of dicarbollide salts (CCD-, Mn+) in concentrated monophasic solutions (water, chloroform, octanol, nitrobenzene) and in the corresponding biphasic 'oil' - water solutions. We point to the importance of surface activity of the CCD-s and of their self-aggregation in water, with marked counterions effects, and we explain the synergistic effect of CCD-s in the Eu3+ extraction by BTP ligands. In the second part of the thesis we report exploratory simulations on the extraction of Sr2+ by 18-crown-6 to an hydrophobic ionic liquid ([BMI][PF6]), focusing on the liquid - liquid interface. Analogies and differences with a classical aqueous interface are outlined. (author)

  18. Novel method for determination of uranium isotopes in environmental samples by liquid-liquid extraction with triisooctylamine in sulfuric and hydrochloric acid media

    International Nuclear Information System (INIS)

    Novel and robust method for determination of uranium isotopes in various environmental materials is presented. The method is based on total decomposition of the solid materials by the use of closed vessels microwave acid digestion systems and pre concentration of uranium from the liquid samples. The separation of uranium from interfering radionuclides and stable matrix elements is attained by liquid-liquid extraction with triisooctylamine/xylene in sulfuric and consecutively in hydrochloric acid media. Purified uranium is electrodeposited on a stainless steel disks and then measured by alpha spectrometry. The critical steps in the method were examined. The analytical method has been successfully applied to the determination of uranium isotopes in mineral and tap waters, as well as in soils from Northwestern Bulgaria. The analytical quality was checked by analyzing reference materials with different matrices. (author)

  19. Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS for determination of trace Cu and Zn in water Samples

    Directory of Open Access Journals (Sweden)

    Ghorbani A.

    2014-07-01

    Full Text Available Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS was proposed for the determination of trace amounts of Copper and Zinc ions using 8-hydroxyquinoline (8-HQ as chelating agent. Several factors influencing the microextraction efficiency of Cu and Zn and their subsequent determinations, such as pH, extraction and disperser solvent type and their volume, concentration of the chelating agent and extraction time were studied, and the optimized experimental conditions were established. After extraction, the enrichment factors were 25 and 26 for Cu and Zn, respectively. The detection limits of the method were 0.025 and 0.0033 μg/L for Cu and Zn, and the relative standard deviations (R.S.D for five determinations of 1 ng/ml Cu and Zn were 8.51% and 7.41%, respectively.

  20. Automatic spectrophotometric method involving liquid-liquid extraction for the determination of europium in the presence of other lanthanides, yttrium and scandium

    International Nuclear Information System (INIS)

    A liquid-liquid extraction step has been incorporated into an automatic method for determination of europium in the presence of other lanthanides, yttrium and scandium. Europium(III) is selectively reduced on a Jones reductor and the europium(II) reacted with molybdophosphoric acid to produce a molybdenum blue which is extracted into isoamyl alcohol for spectrophotometric determination. Incorporation of the extraction step increases the sensitivity of the method by a factor of 5 enabling from 2 to 50 μg of europium per ml of aqueous sample solution to be determined but reduces the sampling rate from 20 to 10 samples per hour. The method has been applied to the determination of europium in lanthanide oxides and in the minerals bastnasite and monazite following a lanthanide group separation. (orig.)

  1. LIQUID-LIQUID EQUILIBRIUM FOR TERNARY SYSTEMS CONTAINING ETHYLIC BIODIESEL + ANHYDROUS ETHANOL + REFINED VEGETABLE OIL (SUNFLOWER OIL, CANOLA OIL AND PALM OIL: EXPERIMENTAL DATA AND THERMODYNAMIC MODELING

    Directory of Open Access Journals (Sweden)

    T. P. V. B. Dias

    2015-09-01

    Full Text Available AbstractPhase equilibria of the reaction components are essential data for the design and process operations of biodiesel production. Despite their importance for the production of ethylic biodiesel, the reaction mixture, reactant (oil and ethanol and the product (fatty acid ethyl esters up to now have received less attention than the corresponding systems formed during the separation and purification phases of biodiesel production using ethanol. In this work, new experimental measurements were performed for the liquid-liquid equilibrium (LLE of the system containing vegetable oil (sunflower oil and canola oil + ethylic biodiesel of refined vegetable oil + anhydrous ethanol at 303.15 and at 323.15 K and the system containing refined palm oil + ethylic biodiesel of refined palm oil + ethanol at 318.15 K. The experimental data were successfully correlated by the nonrandom two-liquid (NRTL model; the average deviations between calculated and experimental data were smaller than 1.00%.

  2. (Liquid + liquid) equilibrium for ternary mixtures of {l_brace}heptane + aromatic compounds + [EMpy][ESO{sub 4}]{r_brace} at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Mirkhani, S.A. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Vossoughi, M., E-mail: vosoughi@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Pazuki, G.R. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Safekordi, A.A. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Heydari, A.; Akbari, J. [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Yavari, M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > This paper reports the LLE data of ternary systems {l_brace}heptane (1) + aromatic compounds (2) + [EMpy][ESO{sub 4}] (3){r_brace}. > The distribution coefficient and the selectivity were obtained from the experimental data. > The consistency of LLE data was successfully correlated with Othmer-Tobias and Hand equation. - Abstract: (Liquid + liquid) equilibrium (LLE) data for the ternary systems (heptane + toluene + 1-ethyl-3-methylpyridinium ethylsulfate) and (heptane + benzene + 1-ethyl-3-methylpyridinium ethylsulfate) were measured at T = 298.15 K and atmospheric pressure. The selectivity and aromatic distribution coefficients, calculated from the equilibrium data, were used to determine if this ionic liquid can be used as a potential extracting solvent for the separation of aromatic compounds from heptane. The consistency of tie-line data was ascertained by applying the Othmer-Tobias and Hand equations.

