WorldWideScience

Sample records for arsenazo previous liquid-liquid

  1. Spectrophotometric determination of uranium with arsenazo previous liquid-liquid extraction and colour development in organic medium; Determinacion espectrofotometrica de uranio con arsenazo, previa extraccion y desarrollo del color en medio organico

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Delgado, F.; Vera Palomino, J.; Petrement Eguiluz, J. C.

    1964-07-01

    The determination of uranium with arsenazo is hindered by a great number of cation which form stable complexes with the reactive and may given rise to serious interferences. By studying the optimum conditions of uranium the extraction be means of tributylphosphate solutions dissolved in methylisobuthylketone, under conditions for previous masking of the interfering cations, an organic extract was obtained containing all the uranium together with small amounts of iron. The possible interference derived from the latter element is avoided by reduction with hydroxylammoniumchlorid followed by complex formation of the Fe(II)-ortophenantroline compound in alcoholic medium. (Author) 17 refs.

  2. Method for determining microamounts of uranium in solutions from copper ores, by liquid-liquid extraction and spectrophotometry with arsenazo III.; Metodo para determinar microcantidades de uranio en disoluciones de minerales de cobre, por extraccion liquido-liquido y espectrofotometria con arsenazo III

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, B.

    1972-07-01

    A spectrophotometric method is described for determining small amounts of uranium in aqueous solutions from copper ores. Uranium is quantitatively separated in a single extraction by a solution of tri-n-octylphosphine oxide in benzene, using ethylendiaminetetracetic acid and sodium fluoride as complexing agents, for improving the selectivity of the procedure. An aliquot of the extract is diluted with a hydrocolloidal solution of arsenazo III. Optical density is measured at 650 nm. (Author) 3 refs.

  3. Fluid Mechanics of Liquid-Liquid Systems.

    Science.gov (United States)

    Richards, John Reed

    The detailed hydrodynamics of selected liquid -liquid flow systems are investigated to provide a firm foundation for the rational design of separation processes. The implementation of this objective centers on the development of a robust code to simulate liquid-liquid flows. We have applied this code to the realistic simulation of aspects of the complex fluid mechanical behavior, and developed quantitative insight into the underlying processes involved. The Volume of Fluid (VOF) method is combined with the Continuous Surface Force (CSF) algorithm to provide a numerically stable code capable of solving high Reynolds numbers free surface flows. One of the developments during the testing was an efficient method for solving the Young-Laplace equation describing the shape of the meniscus in a vertical cylinder for a constrained liquid volume. The steady-state region near the nozzle for the laminar flow of a Newtonian liquid jet injected vertically into another immiscible Newtonian liquid is investigated for various Reynolds numbers by solving the axisymmetric transient equations of motion and continuity. The analysis takes into account pressure, viscous, inertial, gravitational, and surface tension forces, and comparison with previous experimental measurements shows good agreement. Comparisons of the present numerical method with the numerical results of previous boundary-layer methods help establish their range of validity. A new approximate equation for the shape of the interface of the steady jet, based on an overall momentum balance, is also developed. The full transient from liquid-liquid jet startup to breakup into drops is also simulated numerically. In comparison with experiment, the results of the present numerical method show a greater sensitivity of the jet length to the Reynolds number than the best predictions of previous linear stability analyses. The formation of drops is investigated at low to high Reynolds numbers before and after jet formation. The

  4. Neptunium Binding Kinetics with Arsenazo(III)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stephen P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

  5. Treatment of Arsenazo III contaminated heavy water stored at Darlington

    Energy Technology Data Exchange (ETDEWEB)

    Suryanarayan, S.; Husain, A., E-mail: sriram.s@kinectrics.com [Kinectrics Inc., Toronto, Ontario (Canada); Williams, D., E-mail: denny.williams@opg.com [Ontario Power Generation, Darlington Nuclear Generating Station, Bowmanville, Ontario (Canada)

    2010-07-01

    Darlington Nuclear Generating Station (DNGS) has accumulated over 48 drums of chemistry laboratory waste arising from analysis of heavy water (D{sub 2}O). Several organic, including Arsenazo III, and inorganic contaminants present in these drums results in high total organic carbon (TOC) and conductivity. These drums have not been processed due to uncertainties related to clean-up of Arsenazo III contaminated heavy water. This paper provides details of chemical characterization as well as bench scale studies performed to demonstrate the feasibility of treating the downgraded D{sub 2}O to the stringent target specifications of <1 ppm TOC and <0.1mS/m conductivity, required for feed to the Station Upgrading Plant (SUP). Both ionic organic species such as glycolate, acetate and formate as well as neutral organics such as acetone, methanol and ethylene glycol were detected in all the samples. Morpholine and propylene glycol were detected in one sample. Arsenazo III was determined to be not a major contaminant (maximum 8.4 ppm) in these waste drums, compared to the other organic contaminants present. Various unit processes such as pH adjustment, granular activated carbon (GAC), ion exchange resin (IX), UV-peroxide oxidation (UV-H{sub 2}O{sub 2}) treatments, nanofiltration (NF) as well as reverse osmosis (RO) were tested on a bench scale both singly as well as in various combinations to evaluate their ability to achieve the stringent target conductivity and TOC specifications. Among the various bench scale tests evaluated, the successive processing train used at DNGS and consisting of GAC+IX+UV/H{sub 2}O{sub 2}+IX (polishing) unit operations was found to meet target specifications for both conductivity and TOC. Unit processes comprising (GAC+IX) and (RO-double pass + GAC+IX) met conductivity targets but failed to meet TOC specifications. The results of GAC+IX tests clearly emphasize the importance of using low flow rates for successful reduction in both conductivity as

  6. A novel aeration-assisted homogenous liquid-liquid microextration for determination of thorium and uranium in water and hair samples by inductively coupled plasma-mass spectroscopy.

    Science.gov (United States)

    Veyseh, Somayeh; Niazi, Ali

    2016-01-15

    A novel method based on aeration-assisted homogeneous liquid-liquid microextraction using high density solvent is presented, which is combined with inductively coupled plasma-mass spectroscopy in which simultaneous preconcentration and determination of thorium and uranium with arsenazo III as the chelating reagent is carried out. To achieve optimum conditions, several parameters such as pH, concentration of arsenazo III, extraction and homogenous solvent types and their volumes, salt concentration and extraction time were investigated. Under which, the calibration graphs were linear in the range of 0.5-600.0ng L(-1) for thorium and 0.3-550.0ng L(-1) for uranium. Good linearities were obtained for both analytes with R(2) values larger than 0.9990. The limits of detection (LOD, 3Sb/m, n=5) of this method were 0.12 and 0.09ng L(-1), and the enrichment factors were estimated to be 370 and 410 for thorium and uranium, respectively. The proposed method was applied to determine the thorium and uranium in human hair and different environmental water samples. Acceptable recoveries ranged from 99.4% to 100.7% with standard deviation of 0.05 to 0.17.

  7. Dynamics of liquid-liquid displacement.

    Science.gov (United States)

    Fetzer, Renate; Ramiasa, Melanie; Ralston, John

    2009-07-21

    Capillary driven liquid-liquid displacement in a system with two immiscible liquids of comparable viscosity was investigated by means of optical high speed video microscopy. For the first time, the impact of substrate wettability on contact line dynamics in liquid-liquid systems was studied. On all substrates, qualitatively different dynamics, in two distinct velocity regimes, were found. Hydrodynamic models apply to the fast stage of initial spreading, while nonhydrodynamic dissipation dominates contact line motion in a final stage at low speed, where the molecular kinetic theory (MKT) successfully captured the dynamics. The MKT model parameter values showed no systematic dependence on substrate wettability. This unexpected result is interpreted in terms of local contact line pinning.

  8. Electroviscoelasticity of liquid/liquid interfaces: fractional-order model.

    Science.gov (United States)

    Spasic, Aleksandar M; Lazarevic, Mihailo P

    2005-02-01

    A number of theories that describe the behavior of liquid-liquid interfaces have been developed and applied to various dispersed systems, e.g., Stokes, Reiner-Rivelin, Ericksen, Einstein, Smoluchowski, and Kinch. A new theory of electroviscoelasticity describes the behavior of electrified liquid-liquid interfaces in fine dispersed systems and is based on a new constitutive model of liquids. According to this model liquid-liquid droplet or droplet-film structure (collective of particles) is considered as a macroscopic system with internal structure determined by the way the molecules (ions) are tuned (structured) into the primary components of a cluster configuration. How the tuning/structuring occurs depends on the physical fields involved, both potential (elastic forces) and nonpotential (resistance forces). All these microelements of the primary structure can be considered as electromechanical oscillators assembled into groups, so that excitation by an external physical field may cause oscillations at the resonant/characteristic frequency of the system itself (coupling at the characteristic frequency). Up to now, three possible mathematical formalisms have been discussed related to the theory of electroviscoelasticity. The first is the tension tensor model, where the normal and tangential forces are considered, only in mathematical formalism, regardless of their origin (mechanical and/or electrical). The second is the Van der Pol derivative model, presented by linear and nonlinear differential equations. Finally, the third model presents an effort to generalize the previous Van der Pol equation: the ordinary time derivative and integral are now replaced with the corresponding fractional-order time derivative and integral of order p<1.

  9. Critical Phenomena in Liquid-Liquid Mixtures

    Science.gov (United States)

    Jacobs, D. T.

    2000-04-01

    Critical phenomena provide intriguing and essential insight into many issues in condensed matter physics because of the many length scales involved. Large density or concentration fluctuations near a system's critical point effectively mask the identity of the system and produce universal phenomena that have been well studied in simple liquid-vapor and liquid-liquid systems. Such systems have provided useful model systems to test theoretical predictions which can then be extended to more complicated systems. Along various thermodynamic paths, several quantities exhibit a simple power-law dependence close to the critical point. The critical exponents describing these relationships are universal and should depend only on a universality class determined by the order-parameter and spatial dimensionality of the system. Liquid gas, binary fluid mixtures, uniaxial ferromagnetism, polymer-solvent, and protein solutions all belong to the same (Ising model) universality class. The diversity of critical systems that can be described by universal relations indicates that experimental measurements on one system should yield the same information as on another. Our experimental investigations have tested existing theory and also extended universal behavior into new areas. By measuring the coexistence curve, heat capacity, thermal expansion and static light scattering (turbidity) in various liquid-liquid and polymer-solvent systems, we have determined critical exponents and amplitudes that have sometimes confirmed and other times challenged current theory. Recent experiments investigating the heat capacity and light scattering in a liquid-liquid mixture very close to the critical point will be discussed. This research is currently supported by The Petroleum Research Fund and by NASA grant NAG8-1433 with some student support from NSF-DMR 9619406.

  10. Liquid/liquid/solid contact angles

    Science.gov (United States)

    Borocco, Marine; Pellet, Charlotte; Authelin, Jean-René; Clanet, Christophe; Quéré, David; Compagnie des Interfaces Team

    2016-11-01

    Many studies have investigated solid/liquid/air interfaces and their corresponding wetting properties. We discuss what happens in less-studied liquid/liquid/solid systems, and focus on questions of dynamical wetting in a tube, having in mind applications in detergency. We use a capillary tube filled with water and containing a slug of silicone oil (or vice-versa), and present a series of experiments to determine static and dynamic wetting properties corresponding to this situation. We also discuss interfacial aging of such systems.

  11. Liquid-liquid phase transition in Stillinger-Weber silicon

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, Philippe; Mousseau, Normand [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7 (Canada)

    2005-04-20

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.

  12. Transient Grating Investigations at Liquid-Liquid Interfaces

    OpenAIRE

    Punzi, Angela; Brodard, Pierre; Vauthey, Eric

    2005-01-01

    A new four-wave-mixing technique with evanescent optical fields generated by total internal reflection at a liquid-liquid interface is described. Several applications of this method to measure thermoacoustic and dynamic properties near liquid-liquid interfaces are presented.

  13. Chiral separation by enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Schuur, B.; Verkuijl, B. J. V.; Minnaard, A. J.; De Vries, J. G.; Heeres, H. J.; Feringa, B. L.

    2011-01-01

    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and ch

  14. Macromolecular sensing at the liquid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Flynn, Shane [Tyndall National Institute, Lee Maltings, University College, Cork (Ireland); Arrigan, Damien W M, E-mail: gregoire.herzog@tyndall.ie [Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth (Australia)

    2011-08-17

    We report here the electrochemical sensing of macromolecules, such as polyLysine dendrimers, at the polarised liquid | liquid interface. Electrochemistry at the liquid | liquid interface is a powerful analytical technique which allows the detection of non-redox active molecules via ion transfer reactions at a polarised water - oil interface. We demonstrate here that different parameters of the polyLysine dendrimers (charge number, molecular weight) have a strong influence on the sensitivity and limit of detection of these macromolecules. This work will help to the development of sensors based on charge transfer at the liquid | liquid interface.

  15. Beyond dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Leong, Mei-I; Fuh, Ming-Ren; Huang, Shang-Da

    2014-03-28

    Dispersive liquid-liquid microextraction (DLLME) and other dispersion liquid-phase microextraction (LPME) methods have been developed since the first DLLME method was reported in 2006. DLLME is simple, rapid, and affords high enrichment factor, this is due to the large contact surface area of the extraction solvent. DLLME is a method suitable for the extraction in many different water samples, but it requires using chlorinated solvents. In recent years, interest in DLLME or dispersion LPME has been focused on the use of low-toxicity solvents and more conveniently practical procedures. This review examines some of the most interesting developments in the past few years. In the first section, DLLME methods are separated in two categories: DLLME with low-density extraction solvent and DLLME with high-density extraction solvent. Besides these methods, many novel special devices for collecting low-density extraction solvent are also mentioned. In addition, various dispersion techniques with LPME, including manual shaking, air-assisted LPME (aspirating and injecting the extraction mixture by syringe), ultrasound-assisted emulsification, vortex-assisted emulsification, surfactant-assisted emulsification, and microwave-assisted emulsification are described. Besides the above methods, combinations of DLLME with other extraction techniques (solid-phase extraction, stir bar sorptive extraction, molecularly imprinted matrix solid-phase dispersion and supercritical fluid extraction) are introduced. The combination of nanotechnique with DLLME is also introduced. Furthermore, this review illustrates the application of DLLME or dispersion LPME methods to separate and preconcentrate various organic analytes, inorganic analytes, and samples.

  16. Liquid-Liquid-Liquid Three Phase Extraction Apparatus: Operation Strategy and Influences on Mass Transfer Efficiency

    Institute of Scientific and Technical Information of China (English)

    何秀琼; 黄昆; 于品华; 张超; 谢铿; 李鹏飞; 王娟; 安震涛; 刘会洲

    2012-01-01

    Abstract A new mixer-settler-mixer three chamber integrated extractor is proposed in this work for liquid-liquid- liquid three phase countercurrent and continuous extraction. Experiments revealed the influences of the structural design of the three-liquid-phase extractor and some key operational parameters on three-phase partition of two phenolic isomers, p-nitrophenol (p-NP) and o-nitrophenol (o-NP). The model three-liquid-phase extraction system used here is nonane (organic top-plaase)-polyethylene glycol (PEG 20UU) (polymer mlddle-phase)-(NH4)2SO4 aqueous solution (aqueous bottom-phase). It is indicated that agitating speed and retention time in three-phase mixer are key parameters to extraction fraction of nitrophenol. Dispersion band behavior is related to agitating intensity, and its occurrence does not affect the extraction fraction of target compounds. The present work highlights the possibility of a feasible approach of scaling up of the proposed three-phase extraction apparatus for future in- dustrial-aimed applications.

  17. Surface nanodroplets for highly efficient liquid-liquid microextraction

    Science.gov (United States)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  18. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    Science.gov (United States)

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo.

  19. Simulation of Multistage Countercurrent Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Annasaheb WARADE

    2012-08-01

    Full Text Available Liquid-Liquid Extraction is one of the most significant unit operations used widely in the chemical industry for the separation of liquid-liquid mixture with the aid of an extracting solvent. There are different contacting patterns for the said purpose viz. co-current, counter current and crosscurrent and also a variety of equipments are encountered. This paper deals with the simulation of counter current liquid-liquid extraction operation for the special case of immiscible solvent using MATLAB. In this paper seven case studies have been studied and the results obtained are compared with the literature and it was found that results are in good agreement with the literature available.

  20. Liquid-Liquid Hydrocyclone Adopted in Jilin Oil Fields

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ As a new invention with high technique, liquid-liquid hydrocyclone (LLH) was developed in the world in the 1980s. It is designed to separate mutually insoluble liquid mixtures by its geometry and structure which cause an eddy motion in the internal of the liquid. It is characterized by the absence of moving parts in itself.

  1. Gas absorption in an agitated gas-liquid-liquid system

    NARCIS (Netherlands)

    Cents, A.H.G.; Brilman, D.W.F.; Versteeg, G.F.

    2001-01-01

    Gas-liquid-liquid systems have gained interest in the past decade and are encountered in several important industrial applications. In these systems an immiscible liquid phase may affect the gas absorption rate significantly. This phenomenon, however, is not completely understood and underlying mech

  2. Performance of sonication and microfluidization for liquid-liquid emulsification.

    Science.gov (United States)

    Maa, Y F; Hsu, C C

    1999-05-01

    The purpose of this research was to evaluate and compare liquid-liquid emulsions (water-in-oil and oil-in-water) prepared using sonication and microfluidization. Liquid-liquid emulsions were characterized on the basis of emulsion droplet size determined using a laser-based particle size analyzer. An ultrasonic-driven benchtop sonicator and an air-driven microfluidizer were used for emulsification. Sonication generated emulsions through ultrasound-driven mechanical vibrations, which caused cavitation. The force associated with implosion of vapor bubbles caused emulsion size reduction and the flow of the bubbles resulted in mixing. An increase in viscosity of the dispersion phase improved the sonicator's emulsification capability, but an increase in the viscosity of the dispersed phase decreased the sonicator's emulsification capability. Although sonication might be comparable to homogenization in terms of emulsification efficiency, homogenization was relatively more effective in emulsifying more viscous solutions. Microfluidization, which used a high pressure to force the fluid into microchannels of a special configuration and initiated emulsification via a combined mechanism of cavitation, shear, and impact, exhibited excellent emulsification efficiency. Of the three methodologies, sonication generated more heat and might be less suitable for emulsion systems involving heat-sensitive materials. Homogenization is in general a more effective liquid-liquid emulsification method. The results derived from this study can serve as a basis for the evaluation of large-scale liquid-liquid emulsification in the microencapsulation process.

  3. Nanomaterials at Liquid/Liquid Interfaces-A Review.

    Science.gov (United States)

    Divya, V; Sangaranarayanan, M V

    2015-09-01

    The charge transfer processes occurring at the interface between two immiscible electrolyte solutions are of considerable importance in diverse fields of chemistry and biology. The introduction to nanoparticles and analysis of nanostructures in diverse branches of science and engineering are provided. The chemical and electrochemical techniques pertaining to the synthesis of metal nanoparticles, polymeric nanostructures and metal-polymer nanocomposites at liquid/liquid interfaces are surveyed. The unique features pertaining to the chemical synthesis of metal nanoparticles while employing diverse electrolytes and solvents are outlined. The advantages of various electrochemical synthetic protocols such as four-electrode assembly, thin film electrode, Scanning Electrochemical Microscopy and Solid/liquid/liquid interfaces for the study of nanoparticles at liquid/liquid interfaces are emphasized. The crucial role played by the liquid/liquid interfaces in altering the morphological patterns of metal nanoparticles, conducting polymers and metal-polymer nanocomposites is indicated. A few typical novel applications of these nanomaterials in fabrication of biosensors, electrochemical supercapacitors, and electrocatalysts have been outlined.

  4. Polymer Crystallization at Curved Liquid/Liquid Interface

    Science.gov (United States)

    Wang, Wenda

    Liquid/liquid interface, either flat or curved, is a unique template for studying self-assembly of a variety of nanomaterials such as nanoparticles and nanorods. The resultant monolayer films can be ordered or disordered depending on the regularity of the nanomaterials. Integration of nanoparticles into two-dimensional structure leads to intriguing collective properties of the nanoparticles. Crystallization can also be guided by liquid/liquid interface. Due to the particular shape of the interface, crystallization can happen in a different manner comparing to the normal solution crystallization. In this dissertation, liquid/liquid interface is employed to guide the crystallization of polymers, mainly focusing on using curved liquid/liquid interface. Due to the unique shape of the interface and feasibility to control the curvature, polymer crystallization can take place in different manner and lead to the formation of curved or vesicular crystals. Curved liquid/liquid interface is typically created through o/w emulsions. With the presence of surfactant, the emulsions are controlled to be stable at least for the polymer crystallization periods. The difference to normal solution crystallization is: the nuclei will diffuse to the curved interface due to the Pickering effect and guide the crystallization along the curved liquid/liquid interface. If the supercooling can be controlled to be very small, crystal growth in the bulk droplets can be avoided. The advantages of this strategy are: 1) the formation process of vesicular type crystals can be monitored by controlling the polymer supply; 2) curved crystals, bowl-like structures and enclosed capsules can be easily obtained comparing to the self-assembly method for vesicle formation; 3) the obtained vesicles will be made of polymer crystals, which will possess the extraordinary mechanical properties. Based on the nucleation type, this dissertation is divided into two parts. The first part is focused on the self

  5. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition.

    Science.gov (United States)

    Xu, Limei; Kumar, Pradeep; Buldyrev, S V; Chen, S-H; Poole, P H; Sciortino, F; Stanley, H E

    2005-11-15

    We investigate, for two water models displaying a liquid-liquid critical point, the relation between changes in dynamic and thermodynamic anomalies arising from the presence of the liquid-liquid critical point. We find a correlation between the dynamic crossover and the locus of specific heat maxima C(P)(max) ("Widom line") emanating from the critical point. Our findings are consistent with a possible relation between the previously hypothesized liquid-liquid phase transition and the transition in the dynamics recently observed in neutron scattering experiments on confined water. More generally, we argue that this connection between C(P)(max) and dynamic crossover is not limited to the case of water, a hydrogen bond network-forming liquid, but is a more general feature of crossing the Widom line. Specifically, we also study the Jagla potential, a spherically symmetric two-scale potential known to possess a liquid-liquid critical point, in which the competition between two liquid structures is generated by repulsive and attractive ramp interactions.

  6. Adsorption of arsenazo (III due by phosphorus-containing polymer sorbent

    Directory of Open Access Journals (Sweden)

    Alosmanov Rasim M.

    2016-01-01

    Full Text Available Phosphorus-containing polymer sorbent was employed for removal hazardous Arsenazo (III dye from water. The adsorption characteristics were determined by the study at different parameters such as effect of solution pH, effect of initial dye concentration, sorbent dose, phase contact time, and temperature. The equilibrium data were analyzed on the basis of various adsorption isotherm models, namely Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. The highest monolayer adsorption capacity has been obtained (24.75 mg g-1 at 55°C. Different thermodynamic parameters such as free energy, enthalpy, and entropy have been calculated and it was concluded that when temperature rises, adsorption increases, indicating the endothermic nature of the process. Kinetic parameters were derived by pseudo-first-order, pseudo-second-order and intraparticle kinetic models. Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy were used to characterize the sorbent and also to validate the adsorption mechanism.

  7. Color-Fading Spectrophotometric Determination of Cerium with DBC-Arsenazo

    Institute of Scientific and Technical Information of China (English)

    翟庆洲; 张晓霞

    2004-01-01

    In the medium of 0.18~1.08 mol·L-1 sulfuric acid, cerium(Ⅳ) has the color-fading effect on DBC-arsenazo. The apparent molar absorptivity of the color-fading reaction is ε530 nm=1.03×104 L·mol-1·cm-1. Beer′s law is obeyed over the range of 1.20~12.0 μg·ml-1 of Ce (Ⅳ) which shows a linear relationship with the decrease in the absorbance of the colored solution. The effect of thirty-six coexisting ions was studied. The method was applied to the determination of the trace amount of cerium in water samples and has the advantage of high accuracy and good selectivity.

  8. Coaxial liquid-liquid flows in tubes with limited length

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Coaxial liquid-liquid flows were numerically studied in a nesting two-tube system. Calculations were carried out when various exit-lengths (meaning length differences between the two tubes) were used. Numerical results indicated that there exists a certain range of exit-length for the liquid-liquid flows to form stable and smooth interfaces, which requires that the exit-length should roughly be less than 5.6 times the outer tube diameter. In this range, interface instability is effectively restrained and the core fluid shows a phenomenon of die swell. When the exit-length is about 1.6 times the outer tube diameter, the core fluid has the greatest diameter size in the shell fluid. Velocity distributions at the outer tube exit favor formation of a continuous and stable core-shell structure.

  9. Optofluidic router based on tunable liquid-liquid mirrors.

    Science.gov (United States)

    Müller, Philipp; Kopp, Daniel; Llobera, Andreu; Zappe, Hans

    2014-02-21

    We present an electrically tunable 1 × 5 optofluidic router for on-chip light routing. The device can redirect light from an optical input channel into five output channels by exploiting total internal reflection (TIR) at a liquid-liquid interface. The liquid-liquid mirrors, demonstrated for the first time, are tuned using integrated electrowetting-on-dielectrics (EWOD) actuators. The router is assembled from two chips fabricated by standard MEMS techniques. Through a combination of microfluidic with micro-optical components on chip, reliable light routing is achieved with switching times of [1.5-3.3] s, efficiencies of coupling into channels of up to 12%, optical cross-talk as low as -24 dB, a required drive voltage of 50 V, and a low power consumption of router could thus lead to novel laboratory measurement systems.

  10. Separation of Asphaltenes by Polarity using Liquid-Liquid Extraction

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar

    1997-01-01

    In order to investigate the nature of petroleum asphaltenes in terms of polarity a process was developed using initial liquid-liquid extraction of the oil phase followed by precipitation of the asphaltenes using n-heptane. The liquid-liquid extraction was performed using toluene-methanol mixtures...... with increasing content of toluene. Although large fractions of the crude oil (Alaska ´93) was extracted in the higher polarity solvents (high concentration of methanol), the asphaltene content of the dissolved material was low. As the toluene content increased more asphaltenes were transferred to the solvent...... of the maltene phase also increase while H/C decreases. The content of heteroatoms in the asphaltenes are relatively higher and apparently increase with the polarity of the solvent. It is concluded that these asphaltenes are indeed dominated by high molecular weight substances that cannot be extracted...

  11. Entropy-driven liquid-liquid separation in supercooled water

    OpenAIRE

    Holten, V.; Anisimov, M.A.

    2012-01-01

    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water a...

  12. Energy conversion at liquid/liquid interfaces: artificial photosynthetic systems

    Science.gov (United States)

    Volkov, A. G.; Gugeshashvili, M. I.; Deamer, D. W.

    1995-01-01

    This chapter focuses on multielectron reactions in organized assemblies of molecules at the liquid/liquid interface. We describe the thermodynamic and kinetic parameters of such reactions, including the structure of the reaction centers, charge movement along the electron transfer pathways, and the role of electric double layers in artificial photosynthesis. Some examples of artificial photosynthesis at the oil/water interface are considered, including water photooxidation to the molecular oxygen, oxygen photoreduction, photosynthesis of amphiphilic compounds and proton evolution by photochemical processes.

  13. Hollow fiber-based liquid-liquid-liquid micro-extraction with osmosis: I. Theoretical simulation and verification.

    Science.gov (United States)

    Wu, Qian; Wu, Dapeng; Geng, Xuhui; Shen, Zheng; Guan, Yafeng

    2012-07-27

    Osmosis in hollow fiber-based liquid-liquid-liquid micro-extraction (HF-LLLME) was validated and utilized to improve enrichment factor of extraction in this study. When donor phase (sample solution) with higher ion strength than acceptor phase (extraction phase) was used, osmosis was established from acceptor phase, through organic membrane to donor phase. The mass flux expression of analytes across the organic membrane was established based on the convective-diffusive kinetic model, and the kinetic process for HF-LLLME with osmosis was simulated. Simulation results indicated that osmosis from acceptor phase to donor phase can increase enrichment factor of HF-LLLME, accelerate extraction process, and even result in the distribution ratio of analytes between donor and acceptor phase exceeding their partition coefficient. This phenomenon was verified by the experimental data of extraction with six organic acids and four organic bases as the model analytes.

  14. Experimental Evidence for a Liquid-Liquid Crossover in Deeply Cooled Confined Water

    Science.gov (United States)

    Cupane, Antonio; Fomina, Margarita; Piazza, Irina; Peters, Judith; Schirò, Giorgio

    2014-11-01

    In this work we investigate, by means of elastic neutron scattering, the pressure dependence of mean square displacements (MSD) of hydrogen atoms of deeply cooled water confined in the pores of a three-dimensional disordered SiO2 xerogel; experiments have been performed at 250 and 210 K from atmospheric pressure to 1200 bar. The "pressure anomaly" of supercooled water (i.e., a mean square displacement increase with increasing pressure) is observed in our sample at both temperatures; however, contrary to previous simulation results and to the experimental trend observed in bulk water, the pressure effect is smaller at lower (210 K) than at higher (250 K) temperature. Elastic neutron scattering results are complemented by differential scanning calorimetry data that put in evidence, besides the glass transition at about 170 K, a first-order-like endothermic transition occurring at about 230 K that, in view of the neutron scattering results, can be attributed to a liquid-liquid crossover. Our results give experimental evidence for the presence, in deeply cooled confined water, of a crossover occurring at about 230 K (at ambient pressure) from a liquid phase predominant at 210 K to another liquid phase predominant at 250 K; therefore, they are fully consistent with the liquid-liquid transition hypothesis.

  15. Liquid-liquid equilibria for ternary polymer mixtures

    Science.gov (United States)

    Oh, Suk Yung; Bae, Young Chan

    2011-01-01

    A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  16. Catalytic Spectrophotometry for Vanadium Determination Based on Oxidation of Arsenazo Ⅲ by Bichromate

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A catalytic spectrophotometry for the determination of trace amount of vanadium was developed based on its catalytic effect on the oxidation of arsenazo Ⅲ by potassium bichromate in weak acidic medium. The optimized conditions for determinations are: cK2Cr2O7=3.0×10-5 mol·L-1, carsenazo Ⅲ=3.0×10-5 mol·L-1, pH=4.0, t=90℃. The calibration graph is linear for 0.02~0.2 μg·ml-1, and the detection limit is 0.02 μg·ml-1 V. The apparent active energy of this catalytic reaction is 21.72 kJ·mol-1. Most foreign ions do not interfere with the determination of vadadium, except for Fe(Ⅱ) and Co(Ⅱ), and their interferences could be eliminated by ion exchange. The present method has been used to make the determination of vanadium in human hair, tea, potato and wastewater, and the results were satisfactory.

  17. Entropy-driven liquid-liquid separation in supercooled water

    CERN Document Server

    Holten, V

    2012-01-01

    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water at low temperatures is viewed as an 'athermal solution' of two molecular structures with different entropies and densities. Alternatively to popular models for water, in which the liquid-liquid separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy upon increasing the pressure, while the critical temperature is defined by the 'reaction' equilibrium constant. In particular, the model predicts the location of density maxima at the locus of a near-constant fraction (about 0.1...

  18. Spectroscopic Detection of Chiral Aggregation at Liquid-Liquid Interfaces

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two new spectroscopic methods to detect the optical activity of liquid-liquid interfaces have been developed. The first one is the centrifugal liquid membrane (CLM) method combined with a conventional circular dichroism (CD) spectropolarimetry and the second one is a more interfacial specific second harmonic generation CD (SHG-CD) spectrometry. In the CLM-CD method, a cylindrical glass cell containing small amounts of organic and aqueous phases was rotated at about 7000 r/min in a sample chamber of a CD spectropolarimeter to generate an interface with a high specific interfacial area between the two-phase liquid membranes. The CD spectra of the J-aggregate of protonated 5,10,15, 20-tetraphenylporphyrin formed at the toluene-sulfuric acid interface have been measured. As for the SHG-CD, a circularly polarized wavelength-variable fs-laser system was constructed to measure the interfacial SHG spectra of a flat liquid-liquid interface. The ion-associated aggregation of a water-soluble anionic porphyrin promoted with a cationic amphiphile at the heptane-water interface was observed by this technique and the observed SHG-CD spectra proved the generation of a characteristic optical activity accompanied by the formation of the interfacial aggregate of inherently achiral porphyrin molecules. These methods will pioneer a new field of interfacial chiral chemistry in the studies of solvent extraction mechanisms.

  19. Spectroscopic analysis of bosentan in biological samples after a liquid-liquid microextraction

    Directory of Open Access Journals (Sweden)

    Sanaz Sajedi-Amin

    2015-12-01

    Conclusion: A simple, low cost, precise and accurate spectrophotometric analysis of bosentan in biological samples after liquid-liquid microextraction were developed and validated for routine analyses.

  20. Performance Characterization of a Microchannel Liquid/Liquid Heat Exchanger Throughout an Extended Duration Life Test

    Science.gov (United States)

    Sheth, Rubik B.; Stephan, Ryan A.; Hawkins-Reynolds Ebony

    2011-01-01

    Liquid/Liquid Heat Exchangers (L/L HX) are an integral portion of any spacecraft active thermal control system. For this study the X-38 L/L HX was used as a baseline. As detailed in a previous ICES manuscript, NASA paired with Pacific Northwest National Laboratory to develop a Microchannel L/L HX (MHX). This microchannel HX was designed to meet the same performance characteristics as the aforementioned X-38 HX. The as designed Microchannel HX has a 26% and 60% reduction in mass and volume, respectively. Due to the inherently smaller flow passages the design team was concerned about fouling affecting performance during extended missions. To address this concern, NASA has developed a test stand and is currently performing an 18 month life test on the MHX. This report will detail the up-to-date performance of the MHX during life testing.

  1. Recent developments in dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Saraji, Mohammad; Boroujeni, Malihe Khalili

    2014-03-01

    During the past 7 years and since the introduction of dispersive liquid-liquid microextraction (DLLME), the method has gained widespread acceptance as a simple, fast, and miniaturized sample preparation technique. Owing to its simplicity of operation, rapidity, low cost, high recovery, and low consumption of organic solvents and reagents, it has been applied for determination of a vast variety of organic and inorganic compounds in different matrices. This review summarizes the DLLME principles, historical developments, and various modes of the technique, recent trends, and selected applications. The main focus is on recent technological advances and important applications of DLLME. In this review, six important aspects in the development of DLLME are discussed: (1) the type of extraction solvent, (2) the type of disperser solvent, (3) combination of DLLME with other extraction methods, (4) automation of DLLME, (5) derivatization reactions in DLLME, and (6) the application of DLLME for metal analysis. Literature published from 2010 to April 2013 is covered.

  2. Reactions and Polymerizations at the Liquid-Liquid Interface.

    Science.gov (United States)

    Piradashvili, Keti; Alexandrino, Evandro M; Wurm, Frederik R; Landfester, Katharina

    2016-02-24

    Reactions and polymerizations at the interface of two immiscible liquids are reviewed. The confinement of two reactants at the interface to form a new product can be advantageous in terms of improved reaction kinetics, higher yields, and selectivity. The presence of the liquid-liquid interface can accelerate the reaction, or a phase-transfer catalyst is employed to draw the reaction in one phase of choice. Furthermore, the use of immiscible systems, e.g., in emulsions, offers an easy means of efficient product separation and heat dissipation. A general overview on low molecular weight organic chemistry is given, and the applications of heterophase polymerization, occurring at or in proximity of the interface, (mostly) in emulsions are presented. This strategy can be used for the efficient production of nano- and microcarriers for various applications.

  3. Thermal energy storage with liquid-liquid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santana, E.A.; Stiel, L.I. [Polytechnic Univ., Brooklyn, NY (United States)

    1989-03-01

    The use of liquid-liquid mixtures for heat and cool storage applications has been investigated. Suitable mixtures exhibit large changes in the heat of mixing above and below the critical solution temperature of the system. Analytical procedures have been utilized to determine potential energy storage capabilities of systems with upper or lower critical solution temperatures. It has been found that aqueous systems with lower critical solution temperatures in a suitable range can result in large increases in the effective heat capacity in the critical region. For cool storage with a system of this type, the cooling process results in a transformation from two liquid phases to a single phase. Heats of mixing have been measured with a flow calorimeter system for a number of potential mixtures, and the results are summarized.

  4. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide.

    Science.gov (United States)

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2016-03-01

    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced.

  5. PERFORMANCE OF A PACKED LIQUID-LIQUID EXTRACTION COLUMN

    Directory of Open Access Journals (Sweden)

    İ. Metin HASDEMİR

    1999-03-01

    Full Text Available The influence of feed ratios ((LE/LR on the performance of a packed liquid-liquid extraction column, with a diameter of 5.86 cm and a column height of 132 cm was investigated. The column is made of borosilicate glass and packed with 10 x 10 mm glass Raschig rings. In this study, a ternary system composed of water + propionic acid + trichloroethylene was used. The data used to triangular diagram were obtained experimentally. The overall mass transfer coefficients, the numbers of overall mass transfer units, the heights of mass transfer units, the numbers of theoretical stages and height equivalent to a theoretical stage (H. E. T. S. values were calculated and compared with each other.

  6. Study on liquid-liquid bimetal composite casting hammers

    Institute of Scientific and Technical Information of China (English)

    Rong Shoufan; Zhou Haitao; ZhuYongchang; Wang Junfa; Yao Jia; Li Chunhong

    2014-01-01

    Crusher hammers for the mineral processing industry must meet the demands of both high wear resistance at the hammer head and high impact toughness at the hammer handle. The crusher hammers made of Hadfield steel have typical y low service life of less than 40 hours. To solve the problem, a kind of bimetal crusher hammers made of high chromium cast iron (HCCI) and low al oy steel (LAS) has been successful y developed by using liquid-liquid composite casting. The microstructure and composite interface bonding was analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the composite interface is metal urgical y bonded with a zigzag shape across the boundary and without unbound region or void. After heat treatment, the composite hammers have shown excellent properties. The hardness of HCCI is at least 63 HRC and its αk is greater than 3.5 J•cm-2; the hardness of LAS is greater than 35 HRC and its αk is no less than 80 J•cm-2. Diffusion of elements takes place at the interface and forms a transition region. The micro hardness increases from LAS to the interface and then to HCCI. Wear comparison was made separately between the bimetal composite hammer and a Hadfield steel hammer in two quarries of Jilin province and Liaoning province. The results showed that the liquid-liquid bimetal composite hammers did not have the fal ing off of hammer head or impact fracture phenomenon, and their service life was 3.75 times as long as that of the Hadfield steel hammers.

  7. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)

    1997-07-01

    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  8. Liquid-Liquid Phase Equilibria and Interactions between Droplets in Water-in-Oil Microemulsions.

    Science.gov (United States)

    Yin, Tianxiang; Wang, Mingjie; Tao, Xiaoyi; Shen, Weiguo

    2016-12-20

    The liquid-liquid phase equilibria of [water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-decane] with the molar ratio w0 of water to AOT being 37.9 and [water/AOT/ethoxylated-2,5,8,11-tetramethyl-6-dodecyne-5,8-diol(Dynol-604)/n-decane] with w0 = 37.9 and the mole fraction α of Dynol-604 in the total surfactants being 0.158 were measured in this study. From the data collected in the critical region, the critical exponent β corresponding to the width of the coexistence curve was determined, which showed good agreement with the 3D-Ising value. A thermodynamic approach based on the Carnahan-Starling-van der Waals type equation was proposed to describe the coexistence curves and to deduce the interaction properties between droplets in the microemulsions. The interaction enthalpies were found to be positive for the studied systems, which evidenced that the entropy effect dominated the phase separations as the temperature increased. The addition of Dynol-604 into the (water/AOT/n-decane) microemulsion resulted in the decrease in the critical temperature and the interaction enthalpy. Combining the liquid-liquid equilibrium data for (water/AOT/n-decane) microemulsions with various w0 values determined previously, it was shown that the interaction enthalpy decreased with w0 and tended to change its sign at low w0, which coincided with the results from the isothermal titration calorimetry investigation. All of these behaviors were interpreted by the effects of entropy and enthalpy and their competition, which resulted from the release of solvent molecules entrapped in the interface of microemulsion droplets and were dependent on the rigidity of the surfactant layers and the size of the droplet.

  9. Liquid-liquid equilibria for ternary polymer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suk Yung [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of); Bae, Young Chan, E-mail: ycbae@hanyang.ac.kr [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-01-24

    Graphical abstract: We developed a molecular thermodynamic model for multicomponent systems and discribed the phase equilibrium for ternary polymer mixtures by using the model parameters obtained from the binary systems. Research highlights: {yields} Model parameters were obtained from the binary systems. {yields} The obtained parameters were directly used to predict the ternary data. {yields} The undetermined parameters were used to correlate the ternary data. {yields} The proposed model agreed well with the experimental data. - Abstract: A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  10. Recent development and applications of dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Yan, Hongyuan; Wang, Hui

    2013-06-21

    Dispersive liquid-liquid microextraction (DLLME) is a modern sample pretreatment technique that is regarded as consilient with the current trends of modern analytical chemistry. DLLME is simple, inexpensive, environmentally friendly, and could offer high enrichment factors from a wide gap between acceptor and donor phases. As a consequence, DLLME has attracted considerable attention from researchers and, based on the numerous publications concerning DLLME, has been generally accepted in separation science since the technique's invention in 2006. However, several innate weaknesses of DLLME, which restrict the technique's use in certain fields, have led to various attempts or suggestions to improve this technique. The present review focuses on the recent advances made in DLLME; the selected papers that are discussed in this work represent modifications that fall into three main categories (exploration of new extraction solvents, disperser solvents and combination with other techniques). The recent applications of DLLME in environmental, food and biological samples are also summarised, covering almost all of the publications related to the technology from the beginning. In addition, the feasibility of future trends of DLLME is discussed.

  11. Evolution of dispersive liquid-liquid microextraction method.

    Science.gov (United States)

    Rezaee, Mohammad; Yamini, Yadollah; Faraji, Mohammad

    2010-04-16

    Dispersive liquid-liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given.

  12. Batch liquid-liquid extraction of phenol from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Palma, M.S.A.; Shibata, C. [Department of Biochemical Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo-SP (Brazil); Paiva, J.L. [Department of Chemical Engineering, Polytechnical School, University of Sao Paulo, Sao Paulo-SP (Brazil); Zilli, M. [Department of Chemical and Process Engineering, University of Genoa, Genoa (Italy); Converti, A.

    2010-01-15

    The aim of this work is the study of batch liquid-liquid extraction of phenol from aqueous solutions in a bench-scale well-mixed reactor. The influence of the ratio of phase volumes, temperature, and rotational speed on phenol removal (0.72-1.1 % w/w) was investigated using methyl isobutyl ketone as an extracting solvent. For this purpose, the ratio of phase volumes were set at 0.1 and 0.2, the temperature at 10, 20, and 30 C, and the rotational speed at 300, 400, and 500 rpm. A physical model based on the material balance of the phases as well as the equation of mass flux between the phases allowed the estimation of the overall coefficient of mass transfer coupled with the superficial area. Moreover, it proved to fit, satisfactorily well, the experimental data of residual phenol concentration in the organic phase versus time under all the conditions investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Optimized liquid-liquid extractive rerefining of spent lubricants.

    Science.gov (United States)

    Kamal, Muhammad Ashraf; Naqvi, Syed Mumtaz Danish; Khan, Fasihullah

    2014-01-01

    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R (2) = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent ratio r). Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp.) so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7 h, T = 10°C, and r = 2) and fairly moderate conditions (t = 26.6 h, T = 10°C, and r = 5) established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge.

  14. Compartmentalized Droplets for Continuous Flow Liquid-Liquid Interface Catalysis.

    Science.gov (United States)

    Zhang, Ming; Wei, Lijuan; Chen, Huan; Du, Zhiping; Binks, Bernard P; Yang, Hengquan

    2016-08-17

    To address the limitations of batch organic-aqueous biphasic catalysis, we develop a conceptually novel method termed Flow Pickering Emulsion, or FPE, to process biphasic reactions in a continuous flow fashion. This method involves the compartmentalization of bulk water into micron-sized droplets based on a water-in-oil Pickering emulsion, which are packed into a column reactor. The compartmentalized water droplets can confine water-soluble catalysts, thus "immobilizing" the catalyst in the column reactor, while the interstices between the droplets allow the organic (oil) phase to flow. Key fundamental principles underpinning this method such as the oil phase flow behavior, the stability of compartmentalized droplets and the confinement capability of these droplets toward water-soluble catalysts are experimentally and theoretically investigated. As a proof of this concept, case studies including a sulfuric acid-catalyzed addition reaction, a heteropolyacid-catalyzed ring opening reaction and an enzyme-catalyzed chiral reaction demonstrate the generality and versatility of the FPE method. Impressively, in addition to the excellent durability, the developed FPE reactions exhibit up to 10-fold reaction efficiency enhancement in comparison to the existing batch reactions, indicating a unique flow interface catalysis effect. This study opens up a new avenue to allow conventional biphasic catalysis reactions to access more sustainable and efficient flow chemistry using an innovative liquid-liquid interface protocol.

  15. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  16. Mass transfer and chemical reaction in gas-liquid-liquid systems

    NARCIS (Netherlands)

    Brilman, Derk Willem Frederik

    1998-01-01

    Gas-liquid-liquid reaction systems may be encountered in several important fields of application as e.g. hydroformylation, alkylation, carboxylation, polymerisation, hydrometallurgy, biochemical processes and fine chemicals manufacturing. However, the reaction engineering aspects of these systems ha

  17. Detection of food additives by voltammetry at the liquid-liquid interface.

    Science.gov (United States)

    Herzog, Grégoire; Kam, Victor; Berduque, Alfonso; Arrigan, Damien W M

    2008-06-25

    Electrochemistry at the liquid-liquid interface enables the detection of nonredoxactive species with electroanalytical techniques. In this work, the electrochemical behavior of two food additives, aspartame and acesulfame K, was investigated. Both ions were found to undergo ion-transfer voltammetry at the liquid-liquid interface. Differential pulse voltammetry was used for the preparation of calibration curves over the concentration range of 30-350 microM with a detection limit of 30 microM. The standard addition method was applied to the determination of their concentrations in food and beverage samples such as sweeteners and sugar-free beverages. Selective electrochemically modulated liquid-liquid extraction of these species in both laboratory solutions and in beverage samples was also demonstrated. These results indicate the suitability of liquid-liquid electrochemistry as an analytical approach in food analysis.

  18. Direct Spectrophotometric Determination of the Total Amount of Light Rare Earths with Arsenazo-DBS as a Chelator

    Institute of Scientific and Technical Information of China (English)

    Yuan Fuzhen

    1999-01-01

      A direct spectrophotometric method for the determination of the total light rare earths has been developed. In this method, arsenazo-DBS is used as a chelating agent with light rare earth elements in strong acidic medium (0.04-0.48 mol l-1 of acidity). The concentrations of total rare earths in 0-15 μg /(25 ml) range can be determined accurately by this method. An absorption maximum was observed at 630 nm at which a molar absorptivity of 1.14x105 l mol-1 cm-1 was determined. The method offers high selectivity and good sensitivity towards light rare earths and features simplicity and rapidity in operation. It has been applied to the determination of light rare earths in cast iron and Ni-Fe alloys.

  19. Behavior of Supercooled Aqueous Solutions Stemming from Hidden Liquid-Liquid Transition in Water

    OpenAIRE

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-01-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two...

  20. The reversibility and first-order nature of liquid-liquid transition in a molecular liquid

    Science.gov (United States)

    Kobayashi, Mika; Tanaka, Hajime

    2016-11-01

    Liquid-liquid transition is an intriguing phenomenon in which a liquid transforms into another liquid via the first-order transition. For molecular liquids, however, it always takes place in a supercooled liquid state metastable against crystallization, which has led to a number of serious debates concerning its origin: liquid-liquid transition versus unusual nano-crystal formation. Thus, there have so far been no single example free from such debates, to the best of our knowledge. Here we show experimental evidence that the transition is truly liquid-liquid transition and not nano-crystallization for a molecular liquid, triphenyl phosphite. We kinetically isolate the reverse liquid-liquid transition from glass transition and crystallization with a high heating rate of flash differential scanning calorimetry, and prove the reversibility and first-order nature of liquid-liquid transition. Our finding not only deepens our physical understanding of liquid-liquid transition but may also initiate a phase of its research from both fundamental and applications viewpoints.

  1. Search for a liquid-liquid critical point in models of silica

    Science.gov (United States)

    Lascaris, Erik; Hemmati, Mahin; Buldyrev, Sergey V.; Stanley, H. Eugene; Angell, C. Austen

    2014-06-01

    Previous research has indicated the possible existence of a liquid-liquid critical point (LLCP) in models of silica at high pressure. To clarify this interesting question we run extended molecular dynamics simulations of two different silica models (WAC and BKS) and perform a detailed analysis of the liquid at temperatures much lower than those previously simulated. We find no LLCP in either model within the accessible temperature range, although it is closely approached in the case of the WAC potential near 4000 K and 5 GPa. Comparing our results with those obtained for other tetrahedral liquids, and relating the average Si-O-Si bond angle and liquid density at the model glass temperature to those of the ice-like β-cristobalite structure, we conclude that the absence of a critical point can be attributed to insufficient "stiffness" in the bond angle. We hypothesize that a modification of the potential to mildly favor larger average bond angles will generate a LLCP in a temperature range that is accessible to simulation. The tendency to crystallize in these models is extremely weak in the pressure range studied, although this tendency will undoubtedly increase with increasing stiffness.

  2. Rapid determination of octanol-water partition coefficient using vortex-assisted liquid-liquid microextraction.

    Science.gov (United States)

    Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria

    2014-02-21

    Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption.

  3. Study of the ST2 model of water close to the liquid-liquid critical point.

    Science.gov (United States)

    Sciortino, Francesco; Saika-Voivod, Ivan; Poole, Peter H

    2011-11-28

    We perform successive umbrella sampling grand canonical Monte Carlo computer simulations of the original ST2 model of water in the vicinity of the proposed liquid-liquid critical point, at temperatures above and below the critical temperature. Our results support the previous work of Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti [J. Chem. Phys., 2009, 131, 104508], who provided evidence for the existence and location of the critical point for ST2 using the Ewald method to evaluate the long-range forces. Our results therefore demonstrate the robustness of the evidence for critical behavior with respect to the treatment of the electrostatic interactions. In addition, we verify that the liquid is equilibrated at all densities on the Monte Carlo time scale of our simulations, and also that there is no indication of crystal formation during our runs. These findings demonstrate that the processes of liquid-state relaxation and crystal nucleation are well separated in time. Therefore, the bimodal shape of the density of states, and hence the critical point itself, is a purely liquid-state phenomenon that is distinct from the crystal-liquid transition.

  4. Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces.

    Science.gov (United States)

    Zhong, Shenghong; Jang, Chang-Hyun

    2015-09-21

    Here, we report the development of an experimental system based on liquid crystals (LCs) confined in microcapillaries for imaging interfacial phenomena. The inner surfaces of the microcapillaries were modified with octadecyltrichlorosilane to promote an escaped-radial configuration of LCs. We checked the optical appearance of the capillary-confined LCs under a crossed polarizing microscope and determined their arrangement based on side and top views. We then placed the capillary-confined LCs in contact with non-surfactant and surfactant solutions, producing characteristic textures of two bright lines and a four-petal shape, respectively. We also evaluated the sensitivity, stability, and reusability of the system. Our imaging system was more sensitive than previously reported LC thin film systems. The textures formed in microcapillaries were stable for more than 120 h and the capillaries could be reused at least 10 times. Finally, we successfully applied our system to image the interactions of phospholipids and bivalent metal ions. In summary, we developed a simple, small, portable, sensitive, stable, and reusable experimental system that can be broadly applied to monitor liquid-liquid interfacial phenomena. These results provide valuable information for designs using confined LCs as chemoresponsive materials in optical sensors.

  5. Development and comparison of two dispersive liquid-liquid microextraction techniques coupled to high performance liquid chromatography for the rapid analysis of bisphenol A in edible oils.

    Science.gov (United States)

    Liu, Shuhui; Xie, Qilong; Chen, Jie; Sun, Janzhi; He, Hui; Zhang, Xiaoke

    2013-06-21

    In this study, two novel sample extraction methods for the analysis of bisphenol A (BPA) in edible oils were developed by using liquid-liquid extraction followed by a dispersive liquid-liquid microextraction (LLE-DLLME) and reversed-phase dispersive liquid-liquid microextraction (RP-DLLME). RP-DLLME showed a superior characteristic over LLE-DLLME and other previously reported procedures because of its easy operation, short extraction time, high sensitivity, low organic solvent consumption and waste generation. The optimized extraction conditions of RP-DLLME for 1.0 g of edible oil diluted in 4 mL of n-hexane were: extractant, 100 μL 0.2 M sodium hydroxide solution (80% methanol, v/v); extraction time, 1 min; centrifugation, 3 min. The determination of BPA was carried out by high performance liquid chromatography coupled with a DAD detector. The method offered excellent linearity over a range of 0.010-0.5 μg g(-1) with a correlation coefficient of r>0.997. Intra-day and inter-day repeatability values expressed as relative standard deviation were 1.9% and 5.9%, respectively. The quantitation limit and detection limit were 6.3 and 2.5 ng g(-1). The target analyte was detected in 5 out of 16 edible oil samples. The recovery rates in real samples ranged from 89.5 to 99.7%.

  6. Studies on the liquid-liquid interfacial mass transfer process using holographic interferometry

    Institute of Scientific and Technical Information of China (English)

    Chaofan ZHAO; Youguang MA; Chunying ZHU

    2008-01-01

    This paper aims at the interracial phenomena of liquid-liquid mass transfer and its characteristic. By using the real-time holographic technique, the concen-tration distributions on the aqueous side were obtained according to holographic diagrams of mass transfer of ethanol through the interface of oil and water at different initial concentrations. Furthermore, the concentrations near the interface and the mass transfer coefficients were attained. A correlation of concentration near the interface to the concentration of the solute in the oil side was proposed. An approach of interfacial energy with solute concentration was established, and the calculated results are at good agreement with the experimental data. It is indicated that the liquid-liquid mass transfer process is approximately in accordance with two-film theory, the interfacial performance may be changed by the addition of the solute, and the interface of liquid-liquid is non-equilibrium thermodynamically during the mass transfer process.

  7. An inkjet-printed microfluidic device for liquid-liquid extraction.

    Science.gov (United States)

    Watanabe, Masashi

    2011-04-01

    A microfluidic device for liquid-liquid extraction was quickly produced using an office inkjet printer. An advantage of this method is that normal end users, who are not familiar with microfabrication, can produce their original microfluidic devices by themselves. In this method, the printer draws a line on a hydrophobic and oil repellent surface using hydrophilic ink. This line directs a fluid, such as water or xylene, to form a microchannel along the printed line. Using such channels, liquid-liquid extraction was successfully performed under concurrent and countercurrent flow conditions.

  8. Effect of Brownian Coagulation on the Liquid-liquid Decomposition in Gas-atomized Alloy Drops

    Institute of Scientific and Technical Information of China (English)

    Jiuzhou ZHAO; Lingling GAO; Jie HE; L.Ratke

    2006-01-01

    Modeling and simulation have been carried out for Al-Pb alloys to investigate the Brownian coagulation effect on the microstructure development in a gas-atomized drop during the liquid-liquid decomposition.The results indicate that Brownian coagulation has a weak effect on the nucleation and a relatively strong effect on coarsening the minority phase droplets. The influence of Brownian coagulation on the liquid-liquid decomposition decreases with the increase in the diameter (or the decrease in the cooling rate) of the atomized drop.

  9. Experimental and calculated liquid-liquid interfacial tension in demixing metal alloys

    Institute of Scientific and Technical Information of China (English)

    Walter Hoyer; Ivan Kaban

    2006-01-01

    Liquid-liquid interfacial tension in binary and ternary Al-based monotectic systems has been determined experimentally with a tensiometric method in a wide temperature interval. The temperature dependence of the interfacial tension is well described by a power law function of the type σαβ~ (1 - T/Tc)δ with the critical exponent δ = 1.3 and a critical tem perature TC. Theoretical models describing the liquid-liquid interface in monotectic alloys and their applicability for calculation of the interfacial tension and its temperature dependence in binary systems are considered.

  10. Prediction of liquid-liquid equilibria for polyethylene glycol based aqueous two-phase system by ASOG and UNIFAC method

    Directory of Open Access Journals (Sweden)

    M. Perumalsamy

    2009-03-01

    Full Text Available Liquid-Liquid equilibrium data were obtained for the polyethylene glycol2000(PEG2000-sodium citrate-water system at 298.15, 308.15 and 318.15 K. The effect of temperature on binodal and tie line data was studied and published in a previous article (Murugesan and Perumalsamy, 2005. The interaction parameters of ASOG and UNIFAC models were estimated using the LLE data of PEG2000-sodium citrate-water system and are used to predict the LLE data for PEG6000-sodium citrate-water system at 298.15, 308.15 and 318.15 K (literature data. The predicted LLE data by both ASOG and UNIFAC models showed good agreement with the experimental and literature data.

  11. Comparison of dispersive liquid-liquid microextraction and hollow fiber liquid-liquid-liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography.

    Science.gov (United States)

    Saraji, Mohammad; Khalili Boroujeni, Malihe; Hajialiakbari Bidgoli, Ali Akbar

    2011-06-01

    Dispersive liquid-liquid microextraction (DLLME) and hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) combined with HPLC-DAD have been applied for the determination of three narcotic drugs (alfentanil, fentanyl, and sufentanil) in biological samples (human plasma and urine). Different DLLME parameters influencing the extraction efficiency such as type and volume of the extraction solvent and the disperser solvent, concentration of NaOH, and salt addition were investigated. In the HF-LLLME, the effects of important parameters including organic solvent type, concentration of NaOH as donor solution, concentration of H(2)SO(4) as acceptor phase, salt addition, stirring rate, temperature, and extraction time were investigated and optimized. The results showed that both extraction methods exhibited good linearity, precision, enrichment factor, and detection limit. Under optimal condition, the limits of detection ranged from 0.4 to 1.9 μg/L and from 1.1 to 2.3 μg/L for DLLME and HF-LLLME, respectively. For DLLME, the intra- and inter-day precisions were 1.7-6.4% and 14.2-15.9%, respectively; and for HF-LLLME were 0.7-5.2% and 3.3-10.1%, respectively. The enrichment factors were from 275 to 325 and 190 to 237 for DLLME and HF-LLLME, respectively. The applicability of the proposed methods was investigated by analyzing biological samples. For analysis of human plasma and urine samples, HF-LLLME showed higher precision, more effective sample clean-up, higher extraction efficiency, lower organic solvent consumption than DLLME.

  12. Determination of Niacinamide in Lotions and Creams Using Liquid-Liquid Extraction and High-Performance Liquid Chromatography

    Science.gov (United States)

    Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III

    2015-01-01

    Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…

  13. An electrically driven gas-liquid-liquid contactor for bioreactor and other applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, C.; Borole, A.P.; Kaufman, E.N.; DePaoli, D.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1999-05-01

    An electrically driven gas-liquid-liquid bioreactor is described here, in which an aqueous medium containing a biocatalyst is introduced as a discontinuous phase into an organic-continuous liquid phase containing a substrate to be converted by the biocatalyst. A gas discontinuous phase, which may be needed to provide oxygen or a gaseous substrate to the biocatalyst, is also introduced into the bioreactor. In contrast to previous work on electrically driven contactors, it was found that the electroconvection generated by the electric field between parallel-plate electrodes may be employed to increase the volume fraction of the discontinuous gas phase in the bioreactor, providing the means for enhanced mass transfer. The electrically driven bioreactor was utilized for oil desulfurization experiments with Rhodococcus sp. IGTS8 bacteria as the biocatalyst. The organic phase used in the experiments was hexadecane containing dibenzothiophene, a model sulfur compound, that is oxidatively desulfurized to 2-hydroxybiphenyl (2-HBP) by the bacteria in the presence of air or oxygen. The gas volume fraction was increased by 60% by the application of a pulsed electric field, thus providing a means for increased transport of oxygen needed for oxidative desulfurization. The velocity of droplets and bubbles was measured by a phase Doppler velocimeter. The average rising velocity of bubbles was decreased from 13 to less than 3 cm/s and the average horizontal velocity was increased from 0 to 5 cm/s as the field strength was increased from 0 to 4 kV/cm. Desulfurization rates ranged from 1.0 to 5.50 mg of 2-HBP/g of dry cells/h. The desulfurization rate with aeration was doubled under the electric field as compared to the zero-field desulfurization under the same conditions.

  14. Mass transfer and hydrodynamics in stirred gas-liquid-liquid contactors

    NARCIS (Netherlands)

    Cents, Antonius Harold Gerrit

    2003-01-01

    It can be concluded from the research study described in this thesis that the mechanism of mass transfer in gas-liquid-liquid systems is still not completely clear. In this work mass transfer experiments were carried out with five different organic dispersed liquids, toluene, 1-octanol, n-heptane, n

  15. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  16. Ultrasonic investigation of hydrodynamics and mass transfer in a gas-liquid(-liquid) stirred vessel

    NARCIS (Netherlands)

    Cents, A. H. G.; Brilmant, D. W. F.; Versteeg, G. F.

    2005-01-01

    The rate of gas-liquid mass transfer is very important in several industrial chemical engineering applications. In many multi-phase reaction systems, however, the mechanism of mass transfer is not well understood. This is for instance the case in Gas-Liquid-Solid (G-L-S) and Gas-Liquid-Liquid (G-L-L

  17. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  18. Luminescence screening of enrofloxacin and ciprofloxacin residues in swine liver after dispersive liquid - liquid microextraction cleanup

    Science.gov (United States)

    A rapid luminescence method was developed to screen residues of enrofloxacin (ENRO) and its metabolite, ciprofloxacin (CIPRO), in swine liver. Target analytes were extracted in acetonitrile-2.5% trifluoroacetic acid-NaCl, cleaned up by dispersive liquid-liquid microextraction (DLLME), and finally de...

  19. Ultrastable Liquid-Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules.

    Science.gov (United States)

    Vecchione, Raffaele; Iaccarino, Giulia; Bianchini, Paolo; Marotta, Roberto; D'autilia, Francesca; Quagliariello, Vincenzo; Diaspro, Alberto; Netti, Paolo A

    2016-06-01

    Liquid-liquid interfaces are highly dynamic and characterized by an elevated interfacial tension as compared to solid-liquid interfaces. Therefore, they are gaining an increasing interest as viable templates for ordered assembly of molecules and nanoparticles. However, liquid-liquid interfaces are more difficult to handle compared to solid-liquid interfaces; their intrinsic instability may affect the assembly process, especially in the case of multiple deposition. Indeed, some attempts have been made in the deposition of polymer multilayers at liquid-liquid interfaces, but with limited control over size and stability. This study reports on the preparation of an ultrastable liquid-liquid interface based on an O/W secondary miniemulsion and its possible use as a template for the self-assembly of polymeric multilayer nanocapsules. Such polymer nanocapsules are made of entirely biodegradable materials, with highly controlled size-well under 200 nm-and multi-compartment and multifunctional features enriching their field of application in drug delivery, as well as in other bionanotechnology fields.

  20. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface.

    Science.gov (United States)

    Yang, Zhilin; Chen, Shu; Fang, Pingping; Ren, Bin; Girault, Hubert H; Tian, Zhongqun

    2013-04-21

    Unlike the solid-air and solid-liquid interfaces, the optical properties of metal nanoparticles adsorbed at the liquid-liquid interface have not been theoretically exploited to date. In this work, the three dimensional finite difference time domain (3D-FDTD) method is employed to clarify the localized surface plasmon resonance (LSPR) based optical properties of gold nanoparticles (NPs) adsorbed at the water-oil interface, including near field distribution, far field absorption and their relevance. The LSPR spectra of NPs located at a liquid-liquid interface are shown to differ significantly from those in a uniform liquid environment or at the other interfaces. The absorption spectra exhibit two distinct LSPR peaks, the positions and relative strengths of which are sensitive to the dielectric properties of each liquid and the exact positions of the NPs with respect to the interface. Precise control of the particles' position and selection of the appropriate wavelength of the excitation laser facilitates the rational design and selective excitation of localized plasmon modes for interfacial NPs, a necessary advance for the exploration of liquid-liquid interfaces via surface enhanced Raman spectroscopy (SERS). According to our calculations, the SERS enhancement factor for Au nanosphere dimers at the water-oil interface can be as high as 10(7)-10(9), implying significant promise for future investigations of interfacial structure and applications of liquid-liquid interfaces towards chemical analysis.

  1. A Guided Inquiry Liquid/Liquid Extractions Laboratory for Introductory Organic Chemistry

    Science.gov (United States)

    Raydo, Margaret L.; Church, Megan S.; Taylor, Zane W.; Taylor, Christopher E.; Danowitz, Amy M.

    2015-01-01

    A guided inquiry laboratory experiment for teaching liquid/liquid extractions to first semester undergraduate organic chemistry students is described. This laboratory is particularly useful for introductory students as the analytes that are separated are highly colored dye molecules. This allows students to track into which phase each analyte…

  2. Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations

    Science.gov (United States)

    Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.

  3. Liquid-liquid equilibria for binary and ternary polymer solutions with PC-SAFT

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2004-01-01

    Two algorithms for evaluating liquid-liquid equilibria (LLE) for binary and ternary polymer solutions are presented. The binary algorithm provides the temperature versus concentration cloud-point curve at fixed pressure, whereas the ternary algorithm provides component 1 versus component 2...

  4. Liquid-liquid equilibria for glycols plus hydrocarbons: Data and correlation

    DEFF Research Database (Denmark)

    Derawi, Samer; Kontogeorgis, Georgios; Stenby, Erling Halfdan;

    2002-01-01

    Liquid-liquid equilibrium data for seven binary glycol-hydrocarbon systems have been measured in the temperature range 32 degreesC to 80 degreesC and at the pressure 1 bar. The measured systems are monoethylene glycol (MEG) + heptane, methyleyclohexane (MCH) + hexane, propylene glycol (PG...

  5. Aromatic nitrations by mixed acid. Fast liquid-liquid reaction regime

    NARCIS (Netherlands)

    Zaldivar, J.M.; Molga, E.J.; Alos, M.A.; Hernandez, H.; Westerterp, K.R.

    1996-01-01

    Aromatic nitration by mixed acid was selected as a specific case of heterogeneous liquid-liquid reaction. An extensive experimental programme was followed using adiabatic and heat flow calorimetry and pilot reactor experiments, supported by chemical analysis. A series of nitration experiments was ca

  6. Thermally safe operation of a cooled semi-batch reactor: slow liquid-liquid reactions

    NARCIS (Netherlands)

    Steensma, M.; Westerterp, K.R.

    1988-01-01

    Thermally safe operation of a semi-batch reactor (SBR) implies that conditions leading to strong accumulation of unreacted reactants must be avoided. All thermal responses of a SBR, in which a slow liquid-liquid reaction takes place, can be represented in a diagram with the kinetics, cooling capacit

  7. STUDY ON ENRICHMENT AND SEPARATION OF TRACE Pd(Ⅱ) WHITH SILICA GEL BONDED BY (BENZOYLAZO—ARSENAZO I)—AMINOPROPYL

    Institute of Scientific and Technical Information of China (English)

    LIUFeng; LIKean; 等

    1992-01-01

    This Paper reports enrichment and sepqration of trace Pd(Ⅱ)with silica gel bonded by (benzolyazo-arsenazo I)-aminopropyl(BAAI·SG).BAAI·SG is stable in solution between 6 mol/L HCl and pH 9.0.The maximum adsorptive capacities of BAAI·SG and SG are 52.7,23.5μmol/g respectively.After preconcentration through BAII·SG column,Pd(Ⅱ)of ppb level in artificial water samples can be measured by spectrophotometry.

  8. Numerical simulation of Marangoni effects of single drops induced by interphase mass transfer in liquid-liquid extraction systems by the level set method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level of a scalar distance function defined in the whole computational domain. Numerical simulation of the Marangoni effect induced by interphase mass transfer to/from deformable single drops in unsteady motion in liquid-liquid extraction systems is performed in a Eulerian axisymmetric reference frame. The occurrence and development of the Marangoni effect are simulated, and the re- sults are in good agreement with the classical theoretical analysis and previous simulation.

  9. Numerical simulation of Marangoni effects of single drops induced by interphase mass transfer in liquid-liquid extraction systems by the level set method

    Institute of Scientific and Technical Information of China (English)

    WANG JianFeng; YANG Chao; MAO ZaiSha

    2008-01-01

    The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level of a scalar distance function defined in the whole computational domain. Numerical simulation of the Marangoni effect induced by interphase mass transfer to/from deformable single drops in unsteady motion in liquid-liquid extraction systems is performed in a Eulerian axisymmetric reference frame. The occurrence and development of the Marangoni effect are simulated, and the re-sults are in good agreement with the classical theoretical analysis and previous simulation.

  10. Automated dynamic hollow fiber liquid-liquid-liquid microextraction combined with capillary electrophoresis for speciation of mercury in biological and environmental samples.

    Science.gov (United States)

    Li, Pingjing; He, Man; Chen, Beibei; Hu, Bin

    2015-10-01

    A simple home-made automatic dynamic hollow fiber based liquid-liquid-liquid microextraction (AD-HF-LLLME) device was designed and constructed for the simultaneous extraction of organomercury and inorganic mercury species with the assistant of a programmable flow injection analyzer. With 18-crown-6 as the complexing reagent, mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were extracted into the organic phase (chlorobenzene), and then back-extracted into the acceptor phase of 0.1% (m/v) 3-mercapto-1-propanesulfonic acid (MPS) aqueous solution. Compared with automatic static (AS)-HF-LLLME system, the extraction equilibrium of target mercury species was obtained in shorter time with higher extraction efficiency in AD-HF-LLLME system. Based on it, a new method of AD-HF-LLLME coupled with large volume sample stacking (LVSS)-capillary electrophoresis (CE)/UV detection was developed for the simultaneous analysis of methyl-, phenyl- and inorganic mercury species in biological samples and environmental water. Under the optimized conditions, AD-HF-LLLME provided high enrichment factors (EFs) of 149-253-fold within relatively short extraction equilibrium time (25min) and good precision with RSD between 3.8 and 8.1%. By combining AD-HF-LLLME with LVSS-CE/UV, EFs were magnified up to 2195-fold and the limits of detection (at S/N=3) for target mercury species were improved to be sub ppb level.

  11. Study on the Holdup and Mass Transfer Performances for Gas-Liquid-Liquid System in a Screen Plate Column

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gas and dispersed phase holdups and mass transfer coefficients of liquid-iquid were determined for gas-liquid-liquid three phase system in a screen plate column. The flow pattern of gas-liquid-liquid three phase system was studied under different gas velocities. The shape factors showed the geometric properties of screen plates and the corrected drop characteristic velocities were introduced. The phase holdup in two phases was correlated. The research results indicated that mass transfer coefficient for liquid-liquid system in a column with screen plates and gas agitation was found to increase apparently.

  12. Recommended Liquid-Liquid Equilibrium Data. Hydrocarbons with Seawater Systems

    Science.gov (United States)

    Góral, Marian; Gierycz, Paweł; Oracz, Paweł; Shaw, David G.

    2011-12-01

    The solubilities of C5-C26 hydrocarbons in seawater, reviewed previously, were re-evaluated using a predictive model based on the Sechenov equation. It was found that, within the scope of investigated data, the Sechenov constant is proportional to a hydrocarbon-specific parameter representing the size of the cavity in water needed to accommodate the dissolved molecule of the hydrocarbon. The proportionality coefficient has one value for n-alkanes, cycloalkanes, and alkylbenzenes, whereas for higher aromatics (including those with fused rings), a second value of the coefficient is indicated. The proposed model provides a framework for comparison of the data for various systems and helps in the recognition of systematic error. Evaluation of experimental solubility data and analysis of error propagation is given.

  13. 偶氮胂-Ⅲ光度法测定烟草中的钙%Spectrophotometric Determination of Calcium in Tobacco with Arsenazo-Ⅲ

    Institute of Scientific and Technical Information of China (English)

    刘巍; 李忠; 刘思远; 王岚; 杨光宇

    2001-01-01

    本文研究了偶氮胂-Ⅲ与钙的显色反应,在pH=8.5氯化铵-氨水缓冲液介质中,乳化剂-OP存在下,偶氮胂-Ⅲ与钙反应生成1∶1稳定络合物,λmax=680nm,ε=2.13×104L*mol-1*cm-1。钙含量在0—30μg/25mL范围内符合比耳定律,该方法用于烟草样品中钙含量的测定,结果令人满意。%Color reaction of calcium(Ⅱ) with arsenazo-Ⅲ was studied.In the presence of pH=8.5 buffer solution and emulgent-OP medium arsenazo-Ⅲ can react with calcium(Ⅱ) to form a stable 1∶1 complex.The molar absorptivity is 2.13×104L*mol-1*cm-1 at 680nm.Beer's law is obeyed in the range of 0—30μg/25mL.This method can be applied to the determination of calcium in tobacco with satisfactory results.

  14. Measuring the optical chirality of molecular aggregates at liquid-liquid interfaces.

    Science.gov (United States)

    Watarai, Hitoshi; Adachi, Kenta

    2009-10-01

    Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid-liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid-liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.

  15. Development, Fabrication, and Testing of a Liquid/Liquid Microchannel Heat Exchanger for Constellation Spacecrafts

    Science.gov (United States)

    Hawkins-Reynolds, Ebony; Le, Hung; Stephan, Ryan

    2010-01-01

    Microchannel technology can be incorporated into heat exchanger designs to decrease the mass and volume of space hardware. The National Aeronautics and Space Administration at the Johnson Space Center (NASA JSC) partnered with Pacific Northwest National Laboratories (PNNL) to develop a liquid/liquid microchannel heat exchanger that has significant mass and volume savings without sacrificing thermal and pressure drop performance. PNNL designed the microchannel heat exchanger to the same performance design requirements of a conventional plate and fin liquid/liquid heat exchanger; 3 kW duty with inlet temperatures of 26 C and 4 C. Both heat exchangers were tested using the same test parameters on a test apparatus and performance data compared.

  16. Determination of aromatic amines from textiles using dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Yang, Lu; Yiwei, Wang; Caiying, Lou; Yan, Zhu

    2013-03-01

    A dispersive liquid-liquid microextraction procedure coupled with GC-MS is described for preconcentration and determination of banned aromatic amines from textile samples. Experimental conditions affecting the microextraction procedure were optimized. A mixture of 30 μL chlorobenzene (extraction solvent) and 800 μL ACN (disperser solvent), 5 min extraction time, and 5 mL aqueous sample volume were chosen for the best extraction efficiency by the proposed procedure. Satisfactory linearity (with correlation coefficients >0.9962) and repeatability (<9.78%) were obtained for all 20 aromatic amines; detection limits attained were much lower than the standardized liquid-liquid method. The proposed method has advantages of being quicker and easier to operate, and lower consumption of organic solvent.

  17. Determination of liquid-liquid critical point composition using 90∘ laser light scattering

    Science.gov (United States)

    Williamson, J. Charles; Brown, Allison M.; Helvie, Elise N.; Dean, Kevin M.

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90∘ light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90∘ light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  18. Theoretical background and the flow fields in downhole liquid-liquid hydrocyclone (LLHC

    Directory of Open Access Journals (Sweden)

    Osei Harrison

    2014-07-01

    Full Text Available Hydrocyclone system for downhole oil-water separation provides an effective technique of enhancing the economic viability of higher water-cut wells while at the same time reducing the risk of environmental pollution. This paper describes the hydrodynamics of the liquid-liquid hydrocyclones and the flow fields within it are paramount for achieving successful separation process. Some of the important hydrodynamic flow phenomenon within the liquid-liquid hydrocyclone and how they influence the separation efficiency of water/oil was analyzed through analytical solution. The properties of the liquids were based on Bayan offshore field measured properties. The results indicated that there are two swirling zones separated by stagnant flow field. The inner is the light liquid zone, while the outer is the heavy liquid zone.

  19. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  20. SIMULTANEOUS REACTION AND LIQUID-LIQUID EXTRACTION IN THE HYDROGEN PEROXIDE PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    ShuxiangLǖ; LiWang; ZhentaoMi; YaquanWang

    2004-01-01

    The gas-liquid-liquid reactive extraction system for preparing hydrogen peroxide via anthraquinone was investigated. The oxidation reaction of hydrogenated working solution was combined with the extraction of hydrogen peroxide from working solution in a sieve plate column. The reaction of 2-ethylanthrahydroquionone with oxygen and the liquid-liquid extraction of hydrogen peroxide take place simultaneously. The oxygen was introduced with hydrogenated working solution through a nozzle in the bottom of the column, which worked as agitated air as well as oxidation reagent. The results showed the oxidation and extraction do not hamper each other, on the contrary, the presence of oxidation gas in the column can promote the transfer of hydrogen peroxide fi'om organic phase to aqueous phase, thus the reaction efficiency and extraction efficiency increased with increasing gas superficial velocity. Furthermore, the oxidation efficiency is almost 100% and the extraction efficiency is higher than 90% in this process.

  1. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    Directory of Open Access Journals (Sweden)

    E. Ince

    2002-04-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  2. Crystallization of Polymers at liquid/liquid interface templated by single-walled carbon nanotubes

    Science.gov (United States)

    Wang, Wenda; Li, Christopher

    2012-02-01

    Nanosized single-walled carbon nanotube rings were fabricated by using a Pickering emulsion-based method. By tuning a water/oil/SWNT miniemulsion system, SWNT rings with a diameter of ˜200 nm can be readily achieved. The formation mechanism is attributed to the bending force induced by the curved liquid/liquid interface. Crystallization of polyethylene homo- and copolymers using this unique SWNT rings as the nucleation agent was conducted at the curved liquid/liquid interface. Crystal structure, hybrid morphology and crystallization kinetics were systematically studied. The structure of controlled alternating patterns on SWNT rings has great potential in various applications in large-scale integrated circuits and single-electron devices.

  3. Determination of liquid-liquid critical point composition using 90^{∘} laser light scattering.

    Science.gov (United States)

    Williamson, J Charles; Brown, Allison M; Helvie, Elise N; Dean, Kevin M

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90^{∘} light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90^{∘} light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  4. LIQUID-LIQUID PHASE EQUILIBRIUM OF POLYMER SOLUTIONS AND POLYMER BLENDS UNDER POSITIVE AND NEGATIVE PRESSURE

    Institute of Scientific and Technical Information of China (English)

    Attila R.Imre

    2003-01-01

    In this paper we would like to give a brief review about the extensibility of the liquid-liquid locus into the negative pressure region. Negative pressure states are hardly explored; most researchers believe that the pressure scale ends at p = 0.We would like to show that this is not true, thep = 0 point is not a special point for liquids, it can be "easily" crossed. We are going to give a few example, where the extension of liquid-liquid locus for polymer blends and solutions below p = 0 gives us some interesting results, like the merging of UCST and LCST branches in weakly interacting polymer solutions or the reason why most UCST blends exhibit pressure induced immiscibility. Also, we will see what happens with the immiscibility island of aqueous polymer solutions when - reaching the critical molar mass - it "disappears".

  5. SIMULTANEOUS REACTION AND LIQUID-LIQUID EXTRACTION IN THE HYDROGEN PEROXIDE PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    Shuxiang L(u); Li Wang; Zhentao Mi; Yaquan Wang

    2004-01-01

    The gas-liquid-liquid reactive extraction system for preparing hydrogen peroxide via anthraquinone was investigated. The oxidation reaction of hydrogenated working solution was combined with the extraction of hydrogen peroxide from working solution in a sieve plate column. The reaction of 2-ethylanthrahydroquionone with oxygen and the liquid-liquid extraction of hydrogen peroxide take place simultaneously. The oxygen was introduced with hydrogenated working solution through a nozzle in the bottom of the column, which worked as agitated air as well as oxidation reagent. The results showed the oxidation and extraction do not hamper each other, on the contrary, the presence of oxidation gas in the column can promote the transfer of hydrogen peroxide from organic phase to aqueous phase, thus the reaction efficiency and extraction efficiency increased with increasing gas superficial velocity. Furthermore, the oxidation efficiency is almost 100% and the extraction efficiency is higher than 90% in this process.

  6. The Yang-Yang anomaly in liquid-liquid criticality: Experimental evidence from adiabatic scanning calorimetry

    Science.gov (United States)

    Losada-Pérez, Patricia; Tripathi, Chandra Shekhar Pati; Leys, Jan; Cerdeiriña, Claudio A.; Glorieux, Christ; Thoen, Jan

    2012-01-01

    Using adiabatic scanning calorimetry, we have found the first experimental evidence of the Yang-Yang anomaly in liquid-liquid criticality from high-resolution two-phase isobaric heat capacity measurements for the binary mixture 3-pentanol + nitromethane. The results suggest a rather strong effect. The critical amplitude of the partial molar heat capacity is higher for the component with larger molecular volume, in accordance with the predictions of complete scaling as obtained from the customary observed asymmetric behavior of the coexistence-curve diameter. This consolidates complete scaling as the true formulation of fluid-fluid criticality. The quantitative analysis indicates that molecular size is not the only microscopic factor at play in asymmetric liquid-liquid criticality.

  7. Thermokinetics of Liquid-Liquid Reaction of Dy(NO3)3 with Histidine

    Institute of Scientific and Technical Information of China (English)

    李仲谨; 陈三平; 房艳; 高胜利

    2003-01-01

    The thermokinetics of liquid-liquid reaction of dysprosium nitrate with histidine were studied using a microcalorimeter. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant, three kinetic parameters (the activation energy, the pre-exponential constant and the reaction order) were obtained. On the basis of thermodynamics and kinetics, the formation reaction of the complex was discussed.

  8. Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review

    Directory of Open Access Journals (Sweden)

    Rahul Antony

    2014-10-01

    Full Text Available Mass transfer is a basic phenomenon behind many processes like reaction, absorption, extraction etc. Mass transfer plays a significant role in microfluidic systems where the chemical / biological process systems are shrinkened down to a micro scale. Micro reactor system, with its high compatibility and performance, gains a wide interest among the researchers in the recent years. Micro structured reac-tors holds advantages over the conventional types in chemical processes. The significance of micro re-actor not limited to its scalability but to energy efficiency, on-site / on-demand production, reliability, safety, highly controlled outputs, etc. Liquid-liquid two phase reaction in a microreactor system is highly demandable when both reactants are liquids or when air medium cannot be suitable. This arti-cle overviews various liquid-liquid flow regimes in a microchannel. Discussions on the hydrodynamics of flow in micro scale are made. Considering the importance of mass transfer in liquid-liquid systems and the advantage of slug regime over other regimes, the article focuses especially on the mass trans-fer between two liquid phases in slug flow and the details of experimental studies carried out in this area. The advantages of slug flow over other flow regimes in micro structured reactor applications are showcased. © 2014 BCREC UNDIP. All rights reservedReceived: 31st May 2014; Revised: 6th August 2014; Accepted: 14th August 2014How to Cite: Antony, R., Giri Nandagopal, M.S., Sreekumar, N., Rangabhashiyam, S., Selvaraju, N. (2014. Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review. Bulletin of Chemical Reaction Engineering & Catalysis,9(3: 207-223. (doi:10.9767/bcrec.9.3.6977.207-223Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6977.207-223

  9. Dispersive Liquid-Liquid Microextraction in the Analysis of Milk and Dairy Products: A Review

    OpenAIRE

    Andrew Quigley; Wayne Cummins; Damian Connolly

    2016-01-01

    Dispersive liquid-liquid microextraction (DLLME) is an extraction technique developed within the last decade, which involves the dispersion of fine droplets of extraction solvent in an aqueous sample. Partitioning of analytes into the extraction phase is instantaneous due to the very high collective surface area of the droplets. This leads to very high enrichment factors and very low solvent consumption, relative to other liquid or solid phase extraction methods. A comprehensive review of the...

  10. Experimental Study on Liquid-Liquid Equilibria of Alcohol-Ester-Water-CaCl2 System

    Institute of Scientific and Technical Information of China (English)

    Fu Jiquan; Fu Die

    2014-01-01

    The binary liquid-liquid equilibrium (LLE) data for salt-containing systems of 1-butanol+water+CaCl2, n-butyl acetate+water+CaCl2 and ethyl acetate+acetic acid+water+CaCl2 were determined and the salt effect was analyzed. The results showed that an obvious salt effect could be identified for the systems of 1-butanol+water+CaCl2 and ethyl acetate+acetic acid+water.

  11. Real Space Imaging of Nanoparticle Assembly at Liquid-Liquid Interfaces with Nanoscale Resolution.

    Science.gov (United States)

    Costa, Luca; Li-Destri, Giovanni; Thomson, Neil H; Konovalov, Oleg; Pontoni, Diego

    2016-09-14

    Bottom up self-assembly of functional materials at liquid-liquid interfaces has recently emerged as method to design and produce novel two-dimensional (2D) nanostructured membranes and devices with tailored properties. Liquid-liquid interfaces can be seen as a "factory floor" for nanoparticle (NP) self-assembly, because NPs are driven there by a reduction of interfacial energy. Such 2D assembly can be characterized by reciprocal space techniques, namely X-ray and neutron scattering or reflectivity. These techniques have drawbacks, however, as the structural information is averaged over the finite size of the radiation beam and nonperiodic isolated assemblies in 3D or defects may not be easily detected. Real-space in situ imaging methods are more appropriate in this context, but they often suffer from limited resolution and underperform or fail when applied to challenging liquid-liquid interfaces. Here, we study the surfactant-induced assembly of SiO2 nanoparticle monolayers at a water-oil interface using in situ atomic force microscopy (AFM) achieving nanoscale resolved imaging capabilities. Hitherto, AFM imaging has been restricted to solid-liquid interfaces because applications to liquid interfaces have been hindered by their softness and intrinsic dynamics, requiring accurate sample preparation methods and nonconventional AFM operational schemes. Comparing both AFM and grazing incidence X-ray small angle scattering data, we unambiguously demonstrate correlation between real and reciprocal space structure determination showing that the average interfacial NP density is found to vary with surfactant concentration. Additionally, the interaction between the tip and the interface can be exploited to locally determine the acting interfacial interactions. This work opens up the way to studying complex nanostructure formation and phase behavior in a range of liquid-liquid and complex liquid interfaces.

  12. Liquid-Liquid Structure Transition in Metallic Melts: Experimental Evidence by Viscosity Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Qing; WU Yu-Qin; BIAN Xiu-Fang

    2007-01-01

    Temperature dependence of viscosity for more than ten kinds of metallic melts is analysed based on viscosity measurements. An obvious turning point is observed on the Arrhenius curves. Since viscosity is one of the physical properties sensitive to structure, its discontinuous change with temperature reveals the possible liquidliquid structure transition in the metallic melts. Furthermore, an integrated liquid structure transition diagram of the Sn-Bi system is presented. The universality of liquid-liquid structure transition is also discussed simply.

  13. Thermally safe operation of a cooled semi-batch reactor: slow liquid-liquid reactions

    OpenAIRE

    Steensma, M.; Westerterp, K R

    1988-01-01

    Thermally safe operation of a semi-batch reactor (SBR) implies that conditions leading to strong accumulation of unreacted reactants must be avoided. All thermal responses of a SBR, in which a slow liquid-liquid reaction takes place, can be represented in a diagram with the kinetics, cooling capacity and potential temperature rise as the keyfactors. Slow reactions taking place in the dispersed phase were found to be more prone to accumulation than reactions in the continuous phase. An overhea...