  3. Liquid-liquid reductive extraction in molten fluoride salt/liquid aluminium as a core of process for the An/Ln group separation

    International Nuclear Information System (INIS)

    This report concerns a pyrochemical process based on liquid-liquid extraction in a molten fluoride/liquid aluminium system as a core process for actinide (An)/lanthanide (Ln) group separation, studied at CEA. The basic and demonstrative experiments have established the feasibility of the An/Ln group separation in the molten fluoride/liquid aluminium system (U, Pu, Np, Am, Cm traces from Nd, Ce, Eu, Sm, Eu, La - An/Ln separation factors over 1000 - An recovery yield over 98 % in one batch). The main experimental efforts must now be targeted on the recovery of actinides from the Al matrix. A thermodynamic and bibliographical survey has been done. It shows that back-extraction in a molten chloride melt could be a promising technique for this purpose

  4. Screening and quantitative determination of twelve acidic and neutral pharmaceuticals in whole blood by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Simonsen, Kirsten Wiese; Steentoft, Anni; Buck, Maike; Hansen, Lene; Linnet, Kristian

    2010-09-01

    We describe a multi-method for simultaneous identification and quantification of 12 acidic and neutral compounds in whole blood. The method involves a simple liquid-liquid extraction, and the identification and quantification are performed using liquid chromatography-tandem mass spectrometry. The method was fully validated for salicylic acid, paracetamol, phenobarbital, carisoprodol, meprobamate, topiramate, etodolac, chlorzoxazone, furosemide, ibuprofen, warfarin, and salicylamide. The method also tentatively includes thiopental, theophylline, piroxicam, naproxen, diclophenac, and modafinil, but these drugs were not included in the full validation program and are not described in detail here. Limit of quantitation was 1 mg/kg for the compounds with coefficients of variation of < 20%, except for furosemide, which had a coefficient of variation of 32% at limit of quantitation. The measuring interval was wide for most components. Extraction efficiencies were high, reflecting the high-yield capacity of the method. PMID:20822673

  5. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water + ethanol + cyclohexane + heptane) at 101.3 kPa

    International Nuclear Information System (INIS)

    Highlights: → Water-ethanol-cyclohexane-heptane and water-cyclohexane-heptane isobaric VLLE. → Isobaric experimental data were determined at 101.3 kPa. → A dynamic recirculating still with an ultrasonic homogenizer was used. → The quaternary system does not present quaternary azeotropes. - Abstract: Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.

  6. Ternary Liquid-Liquid Equilibrium for Systems of Fatty Acid Methyl Ester(Methyl Palmitate/Methyl Stearate)+Ethanol+Glycerol at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    夏淑倩; 罗慧娟; 马沛生

    2015-01-01

    Liquid-liquid equilibrium data of two ternary systems methyl palmitate+ethanol+glycerol and methyl stearate+ethanol+glycerol at(318.2 and 333.2)K and atmospheric pressure were measured. The values of distri-bution coefficient and selectivity were calculated, which indicates that glycerol can be separated from fatty acid ester by using ethanol as an extraction solvent. The consistency of the isothermal tie-line data were checked by the Othmer-Tobias equation. The correlation coefficients R2 are higher than 0.993,9 for all the fitted curves. The NRTL activity coefficient model was applied to the correlation of the measured tie-line data. The root mean square devia-tion(RMSD)values are less than 0.007 for all the systems, which shows a good predictive capability of this model for such systems.

  7. Determination of aflatoxin B1 in cereals by homogeneous liquid-liquid extraction coupled to high performance liquid chromatography-fluorescence detection.

    Science.gov (United States)

    Sheijooni-Fumani, Neda; Hassan, Jalal; Yousefi, Seyed R

    2011-06-01

    A simple and rapid method based on homogeneous liquid-liquid extraction coupled to HPLC with fluorescence detection was developed for the determination of aflatoxin B1 (AFB1) in the rice and grain samples after post-column derivatization. The proposed method eliminated the use of immunoaffinity columns for clean-up in the determination of AFB1. The parameters affecting recovery and preconcentration such as type and volume of organic solvent, volume ratio of water/methanol, concentration of phase separator reagent and extraction time were optimized. Under the optimized conditions, the calibration graph was linear in the concentration range of 0.01-1.0 ng/g with the detection limit of 0.003 ng/g. This method was successfully applied for the analysis of AFB1 in different cereal samples. PMID:21491592

  8. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water + ethanol + cyclohexane + heptane) at 101.3 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Pequenin, Ana; Asensi, Juan Carlos [Departamento de Ingenieria Quimica, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain); Gomis, Vicente, E-mail: vgomis@ua.es [Departamento de Ingenieria Quimica, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2011-08-15

    Highlights: > Water-ethanol-cyclohexane-heptane and water-cyclohexane-heptane isobaric VLLE. > Isobaric experimental data were determined at 101.3 kPa. > A dynamic recirculating still with an ultrasonic homogenizer was used. > The quaternary system does not present quaternary azeotropes. - Abstract: Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {l_brace}water (1) + cyclohexane (2) + heptane (3){r_brace} and the quaternary system {l_brace}water (1) + ethanol (2) + cyclohexane (3) + heptane (4){r_brace} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.

  9. (Liquid + liquid) equilibrium in binary systems of isomeric C8 aliphatic monoethers with acetonitrile and its interpretation by the COSMO-SAC model

    International Nuclear Information System (INIS)

    The (liquid + liquid) solubility curves have been determined by a synthetic method for six binary mixtures of [acetonitrile + {heptyl methyl ether CH3OnC7H15, or ethyl hexyl ether C2H5OnC6H13, or pentyl propyl ether nC3H7OnC5H11, or isopentyl propyl ether nC3H7Oi C5H11, or dibutyl ether nC4H9OnC4H9, or butyl isobutyl ether nC4H9OiC4H9}]. The possibility of the COSMO-SAC model to account for the thermodynamic differences between these systems has been tested and the discussion on the influence of screening charge of ethers on the system properties was undertaken

  10. Liquid-liquid transition in supercooled aqueous solution involving a low-temperature phase similar to low-density amorphous water

    CERN Document Server

    Woutersen, Sander; Zhao, Zuofeng; Angell, C Austen

    2016-01-01

    The striking anomalies in physical properties of supercooled water that were discovered in the 1960-70s, remain incompletely understood and so provide both a source of controversy amongst theoreticians, and a stimulus to experimentalists and simulators to find new ways of penetrating the "crystallization curtain" that effectively shields the problem from solution. Recently a new door on the problem was opened by showing that, in ideal solutions, made using ionic liquid solutes, water anomalies are not destroyed as earlier found for common salt and most molecular solutes, but instead are enhanced to the point of precipitating an apparently first order liquid-liquid transition. The evidence was a spike in apparent heat capacity during cooling that could be fully reversed during reheating before any sign of ice crystallization appeared. Here, we use decoupled-oscillator infrared spectroscopy to define the structural character of this phenomenon using similar down and upscan rates as in the calorimetric study. Th...