  14. Extraction and Separation of Molybdenum by Using Homogeneous Liquid-Liquid Microextraction via Flotation Assistance

    OpenAIRE

    Rezaee, Mohammad; Mozaffari,Maryam; Haddadi,Hedayat; Pourjavid,Mohammad R.; SEMNANI, Abolfazl

    2015-01-01

    Homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) was investigated for the extraction of molybdenum from the water samples. Alizarin Red S and cetyl trimethylammonium bromide (CTAB) were used as a complexing ligand and ion-pairing reagent, respectively. The enriched analyte in the floated organic phase was determined by electrothermal atomic absorption spectrometry (ETAAS). In this work, low density organic solvent was used and no centrifugation was required in thi...

  15. Liquid-liquid distribution of aromatic α-amino acids in multicomponent systems

    Science.gov (United States)

    Korenman, Ya. I.; Mokshina, N. Ya.; Pakhomova, O. A.

    2010-02-01

    Distribution coefficients and recovery factors of phenylalanine, tyrosine, and tryptophan are measured in extraction systems with butanol, pentanol, acetone, and ethyl acetate, their binary and ternary mixtures, and water-soluble polymers. Extraction conditions—extractant composition, salting-out agents, and pH—are optimized. Efficient systems providing maximum quantitative characteristics of the process of liquid-liquid distribution of aromatic α-amino acids are proposed.

  16. Kinetics of glycoalkaloid hydrolysis and solanidine extraction in liquid-liquid systems

    Directory of Open Access Journals (Sweden)

    Stanković Mihajlo Z.

    2002-01-01

    Full Text Available The kinetics of glycoalkaloid hydrolysis and solanidine extraction in Analyzed in this study. obtained from dried and milled potato haulm to to which hydrochlotic acid was added is the first liquid phase, while chloroform trichloroethylene or carbon tetrachlondeisthe second organic, liquid phase. The purpose of this paper was to combine the processes of glycoalkaloid hydrolysis to solanidine and solanidine extraction into one step, and to find the optimal liquid-liquid system for such a process.

  17. Review of algorithms for modeling metal distribution equilibria in liquid-liquid extraction processes

    Directory of Open Access Journals (Sweden)

    Lozano, L. J.

    2005-10-01

    Full Text Available This work focuses on general guidelines to be considered for application of least-squares routines and artificial neural networks (ANN in the estimation of metal distribution equilibria in liquid-liquid extraction process. The goal of the procedure in the statistical method is to find the values of the equilibrium constants (Kj for the reactions involved in the metal extraction which minimizes the differences between experimental distribution coefficient (Dexp and theoretical distribution coefficients according to the mechanism proposed (Dtheor- In the first part of the article, results obtained with the most frequently routine reported in the bibliography are compared with those obtained using the algorithms previously discussed. In the second part, the main features of a single back-propagation neural network for the same purpose are discussed, and the results obtained are compared with those obtained with the classical methods.

    El trabajo presenta las líneas generales a considerar para la estimación del equilibrio de distribución de metales en procesos de extracción líquido-líquido, según dos métodos: algoritmo clásico de mínimos cuadrados y redes neuronales artificiales. El objetivo del procedimiento, en el caso del método estadístico, es encontrar los valores de las constantes de equilibrio (Kj para las reacciones involucradas en la extracción del metal, que minimizan las diferencias entre el coeficiente de distribución experimental y el coeficiente de distribución teórico, de acuerdo al mecanismo propuesto. En la primera parte del artículo se comparan los resultados obtenidos a partir de los algoritmos usados más habitualmente en la bibliografía, con los datos obtenidos mediante el algoritmo previamente descrito. En la segunda parte, se presentan las características fundamentales para aplicar una red neuronal sencilla con algoritmo back-propagation y los

  18. Numerical studies on the separation performance of liquid- liquid Hydrocyclone for higher water-cut wells

    Science.gov (United States)

    Osei, H.; Al-Kayiem, H. H.; Hashim, F. M.

    2015-12-01

    Liquid-liquid hydrocyclones have nowadays become very useful in the oil industry because of their numerous applications. They can be installed downhole in the case of a well that produces higher water-oil ratios. The design of a liquid-liquid hydrocyclone for such a task is critical and every geometric part of the hydrocyclone has a part to play as far as separation is concerned. This work, through validated numerical technique, investigated the liquid-liquid hydrocyclone performance for the cases of single-inlet and dual-inlets, with different upper cylindrical lengths, specifically, 30mm and 60mm.It was observed that the hydrocyclones with the 30mm upper cylindrical section perform better than the ones with 60 mm upper cylindrical section. It was again noted that, even though higher number of tangential inlets increases the swirl intensity, they have the tendency to break up the oil droplets within the hydrocyclone because of increasing shear and jet flow interaction.

  19. Removal of nitrogen compounds from Brazilian petroleum samples by oxidation followed by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, L.; Pergher, S.B.C. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Quimica], E-mail: pergher@uricer.edu.br; Oliveira, J.V. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Engenharia dos Alimentos; Souza, W.F. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2009-10-15

    This work reports liquid-liquid extraction of nitrogen compounds from oxidized and non-oxidized Brazilian petroleum samples. The experiments were accomplished in a laboratory-scale liquid-liquid apparatus in the temperature range of 303 K-323 K, using methanol, n-methyl-2-pyrrolidone (NMP) and N,Ndimethylformamide (DMF), and their mixtures as extraction solvents, employing solvent to sample volume ratios of 1:2, 1:1 and 2:1, exploring up to three separation stages. Results show that an increase in temperature, solvent to oil ratio, and number of equilibrium stages greatly improves the nitrogen removal from the oxidized sample (from 2600 to 200 ppm). The employed oxidation scheme is thus demonstrated to be an essential and efficient step of sample preparation for the selective liquid-liquid removal of nitrogen compounds. It is shown that the use of mixtures of DMF and NMP as well their use as co-solvents with methanol did not prove to be useful for selective nitrogen extraction since great oil losses were observed in the final process. (author)

  20. A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.

    Science.gov (United States)

    Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia

    2016-07-05

    Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.

  1. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water

    Science.gov (United States)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-08-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  2. Heat capacity singularity of binary liquid mixtures at the liquid-liquid critical point.

    Science.gov (United States)

    Méndez-Castro, Pablo; Troncoso, Jacobo; Peleteiro, José; Romaní, Luis

    2013-10-01

    The critical anomaly of the isobaric molar heat capacity for the liquid-liquid phase transition in binary nonionic mixtures is explained through a theory based on the general assumption that their partition function can be exactly mapped into that of the Ising three-dimensional model. Under this approximation, it is found that the heat capacity singularity is directly linked to molar excess enthalpy. In order to check this prediction and complete the available data for such systems, isobaric molar heat capacity and molar excess enthalpy near the liquid-liquid critical point were experimentally determined for a large set of binary liquid mixtures. Agreement between theory and experimental results-both from literature and from present work-is good for most cases. This fact opens a way for explaining and predicting the heat capacity divergence at the liquid-liquid critical point through basically the same microscopic arguments as for molar excess enthalpy, widely used in the frame of solution thermodynamics.

  3. Anomalous properties and the liquid-liquid phase transition in gallium

    Science.gov (United States)

    Li, Renzhong; Sun, Gang; Xu, Limei

    2016-08-01

    A group of materials including water and silicon exhibit many anomalous behaviors, e.g., density anomaly and diffusivity anomaly (increase upon compression). These materials are hypothesized to have a liquid-liquid phase transition (LLPT) and the critical fluctuation in the vicinity of the liquid-liquid critical point is considered as the origin of different anomalies. Liquid gallium was also reported to have a LLPT, yet whether it shows similar water-like anomalies is not yet studied. Using molecular dynamics simulations on a modified embedded-atom model, we study the thermodynamic, dynamic, and structural properties of liquid gallium as well as its LLPT. We find that, similar to water-like materials predicted to have the LLPT, gallium also shows different anomalous behaviors (e.g., density anomaly, diffusivity anomaly, and structural anomaly). We also find that its thermodynamic and structural response functions are continuous and show maxima in the supercritical region, the loci of which asymptotically approach to the other and merge to the Widom line. These phenomena are consistent with the supercritical phenomenon in a category of materials with a liquid-liquid critical point, which could be common features in most materials with a LLPT.

  4. Relationship between the liquid-liquid phase transition and dynamic behaviour in the Jagla model

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Limei [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); Ehrenberg, Isaac [Department of Physics, Yeshiva University, 500 West 185th Street, New York, NY 10033 (United States); Buldyrev, Sergey V [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); Stanley, H Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States)

    2006-09-13

    Using molecular dynamics simulations, we study a spherically symmetric 'two-scale' Jagla potential with both repulsive and attractive ramps. This potential displays a liquid-liquid phase transition with a positively sloped coexistence line ending at a critical point well above the equilibrium melting line. We study the dynamic behaviour in the vicinity of this liquid-liquid critical point. Below the critical point, we find that the dynamics in the more ordered high density liquid (HDL) are much slower then the dynamics in the less ordered low density liquid (LDL). Moreover, the behaviour of the diffusion constant and relaxation time in the HDL phase follows approximately an Arrhenius law, while in the LDL phase the slope of the Arrhenius fit increases upon cooling. Above the critical pressure, as we cool the system at constant pressure, the behaviour of the dynamics smoothly changes with temperature. It resembles the behaviour of the LDL at high temperatures and resembles the behaviour of the HDL at low temperatures. This dynamic crossover happens in the vicinity of the Widom line (the extension of the coexistence line into the one-phase region) which also has a positive slope. Our work suggests a possible general relation between a liquid-liquid phase transition and the change in dynamics.

  5. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.;

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after...... neutralisation. The extracts were analysed by capillary gas chromatography. Dual detection by flame Ionisation and electron capture was used to reduce analysis time....

  6. Progress of experimental studies on gas-liquid (liquid-liquid) two-phase flow in microchannels%微通道内气液(液液)二相流的实验研究进展

    Institute of Scientific and Technical Information of China (English)

    付涛涛; 马友光; 朱春英

    2011-01-01

    The characteristics of gas-liquid (liquid-liquid) two-phase flow in microchannels were reviewed. The flow patterns of gas-liquid two-phase flow in microchannels include bubbly flow, slug flow, annular flow and churn flow; the flow patterns of liquid-liquid two-phase flow are categorized into droplet flow, plug flow, parallel flow and annular flow. The parameters influencing the behaviors of gasdiquid (liquid-liquid) two-phase flow in microchannels were analyzed. The flow pattern maps for gas-liquid (liquid-liquid) two-phase flow in microchannels were introduced, and the flow patterns widely used in literature such as slug, droplet and plug flow were particularly introduced. The difficulties encountered in the investigation of gas-liquid (liquid-liquid) two-phase flow in microchannels were pointed out, and the developing prospects of gas-liquid (liquid-liquid) two-phase flow in microchannels were expected.%综述了微通道内气液(液液)二相流的流型特征.微通道内气液二相流常见的流型为泡状流、弹状流、环状流和翻腾流;液液二相流常见的流型为液滴流、塞状流、平行流及环状流.分析了不同操作条件对气液(液液)二相流行为的影响.介绍了微通道内气液(液液)二相流流型判别谱图,对常用的弹状流、液滴流和塞状流进行了重点介绍.指出了微通道内气液(液液)二相流的研究难点,并对该领域今后的主要研究方向进行了展望.

  7. Hollow fiber-based liquid-liquid-liquid micro-extraction with osmosis: II. Application to quantification of endogenous gibberellins in rice plant.

    Science.gov (United States)

    Wu, Qian; Wu, Dapeng; Duan, Chunfeng; Shen, Zheng; Guan, Yafeng

    2012-11-23

    The phenomenon and benefits of osmosis in hollow fiber-based liquid-liquid-liquid micro-extraction (HF-LLLME) were theoretically discussed in part I of this study. In this work, HF-LLLME with osmosis was coupled with high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-triple quadrupole MS/MS) to analyze eight gibberellins (gibberellin A(1), gibberellin A(3), gibberellin A(4), gibberellin A(7), gibberellin A(8), gibberellin A(9), gibberellin A(19) and gibberellin A(20)) in rice plant samples. According to the theory of HF-LLLME with osmosis, single factor experiments, orthogonal design experiments and mass transfer simulation of extraction process were carried out to select the optimal conditions. Cyclohexanol - n-octanol (1:3, v/v) was selected as organic membrane. Donor phase of 12 mL was adjusted to pH 2 and 20% NaCl (w/v) was added. Acceptor phase with an initial volume of 20 μL was the solution of 0.12 mol L(-1) Na(2)CO(3)-NaHCO(3) buffer (pH 9). Temperature was chosen to be 30 °C and extraction time was selected to be 90 min. Under optimized conditions, this method provided good linearity (r, 0.99552-0.99991) and low limits of detection (0.0016-0.061 ng mL(-1)). Finally, this method was applied to the analysis of endogenous gibberellins from plant extract which was obtained with traditional solvent extraction of rice plant tissues, and the relative recoveries were from 62% to 166%.

  8. Combination of counter current salting-out homogenous liquid-liquid extraction and dispersive liquid-liquid microextraction as a novel microextraction of drugs in urine samples.

    Science.gov (United States)

    Akramipour, Reza; Fattahi, Nazir; Pirsaheb, Meghdad; Gheini, Simin

    2016-02-15

    The counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) joined with the dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) has been developed as a high preconcentration technique for the determination of different drugs in urine samples. Amphetamines were employed as model compounds to assess the extraction procedure and were determined by high performance liquid chromatography-ultraviolet detection (HPLC-UV). In this method, initially, NaCl as a separation reagent is filled into a small column and a mixture of urine and acetonitrile is passed through the column. By passing the mixture, NaCl is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected acetonitrile is removed with a syringe and mixed with 30.0μL 1-undecanol (extraction solvent). In the second step, the 5.00mLK2CO3 solution (2% w/v) is rapidly injected into the above mixture placed in a test tube for further DLLME-SFO. Under the optimum conditions, calibration curves are linear in the range of 1-3000μgL(-1) and limit of detections (LODs) are in the range of 0.5-2μgL(-1). The extraction recoveries and enrichment factors ranged from 78 to 84% and 157 to 168, respectively. Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 100μgL(-1) of amphetamines were in the range of 3.5-4.5% and 4-5%, respectively. The method was successfully applied for the determination of amphetamines in the actual urine samples. The relative recoveries of urine samples spiked with amphetamine and methamphetamine are 90-108%.

  9. Determination of Levetiracetam in Human Plasma by Dispersive Liquid-Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Greyce Kelly Steinhorst Alcantara

    2016-01-01

    Full Text Available Levetiracetam (LEV is an antiepileptic drug that is clinically effective in generalized and partial epilepsy syndromes. The use of this drug has been increasing in clinical practice and intra- or -interindividual variability has been exhibited for special population. For this reason, bioanalytical methods are required for drug monitoring in biological matrices. So this work presents a dispersive liquid-liquid microextraction method followed by gas chromatography-mass spectrometry (DLLME-GC-MS for LEV quantification in human plasma. However, due to the matrix complexity a previous purification step is required. Unlike other pretreatment techniques presented in the literature, for the first time, a procedure employing ultrafiltration tubes Amicon® (10 kDa porous size without organic solvent consumption was developed. GC-MS analyses were carried out using a linear temperature program, capillary fused silica column, and helium as the carrier gas. DLLME optimized parameters were type and volume of extraction and dispersing solvents, salt addition, and vortex agitation time. Under chosen parameters (extraction solvent: chloroform, 130 μL; dispersing solvent: isopropyl alcohol, 400 μL; no salt addition and no vortex agitation time, the method was completely validated and all parameters were in agreement with the literature recommendations. LEV was quantified in patient’s plasma sample using less than 550 μL of organic solvent.

  10. Determination of Levetiracetam in Human Plasma by Dispersive Liquid-Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    2016-01-01

    Levetiracetam (LEV) is an antiepileptic drug that is clinically effective in generalized and partial epilepsy syndromes. The use of this drug has been increasing in clinical practice and intra- or -interindividual variability has been exhibited for special population. For this reason, bioanalytical methods are required for drug monitoring in biological matrices. So this work presents a dispersive liquid-liquid microextraction method followed by gas chromatography-mass spectrometry (DLLME-GC-MS) for LEV quantification in human plasma. However, due to the matrix complexity a previous purification step is required. Unlike other pretreatment techniques presented in the literature, for the first time, a procedure employing ultrafiltration tubes Amicon® (10 kDa porous size) without organic solvent consumption was developed. GC-MS analyses were carried out using a linear temperature program, capillary fused silica column, and helium as the carrier gas. DLLME optimized parameters were type and volume of extraction and dispersing solvents, salt addition, and vortex agitation time. Under chosen parameters (extraction solvent: chloroform, 130 μL; dispersing solvent: isopropyl alcohol, 400 μL; no salt addition and no vortex agitation time), the method was completely validated and all parameters were in agreement with the literature recommendations. LEV was quantified in patient's plasma sample using less than 550 μL of organic solvent. PMID:27830105

  11. Production of Self-Assembled Fullerene (C60) Nanocrystals at Liquid-Liquid Interface.

    Science.gov (United States)

    Shrestha, Rekha Goswami; Shrestha, Lok Kumar; Abe, Masahiko; Ariga, Katsuhiko

    2015-03-01

    Here we present self-assembled nanostructure of functional molecule fullerene (C60) at liquid-liquid interface. The nanostructured nanocrystals were grown at liquid-liquid interface of isopropyl alcohol (IPA) and C60 solution in butylbenzene under ambient condition of temperature and pressure, and characterized by Raman scattering, power X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystal formation mechanism is driven by supersaturation related to the low solubility of C60 in IPA. A slow diffusion of IPA towards the C60 solution causes unsaturation of C60 at the liquid-liquid interface and consequently small clusters of C60 is formed at the interface, which acts as the nucleation site. Further diffusion of IPA supplies the C60 molecules from bulk to the interface promoting the crystal growth. Based on SEM and TEM observation, the average size of the individual hexagonal bipyramid nanocrystal is found to be ca. 1.4 µm and the average size of their assembly is found to be approximately 2 µm. XRD measurements have shown that these materials are crystalline with mixed face-centered cubic (cell dimension: a = 1.352 nm, and V = 2.475 nm3) and hexagonal (cell dimension: a = 1.452 nm, c = 1.207 nm, c/a = 0.831, and V = 2.475 nm3) structures. Raman scattering measurements showed two Ag and six Hg vibration bands, which are similar to those obtained in the pristine C60.

  12. Measurement of vapor-liquid-liquid phase equilibrium-Equipment and results

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; von Solms, Nicolas; Richon, Dominique;

    2015-01-01

    -water-gas hydrate inhibitor systems, at temperatures ranging from 283 to 353 K and at pressures up to 40 MPa. The core of the equipment is an equilibrium cell, equipped with sapphire windows and connected to an analytical system by capillary samplers.New vapor-liquid-liquid equilibrium data are reported for methane......+ n-hexane + methanol + water at 296.2 K and pressures of 6 to 10 MPa. The Cubic-Plus-Association (CPA) equation of state is used to model the phase equilibria data measured. A good agreement between predictions and experimental data is observed, supporting the reliability of the new data. (C) 2015...

  13. Liquid-Liquid Extraction-Chromogenic Systems Containing Iron(III), 4-Nitrocatechol and Tetrazolium Salts

    OpenAIRE

    Galya K. Toncheva; Teodora S. Stefanova; Gavazov, Kiril B.

    2015-01-01

    Complex formation and liquid-liquid extraction were studied in systems containing iron(III), 4-nitrocatechol (4NC),tetrazolium salt (TZS), water and organic solvent. Three different TZS were used: 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT), 3-(2-naphtyl)-2,5-diphenyl-2H-tetrazolium chloride (Tetrazolium violet, TV) and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT).The cations of the first two TZSs (TZ+: MTT+ and TV+) form intensively color...

  14. 40 YEARS OF EXPERIENCE WITH LIQUID-LIQUID EXTRACTION EQUIPMENT IN THE NUCLEAR INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Drain, F.; Vinoche, R.; Duhamet, J.

    2003-02-27

    Three types of liquid-liquid extraction equipment are used in industrial reprocessing plants. Each is described below, with a special focus on pulsed columns and centrifugal extractors, which have been the subject of an extensive R&D program by the French Atomic Energy Commission (CEA). Various models have been developed to simulate equipment behavior and flowsheets. The excellent results obtained during industrial operation of the UP3 and UP2-800 plants in La Hague have confirmed the validity of the choices made during the design phases and pave the way for future improvement of the reprocessing process, from a technical and a financial standpoint.

  15. Volume of supercooled water under pressure and the liquid-liquid critical point.

    Science.gov (United States)

    Mishima, Osamu

    2010-10-14

    The volume of water (H(2)O) was obtained at about 200-275 K and 40-400 MPa by using emulsified water. The plot of volume against temperature showed slightly concave-downward curvature at pressures higher than ≈200 MPa. This is compatible with the liquid-liquid critical-point hypothesis, but hardly with the singularity-free scenario. When the critical point is assumed to exist at ≈50 MPa and ≈223 K, the experimental volume and the derived compressibility are qualitatively described by the modified Fuentevilla-Anisimov scaling equation.

  16. Dispersive liquid-liquid microextraction in food analysis. A critical review.

    Science.gov (United States)

    Viñas, Pilar; Campillo, Natalia; López-García, Ignacio; Hernández-Córdoba, Manuel

    2014-03-01

    An extensive critical evaluation of the application of dispersive liquid-liquid microextraction (DLLME) combined with chromatographic and atomic-spectroscopic methods for the determination of organic and inorganic compounds is presented. The review emphasizes the procedures used for the prior treatment of food samples, which are very different from the DLLME procedures generally proposed for water samples. The main contribution of this work in the field of DLLME reviews is its critical review of the abundant literature showing the increasing interest and practical advantages of using DLLME and closely related microextraction techniques for food analysis.

  17. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  18. CO2 Capture with Liquid-Liquid Phase Change Solvents: A Thermodynamic Study

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2017-01-01

    Extended UNIQUAC thermodynamic framework was implemented in this work to model the aqueous blend of N, N-Diethylethanolamine (DEEA) and N-Methyl-1,3-diaminopropane (MAPA) for CO2 capture. The model parameters were estimated first for the two ternary systems, H2O-DEEA-CO2 and H2O-MAPA-CO2, followed...... by the quaternary H2O-DEEAMAPA-CO2 system which gives liquid-liquid phase split when reacted with carbon dioxide. A total of 94 model parameters and 6 thermodynamic properties were fitted to approximately 1500 equilibrium and thermal experimental data consisting of pureamine vapor pressure (Pvap), vapor...

  19. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface....... However, we found that the corresponding change in the bending rigidity is nonmonotonic. Specifically, we found that the bending rigidity decreases with increasing surfactant interfacial coverage for small surfactant interface coverages, but then it increases as the surfactant interface coverage...

  20. Spectrophotometric determination of Sudan Blue II in environmental samples after dispersive liquid-liquid microextraction

    Directory of Open Access Journals (Sweden)

    Yunus Emre Unsal

    2014-01-01

    Full Text Available A dispersive liquid-liquid microextraction procedure coupled to spectrophotometry is described for the determination of the trace levels of Sudan Blue II. Analytical parameters, such as pH, volume of extraction solvent (carbon tetrachloride, volume of dispersant (ethanol, volume of sample, and extraction time, were optimized. Matrix effects were also investigated. Preconcentration factor was found to be 200. Detection limit and relative standard deviation (RSD were 0.55 µg L-1 and 3.9%, respectively. The procedure was successfully used for the determination of trace levels of Sudan Blue II in food, ink, antifreeze, and industrial waste-water samples.

  1. Cluster Monte Carlo and numerical mean field analysis for the water liquid-liquid phase transition

    Science.gov (United States)

    Mazza, Marco G.; Stokely, Kevin; Strekalova, Elena G.; Stanley, H. Eugene; Franzese, Giancarlo

    2009-04-01

    Using Wolff's cluster Monte Carlo simulations and numerical minimization within a mean field approach, we study the low temperature phase diagram of water, adopting a cell model that reproduces the known properties of water in its fluid phases. Both methods allow us to study the thermodynamic behavior of water at temperatures, where other numerical approaches - both Monte Carlo and molecular dynamics - are seriously hampered by the large increase of the correlation times. The cluster algorithm also allows us to emphasize that the liquid-liquid phase transition corresponds to the percolation transition of tetrahedrally ordered water molecules.

  2. Electrical control of Faraday rotation at a liquid-liquid interface.

    Science.gov (United States)

    Marinescu, Monica; Kornyshev, Alexei A; Flatté, Michael E

    2015-01-01

    A theory is developed for the Faraday rotation of light from a monolayer of charged magnetic nanoparticles at an electrified liquid-liquid interface. The polarization fields of neighboring nanoparticles enhance the Faraday rotation. At such interfaces, and for realistic sizes and charges of nanoparticles, their adsorption-desorption can be controlled with a voltage variationFaraday rotation. A calculation based on the Maxwell-Garnett theory predicts that the corresponding redistribution of 40 nm nanoparticles of yttrium iron garnet can switch a cavity with a quality factor larger than 10(4) for light of wavelength 500 nm at normal incidence.

  3. Investigation of the oxidation of hydroquinone at the liquid/liquid interface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The oxidation of hydroquinone(QH_2) was investigated for the first time at liquid/liquid(L/L) interface by scanning electrochemical microscopy(SECM).In this study,electron transfer(ET) from QH_2 in aqueous to ferrocene(Fc) in nitrobenzene (NB) was probed.The apparent heterogeneous rate constants for ET reactions were obtained by fitting the experimental approach curves to the theoretical values.The results showed that the rate constants for oxidation reaction of QH_2 were sensitive to the changes of the ...

  4. Liquid-liquid transition in supercooled water suggested by microsecond simulations.

    Science.gov (United States)

    Li, Yaping; Li, Jicun; Wang, Feng

    2013-07-23

    The putative liquid-liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. However, no direct experimental verification of such a phase transition has been accomplished, and theoretical studies from different simulations contradict each other. We investigated the putative liquid-liquid phase transition using the Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). The simulation reveals a first-order phase transition in the supercooled regime with the critical point at ~207 K and 50 MPa. Normal water is high-density liquid (HDL). Low-density liquid (LDL) emerges at lower temperatures. The LDL phase has a density only slightly larger than that of the ice-Ih and shows more long-range order than HDL. However, the transformation from LDL to HDL is spontaneous across the first-order phase transition line, suggesting the LDL configuration is not poorly formed nanocrystalline ice. It has been demonstrated in the past that the WAIL potential provides reliable predictions of water properties such as melting temperature and temperature of maximum density. Compared with other simple water potentials, WAIL is not biased by fitting to experimental properties, and simulation with this potential reflects the prediction of a high-quality first-principle potential energy surface.

  5. Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows.

    Science.gov (United States)

    Kuhn, Simon; Hartman, Ryan L; Sultana, Mahmooda; Nagy, Kevin D; Marre, Samuel; Jensen, Klavs F

    2011-05-17

    We describe fluoropolymer modification of silicon microreactors for control of wetting properties in chemical synthesis applications and characterize the impact of the coating on liquid-liquid multiphase flows of solvents and water. Annular flow of nitrogen gas and a Teflon AF (DuPont) dispersion enable controlled evaporation of fluoropolymer solvent, which in turn brings about three-dimensional polymer deposition on microchannel walls. Consequently, the wetting behavior is switched from hydrophilic to hydrophobic. Analysis of microreactors reveals that the polymer layer thickness increases down the length of the reactor from ∼1 to ∼13 μm with an average thickness of ∼7 μm. Similarly, we show that microreactor surfaces can be modified with poly(tetrafluoroethylene) (PTFE). These PTFE-coated microreactors are further characterized by measuring residence time distributions in segmented liquid-liquid multiphase flows, which display reduced axial dispersion for the coated microreactors. Applying particle image velocimetry, changes in segment shape and velocity fluctuations are observed resulting in reduced axial dispersion. Furthermore, the segment size distribution is narrowed for the hydrophobic microreactors, enabling further control of residence distributions for synthesis and screening applications.

  6. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    Science.gov (United States)

    Pierce, Flint; Tsige, Mesfin; Perahia, Dvora; Grest, Gary S

    2008-12-18

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  7. Spatial scanning spectroelectrochemistry. Study of the electrodeposition of Pd nanoparticles at the liquid/liquid interface.

    Science.gov (United States)

    Izquierdo, Daniel; Martinez, Alberto; Heras, Aranzazu; Lopez-Palacios, Jesus; Ruiz, Virginia; Dryfe, Robert A W; Colina, Alvaro

    2012-07-03

    Spatial scanning spectroelectrochemistry is a new analytical technique that provides spectral information at different distances from an electrified liquid/liquid interface where an electrochemical process takes place. As a proof of concept, we have studied two different electrochemical processes at the electrified liquid/liquid interface: (1) Ru(bpy)(3)(2+) transfer through the water/1,2-dichloroethane interface and (2) electrodeposition of Pd nanoparticles at the water/1,2-dichloroethane interface. The instrumental setup developed consists of a movable slit for the light beam to sample at well-defined positions on both sides of the interface, providing important information about the chemical process occurring. If the slit is scanned at different distances from the interface during an electrochemical experiment, a complete picture of the reactions and equilibria in the diffusion layer can be obtained. For example, in the case of the Ru(bpy)(3)(2+), the experiments show clearly how the complex is transferred from one phase to the other. In the case of electrosynthesis of Pd nanoparticles, it is demonstrated that nanoparticles are not only deposited at the interface but diffuse to the aqueous bulk solution. These in situ observations were confirmed by ex situ experiments using transmission electron microscopy.

  8. Liquid / liquid biphasic electrochemistry in ultra-turrax dispersed acetonitrile / aqueous electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, John D. [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Amemiya, Fumihiro; Atobe, Mahito [Tokyo Institute of Technology, Department of Electronic Chemistry, Yokohama, Kanagawa 2268502 (Japan); Bulman-Page, Philip C. [School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (United Kingdom); Marken, Frank, E-mail: F.Marken@bath.ac.u [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)

    2010-12-01

    Unstable acetonitrile | aqueous emulsions generated in situ with ultra-turrax agitation are investigated for applications in dual-phase electrochemistry. Three modes of operation for liquid / liquid aqueous-organic electrochemical processes are demonstrated with no intentionally added electrolyte in the organic phase based on (i) the formation of a water-soluble product in the aqueous phase in the presence of the organic phase, (ii) the formation of a product and ion transfer at the liquid / liquid-electrode triple phase boundary, and (iii) the formation of a water-insoluble product in the aqueous phase which then transfers into the organic phase. A three-electrode electrolysis cell with ultra-turrax agitator is employed and characterised for acetonitrile / aqueous 2 M NaCl two phase electrolyte. Three redox systems are employed in order to quantify the electrolysis cell performance. The one-electron reduction of Ru(NH{sub 3}){sub 6}{sup 3+} in the aqueous phase is employed to determine the rate of mass transport towards the electrode surface and the effect of the presence of the acetonitrile phase. The one-electron oxidation of n-butylferrocene in acetonitrile is employed to study triple phase boundary processes. Finally, the one-electron reduction of cobalticenium cations in the aqueous phase is employed to demonstrate the product transfer from the electrode surface into the organic phase. Potential applications in biphasic electrosynthesis are discussed.

  9. A moving mesh interface tracking method for simulation of liquid-liquid systems

    Science.gov (United States)

    Charin, A. H. L. M.; Tuković, Ž.; Jasak, H.; Silva, L. F. L. R.; Lage, P. L. C.

    2017-04-01

    This manuscript presents a moving mesh interface tracking procedure, with a novel treatment for phase coupling. The new coupling strategy allows accurate predictions for the interface behaviour in a wide range of macroscopic properties with great potential to explore liquid-liquid systems. In this approach, governing equations are applied to each phase individually while the interface is represented by a zero-thickness surface that contemplates inter-phase jumps. These equations are described in an arbitrary Lagrangian-Eulerian finite volume framework. Computations consider the pressure-corrector PISO method. The new treatment for phase coupling incorporates the interfacial jump updates within the pressure/velocity calculations. Additionally, cell-centred values from both phases are considered when calculating convective and diffusive terms at the interface. The employment of GGI (Generalized Grid-Interface) interpolation provides conservative data mapping between surfaces for non-conformal meshes. The prediction capability of the new formulation is evaluated under different dominant effects governing interface motion. Simulated cases include gravity and capillary waves in a sloshing tank, three-dimensional drop oscillation for liquid-liquid systems and drop deformation due to shear flow. The numerical results show good agreement with analytical transient profiles of interface position. The procedure is able to successfully represent systems with similar macroscopic properties, i.e. density and viscosity ratios approaching unity, and a broad range of interfacial tensions.

  10. Carbon nanoparticle stabilised liquid|liquid micro-interfaces for electrochemically driven ion-transfer processes

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Stuart M. [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Fletcher, Paul D.I.; Cui Zhenggang [Department of Physical Sciences, Chemistry and Physics, University of Hull, Hull HU6 7RX (United Kingdom); Opallo, Marcin [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Chen Jingyuan [Department of Applied Physics, University of Fukui, 3-9-1, Bunkyo, Fukui-shi 910-8507 (Japan); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)], E-mail: F.Marken@bath.ac.uk

    2007-12-20

    Stabilised liquid|liquid interfaces between an organic 4-(3-phenylpropyl)-pyridine (PPP) phase and an aqueous electrolyte phase are obtained in the presence of suitable nanoparticles. The use of nanoparticulate stabilisers (ca. 30 nm diameter laponite or 9-18 nm diameter carbon) in 'Pickering' emulsion systems allows stable organic microdroplets to be formed and these are readily deposited onto conventional tin-doped indium oxide (ITO) electrodes. In contrast to the electrically insulating laponite nanoparticles, conducting carbon nanoparticles are shown to effectively catalyse the simultaneous electron transfer and ion transfer process at triple phase boundary junctions. Anion transfer processes between the aqueous and organic phase are driven electrochemically at the extensive triple phase junction carbon nanoparticle|4-(3-phenylpropyl)-pyridine|aqueous electrolyte. The organic phase consists of a redox active reagent 5,10,15,20-tetraphenyl-21H,23H-porphinato manganese(III) (MnTPP{sup +}), 5,10,15,20-tetraphenyl-21H,23H-porphinato iron(III) (FeTPP{sup +}), or proto-porphyrinato-IX iron(III) (hemin) dissolved in 4-(3-phenylpropyl)-pyridine (PPP). The composition of the aqueous electrolyte phase determines the reversible potential for the Nernstian anion transfer process. The methodology is shown to be versatile and, in future, could be applied more generally in liquid|liquid electroanalysis.

  11. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    Science.gov (United States)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2009-01-01

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included.

  12. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Pereira, Francisco; Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo (Spain)], E-mail: bendicho@uvigo.es

    2009-01-15

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included.

  13. Thermodynamics and intrinsic structure of the Al-Pb liquid-liquid interface: a molecular dynamics simulation study.

    Science.gov (United States)

    Yang, Yang; Laird, Brian B

    2014-07-17

    We examine the thermodynamics and intrinsic structure of the Al-Pb liquid-liquid interface using molecular dynamics simulation and embedded atom method potentials. The instantaneous interfacial positions, from which the intrinsic structure and the capillary fluctuation spectrum are determined, are calculated using a grid-based method. The interfacial free energy extracted from the capillary fluctuation spectrum is shown to be in excellent agreement with that calculated mechanically by integrating the stress profile. The intrinsic liquid-liquid interfacial density profile shows structural oscillations in the liquid phases in the interfacial region that are shown to be quantitatively similar to the radial distribution functions of the bulk liquid, consistent with theoretical predictions from classical density functional theory and with earlier simulations on liquid-liquid and liquid-vapor interfaces. In addition, we show the mean interfacial density profile for this system is well described as a convolution of the intrinsic density profile and the probability distribution of interfacial position.

  14. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  15. Using cyclic liquid-liquid extraction method for isolation and identification of relative compounds during lignin biodegradation

    Institute of Scientific and Technical Information of China (English)

    黄峰; 高培基; 陈嘉翔

    1999-01-01

    By using the cyclic liquid-liquid extraction method the lignin biodegradated derivatives can be effectively extracted from the effluent liquors in ligninolytic enzymes treated kraft pulps. More than forty compounds were identified from the extractives by gas chromatography-mass spectrometry analysis. The result showed that lignin is treated with different ligninolytic enzymes, and the composition and content of the extractives differ obviously. These results suggest that the cyclic liquid-liquid extraction method can be used effectively as one new technique for the study of lignin biodegrada-tion mechanisms.

  16. (Ternary liquid + liquid) equilibria for (water + acetone + {alpha}-pinene, or {beta}-pinene, or limonene) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaoli [Department of Chemistry and Chemical Engineering, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Tamura, Kazuhiro, E-mail: tamura@t.kanazawa-u.ac.j [Department of Chemistry and Chemical Engineering, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-11-15

    (Ternary liquid + liquid) equilibria (tie-lines) of (water + acetone + {alpha}-pinene) at T = (288.15, 298.15, and 308.15) K and (water + acetone + {beta}-pinene, or limonene) at T = 298.15 K have been measured. The experimental (ternary liquid + liquid) equilibrium data have been correlated successfully by the original UNIQUAC and modified UNIQUAC models. The modified UNIQUAC model reproduced accurately the experimental results for the (water + acetone + {alpha}-pinene) system at all the temperatures but fairly agreed with the experimental data for the (water + acetone + {beta}-pinene, or limonene) systems.

  17. The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials.

    Science.gov (United States)

    Rao, C N R; Kalyanikutty, K P

    2008-04-01

    Unlike the air-water interface, the organic-aqueous (liquid-liquid) interface has not been exploited sufficiently for materials synthesis. In this Account, we demonstrate how ultrathin nanocrystalline films of metals such as gold and silver as well as of inorganic materials such as semiconducting metal chalcogenides (e.g., CdS, CuS, CdSe) and oxides are readily generated at the liquid-liquid interface. What is particularly noteworthy is that single-crystalline films of certain metal chalcogenides are also obtained by this method. The as-prepared gold films at the toluene-water interface comprise fairly monodisperse nanocrystals that are closely packed, the nature and properties of the films being influenced by various reaction parameters such as reaction temperature, time, reactant concentrations, mechanical vibrations, and the viscosity of the medium. The surface plasmon band of gold is markedly red-shifted in the films due to electronic coupling between the particles. The shift of the surface plasmon band of the Au film toward higher wavelengths with an accompanying increase in intensity as a function of reaction time marks the growth of the film. Depending on the reaction temperature, the Au films show interesting electrical transport properties. Films of metals such as gold are disintegrated by the addition of alkanethiols, the effectiveness depending on the alkane chain length, clearly evidenced by shifts of the surface plasmon bands. A time evolution study of the polycrystalline Au and CdS films as well as the single-crystalline CuS films is carried out by employing atomic force microscopy. X-ray reflectivity studies reveal the formation of a monolayer of capped clusters having 13 gold atoms each, arranged in a hexagonal manner at the toluene-water interface. The measurements also reveal an extremely small value of the interfacial tension. Besides describing features of such nanocrystalline films and their mode of formation, their rheological properties have

  18. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain)

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  19. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation

    Science.gov (United States)

    Pawar, Nisha; Bohidar, H. B.

    2010-09-01

    Liquid-liquid phase separation leading to complex coacervation in a ternary system (oppositely charged polyion and macroion in a solvent) is discussed within the framework of a statistical thermodynamics model. The polyion and the macroion in the ternary system interact to form soluble aggregates (complexes) in the solvent, which undergoes liquid-liquid phase separation. Four necessary conditions are shown to drive the phase separation: (i) (σ23)3r/Φ23c≥((64)/(9α2))(χ23Φ3)2 , (ii) r≥[(64(χ23Φ3)2)/(9α2σ233)]1/2 , (iii) χ23≥((2χ231-1))/(Φ23cΦ3) , and (iv) (σ23)2/I≥(8)/(3α)(2χ231-1) (where σ23 is the surface charge on the complex formed due to binding of the polyelectrolyte and macroion, Φ23c is the critical volume fraction of the complex, χ23 is the Flory interaction parameter between polyelectrolyte and macroion, χ231 is the same between solvent and the complex, Φ3 is the volume fraction of the macroions, I is the ionic strength of the solution, α is electrostatic interaction parameter and r is typically of the order of molecular weight of the polyions). It has been shown that coacervation always requires a hydrated medium. In the case of a colloidal macroion and polyelectrolyte coacervation, molecular weight of polyelectrolyte must satisfy the condition r≥103Da to exhibit liquid-liquid phase separation. This model has been successfully applied to study the coacervation phenomenon observed in aqueous Laponite (macroion)-gelatin (polyion) system where it was found that the coacervate volume fraction, δΦ23˜χ2312 (where δΦ23 is the volume fraction of coacervates formed during phase separation). The free energy and entropy of this process have been evaluated, and a free-energy landscape has been drawn for this system that maps the pathway leading to phase separation.

  20. Determination of spirocyclic tetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2016-07-01

    Dispersive liquid-liquid microextraction was used to preconcentrate three spirocyclic tetronic/tetramic acid derivatives (spirotetramat, spiromesifen and spirodiclofen) and five neonicotinoid (thiamethoxam, chlotianidin, imidacloprid, acetamiprid and thiacloprid) insecticides previously extracted from fruit and vegetable matrices with acetonitrile. The organic enriched phase was evaporated, reconstituted in 25μL acetonitrile and analyzed by reversed-phase liquid chromatography with tandem mass spectrometry using a triple quadrupole in selected reaction monitoring mode. Enrichment factors in the 15-100 range were obtained. A matrix effect was observed, the detection limits varying between 0.025 and 0.5ngg(-1), depending on the compound and the sample matrix. The developed method was applied to the analysis of 25 samples corresponding to five different fruit and vegetable matrices. Only thiamethoxam was detected in a lemon sample at a concentration close to the quantification limit, and spiromesifen and spirotetramat at concentrations between 11.6 and 54.5ngg(-1).

  1. Liquid-Liquid Extraction-Chromogenic Systems Containing Iron(III, 4-Nitrocatechol and Tetrazolium Salts

    Directory of Open Access Journals (Sweden)

    Galya K. Toncheva

    2015-03-01

    Full Text Available Complex formation and liquid-liquid extraction were studied in systems containing iron(III, 4-nitrocatechol (4NC,tetrazolium salt (TZS, water and organic solvent. Three different TZS were used: 3-(4,5-dimethyl-2-thiazol-2,5-diphenyl-2H-tetrazolium bromide (MTT, 3-(2-naphtyl-2,5-diphenyl-2H-tetrazolium chloride (Tetrazolium violet, TV and 2-(4-iodophenyl-3-(4-nitrophenyl-5-phenyl-2H-tetrazolium chloride (INT.The cations of the first two TZSs (TZ+: MTT+ and TV+ form intensively colored (molar absorptivity of 4.6´104 L mol–1 cm–1 and 4.4´104 L mol–1 cm–1, respectively chloroform extractable ion-associates with the FeIII-4NC anionic chelate. These ternary complexes can be represented with the following general formula: (TZ+3[FeIII(4NC3]3−.

  2. Direct contact liquid-liquid heat exchanger for solar heated and cooled buildings

    Science.gov (United States)

    Karaki, S.; Brothers, P.