  11. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Molaakbari, Elaheh [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Young Research Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mostafavi, Ali, E-mail: mostafavi.ali@gmail.com [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment and Nanochemistry Department, Research Institute of Environmental Science, International Center for Science, High Technology and Environmental Science, Kerman (Iran, Islamic Republic of); Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-01-30

    In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 {mu}L ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL{sup -1}, the detection limit was 0.37 ng mL{sup -1} (3S{sub b}/m, n = 7) and the relative standard deviation was {+-}1.63% (n = 7, C = 200 ng mL{sup -1}). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

  12. Analyses of polychlorinated biphenyls in waters and wastewaters using vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ozcan, Senar

    2011-03-01

    A method was developed for viable and rapid determination of seven polychlorinated biphenyls (PCBs) in water samples with vortex-assisted liquid-liquid microextraction (VALLME) using gas chromatography-mass spectrometry (GC-MS). At first, the most suitable extraction solvent and extraction solvent volume were determined. Later, the parameters affecting the extraction efficiency such as vortex extraction time, rotational speed of the vortex, and ionic strength of the sample were optimized by using a 2(3) factorial experimental design. The optimized extraction conditions for 5 mL water sample were as follows: extractant solvent 200 μL of chloroform; vortex extraction time of 2 min at 3000 rpm; centrifugation 5 min at 4000 rpm, and no ionic strength. Under the optimum condition, limits of detection (LOD) ranged from 0.36 to 0.73 ng/L. Mean recoveries of PCBs from fortified water samples are 96% for three different fortification levels and RSDs of the recoveries are below 5%. The developed procedure was successfully applied to the determination of PCBs in real water and wastewater samples such as tap, well, surface, bottled waters, and municipal, treated municipal, and industrial wastewaters. The performance of the proposed method was compared with traditional liquid-liquid extraction (LLE) of real water samples and the results show that efficiency of proposed method is comparable to the LLE. However, the proposed method offers several advantages, i.e. reducing sample requirement for measurement of target compounds, less solvent consumption, and reducing the costs associated with solvent purchase and waste disposal. It is also viable, rapid, and easy to use for the analyses of PCBs in water samples by using GC-MS. PMID:21280211

  13. Quaternary (liquid + liquid) equilibria for systems of imidazolium based ionic liquid + thiophene + pyridine + cyclohexane at 298.15 K: Experiments and quantum chemical predictions

    International Nuclear Information System (INIS)

    Highlights: ► Quaternary (liquid + liquid) equilibria are measured for ionic liquids, cyclohexane, pyridine and thiophene. ► Extraction of thiophene and pyridine from cyclohexane using ionic liquids is investigated. ► Three different ionic liquids are investigated. ► The experimental data can be successfully correlated using NRTL and UNIQUAC models. ► The experimental data are in moderate agreement with a priori predictions made using the COSMO-SAC model. -- Abstract: 1-Ethyl 3-methylimidazolium acetate [EMIM][OAc], 1-ethyl 3-methylimidazolium ethylsulfate [EMIM][EtSO4] and 1-ethyl 3-methylimidazolium methylsulfonate [EMIM][MeSO3] are found to be effective for the selective removal of a five member ring sulfur compound, viz. thiophene, and a six member ring nitrogen compound, viz. pyridine from a hydrocarbon, viz. cyclohexane at room temperature and atmospheric pressure. The liquid liquid equilibrium (LLE) data for the quaternary mixtures of ionic liquid (1) + thiophene (2) + pyridine (3) + cyclohexane (4) are experimentally determined. The experimental tie line data are successfully correlated with the Non Random Two Liquid (NRTL) and UNIversal QUAasi-Chemical (UNIQUAC) models, which provide a good correlation of the experimental data with root mean square deviation (RMSD) values less than unity for all the studied systems. The results suggest that the structure and size of the anion greatly affects the extractive performance of ionic liquids. The reliability of experimental data is ascertained by applying the quantum chemical based COnductor like Screening Model-Segment Activity Coefficient (COSMO-SAC) model. The goodness of the fit is determined by calculating the RMSD values. The RMSD values obtained for [EMIM][OAc], [EMIM][EtSO4] and [EMIM][MeSO3] are 10.4%, 8.1% and 12.2%, respectively

  14. Experimental (liquid + liquid) equilibrium data for ternary and quaternary mixtures of fatty acid methyl and ethyl esters (FAME/FAEE) from soybean oil

    International Nuclear Information System (INIS)

    Highlights: • Innovative technique for quantification of compounds involved in the biodiesel production. • Easy and quick determination from NIR combined with multivariate calibration. • Reliable LLE correlation and predictions can be attained from the technique. -- Abstract: This work is aimed at providing an easy and quick determination of the biodiesel products using near infrared spectroscopy (NIR) by combination with the multivariate calibration in the analysis of (liquid + liquid) equilibrium (LLE) data for ternary and quaternary mixtures containing soybean fatty acid methyl (FAME) and ethyl (FAEE) esters, glycerol, ethanol, methanol and water, at various temperatures. The mass balance for the compositions obtained for each phase was carried out so as to demonstrate the reliability of the models generated by the multivariate calibration. Two distinct phases are observed, a glycerol-rich and the other ester-rich, while ethanol is dissolved among the phases hence reducing the partial mutual miscibility between glycerol and ester. Through (liquid + liquid) equilibrium (LLE) results, systems containing FAEE at T = 318.15 K and 303.15 K (calibration using data obtained at temperature of 318.15 K), a good agreement is verified among the values determined using conventional and NIR technique for alcoholic phase (AP) or aqueous phase (WP) and biodiesel phase (BP). Likewise in the systems containing FAME at 318.15 K, 303.15 K and 333.15 K (calibration using data obtained at temperature of 318.15 K), the LLE results were reproduced at the upper and lower temperature to the tests of the reproducibility of the models generated by the multivariate calibration