    1980-06-01

    The technical and economic feasibility of using a direct contract liquid-liquid heat exchanger (DCLLHE) storage unit in a solar heating and cooling system is established. Experimental performance data were obtained from the CSU Solar House I using a DCLLHE for both heating and cooling functions. A simulation model for the system was developed. The model was validated using the experimental data and applied in five different climatic regions of the country for a complete year. The life-cycle cost of the system was estimated for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger. It is concluded that while there is a performance advantage with a DCLLHE system over a conventional solar system, the advantage is not sufficiently large to overcome slightly higher capital and operating costs for the DCLLHE system.

  3. Copper phthalocyanine films deposited by liquid-liquid interface recrystallization technique (LLIRCT).

    Science.gov (United States)

    Patil, K R; Sathaye, S D; Hawaldar, R; Sathe, B R; Mandale, A B; Mitra, A

    2007-11-15

    The simple recrystallization process is innovatively used to obtain the nanoparticles of copper phthalocyanine by a simple method. Liquid-liquid interface recrystallization technique (LLIRCT) has been employed successfully to produce small sized copper phthalocyanine nanoparticles with diameter between 3-5 nm. The TEM-SAED studies revealed the formation of 3-5 nm sized with beta-phase dominated mixture of alpha and beta copper phthalocyanine nanoparticles. The XRD, SEM, and the UV-vis studies were further carried out to confirm the formation of copper phthalocyanine thin films. The cyclic voltametry (CV) studies conclude that redox reaction is totally reversible one electron transfer process. The process is attributed to Cu(II)/Cu(I) redox reaction.

  4. Prediction of Liquid-Liquid Equilibrium Using the Group Solubility Parameter Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Mo; CHEN Fuming

    2005-01-01

    The group solubility parameter (GSP) model was used to analyze the liquid-liquid equilibrium (LLE) of ternary and quaternary systems. The GSP parameters are divided into four dimensions representing the four major intermolecular forces. The values of the parameters were determined by regression using the nonlinear SIMPLEX optimization method to fit the LLE data of 548 ternary and 26 quaternary systems selected from the literature. LLE predictions of 8 ternary systems were then made using the fit parameters. Comparison of the results with predictions using the modified UNIFAC model shows that the GSP model has less adjustable parameters to achieve a similar accuracy and that the parameter values are easily acquired by analysis of available data.

  5. Dispersive Liquid-Liquid Microextraction and determination of Platinum(IV by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ali Mazloomifar

    2015-09-01

    Full Text Available A simple, rapid, and efficient procedure, dispersive liquid-liquid microextraction (DLLME, has been developed for the extraction and preconcentration of platinum (IV in environmental water samples. The factors relevant to the microextraction efficiency, such as the kind and volume of extraction and dispersive solvent, the extraction time, the pH in aqueous, and the salt effect, were optimized. Under the optimum conditions , the enrichment factor of this method for platinum was reached at 119. The detection limit for platinum was 0.3 ng mL-1 , and the relative standard deviation (RSD was 0.42% (n = 10 , C = 10 ng mL-1. The method was successfully applied to the determination of trace amounts of platinum in environmental water samples.

  6. Rapid screening of water soluble arsenic species in edible oils using dispersive liquid-liquid microextraction.

    Science.gov (United States)

    López-García, Ignacio; Briceño, Marisol; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2015-01-15

    A methodology for the non-chromatographic screening of the main arsenic species present in edible oils is discussed. Reverse dispersive liquid-liquid microextraction was used to extract water soluble arsenic compounds (inorganic arsenic, methylarsonate, dimethylarsinate and arsenobetaine) from the edible oils into a slightly acidic aqueous medium. The total arsenic content was measured in the extracts by electrothermal atomic absorption spectrometry using palladium as the chemical modifier. By repeating the measurement using cerium instead of palladium, the sum of inorganic arsenic and methylarsonate was obtained. The detection limit was 0.03 ng As per gram of oil. Data for the total and water-soluble arsenic levels of 29 samples of different origin are presented. Inorganic arsenic was not found in any of the samples marketed as edible oils.

  7. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.

    Science.gov (United States)

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-03-07

    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.

  8. Solvent Extraction: Structure of the Liquid-Liquid Interface Containing a Diamide Ligand.

    Science.gov (United States)

    Scoppola, Ernesto; Watkins, Erik B; Campbell, Richard A; Konovalov, Oleg; Girard, Luc; Dufrêche, Jean-Francois; Ferru, Geoffroy; Fragneto, Giovanna; Diat, Olivier

    2016-08-01

    Knowledge of the (supra)molecular structure of an interface that contains amphiphilic ligand molecules is necessary for a full understanding of ion transfer during solvent extraction. Even if molecular dynamics already yield some insight in the molecular configurations in solution, hardly any experimental data giving access to distributions of both extractant molecules and ions at the liquid-liquid interface exist. Here, the combined application of X-ray and neutron reflectivity measurements represents a key milestone in the deduction of the interfacial structure and potential with respect to two different lipophilic ligands. Indeed, we show for the first time that hard trivalent cations can be repelled or attracted by the extractant-enriched interface according to the nature of the ligand.

  9. Emulsification at the Liquid/Liquid Interface: Effects of Potential, Electrolytes and Surfactants.

    Science.gov (United States)

    Chowdhury, Mehrin; Kataky, Ritu

    2016-01-04

    Emulsification of oils at liquid/liquid interfaces is of fundamental importance across a range of applications, including detergency. Adsorption and partitioning of the anionic surface active ions at the interface between two immiscible solutions is known to cause predictable chaos at the transfer potential region of the surfactant. In this work, the phenomenon that leads to the chaotic behaviour shown by sodium dodecylbenzene sulfonate (SDBS) at the water/1,2-dichloroethane interface is applied to commercial surfactants and aqueous/glyceryl trioleate interface. Electrochemical methods, electrocapillary curves, optical microscopy and conductivity measurements demonstrated that at 1.5 mm of SDBS, surfactants are adsorbed at the interface and assemble into micelles, leading to interfacial instability. As the concentration of the anionic surfactant was enhanced to 8 and 13.4 mm, the Marangoni effect and the interfacial emulsification became more prominent. The chaotic behaviour was found to be dependent on the surfactant concentration and the electrolytes present.

  10. Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture

    Science.gov (United States)

    Murata, Ken-Ichiro; Tanaka, Hajime

    2012-05-01

    The existence of more than two liquid states in a single-component substance and the ensuing liquid-liquid transitions (LLTs) has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. Here we report direct experimental evidence for a genuine (isocompositional) LLT without macroscopic phase separation in an aqueous solution of glycerol. We show that liquid I transforms into liquid II by way of two types of kinetics: nucleation and growth, and spinodal decomposition. Although liquid II is metastable against crystallization, we could access both its static and dynamical properties experimentally. We find that liquids I and II differ in density, refractive index, structure, hydrogen bonding state, glass transition temperature and fragility, and that the transition between the two liquids is mainly driven by the local structuring of water rather than of glycerol, suggesting a link to a plausible LLT inpure water.

  11. Investigation of liquid-liquid interfacial electron transfer kinetics using multicenter ferrocenyl complexes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang Debo [Department of Chemistry, Faculty of Science, Beijing Institute of Technology, Beijing 100081 (China); Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Merbouh, Nabyl [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Shao Huibo [Department of Chemistry, Faculty of Science, Beijing Institute of Technology, Beijing 100081 (China); Yu Huazhong, E-mail: hogan_yu@sfu.ca [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada)

    2011-06-30

    The redox behavior of two novel multicenter redox molecules (triferrocenylmethane and triferrocenylmethanol) has been studied in a thin film of nitrobenzene (NB) imposed between a graphite electrode and an aqueous electrolyte. The well separated three sets of redox peaks indicate strong intramolecular electronic communications between the three ferrocene centers in each molecule. They were adapted as model compounds for the study of electron transfer kinetics across the liquid/liquid interface with varied overall driving force using only one-type redox couples in the organic and aqueous phase, respectively. It has been shown that in both cases the dependence of interfacial electron transfer rate on the increased overall driving force across the nitrobenzene/water interface is not monotonic.

  12. The Liquid-Liquid Extraction of Toxic Metals (Cd, Hg and Pb by Calixarenes

    Directory of Open Access Journals (Sweden)

    D. Max Roundhill

    2009-12-01

    Full Text Available Toxic metals (Cd, Hg and Pb are mostly present in the environment due to natural phenomenon and human activities as well. Exposure of these non-essential elements in the environment causes severe effects. They are known to cause problems in humans as well as in aquatic life. In this work, we demonstrate various studies regarding liquid-liquid extraction of selected ions with different functionalized calixarenes. This review article briefly discusses several molecular designs of calixarenes for divalent ion (Cd2+, Hg2+ and Pb2+ recognition; as well as the relationship between structure and selectivity of the macrocycles is elaborated. The article does not, however, attempt to cover all of the different approaches to these toxic metal ions extraction.

  13. Pre-concentration of uranium from water samples by dispersive liquid-liquid micro-extraction

    Energy Technology Data Exchange (ETDEWEB)

    Khajeh, Mostafa; Nemch, Tabandeh Karimi [Zabol Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2014-07-01

    In this study, a simple and rapid dispersive liquid-liquid microextraction (DLLME) was developed for the determination of uranium in water samples prior to high performance liquid chromatography with diode array detection. 1-(2-pyridylazo)-2-naphthol (PAN) was used as complexing agent. The effect of various parameters on the extraction step including type and volume of extraction and dispersive solvents, pH of solution, concentration of PAN, extraction time, sample volume and ionic strength were studied and optimized. Under the optimum conditions, the limit of detection (LOD) and preconcentration factor were 0.3 μg L{sup -1} and 194, respectively. Furthermore, the relative standard deviation of the ten replicate was <2.6%. The developed procedure was then applied to the extraction and determination of uranium in the water samples.

  14. Closed-loop liquid-liquid immiscibility in mixture of particles with spherically symmetric interaction

    Directory of Open Access Journals (Sweden)

    Yu.V. Kalyuzhnyi

    2013-01-01

    Full Text Available Thermodynamic perturbation theory for cetral-force (TPT-CF type of associating potential is used to study the phase behavior of symmetric binary mixture of associating particles with spherically symmetric interaction. The model is represented by the binary Yukawa hard-sphere mixture with additional spherically symmetric square-well associative interaction located inside the hard-core region and valid only between dissimilar species. To account for the change of the system packing fraction due to association we propose an extended version of the TPT-CF approach. In addition to already known four types of the phase diagram for binary mixtures we were able to identify the fifth type, which is characterized by the absence of the intersection of the λ-line with the liquid-vapour binodals and by the appearance of the closed- loop liquid-liquid immiscibility with upper and lower critical solution temperatures.

  15. (Liquid + liquid) equilibria of {l_brace}heptane + xylene + N-formylmorpholine{r_brace} ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongchu [College of Chemistry and Chemical Engineering, Central South University, ChangSha 410083 (China)], E-mail: dcchen@hnust.edu.cn; Ye Hongqi; Hao Wu [College of Chemistry and Chemical Engineering, Central South University, ChangSha 410083 (China)

    2007-12-15

    (Liquid + liquid) equilibrium (LLE) data for ternary system {l_brace}heptane (1) + m-xylene (2) + N-formylmorpholine (3){r_brace} have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer-Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and The non-random two liquids equation (NRTL) were used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.

  16. Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration.

    Science.gov (United States)

    Liang, Pei; Sang, Hongbo

    2008-09-01

    A new method for the determination of trace lead was developed by dispersive liquid-liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry. In the proposed approach, 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) was used as a chelating agent, and carbon tetrachloride and ethanol were selected as extraction and dispersive solvents. Some factors influencing the extraction efficiency of lead and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent, and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of this method for lead was reached at 78. The detection limit for lead was 39 ng L(-1) (3 sigma), and the relative standard deviation (RSD) was 3.2% (n=7, c=10 ng mL(-1)). The method was successfully applied to the determination of trace amounts of lead in human urine and water samples.

  17. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    Today's oil and gas production requires the application of various chemicals in large amounts. To evaluate the effects of those chemicals on the environment, it is of crucial importance to know how much of the chemicals are discharged via produced water and how much is dissolved in the crude oil....... The ultimate objective of this work is to develop a predictive thermodynamic model for the mutual solubility of oil, water, and polar chemicals. But for the development and validation of the model, experimental data are required. This work presents new experimental liquid-liquid equilibrium (LLE) data for 1......,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...

  18. Modeling of closed-loop recycling liquid-liquid chromatography: Analytical solutions and model analysis.

    Science.gov (United States)

    Kostanyan, Artak E

    2015-08-07

    In closed-loop recycling (CLR) chromatography, the effluent from the outlet of a column is directly returned into the column through the sample feed line and continuously recycled until the required separation is reached. To select optimal operating conditions for the separation of a given feed mixture, an appropriate mathematical description of the process is required. This work is concerned with the analysis of models for the CLR separations. Due to the effect of counteracting mechanisms on separation of solutes, analytical solutions of the models could be helpful to understand and optimize chromatographic processes. The objective of this work was to develop analytical expressions to describe the CLR counter-current (liquid-liquid) chromatography (CCC). The equilibrium dispersion and cell models were used to describe the transport and separation of solutes inside a CLR CCC column. The Laplace transformation is applied to solve the model equations. Several possible CLR chromatography methods for the binary and complex mixture separations are simulated.

  19. Instability due to interfacial tension in parallel liquid-liquid flow

    Science.gov (United States)

    Rodriguez, Oscar M. H.

    2016-06-01

    The frequent occurrence of multiphase flows in pipes has motivated a great research interest over the last decades. The particular case of liquid-liquid flow is commonly encountered in the petroleum industry, where a number of applications involve oil-water flow such as crude oil production in directional wells. However, it has not received the same attention when compared to gas-liquid flow. In addition, most of the available information has to do with flow in pipes. When it comes to flows in annular ducts the data are scanty. A general transition criterion has been recently proposed in order to obtain the stratified and core-annular flow-pattern transition boundaries in viscous oil-water flow. The proposed criterion was based on an one-dimensional two-fluid model of liquid-liquid two-phase flow. A stability analysis was carried out and interfacial tension is considered. A new destabilizing term arises, which is a function of the cross-section curvature of the interface. It is well accepted that interfacial tension favors the stable condition. However, the analysis of the new interfacial-tension term shows that it can actually destabilize the basic flow pattern, playing an important role in regions of extreme volumetric fractions. Such an interesting effect seems to be more pronounced in flows of viscous fluids and in annular-duct flow. The effect of interfacial tension is explored and the advantages of using a more complete model are discussed and illustrated through comparisons with experimental data from the literature. The evaluation of the effects of fluid viscosity and interfacial tension allows the correction and enhancement of transition models based essentially on data of pipe flow of low viscosity fluids.

  20. Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow

    Science.gov (United States)

    Wang, Xia; Sun, Xiaodong; Duval, Walter M.

    2011-06-01

    Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.

  1. Antioxidant and antimicrobial properties of essential oil constituents encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method

    Science.gov (United States)

    Thymol and carvacrol, two isomeric terpenoids found in the essential oil of thyme, were encapsulated in nanoparticles of the corn protein zein using a liquid-liquid dispersion method. The morphology, antioxidant properties, and antimicrobial activity were determined for nanaparticles formed under ac...

  2. Rapid screening of oxytetracycline residue in catfish muscle by dispersive liquid-liquid microextraction and europium-sensitized luminescence

    Science.gov (United States)

    Oxytetracycline (OTC) residue in catfish muscle was screened by dispersive liquid-liquid microextraction (DLLME) and europium-sensitized luminescence (ESL). After extraction in EDTA, HCl, and acetonitrile, cleanup was carried out by DLLME, and ESL was measured at microgram = 385 nm and wavelength = ...

  3. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were obt

  4. Analysis of the transient rotating cylinder apparatus for the measurement of liquid-liquid interface shear viscosity

    DEFF Research Database (Denmark)

    Hassager, Ole; Westborg, H

    1987-01-01

    An analysis of the transient rotating cylinder apparatus for the measurement of liquid-liquid interface viscosity is given. An analytical expression that allows the determination of the interfacial viscosity from observations of the interface movement is given. The expression is presented...... in tabular form for selected values of the physical parameters of the two phases, and suggestions for apparatus design are given....

  5. Formation of Au nanoparticle-doped PVK microcapsules and foam-like structures at the liquid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Chu Chunxiao; Yang Dan; Wang Di; Ma Huihui [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Liu Hongguo, E-mail: hgliu@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Au nanoparticle-doped microcapsule and foamlike film of PVK formed at the liquid/liquid interface. Black-Right-Pointing-Pointer These composites formed due to self-assembly of polymer molecules at the interface. Black-Right-Pointing-Pointer Au nanoparticles were produced simultaneously and doped in the films. Black-Right-Pointing-Pointer The composite films exhibited effective catalytic properties. Black-Right-Pointing-Pointer Durable catalytic activity was achieved after the second cycle. - Abstract: Gold nanoparticle-doped microcapsules and foamlike films of poly(N-vinylcarbazole) (PVK) were prepared through a self-assembly process at a liquid/liquid interface. The liquid/liquid interface was formed by an aqueous solution of HAuCl{sub 4} and a chloroform solution of PVK. The composite structures were characterized using transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and UV-vis spectroscopy. The results revealed that microcapsules with the size of several hundreds of nanometers and foamlike thin films were formed, and small gold nanoclusters and nanoparticles embedded in the walls. The formation of these composite nanostructures was the result of the adsorption and combination of PVK molecules with AuCl{sub 4}{sup -} ions, self-assembly of the composite molecules, and reduction of the complex ions at the liquid/liquid interface. The composite structures exhibited effective catalytic activity for the reduction of 4-nitrophenol (4-NP) by KBH{sub 4} in aqueous solutions.

  6. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air

    OpenAIRE

    2016-01-01

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  7. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeini Jahromi, Elham [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidari, Araz [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Assadi, Yaghoub [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of) and Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)]. E-mail: y_assadi@iust.ac.ir; Milani Hosseini, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jamali, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2007-03-07

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 {mu}L methanol (disperser solvent) containing 34 {mu}L carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 {+-} 1 {mu}L). Then a 20 {mu}L of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L{sup -1} with detection limit of 0.6 ng L{sup -1}. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L{sup -1} of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L{sup -1} are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data

  8. Analysis by partial reflection spectrometry of protonated tetraphenylporphyrin adsorbed at a liquid-liquid interface.

    Science.gov (United States)

    Moriya, Yoshio; Hasegawa, Takeshi; Hayashi, Kotaro; Maruyama, Machiko; Nakata, Shinichi; Ogawa, Nobuaki

    2003-06-01

    Visible reflection spectra of diprotonated meso-tetraphenylporphyrin adsorbates spontaneously formed at a dodecane-aqueous sulfuric acid interface have been measured using a home-made device comprising a prism-cell and variable-angle optics. The tilt angle of the pyrrole ring plane was estimated to be 47 degrees from the interface normal by use of an experimentally evaluated molecular density (1.20x10(-10) mol cm(-2)) of the diprotonated molecule in a monolayer form at the liquid-liquid interface. Positive and negative bands have been observed in the p-polarized partial internal reflection (p-PIR) spectra, whose band locations correspond to those in p-polarized external reflection (p-ER) spectra. Nevertheless, the bands in the p-PIR exhibited reversed sign to those of p-ER spectra. These suggest that the surface selection rule of the p-PIR spectrometry has a reversal rule of p-ER and p-PIR can also be used for the analysis of molecular orientation.

  9. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    Directory of Open Access Journals (Sweden)

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  10. Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials.

    Science.gov (United States)

    Gao, Min-Rui; Yuan, Jiayin; Antonietti, Markus

    2016-10-06

    Ionic liquids (ILs) are new, innovative ionic solvents with rich physicochemical properties and intriguing pre-organized solvent structures; these materials offer great potential to impact across versatile areas of scientific research, for example, synthetic inorganic chemistry. Recent use of ILs as precursors, templates, and solvents has led to inorganic materials with tailored sizes, dimensionalities, morphologies, and functionalities that are difficult to obtain, or even not accessible, by using conventional solvents. Poly(ionic liquid)s (PILs) polymerized from IL monomers also raise the prospect of modifying nucleation, growth, and crystallization of inorganic objects, shedding light on the synthesis of a wide range of new materials. Here we survey recent key progress in using ILs and PILs in the field of synthetic inorganic chemistry. As well as highlighting the unique features of ILs and PILs that enable advanced synthesis, the effects of adding other solvents to the final products, along with the emerging applications of the created inorganic materials will be discussed. We finally provide an outlook on several development opportunities that could lead to new advancements of this exciting research field.

  11. Mathematical modelling of Liquid -Liquid extraction in the slug flow regime in a microchannel

    Science.gov (United States)

    Ramji, Sundari; Bhagavatula, Dinesh; Rakesh, Arjun; Pushpavanam, S.

    2016-11-01

    Mixing in the slug flow regime in microchannels is enhanced by the presence of internal circulations induced by shear due to wall. This helps improve mass transfer in this flow regime. We exploit the low Re characteristic of the flow and seek a numerical solution to understand the structure of the vortex patterns formed in the two phases in the slug flow regime. We study liquid-liquid extraction in the system to determine the improvement in mass transfer. The system was analyzed for two cases when there is (i) no film surrounding the slug (ii) a thin film surrounding the slug. The 2D governing equations for fluid flow are solved using two approaches: a) a stream function formulation based on finite differences b) primitive variable formulation with the Chebyshev collocation method. The effect of viscosity ratio, slug length and film thickness on the vortex structure were studied. While secondary vortices were induced in the less viscous phase in the case where the thin film is absent, they are always generated in the slug irrespective of the viscosity ratio in the case where the film is present. The species balance equation was then solved numerically using two approaches: a) an Alternating Direction Explicit method and b) the Locally One Dimensional splitting technique. The effect of varying Peclet number from 0 to 104 on the solute transfer from the slug to the continuous phase was studied. The extraction performance is analyzed in terms of extraction efficiency and mass transfer coefficient.

  12. Rapid detection of haloarchaeal carotenoids via liquid-liquid microextraction enabled direct TLC MALDI-MS.

    Science.gov (United States)

    Manikandan, Muthu; Hasan, Nazim; Wu, Hui-Fen

    2013-03-30

    For the first time, we demonstrate the use of TiO2 nanoparticles (NPs) for enhancing the carotenoid production by the extremophilic haloarchea, Haloferax mediterranei. TiO2 NPs at optimal concentration of 375 mg/L results in a 95% increase in the production of carotenoid pigment compared to the control (no TiO2 NPs). The carotenoid pigments extracted from TiO2 NPs treated H. mediterranei cells, were separated using thin layer chromatography (TLC). The separated carotenoid spots were subjected directly for MALDI MS detection. To limit the sample diffusion during matrix addition on TLC plates, a simple bordering mode was exercised. Using this method we were able to detect the pigments successfully using MALDI-MS, directly from TLC plates after separation. In addition, we also applied the Pt NPs capped with ODT via Liquid-liquid microextraction (LLME) for extracting the pigment molecules from the halobacteria in MALDI-MS. These novel NP approaches possess numerous advantages such as; rapidity, ease in synthesis, high sensitivity and low cost.

  13. Influence of microwave heating on liquid-liquid phase inversion and temperature rates for immiscible mixtures.

    Science.gov (United States)

    Kennedy, Alvin; Tadesse, Solomon; Nunes, Janine; Reznik, Aron

    2011-01-01

    Time dependencies of component temperatures for mixtures of immiscible liquids during microwave heating were studied for acetonitrile-cyclohexane and water-toluene. For the first time, we report microwave induced liquid-liquid phase inversion for acetonitrile-cyclohexane mixture: acetonitrile layer was initially at the bottom of the mixture, after 10 sec of microwave heating its density decreased and it inverted to the top of the mixture for the remainder of the microwave heating. This phase inversion could not be achieved by conventional radiant heating. The maximum rate of temperature growth for the polar component of the mixtures was 2 - 5 times larger than for the non-polar component. This suggests that microwave energy is absorbed by polar liquids (water or acetonitrile) and heat is transferred into the non-polar liquid (toluene or cyclohexane) in the mixture by conduction (in case of cyclohexane) or conduction and convection (in case of toluene). Comparison between experimental data and semi-empirical mathematical models, proposed in [Kennedy et at., 2009] showed good correlation. Average relative error between theoretical and experimental results did not exceed 7%. These results can be used to model the temperature kinetics of components for other multiphase mixtures.

  14. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  15. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.

    Science.gov (United States)

    Liu, Yu; Zhao, Ercheng; Zhu, Wentao; Gao, Haixiang; Zhou, Zhiqiang

    2009-02-01

    A novel microextraction method termed ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209-276) and accepted recoveries (79-110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2-100 microg/L, and the relative standard deviations (RSDs, n=5) were 4.5-10.7%. The limits of detection for the four insecticides were 0.53-1.28 microg/L at a signal-to-noise ratio (S/N) of 3.

  16. Spectroscopic analysis of bosentan in biological samples after a liquid-liquid microextraction

    Science.gov (United States)

    Sajedi-Amin, Sanaz; Assadpour-Zeynali, Karim; Panahi-Azar, Vahid; Kebriaeezadeh, Abbas; Khoubnasabjafari, Maryam; Ansarin, Khalil; Jouyban-Gharamaleki, Vahid; Jouyban, Abolghasem

    2015-01-01

    Introduction:Microextraction processes with UV-Vis measurement have been developed and validated for analysis of bosentan in biological samples. Methods:In this work, liquid–liquid microextraction procedures (DLLME & USAEME) were employed for cleanup, pre-concentration, and determination of bosentan in biological samples by UV-Vis spectroscopy at 270 nm. The method was validated and applied to the determination of bosentan in spiked serum, exhaled breath condensate and urine samples. Results:Various experimental factors including type of extraction and dispersive solvents and their volumes, pH, sonication time and centrifuging time were investigated. Under the optimum conditions, the method was linear in the range of 1.0–5.0 μg.mL-1, with coefficient of determination (R2) of > 0.998. The limit of detection (LOD) was 0.07 mg.L-1. Recovery of the target analyte in biological samples was 106.2%. The method could be easily applied for higher concentration of bosentan and needs more improvement for application in the pharmacokinetic investigations where more sensitive methods are required. Conclusion:A simple, low cost, precise and accurate spectrophotometric analysis of bosentan in biological samples after liquid-liquid microextraction were developed and validated for routine analyses. PMID:26929923

  17. Determination of phenolic compounds in honey using dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Campone, Luca; Piccinelli, Anna Lisa; Pagano, Imma; Carabetta, Sonia; Di Sanzo, Rosa; Russo, Mariateresa; Rastrelli, Luca

    2014-03-21

    Honey is a valuable functional food rich in phenolic compounds with a broad spectrum of biological activities. Analysis of the phenolic compounds in honey is a very promising tool for the quality control, the authentication and characterization of botanical origin, and the nutraceutical research. This work describes a novel approach for the rapid analysis of five phenolic acids and 10 flavonoids in honey. Phenolic compounds were rapidly extracted and concentrated from diluted honey by dispersive liquid-liquid microextraction (DLLME) and then analyzed using high performance liquid chromatography with UV absorbance detection (HPLC-UV). Some important parameters, such as the nature and volume of extraction and dispersive solvents, pH and salt effect were carefully investigated and optimized to achieve the best extraction efficiency. Under the optimal conditions, an exhaustive extraction for twelve of the investigated analytes (recoveries >70%), with a precision (RSDDLLME to the extraction of other honey phytochemicals, such as abscisic acid, was also demonstrated. The main advantages of developed method are the simplicity of operation, the rapidity to achieve a very high sample throughput and low cost.

  18. Dispersive Liquid-Liquid Microextraction in the Analysis of Milk and Dairy Products: A Review

    Directory of Open Access Journals (Sweden)

    Andrew Quigley

    2016-01-01

    Full Text Available Dispersive liquid-liquid microextraction (DLLME is an extraction technique developed within the last decade, which involves the dispersion of fine droplets of extraction solvent in an aqueous sample. Partitioning of analytes into the extraction phase is instantaneous due to the very high collective surface area of the droplets. This leads to very high enrichment factors and very low solvent consumption, relative to other liquid or solid phase extraction methods. A comprehensive review of the various modes of DLLME in the analysis of organic and inorganic analytes in dairy products (milk, cheese, infant formula, yogurt, and breast milk is presented here. Dairy products present a complex sample matrix and the removal of interfering matrix components can prove troublesome. This review focuses on sample pretreatment prior to the appropriate DLLME procedure, the extraction and dispersive solvents chosen, derivatisation methods, and analytical figures of merit. Where possible, a critical comparison of DLLME methods has been undertaken. The overall suitability, and limitations, of DLLME as a sample preparation technique for dairy products has been assessed.

  19. Sequential dispersive liquid-liquid microextraction for the determination of aryloxyphenoxy-propionate herbicides in water.

    Science.gov (United States)

    Li, Songqing; Gao, Peng; Zhang, Jiaheng; Li, Yubo; Peng, Bing; Gao, Haixiang; Zhou, Wenfeng

    2012-12-01

    A novel dispersive liquid-liquid microextraction (DLLME) method followed by HPLC analysis, termed sequential DLLME, was developed for the preconcentration and determination of aryloxyphenoxy-propionate herbicides (i.e. haloxyfop-R-methyl, cyhalofop-butyl, fenoxaprop-P-ethyl, and fluazifop-P-butyl) in aqueous samples. The method is based on the combination of ultrasound-assisted DLLME with in situ ionic liquid (IL) DLLME into one extraction procedure and achieved better performance than widely used DLLME procedures. Chlorobenzene was used as the extraction solvent during the first extraction. Hydrophilic IL 1-octyl-3-methylimidazolium chloride was used as a dispersive solvent during the first extraction and as an extraction solvent during the second extraction after an in situ chloride exchange by bis[(trifluoromethane)sulfonyl]imide. Several experimental parameters affecting the extraction efficiency were studied and optimized with the design of experiments using MINITAB® 16 software. Under the optimized conditions, the extractions resulted in analyte recoveries of 78-91%. The correlation coefficients of the calibration curves ranged from 0.9994 to 0.9997 at concentrations of 10-300, 15-300, and 20-300 μg L(-1). The relative SDs (n = 5) ranged from 2.9 to 5.4%. The LODs for the four herbicides were between 1.50 and 6.12 μg L(-1).

  20. Ligandless-dispersive liquid-liquid microextraction of trace amount of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Sayed Zia, E-mail: szmohammadi@yahoo.com [Department of Chemistry, Payame Noor University (PNU), Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment Department, Institute Research of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Baghelani, Yar Mohammad [Department of Chemistry, Payame Noor University (PNU), Kerman (Iran, Islamic Republic of)

    2009-10-27

    In the present work, a new ligandless-dispersive liquid-liquid microextraction (LL-DLLME) method has been developed for preconcentration trace amounts of copper as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents, respectively. Some factors influencing on the extraction efficiency of copper and its subsequent determination were studied and optimized, such as the extraction and dispersive solvent type and volume, pH of sample solution, extraction time and salting out effect. Under the optimal conditions, the calibration curve was linear in the range of 1.0 ng mL{sup -1}-0.6 {mu}g mL{sup -1} of copper with R{sup 2} = 0.9985. Detection limit was 0.5 ng mL{sup -1} in original solution (3S{sub b}/m) and the relative standard deviation for seven replicate determination of 0.2 {mu}g mL{sup -1} copper was {+-}1.4%. The proposed method has been applied for determination of copper in standard and water samples with satisfactory results.

  1. Dispersive liquid-liquid microextraction of thiram followed by microvolume UV-vis spectrophotometric determination

    Science.gov (United States)

    Rastegarzadeh, Saadat; Pourreza, Nahid; Larki, Arash

    2013-10-01

    A novel and simple method for the sensitive determination of trace amounts of fungicide thiram is developed by combination of dispersive liquid-liquid microextraction (DLLME) and microvolume UV-vis spectrophotometry. The method is based on the conversion of thiram to a yellow product in the presence of ethanolic potassium hydroxide and copper sulfate, and its extraction into CCL4 using DLLME technique. In this method the ethanol existing in ethanolic KOH plays as disperser solvent and a cloudy solution is formed by injection of only CCl4 as extractant solvent into sample solution. Under the optimum conditions, the calibration graph was linear over the range of 25-1000 ng mL-1 of thiram with limit of detection of 11.5 ng mL-1. The relative standard deviation (RSD) for 100 and 500 ng mL-1 of thiram was 2.7 and 1.1% (n = 8), respectively. The proposed method was successfully applied to determination of thiram in water and plant seed samples.

  2. Determination of tramadol by dispersive liquid-liquid microextraction combined with GC-MS.

    Science.gov (United States)

    Habibollahi, Saeed; Tavakkoli, Nahid; Nasirian, Vahid; Khani, Hossein

    2015-01-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) has been developed for preconcentration and determination of tramadol, ((±)-cis-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol-HCl), in aqueous and biological samples (urine, blood). DLLME is a simple, rapid and efficient method for determination of drugs in aqueous samples. Efficient factors on the DLLME process has defined and optimized for extraction of tramadol including type of extraction and disperser solvents and their volumes, pH of donor phase, time of extraction and ionic strength of donor phase. Based on the results of this study, under optimal conditions and by using 2-nitro phenol as internal standard, tramadol was determined by GC-MS, and the figures of merit of this work were evaluated. The enrichment factor, relative recovery and limit of detection were obtained 420, 99.2% and 0.08 µg L(-1), respectively. The linear range was between 0.26 and 220.00 µg L(-1) (R(2) = 0.9970). The relative standard deviation for 50.00 µg L(-1) of tramadol in aqueous samples by using 2-nitro phenol as IS was 3.6% (n = 7). Finally, the performance of DLLME was evaluated for analysis of tramadol in urine and blood.

  3. Phase Segregation at the Liquid-Air Interface Prior to Liquid-Liquid Equilibrium.

    Science.gov (United States)

    Bermúdez-Salguero, Carolina; Gracia-Fadrique, Jesús

    2015-08-13

    Binary systems with partial miscibility segregate into two liquid phases when their overall composition lies within the interval defined by the saturation points; out of this interval, there is one single phase, either solvent-rich or solute-rich. In most systems, in the one-phase regions, surface tension decreases with increasing solute concentration due to solute adsorption at the liquid-air interface. Therefore, the solute concentration at the surface is higher than in the bulk, leading to the hypothesis that phase segregation starts at the liquid-air interface with the formation of two surface phases, before the liquid-liquid equilibrium. This phenomenon is called surface segregation and is a step toward understanding liquid segregation at a molecular level and detailing the constitution of fluid interfaces. Surface segregation of aqueous binary systems of alkyl acetates with partial miscibility was theoretically demonstrated by means of a thermodynamic stability test based on energy minimization. Experimentally, the coexistence of two surface regions was verified through Brewster's angle microscopy. The observations were further interpreted with the aid of molecular dynamics simulations, which show the diffusion of the acetates from the bulk toward the liquid-air interface, where acetates aggregate into acetate-rich domains.

  4. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface.

    Science.gov (United States)

    Matsuoka, Ryota; Sakamoto, Ryota; Hoshiko, Ken; Sasaki, Sono; Masunaga, Hiroyasu; Nagashio, Kosuke; Nishihara, Hiroshi

    2017-02-15

    Synthetic two-dimensional polymers, or bottom-up nanosheets, are ultrathin polymeric frameworks with in-plane periodicity. They can be synthesized in a direct, bottom-up fashion using atomic, ionic, or molecular components. However, few are based on carbon-carbon bond formation, which means that there is a potential new field of investigation into these fundamentally important chemical bonds. Here, we describe the bottom-up synthesis of all-carbon, π-conjugated graphdiyne nanosheets. A liquid/liquid interfacial protocol involves layering a dichloromethane solution of hexaethynylbenzene on an aqueous layer containing a copper catalyst at room temperature. A multilayer graphdiyne (thickness, 24 nm; domain size, >25 μm) emerges through a successive alkyne-alkyne homocoupling reaction at the interface. A gas/liquid interfacial synthesis is more successful. Sprinkling a very small amount of hexaethynylbenzene in a mixture of dichloromethane and toluene onto the surface of the aqueous phase at room temperature generated single-crystalline graphdiyne nanosheets, which feature regular hexagonal domains, a lower degree of oxygenation, and uniform thickness (3.0 nm) and lateral size (1.5 μm).

  5. Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid-Liquid Interface.

    Science.gov (United States)

    Armao Iv, Joseph J; Nyrkova, Irina; Fuks, Gad; Osypenko, Artem; Maaloum, Mounir; Moulin, Emilie; Arenal, Raul; Gavat, Odile; Semenov, Alexander; Giuseppone, Nicolas

    2017-02-15

    The study of supramolecular polymers in the bulk, in diluted solution, and at the solid-liquid interface has recently become a major topic of interest, going from fundamental aspects to applications in materials science. However, examples of supramolecular polymers at the liquid-liquid interface are mostly unexplored. Here, we describe the supramolecular polymerization of triarylamine molecules and their light-triggered organization at a chloroform-water interface. The resulting interfacial nematic layer of these 1D supramolecular polymers is further used as a template for the precise alignment of spherical gold nanoparticles coming from the water phase. These hybrid thin films are spontaneously formed in a single process, without chemical prefunctionalization of the metallic nanoparticles, and their ordering is improved by centrifugation. The resulting polymer chains and strings of nanoparticles can be co-aligned with high anisotropy over very large distances. By using a combination of experimental and theoretical investigations, we decipher the full sequence of this oriented self-assembly process. In such a highly anisotropic configuration, electron energy loss spectroscopy reveals that the self-assembled nanoparticles behave as plasmonic waveguides.

  6. Pinch off and reconnection in liquid/liquid flows: joint experimental and numerical studies

    Energy Technology Data Exchange (ETDEWEB)

    Ellen K. Longmire; John S. Lowengrub

    2005-09-26

    Liquid/liquid systems appear in applications involving transport, mixing, and separation of petroleum, chemical, and waste products. Breakup and coalescence transitions often determine flow regimes as well as reaction and separation rates. Because they occur over very small time and length scales compared with the larger scales that dominate the flow, they are difficult to quantify experimentally and simulate numerically. Thus far, no accurate models exist for engineers to predict these flows. Experiments and computations were performed so that accurate engineering models can be developed. Jet pinch off and drop coalescence were examined in mixtures of water/glycerin and silicone oil. Index matching, laser sheet illumination, and the PIV method were applied to obtain visualization and velocity field sequences through transitions. The computations used a novel, physically-based method that captures interface breakup and coalescence automatically without resorting to ad-hoc cut-and-connect methods. To achieve enhanced accuracy near transitions, new adaptive time and space meshes were developed. The computations were validated through direct comparison with the experiments. The detailed results should lead to improved understanding of transition behavior. This understanding is needed to develop engineering models of multiphase flows. Such predictive models will lead to extensive cost savings in device and process design.

  7. Ionic liquid based dispersive liquid-liquid microextraction of aromatic amines in water samples

    Institute of Scientific and Technical Information of China (English)

    Yun Chang Fan; Zheng Liang Hu; Mei Lan Chen; Chao Shen Tu; Yan Zhu

    2008-01-01

    In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.

  8. Effect of shear-thinning behaviour on liquid-liquid plug flow in microchannels

    Science.gov (United States)

    Roumpea, Evangelia; Chinaud, Maxime; Weheliye, Weheliye Hashi; Angeli, Panagiota; Kahouadji, Lyes; Matar, Omar K.

    2016-11-01

    The present work investigates the dynamics of plug formation of shear-thinning solutions in a 200 μm microchannel using a two-colour micro-PIV system. Measurements, including phase-averaged velocity fields, have been conducted both at the T-junction inlet and the main channel to enhance understanding of non-Newtonian liquid-liquid flows. Two aqueous glycerol solutions containing xanthan gum are used as the non-Newtonian fluids while 5 cSt silicone oil is the Newtonian phase. The current experimental results revealed a pronounced impact of the xanthan gum (shear-thinning behaviour) on the flow pattern transition boundaries, and enhance the fluid flowrates where plug flow occurred. The addition of polymer resulted also in different hydrodynamic characteristics such as a bullet-shaped plug and an increased film thickness between the plug and the wall. In the present work, the technique allows to capture the velocity field of both phases simultaneously. Experimental results are compared with the numerical simulations provided by the code BLUE. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  9. Extraction of pesticides in water samples using vortex-assisted liquid-liquid microextraction.

    Science.gov (United States)

    Jia, Chunhong; Zhu, Xiaodan; Wang, Jihua; Zhao, Ercheng; He, Min; Chen, Li; Yu, Pingzhong

    2010-09-10

    A simple solvent microextraction method termed vortex-assisted liquid-liquid microextraction (VALLME) coupled with gas chromatography micro electron-capture detector (GC-microECD) has been developed and used for the pesticide residue analysis in water samples. In the VALLME method, aliquots of 30 microL toluene used as extraction solvent were directly injected into a 25 mL volumetric flask containing the water sample. The extraction solvent was dispersed into the water phase under vigorously shaking with the vortex. The parameters affecting the extraction efficiency of the proposed VALLME such as extraction solvent, vortex time, volumes of extraction solvent and salt addition were investigated. Under the optimum condition, enrichment factors (EFs) in a range of 835-1115 and limits of detection below 0.010 microg L(-1) were obtained for the determination of target pesticides in water. The calculated calibration curves provide high levels of linearity yielding correlation coefficients (r(2)) greater than 0.9958 with the concentration level ranged from 0.05 to 2.5 microg L(-1). Finally, the proposed method has been successfully applied to the determination of pesticides from real water samples and acceptable recoveries over the range of 72-106.3% were obtained.

  10. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Victor; Garcia, Mario [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.es [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Garcia De La Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain)

    2011-07-10

    Highlights: {yields} LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. {yields} UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. {yields} For the latter mixtures, UCST increases with the size of the alkyl group attached. {yields} Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  11. Homogeneous liquid-liquid extraction method for the selective separation and preconcentration of ultra trace molybdenum.

    Science.gov (United States)

    Ghiasvand, A R; Shadabi, S; Mohagheghzadeh, E; Hashemi, P

    2005-05-15

    A new simple and efficient homogeneous liquid-liquid extraction method for the selective separation and preconcentration of molybdenyl ions was developed. alpha-Benzoin oxime (ABO) was investigated as a complexing ligand, and perfluorooctanoate ion (PFOA(-)) was applied as a phase-separator agent under strongly acidic conditions. Under the optimal conditions ([ABO]=2.1x10(-3)M, [PFOA(-)]=1.8x10(-2)M, [HNO(3)]=1.7M, [acetone]=11.8% (v/v)), 10mug of molybdenum in 5ml aqueous phase could be extracted quantitatively into 40mul of the sedimented phase. The maximum concentration factor was 125-fold. Thiocyanate was applied as a chromogenic reagent for the direct spectrophotometric determination of molybdenum in the sedimented phase. The reproducibility of the proposed method is at the most 2.4%. The influence of the type and concentration of acid solution, the concentration of ABO, the type and volume of the water-miscible organic solvent, the concentration of PFOA(-), and the effect of different diverse ions on the extraction and determination of molybdenum(VI) were investigated. The proposed method was applied to the extraction and determination of molybdenum(VI) in natural water, Spinach, and Lucerne samples. A satisfactory agreement exists between the results obtained by the proposed method and those reported by GF-AAS.