  15. CHEMOMETRICS IN BIOANALYTICAL SAMPLE PREPARATION - A FRACTIONATED COMBINED MIXTURE AND FACTORIAL DESIGN FOR THE MODELING OF THE RECOVERY OF 5 TRICYCLIC AMINES FROM PLASMA AFTER LIQUID-LIQUID-EXTRACTION PRIOR TO HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY

    NARCIS (Netherlands)

    WIELING, J; MENSINK, CK; JONKMAN, JHG; COENEGRACHT, PMJ; DUINEVELD, CAA; DOORNBOS, DA

    1993-01-01

    A general systematic approach is described for the chemometric modelling of liquid-liquid extraction data of drugs from biological fluids. Extraction solvents were selected from Snyder's solvent selectivity triangle: methyl tert.-butyl ether, methylene chloride and chloroform. The composition of a m

  16. SBA-15分子筛用于组装二溴对氯偶氮胂%USE OF MOLECULAR SIEVE SBA - 15 FOR INCORPORATION OF DIBROMOCHLORO-ARSENAZO

    Institute of Scientific and Technical Information of China (English)

    翟庆洲; 于辉; 蔡建岩; 秦亮

    2006-01-01

    Molecular sieve (SBA - 15)-(dibromochloro-arsenazo, DBC-ASA) host-guest composite materials were prepared by a liquid-phase grafting method using the calcined SBA- 15 molecular sieve as the host material, the DBC-ASA solution as the guest material, and water as the medium. The composite materials (SBA- 15)-(DBC-ASA) were characterized by X-ray diffraction(XRD), Fourier transform infrared(FTIR)spectra, solid state diffuse reflectance absorption spectra, and luminescence studies. The XRD results show that the molecular sieve framework in the (SBA- 15)-(DBC-ASA) host-guest composite materials is retained, and is highly ordered. The FTIR spectra indicate that the framework of the SBA- 15 molecular sieve is retained when a small amount of DBC-ASA is incorporated into it, the order degree of the molecular sieve decreases when a large amount of DBC-ASA is incorporated into it. The solid state diffuse reflectance absorption spectra show that DBC-ASA is located in the channel of the SBA - 15 molecular sieve, and the channel of SBA - 15 has stereoconfinment. The luminescence spectra show a strong non-radiation transition processes in the prepared samples, and this results in very strong electron-photon interaction causing a charge transfer transition. The Stokes displacement takes place and the spectrum bands broaden.%以煅烧的分子筛SBA-15为主体材料,二溴对氯偶氮胂(dibromochloro-arsenazo,DBC-ASA)作客体材料,以水为介质,用液相移植法制备了(SBA-15)-(DBC-ASA)主客体复合材料.用粉末X射线衍射、Fourier变换红外光谱、固体扩散漫反射吸收光谱及发光研究表征了所制得的复合材料(SBA-15)-(DBC-ASA)的性质.X射线衍射结果表明:(SBA-15)-(DBC-ASA)主客体复合材料分子筛骨架存在且有序度高.红外光谱分析表明:较低量的DBC-ASA引入SBA-15分子筛中,分子筛骨架结构仍然存在,但引入量较大时,分子筛的骨架有序度明显降低.固体扩散漫反射吸收光谱研

  17. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-03-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples. PMID:26717850

  18. Water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction for the determination of organochlorine pesticides in aqueous samples.

    Science.gov (United States)

    Li, Yee; Chen, Pai-Shan; Huang, Shang-Da

    2013-07-26

    A novel sample preparation method, "water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction (WLSEME)", coupled with gas chromatography using an electron capture detector (GC-ECD) was developed for the analysis of the organochlorine pesticides (OCPs), heptachlor, α-endosulfan, 4,4-DDE, 2,4-DDD and endrin, in aqueous samples. A microsyringe is used to withdrew and discharge 10-12μL of the extraction solvent and 60-120μL of water as the dispersed solvent (containing 1mgL(-1), Tween 80) 4 times within 10s to form a cloudy emulsified solution in the syringe. This is then injected into an 8mL aqueous sample spiked with all above OCPs. Dodecyl acetate and 2-dodecanol were both selected as extraction solvents to optimize their conditions separately. The total extraction time was about 0.5min. Under optimum conditions, using dodecyl acetate (12μL) as extraction solvent, the linear range of the method was 10-1000ngL(-1) for all OCPs, and the the limits of detection (LODs) ranged from 1 to 5ngL(-1). The absolute recoveries and relative recoveries were from 20.8 to 43.5% and 83.2 to 109.8% for lake water, and 19.9-49.2% and 85.4-115.9% for seawater respectively. In the second method, 2-dodecanol as extraction solvent, the linear range was from 5 to 5000ngL(-1) for the target compounds, and the LODs were between 0.5 and 2ngL(-1). The absolute recoveries and relative recoveries ranged from 25.7 to 42.2% and 96.3-111.2% for sea water, and 22.4-41.9% and 90.7-107.9% for stream water. This could solve several problems, which commonly occur in ultrasound-assisted emulsification micro-extraction (USAEME), dispersive liquid-liquid micro-extraction (DLLME) and other assisted emulsification methods. These problems include analyte degradation, increased solubility of the extraction solvent and analyte, and high toxicity and large volume of the organic solvent used. PMID:23566919

  19. Use of water in aiding olefin/paraffin (liquid + liquid) extraction via complexation with a silver bis(trifluoromethylsulfonyl)imide salt

    International Nuclear Information System (INIS)

    Highlights: • Silver-based ILs used as olefin extracting agents for olefin/paraffin mixtures. • Each extraction process is based on the olefin complexation and solvation. • The presence of water influences positively each extraction process. • Each extraction process was evaluated by DFT calculations, NMR, IR and Raman. • LLE data were then correlated by using the UNIQUAC model. - Abstract: This paper describes the extraction of C5–C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf2N]) to form room temperature ionic liquids [Ag(olefin)x][Tf2N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf2N], 1-pentene showed the best separation performance while C7 and C8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C5 and C6, for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf2N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin)x][Tf2N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins

  20. Multi-staging for extraction of cesium from nitric acid by a single liquid-liquid countercurrent centrifugal extractor with Taylor vortices

    International Nuclear Information System (INIS)

    Fission products that emit considerable decay heat and radioactivity, such as 137Cs, have a large impact on waste management. Small and high-performance extractor is desirable for separating such nuclei. In this study, we implemented the continuous extraction of Cs from nitric acid in a single liquid-liquid countercurrent centrifugal extractor with Taylor Vortices by calix arene-bis(t-octylbenzo-crown-6)(BOBCalixC6) as an extractant with trioctylamine(TOA) as a suppressant and with 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) as a phase modifier. Because of slow extraction kinetics of this process, extraction with multiple theoretical stages by just replacing conventional extractors into the single centrifugal extractor is difficult. Hence, we improved the dispersion of organic phase by an inner rotor made of lipophilic epoxy resin and elevating the solution temperature to lower the viscosity. Higher temperature was not appropriate from the aspect of chemical equilibrium in this process, but extraction with multiple theoretical stages was found to be possible. (author)

  1. Magnetic silica nanomaterials for solid-phase extraction combined with dispersive liquid-liquid microextraction of ultra-trace quantities of plasticizers

    International Nuclear Information System (INIS)

    We are presenting surface modified magnetic silica nanoparticles (m-Si-NPs) for use in solid-phase extraction combined with dispersive liquid-liquid microextraction (DLLME). The m-Si-NPs were surface-functionalized with octadecyl groups to give a material for the extraction of the plasticizers dibutyl phthalate, di(2-ethylhexyl) adipate and di(2-ethylhexyl) phthalate from water samples. The functionalized m-Si-NPs were characterized by scanning electron microscopy, FTIR spectroscopy, thermal gravimetric analysis, and vibrating sample magnetometry. The results showed that the m-Si-NPs were well functionalized with octadecyl groups. The effects of various experimental variables on the extraction efficiencies were investigated. The analytes were quantified by GC/FID. Under optimal conditions, the calibration plots are linear in the range from 0.01 to 100 μg∙L-1, and very high enrichment factors (mean value ∼20,000) were obtained. As a result of the high enrichment factors, the detection limits are as low as 2–3 ng∙L-1. The method was successfully employed to the extraction of the plasticizers from (spiked) water samples, and recoveries are in the order of 93.9 to 106.7 %. The method is low cost, fast, and very sensitive (author)

  2. A phase separation method for analyses of fluoroquinones in meats based on ultrasound-assisted salt-induced liquid-liquid microextraction and a new integrated device.

    Science.gov (United States)

    Wang, Huili; Gao, Ming; Xu, Youqu; Wang, Wenwei; Zheng, Lian; Dahlgren, Randy A; Wang, Xuedong

    2015-08-01

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted, salt-induced, liquid-liquid microextraction for determination of five fluoroquinones in meats by HPLC analysis. The novel integrated device consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 589μL of acetone solvent, pH2.1, 4.1min extraction time and 3.5g of Na2SO4. The limits of detection were 0.056-0.64 μgkg(-1) and recoveries were 87.2-110.6% for the five fluoroquinones in muscle tissue from fish, chicken, pork and beef. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinones in meat samples. PMID:25885797

  3. Ultrasound-assisted ion-pair dispersive liquid-liquid microextraction of trace amounts of lead in water samples prior to graphite furnace atomic absorption spectrometry determination.

    Science.gov (United States)

    Afzali, Daryoush; Mohadesi, Ali Reza; Falahnejad, Masoumeh; Bahadori, Behnoosh

    2013-01-01

    A new ion-pair dispersive liquid-liquid microextraction method is described for separation and preconcentration of trace amounts of lead in different water samples. Graphite furnace atomic absorption spectrometry was used for determination of lead. The ion association complex between lead and iodide ions that forms is PbI4(-2)-tetradecyl-dimethylbenzylammonium, which is extracted into fine droplets of chlorobenzene. In order to reach the optimized experimental conditions, the influence of different parameters, such as concentration of KI, nature and volume of extraction solvents, pH effect, extraction time, and the period and speed of sonication and centrifugation, were optimized. The LOD was 0.08 ng/mL and the linear dynamic range was 0.20-8.0 ng/mL in initial solution with a correlation coefficient of 0.9985. Under the optimum conditions, the enrichment factor was 555.5. The proposed method was successfully applied for separation and determination of lead in sea, rain, river, and drinking water samples. PMID:23513972

  4. Determination of carbohydrates in tobacco by pressurized liquid extraction combined with a novel ultrasound-assisted dispersive liquid-liquid microextraction method.

    Science.gov (United States)

    Cai, Kai; Hu, Deyu; Lei, Bo; Zhao, Huina; Pan, Wenjie; Song, Baoan

    2015-07-01

    A novel derivatization-ultrasonic assisted-dispersive liquid-liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 μL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06-0.90 μg mL(-1) and 0.9987-0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different. PMID:26043096

  5. Sensitive Detection of Organophosphorus Pesticides in Medicinal Plants Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Combined with Sweeping Micellar Electrokinetic Chromatography.