  12. Liquid-liquid phase separation in aerosol particles: imaging at the nanometer scale.

    Science.gov (United States)

    O'Brien, Rachel E; Wang, Bingbing; Kelly, Stephen T; Lundt, Nils; You, Yuan; Bertram, Allan K; Leone, Stephen R; Laskin, Alexander; Gilles, Mary K

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission X-ray microscopy (STXM) to investigate the LLPS of micrometer-sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), α, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH's above the deliquescence point and that the majority of the organic component was located in the outer phase. The outer phase composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 70:30% organic to inorganic mix in the outer phase. These two chemical imaging techniques are well suited for in situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  13. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  14. An Experimental Study of Liquid-Liquid Microflow Pattern Maps Accompanied with Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    邵华伟; 吕阳成; 王凯; 骆广生

    2012-01-01

    This paper presents the experimental results of liquid-liquid microflows in a coaxial microfluidic device with mass transfer. Three working systems were n-butanol + phosphoric acid (PA) + water, methyl isobutyl ketone (MIBK) + PA + water, 30% kerosene in tri-n-butylphosphate (TBP)+ PA + water. The direction and intensity of mass transfer were adjusted by adding PA in one of two phases mutual saturated in advance. When PA transferred from the organic phase to the aqueous phase, tiny aqueous droplets may generate inside the organic phase by mass transfer inducement to form a new W/O/W flow pattern directly on some special cases. Once the PA concentration was very high, violent Marangoni effect could be observed to throw part of organic phase out of droplets as tail. The interphase transfer of PA could expand the jetting flow region, in particular for systems with low or medium interfacial tension and when the mass transfer direction was from the aqueous phase to the organic phase.

  15. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    Science.gov (United States)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  16. Toward the observation of a liquid-liquid phase transition in patchy origami tetrahedra: a numerical study.

    Science.gov (United States)

    Ciarella, Simone; Gang, Oleg; Sciortino, Francesco

    2016-12-01

    We evaluate the phase diagram of a model of tetrameric particles where the arms of the tetrahedra are made by six hard cylinders. An interacting site is present on each one of the four vertices allowing the particles to form a bonded network. These model particles provide a coarse-grained but realistic representation of recently synthesised DNA origami tetrahedra. We show that the resulting network is sufficiently empty to allow for partial interpenetration and it is sufficiently flexible to avoid crystallisation (at least on the numerical time scale), satisfying both criteria requested for the observation of a liquid-liquid critical point in tetrahedrally coordinated particles. Grand-canonical simulations provide evidence that, in silico, the model is indeed characterised, in addition to the gas-liquid transition, by a transition between two distinct liquid phases. Our results suggest that an experimental observation of a liquid-liquid transition in a colloidal system can be achieved in the near future.

  17. CONTRIBUTION TO THE DEVELOPMENT OF A SIMULATION SOFTWARE PERFORMANCE AND SHARING RATIO IN LIQUID-LIQUID EXTRACTION

    Directory of Open Access Journals (Sweden)

    A. Hadj Seyd

    2015-07-01

    Full Text Available The present work is to develop software to predict the value yield and the distribution coefficient in the process of liquid-liquid extraction of components of a mixture, from mathematical models expressing these entities, based on equations equilibrium between liquid-liquid phases, and predict the conditions under which the extraction operation is favorable, unfavorable or impossible to realize, by studying the variation of the entities cited, based on the parameters influencing the extraction, which are: initial concentrations, rate of solvent and pH, in the case of a simple extraction (extraction of neutral products or when it is reactive (extraction of complex acids or bases for one or more components.The programming language used is "Delphi" which is a very powerful oriented object programming under Windows.

  18. Identification of dimethoate-containing water using partitioned dispersive liquid-liquid microextraction coupled with near-infrared spectroscopy.

    Science.gov (United States)

    Zhang, Ming; Geng, Ying; Xiang, Bingren

    2011-01-01

    A simple, rapid and efficient extraction procedure, partitioned dispersive liquid-liquid microextraction, has been developed in combination with near-infrared spectroscopy for the extraction and discrimination of dimethoate from aqueous samples. For this technique, the appropriate mixture of extraction solvent (CCl(4)) and disperser solvent (THF) was utilized. Partial least squares discriminant analysis was applied to build the model with several pre-process methods over the wavenumber regions between 7100 cm(-1) to 7300 cm(-1). The best model gave satisfactory classification accuracy, 98.6% for calibration set (n=74) and 97.6% for prediction set (n=42), using preprocessing of standard normal variate followed by Savitzky-Golay first derivative. The method was successfully applied to bottled water, tap water, lake water and farm water samples. The results demonstrated the possibility of near-infrared spectroscopy after partitioned dispersive liquid-liquid microextraction for the identification of water contaminated by dimethoate.

  19. Homogeneous and Stratified Liquid-Liquid Flow Effect of a Viscosity Reducer: I. Comparison in parallel plates for heavy crude

    Directory of Open Access Journals (Sweden)

    E. J. Suarez-Dominguez

    2016-12-01

    Full Text Available Production of heavy crude oil in Mexico, and worldwide, is increasing which has led to the application of different methods to reduce viscosity or to enhance transport through stratified flow to continue using the existing infrastructures. In this context, injecting a viscosity improver that does not mix completely with the crude, establishes a liquid-liquid stratified flow. On the basis of a parallel plates model, comparing the increase of flow that occurs in the one-phase case which assumes a complete mixture between the crude and the viscosity improver against another stratified liquid-liquid (no mixing between the oil and compared improver; it was found that in both cases there is a flow increase for the same pressure drop with a maximum for the case in which the flow improver is between the plates and the crude.

  20. Isolating Reactions at the Picoliter Scale: Parallel Control of Reaction Kinetics at the Liquid-Liquid Interface.

    Science.gov (United States)

    Phan-Quang, Gia Chuong; Lee, Hiang Kwee; Ling, Xing Yi

    2016-07-11

    Miniaturized liquid-liquid interfacial reactors offer enhanced surface area and rapid confinement of compounds of opposite solubility, yet they are unable to provide in situ reaction monitoring at a molecular level at the interface. A picoreactor operative at the liquid-liquid interface is described, comprising plasmonic colloidosomes containing Ag octahedra strategically assembled at the water-in-decane emulsion interface. The plasmonic colloidosomes isolate ultrasmall amounts of solutions (<200 pL), allowing parallel monitoring of multiple reactions simultaneously. Using the surface-enhanced Raman spectroscopy (SERS) technique, in situ monitoring of the interfacial protonation of dimethyl yellow (p-dimethylaminoazobenzene (DY)) is performed, revealing an apparent rate constant of 0.09 min(-1) for the first-order reaction. The presence of isomeric products with similar physical properties is resolved, which would otherwise be indiscernible by other analytical methods.

  1. Liquid-liquid extraction assisted by a carbon nanoparticles interface. Electrophoretic determination of atrazine in environmental samples.

    Science.gov (United States)

    Caballero-Díaz, Encarnación; Simonet, Bartolomé; Valcárcel, Miguel

    2013-10-21

    A novel method for the determination of atrazine, using liquid-liquid extraction assisted by a nanoparticles film formed in situ and composed of organic solvent stabilized-carbon nanoparticles, is described. The presence of nanoparticles located at the liquid-liquid interface reinforced the extraction of analyte from matrix prior to capillary electrophoresis (CE) analysis. Some influential experimental variables were optimized in order to enhance the extraction efficiency. The developed procedure confirmed that carbon nanoparticles, especially multi-walled carbon nanotubes, are suitable to be used in sample treatment processes introducing new mechanisms of interaction with the analyte. The application of the proposed preconcentration method followed by CE detection enabled the determination of atrazine in spiked river water providing acceptable RSD values (11.6%) and good recoveries (about 87.0-92.0%). Additionally, a similar extraction scheme was tested in soil matrices with a view to further applications in real soil samples.

  2. Anomalous effect of flow rate on the electrochemical behavior at a liquid|liquid interface under microfluidic conditions.

    Science.gov (United States)

    Kaluza, Dawid; Adamiak, Wojciech; Kalwarczyk, Tomasz; Sozanski, Krzysztof; Opallo, Marcin; Jönsson-Niedziolka, Martin

    2013-12-23

    We have investigated the oxidation of ferrocene at a flowing organic solvent|aqueous electrolyte|solid electrode junction in a microfluidic setup using cyclic voltammetry and fluorescent laser scanning confocal microscopy. At low flow rates the oxidation current decreases with increasing flow, contrary to the Levich equation, but at higher flow rates the current increases linearly with the cube root of the flow rate. This behavior is explained using a simple model postulating a smallest effective width of the three-phase junction, which after fitting to the data comes to be ca. 20 μm. The fluorescence microscopy reveals mixing of the two phases close to the PDMS cover, but the liquid|liquid junction is stable close to the glass support. This study shows the importance of the solid|liquid|liquid junctions for the behavior of multiphase systems under microfluidic conditions.

  3. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    Science.gov (United States)

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme.

  4. Study on Osmotic Pressure and Liquid-Liquid Equilibria for Micelle, Colloid and Microemulsion Systems by Yukawa Potential

    Institute of Scientific and Technical Information of China (English)

    FU,Dong(付东); LU,Jiu-Fang(陆九芳); WU,Wei(吴畏); Li,Yi-Gui(李以圭)

    2004-01-01

    An equation of state (EOS) was established to study the osmotic pressure and liquid-liquid equilibria for micelle,colloid and microemulsion systems. The Carnahan-Starling equation was used for the hard sphere repulsion. The Yukawa potential was used to describe both the attractive dispersion and the double-layer repulsion. By using the established EOS, the osmotic pressures for charged colloid, uncharged micelle, uncharged and weakly charged microemuslion, the phase equilibria for uncharged micelle and charged colloid systems were studied.

  5. Simultaneous determination of dorzolomide and timolol in aqueous humor: a novel salting out liquid-liquid microextraction combined with HPLC.

    Science.gov (United States)

    Mohamed, Abdel-Maaboud Ismail; Abdel-Wadood, Hanaa Mohammed; Mousa, Heba Salah

    2014-12-01

    A Snovel method for the simultaneous separation and determination of two antiglaucoma drugs namely, dorzolamide hydrochloride (DOR) and timolol maleate (TIM) in aqueous humor samples (AH) was developed by using salting-out assisted liquid-liquid microextraction (SALLME) combined with HPLC-UV method. Box-Behnken experimental design and response surface methodology were employed to assist the optimization of SALLME conditions, including salt concentration, the pH of sample solution and vortex time as variable factors. The optimal extraction conditions were as follows: to 50 µL of AH sample, 100 µL of phosphate buffer (100 mmol L(-1), pH 11.9), 90 µL of acetonitrile (ACN) and 0.11 g of (NH4)2SO4 salt were added into an Eppendorf vial (1 mL) then vortexed for 1.1 min. As an effort to miniaturize SALLE system, a 1 mL syringe adapted with a capillary tube was employed as the phase separation device. Once the phase separation occurred, the upper layer could be narrowed into the capillary tube by pushing the plunger; thus, the collection of the upper layer solvent was simple and convenient. By miniaturization, the consumption of the organic solvent was decreased as low as possible. The chromatographic separation was achieved on Gemini C18 column using a mobile phase of ACN: 30 mmol L(-1) potassium dihydrogen phosphate buffer containing 0.1% triethylamine, pH 3.5 (20:80, v/v) at a flow rate of 1 mL min(-1) and UV detection at 254 and 295 nm for DOR and TIM, respectively. Mepivacaine hydrochloride was used as an internal standard. The described method showed better separation with enhanced sensitivities than the previously reported methods with limits of quantitation of 8.75 and 10.32 ng mL(-1) in aqueous solution and 15.97 and 23.53 ng mL(-1) in AH for DOR and TIM, respectively. The simple, rapid and eco-friendly SALLME-HPLC method has been successfully applied for the simultaneous pharmacokinetic studies of DOR and TIM in rabbit AH.

  6. 微流控液液萃取-液液波导集成化分析系统%Microfluidic Analysis System Integrated with Liquid-liquid Extraction and Liquid-liquid Waveguide

    Institute of Scientific and Technical Information of China (English)

    姜健; 李盼盼; 马滢雪; 杨春光; 徐章润

    2016-01-01

    A microfluidic analysis system integrated with liquid-liquid extraction and liquid-liquid waveguide detection was explored. Multiphase laminar liquid-liquid extraction was realized using 1-butyl-3-methyl imidazolium bromide ionic liquid/sodium carbonate solution aqueous two-phase system. Liquid-liquid waveguide absorption photometric detection was achieved by the ionic liquid with higher refractive index served as liquid core and the salt aqueous solution with lower refractive index served as liquid cladding. The extraction efficiency for cresol red extraction is more than 93%. The linear range, the relative standard devia-tion and the detection limit for cresol red detection were 0. 01—0. 40 mg/mL, 3. 4%(n=11) and 3. 8μg/mL (3σ) respectively. Extraction separation and liquid-liquid waveguide-based long optical path absorbance detection were integrated in the system, which provided a new strategy for expanding the application of absorbance detection in microfluidic systems.%利用溴化1-丁基-3-甲基咪唑离子液体/碳酸钠溶液双水相体系,实现了多相层流液液萃取.以具有较高折射率的离子液体为液芯,较低折射率的盐溶液为包层,实现了液液波导吸光度检测.据此建立了一种液液萃取与液液波导检测集成化的微流控分析系统.该系统对甲酚红试样的萃取率在93%以上,对甲酚红试样检测的线性范围为0.01~0.40 mg/mL,相对标准偏差为3.4%(n=11),检出限为3.8μg/mL(3σ).该系统将萃取分离与液液波导长光程吸光度检测集成在一起,为拓展吸光度检测在微流控系统中的应用提供了新思路.

  7. Analysis of aflatoxins in nonalcoholic beer using liquid-liquid extraction and ultraperformance LC-MS/MS.

    Science.gov (United States)

    Khan, Mohammad R; Alothman, Zeid A; Ghfar, Ayman A; Wabaidur, Saikh M

    2013-02-01

    Aflatoxins AFB1, AFB2, AFG1, and AFG2 are toxic secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus and posses a potential threat to food safety. In the present work, liquid-liquid extraction and ultraperformance LC-MS/MS method has been applied for the determination of four naturally occurring aflatoxins AFB1, AFB2, AFG1, and AFG2 in nonalcoholic beer. Aflatoxins extraction from nonalcoholic beer was carried out using liquid-liquid extraction procedure. The effects of solvent-types were studied to obtain maximum recovery of the target analytes with minimum contamination. Among different solvents, the aflatoxins extraction was best achieved using ethyl acetate. The obtained recoveries were ranged from 85 to 96% with good quality parameters: LOD values between 0.001 and 0.003 ng/mL, linearity of the calibration curve (r(2) > 0.999), and repeatability (run-to-run) and reproducibility (day-to-day) precisions with RSDs lower than 5% (n = 5) achieved at 0.50 ng/mL concentration. The optimized liquid-liquid extraction in combination with ultraperformance LC-MS/MS was applied successfully to the analysis of AFB1, AFB2, AFG1, and AFG2 aflatoxins in 11 nonalcoholic beers and were detected up to 15.31 ng/L in some of the samples.

  8. Vortex-assisted liquid-liquid microextraction for the rapid screening of short-chain chlorinated paraffins in water.

    Science.gov (United States)

    Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien

    2016-01-01

    The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L.

  9. Optimized determination of polybrominated diphenyl ethers by ultrasound-assisted liquid-liquid extraction and high-performance liquid chromatography.

    Science.gov (United States)

    He, Kuang; Lv, YuanCai; Chen, YuanCai

    2014-10-01

    A method based on ultrasound-assisted liquid-liquid extraction and high-performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound-assisted liquid-liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R(2) > 0.9962 over a concentration range of 1-100 μg/L) and repeatability (relative standard deviation liquid-liquid extraction coupled with high-performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples.

  10. Ionic-liquid-based dispersive liquid-liquid microextraction for high-throughput multiple food contaminant screening.

    Science.gov (United States)

    Ho, Yee-Man; Tsoi, Yeuk-Ki; Leung, Kelvin Sze-Yin

    2013-12-01

    This paper describes an innovation of dispersive liquid-liquid microextraction enabling multiple-component analysis of eight high-priority food contaminants in two chemically distinctive families: Sudan dyes and phthalate plasticizers. To provide convenient sample handling for solid and solid-containing matrices, a modified dispersive liquid-liquid microextraction procedure used an extractant precoated frit to perform simultaneous filtration, solvent mixing, and phase dispersion in one simple step. A binary ionic liquid extractant system was carefully tuned to deliver high quality analysis based only on affordable LC with diode array detector instrumentation. The method is comprehensively validated for robust quantification with good precision (6.9-9.8% RSD) in a linear 2-1000 μg/L range. Having accomplished enrichment factors up to 451, the treatment enables sensitive detection at 0.09-1.01 μg/L levels. Analysis of six high-risk solid condiments and sauces further verified its practical applicability within a 70-120% recovery range. Compared to other approaches, the current dispersive liquid-liquid microextraction treatment offers major advantages in terms of minimal solvent (1.5 mL) and sample (0.1 g) consumption, ultra-high analytical throughput (6 min), and the ability to handle complex solid matrices. The idea of performing simultaneous analysis for multiple contaminants presented here fosters a more effective mode of operation in food control routines.

  11. Theoretical and Computational Studies of Condensed-Phase Phenomena: The Origin of Biological Homochirality, and the Liquid-Liquid Phase Transition in Network-Forming Fluids

    Science.gov (United States)

    Ricci, Francesco

    ) model of silicon. A similar analysis is also presented for the generalized SW family of models by varying the "tetrahedrality" of the potential. Contrary to previously published findings, we do not find any evidence of the existence of an LLPT for SW silicon, nor for the generalized family of SW models over the range of parameters studied. Our results for the original parameterization of SW silicon are in semi-quantitative agreement with previous free energy calculations for this model, which were only provided at three state points. Explanations for the discrepancies between previous independent studies are provided, along with explicit demonstrations of how these discrepancies may have occurred. Finally, in the fourth part of this dissertation, we perform free energy calculations to demonstrate the existence of an LLPT in the Jagla potential. We also utilize finite-size scaling analysis to calculate the surface tension associated with the LLPT. In addition to the thermodynamics of the model, we investigate the relaxation times for density and bond-orientational order and show that, contrary to assertions in the literature, the characteristic relaxation time of bond-orientational order is not orders of magnitude slower than that of density. We compare our results for the Jagla model with those found in the literature for the ST2 model of water (which has also been rigorously shown to exhibit an LLPT) in order to emphasize key similarities and differences between two models that exhibit pure-component liquid-liquid phase separation.

  12. Temperature dependence of the structure of protein hydration water and the liquid-liquid transition.

    Science.gov (United States)

    Accordino, S R; Malaspina, D C; Rodriguez Fris, J A; Alarcón, L M; Appignanesi, G A

    2012-03-01

    We study the temperature dependence of the structure and orientation of the first hydration layers of the protein lysozyme and compare it with the situation for a model homogeneous hydrophobic surface, a graphene sheet. We show that in both cases these layers are significantly better structured than bulk water. The geometrical constraint of the interface makes the water molecules adjacent to the surface lose one water-water hydrogen bond and expel the fourth neighbors away from the surface, lowering local density. We show that a decrease in temperature improves the ordering of the hydration water molecules, preserving such a geometrical effect. For the case of graphene, this favors an ice Ih-like local structuring, similar to the water-air interface but in the opposite way along the c axis of the basal plane (while the vicinal water molecules of the air interface orient a hydrogen atom toward the surface, the oxygens of the water molecules close to the graphene plane orient a lone pair in such a direction). In turn, the case of the first hydration layers of the lysozyme molecule is shown to be more complicated, but still displaying signs of both kinds of behavior, together with a tendency of the proximal water molecules to hydrogen bond to the protein both as donors and as acceptors. Additionally, we make evident the existence of signatures of a liquid-liquid transition (Widom line crossing) in different structural parameters at the temperature corresponding to the dynamic transition incorrectly referred to as "the protein glass transition."

  13. Successive pH- and heat-induced homogenous liquid-liquid extraction.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Feriduni, Behruz

    2016-08-12

    A simple and efficient analytical method known as pH- and heat-induced homogenous liquid-liquid extraction combined with high-performance liquid chromatography has been successfully developed for the extraction and determination of neonicotinoid pesticides in aqueous samples. In this method, a few mL of a water-miscible basic extraction solvent is mixed with a high volume of an aqueous phase containing the analytes and passed through a tube which a portion of the tube is filled with sodium carbonate as a separating agent. By passing the solution, salt is dissolved and the fine droplets of the extraction solvent are formed. The produced droplets go up through the remained solution and collect as a separated layer. In the following, the collected organic phase is removed and placed into a micro tube. Then it is heated in a water bath to form two phases. Several experimental parameters that influence extraction efficiency such as type and volume of extraction solvent, type of phase separation agent, temperature, and extraction time were investigated. Under the optimum conditions, the extraction recoveries and enrichment factors ranged between 51 and 81% and 680 and 1080, respectively. Calibration curves showed a high-level of linearity for all target analytes with coefficients of determination ranging between 0.997 and 0.999. The repeatability of the proposed method expressed as relative standard deviation varied between 3 and 5% (n=6, C=50μgL(-1)), and the detection limits were in the range of 0.52-1.0μgL(-1). Finally, the performance of the method was evaluated by analyzing the selected pesticides in different fruit juice and vegetable samples.

  14. Application of dispersive liquid-liquid microextraction for estrogens' quantification by enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Lima, Diana L D; Silva, Carla Patrícia; Schneider, Rudolf J; Otero, Marta; Esteves, Valdemar I

    2014-07-01

    Estrogens, such as 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), are the major responsible for endocrine-disrupting effects observed in aquatic environments due to their high estrogenic potency, even at concentrations ranging from pgL(-1) to ng L(-1). Thus, it is essential to develop analytical methodologies suitable for monitoring their presence in water samples. Dispersive liquid-liquid microextraction (DLLME) was used as a pre-concentration step prior to the quantification of E2 and EE2 by enzyme-linked immunosorbent assay (ELISA). First, an evaluation of the effect of DDLME on the E2 and EE2 ELISA calibration curves was performed. Since the extraction procedure itself had an influence on the ELISA optical density (OD), it became necessary to subject, not only the samples, but also all the standards to the DLLME process. Working ranges were determined, being between 1.2 and 8000 ng L(-1), for E2, and between 0.22 and 1500 ng L(-1), for EE2. The influence of organic matter, both in the extraction and quantification, was evaluated and it was observed that its presence in the solution did not affect considerably the calibration curve. Recovery rates were also determined, ranging from 77% to 106% for ultrapure water and from 104% to 115% for waste water samples, the most complex ones in what concerns matrix effects. Results obtained when applying the proposed method to real water samples can be considered quite satisfying. Moreover, the obtained working ranges encompass values generally reported in literature, confirming the practical use of the method for environmental samples.

  15. Ion-transfer voltammetric determination of folic acid at meso-liquid-liquid interface arrays.

    Science.gov (United States)

    Jiang, Xuheng; Gao, Kui; Hu, Daopan; Wang, Huanhuan; Bian, Shujuan; Chen, Yong

    2015-04-21

    Voltammetric studies on the simple ion transfer (IT) behaviors of an important water-soluble B-vitamin, folic acid (FA), at the liquid-liquid (L-L) interface were firstly performed and then applied as a novel detection method for FA under physiological conditions. Meso-water-1,6-dichlorohexane (W-DCH) and meso-water-organogel interface arrays were built by using a hybrid mesoporous silica membrane (HMSM) with a unique structure of pores-in-pores and employed as the new platforms for the IT voltammetric study. In view of the unique structure of the HMSM, the impact of the ionic surfactant cetyltrimethylammonium bromide (CTAB), self-assembled within the silica nanochannels of the HMSM, was investigated. In particular, its effect on the IT voltammetric behavior and detection of FA at meso-L-L interface arrays was systematically examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and differential pulse stripping voltammetry (DPSV). It was found that all the voltammetric responses of CV, DPV, and DPSV and the corresponding detection limit of FA at such meso-L-L interface arrays are closely related to the CTAB in the HMSM. Significantly, the calculated detection limit of FA could be improved to 80 nM after the combination of the DPSV technique with the additional preconcentration of FA in the silica-CTAB nanochannels, achieved through an anion-exchange process between FA(-) and the bromide of CTAB in HMSM. This provides a new and attractive strategy for the detection of those biological anions.

  16. Static and dynamic electrowetting of an ionic liquid in a solid/liquid/liquid system.

    Science.gov (United States)

    Paneru, Mani; Priest, Craig; Sedev, Rossen; Ralston, John

    2010-06-23

    A droplet of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, bmim.BF(4)) is immersed in an immiscible liquid (n-hexadecane) and electrowetted on a flat Teflon AF1600-coated ITO electrode. The static contact angle decreases significantly when voltage is applied between the droplet and the electrode: from 145 degrees down to 50 degrees (with DC voltage) and 15 degrees (with AC voltage). The electrowetting curves (contact angle versus voltage) are similar to the ones obtained in other solid/liquid/vapor and solid/liquid/liquid systems: symmetric with respect to zero voltage and correctly described by Young-Lippmann equation below saturation. The reversibility is excellent and contact angle hysteresis is minimal (approximately 2 degrees). The step size used in applying the DC voltage and the polarity of the voltage are unimportant. The saturation contact angle cannot be predicted with the simple zero-interfacial tension theory. Spreading (after applying a DC voltage) and retraction (after switching off the voltage) of the droplet is monitored. The base area of the droplet varies exponentially during wetting (exponential saturation) and dewetting (exponential decay). The characteristic time is 20 ms for spreading and 35 ms for retraction (such asymmetry is not observed with water-glycerol mixtures of a similar viscosity). The spreading kinetics (dynamic contact angle versus contact line speed) can be described by the hydrodynamic model (Voinov's equation) for small contact angles and by the molecular-kinetic model (Blake's equation) for large contact angles. The role of viscous and molecular dissipation follows the scheme outlined by Brochard-Wyart and de Gennes.

  17. Modeling of Ultrasonically Generated Liquid-Liquid Dispersions During Controlled Directional Solidification

    Science.gov (United States)

    Grugel, R. N.; Fedoseyev, A. I.

    2000-01-01

    There are innumerable two-component systems in which two very different liquid phases co-exist in equilibrium over a range of temperature and composition, e.g., oil and water, salt fluxes and solders, aluminum and lead. Often it is of practical concern to fabricate a solid component consisting of a uniform dispersion of one phase in the other. Unfortunately, uniform microstructural development during solidification of two immiscible liquids is hampered by inherent, often large, density differences between the phases that lead to severe segregation. Uniformity is also compromised by preferential wetting and coalescence phenomena. It is, however, well known that ultrasonic energy can initiate and maintain a fine liquid-liquid dispersion. The work presented here extends that observation by application of ultrasonic energy to promote uniform phase incorporation during controlled directional solidification. To this end experiments with the transparent organic, immiscible, succinonitrile-glycerol system were conducted and the numerous processing parameters associated with this technique were evaluated in view of optimizing dispersion uniformity. In view of the initial experimental results a model that predicts the dispersed liquid droplet size as a function of material properties, sample geometry, and applied energy has been developed. In the mathematical model we consider the ultrasonic field in an experimental ampoule of length L and diameter D induced by a probe having a vibration frequency of f=2OKhz (circular frequency omega = 2 pi f). The amplitude is adjustable from A=65 to 13Omicrons. The probe tip diameter is d, the liquid has a density of p, in which the speed of sound and surface tension are, respectively, c and sigma. The mathematical model and numerical investigation for the experiments [1] is done using the following assumptions: (i) The droplet size is small in comparison to the sound wave length; (ii) The forces between droplets are neglected (relative

  18. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design.

    Science.gov (United States)

    Kamankesh, Marzieh; Mohammadi, Abdorreza; Tehrani, Zohreh Modarres; Ferdowsi, Roohallah; Hosseini, Hedayat

    2013-05-15

    A new method based on dispersive liquid-liquid microextraction (DLLME) followed by high-performance liquid chromatography (HPLC) for determination of benzoate and sorbate salts in yogurt drinks was developed. The effective parameters in DLLME process, including volume of extraction and disperser solvents, pH and salt effect, were optimized using response surface methodology (RSM) based on central composite design. The yogurt drink samples were extracted using NaOH and Carrez solutions (potassium hexaferrocyanide and zinc acetate) were used for sedimentation of proteins. For DLLME, a mixture of extraction solvent (1-octanol) and disperser solvent (ethanol) was rapidly injected into the sample solution by syringe and cloudy solution is formed. Subsequently, the upper 1-octanol layer was analyzed by HPLC. The detection limits for benzoate and sorbate were 0.06 ng mL(-1) and 0.15 ng mL(-1), respectively. The relative standard deviations (RSD) for seven analyses were 4.96% for benzoate and 4.58% for sorbate. The proposed method demonstrated good linearity and high enrichment factor. A clean separation and good chromatogram is readily achieved without the presence of matrix interference. A comparison of this method with previous methods demonstrated that the proposed method is an accurate, rapid and reliable sample-pretreatment method that gives very good enrichment factors and detection limits for extracting and determining sorbate and benzoate in yogurt drink samples.

  19. Tandem dispersive liquid-liquid microextraction as an efficient method for determination of basic drugs in complicated matrices.

    Science.gov (United States)

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Saffarzadeh, Zahra; Asghari, Alireza

    2016-01-15

    A simple and efficient approach is introduced for the improvement of the clean-up and applicability of the dispersive liquid-liquid microextraction (DLLME) method in complicated matrices. For this purpose, two dispersive microextraction methods were combined, and the tandem dispersive liquid-liquid microextraction (TDLLME) method was provided. At first, using the ultrasound-assisted emulsification microextraction (USAEME) method, the tricyclic anti-depressant (TCA) drugs nortriptyline, imipramine, and amitriptyline, as the model compounds, contained in an aqueous sample solution (8.0 mL), were extracted into an organic solvent (35 μL). Then by utilizing the air-agitated liquid-liquid microextraction (AALLME) method, these analytes were simply back-extracted into 50 μL of an aqueous acceptor phase. By performing this convenient extraction method, a high sample clean-up was obtained; the overall extraction time was 7 min. The back-extraction step could be performed in less than 2 min, and very simple tools were required for this purpose. The response surface methodology (RSM) was used for the optimization of the experimental parameters so that the volumes 95 and 50 μL were obtained for the organic solvent and the acceptor phase, respectively, and the pH values of 11.25 and 1.75 were obtained for the donor and acceptor phases, respectively, as the optimal extraction conditions. Under the optimized conditions, TDLLME-HPLC-UV provided a good linearity in the range of 2.5-5000 ng mL(-1), low limits of detection (0.7-1.0 ng mL(-1)), good extraction repeatabilities (relative standard deviations below 6.2%, n=5), and enrichment factors (EFs) of 50-101. Finally, the developed method was successfully used for the determination of the mentioned drugs in the wastewater and human plasma samples.

  20. Salt effect of KBr on the liquid-liquid equilibrium of the water/ethanol/1-pentanol system

    Directory of Open Access Journals (Sweden)

    G.R. Santos

    2000-12-01

    Full Text Available Liquid-liquid equilibrium data for the water/ethanol/1-pentanol/potassium bromide systems were experimentally determined at 25° C and 40ºC. The experimental data were correlated through the NRTL and UNIFAC-Dortmund models for the activity coefficient, with the estimation of new binary interaction parameters for both models, corresponding to the salt-solvent and solvent-solvent interactions for the NRTL model and the ion-ion and solvent-ion interactions for the UNIFAC-Dortmund model. The results obtained have shown that the NRTL model was more able to represent equilibrium data for the studied systems.

  1. Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction.

    Science.gov (United States)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-06-01

    The dispersive liquid-liquid microextraction of edible oils with a low volume of an acidic solution in the presence of isopropyl alcohol allows cadmium and lead to be completely separated into the aqueous phase. After centrifugation, the metals are determined by electrothermal atomization atomic absorption spectrometry using a palladium salt for chemical modification in the heating cycle. Using a 10 g oil sample, the enrichment factor is 140, which permits detection limits of 0.6 and 10 ng kg(-1) for cadmium and lead, respectively. The results agree with those obtained after sample mineralization. Data for the cadmium and lead levels for 15 samples of different characteristics are given.

  2. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  3. Aluminium sensitized spectrofluorimetric determination of fluoroquinolones in milk samples coupled with salting-out assisted liquid-liquid ultrasonic extraction

    Science.gov (United States)

    Xia, Qinghai; Yang, Yaling; Liu, Mousheng

    2012-10-01

    An aluminium sensitized spectrofluorimetric method coupled with salting-out assisted liquid-liquid ultrasonic extraction for the determination of four widely used fluoroquinolones (FQs) namely norfloxacin (NOR), ofloxacin (OFL), ciprofloxacin (CIP) and gatifloxacin (GAT) in bovine raw milk was described. The analytical procedure involves the fluorescence sensitization of aluminium (Al3+) by complexation with FQs, salting-out assisted liquid-liquid ultrasonic extraction (SALLUE), followed by spectrofluorometry. The influence of several parameters on the extraction (the salt species, the amount of salt, pH, temperature and phase volume ratio) was investigated. Under optimized experimental conditions, the detection limits of the method in milk varied from 0.009 μg/mL for NOR to 0.016 μg/mL for GAT (signal-to-noise ratio (S/N) = 3). The relative standard deviations (RSD) values were found to be relatively low (0.54-2.48% for four compounds). The calibration graph was linear from 0.015 to 2.25 μg/mL with coefficient of determinations not less than 0.9974. The methodology developed was applied to the determination of FQs in bovine raw milk samples. The main advantage of this method is simple, accurate and green. The method showed promising applications for analyzing polar analytes especially polar drugs in various sample matrices.

  4. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    Science.gov (United States)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  5. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.

    Science.gov (United States)

    Cech, Jiří; Přibyl, Michal; Snita, Dalimil

    2013-01-01

    Here, we introduce a solution to low stability of a two-phase slug flow with a chemical reaction occurring at the phase interface in a microfluidic reactor where substantial merging of individual reacting slugs results in the loss of uniformity of the flow. We create a three-phase slug flow by introducing a third fluid phase into the originally two-phase liquid-liquid slug flow, which generates small two-phase liquid slugs separated by gas phase. Introduction of the third phase into our system efficiently prevents merging of slugs and provides beneficial reaction conditions, such as uniform flow pattern along the whole reaction capillary, interfacial area with good reproducibility, and intensive water-oil interface renewal. We tested the three-phase flow on an enzyme hydrolysis of soybean oil and compared the reaction conversion with those from unstable two-phase slug flows. We experimentally confirmed that the three-phase slug flow arrangement provides conversions and pressure drops comparable or even better with two-phase liquid-liquid arrangements.

  6. An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron.

    Science.gov (United States)

    Alexovič, Michal; Wieczorek, Marcin; Kozak, Joanna; Kościelniak, Paweł; Balogh, Ioseph S; Andruch, Vasil

    2015-02-01

    A novel automatic vigorous-injection assisted dispersive liquid-liquid microextraction procedure based on the use of a modified single-valve sequential injection manifold (SV-SIA) was developed and applied for determination of boron in water samples. The major novelties in the procedure are the achieving of efficient dispersive liquid-liquid microextraction by means of single vigorous-injection (250 µL, 900 µL s(-1)) of the extraction solvent (n-amylacetate) into aqueous phase resulting in the effective dispersive mixing without using dispersive solvent and after self-separation of the phases, as well as forwarding of the extraction phase directly to a Z-flow cell (10 mm) without the use of a holding coil for stopped-flow spectrophotometric detection. The calibration working range was linear up to 2.43 mg L(-1) of boron at 426nm wavelength. The limit of detection, calculated as 3s of a blank test (n=10), was found to be 0.003 mg L(-1), and the relative standard deviation, measured as ten replicable concentrations at 0.41 mg L(-1) of boron was determined to be 5.6%. The validation of the method was tested using certified reference material.

  7. Determination of fenvalerate in tomato by ultrasound-assisted solvent extraction combined with dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Pirsaheb, Meghdad; Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba

    2014-09-01

    Ultrasound-assisted solvent extraction (UASE) combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) has been developed for extraction and determination of fenvalerate from tomato samples. Fenvalerate was determined by high-performance liquid-liquid chromatography-ultraviolet detector. Effects of parameters such as type and volume of extraction solvent in the UASE stage, sonication time, type and volume of extraction solvent and disperser solvent in the DLLME-SFO stage, salt addition and pH effect on extraction were studied and optimized. Under the optimum conditions, the calibration graph was linear in the range of 5-500 µg kg(-1) with a detection limit of 0.6 µg kg(-1). The relative standard deviation for five replicate measurements of 100 µg kg(-1) of fenvalerate was 6.5%. The relative recovery of fenvalerate in different tomato samples at a spiking level of 10, 20 and 50 µg kg(-1) is in the range of 93.5-108%. The obtained results show that UASE-DLLME-SFO is a sensitive, fast and simple method for the determination of fenvalerate in tomato samples.

  8. Determination of abamectin in citrus fruits using SPE combined with dispersive liquid-liquid microextraction and HPLC-UV detection.

    Science.gov (United States)

    Rezaee, Mohammad; Mashayekhi, Hossein Ali; Saleh, Abolfazl; Abdollahzadeh, Yaser; Naeeni, Mohammad Hosein; Fattahi, Nazir

    2013-08-01

    A new pretreatment method, SPE combined with dispersive liquid-liquid microextraction, was proposed for the determination of abamectin in citrus fruit samples for the first time. In this method, fruit samples were extracted by ultrasound-assisted extraction followed by SPE. Then, the SPE was used as a disperser solvent in the next dispersive liquid-liquid microextraction step for further purification and enrichment of abamectin. The effects of various parameters on the extraction efficiency of the proposed method were investigated and optimized. Good linearity of abamectin was obtained from 0.005 to 10.0 mg/kg for B1a and from 0.05 to 10.0 mg/kg for B1b with correlation coefficient (r(2)) of 0.998 for B1a and 0.991 for B1b, respectively. The LODs were 0.001 and 0.008 mg/kg (S/N = 3) for B1a and B1b, respectively. The relative recoveries at three spiked levels were ranged from 87 to 96% with the RSD less than 11% (n = 3). The method has been successfully applied to the determination of abamectin in citrus fruit samples.

  9. Novel coupling of surfactant assisted emulsification dispersive liquid-liquid microextraction with spectrophotometric determination for ultra trace nickel

    Science.gov (United States)

    Deng, Qingwen; Chen, Meihui; Kong, Lamei; Zhao, Xia; Guo, Jie; Wen, Xiaodong

    2013-03-01

    In this work, dispersive liquid-liquid microextraction (DLLME) was improved and the preconcentration method named as surfactant assisted emulsification dispersive liquid-liquid microextraction (SAE-DLLME) was established for ultra trace nickel preconcentration and spectrophotometric determination. Non-ionic surfactant Triton X-100 (TX-100) was used as emulsifier and Triton X-114 (TX-114) was investigated as comparison. Disperser solvent was substituted by surfactant, which could afford more effective emulsification and make the extraction relatively greener. The extraction was accomplished efficiently in only 1 min during manual shaking. Compared to traditional DLLME, the developed SAE-DLLME pretreatment was simple, rapid and effective. The improved extraction technique was firstly coupled with traditional spectrophotometer to improve the analytical performance and expand the application of spectrophotometric determination. The influence factors relevant to SAE-DLLME including extraction parameters and instrumental conditions, were studied in detail. Under the optimal conditions, the limit of detection (LOD) for nickel was 0.24 μg L-1, with sensitivity enhancement factor (EF) of 23.

  10. Application of dispersive liquid-liquid-solidified floating organic drop microextraction and ETAAS for the preconcentration and determination of indium.

    Science.gov (United States)

    Ashrafzadeh Afshar, Elham; Taher, Mohammad Ali; Fazelirad, Hamid; Naghizadeh, Matin

    2017-03-01

    A new, simple and efficient method, including dispersive liquid-liquid-solidified floating organic drop microextraction and then electrothermal atomic absorption spectrometry, has been developed for the preconcentration and determination of ultratrace amounts of indium. The method was applied to preconcentrate the indium-1-(2-pyridylazo)-2-naphthol complex in 25 μL 1-undecanol. The various factors affecting the extraction efficiency, such as pH, type and volume of extraction solvent, type and volume of disperser solvent, sample volume, ionic strength, and ligand concentration, were investigated and optimized. Under the optimum conditions, an enrichment factor of 62.5, precision of ±4.75%, a detection limit of 55.6 ng L(-1), and for the calibration graph a linear range of 96.0-3360 ng L(-1) were obtained. The method was used for the extraction and determination of indium in water and standard samples with satisfactory results. Graphical Abstract Preconcentration of indium ions via liquid-liquid-solidified floating organic drop microextraction method and determination by ETAAS.

  11. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    Science.gov (United States)

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.

  12. Ising universality class for the liquid-liquid critical point of a one component fluid: a finite-size scaling test.

    Science.gov (United States)

    Gallo, Paola; Sciortino, Francesco

    2012-10-26

    We present a finite-size scaling study of the liquid-liquid critical point in the Jagla model, a prototype model for liquids that present the same thermodynamic anomalies which characterize liquid water. Performing successive umbrella sampling grand canonical Monte Carlo simulations, we evaluate an accurate density of states for different system sizes and determine the size-dependent critical parameters. Extrapolation to infinite size provides estimates of the bulk critical values for this model. The finite-size study allows us to establish that critical fluctuations are consistent with the Ising universality class and to provide definitive evidence for the existence of a liquid-liquid critical point in the Jagla potential. This finding supports the possibility of the existence of a genuine liquid-liquid critical point in anomalous one-component liquids like water.

  13. Electro-oxidative leaching of pitchblende for uranium determination by arsenazo III spectrophotometry using fluid injection analysis system; Lixiviacao eletro-oxidativa de pechblenda para determinacao de uranio por espectrofotometria com arsenazo III empregando um sistema de analises por injecao em fluxo

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Alvaro Serafim Ferreira de

    2006-07-01

    In this work two different electro dissolution cells were projected and tested in order to solubilize pitchblende minerals aiming to posterior on line association to a flow injection system for the spectrophotometric determination of uranium leachate. The influence of current density, time, temperature, the electrolyte concentration nature, and the particle suspension density, were studied. Hydrodynamic and chemical parameters effects were evaluated to establish the best efficiency of the flow injection analysis system and to receive samples pretreated by electro oxidative leaching for the uranium determination. Arsenazo III was used as a colorimetric reagent and parameters such as acidity and reagents concentration, carrier and reagent flow rates, injection volume, reactor and reduction column size were studied and optimized. The calibration curves have showed a linear behavior (R{sup 2} = 0.9996) between the concentration range of 0.05 and 2.0 mgL{sup -1}. A relative deviation standard of 5.5 % (at 0.1 mgL{sup -1}) and a detection limit of 0.02 mgL{sup -1} were obtained, as well an analytical throughput of 60 sample determinations per hour. In the association of the flow injected analysis system with the electro-dissolution cells, values up to 98 % were obtained for the uranium extraction. The developed methodology for the electrooxidative extraction and on line spectrophotometric uranium determination in pitchblende samples, showed agreement with the reference method (ICP-MS), with a deviation between the results of less than 3.5 %. The proposal system showed advantages in relation to the conventional technique, like: automation of all analytical process, less quantities and more swiftness in the sample dissolution, less volume and acid concentration and reduction of the matrix effect. (author)

  14. Determination of ten pyrethroids in various fruit juices: comparison of dispersive liquid-liquid microextraction sample preparation and QuEChERS method combined with dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Zhang, Yaohai; Zhang, Xuelian; Jiao, Bining

    2014-09-15

    Dispersive liquid-liquid microextraction (DLLME) sample preparation and the quick, easy, cheap, effective, rugged and safe (QuEChERS) method combined with DLLME were developed and compared for the analysis of ten pyrethroids in various fruit juices using gas chromatography-electron capture detection (GC-ECD). QuEChERS-DLLME method has found its widespread applications to all the fruit juices including those samples with more complex matrices (orange, lemon, kiwi and mango) while DLLME was confined to the fruit juices with simpler matrices (apple, pear, grape and peach). The two methods provided acceptable recoveries and repeatability. In addition, the applicabilities of two methods were demonstrated with the real samples and further confirmed by gas chromatography-mass spectrometry (GC-MS).

  15. Double-salting out assisted liquid-liquid extraction (SALLE) HPLC method for estimation of temozolomide from biological samples.

    Science.gov (United States)

    Jain, Darshana; Athawale, Rajani; Bajaj, Amrita; Shrikhande, Shruti

    2014-11-01

    The role of temozolomide (TMZ) in treatment of high grade gliomas, melanomas and other malignancies is being defined by the current clinical developmental trials. Temozolomide belongs to the group of alkylating agents and is prescribed to patients suffering from most aggressive forms of brain tumors. The estimation techniques for temozolomide from the extracted plasma or biological samples includes high-performance liquid chromatography with UV detection (HPLC-UV), micellar electrokinetic capillary chromatography (MKEC) and liquid chromatography coupled to mass spectroscopy (LC-MS). These methods suffer from disadvantages like low resolution, low sensitivity, low recovery or cost involvement. An analytical method possessing capacity to estimate low quantities of TMZ in plasma samples with high extraction efficiency (%) and high resolution with cost effectiveness needs to be developed. Cost effective, robust and low plasma component interfering HPLC method using salting out liquid-liquid extraction (SALLE) technique was developed and validated for estimation of drug from plasma samples. The extraction efficiency (%) with conventional LLE technique with methanol, ethyl acetate, dichloromethane and acetonitrile was found to be 5.99±2.45, 45.39±4.56, 46.04±1.14 and 46.23±3.67 respectively. Extraction efficiency (%) improved with SALLE where sodium chloride was used as an electrolyte and was found to be 6.80±5.56, 52.01±3.13, 62.69±2.11 and 69.20±1.18 with methanol, ethyl acetate, dichloromethane and acetonitrile as organic solvent. Upon utilization of two salts for extraction (double salting liquid-liquid extraction) the extraction efficiency (%) was further improved and was twice of LLE. It was found that double salting liquid-liquid extraction technique yielded extraction efficiency (%) of 11.71±5.66, 55.62±3.44, 77.28±2.89 and 87.75±0.89. Hence a method based on double SALLE was developed for quantification of TMZ demonstrating linearity in the range of

  16. A Robust Computational Method for Coupled Liquid-liquid Phase Separation and Gas-particle Partitioning Predictions of Multicomponent Aerosols

    Science.gov (United States)

    Zuend, A.; Di Stefano, A.

    2014-12-01

    Providing efficient and reliable model predictions for the partitioning of atmospheric aerosol components between different phases (gas, liquids, solids) is a challenging problem. The partitioning of water, various semivolatile organic components, inorganic acids, bases, and salts, depends simultaneously on the chemical properties and interaction effects among all constituents of a gas + aerosol system. The effects of hygroscopic particle growth on the water contents and physical states of potentially two or more liquid and/or solid aerosol phases in turn may significantly affect multiphase chemistry, the direct effect of aerosols on climate, and the ability of specific particles to act as cloud condensation or ice nuclei. Considering the presence of a liquid-liquid phase separation in aerosol particles, which typically leads to one phase being enriched in rather hydrophobic compounds and the other phase enriched in water and dissolved electrolytes, adds a high degree of complexity to the goal of predicting the gas-particle partitioning of all components. Coupled gas-particle partitioning and phase separation methods are required to correctly account for the phase behaviour of aerosols exposed to varying environmental conditions, such as changes to relative humidity. We present new theoretical insights and a substantially improved algorithm for the reliable prediction of gas-particle partitioning at thermodynamic equilibrium based on the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. We introduce a new approach for the accurate prediction of the phase distribution of multiple inorganic ions between two liquid phases, constrained by charge balance, and the coupling of the liquid-liquid equilibrium model to a robust gas-particle partitioning algorithm. Such coupled models are useful for exploring the range of environmental conditions leading to complete or incomplete miscibility of aerosol constituents which will affect

  17. Optimized determination of trace jet fuel volatile organic compounds in human blood using in-field liquid-liquid extraction with subsequent laboratory gas chromatographic-mass spectrometric analysis and on-column large-volume injection.

    Science.gov (United States)

    Liu, S; Pleil, J D

    2001-03-05

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing techniques, and a new on-column large-volume injection method for GC-MS analysis. With the optimized methods, the extraction efficiency was improved by 4.3 to 20.1 times and the detection sensitivity increased up to 660 times over the standard method. Typical detection limits in the parts-per-trillion (ppt) level range were achieved for all monitored JP-8 constituents; this is sufficient for assessing human fuels exposures at trace environmental levels as well as occupational exposure levels. The sample extractions are performed in the field and only solvent extracts need to be shipped to the laboratory. The method is implemented with standard biological laboratory equipment and a modest bench-top GC-MS system.

  18. Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt.

    Science.gov (United States)

    D'Orazio, Giovanni; Asensio-Ramos, María; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel; Fanali, Salvatore

    2015-02-01

    In this work, the suitability of a methodology based on dispersive liquid-liquid microextraction (DLLME) has been evaluated for the extraction of four endoestrogens (estriol, 17α-estradiol, 17β-estradiol, and estrone), an exoestrogen (17α-etynylestradiol), and a mycotoxin (zearalenone), together with some of their major metabolites (2-methoxyestradiol, α-zearalanol, β-zearalanol, α-zearalenol, and β-zearalenol) from different types of milk (whole and skimmed cow milk and semiskimmed goat milk) and whole natural yogurt. The methodology includes a previous protein precipitation with acidified ACN and a defatting step with n-hexane. Separation of the analytes, determination, and quantification were developed by MEKC coupled to ESI-MS using a BGE containing an aqueous solution of ammonium perfluorooctanoate as MS friendly surfactant. Calibration, precision, and accuracy studies of the described DLLME-MEKC-MS/MS method were evaluated obtaining a good linearity and LODs in the low micrograms per liter range.

  19. Hollow fiber liquid-liquid-liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection.

    Science.gov (United States)

    Saraji, Mohammad; Ghani, Milad

    2015-10-30

    A method based on the combination of hollow fiber liquid-liquid-liquid microextraction and solid-phase microextraction (SPME) followed by gas chromatography-electron capture detection was developed for the determination of chlorophenols in water and wastewater samples. Silica microstructures fabricated on the surface of a stainless steel wire were coated by an organic solvent and used as a SPME fiber. The analytes were extracted through a hollow fiber membrane containing n-decane from sample solution to an alkaline aqueous acceptor phase. They were then extracted and in situ derivatized on the SPME fiber using acetic anhydride. Experimental parameters such as the type of extraction solvent, acceptor phase NaOH concentration, donor phase HCl concentration, the amount of derivatizing reagent, salt concentration, stirring rate and extraction time were investigated and optimized. The precision of the method for the analytes at 0.02-30μgL(-1) concentration level ranged from 7.1 to 10.2% (as intra-day relative standard deviation) and 6.4 to 9.8% (as inter-day relative standard deviation). The linear dynamic ranges were in the interval of 5-500μgL(-1), 0.05-5μgL(-1), 0.02-1μgL(-1) and 0.001-0.5μgL(-1) for 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol, respectively. The enrichment factors were between 432 and 785. The limits of detection were in the range of 0.0004-1.2μgL(-1). Tap water, well water and wastewater samples were also analyzed to evaluate the method capability for real sample analysis.

  20. Comparison of air-agitated liquid-liquid microextraction technique and conventional dispersive liquid-liquid micro-extraction for determination of triazole pesticides in aqueous samples by gas chromatography with flame ionization detection.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Aghdam, Abdollah Abdollahi

    2013-07-26

    Two micro-extraction methods, air-agitated liquid-liquid microextraction (AALLME) and dispersive liquid-liquid microextraction (DLLME), have been compared with each other by applying them for the analysis of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole and triticonazole) in aqueous samples by gas chromatography with flame ionization detection (GC-FID). In the AALLME method, which excludes any disperser solvent, much less volume of organic solvent is used. In order to form fine and dispersed organic droplets in the aqueous phase, the mixture of aqueous sample solution and extraction solvent is repeatedly aspirated and dispensed with a syringe. In the DLLME method, an appropriate mixture of extraction solvent and disperser solvent is rapidly injected by a syringe into the aqueous sample. Effect of the pertinent experimental factors on DLLME (i.e. identity and volume of the extraction and disperser solvents and ionic strength) and on AALLME (identity and volume of the extraction solvent, number of agitations, and ionic strength) were investigated. Under optimal conditions, limits of detection for the five target pesticides obtained by AALLME-GC-FID and DLLME-GC-FID ranged from 0.20 to 1.1ngmL(-1) and 1.9 to 5.9ngmL(-1), respectively. The relative standard deviations (RSDs, n=5) were in the range of 1-4% and 3-5% with the enrichment factors of 449-504 and 79-143 for AALLME-GC-FID and DLLME-GC-FID, respectively. Both of the compared methods are simple, fast, efficient, inexpensive and can be applied to the analysis of the five pesticides in different aqueous samples in which penconazole and hexaconazole were found. For spiked samples, the recoveries were in the ranges of 92-105%, and 92-104% for AALLME and DLLME, respectively.

  1. Novel method for determination of anthracene by coupling dispersive liquid-liquid extraction to first-derivative synchronous spectrofluorimetry.

    Science.gov (United States)

    Abdel-Aziz, Omar; El Kosasy, A M; El-Sayed Okeil, Sherif Mahmoud

    2014-05-01

    A novel method could be adopted successfully for determination of anthracene in environmental samples, utilizing dispersive liquid-liquid extraction followed by first-derivative synchronous fluorimetry at a constant wavelength difference Δλ = 165 nm, where a linear calibration curve was obtained in a concentration range of 0.5-100 ng mL(-1) at 244 nm. The detection limit was 0.1 ng mL(-1). The method can be easily adopted for determination of anthracene in aqueous media including tap water and river water. The recoveries obtained were 85.40-108.02%. The proposed method was validated according to International Conference of Harmonization (ICH) guide lines and successfully applied to determine anthracene in pure form and in water samples including real life water samples from different sources. All the results obtained were compared with those of published method, where no a significant difference was observed.

  2. Facilitated Ion Transfer Across the Micro-liquid/Liquid Interface Supported at the Tip of a Silanized Micropipette

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Glass micropipettes with silanized inner walls can be filled with an organic solvent for voltammetric measurements in an aqueous solution. This arrangement was employed to investigate systematically the mechanism of facilitated potassium ion transfer by an ionophore dibenzo-18-crown-6(DB18C6) across a micro-water/1,2-dichloroethane(W/DCE) interface supported at the tip of a silanized micropipette. Our experimental results verify that this facilitated ion transfer across the liquid/liquid interface did occur by an interfacial complexation-dissociation process(TIC-TID mechanism). The ratio of the diffusion coefficient of DB18C6 to that of its complexed ion in the DCE phase was calculated to be 1.74±0.07.

  3. Synthesis of fullerene nanowhiskers using the liquid-liquid interfacial precipitation method and their mechanical, electrical and superconducting properties

    Science.gov (United States)

    Miyazawa, Kun'ichi

    2015-02-01

    Fullerene nanowhiskers (FNWs) are thin crystalline fibers composed of fullerene molecules, including C60, C70, endohedral, or functionalized fullerenes. FNWs display n-type semiconducting behavior and are used in a diverse range of applications, including field-effect transistors, solar cells, chemical sensors, and photocatalysts. Alkali metal-doped C60 (fullerene) nanowhiskers (C60NWs) exhibit superconducting behavior. Potassium-doped C60NWs have realized the highest superconducting volume fraction of the alkali metal-doped C60 crystals and display a high critical current density (Jc) under a high magnetic field of 50 kOe. The growth control of FNWs is important for their success in practical applications. This paper reviews recent FNWs research focusing on their mechanical, electrical and superconducting properties and growth mechanisms in the liquid-liquid interfacial precipitation method.

  4. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  5. IR spectra of water droplets in no man's land and the location of the liquid-liquid critical point

    Science.gov (United States)

    Ni, Yicun; Skinner, J. L.

    2016-09-01

    No man's land is the region in the metastable phase diagram of water where it is very difficult to do experiments on liquid water because of homogeneous nucleation to the crystal. There are a number of estimates of the location in no man's land of the liquid-liquid critical point, if it exists. We suggest that published IR absorption experiments on water droplets in no man's land can provide information about the correct location. To this end, we calculate theoretical IR spectra for liquid water over a wide range of temperatures and pressures, using our E3B3 model, and use the results to argue that the temperature dependence of the experimental spectra is inconsistent with several of the estimated critical point locations, but consistent with others.

  6. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  7. SYNTHESE D’EXTRACTANTS ACIDES HEXADECYL- ET DECYLAMINOBIMETHYLENEDIPHOSPHONIQUES APPLICATION A L’EXTRACTION LIQUIDE-LIQUIDE DE Ni (II

    Directory of Open Access Journals (Sweden)

    M.A DIDI

    2007-06-01

    Après purification puis caractérisation des produits, nous avons réalisé divers tests d’extraction liquide - liquide de Ni (II en milieu sulfaté. Le temps d’équilibre déterminé par étude cinétique a été fixé à 40 minutes. Les paramètres changeant tels la température ( T = 20°C, 30°C et 50°C, le rapport du nombre de moles (n extractant / n métal (Q =1 à 6 et le rapport des volumes (Vaq / Vorg= 1, 2, 3 et 4 ont permis de maximiser le rendement d’extraction qui est de 46% avec le HABMP et de 44% pour le DADMP et ceci pour des extractions à un seul plateau.

  8. Numerical simulation of strongly swirling turbulent flows in a liquid-liquid hydrocyclone using the Reynolds stress transport equation model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Reynolds stress transport equation model (DSM) is used to predict the strongly swirling turbulent flows in a liquid-liquid hydrocyclone, and the predictions are compared with LDV measurements. Predictions properly give the flow behavior observed in experiments, such as the Rankine-vortex structure and double peaks near the inlet region in tangential velocity profile, the downward flow near the wall and upward flow near the core in axial velocity profiles. In the inlet or upstream region of the hydrocyclone, the reverse flow near the axis is well predicted, but in the region with smaller cone angle and cylindrical section, there are some discrepancies between the model predictions and the LDV measurements. Predictions show that the pressure is small in the near-axis region and increases to the maximum near the wall. Both predictions and measurements indicate that the turbulence in hydrocyclones is inhomogeneous and anisotropic.

  9. Determination of trace amount of lead in industrial and municipal effluent water samples based on dispersive liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shirkhanloo, H. [Iranian Petroleum Industry Health Research Institute, Occupational and Environmental Health Research Center, Tehran (Iran, Islamic Republic of); Sedighi, K.; Mousavi, H. Z., E-mail: hzmousavi@semnan.ac.ir [Semnan University, College of Science, Department of Chemistry, Semnan (Iran, Islamic Republic of)

    2014-10-01

    In this study, a simple, sensitive and accurate method was developed for the determination of lead ion by combining ionic liquid dispersive liquid-liquid extraction (Il-DLL E) with flame atomic absorption spectrometry. Tetraethyl thiuram disulfide (Tetd), acetone and 1-octyl-3m ethylimidazolium hexafluorophosphate [(C{sub 8}MIM) (PF{sub 6})] were used as the chelating agent, dispersive and extraction solvent, respectively. Under the optimal conditions, the calibration graph was linear in the range of 5-190 μg L{sup -1} of lead and the detection limit was 0.8 μg L{sup -1} with a sample volume of 200 ml. The proposed method was validated by the analysis of one certified reference material and applied successfully to the determination of lead in real water samples. (Author)

  10. Detection of Posaconazole by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Dispersive Liquid-Liquid Microextraction

    Science.gov (United States)

    Lin, Sheng-Yu; Chen, Pin-Shiuan; Chang, Sarah Y.

    2015-03-01

    A simple, rapid, and sensitive method for the detection of posaconazole using dispersive liquid-liquid microextraction (DLLME) coupled to surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. After the DLLME, posaconazole was detected using SALDI/MS with colloidal gold and α-cyano-4-hydroxycinnamic acid (CHCA) as the co-matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 1.0 to 100.0 nM for posaconazole, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 0.3 nM for posaconazole. This novel method was successfully applied to the determination of posaconazole in human urine samples.

  11. Liquid-liquid extraction of ion-association complexes of cobalt(II-4-(2-pyridylazoresorcinol with ditetrazolium salts

    Directory of Open Access Journals (Sweden)

    Divarova Vidka V.

    2015-01-01

    Full Text Available The formation and liquid-liquid extraction of ion-association complexes between Co(II-4-(2-Pyridylazoresorcinol (PAR anionic chelates and cations of three ditetrazolium chlorides were studied: Blue Tetrazolium chloride (BTC, Neotetrazolium chloride (NTC and Nitro Blue Tetrazolium chloride (NBT. The optimum conditions for the formation and solvent extraction of the ion-association comlpex chelates were determined. It has been found that in the systems of Co(II-PAR-DTS, the reactants are reacted in molar ratios 1:2:1 and the general formula of complexes was suggested. The extraction equilibria were investigated and quantitatively characterized by the equilibrium constants and the recovery factors. The analytical characteristics of the complexes were calculated.

  12. Synthesis of Ag-Au bimetallic film at liquid-liquid interface and its application in vapor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Pasricha, Renu, E-mail: pasrichar@mail.nplindia.ernet.i [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India); Gupta, Shweta [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India); Sastry, M. [Tata Chemical Innovation Center, Anmol Pride, Baner Road, Pune-45 (India); Singh, Nahar; Gupta, Prabhat [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India)

    2010-11-30

    We demonstrate a novel process for preparing densely packed film of silver nanoparticles at the liquid-liquid interface followed by a transmetallation reaction with gold ion to yield a film of bimetallic nanoparticles. Films of assembled silver as well as Ag-Au bimetallic were characterized by UV-vis-spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. I-V measurement shows linear behavior for both the films with ca. five orders of magnitude drop in resistance for the Ag-Au bimetallic film. Temperature dependent I-V measurement revealed a semiconductor to metal transition after transmetallation reaction. The films where checked for their potential application in chemical vapor sensing to ammonia vapors.

  13. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  14. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-12-31

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States` first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  15. Use of Dispersive Liquid-Liquid Microextraction and UV-Vis Spectrophotometry for the Determination of Cadmium in Water Samples

    Directory of Open Access Journals (Sweden)

    J. Pérez-Outeiral

    2014-01-01

    Full Text Available A simple and inexpensive method for cadmium determination in water using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry was developed. In order to obtain the best experimental conditions, experimental design was applied. Calibration was made in the range of 10–100 μg/L, obtaining good linearity (R2 = 0.9947. The obtained limit of detection based on calibration curve was 8.5 μg/L. Intra- and interday repeatability were checked at two levels, obtaining relative standard deviation values from 9.0 to 13.3%. The enrichment factor had a value of 73. Metal interferences were also checked and tolerable limits were evaluated. Finally, the method was applied to cadmium determination in real spiked water samples. Therefore, the method showed potential applicability for cadmium determination in highly contaminated liquid samples.

  16. (Liquid + liquid) equilibria in ternary aqueous mixtures of phosphoric acid with organic solvents at T = 298.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Ghanadzadeh, H., E-mail: hggilani@guilan.ac.i [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of); Department of Chemical Engineering, University of Guilan, Rasht (Iran, Islamic Republic of); Ghanadzadeh, A., E-mail: aggilani@guilan.ac.i [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of); Aghajani, Z.; Abbasnejad, S.; Shekarsaraee, S. [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of)

    2010-06-15

    (Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of left bracewater (1) + phosphoric acid (2) + organic solvents (3)right brace were determined at T = 298.2 K and atmospheric pressure. The organic solvents were cyclohexane, 2-methyl-2-butanol (tert-amyl alcohol), and isobutyl acetate. All the investigated systems exhibit Type-1 behaviour of LLE. The immiscibility region was found to be larger for the (water + phosphoric acid + cyclohexane) ternary system. The experimental LLE results were correlated with the NRTL model, and the binary interaction parameters were obtained. The reliability of the experimental tie-line results was tested through the Othmer-Tobias and Bachman correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to these factors. The experimental results indicate the superiority of cyclohexane as the preferred solvent for the extraction of phosphoric acid from its aqueous solutions.

  17. IR spectra of water droplets in no man's land and the location of the liquid-liquid critical point.

    Science.gov (United States)

    Ni, Yicun; Skinner, J L

    2016-09-28

    No man's land is the region in the metastable phase diagram of water where it is very difficult to do experiments on liquid water because of homogeneous nucleation to the crystal. There are a number of estimates of the location in no man's land of the liquid-liquid critical point, if it exists. We suggest that published IR absorption experiments on water droplets in no man's land can provide information about the correct location. To this end, we calculate theoretical IR spectra for liquid water over a wide range of temperatures and pressures, using our E3B3 model, and use the results to argue that the temperature dependence of the experimental spectra is inconsistent with several of the estimated critical point locations, but consistent with others.

  18. Numerical simulation of strongly swirling turbulent flows in a liquid-liquid hydrocyclone using the Reynolds stress transport equation model

    Institute of Scientific and Technical Information of China (English)

    陆耀军; 周力行; 沈熊

    2000-01-01

    The Reynolds stress transport equation model (DSM) is used to predict the strongly swirling turbulent flows in a liquid-liquid hydrocyclone, and the predictions are compared with LDV measurements . Predictions properly give the flow behavior observed in experiments, such as the Rankine-vortex structure and double peaks near the inlet region in tangential velocity profile, the downward flow near the wall and upward flow near the core in axial velocity profiles. In the inlet or upstream region of the hydrocyclone, the reverse flow near the axis is well predicted, but in the region with smaller cone angle and cylindrical section, there are some discrepancies between the model predictions and the LDV measurements. Predictions show that the pressure is small in the near-axis region and increases to the maximum near the wall. Both predictions and measurements indicate that the turbulence in hydrocy-clones is inhomogeneous and anisotropic.

  19. Widom line and the liquid-liquid critical point for the TIP4P/2005 water model.

    Science.gov (United States)

    Abascal, José L F; Vega, Carlos

    2010-12-21

    The Widom line and the liquid-liquid critical point of water in the deeply supercooled region are investigated via computer simulation of the TIP4P/2005 model. The Widom line has been calculated as the locus of compressibility maxima. It is quite close to the experimental homogeneous nucleation line and, in the region studied, it is almost parallel to the curve of temperatures of maximum density at fixed pressure. The critical temperature is determined by examining which isotherm has a region with flat slope. An interpolation in the Widom line gives the rest of the critical parameters. The computed critical parameters are T(c)=193 K, p(c)=1350 bar, and ρ(c)=1.012 g/cm(3). Given the performance of the model for the anomalous properties of water and for the properties of ice phases, the calculated critical parameters are probably close to those of real water.

  20. Development and Characterization of Polysulfone/Polyvinylidene Flouride Blend Membrane Induced by Delayed Liquid-Liquid Demixing

    Directory of Open Access Journals (Sweden)

    Ruwanti Dewi Cahya Ningrum

    2016-10-01

    Full Text Available Polysulfone (PSf-Polyvinylidene fluoride (PVDF membranes were fabricated via phase inversion method and immersion precipitation technique. In particular, the effect of varied amount of NMP addition into coagulation bath on permeability, mechanical properties, chemical resistance and thermal stability of membranes were investigated. The presence of solvent in coagulation bath caused delayed liquid-liquid demixing that caused increasing chance of disoriented interactions in PSf/PVDF blend membrane thus larger pore and dominated macrovoids membranes resulted. It was found that the increase of solvent addition lead to increasing of flux and decreasing of mechanical strength whereas a remarkably and enhanced chemical resistance has been achieved which showed excellent resistance in H2SO4 but degraded upon exposure to a concentration of 15% NaOH solution. Furthermore, TGA analysis revealed that the membrane exhibit improved thermal stability while the morphology of membrane showed the formation of asymmetry structure.

  1. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    Science.gov (United States)

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement

  2. Fabrication of composite polymer foam films at the liquid/liquid interface through emulsion-directed assembly and adsorption processes.

    Science.gov (United States)

    Geng, Yuanyuan; Liu, Mei; Tong, Kun; Xu, Jian; Lee, Yong-Ill; Hao, Jingcheng; Liu, Hong-Guo

    2014-03-04

    The foam films of polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-b-PAA-b-PS) doped with Cd(II) or Pb(II) species were fabricated at the planar liquid/liquid interfaces between a DMF/chloroform (v/v: 1/1) solution of the polymer and aqueous solutions containing cadmium acetate or lead acetate at ambient temperature. Optical microscopic observation shows the thin film is uniform on a larger length scale. Transmission electron microscopic (TEM) investigations reveal that the foam films are made up of microcapsules with the size of several hundreds of nanometers to micrometers. The walls of the microcapsules have a layered structure decorating with nanofibers and hollow nanospheres, where numerous inorganic fine nanoparticles are dispersed homogeneously. The film formation is a result of emulsion droplet-templated assembly and adsorption of the formed microcapsules at the planar liquid/liquid interface. Because of the miscibility of DMF with chloroform and water, DMF migrates to the aqueous phase while water migrates to the organic phase across the interface, resulting in the formation of a W/O emulsion, as revealed by optical microscopic observation, freeze fracture transmission electron microscopic (FF-TEM) observation, and dynamic laser scattering (DLS) investigation. The triblock copolymer molecules and the inorganic species adsorb and self-assemble around the emulsion drops, leading to the formation of the composite microcapsules. X-ray photoelectron spectroscopic (XPS) and FTIR spectroscopic results indicate that two kinds of Cd(II) or Pb(II) species, metal oxide or hydroxide, resulting from the hydrolysis of the metal ions and the coordinated metal ions to the carboxyl groups coexist in the formed thin films, which transform to metal sulfide completely after treating with hydrogen sulfide to get metal sulfide nanoparticle-doped polymer thin films.

  3. Quaternary liquid/liquid equilibria of sodium sulfate, sodium sulfite and water with two solvents: Acetone and 2-propanol

    Energy Technology Data Exchange (ETDEWEB)

    Schiozer, A.L.

    1994-03-01

    Aqueous solutions of sodium sulfate and sodium sulfite are produced from sodium carbonate in flue-gas scrubbers; recovery of these salts often requires multi-effect evaporators; however, a new energy-efficient unit operation called extractive crystallization has been shown to have reduced energy costs. In this process, an organic solvent is added to the aqueous salt solution to precipitate salt. Acetone is a suitable solvent for this process, better than 2-propanol. Liquid/liquid/solid equilibria for ternary systems containing a salt, water, and an organic solvent were measured. Systems investigated were sodium sulfite/water/acetone and sodium sulfite/water/2-propanol. Experiments were conducted at salt saturation covering a temperature range between the lower consolute temperature and 48.6{degrees}C. In the attempt to improve the extractive crystallization process for recovery of sodium sulfate from flue-gas scrubbers, attention was given to a feed containing a mixture of sodium sulfite and sodium sulfate. Liquid-liquid equilibria for quaternary systems containing two salts, water, and an organic solvent were experimentally determined at 35{degrees}C. The systems investigated were sodium sulfate/sodium sulfite/water/acetone and sodium sulfate/sodium sulfite/water/2propanol. The systems were studied at three salt ratios. For each salt ratio, experiments were conducted starting at saturation, water was then added until the one-phase region was reached. Mixtures of the two salts proved to have a small disadvantage relative to the 100 % sulfate feed process. Therefore, a sulfate-based extractive crystallization process is recommended.

  4. Determination of furfurals in Manuka honey using piston-cylinder liquid-liquid extraction and gas chromatography.

    Science.gov (United States)

    Gras, K; Luong, J; Gras, R; Cortes, H J; Shellie, R A

    2014-10-03

    A rapid analytical approach for the direct measurement of furfurals such as 2-furfural and 5-methyl-2-furfural at parts-per-billion level in Manuka honey is described. The approach employs a piston-cylinder based liquid-liquid extraction device using chloroform extraction solvent. This device substantially reduces extraction time by a factor of 120 times compared to solid phase micro-extraction and reduces solvent consumption by a factor of 25 times compared to liquid-liquid extraction with mechanical agitation. A recently commercialised capillary column offering a high degree of inertness permits separation and detection of the analytes at ultra-trace level without derivatisation. A three-port planar microfluidic device with a mid-point pressure is also incorporated to back-flush heavier compounds in the matrix to improve column longevity and overall system cleanliness. With this approach, analysis is conducted in less than 7min. Repeatability of retention times for all compounds is less than 0.1% (n=20). The compounds cited can be analysed over a range from 1ng/g to 10μg/g in honey with a 5ng/g limit of quantification (LOQ) and correlation coefficients of at least 0.999. Relative precision is less than 2.8% RSD (n=20) at 50ng/g level with analyte extraction efficiency of greater than 99% (n=3) over a range from 5ng/g to 10μg/g in the matrix described. The analytical system requires only minimal maintenance and is suitable for remote site deployment. Under the analytical conditions established and with a practical LOQ of 5ng/g, 100 samples can be analysed before septum/liner/o-ring replacements are needed. As a preventive measure, the pre-column can be replaced once every six months to maintain chromatographic fidelity.

  5. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2013-06-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  6. Development and validation of an automated liquid-liquid extraction GC/MS method for the determination of THC, 11-OH-THC, and free THC-carboxylic acid (THC-COOH) from blood serum.

    Science.gov (United States)

    Purschke, Kirsten; Heinl, Sonja; Lerch, Oliver; Erdmann, Freidoon; Veit, Florian

    2016-06-01

    The analysis of Δ(9)-tetrahydrocannabinol (THC) and its metabolites 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) from blood serum is a routine task in forensic toxicology laboratories. For examination of consumption habits, the concentration of the phase I metabolite THC-COOH is used. Recommendations for interpretation of analysis values in medical-psychological assessments (regranting of driver's licenses, Germany) include threshold values for the free, unconjugated THC-COOH. Using a fully automated two-step liquid-liquid extraction, THC, 11-OH-THC, and free, unconjugated THC-COOH were extracted from blood serum, silylated with N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), and analyzed by GC/MS. The automation was carried out by an x-y-z sample robot equipped with modules for shaking, centrifugation, and solvent evaporation. This method was based on a previously developed manual sample preparation method. Validation guidelines of the Society of Toxicological and Forensic Chemistry (GTFCh) were fulfilled for both methods, at which the focus of this article is the automated one. Limits of detection and quantification for THC were 0.3 and 0.6 μg/L, for 11-OH-THC were 0.1 and 0.8 μg/L, and for THC-COOH were 0.3 and 1.1 μg/L, when extracting only 0.5 mL of blood serum. Therefore, the required limit of quantification for THC of 1 μg/L in driving under the influence of cannabis cases in Germany (and other countries) can be reached and the method can be employed in that context. Real and external control samples were analyzed, and a round robin test was passed successfully. To date, the method is employed in the Institute of Legal Medicine in Giessen, Germany, in daily routine. Automation helps in avoiding errors during sample preparation and reduces the workload of the laboratory personnel. Due to its flexibility, the analysis system can be employed for other liquid-liquid extractions as

  7. Ternary and quaternary (liquid + liquid) equilibria for (water + ethanol + {alpha}-pinene, +{beta}-pinene, or +limonene) and (water + ethanol + {alpha}-pinene + limonene) at the temperature 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Li Hengde [Department of Chemistry and Chemical Engineering, Division of Material Engineering and Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Tamura, Kazuhiro [Department of Chemistry and Chemical Engineering, Division of Material Engineering and Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)]. E-mail: tamura@t.kanazawa-u.ac.jp

    2006-08-15

    (Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + {alpha}-pinene, or {beta}-pinene or limonene) and quaternary (water + ethanol + {alpha}-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters.

  8. Techno-economic analysis for incorporating a liquid-liquid extraction system to remove acetic acid into a proposed commercial scale biorefinery.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Engelberth, Abigail S

    2016-07-08

    Mitigating the effect of fermentation inhibitors in bioethanol plants can have a great positive impact on the economy of this industry. Liquid-liquid extraction (LLE) using ethyl acetate is able to remove fermentation inhibitors-chiefly, acetic acid-from an aqueous solution used to produce bioethanol. The fermentation broth resulting from LLE has higher performance for ethanol yield and its production rate. Previous techno-economic analyses focused on second-generation biofuel production did not address the impact of removing the fermentation inhibitors on the economic performance of the biorefinery. A comprehensive analysis of applying a separation system to mitigate the fermentation inhibition effect and to provide an analysis on the economic impact of removal of acetic acid from corn stover hydrolysate on the overall revenue of the biorefinery is necessary. This study examines the pros and cons associated with implementing LLE column along with the solvent recovery system into a commercial scale bioethanol plant. Using details from the NREL-developed model of corn stover biorefinery, the capital costs associated with the equipment and the operating cost for the use of solvent were estimated and the results were compared with the profit gain due to higher ethanol production. Results indicate that the additional capital will add 1% to the total capital and manufacturing cost will increase by 5.9%. The benefit arises from the higher ethanol production rate and yield as a consequence of inhibitor extraction and results in a $0.35 per gallon reduction in the minimum ethanol selling price (MESP). © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:971-977, 2016.

  9. Determination of geosmin and 2-methylisoborneol in water and wine samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cortada, Carol; Vidal, Lorena; Canals, Antonio

    2011-01-01

    A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USADLLME) procedure has been developed to preconcentrate geosmin and 2-methylisoborneol (MIB) from water and wine samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the USADLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: solvent volume, 8μL; solvent type: tetrachloroethylene; sample volume, 12 mL; centrifugation speed, 2300 rpm; extraction temperature 20 °C; extraction time, 3 min; and centrifugation time, 3 min. Under the optimized experimental conditions the method gave good levels of repeatability with coefficient of variation under 11% (n=10). Limits of detection were 2 and 9 ng L⁻¹ for geosmin and MIB, respectively. Calculated calibration curves gave high levels of linearity with correlation coefficient values of 0.9988 and 0.9994 for geosmin and MIB, respectively. Finally, the proposed method was applied to the analysis of two water (reservoir and tap) samples and three wine (red, rose and white) samples. The samples were previously analyzed and confirmed free of target analytes. Recovery values ranged between 70 and 113% at two spiking levels (0.25 μg L⁻¹ and 30 ng L⁻¹) showing that the matrix had a negligible effect upon extraction. Only red wine showed a noticeable matrix effect (70-72% recovery). Similar conclusions have been obtained from an uncertainty budget evaluation study.

  10. A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat.

    Science.gov (United States)

    Timofeeva, Irina; Timofeev, Semen; Moskvin, Leonid; Bulatov, Andrey

    2017-01-01

    In this article, dispersive liquid-liquid microextraction (DLLME), based on the use of so-called switchable polarity dispersive solvent (SPDS) for microextraction, is presented for the first time. The new extraction technique makes use of a mixture of extraction solvent (dichloromethane) and the SPDS (acrylic acid). This mixture is injected into the aqueous sample solution, which was previously fortified with the alkaline agent (NaOH). The SPDS is dissolved in aqueous phase and a cloudy solution consisting of fine droplets of extraction solvent fully dispersed in the aqueous phase is observed. Simultaneously, as a consequence of the fast neutralization reaction, the SPDS investigated is converted into water-soluble salt and phase separation is achieved because the SPDS switches its polarity. Conversion of the SPDS excludes the negative influence of the conventional dispersive solvents used in DLLME on the solubility of target analytes in aqueous phase and, as a result, increases the DLLME efficiency. The proposed extraction technique was automated based on a flow system and coupled with high performance liquid chromatography system with fluorescence detection (HPLC-FLD) and demonstrated by the determination of ofloxacin (OFLX) in chicken meat samples. This analytical task was used as a proof-of-concept example. The automated method includes on-line ultrasound assisted solid-liquid extraction of OFLX from chicken meat samples followed by DLLME using SPDS, solvent exchange and the determination by HPLC-FLD. Under the optimal conditions, the detector response for OFLX was linear in concentration range of 6·10(-9) - 5·10(-7) mol L(-1). The limit of detection, calculated from a blank test based on 3σ, was 2·10(-9) mol L(-1).

  11. Determination of 13 endocrine disrupting chemicals in sediments by gas chromatography-mass spectrometry using subcritical water extraction coupled with dispersed liquid-liquid microextraction and derivatization.

    Science.gov (United States)

    Yuan, Ke; Kang, Haining; Yue, Zhenfeng; Yang, Lihua; Lin, Li; Wang, Xiaowei; Luan, Tiangang

    2015-03-25

    In this study, a sample pretreatment method was developed for the determination of 13 endocrine disrupting chemicals (EDCs) in sediment samples based on the combination of subcritical water extraction (SWE) and dispersed liquid-liquid microextraction (DLLME). The subcritical water that provided by accelerated solvent extractor (ASE) was the sample solution (water) for the following DLLME and the soluble organic modifier that spiked in the subcritical water was also used as the disperser solvent for DLLME in succession. Thus, several important parameters that affected both SWE and DLLME were investigated, such as the extraction solvent for DLLME (chlorobenzene), extraction time for DLLME (30s), selection of organic modifier for SWE (acetone), volume of organic modifier (10%) and extraction temperature for SWE (150 °C). In addition, good chromatographic behavior was achieved for GC-MS after derivatisation by using N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA). As a result, proposed method sensitive and reliable with the limits of detection (LODs) ranging from 0.006 ng g(-1) (BPA) to 0.639 ng g(-1) (19-norethisterone) and the relative standard deviations (RSDs) between 1.5% (E2) and 15.0% (DES). Moreover, the proposed method was compared with direct ASE extraction that reported previously, and the results showed that SWE-DLLME was more promising with recoveries ranging from 42.3% (dienestrol) to 131.3% (4,5α-dihydrotestosterone), except for diethylstilbestrol (15.0%) and nonylphenols (29.8%). The proposed method was then successfully applied to determine 13 EDCs sediment of Humen outlet of the Pearl River, 12 of target compounds could be detected, and 10 could be quantitative analysis with the total concentration being 39.6 ng g(-1), and which indicated that the sediment of Humen outlet was heavily contaminated by EDCs.

  12. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.

    Science.gov (United States)

    Goraltchouk, Alex; Freier, Thomas; Shoichet, Molly S

    2005-12-01

    Biodegradable nerve guidance channels are advantageous, obviating the need for their removal after regeneration; however, most channels lack the appropriate mechanical properties for soft tissue implantation and/or degrade too quickly, resulting in reduced regeneration and necessitating the need for the design of polymers with tunable degradation profiles and mechanical properties. We designed a series of biodegradable polymeric hydrogel tubes consisting of L-lactide (LLA) and polyethylene glycol (PEG) where both the ratio of LLA to PEG and PEG molar mass were varied. By adjusting the PEG:LLA ratio and the molecular weight of the PEG oligomer we were able to control degradation and mechanical properties of our polymers. By incorporating methacrylate (MA) groups on both termini of the linear oligomers, porous tubes were synthesized by a redox-initiated free radical mechanism during a liquid-liquid centrifugal casting process. The tube wall had a bead-like morphology, as determined by SEM, which was reminiscent of previous porous hydrogel tubes synthesized by the same method. Tubes swelled with degradation to 160 vol%, or 640 wt%, and an increased radius calculated at 1.26 times. Those tubes with greater PEG content and PEG molar mass degraded faster than those with greater LLA content, as was expected. Interestingly, the wall morphology changed with degradation to a fiber-like structure and the mechanical properties decreased with degradation. By correlating the accelerated degradation study to a physiologic one, these porous hydrogel tubes were stable for an equivalent of 1.5 months, after which the mechanical properties began to deteriorate. This study demonstrates how porous hydrogel tubes can be designed to meet tissue regeneration criteria by tuning the formulation chemistry and specifically how the ratio of hydrophobic/crystalline LLA and hydrophilic/amorphous PEG impact tube properties.

  13. [Determination of four phenolic endocrine disruptors in environmental water samples by high performance liquid chromatography-fluorescence detection using dispersive liquid-liquid microextraction coupled with derivatization].

    Science.gov (United States)

    Wang, Xiaoyan; Qi, Weimei; Zhao, Xian'en; Lü, Tao; Wang, Xiya; Zheng, Longfang; Yan, Yehao; You, Jinmao

    2014-06-01

    To achieve accurate, fast and sensitive detection of phenolic endocrine disruptors in small volume of environmental water samples, a method of dispersive liquid-liquid microextraction (DLLME) coupled with fluorescent derivatization was developed for the determination of bisphenol A, nonylphenol, octylphenol and 4-tert-octylphenol in environmental water samples by high performance liquid chromatography-fluorescence detection (HPLC-FLD). The DLLME and derivatization conditions were investigated, and the optimized DLLME conditions for small volume of environmental water samples (pH 4.0) at room temperature were as follows: 70 microL chloroform as extraction solvent, 400 microL acetonitrile as dispersing solvent, vortex mixing for 3 min, and then high-speed centrifugation for 2 min. Using 2-[2-(7H-dibenzo [a, g] carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC-Cl) as precolumn derivatization reagent, the stable derivatives of the four phenolic endocrine disruptors were obtained in pH 10.5 Na2CO3-NaHCO3 buffer/acetonitrile at 50 degrees C for 3 min, and then separated within 10 min by HPLC-FLD. The limits of detection (LODs) were in the range of 0.9-1.6 ng/L, and the limits of quantification (LOQs) were in the range of 3.8-7.1 ng/L. This method had perfect linearity, precision and recovery results, and showed obvious advantages and practicality comparing to the previously reported methods. It is a convenient and validated method for the routine analysis of phenolic endocrine disruptors in waste water of paper mill, lake water, domestic wastewater, tap water, etc.

  14. The effect of the interaction between the minority phase droplets on the nucleation behavior during the liquid-liquid phase transformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microstructure evolution during the liquid-liquid phase transformation of Al-Pb alloy was calculated. The numerical results indicate that the interaction between the minority phase droplets has effect on the nucleation process of the droplets, and the effect increases with the cooling rate and the content of Pb.

  15. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent

    NARCIS (Netherlands)

    Altena, Frank W.; Smolders, C.A.

    1982-01-01

    A numerical method for the calculation of the binodal of liquid-liquid phase separation in a ternary system is described. The Flory-Huggins theory for three-component systems is used. Binodals are calculated for polymer/solvent/nonsolvent systems which are used in the preparation of asymmetric ultra

  16. In situ liquid-liquid extraction as a sample preparation method for matrix-assisted laser desorption/ionization MS analysis of polypeptide mixtures

    DEFF Research Database (Denmark)

    Kjellström, Sven; Jensen, Ole Nørregaard

    2003-01-01

    A novel liquid-liquid extraction (LLE) procedure was investigated for preparation of peptide and protein samples for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). LLE using ethyl acetate as the water-immiscible organic solvent enabled segregation of hydrophobic...

  17. Liquid-liquid phase separation by nucleation and growth in solutions of poly(2,6 dimethyl-1,4 phenylene oxide) in toluene

    NARCIS (Netherlands)

    Emmerik, van P.T.; Smolders, C.A.

    1973-01-01

    In solutions of poly(2,6 dimethyl-1,4 phenylene oxide) in toluene, the nucleation of the newly formed phase during liquid-liquid phase separation takes place after induction periods which vary between several minutes (at temperatures close to the spinodal) and several hours (at temperatures close to

  18. Analysis of Whiskey by Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography/Mass Spectrometry: An Upper Division Analytical Chemistry Experiment Guided by Green Chemistry

    Science.gov (United States)

    Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.

    2016-01-01

    Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…

  19. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG + ...

  20. Vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria calculations for polystyrene plus methyleyclohexane and polystyrene plus cyclohexane solutions

    DEFF Research Database (Denmark)

    Wilczura-Wachnik, H.; Jonsdottir, Svava Osk

    2006-01-01

    This paper presents the vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria predictions for polystyrene in two theta solvents: cyclohexane and methylcyclohexane. VLE calculations were performed with the Elbro free volume method and a modified version of the PC-SAFT method, as well...

  1. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    Science.gov (United States)

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples.