    Science.gov (United States)

    Wei, Jin-Chao; Hu, Ji; Cao, Ji-Liang; Wan, Jian-Bo; He, Cheng-Wei; Hu, Yuan-Jia; Hu, Hao; Li, Peng

    2016-02-01

    A simple, rapid, and sensitive method using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) combined with sweeping micellar electrokinetic chromatography (sweeping-MEKC) has been developed for the determination of nine organophosphorus pesticides (chlorfenvinphos, parathion, quinalphos, fenitrothion, azinphos-ethyl, parathion-methyl, fensulfothion, methidathion, and paraoxon). The important parameters that affect the UA-DLLME and sweeping efficiency were investigated. Under the optimized conditions, the proposed method provided 779.0-6203.5-fold enrichment of the nine pesticides compared to the normal MEKC method. The limits of detection ranged from 0.002 to 0.008 mg kg(-1). The relative standard deviations of the peak area ranged from 1.2 to 6.5%, indicating the good repeatability of the method. Finally, the developed UA-DLLME-sweeping-MEKC method has been successfully applied to the analysis of the investigated pesticides in several medicinal plants, including Lycium chinense, Dioscorea opposite, Codonopsis pilosula, and Panax ginseng, indicating that this method is suitable for the determination of trace pesticide residues in real samples with complex matrices. PMID:26758524

  6. Trace analysis of some organophosphorus pesticides in rice samples using ultrasound-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Sharafi, Kiomars; Fattahi, Nazir; Mahvi, Amir Hossein; Pirsaheb, Meghdad; Azizzadeh, Nahid; Noori, Masomeh

    2015-03-01

    An ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of a floating organic drop method followed by high-performance liquid chromatography was developed for the extraction, preconcentration, and determination of trace amounts of organophosphorus pesticides in rice samples. Variables affecting the performance of both steps were thoroughly investigated. Some effective parameters on extraction were studied and optimized. Under the optimum conditions, recoveries for rice sample are in the range of 58.0-66.0%. The calibration graphs are linear in the range of 4-800 μg/kg and, limits of detection and limits of quantification are in the range of 1.5-3 and 4.2-8.5 μg/kg, respectively. The relative standard deviation for 50.0 μg/kg of organophosphorus pesticides in rice sample are in the range of 4.4-5.1% (n = 5). The obtained results show that proposed method is a fast and simple method for the determination of pesticides in cereals. PMID:25641828

  7. Determination of volatile components of saffron by optimised ultrasound-assisted extraction in tandem with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Sereshti, Hassan; Heidari, Reza; Samadi, Soheila

    2014-01-15

    In the present research, a combined extraction method of ultrasound-assisted extraction (UAE) in conjunction with dispersive liquid-liquid microextraction (DLLME) was applied to isolation and enrichment of saffron volatiles. The extracted components of the saffron were separated and determined by gas chromatography-mass spectrometry (GC-MS) technique. The mixture of methanol/acetonitrile was chosen for the extraction of the compounds and chloroform was used at the preconcentration stage. The important parameters, such as composition of extraction solvent, volume of preconcentration solvent, ultrasonic applying time, and salt concentration were optimised by using a half-fraction factorial central composite design (CCD). Under the optimal conditions, the linear dynamic ranges (LDRs) were 10-10,000mgL(-)(1). The determination coefficients (R(2)) were from 0.9990 to 0.9997. The limits of detection (LODs) and limits of quantification (LOQs) for the extracted compounds were 6-123mgL(-)(1) and 20-406mgL(-)(1), respectively. The relative standard deviations (RSDs) were 2.48-9.82% (n=3). The enhancement factors (EFs) were 3.6-41.3. PMID:24054273

  8. Ultrasound-assisted low-density solvent dispersive liquid-liquid extraction for the determination of alkanolamines and alkylamines in cosmetics with ion chromatography.

    Science.gov (United States)

    Zhong, Zhixiong; Li, Gongke; Zhong, Xiuhua; Luo, Zhibin; Zhu, Binghui

    2013-10-15

    A new one-step sample preparation technique termed ultrasound-assisted low-density solvent dispersive liquid-liquid extraction (UA-LDS-DLLE) coupled with ion chromatography (IC) was developed for the determination of three alkanolamines and two alkylamines in complex samples. Sample matrices were rapidly dissolved and dispersed to form cloudy solutions by using two solvents, where target analytes were transferred into acid solutions, while liposoluble substances were dissolved in cyclohexane. The obtained extracts could be used directly for injection analysis without any additional purification because the potential matrix interferences had been effectively eliminated in extraction process. The extraction efficiency could be markedly enhanced and the extraction could be quickly accomplished within 13 min under the synergistic effects of ultrasound radiation, vibration and heating. Various parameters influencing extraction efficiency were evaluated using orthogonal array experimental design. The extraction performance of the approach was demonstrated for the determination of target analytes in 15 commercial cosmetics covering very different matrices. Linearity ranges of 0.3-50 mg L(-1) and limits of detection varying from 0.072 to 0.12 mg L(-1) were achieved. The recoveries ranged from 86.9-108.5% with the relative standard deviations (RSDs) of 1.2-6.2%. The method was proved to be a simple and effective extraction technique that provided an attractive alternative to the analysis of trace amounts of target analytes in large numbers of cosmetics. PMID:24054627

  9. Determination of cyclic and linear siloxanes in wastewater samples by ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cortada, Carol; dos Reis, Luciana Costa; Vidal, Lorena; Llorca, Julio; Canals, Antonio

    2014-03-01

    A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L(-1). Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71 and 116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples. PMID:24468359

  10. Integration of phase separation with ultrasound-assisted salt-induced liquid-liquid microextraction for analyzing the fluoroquinones in human body fluids by liquid chromatography.

    Science.gov (United States)

    Wang, Huili; Gao, Ming; Wang, Mei; Zhang, Rongbo; Wang, Wenwei; Dahlgren, Randy A; Wang, Xuedong

    2015-03-15

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on central composite design. Optimal conditions consisted of 945μL acetone extraction solvent, pH 2.1, 4.1min stir time, 5.9g Na2SO4, and 4.0min centrifugation. Under optimized conditions, the limits of detection (at S/N=3) were 0.12-0.66μgL(-1), the linear range was 0.5-500μgL(-1) and recoveries were 92.6-110.9% for the five FQs extracted from plasma and urine. The proposed method has several advantages, such as easy construction from inexpensive materials, high extraction efficiency, short extraction time, and compatibility with HPLC analysis. Thus, this method shows excellent prospects for sample pretreatment and analysis of FQs in human body fluids. PMID:25660716

  11. A rapid ultrasound-assisted dispersive liquid-liquid microextraction followed by ultra-performance liquid chromatography for the simultaneous determination of seven benzodiazepines in human plasma samples.

    Science.gov (United States)

    Fernández, Purificación; González, Cristina; Pena, M Teresa; Carro, Antonia M; Lorenzo, Rosa A

    2013-03-12

    A simple and efficient ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) method has been developed for the determination of seven benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, lormetazepam and tetrazepam) in human plasma samples. Chloroform and methanol were used as extractant and disperser solvents, respectively. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, pH, ultrasonic time and ionic strength) was carefully evaluated and optimized, using an asymmetric screening design 3(2)4(2)//16. Analysis of extracts was performed by ultra-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). Under the optimum conditions, two reversed-phases, Shield RP18 and C18 columns were successfully tested, obtaining good linearity in a range of 0.01-5μgmL(-1), with correlation coefficients r>0.996. Quantification limits ranged between 4.3-13.2ngmL(-1) and 4.0-14.8ngmL(-1), were obtained for C18 and Shield RP18 columns, respectively. The optimized method exhibited a good precision level, with relative standard deviation values lower than 8%. The recoveries studied at two spiked levels, ranged from 71 to 102% for all considered compounds. The proposed method was successfully applied to the analysis of seven benzodiazepines in real human plasma samples. PMID:23452791

  12. Study on the determination of heavy metals in water samples with ultrasound-assisted dispersive liquid-liquid microextraction prior to FAAS.

    Science.gov (United States)

    Li, Zonghao; Yu, Gong; Song, Jun; Wang, Qi; Liu, Mousheng; Yang, Yaling

    2013-01-01

    A new, simple and rapid method based on dispersive liquid-liquid microextraction (DLLME) was developed for extracting and preconcentrating copper (Cu), nickel (Ni), lead (Pb) and cadmium (Cd) in water samples prior to flame atomic absorption spectrometry (FAAS) analysis. 1-(2-thiazolylazo)-naphthol (TAN) was used as chelating reagents, and non-ionic surfactant Triton X-114 and CCl(4) as disperser solvent and extraction solvent, respectively. Some influential factors relevant to DLLME, such as the concentration of TAN, type and volume of disperser and extraction solvent, pH and ultrasound time, were optimized. Under the optimal conditions, the calibration curve was linear in the range of 10-800 μg L(-1) for Cu and Ni, 10-500 μg L(-1) for Pb, and 10-1,000 μg L(-1) for Cd, respectively. The limits of detection for the four metal ions were below 0.5 μg L(-1), with the enhancement factors of 105, 66, 28 and 106 for Cu, Ni, Pb and Cd, respectively. The relative standard deviations (RSD, n = 6) were 2.6-4.1%. The proposed method was applied to determination of Cu, Ni, Pb and Cd in water samples and satisfactory relative recoveries (93.0-101.2%) were achieved. PMID:23168620

  13. Dispersive solvent-free ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction coupled with HPLC for determination of ulipristal acetate.

    Science.gov (United States)

    Gong, Aiqin; Zhu, Xiashi

    2015-01-01

    In this paper, a simple and efficient ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (UA IL-DLLME) coupled with high-performance liquid chromatography for the analysis of ulipristal acetate (UPA) was developed. UPA could be easily migrated into 1-octyl-3-methylimidazolium hexafluorophosphate [C8mimPF6] IL phase without dispersive solvent. The research of extraction mechanism showed that hydrophobic interaction force played a key role in the IL-DLLME. Several important parameters affecting the extraction recovery were optimized. Under the optimized conditions, 25-fold enrichment factor was obtained and the limit of detection (LOD) was 6.8 ng mL(-1) (tablet) or 9.3 ng mL(-1) (serum) at a signal-to-noise ratio of 3. The calibration curve was linear over the range of 0.03-6.0 µg mL(-1). The proposed method was successfully applied to the UPA tablets and the real mice serum samples. PMID:25281147

  14. [Simultaneous determination of four phthalate esters in water samples using ultrasound-assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography].

    Science.gov (United States)

    Ma, Yanling; Chen, Lingxin; Ding, Yangjun; Ming, Yongfei; Li, Jinhua

    2013-02-01

    Ultrasound-assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography (UA-DLLME-HPLC) was developed for the determination of four typical phthalate esters (PAEs). The analyzed PAEs included dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) and di-n-octyl phthalate (DnOP). The UA-DLLME parameters such as types/volumes of extraction/dispersion solvents, ultrasonic time, ionic strength and extraction time, were investigated. Enrichment factor (EF)was employed to evaluate the extraction efficiency. The conditions were finally chosen: CCl4 (40 microL)/ acetonitrile (1.0 mL) as extraction/dispersion solvents; 30 g/L NaCl; ultrasound/centrifugation of 5 min. Under the optimized extraction conditions, UA-DLLME exhibited strong enrichment ability for the four PAEs. The EFs for DMP, DEP, DBP and DnOP obtained were 71, 144, 169 and 159, respectively. The limits of detection were 3.78, 1.77, 3.07 and 3.30 microg/L for DMP, DEP, DBP and DnOP, respectively. The satisfactory recoveries for three water samples at three spiked levels ranged from 82.99%-114.47%, with the relative standard deviations of 1.93%-8.31%. It is a convenient, speedy, environmentally benign method for the routine analysis of PAEs in water samples. PMID:23697182

  15. Dispersive liquid-liquid microextraction for the determination of nitrophenols in soils by microvial insert large volume injection-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2016-07-22

    A rapid and sensitive procedure for the determination of six NPs in soils by gas chromatography and mass spectrometry (GC-MS) is proposed. Ultrasound assisted extraction (UAE) is used for NP extraction from soil matrices to an organic solvent, while the environmentally friendly technique dispersive liquid-liquid microextraction (DLLME) is used for the preconcentration of the resulting UAE extracts. NPs were derivatized by applying an "in-situ" acetylation procedure, before being injected into the GC-MS system using microvial insert large volume injection (LVI). Several parameters affecting UAE, DLLME, derivatization and injection steps were investigated. The optimized procedure provided recoveries of 86-111% from spiked samples. Precision values of the procedure (expressed as relative standard deviation, RSD) lower than 12%, and limits of quantification ranging from 1.3 to 2.6ngg(-1), depending on the compound, were obtained. Twenty soil samples, obtained from military, industrial and agricultural areas, were analyzed by the proposed method. Two of the analytes were quantified in two of the samples obtained from industrial areas, at concentrations in the 4.8-9.6ngg(-1) range. PMID:27317004

  16. Homogeneous Liquid-Liquid Microextraction for Determination of Organophosphorus Pesticides in Environmental Water Samples Prior to Gas Chromatography-Flame Photometric Detection.