  2. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2010-08-01

    Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six

  3. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2010-05-01

    Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six

  4. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase; Simulations d'electrolytes a l'interface liquide/liquide et de complexes de cations lanthanides en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Berny, F

    2000-07-01

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K{sup +}, Cl{sup -}, UO{sub 2}{sup 2+}, Na{sup +}, NO{sub 3}{sup -}) whereas others adsorb (amphiphilic molecules and also ClO{sub 4}{sup -}, SCN{sup -}, guanidinium Gu{sup +} and picrate Pic{sup -}). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H{sub 3}O{sup +}/NO{sub 3}{sup -}). HNO{sub 3} and H{sub 3}O{sup +} display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu{sup +} and Pic{sup -} adsorb much less at the supercritical CO{sub 2}/water interface than at the chloroform/water interface. In the second part, complexes of La{sup 3+}, Eu{sup 3+} and Yb{sup 3+} with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  5. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Feriduni, Behruz; Mogaddam, Mohammad Reza Afshar

    2016-01-01

    In this paper, a new extraction method based on counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction and preconcentration of widely used pesticides in fruit juice samples prior to their analysis by gas chromatography-flame ionization detection (GC-FID). In this method, initially, sodium chloride as a separation reagent is filled into a small column and a mixture of water (or fruit juice) and acetonitrile is passed through the column. By passing the mixture sodium chloride is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected organic phase (acetonitrile) is removed with a syringe and mixed with 1,1,2,2-tetrachloroethane (extraction solvent at µL level). In the second step, for further enrichment of the analytes the above mixture is injected into 5 mL de-ionized water placed in a test tube with conical bottom in order to dissolve acetonitrile into water and to achieve a sedimented phase at µL-level volume containing the enriched analytes. Under the optimal extraction conditions (extraction solvent, 1.5 mL acetonitrile; pH, 7; flow rate, 0.5 mL min(-1); preconcentration solvent, 20 µL 1,1,2,2-tetrachloroethane; NaCl concentration; 5%, w/w; and centrifugation rate and time, 5000 rpm and 5 min, respectively), the extraction recoveries and enrichment factors ranged from 87% to 96% and 544 to 600, respectively. Repeatability of the proposed method, expressed as relative standard deviations, ranged from 2% to 6% for intra-day (n=6, C=250 or 500 µg L(-1)) and inter-days (n=4, C=250 or 500 µg L(-1)) precisions. Limits of detection are obtained between 2 and 12 µg L(-1). Finally, the proposed method is applied for the determination of the target pesticide residues in the juice samples.

  6. Salting-out homogenous extraction followed by ionic liquid/ionic liquid liquid-liquid micro-extraction for determination of sulfonamides in blood by high performance liquid chromatography.

    Science.gov (United States)

    Liu, Zhongling; Yu, Wei; Zhang, Hanqi; Gu, Fanbin; Jin, Xiangqun

    2016-12-01

    Salting-out homogenous extraction followed by ionic liquid/ionic liquid dispersive liquid-liquid micro-extraction system was developed and applied to the extraction of sulfonamides in blood. High-performance liquid chromatography was applied to the determination of the analytes. The blood sample was centrifuged to obtain the serum. After the proteins in the serum were removed in the presence of acetonitrile, ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, dipotassium hydrogen phosphate, ionic liquid 1-Hexyl-3-methylimidazolium hexafluorophosphate were added into the resulting solution. After the resulting mixture was ultrasonically shaken and centrifuged, the precipitate was separated. The acetonitrile was added in the precipitate and the analytes were extracted into the acetonitrile phase. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of dipotassium hydrogen phosphate, volume of dispersant, extraction time and temperature were investigated. The limits of detection of sulfamethizole (STZ), sulfachlorpyridazine (SCP), sulfamethoxazole (SMX) and Sulfisoxazole (SSZ) were 4.78, 3.99, 5.21 and 3.77μgL(-1), respectively. When the present method was applied to the analysis of real blood samples, the recoveries of analytes ranged from 90.0% to 113.0% and relative standard deviations were lower than 7.2%.

  7. Coupling of homogeneous liquid-liquid extraction and dispersive liquid-liquid microextraction for the extraction and preconcentration of polycyclic aromatic hydrocarbons from aqueous samples followed by GC with flame ionization detection.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Khiavi, Elahe Behboudi; Khorram, Parisa; Mogaddam, Mohammad Reza Afshar

    2017-01-01

    In the present study, a simple and rapid method for the extraction and preconcentration of some polycyclic aromatic hydrocarbons in water samples has been developed. In this method, two sample preparation methods were combined to obtain high extraction recoveries and enrichment factors for sensitive analysis of the selected analytes. In the first stage of the method, a homogeneous solution containing an aqueous solution and cyclohexyl amine is broken by the addition of a salt. After centrifugation, the upper collected phase containing the extracted analytes is subjected to the following dispersive liquid-liquid microextraction method. Rapid injection of the mixture of cyclohexyl amine resulted from the first stage and 1,1,2-trichloroethane (as an extraction solvent) into an acetic acid solution is led to form a cloudy solution. After centrifuging, the fine droplets of the extraction solvent are settled down in the bottom of the test tube, and an aliquot of it is analyzed by gas chromatography. Under the optimum extraction conditions, enrichment factors and limits of detection for the studied analytes were obtained in the ranges of 616-752 and 0.08-0.20 μg/L, respectively. The simplicity, high extraction efficiency, short sample preparation time, low cost, and safety demonstrated the efficiency of this method relative to other approaches.

  8. Application of In-Syringe Dispersive Liquid-Liquid Microextraction and Narrow-Bore Tube Dispersive Liquid-Liquid Microextraction for the Determination of Trace Amounts of BTEX in Water Samples.

    Science.gov (United States)

    Rahmani, Mashaallah; Kaykhaii, Massoud; Ghasemi, Elham; Tahernejad, Mohadeseh

    2015-08-01

    Two new simple and effective methods based on dispersive liquid-liquid microextraction (DLLME) procedure, termed "in-syringe DLLME (IS-DLLME)" and "narrow-bore tube DLLME (NB-DLLME)", were developed and applied for rapid and simultaneous separation and preconcentration of trace amounts of benzene, toluene, ethylbenzene and xylene isomers in water samples followed by gas chromatographic analysis. Different parameters influencing the extraction efficiency of both methods such as type and volume of the extraction solvent and the disperser solvent; pH, temperature and volume of sample solution and ionic strength of samples were investigated and optimized. Under optimal condition, the limits of detection ranged from 1.7 to 2.4 µg L(-1) for IS-DLLME and 1.5 to 2.2 µg L(-1) for NB-DLLME. Precision (as relative standard deviation) of the two techniques was between 2.1 and 4.6% for IS-DLLME and between 1.5 and 4.5% for NB-DLLME. The enrichment factors found to be between 20-29 and 31-73 for IS- and NB-DLLME, respectively. The applicability of the proposed methods was investigated by analyzing real water samples.

  9. Ionic liquid matrix-based dispersive liquid-liquid microextraction for enhanced MALDI-MS analysis of phospholipids in soybean.

    Science.gov (United States)

    Shrivas, Kamlesh; Tapadia, Kavita

    2015-09-15

    Ionic liquid matrix (ILM) is found to be a very versatile substance for analysis of broad range of organic molecules in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) due to good solubility for a variety of analytes, formation of homogenous crystals and high vacuum stability of the matrix. In the present work, an ILM, cyno-4-hydroxycinnamic acid-butylamine (CHCAB) was employed in dispersive liquid-liquid microextraction (DLLME) as sample probe and matrix for extraction and ionization of phospholipids from food samples (soybean) prior to MALDI-MS analysis. With the employed technique, 8-125 fold improvement in signal intensity and limit of detection were achieved for the analysis of phospholipids. The best extraction efficiency of phospholipids in ILM-DLLME was obtained with 5min extraction time in presence 30mg/mL CHCAB and 1.2% NaCl using chloroform as an extracting solvent and methanol as a dispersing solvent. Further, the developed ILM-DLLME procedure has been successfully applied for the analysis of phospholipids in soybean samples in MALDI-MS.

  10. Liquid-Liquid Extraction and Solid Phase Extraction for Urinary Organic Acids: A Comparative Study from a Resource Constraint Setting.

    Science.gov (United States)

    Kumari, Chandrawati; Varughese, Bijo; Ramji, Siddarth; Kapoor, Seema

    2016-10-01

    Pre analytical process of extraction for accurate detection of organic acids is a crucial step in diagnosis of organic acidemias by GCMS analysis. This process is accomplished either by solid phase extraction (SPE) or by liquid-liquid extraction (LLE). Both extraction procedures are used in different metabolic laboratories all over the world. In this study we compared these two extraction procedures in respect of precision, accuracy, percent recovery of metabolites, number of metabolites isolated, time and cost in a resource constraint setup. We observed that the mean recovery from SPE was 84.1 % and by LLE it was 77.4 % (p value <0.05). Moreover, the average number of metabolites isolated by SPE and LLE was 161.8 ± 18.6 and 140.1 ± 20.4 respectively. The processing cost of LLE was economical. In a cost constraint setting using LLE may be the practical option if used for organic acid analysis.

  11. Rapid removal of nitrobenzene in a three-phase ozone loaded system with gas-liquid-liquid

    Science.gov (United States)

    Li, Shiyin; Zhu, Jiangpeng; Wang, Guoxiang; Ni, Lixiao; Zhang, Yong; Green, Christopher T.

    2015-01-01

    This study explores the removal rate of nitrobenzene (NB) using a new gas-liquid-liquid (G-L-L) three-phase ozone loaded system consisting of a gaseous ozone, an aqueous solvent phase, and a fluorinated solvent phase (perfluorodecalin, or FDC). The removal rate of NB was quantified in relation to six factors including 1) initial pH, 2) initial NB dosage, 3) gaseous ozone dosage, 4) free radical scavenger, 5) FDC pre-aerated gaseous ozone, and 6) reuse of FDC. The NB removal rate is positively affected by the first three factors. Compared with the conventional gas-liquid (water) (G-L) two-phase ozonation system, the free radical scavenger (tertiary butyl alcohol) has much less influence on the removal rate of NB in the G-L-L system. The FDC loaded ozone acts as an ozone reservoir and serves as the main reactive phase in the G-L-L three-phase system. The reuse of FDC has little influence on the removal rate of NB. These experimental results suggest that the oxidation efficiency of ozonation in the G-L-L three-phase system is better than that in the conventional G-L two-phase system.

  12. Solutes at the liquid:liquid phase boundary--Solubility and solvent conformational response alter interfacial microsolvation.

    Science.gov (United States)

    Ghadar, Yasaman; Parmar, Payal; Samuels, Alex C; Clark, Aurora E

    2015-03-14

    A detailed understanding of solvent structure and dynamics at liquid:liquid interfaces is a necessary precursor for control and manipulation of these phase boundaries. Experimentally, amphiphilic solutes are often used to alter transport properties across water:organic interfaces; however, a fundamental model for the mechanism of this action has not been determined. This work compares the solvation profiles of ampiphilic solutes that traverse the phase boundary in binary water:n-hexane, and the individual microsolvation processes for interfacial water and hexane molecules therein. Microsolvation is defined as the rare event where one solvent molecule temporarily penetrates the co-solvent phases and is fully solvated therein. The solutes tri-butyl phosphate (TBP), hydrogen di-butyl phosphate, and di-hydrogen mono-butyl phosphate have been examined as they exhibit a systematic increase in aqueous solubility and selectively partition to the interfacial region at the infinite dilution limit. The relationship between adopted configurations of the solute, orientation of the solvent, and the ability of the solute to enhance microsolvation, specifically the ability of n-hexane to penetrate the aqueous phase, is demonstrated within a 20 Å radius of TBP.

  13. Dual dispersive liquid-liquid microextraction for determination of phenylpropenes in oils by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Tsai, Chia-Ju; Li, Jih-Heng; Feng, Chia-Hsien

    2015-09-01

    A novel, simple and quick sample preparation method was developed and used for pre-concentration and extraction of six phenylpropenes, including anethole, estragole, eugenol, methyl eugenol, safrole and myristicin, from oil samples by dual dispersive liquid-liquid microextraction. Gas chromatography-mass spectrometry was used for determination and separation of compounds. Several experimental parameters affecting extraction efficiency were evaluated and optimized, including forward-extractant type and volume, surfactant type and concentration, water volume, and back-extractant type and volume. For all analytes (10-1000ng/mL), the limits of detection (S/N≧3) ranged from 1.0 to 3.0ng/mL; the limits of quantification (S/N≧10) ranged from 2.5 to 10.0ng/mL; and enrichment factors ranged from 3.2 to 37.1 times. Within-run and between-run relative standard deviations (n=6) were less than 2.61% and less than 4.33%, respectively. Linearity was excellent with determination coefficients (r(2)) above 0.9977. The experiments showed that the proposed method is a simple, effective, and environmentally friendly method of analyzing phenylpropenes in oil samples.

  14. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior silylation and gas chromatography.

    Science.gov (United States)

    González, Alba; Avivar, Jessica; Cerdà, Víctor

    2015-09-25

    A new procedure for the extraction, preconcentration and simultaneous determination of the estrogens most used in contraception pharmaceuticals (estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol), cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA), is proposed. The developed system performs an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (in-syringe-MSA-DLLME) prior derivatization and gas chromatography (GC-MS). Different extraction (carbon tetrachloride, ethyl acetate, chloroform and trichloroethylene) and disperser solvents (acetone, acetonitrile and methanol) were tested. Chloroform and acetone were chosen as extraction and disperser solvent, respectively, as they provided the best extraction efficiency. Then, a multivariate optimization of the extraction conditions was carried out. Derivatization conditions were also studied to ensure the conversion of the estrogens to their respective trimethylsilyl derivatives. Low LODs and LOQs were achieved, i.e. between 11 and 82ngL(-1), and 37 and 272ngL(-1), respectively. Good values for intra and inter-day precision were obtained (RSDs≤7.06% and RSD≤7.11%, respectively). The method was successfully applied to wastewater samples.

  15. An environmentally friendly method for the determination of triazine herbicides in estuarine seawater samples by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Rodríguez-González, N; Beceiro-González, E; González-Castro, M J; Muniategui-Lorenzo, S

    2015-01-01

    A fast, simple, sensitive and green chemistry method using dispersive liquid-liquid microextraction (DLLME) for the simultaneous determination of seven triazine herbicides (ametryn, atrazine, cyanazine, propazine, simazine, simetryn and terbuthylazine) in estuarine seawater samples has been developed. DLLME was carried out using a small volume of seawater (25 mL) and 300 μL of 1-octanol. Herbicide concentrations were determined by liquid chromatography-diode array detection, and results were confirmed by liquid chromatography-electrospray ionisation tandem spectrometry analysis. The analytical features of the proposed method were satisfactory with repeatability 0.999 for all the analytes except for simazine (0.9975). Limits of quantification ranged between 0.19 and 1.12 μg L(-1). The method was applied to the analysis of seawater samples from ten points susceptible to contamination by triazines from estuary of A Coruña (Galicia, NW of Spain). The levels of the seven triazines were below the LODs in the analysed samples. Use of proposed method will allow for monitoring of triazines at levels below the regulatory limits set by the European Directive 2008/105/EC of 2 and 4 μg L(-1) for atrazine and simazine, respectively.

  16. Detection of sulfonamide drug in urine using liquid-liquid extraction and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Markina, Natalia E.; Shalabay, Victoria V.; Zakharevich, Andrey M.; Markin, Alexey V.

    2016-04-01

    In this article we have applied liquid-liquid extraction (LLE) as a sample preparation technique for detection of sulfadimethoxine (one of sulfonamide drugs) in urine using surface-enhanced Raman spectroscopy (SERS). SERS substrate based on silver nanoparticles has been prepared by citrate reduction of silver nitrate. Obtained calibration curve (SERS intensity vs. sulfadimethoxine concentration) has been used for detection of sulfadimethoxine in human urine samples artificially contaminated by sulfadimethoxine. Three different solvents (ethyl acetate, diethyl ether, chloroform) have been used for LLE performance tests. Chloroform being found as the most effective one based on calculation of recoveries after SERS measurements. Thus we would like to propose fast (less than 20 minutes), simple and sensitive (detection limit up to 1 μg/ml) test for detecting sulfa drugs in urine using a combination of SERS with LLE with sample volume as low as 100 μL. Such test can be applied for evaluation of the degree of drug extraction from human body and half-life of such drug applied in the course of therapeutic treatments of certain diseases.

  17. Determination of fluoroquinolones in chicken feces - a new liquid-liquid extraction method combined with LC-MS/MS.

    Science.gov (United States)

    Janusch, Franziska; Scherz, Gesine; Mohring, Siegrun A I; Hamscher, Gerd

    2014-11-01

    The application of antibiotics including fluoroquinolones to farming animals is widespread and may lead to the development of antibiotic resistance and other environmental effects. To calculate environmental loads and for a proper risk assessment it is necessary to determine the antibiotic concentration in feces. Therefore, a new liquid-liquid extraction method combined with HPLC-MS/MS for the detection of marbofloxacin, ciprofloxacin, enrofloxacin and difloxacin in chicken feces was developed. Recoveries ranged from 51.0% to 83.5%. LOQs were between 0.10 and 1.09μg/kg. Feces of chickens treated with an enrofloxacin dosage of 10mg/kg bodyweight revealed maximum enrofloxacin and ciprofloxacin concentrations of 61.3 and 18.8mg/kg. Both antibiotics could be detected in feces up to two days after the last application in notable amounts (∼1mg/kg). Thus, feces of recently medicated chickens should not be used as a fertilizer without any further processing.

  18. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    Science.gov (United States)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  19. Rapid spectrophotometric determination of trace amounts of palladium in water samples after dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Rahnama Kozani, Reyhaneh; Mofid-Nakhaei, Jamshid; Jamali, Mohammad Reza

    2013-08-01

    A simple, rapid, and efficient dispersive liquid-liquid microextraction method, followed by UV-Vis spectrophotometry was developed for the preconcentration and determination of Pd ions in water samples. Pd ions react with α-furildioxime (chelating agent) to form a hydrophobic complex. Various parameters were altered to study and optimize their effects on the extraction efficiency, such as pH, ligand concentration, the type and volume of extraction and dispersive solvents, extraction time, and salt concentration. Under optimized conditions, the method exhibited an enrichment factor (C org/C aq) of 25 and recovery more than 98 % within a very short extraction time. The linearity of the method ranged from 10 to 200 μg L(-1). The limit of detection was 1.1 μg L(-1). The relative standard deviation for the concentration of 100 μg L(-1) of Pd was 2.3 % (n = 10). Finally, the developed method was successfully applied to the extraction and determination of Pd in tap, river, mineral, and sea water samples.

  20. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of six pyrethroids in river water.

    Science.gov (United States)

    Yan, Hongyuan; Liu, Baomi; Du, Jingjing; Yang, Gengliang; Row, Kyung Ho

    2010-08-06

    A simple ultrasound-assisted dispersive liquid-liquid microextraction method combined with liquid chromatography was developed for the preconcentration and determination of six pyrethroids in river water samples. The procedure was based on a ternary solvent system to formatting tiny droplets of extractant in sample solution by dissolving appropriate amounts of water-immiscible extractant (tetrachloromethane) in watermiscible dispersive solvent (acetone). Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvent, extraction time, ultrasonic time, and centrifuging time) were evaluated. Under the optimum condition, good linearity was obtained in a range of 0.00059-1.52 mg L(-1) for all analytes with the correlation coefficient (r(2))>0.999. Intra-assay and inter-assay precision evaluated as the relative standard deviation (RSD) were less than 3.4 and 8.9%. The recoveries of six pyrethroids at three spiked levels were in the range of 86.2-109.3% with RSD of less than 8.7%. The enrichment factors for the six pyrethroids were ranged from 767 to 1033 folds.

  1. Dispersive liquid-liquid microextraction combined with capillary electrophoresis and time-of-flight mass spectrometry for urine analysis.

    Science.gov (United States)

    Kohler, Isabelle; Schappler, Julie; Sierro, Tatiana; Rudaz, Serge

    2013-01-25

    The combination of dispersive liquid-liquid microextraction (DLLME) with capillary electrophoresis (CE) and a time-of-flight mass spectrometer (TOF-MS) was evaluated for the toxicological screening in urine samples. A methodology based on design of experiments (DOE) was implemented to increase the extraction efficiency. Dichloromethane and isopropanol were selected as the extraction and dispersing solvents, respectively. Seven factors for DLLME were screened with the help of a Plackett-Burmann DOE using two model compounds before fine investigation of the important parameters to maximise the compound extraction. These experiments were performed in the CE-UV configuration to overcome potential MS matrix effects. The performance of the entire procedure was then evaluated using CE-ESI-TOF-MS. With a preconcentration factor of more than 130, the highly sensitive DLLME-CE-ESI-TOF-MS method allowed for the detection of 30 toxicological compounds (i.e., amphetamines and their derivatives, opiates, cocaine and its metabolites and pharmaceuticals) in urine with limits of detection in the sub-ng/mL level and was used to analyse real toxicological samples. The combination of DLLME and CE was particularly attractive because of the small amount of organic solvents required.

  2. Dispersive liquid-liquid microextraction for four phenolic environmental estrogens in water samples followed by determination using capillary electrophoresis.

    Science.gov (United States)

    Liu, Junying; Lu, Wenhui; Liu, Huitao; Wu, Xiaqing; Li, Jinhua; Chen, Lingxin

    2016-10-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with CE was successfully developed for simultaneous determination of four types of phenolic environmental estrogens (PEEs), namely hexestrol (HS), bisphenol A (BPA), diethylstilbestrol (DES) and dienestrol (DS). Several parameters affecting DLLME and CE conditions were systematically investigated including the type and volume of extraction solvent and dispersive solvent, extraction time, salt, pH value, surfactant, buffer solution and so on. Under the optimal conditions, DLLME-CE exhibited strong enrichment ability, presenting high enrichment factors of 467, 241, 367 and 362 for HS, BPA, DES and DS, respectively, as well as low detection limits of 0.3, 0.6, 0.6 and 0.3 μg/L, respectively. Excellent linearity was achieved in the range of 2.0-150 μg/L for HS and DS, and 4.0-300 μg/L for BPA and DES, with correlation coefficients R>0.9983. Recoveries ranging from 70.4 to 108.1% were obtained with tap water, lake water and seawater samples spiked at three concentration levels and the relative standard deviations (RSDs, for n = 5) were 2.1-9.7%. This DLLME-CE method with high selectivity and sensitivity, high stability, simplicity, cost-effectiveness, eco-friendliness was proved potentially applicable for the rapid and simultaneous determination of PEEs in complicated water samples.

  3. In-syringe dispersive liquid-liquid microextraction with liquid chromatographic determination of synthetic pyrethroids in surface water

    Directory of Open Access Journals (Sweden)

    Saeed S. Albaseer

    2012-03-01

    Full Text Available An indigenously fabricated in laboratory glass syringe was used for in-syringe dispersive liquid-liquid microextraction (is-DLLME and preconcentration of synthetic pyrethroids (SPs from surface waters suitable for their determination by high performance liquid chromatography. In contrast to classical DLLME, is-DLLME allows the use of lighter-than-water organic solvents and the analysis of environmental contaminants’ samples without prior filtration, which is of great importance due to the high affinity of pyrethroids to adsorb to solid particulates present in environmental samples. The effects of various parameters on the extraction efficiency were evaluated and optimized systemically using one-factor-at-a-time method (OFAT and statistically using full factorial design (24. Three SPs (viz.; cypermethrin, resmethrin and permethrin were analyzed. The method showed good accuracy with RSD% in the range of of 4.8–6.9%. The method detection limits of the three pesticides ranged from 0.14 to 0.16 ng mL-1. The proposed method was applied for the determination of synthetic pyrethroids in lake water

  4. Rapid determination of trace thiabendazole in apple juice utilizing dispersive liquid-liquid microextraction combined with fluorescence spectrophotometry.

    Science.gov (United States)

    Li, Wei; Wang, Yuning; Huang, Limin; Wu, Ting; Hu, Huilian; Du, Yiping

    2015-09-01

    Food safety has become a large concern and prompts an urgent need for the development of rapid, simple and sensitive analytical methods that can monitor pesticide residues in foods. This study aimed to provide a method for quantitative determination of trace thiabendazole in apple juice. Due to its high sensitivity and selectivity, fluorescence spectrophotometry was utilized as a front end to dispersive liquid-liquid microextraction (DLLME). The experimental parameters that influenced the extraction were systematically investigated. Under optimum conditions, the whole procedure, including DLLME and analysis of one sample, was carried out within 5 min, and linearity was found in the 5-50 µg/L range with a correlation coefficient (r) of 0.9987. The limit of detection value was 2.2 µg/L. Good reproducibility was achieved based with a less than 4.5% relative standard deviation (RSD) for five replicates at different sample concentrations. This method was shown to be suitable for rapid and sensitive quantification of thiabendazole in apple juice.

  5. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingxiang, E-mail: zhouqx@cup.edu.cn [School of Chemistry and Environmental Sciences, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007 (China); State Laboratory of Petroleum Resource and Prospecting, College of Geosciences, China University of Petroleum Beijing, Beijing 102249 (China); Zhao, Na [State Laboratory of Petroleum Resource and Prospecting, College of Geosciences, China University of Petroleum Beijing, Beijing 102249 (China); Xie, Guohong [College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003 (China)

    2011-05-15

    This paper established a new, rapid and sensitive method for the determination of lead in water samples preconcentrated by dispersive liquid-liquid microextraction (DLLME) prior to atomic fluorescence spectrometry. Dithizone was used as the chelating agent. In the DLLME procedure, lead formed lead-dithizone complex and migrated into the carbon tetrachloride micro-droplets. Important factors that would affect the extraction efficiency had been investigated including the kind and volume of extraction solvent and dispersive solvent, sample pH, the amount of chelating agent, extraction time and centrifugation time. The results showed that the coexisting ions containing in water samples had no obvious negative effect on the determination of lead. The experimental results indicated that the proposed method had a good linear range of 0.01-100 ng mL{sup -1} (r{sup 2} = 0.9990). The precision was 2.12% (RSD, n = 7) and the detection limit was 0.95 ng L{sup -1}. Proposed method was validated with four real environmental samples and the results indicated that the proposed method was excellent for the future use and satisfied spiked recoveries were in the range of 92.9-97.4%.

  6. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Jafari, Mohammad T; Riahi, Farhad

    2014-05-23

    The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS.

  7. A new coupling of spectrophotometric determination with ultrasound-assisted emulsification dispersive liquid-liquid microextraction of trace silver

    Science.gov (United States)

    Wen, Xiaodong; Kong, Lamei; Chen, Meihui; Deng, Qingwen; Zhao, Xia; Guo, Jie

    2012-11-01

    In this work, a new coupling of spectrophotometric determination with preconcentration method named as ultrasound-assisted emulsification dispersive liquid-liquid microextraction (UAE-DLLME) for trace silver was firstly established. Disperser solvent in traditional DLLME was substituted by ultrasound-assisted emulsification, which could afford more effective emulsification and make the extraction method greener. The extraction was accomplished efficiently in only 3 min during ultrasound-assisted emulsification. Compared to traditional DLLME, the established pretreatment was simpler, greener and more effective. The UAE-DLLME technique was effectively coupled with ordinary spectrophotometer to improve the analytical performance and expand the application of spectrophotometric determination. The factors influencing UAE-DLLME, such as concentration of chelating agent, kind and volume of extractant, pH, conditions of phase separation, ultrasound extraction time and instrumental conditions, were studied in detail. Under the optimal conditions, the limit of detection (LOD) for silver was 0.45 μg L-1, with sensitivity enhancement factor (EF) of 35. The established method was applied to the determination of trace silver in real and certified reference samples with satisfactory analytical results.

  8. Sensitive determination of sertraline by capillary electrophoresis with dispersive liquid-liquid microextraction and field-amplified sample stacking.

    Science.gov (United States)

    Huang, Shiou-Wen; Hsieh, Ming-Mu; Chang, Sarah Y

    2012-11-15

    A novel method for the determination of sertraline using dispersive liquid-liquid microextraction (DLLME) coupled with capillary electrophoresis (CE) was developed. Acetone and dichloromethane were used as the disperser solvent and extraction solvent, respectively. A mixture of the extraction and disperser solvents was rapidly injected into a 1.0 mL aqueous sample to form a cloudy solution. After the extraction, sertraline was analyzed using CE that was equipped with UV detection. A 74-fold improvement in the sensitivity was observed when DLLME was used to extract sertraline. Since the DLLME extract residue was redissolved with 5 μL of water that contained 20% methanol, the detection sensitivity was further enhanced through the use of field-amplified sample stacking (FASS). A 11-fold improvement in the sensitivity was obtained when FASS was used to on-line concentrate sertraline. Under optimal extraction and stacking conditions, the calibration curve, which ranged from 0.01 to 1 μM was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 2.5 nM for sertraline. An approximately 814-fold improvement in the sensitivity was observed for sertraline compare with injection of standard solution without the DLLME and FASS procedures. This developed method was successfully applied to the determination of sertraline in human urine samples.

  9. Analysis of chlorpheniramine in human urine samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Mehdi Maham

    2014-09-01

    Full Text Available A simple and environmentally friendly microextraction technique was used for determination of chlorpheniramine (CPM, an antihistamine drug, in human urine samples using dispersive liquid-liquid microextraction (DLLME followed by high performance liquid chromatography with diode array detection (HPLC-DAD. In this extraction technique, an appropriate mixture of acetonitrile (disperser solvent and carbon tetrachloride (extraction solvent was rapidly injected into the urine sample containing the target analyte. Tiny droplets of extractant were formed and dispersed into the sample solution and then sedimented at the bottom of the conical test tube by centrifugation. Under optimal conditions, the calibration curve was linear in the range of 0.055-5.5 µg mL-1, with a detection limit of 16.5 ng mL-1. This proposed method was successfully applied to the analysis of real urine samples. Low consumption of toxic organic solvents, simplicity of operation, low cost and acceptable figures of merit are the main advantages of the proposed technique.

  10. Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water

    Energy Technology Data Exchange (ETDEWEB)

    Machado Goulart, Simone; Domingos Alves, Renata; Neves, Antonio Augusto; Queiroz, Jose Humberto de; Conde de Assis, Tamires [Departamento de Quimica, Universidade Federal de Vicosa, Vila Gianetti, Casa 24, 36 570-000 Vicosa, MG (Brazil); Queiroz, Maria Eliana L.R. de, E-mail: meliana@ufv.br [Departamento de Quimica, Universidade Federal de Vicosa, Vila Gianetti, Casa 24, 36 570-000 Vicosa, MG (Brazil)

    2010-06-25

    Using a 2{sup 3} experimental design, liquid-liquid extraction with low temperature partitioning (LLE-LTP) was optimized and validated for analysis of three carbamates (aldicarb, carbofuran and carbaryl) in water samples. In this method, 2.0 mL of sample is placed in contact with 4.0 mL of acetonitrile. After agitation, the sample is placed in a freezer for 3 h for phase separation. The organic extract is analyzed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). For validation of the technique, the following figures of merit were evaluated: accuracy, precision, detection and quantification limits, linearity, sensibility and selectivity. Extraction recovery percentages of the carbamates aldicarb, carbofuran and carbaryl were 90%, 95% and 96%, respectively. Even though extremely low volumes of sample and solvent were used, the extraction method was selective and the detection and quantification limits were between 5.0 and 10.0 {mu}g L{sup -1}, and 17.0 and 33.0 {mu}g L{sup -1}, respectively.

  11. Analysis of amphetamines in urine with liquid-liquid extraction by capillary electrophoresis with simultaneous electrochemical and electrochemiluminescence detection.

    Science.gov (United States)

    Sun, Jinying; Xu, Xiaoyu; Wang, Chunyan; You, Tianyan

    2008-10-01

    Amphetamines including methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine were separated and detected by CE using simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection (CE-EC/ECL). Factors that influenced the separation and detection performance, such as the detection potential, the pH value and concentration of the running buffer, the separation voltage and the pH of the detection buffer, were investigated. LODs of 3.3x10(-8) mol/L (0.16 fmol), 1.6x10(-7) mol/L (0.78 fmol) and 3.3x10(-8) mol/L (0.16 fmol) were obtained for methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine, respectively. For practical application, a liquid-liquid extraction with ethyl acetate procedure was developed for urine sample pretreatment and extraction efficiencies higher than 90% were obtained. The established simultaneous CE-EC/ECL was successfully applied for urine sample analysis.

  12. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    Science.gov (United States)

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-07-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity.

  13. Liquid-liquid extraction procedure exploiting multicommutation in flow system for the determination of molybdenum in plants

    Energy Technology Data Exchange (ETDEWEB)

    Comitre, Ana Lucia D.; Reis, Boaventura F

    2003-03-10

    A liquid-liquid extraction flow analysis procedure for the spectrophotometric determination of molybdenum in plants at {mu}g l{sup -1} level is described. The flow network comprised a set of solenoid valves assembled to implement the multicommutation approach under microcomputer control. Radiation source (LED, 475 nm), detector (photodiode) and separation chamber were nested together with the flow cell comprising a compact unit. The consumption of reagents (potassium thiocyanate and stannous chloride) and also extracting solvent (isoamyl alcohol) were optimized to 32 mg and 200 {mu}l per determination, respectively. Accuracy was assessed by comparing results with those obtained with ICP-OES and no significant difference at 95% confidence level was observed. Other favorable characteristics such as a linear response ranging from 25 to 150 {mu}g l{sup -1} molybdenum (r=0.999); detection limit of 4.6 {mu}g l{sup -1} sample throughput of 25 determinations per hour and relative standard deviation of 2.5% (n=10) were also achieved.

  14. Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Mir Ali [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: farajzade@yahoo.com; Bahram, Morteza [Department of Chemistry, Faculty of Science, Urmia University, Urmia (Iran, Islamic Republic of); Zorita, Saioa [Department of Analytical Chemistry, University of Lund, P.O. Box 124, 221 00 Lund (Sweden); Mehr, Behzad Ghorbani [Department of Chemistry, Faculty of Science, Urmia University, Urmia (Iran, Islamic Republic of)

    2009-01-30

    In this study a homogeneous liquid-liquid extraction based on the Ph-dependent phase-separation process was investigated using a ternary solvent system (water-acetic acid-chloroform) for the preconcentration of Cu{sup 2+} ions. 8-Hydroxy quinoline was used as the chelating agent prior to its extraction. Flame atomic absorption spectrophotometry using acetylene-air flame was used for the quantitation of analyte after preconcentration. The effect of various experimental parameters in extraction step was investigated using two optimization methods, one variable at a time and central composite design. The experimental design was done at five levels of operating parameters. Nearly the same optimized results were obtained using both methods: sample size, 5 mL; volume of NaOH 10 M, 2 mL; chloroform volume, 300 {mu}L; 8-hydroxy quinoline concentration more than 0.01 M and salt amount did not affect the extraction significantly. Under the optimum conditions the calibration graph was linear over the range 10-2000 {mu}g L{sup -1}. The relative standard deviation was 7.6% for six repeated determinations (C = 500 {mu}g L{sup -1}). Furthermore, the limit of detection (S/N = 3) and limit of quantification (S/N = 10) of the method were obtained as 1.74 and 6 {mu}g L{sup -1}, respectively.

  15. Ionic liquid-based dispersive liquid-liquid microextraction for the determination of formaldehyde in wastewaters and detergents.

    Science.gov (United States)

    Arvand, Majid; Bozorgzadeh, Elahe; Shariati, Shahab; Zanjanchi, Mohammad Ali

    2012-12-01

    Spectrophotometry in combination with ionic liquid-based dispersive liquid-liquid microextraction (DLLME) was applied for the extraction and determination of formaldehyde in real samples. The method is based on the reaction of formaldehyde with methyl acetoacetate in the presence of ammonia. The variation in the absorbance of the reaction product was measured at 375 nm. An appropriate mixture of ethanol (disperser solvent) and ionic liquid, 1-hexyl-3-methylimidazoliumhexafluoro-phosphate [C(6)MIM][PF(6)] (extraction solvent) was rapidly injected into a water sample containing formaldehyde. After extraction, sedimented phase was analyzed by spectrophotometry. Under the optimum conditions, the calibration graph was linear in the range of 0.1-20 ng mL(-1) with the detection limit of 0.02 ng mL(-1) and limit of quantification of 0.08 ng mL(-1) for formaldehyde. The relative standard deviation (RSD%, n = 5) for the extraction and determination of 0.8 ng mL(-1) of formaldehyde in the aqueous samples was 2.5%. The results showed that DLLME is a very simple, rapid, sensitive, and efficient analytical method for the determination of trace amounts of formaldehyde in wastewaters and detergents, and suitable results were obtained.

  16. Vortex-assisted liquid-liquid microextraction coupled with derivatization for the fluorometric determination of aliphatic amines.

    Science.gov (United States)

    Chang, Wei-Yao; Wang, Chin-Yi; Jan, Jeng-Lyan; Lo, Yu-Shiu; Wu, Chien-Hou

    2012-07-27

    A new one-step derivatization and microextraction technique was developed for the fluorometric determination of C(1)-C(8) linear aliphatic primary amines in complex sample solutions containing high levels of amino acids. In this method, amines were derivatized with o-phthalaldehyde (OPA) and 2-mercaptoethanol (2-ME) in aqueous solution and extracted simultaneously by vortex-assisted liquid-liquid microextraction (VALLME). Parameters affecting the extraction efficiency were investigated in detail. The optimum conditions were as follows: 50 μL of isooctane as the extractant phase; 2.0 mL aqueous donor samples with 12 mM OPA, 24 mM 2-ME, and 0.1 M borate buffer at pH 10; 1 min vortex extraction time; centrifugation for 4 min at 6000 rpm. After centrifugation, the enriched analytes in the floated extractant phase were determined by HPLC-FL in less than 14 min. Under the optimum conditions, the limits of detection were of the order of 0.09-0.31 nM. The calibration curves showed good linearity over the investigated concentration range between 0.4 and 40 nM. The proposed method has been applied to the determination of aliphatic amines in acidophilus milk, beer, and Cu(II)/amino acid solution.

  17. Determination of parabens in beverage samples by dispersive liquid-liquid microextraction based on solidification of floating organic droplet.

    Science.gov (United States)

    Hou, Fang; Deng, Xiaoying; Jiang, Xinyu; Yu, Jingang

    2014-01-01

    A simple and efficient method for dispersive liquid-liquid microextraction of methylparaben, ethylparaben, propylparaben and butylparaben in real beverage samples was developed. It is making use of solidified floating organic droplets of 1-dodecanol which has low density and a proper melting point. Parameters influencing the extraction efficiency, such as the type of extraction and dispersive solvent, the volume of extraction and dispersive solvent, salt effect, pH, extraction time, were optimized and resulted in enrichment factors (EFs) of 84 for methylparaben, 103 for ethylparaben, 115 for propylparaben and 126 for butylparaben. The limits of detection for parabens were 1.52, 1.06, 0.32 and 0.17 ng/mL, respectively. Excellent linearity with coefficients of correlation from 0.9970 to 0.9997 was observed in the concentration range of 5-1,000 ng/mL. The repeatability of the proposed method expressed as relative standard deviations (RSDs) ranged from 2.54 to 3.89% (n = 5). The relative recoveries for parabens in beverage samples were good and in the ranges of 89.8-109.9, 90.2-107.3, 90.9-101.7 and 92.3-118.1%, respectively. Thus, the proposed method has excellent potential for the determination of parabens in beverage samples.

  18. Analysis of captan, folpet, and captafol in apples by dispersive liquid-liquid microextraction combined with gas chromatography.

    Science.gov (United States)

    Zang, Xiaohuan; Wang, Juntao; Wang, Ou; Wang, Mingzhao; Ma, Jingjun; Xi, Guohong; Wang, Zhi

    2008-10-01

    A novel method was developed for the determination of captan, folpet, and captafol in apples by dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-electron capture detection (GC-ECD). Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, and addition of salt, were studied and optimized to obtain the best extraction results. Under the optimum conditions, high enrichment factors for the compounds were achieved ranging from 824 to 912. The recoveries of fungicides in apples at spiking levels of 20.0 microg kg(-1) and 70.0 microg kg(-1) were 93.0-109.5% and 95.4-107.7%, respectively. The relative standard deviations (RSDs) for the apple samples at 30.0 microg kg(-1) of each fungicide were in the range from 3.8 to 4.9%. The limits of detection were between 3.0 and 8.0 microg kg(-1). The linearity of the method ranged from 10 to 100 microg kg(-1) for the three fungicides, with correlation coefficients (r (2)) varying from 0.9982 to 0.9997. The obtained results show that the DLLME combined with GC-ECD can satisfy the requirements for the determination of fungicides in apple samples.

  19. Optimization and Application of Liquid Chromatography Determination of Dispersive Liquid-liquid Microextraction Purified Astaxanthin in Shrimp Waste

    Institute of Scientific and Technical Information of China (English)

    ZHU Tao; ROW Kyung-ho

    2013-01-01

    A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized,and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shrimp waste.The eluent(methanol) from MISPE was used as the dispersive solvent in subsequent DLLME for further purifying and enriching the analyte prior to high-performance liquid chromatography(HPLC) analysis.The mobile phase was methanol-acetonitrile-water-dichloromethane(85:5:5:5,volume ratio),flow rate was 0.7 mL/min and UV wavelength was 476 nm.Under optimal conditions,good linearity was obtained in a range of 0.2-200.0 μg/mL(r2=0.9998) with a limit of detection(LOD) of 0.08 μg/mL,and the extraction recoveries at three spiked levels ranged from 88.3%-92.5% with a relative standard deviation(RSD) less than 4.3%.Moreover,the mean contents of astaxanthin in the three batches of shrimp waste were 95.9,85.4 and 77.2 μg/g,respectively.This method combining the advantages of MISPE and DLLME results in high selectivity and low cost,which was applied to determining the astaxanthin level in shrimp waste samples.

  20. Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Anthemidis, Aristidis N.; Ioannou, Kallirroy-Ioanna G. [Aristotle University, Laboratory of Analytical Chemistry, Department of Chemistry, Thessaloniki (Greece)

    2012-08-15

    A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF{sub 6}]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr{sub 4} {sup -} complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 {mu}g L{sup -1} and a precision (RSD) of 2.7% at 20.0 {mu}g L{sup -1} Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications. (orig.)

  1. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Teslima Daşbaşı

    2016-01-01

    Full Text Available A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4- complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040–1.00 mg L−1 with detection limit of 4.0 μg L−1 (n=13. The precision as relative standard deviation was 3% (n=11, 0.20 mg L−1 and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water.

  2. Characterization of biomaterials polar interactions in physiological conditions using liquid-liquid contact angle measurements: relation to fibronectin adsorption.

    Science.gov (United States)

    Velzenberger, Elodie; El Kirat, Karim; Legeay, Gilbert; Nagel, Marie-Danielle; Pezron, Isabelle

    2009-02-01

    Wettability of biomaterials surfaces and protein-coated substrates is generally characterized with the sessile drop technique using polar and apolar liquids. This procedure is often performed in air, which does not reflect the physiological conditions. In this study, liquid/liquid contact angle measurements were carried out to be closer to cell culture conditions. This technique allowed us to evaluate the polar contribution to the work of adhesion between an aqueous medium and four selected biomaterials widely used in tissue culture applications: bacteriological grade polystyrene (PS), tissue culture polystyrene (tPS), poly(2-hydroxyethyl methacrylate) film (PolyHEMA), and hydroxypropylmethylcellulose-carboxymethylcellulose bi-layered Petri dish (CEL). The contributions of polar interactions were also estimated on the same biomaterials after fibronectin (Fn) adsorption. The quantity of Fn adsorbed on PS, tPS, PolyHEMA and CEL surfaces was evaluated by using the fluorescein-labeled protein. PolyHEMA and CEL were found to be hydrophilic, tPS was moderately hydrophilic and PS was highly hydrophobic. After Fn adsorption on PS and tPS, a significant increase of the surface polar interaction was observed. On PolyHEMA and CEL, no significant adsorption of Fn was detected and the polar interactions remained unchanged. Finally, an inverse correlation between the polarity of the surfaces and the quantity of adsorbed Fn was established.