    Science.gov (United States)

    Berijani, Sana; Sadigh, Mirhanif; Pournamdari, Elham

    2016-07-01

    In this study, homogeneous liquid-liquid microextraction (HLLME) was developed for preconcentration and extraction of 15 organophosphorus pesticides (OPPs) from water samples coupling with gas chromatography followed by a flame photometric detector (HLLME-GC-FPD). In this method, OPPs were extracted by the homogeneous phase in a ternary solvent system (water/acetic acid/chloroform). The homogeneous solution was excluded by the addition of sodium hydroxide as a phase separator reagent and a cloudy solution was formed. After centrifugation (3 min at 5,000 rpm), the fine particles of extraction solvent (chloroform) were sedimented at the bottom of the conical test tube (10.0 ± 0.5 µL). Furthermore, 0.5 µL of the sedimented phase was injected into the GC for separation and determination of OPPs. Optimal results were obtained under the following conditions: volume of the extracting solvent (chloroform), 53 µL; volume of the consolute solvent (acetic acid), 0.76 mL and concentration of sodium hydroxide, 40% (w/v). Under the optimum conditions, the enrichment factors of (260-665), the extraction percent of 75.8-104%, the dynamic linear range of 0.03-300 µg L(-1) and the limits of detection of 0.004-0.03 µg L(-1) were obtained for the OPPs. This method was successfully applied for the extraction and determination of the OPPs in environmental water samples. PMID:26944949

  17. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    International Nuclear Information System (INIS)

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis

  18. Determination of Haloacetic Acids in Bottled and Tap Water Sources by Dispersive Liquid-Liquid Microextraction and GC-MS Analysis

    Directory of Open Access Journals (Sweden)

    Mohsen A. Al-shatri

    2014-01-01

    Full Text Available Haloacetic acids are toxic organic pollutants that can be formed as by-products of disinfection of water by chlorination. In this study, we developed a fast and efficient method for the determination of six species of these compounds in water using dispersive liquid-liquid microextraction followed by GC-MS analysis. To be suitable for GC analysis, the acidic analytes were derivatized using n-octanol. One-factor-at-a-time optimization was carried out on several factors including temperature, extraction time, amount of catalyst, and dispersive solvent. The optimized conditions were then used to determine calibration parameters. Linearity, as demonstrated by coefficient of determination, ranged between 0.9900 and 0.9966 for the concentration range of 0.05–0.57 µg/L. The proposed method has good repeatability; intraday precision was calculated as %RSD of 2.38–9.34%, while interday precision was 4.69–8.06%. The method was applied to real samples in bottled water and tap water sources. Results indicated that the total concentrations of the analytes in these sources (2.97–5.30 µg/L were far below the maximum contaminant levels set by both the World Health Organization and the United States Environmental Protection Agency. The proposed method compared favorably with methods reported in the literature.

  19. Dispersive liquid-liquid microextraction for simultaneous determination of cadmium, cobalt, lead and nickel in water samples by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    We report on a new method for the dispersive liquid-liquid microextraction of Cd(II), Co(II), Pb(II) and Ni (II) from water samples prior to their simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on the injection of a ternary solvent system composed of appropriate quantities of extraction solvent (trichloroethylene), dispersive solvent (ethanol), and the chelating reagent 2-(2'-benzothiazolylazo)-p-cresol into the sample solution. The solution turns turbid immediately after injection, and the analytes are extracted into the droplets of the organic phase which was dried and dissolved in a mixture of Triton X-114, nitric acid, and ethanol. The metal ions in this mixture were quantified by ICP-OES. The detection limits under optimized conditions are 0.2, 0.3, 0.2 and 0.7 μg L-1 for Cd(II), Co(II), Pb(II) and Ni(II), respectively. The enrichment factors were also calculated for Cd (13), Co (11), Pb (11) and Ni (8). The procedure was applied to the determination of cadmium, cobalt, lead and nickel in certified reference material (waterway sediment) and water samples. (author)

  20. Dispersive liquid-liquid microextraction of lead(II) as 5-(4-dimethylaminobenzylidene) rhodanine chelates from food and water samples.

    Science.gov (United States)

    Alothman, Zeid A; Al-Shaalan, Nora H; Habila, Mohamed A; Unsal, Yunus E; Tuzen, Mustafa; Soylak, Mustafa

    2015-02-01

    A dispersive liquid-liquid microextraction procedure for lead(II) as its 5-(4-dimethylaminobenzylidene) rhodanine complex has been established prior to its microsampling flame atomic absorption spectrometric determination. The influences of various analytical parameters including pH, solvent type and volume, dispersive solvent type and volume, 5-(4-dimethylaminobenzylidene) rhodanine amount, salt effect, and centrifugation time and speed were investigated. The effects of certain alkali, alkaline earth, and transition metal ions on the quantitative extraction of lead(II) were also studied. Quantitative recoveries were obtained at pH 6. The enrichment factor was calculated as 125. The detection limit for lead is 1.1 μg/L. The accuracy of the method was tested with the additions recovery test and analysis of the standard reference materials (SPS-WW2 waste water, NIST SRM 1515 apple leaves, and TMDA-51.3 fortified water). Applications of the present procedure were tested by analyzing water and food samples. PMID:25618567