  3. Low cost methodology for estrogens monitoring in water samples using dispersive liquid-liquid microextraction and HPLC with fluorescence detection.

    Science.gov (United States)

    Lima, Diana L D; Silva, Carla Patrícia; Otero, Marta; Esteves, Valdemar I

    2013-10-15

    A new low cost methodology for estrogens' analysis in water samples was developed in this work. Based on dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection, the developed method is fast, cheap, easy-to-use, uses low volumes of organic solvents and has the possibility of a large number of samples to be extracted in parallel. Under optimum conditions (sample volume: 8 mL; extraction solvent: 200 μL of chlorobenzene; dispersive solvent: 2000 μL of acetone), the enrichment factor and extraction recoveries were 145 and 72% for 17β-estradiol (E2) and 178 and 89% for 17α-ethinylestradiol (EE2), respectively. Limits of detection of 2.0 ng L(-1) for E2 and 6.5 ng L(-1) for EE2 were achieved, allowing the detection and quantification of these compounds in surface and waste water samples with concentrations from 12 to 32 ng L(-1) for E2 and from 11 to 18 ng L(-1) for EE2. Also, recovery tests were performed to evaluate possible matrix effects. Recoveries between 98% and 106% were obtained using humic acids (HA) to simulate the effect of organic matter, and between 86% and 120% in real water samples.

  4. Simplified recovery process of Ralstonia solanacearum-synthesized polyhydroxyalkanoates via chemical extraction complemented by liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    Karine L. Macagnan

    Full Text Available Poly (3-hydroxybutyrate (P(3HB is the most studied thermoplastic biopolymer belonging to the polyhydroxyalkanoate (PHA family, the main features of which include rapid biodegradability and biocompatibility. The bioplastic recovery process is an important step during production and can directly influence the characteristics of PHAs. However, more efficient methods for the production of P(3HB are necessary to make it economically viable. The aim of the present study was to improve the standard, chloroform-based, extraction step for the recovery of P(3HB. The polymer was produced using a Ralstonia solanacearum strain. The following parameters were improved in the recovery process: heating time, separation method (filtration or liquid-liquid phase separation, biomass state (fresh or dry cell concentrate and the solvent:biomass ratio. By improving the chemical extraction of P(3HB we recovered 98% of the cumulative polymer and reduced the heating time by 75%. Furthermore, we improved the separation process and developed an extraction solution that was faster and more economical.

  5. Radiometric Determination of Uranium in Natural Waters after Enrichment and Separation by Cation-Exchange and Liquid-Liquid Extraction

    CERN Document Server

    Pashalidis, I

    2003-01-01

    The alpha-radiometric determination of uranium after its pre-concentration from natural water samples using the cation-exchange resin Chelex-100, its selective extraction by tributylphosphate and electrodeposition on stainless steel discs is reported. The validity of the separation procedure and the chemical recoveries were checked by addition of uranium standard solution as well as by tracing with U-232. The average uranium yield was determined to be (97 +- 2) % for the cation-exchange, (95 +- 2) % for the liquid-liquid extraction, and more than 99% for the electrodeposition. Employing high-resolution alpha-spectroscopy, the measured activity of the U-238 and U-234 radioisotopes was found to be of similar magnitude; i.e. ~7 mBq/L and ~35 mBq/L for ground- and seawater samples, respectively. The energy resolution (FWHM) of the alpha-peaks was 22 keV, while the Minimum Detectable Activity (MDA) was estimated to be 1 mBq/L (at the 95% confidence limit).

  6. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water.

    Science.gov (United States)

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-10-27

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, T(g) . Here we report a universal water-content, X(aqu) , dependence of T(g) for aqueous solutions. Solutions with X(aqu)>X(cr)(aqu)vitrify/devitrify at a constant temperature, ~T(g) , referring to freeze-concentrated phase with X(aqu)left behind ice crystallization. Those solutions with X(aqu)recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of T(g) by annealing is attributable to freeze-concentrated phase of solutions instead of 'liquid II phase of water'. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution.

  7. Temperature-Induced Liquid-Liquid Transition in Metallic Melts: A Brief Review on the New Physical Phenomenon

    Directory of Open Access Journals (Sweden)

    Fang-Qiu Zu

    2015-03-01

    Full Text Available Understanding the nature of liquid structures and properties remains an open problem for many fundamental and applied fields. It is well known that there is no other defined phase line above liquidus (TL in phase diagrams of ordinary alloys. However, via resorts of internal friction, electric resistivity, thermal analysis, X-ray diffraction, solidification, etc., the results of our research on lots of single- and multiple-component melts show a novel physical image: temperature induced liquid-liquid structure transition (TI-LLST can occur above TL. Moreover, the solidification behaviors and structures out of the melts that experienced TI-LLST are distinct from those out of the melts before TI-LLST. In this paper, some typical examples of TI-LLST and characteristic aspects of the TI-LLST are briefly reviewed, in which the main contents are limited in our own achievements, although other groups have also observed similar phenomena using different methods. In the sense of phenomenology, TI-LLST reported here is quite different from other recognized liquid transitions, i.e., there are only a few convincing cases of liquid P, Si, C, H2O, Al2O3-Y2O3, etc. in which the transition occurs, either induced by pressure or at a supercooled state and near liquidus.

  8. Liquid-Liquid Equilibrium for 1-Butanol-Water-KF and 1-Butanol-Water-K2CO3 Systems

    Institute of Scientific and Technical Information of China (English)

    XU Wen-you; JI Min

    2005-01-01

    KF or K2CO3 was added into the 1-butanol-water system and two phases were formed: water-rich phase (water phase) and 1-butanol-rich phase (1-butanol phase). The liquid-liquid equilibrium (LLE) data for 1-butanol-water-KF and 1-butanol-water-K2 CO3 systems were measured at 25 C and showed that 1-butanol phase contained negligible salt and water phase contained negligible 1-butanol when the concentrations of KF and K2CO3 in the water phase were equal to or higher than 27. 11% and 31. 68%, respectively. Thus water could be separated efficiently from 1-butanol-water by adding KF or K2CO3 into the system. A theoretical calculation of LLE data was calculated by using the Pitzer theory to get water activity in the water phase, and by the models, such as the Wilson, NRTL or the UNIQUAC for the 1-butanol phase.For 1-butanol-water-KF system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and Wilson equation, while for 1-butanol-water-K2CO3 system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and UNIQUAC equation.

  9. A novel vortex-assisted liquid-liquid microextraction approach using auxiliary solvent: Determination of iodide in mineral water samples.

    Science.gov (United States)

    Zaruba, Serhii; Vishnikin, Andriy B; Andruch, Vasil

    2016-01-01

    A novel vortex-assisted liquid-liquid microextraction (VA-LLME) for determination of iodide was developed. The method includes the oxidation of iodide with iodate in the presence of hydrochloric acid followed by VA-LLME of the ion-pair formed between ICl2(-) and Astra Phloxine reagent (AP) and subsequent absorbance measurement at 555nm. The appropriate experimental conditions were investigated and found to be: 5mL of sample, 0.27molL(-)(1) HCl, 0.027mmolL(-1) KIO3 as the oxidation agent, 250μL of extraction mixture containing amyl acetate as the extraction solvent and carbon tetrachloride as the auxiliary solvent (1:1, v/v), 0.04mmolL(-1) AP reagent, vortex time: 20s at 3000rpm, centrifugation: 4min at 3000rpm. The calibration plot was linear in the range 16.9-169μg L(-1) of iodide, with a correlation coefficient (R(2)) of 0.996, and the relative standard deviation ranged from 1.9 to 5.7%. The limit of detection (LOD) and limit of quantification (LOQ) were 1.75 and 6.01μgL(-)(1) of iodide, respectively. The suggested procedure was applied for determination of iodide in real mineral water samples.

  10. High Cr white cast iron/carbon steel bimetal liner by lost foam casting with liquid-liquid composite process

    Directory of Open Access Journals (Sweden)

    Xiao Xiaofeng

    2012-05-01

    Full Text Available Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness > 61 HRC, fracture toughness αk >16.5 J·cm-2 and bending strength >1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.

  11. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid-liquid extraction.

    Science.gov (United States)

    Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel; Brassier, Judit; Alcalà, Manel; Blanco, Marcelo

    2015-03-06

    We developed and evaluated two different strategies for determining abuse drugs based on (i) the analysis of saliva by ion mobility spectrometry (IMS) after thermal desorption and (ii) the joint use of IMS and infrared (IR) spectroscopy after liquid-liquid microextraction (LLME) to enable the sensitivity-enhanced detection and double confirmation of ecstasy (MDMA) abuse. Both strategies proved effective for the intended purpose. Analysing saliva by IMS after thermal desorption, which provides a limit of detection (LOD) of 160μgL(-1), requires adding 0.2M acetic acid to the sample and using the truncated negative second derivative of the ion mobility spectrum. The joint use of IMS and IR spectroscopy after LLME provides an LOD of 11μgL(-1) with the former technique and 800μgL(-1) with the latter, in addition to a limit of confirmation (LOC) of 1.5mgL(-1). Using IMS after thermal desorption simplifies the operational procedure, and using it jointly with IR spectroscopy after LLME allows double confirmation of MDMA abuse with two techniques based on different principles (viz., IMS drift times and IR spectra). Also, it affords on-site analyses, albeit at a lower throughput.

  12. (Liquid + liquid) equilibria of (water + linalool + limonene) ternary system at T = (298.15, 308.15, and 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Gramajo de Doz, Monica B. [Departamento de Fisica, Facultad de Ciencias Exactas y Tecnologia, Universidad Nacional de Tucuman, Avenida Independencia 1800, 4000 Tucuman (Argentina)], E-mail: mgramajo@herrera.unt.edu.ar; Cases, Alicia M.; Solimo, Horacio N. [Departamento de Fisica, Facultad de Ciencias Exactas y Tecnologia, Universidad Nacional de Tucuman, Avenida Independencia 1800, 4000 Tucuman (Argentina)

    2008-11-15

    (Liquid + liquid) equilibrium (LLE) data for {l_brace}water (1) + linalool (2) + limonene (3){r_brace} ternary system at T = (298.15, 308.15, and 318.15 {+-} 0.05) K are reported. The organic chemicals were quantified by gas chromatography using a flame ionisation detector while water was quantified using a thermal conductivity detector. The effect of the temperature on (liquid + liquid) equilibrium is determined and discussed. Experimental data for the ternary mixture are compared with values calculated by the NRTL and UNIQUAC equations, and predicted by means of the UNIFAC group contribution method. It is found that the UNIQUAC and NRTL models provide a good correlation of the solubility curve at these three temperatures, while comparing the calculated values with the experimental ones, the best fit is obtained with the NRTL model. Finally, the UNIFAC model provides poor results, since it predicts a greater heterogeneous region than experimentally observed.

  13. Measurement and Correlation of Liquid-Liquid Equilibrium Data for Ethanol-Water-KF and Ethanol-Water-K2CO3 Systems

    Institute of Scientific and Technical Information of China (English)

    许文友; 袁希纲

    2002-01-01

    The liquid-liquid equilibrium data for two ternary systems, ethanol-water-KF and ethanol- water-K2CO3, were determined at 25oC. Experiments show that by adding KF or K2CO3 into the ethanol-water system two phases are formed: an ethanol-rich phase with negligible salt and a water-rich phase with negligible ethanol, thus water can be separated out easily. A mathematical calculation of the liquid-liquid equilibrium data was carried out with the Pitzer theory on water activity in the aqueous phase, and with the Wilson or NRTL or UNIQUAC equations for that in the ethanol phase, which is in good agreement with experimental data.

  14. Complex Formation in a Liquid-Liquid Extraction System Containing Co(II), 4-(2-Thiazolylazo)resorcinol and Monotetrazolium Salt.

    Science.gov (United States)

    Divarova, Vidka; Stojnova, Kirila; Racheva, Petya; Lekova, Vanya

    2016-01-01

    The ion-associated complex formed between anionic chelate of Co(II)-4-(2-Thiazolylazo)resorcinol (TAR) with the monotetrazolium cation of 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT) in the liquid-liquid extraction system Co(II)-TAR-INT-H(2)O-CHCl(3) was studied by the spectrophotometric method. The optimum extraction conditions of Co(II) were found. The extraction equilibria were studied. The equilibrium constants, the recovery factor and some analytical characteristics were calculated. The validity of Beer's law was checked. The molar ratio of the components in the ternary ion-associated complex Co(II)-TAR-INT was determined. The general formula of the complex was suggested. The effect of various foreign ions and reagents on the process of complex formation in the liquid-liquid extraction system was studied.

  15. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  16. Mapping Liquid-liquid protein phase separation using ultra-fast-scanning fluorescence correlation spectroscopy

    Science.gov (United States)

    Wei, Ming-Tzo; Elbaum-Garfinkle, Shana; Arnold, Craig B.; Priestley, Rodney D.; Brangwynne, Clifford P.

    Intrinsically disordered proteins (IDPs) are an understudied class of proteins that play important roles in a wide variety of biological processes in cells. We've previously shown that the C. elegans IDP LAF-1 phase separates into P granule-like droplets in vitro. However, the physics of the condensed phase remains poorly understood. Here, we use a novel technique, ultra-fast-scanning fluorescence correlation spectroscopy, to study the nano-scale rheological properties of LAF-1 droplets. Ultra-fast-scanning FCS uses a tunable acoustic gradient index of refraction (TAG) lens with an oil immersion objective to control axial movement of the focal point over a length of several micrometers at frequencies of 70kHz. Using ultra-fast-scanning FCS allows for the accurate determination of molecular concentrations and their diffusion coefficient, when the particle is passing through an excitation volume. Our work reveals an asymmetric LAF-1 phase diagram, and demonstrates that LAF-1 droplets are purely viscous phases which are highly tunable by salt concentration.

  17. Preconcentration of Copper Using 1,5-Diphenyl Carbazide as the Complexing Agent via Dispersive Liquid-Liquid Microextraction and Determination by Flame Atomic Absorption Spectrometry

    OpenAIRE

    Reyhaneh Rahnama; Elaheh Shafiei; Mohammad Reza Jamali

    2013-01-01

    We report a simple and sensitive microextraction system for the preconcentration and determination of Cu (II) by flame atomic absorption spectrometry (FAAS). Dispersive liquid-liquid microextraction is a modified solvent extraction method and its acceptor-to-donor phase ratio is greatly reduced compared with other methods. In the proposed approach, 1,5-diphenyl carbazide (DPC) was used as a copper ion selective complexing agent. Several variables such as the extraction and dispersive solvent ...

  18. Screening and quantitative determination of twelve acidic and neutral pharmaceuticals in whole blood by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Steentoft, Anni; Buck, Maike

    2010-01-01

    . The method was fully validated for salicylic acid, paracetamol, phenobarbital, carisoprodol, meprobamate, topiramate, etodolac, chlorzoxazone, furosemide, ibuprofen, warfarin, and salicylamide. The method also tentatively includes thiopental, theophylline, piroxicam, naproxen, diclophenac, and modafinil......We describe a multi-method for simultaneous identification and quantification of 12 acidic and neutral compounds in whole blood. The method involves a simple liquid-liquid extraction, and the identification and quantification are performed using liquid chromatography-tandem mass spectrometry...

  19. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    Science.gov (United States)

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples.

  20. Evidence of contact epitaxy in the self-assembly of HgSe nanocrystals formed at a liquid-liquid interface.

    Science.gov (United States)

    Maiti, Santanu; Sanyal, Milan K; Jana, Manoj K; Runge, Benjamin; Murphy, Bridget M; Biswas, Kanishka; Rao, C N R

    2017-03-08

    The grazing incidence x-ray scattering results presented here show that the self-assembly process of HgSe nanocrystals formed at a liquid-liquid interface is quite different along the in-plane direction and across the interface. In situ x-ray reflectivity and ex situ microscopy measurements suggest quantized out-of-plane growth for HgSe nanoparticles of a size of about [Formula: see text] nm initially. Grazing incidence small-angle x-ray scattering measurements for films transferred from the water-toluene interface at various stages of reaction show that these nanoparticles first form random clusters with an average radius of 2.2 nm, giving rise to equally spaced rings of several orders. Finally, these clusters self-organize into face-centered cubic superstructures, giving sharp x-ray diffraction peaks oriented normal to the liquid-liquid interface with more than 100 nm-coherent domains. We also observed the x-ray diffraction pattern of the HgSe crystalline phase, with the superlattice peaks in these grazing incidence measurements of the transferred films. The electron microscopy and atomic force microscopy results support the x-ray observation of the self-organization of HgSe nanocrystals into close-packed superlattices. These results show that capillary wave fluctuation promotes the oriented attachment of clusters at the liquid-liquid interface, giving direct experimental evidence of contact epitaxy.

  1. The micro-flow reaction system featured the liquid-liquid interface created with ternary mixed carrier solvents in a capillary tube.

    Science.gov (United States)

    Masuhara, Yuji; Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2012-01-01

    A micro-flow reaction system was developed in which liquid-liquid interface was created based on the tube radial distribution of ternary mixed carrier solvents. The system was constructed from double capillary tubes having different inner diameters (100 and 250 µm i.d.). The smaller tube was inserted into the larger one through a T-type joint. The reaction of a protein with a fluorescence derivatizing reagent was adopted as a model. A water-acetonitrile mixture (3:1 volume ratio) including bovine serum albumin (hydrophilic) was delivered into the large tube from the inside through the small tube and an acetonitrile-ethyl acetate mixture (7:4 volume ratio) containing fluorescamine (hydrophobic) as a derivatizing reagent was delivered from the outside through the joint. Solutions were mixed through the double capillary tubes to promote ternary mixed carrier solvents (water-acetonitrile-ethyl acetate; 1:2:1 volume ratio). The liquid-liquid interface was created based on the tube radial distribution of ternary solvents in the larger tube. The derivatization reaction was performed in the larger, or reaction, tube in the micro-flow system. The fluorescence intensity of the fluorescamine-derivatized bovine serum albumin obtained by the system, which specifically included the kinetic liquid-liquid interface in the tube, was greater than that obtained through a batch reaction using a homogeneous solution of water-acetonitrile (1:2 volume ratio).

  2. Evaluation of molecularly imprinted anion-functionalized poly(ionic liquid)s by multi-phase dispersive extraction of flavonoids from plant.

    Science.gov (United States)

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2013-01-15

    Molecularly imprinted anion-functionalized poly(ionic liquid)s (MAPILs) were prepared by radical polymerization for the multi-phase dispersive extraction (MPDE) of flavonoids from plants. Poly(ionic liquid)s were functionalized with different anions via anion metathesis to enhance their separation efficiency, called anion-functionalized poly(ionic liquid)s (APILs). A molecularly imprinting technique was introduced to produce specific recognition sites by forming complexes between the template molecules and anion-functionalized ionic liquid monomers to reduce the interactions with the interference substances and increase the selectivity. Multi-phase dispersive extraction (MPDE) was applied for separation instead of the traditional solid phase extraction method. The target compounds were first extracted by three-phase (sample-solvent-sorbent) dispersive extraction and cleaned up after removing the sample matrix. This method significantly decrease in the interference and analysis cost. A suitable sorbent for MPDE could be identified based on the adsorption behaviors of flavonoids on different MAPILs. The mean recovery yields of quercitrin, myricetin, and amentoflavone from Chamaecyparis obtusa under the optimized conditions were 88.07, 93.59, and 95.13%. This is a promising method for the extraction, separation and determination of flavonoids or other polyphenolic compounds from natural and other sources.

  3. Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Chen, Junhua; Zhou, Guangming; Deng, Yongli; Cheng, Hongmei; Shen, Jie; Gao, Yi; Peng, Guilong

    2016-01-01

    Solid-phase extraction coupled with dispersive liquid-liquid microextraction was developed as an ultra-preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion-methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid-phase extraction coupled with dispersive liquid-liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid-phase extraction coupled with dispersive liquid-liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9-6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.

  4. Rapid analysis of aflatoxins B1, B2, and ochratoxin A in rice samples using dispersive liquid-liquid microextraction combined with HPLC.

    Science.gov (United States)

    Lai, Xian-Wen; Sun, Dai-Li; Ruan, Chun-Qiang; Zhang, He; Liu, Cheng-Lan

    2014-01-01

    A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid-liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid-liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid-liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06-0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9-112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China.

  5. Investigation and development of liquid-liquid extraction systems for the removal of pertechnetate from aqueous nuclear waste stream simulants

    Science.gov (United States)

    Gansle, Kristina Marie Rohal

    1998-11-01

    The solvent extraction behavior of perrhenate (ReO 4-) and pertechnetate (TcO4- ) from aqueous nuclear waste stream simulants was examined using the anion-exchange reagent Aliquat-336 nitrate. The extraction tendencies of ReO 4- followed those of TcO4- from both acidic and basic media, demonstrating that ReO4 - was a suitable nonradioactive surrogate for TcO4 -. For ICP-AES analysis of Re in high salt solutions, a V-groove nebulizer and 1:1 dilution of the sample and standards with 0.1% Triton X-100 surfactant reduced deposition of solids within the sample introduction system, thus minimizing memory effects. A new approach to waste remediation technology, Redox-Recyclable Extraction and Recovery (R2ER), was also studied. The redox-active species 1,1',3,3'-tetrakis(2-methyl-2-hexyl)ferrocene (HEP) was oxidized to its cationic form for extraction of TcO4 - or ReO4- from aqueous waste and reduced to its neutral form for recovery of the anion. The thermodynamics of liquid-liquid interfacial electron transfer for the oxidation/activation of HEP were shown to be controlled by three factors: the reduction potentials of the redox-active species in the aqueous and organic phases and the transfer of an ion across the liquid-liquid interface. The deactivation/reduction rate of HEP+NO3- by iron was affected by organic solvent diluent and improved by treating the iron with hexanes and 1 M HCl. The volume of solid secondary-waste in the R2ER cycle was reduced by a factor of 3000. In complete extraction/recovery cycles, HEP+NO3- in 2-nonanone removed greater than 99% TcO4- from the 101-SY, 103-SY, 1 M HCl and 1 M NaOH/1.5 M NaNO3 Hanford Tank waste simulants. Another redox-active extractant, bis(hydridotris(1-pyrazolyl)borato)iron(III) nitrate (FeTp2+NO3-), was also selective for ReO4- remediation from simulated aqueous waste. Organic solutions of the alkyl substituted ferricenium extractants were not stable in the presence of nucleophilic anions and/or reducing agents. HEP+NO3

  6. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Jouyban, Abolghasem; Sorouraddin, Mohammad Hossein; Farajzadeh, Mir Ali; Somi, Mohammad Hossein; Fazeli-Bakhtiyari, Rana

    2015-03-01

    A fast and sensitive high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection was developed and validated for the simultaneous quantitation of five antiarrhythmic drugs (metoprolol, propranolol, carvedilol, diltiazem, and verapamil) in human plasma samples. It involves dispersive liquid-liquid microextraction (DLLME) of the desired drugs from 660 µL plasma and separation using isocratic elution with UV detection at 200 nm. The complete separation of all analytes was achieved within 7 min. Acetonitrile (as disperser solvent) resulting from the protein precipitation procedure was mixed with 100 µL dichloromethane (as an extraction solvent) and rapidly injected into 5 mL aqueous solution (pH 11.5) containing 1% (w/v), NaCl. After centrifugation, the sedimented phase containing enriched analytes was collected and evaporated to dryness. The residue was re-dissolved in 50 µL de-ionized water (acidified to pH 3) and injected into the HPLC system for analysis. Under the optimal conditions, the enrichment factors and extraction recoveries ranged between 4.4-10.8 and 33-82%, respectively. The suggested method was linear (r(2) ≥0.997) over a dynamic range of 0.02-0.80 µg mL(-1) in plasma. The intra- and inter-days relative standard deviation (RSD%) and relative error (RE%) values of the method were below 20%, which shows good precision and accuracy. Finally, this method was applied to the analysis of real plasma samples obtained from the patients treated with these drugs.

  7. Exploitation of pulsed flows for on-line dispersive liquid-liquid microextraction: Spectrophotometric determination of formaldehyde in milk.

    Science.gov (United States)

    Nascimento, Carina F; Brasil, Marcos A S; Costa, Susana P F; Pinto, Paula C A G; Saraiva, Maria Lúcia M F S; Rocha, Fábio R P

    2015-11-01

    Formaldehyde is often added to foods as a preservative, but it is highly toxic to humans, having been identified as a carcinogenic substance. It has also been used for the adulteration of milk in order to diminish the bacteria count and increase the shelf life of the product. Herein, we present a green dispersive liquid-liquid microextraction procedure in a flow-batch system for the determination of formaldehyde in milk. Pulsed flows were exploited for the first time to improve the dispersion of the extractant in the aqueous phase. The Hantzsch reaction was used for the derivatization of formaldehyde and the product was extracted with the ionic liquid (IL) trihexyltetradecylphosphonium chloride with methanol as the disperser. The flow-batch chamber was made of stainless steel with the facility for resistive heating to speed up the derivatization reaction. Spectrophotometric measurements were directly carried out in the organic phase using an optical fiber spectrophotometer. The limit of detection and coefficient of variation were 100 μg L(-1) and 3.1% (n=10), respectively, with a linear response from 0.5 to 5.0 mg L(-1), described by the equation A=0.088+0.116CF (mg L(-1)) in which A is absorbance and CF is formaldehyde concentration in mg L(-1). The estimated recoveries of formaldehyde from spiked milk samples ranged from 91% to 106% and the slopes of the analytical curves obtained with reference solutions in water or milk were in agreement, thus indicating the absence of matrix effects. Accuracy was demonstrated by the agreement of the results with those achieved by the reference fluorimetric procedure at the 95% confidence level. The proposed procedure allows for 10 extractions per hour, with minimized reagent consumption (120 μL of IL and 3.5 μL acetylacetone) and generation of only 6.7 mL waste per determination, which contribute to the eco-friendliness of the procedure.

  8. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  9. Vertical phase separation and liquid-liquid dewetting of thin PS/PCL blend films during spin coating.

    Science.gov (United States)

    Ma, Meng; He, Zhoukun; Yang, Jinghui; Wang, Qi; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang

    2011-02-01

    Thin films of an amorphous polymer, polystyrene (PS), and a crystalline polymer, poly(ε-caprolactone) (PCL), blend were prepared by spin coating a toluene solution. Surface chemical compositions of the blend films were measured by X-ray photoelectron spectroscopy (XPS), and the surface and interface topographical changes were followed by atomic force microscopy (AFM). By changing the PS concentration and keeping the PCL concentration of the solution at 1 wt %, a great variety of morphologies were constructed. The results show that the morphology of the blend films can be divided into three regions with increasing PS concentration. In region I, PS island domains are embedded in PCL crystals when the PS concentration is lower than 0.3 wt % and the size of the PS island increases with increasing PS concentration. In region II, holes with different sizes surrounded by a low rim are obtained when the concentration of PS is between 0.35 and 0.5 wt %. After selectively washing the PS domains, we studied the interface morphology of PS/PCL and found that the upper PS-rich layer extended into the bottom PCL layer, forming a trench surrounding the holes. In region III, an enriched two-layer structure with the PS-rich layer on top of the blend films and the PCL-rich crystal layer underneath is obtained when the concentration of PS is higher than 0.5 wt %. Last, the formation mechanism of the different surface and interface morphologies is further discussed in terms of the vertical phase separation to a layered structure, followed by liquid-liquid dewetting and crystallization processes during spin coating.

  10. Turbulence in microfluidics: Cleanroom-free, fast, solventless, and bondless fabrication and application in high throughput liquid-liquid extraction.

    Science.gov (United States)

    de Camargo, Camila L; Shiroma, Letícia S; Giordano, Gabriela F; Gobbi, Angelo L; Vieira, Luis C S; Lima, Renato S

    2016-10-12

    This paper addresses an important breakthrough in the deployment of ultra-high adhesion strength microfluidic technologies to provide turbulence at harsh flow rate conditions. This paper is only, to our knowledge, the second reporting on the generation of high flow rate-assisted turbulence in microchannels. This flow solves a crucial bottleneck in microfluidics: the generation of high throughput homogeneous mixings. We focused on the fabrication of bulky polydimethylsiloxane (PDMS) microchips (without any interfaces) rather than the laborious surface modifications that were employed in the first reporting about turbulence-assisted microfluidics. The fabrication is cleanroom-free, simple, low-cost, fast, solventless, and bondless requiring only a laboratory oven. More specifically, our method relies on the shaping of a nylon scaffold, cure of PDMS with embedded nylon, and removal of this scaffold. The scaffold was obtained by manually wrapping nylon threads. The withdrawing out of the scaffold was completed in few seconds using only a plier. Such microchannels endured flow rates of up to 60.0 mL min(-1) with a strikingly low elastic deformation. The importance in producing turbulence into microscale channels was successfully shown in liquid-liquid extractions. The great energy dissipation rate relative to the turbulence created high throughput and efficient extractions in microfluidics for the first time. The residence time was only 0.01 s at 25.0 mL min(-1) (total flow rate of the immiscible phases). In addition, the partition coefficient determined in a single run was similar to that obtained by the conventional batch shake-flask method that was realized in triplicate.

  11. Isolation of atropine and scopolamine from plant material using liquid-liquid extraction and EXtrelut(®) columns.

    Science.gov (United States)

    Śramska, Paula; Maciejka, Artur; Topolewska, Anna; Stepnowski, Piotr; Haliński, Łukasz P

    2017-02-01

    Tropane alkaloids are toxic secondary metabolites produced by Solanaceae plants. Among them, plants from Datura genus produce significant amounts of scopolamine and hyoscyamine; the latter undergoes racemization to atropine during isolation. Because of their biological importance, toxic properties and commonly reported food and animal feed contamination by different Datura sp. organs, there is a constant need for reliable methods for the analysis of tropane alkaloids in many matrices. In the current study, three extraction and sample-clean up procedures for the determination of scopolamine and atropine in plant material were compared in terms of their effectiveness and repeatability. Standard liquid-liquid extraction (LLE) and EXtrelut(®) NT 3 columns were used for the sample clean-up. Combined ultrasound-assisted extraction and 24h static extraction using ethyl acetate, followed by multiple LLE steps was found the most effective separation method among tested. However, absolute extraction recovery was relatively low and reached 45-67% for atropine and 52-73% for scopolamine, depending on the compound concentration. The same method was also the most effective one for the isolation of target compounds from Datura stramonium leaves. EXtrelut(®) columns, on the other hand, displayed relatively low effectiveness in isolating atropine and scopolamine from such a complex matrix and hence could not be recommended. The most effective method was also applied to the extraction of alkaloids from roots and stems of D. stramonium. Quantitative analyses were performed using validated method based on gas chromatography with flame ionization detector (GC-FID). Based on the results, the importance of the proper selection of internal standards in the analysis of tropane alkaloids was stressed out.

  12. Analysis of drugs of abuse in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Fernández, P; Regenjo, M; Bermejo, A M; Fernández, A M; Lorenzo, R A; Carro, A M

    2015-04-01

    Opioids and cocaine are widely used at present, both for recreational purposes and as drugs of abuse. This raises the need to develop new analytical methods specifically designed for the simultaneous detection of several drugs of abuse in biological samples. In this work, dispersive liquid-liquid microextraction (DLLME) was assessed as a new sample treatment for the simultaneous extraction of morphine (MOR), 6-acetylmorphine (6AM), cocaine (COC), benzoylecgonine (BZE) and methadone (MET) from human plasma. Preliminary assays were done before developing an experimental design based on a Uniform Network Doehlert which allowed the optimum extraction conditions to be identified, namely: a volume of extractant solvent (chloroform) and dispersant solvent (acetonitrile) of 220 µl and 3.2 ml, respectively; 0.2 g of NaCl as a salting-out additive; pH 10.6 and ultrasound stirring for 3.5 min. The resulting extracts were analyzed by high-performance liquid chromatography with photodiode array detection (HPLC-PDA), using an XBridge® RP18 column (250 × 4.6 mm i.d., 5 µm particle size). Calibration graphs were linear over the concentration range 0.1-10 µg ml⁻¹, and detection limits ranged from 13.9 to 28.5 ng ml⁻¹. Precision calculated at three different concentration levels in plasma was included in the range 0.1-6.8% RSD. Recoveries of the five drugs were all higher than 84% on average. Finally the proposed method was successfully applied to 22 plasma samples from heroin, cocaine and/or methadone users, and the most frequently detected drug was benzoylecgonine, followed by methadone, cocaine and morphine.

  13. Cloud Point and Liquid-Liquid Equilibrium Behavior of Thermosensitive Polymer L61 and Salt Aqueous Two-Phase System.

    Science.gov (United States)

    Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang

    2015-06-25

    The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.

  14. A new device for magnetic stirring-assisted dispersive liquid-liquid microextraction of UV filters in environmental water samples.

    Science.gov (United States)

    Zhang, Ping-Ping; Shi, Zhi-Guo; Yu, Qiong-Wei; Feng, Yu-Qi

    2011-02-15

    A new method based on dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography (HPLC) has been developed for the analysis of UV filters. A specially designed flask, which has two narrow open necks with one of them having a capillary tip, was employed to facilitate the DLLME process. By adopting such a device, the extraction and subsequent phase separation were conveniently achieved. A binary solvent system of water sample and low-density extraction solvent (1-octanol) was used for the DLLME and no disperser solvent was involved. The extraction was accelerated by magnetic agitation of the two phases. After extraction, phase separation of the extraction solvent from the aqueous sample was easily achieved by leaving the extraction system statically for a while. No centrifugation step involving in classical DLLME was necessary. The analyte-enriched phase, floating above the sample solution, was elevated and concentrated into the narrow open tip of the flask by adding pure water into it via the other port, which was withdrawn with a microsyringe for the subsequent HPLC analysis. Under the optimized conditions, the limits of detection for the analytes were in range of 0.2-0.8ngmL(-1) .The linearity ranges were 8-20,000 ng mL(-1) for HB, 7-20,000 ng mL(-1) for DB, 8-10,000 ng mL(-1) for BP and 5-20,000 ng mL(-1) for HMB, respectively. Enrichment factors ranging from 59 to 107 folders were obtained for the analytes. The relative standard deviations (n=3) at a spiked level of 80 ng mL(-1) were between 1.4 and 4.8%. The proposed magnetic stirring-assisted DLLME method was successfully applied to the analysis of lake water samples.

  15. Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein.

    Science.gov (United States)

    Hashemi, Payman; Raeisi, Fatemeh; Ghiasvand, Ali Reza; Rahimi, Akram

    2010-03-15

    A reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) method was developed for the preconcentration and direct HPLC determination of oleuropein in olive's processing wastewater (OPW) and olive leaves extracts. In conventional DLLME, the sedimented phase is a micro-drop of a chlorinated organic solvent that is not compatible with RP-HPLC. Therefore, solvent evaporation and reconstitution with an appropriate solvent is often required. In RP-DLLME, this problem was overcome by overturning the solvent polarity in the ordinary DLLME and replacing the organic solvent with water. A central composite chemometrics design was used for multivariate optimization of the effects of five different parameters influencing the extraction efficiency of the method. In the optimized conditions, a mixture of 1.4 mL of an ethyl acetate extract of sample and 40 microL water (pH 5.0) was rapidly injected into 5.3 mL of cyclohexane. After centrifugation of the formed cloudy mixture, a micro-drop of the aqueous phase was sedimented at the conical bottom of the centrifuge tube. This phase, that contained the preconcentrated and partially purified analyte, was directly injected into an RP-HPLC column for analysis. A mean extraction recovery of 102.5 (+/-4.5) % with enrichment factors exceeding 38, was obtained for five replicated analysis. The detection limit of the method (3 sigma) for OE was 0.02 microg L(-1) for OPW and 2 x 10(-3) mg kg(-1) for olive leaves samples. The results showed that, RP-DLLME is a promising technique which is quick, easily operated and can be directly coupled to HPLC.

  16. Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh; Bidari, Araz; Birjandi, Afsoon Pajand; Milani Hosseini, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Assadi, Yaghoub [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)], E-mail: y_assadi@iust.ac.ir

    2008-10-30

    A very simple and powerful microextraction procedure, the dispersive liquid-liquid microextraction (DLLME), was used for the determination of the content of 10 polychlorinated biphenyls (PCBs) in water samples, using gas chromatography coupled with electron-capture detection (GC-ECD). The appropriate amount of acetone (disperser solvent) and chlorobenzene (extraction solvent) at the microlevel volume was used for this procedure. The conditions for the microextraction performance were investigated and optimized. The optimized method exhibited a good linearity (R{sup 2} > 0.996) over the studied range (0.005-2 {mu}g L{sup -1}), illustrating a satisfactory precision level with R.S.D. values between 4.1% and 11.0%. The values of the detection limit (S/N = 3) were found to be lower than 0.002 {mu}g L{sup -1}. Furthermore, a large enrichment factor for the analytes (up to a 540-fold) was achieved in a very short time for only a 5.00-mL water sample. The effectiveness of the method towards real samples was tested by analyzing well, river and seawater samples. The relative recoveries of the well, river and seawater samples, which had been spiked with different levels of PCBs were equal to 92.0-114.0%, 97.0-102.0% and 96.0-103.0%, respectively. The attained results demonstrated that DLLME combined with GC-ECD was a fast and inexpensive technique for the PCBs determination in water samples.

  17. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME).

    Science.gov (United States)

    Luo, Mai; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng

    2013-09-01

    A rapid, simple, reliable, and environment-friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid-liquid microextraction (DLLME) pretreatment followed by chiral high-performance liquid chromatography (HPLC)-DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n-hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy-driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30-1500 µg L(-1) with the correlation coefficients (R(2)) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L(-1) (for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L(-1) (S/N = 3).

  18. Selective extraction of emerging contaminants from water samples by dispersive liquid-liquid microextraction using functionalized ionic liquids.

    Science.gov (United States)

    Yao, Cong; Li, Tianhao; Twu, Pamela; Pitner, William R; Anderson, Jared L

    2011-03-25

    Functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion were used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the extraction of 14 emerging contaminants from water samples. The extraction efficiencies and selectivities were compared to those of an in situ IL DLLME method which uses an in situ metathesis reaction to exchange 1-butyl-3-methylimidazolium chloride (BMIM-Cl) to 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMIM-NTf(2)). Compounds containing tertiary amine functionality were extracted with high selectivity and sensitivity by the 1-(6-amino-hexyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (HNH(2)MPL-FAP) IL compared to other FAP-based ILs and the BMIM-NTf(2) IL. On the other hand, polar or acidic compounds without amine groups exhibited higher enrichment factors using the BMIM-NTf(2) IL. The detection limits for the studied analytes varied from 0.1 to 55.1 μg/L using the traditional IL DLLME method with the HNH(2)MPL-FAP IL as extraction solvent, and from 0.1 to 55.8 μg/L using in situ IL DLLME method with BMIM-Cl+LiNTf(2) as extraction solvent. A 93-fold decrease in the detection limit of caffeine was observed when using the HNH(2)MPL-FAP IL compared to that obtained using in situ IL DLLME method. Real water samples including tap water and creek water were analyzed with both IL DLLME methods and yielded recoveries ranging from 91% to 110%.

  19. Combination of dispersive liquid-liquid microextraction and solid-phase microextraction: An efficient hyphenated sample preparation method.

    Science.gov (United States)

    Jafari, Mohammad T; Saraji, Mohammad; Mossaddegh, Mehdi

    2016-09-30

    Two well-known microextraction methods, dispersive liquid-liquid microextraction (DLLME) and solid-phase microextraction (SPME), were combined, resulting in as an encouraging method. The method, named DLLME-SPME, was performed based on total vaporization technique. For the DLLME step, 1,1,2,2-tetrachloroethane and acetonitrile were used as extraction and disperser solvents, respectively. Halloysite nanotubes-titanium dioxide was used as the fiber coating in the SPME step. The method was applied for the extraction of diazinon and parathion (as the test compounds) in environmental water samples and fruit juices, and gas chromatography-corona discharge ion mobility spectrometry was used as the determination apparatus. Desorption temperature and time, extraction temperature and time, and the volume of the extracting solvent in the DLLME step were optimized as the effective parameters on the extraction efficiency. The relative standard deviations (RSDs) of intra-day were found to be 4-7% and 6-8% for diazinon and parathion, respectively. Also, the RSDs of inter-day were 7-9% and 8-10% for diazinon and parathion, respectively. The limits of quantification and detection were obtained to be 0.015 and 0.005μgL(-1) for diazinon, and 0.020 and 0.007μgL(-1) for parathion. A good linearity range (r(2)˃0.993) was obtained in the range of 0.015-3.000 and 0.020-3.000μgL(-1) for diazinon and parathion, respectively. The high enrichment factors were obtained as 3150 and 2965 for diazinon and parathion, respectively. This method showed high sensitivity with good recovery values (between 87 and 99%) for the extraction of target analytes in the real samples. Overall, the results revealed that the developed DLLME-SPME method had better extraction efficiency than DLLME and SPME alone.

  20. Determination of suvorexant in human plasma using 96-well liquid-liquid extraction and HPLC with tandem mass spectrometric detection.

    Science.gov (United States)

    Breidinger, S A; Simpson, R C; Mangin, E; Woolf, E J

    2015-10-01

    A method, using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), was developed for the determination of suvorexant (MK-4305, Belsomra(®)), a selective dual orexin receptor antagonist for the treatment insomnia, in human plasma over the concentration range of 1-1000ng/mL. Stable isotope labeled (13)C(2)H3-suvorexant was used as an internal standard. The sample preparation procedure utilized liquid-liquid extraction, in the 96-well format, of a 100μL plasma sample with methyl t-butyl ether. The compounds were chromatographed under isocratic conditions on a Waters dC18 (50×2.1mm, 3μm) column with a mobile phase consisting of 30/70 (v/v %) 10mM ammonium formate, pH3/acetonitrile at a flow rate of 0.3mL/min. Multiple reaction monitoring of the precursor-to-product ion pairs for suvorexant (m/z 451→186) and (13)C(2)H3-suvorexant (m/z 455→190) on an Applied Biosystems API 4000 tandem mass spectrometer was used for quantitation. Intraday assay precision, assessed in six different lots of control plasma, was within 10% CV at all concentrations, while assay accuracy ranged from 95.6 to 105.0% of nominal. Quality control (QC) samples in plasma were stored at -20°C. Initial within day analysis of QCs after one freeze-thaw cycle showed accuracy within 9.5% of nominal with precision (CV) of 6.7% or less. The plasma QC samples were demonstrated to be stable for up to 25 months at -20°C. The method described has been used to support clinical studies during Phase I through III of clinical development.

  1. A new treatment by dispersive liquid-liquid microextraction for the determination of parabens in human serum samples.

    Science.gov (United States)

    Vela-Soria, F; Ballesteros, O; Rodríguez, I; Zafra-Gómez, A; Ballesteros, L; Cela, R; Navalón, A

    2013-09-01

    Alkyl esters of p-hydroxybenzoic acid (parabens) are a family of compounds that have been in use since the 1920s as preservatives in cosmetic formulations, with one of the lowest rates of skin problems reported in dermatological patients. However, in the last few years, many scientific publications have demonstrated that parabens are weak endocrine disruptors, meaning that they can interfere with the function of endogenous hormones, increasing the risk of breast cancer. In the present work, a new sample treatment method is introduced based on dispersive liquid-liquid microextraction for the extraction of the most commonly used parabens (methyl-, ethyl-, propyl-, and butylparaben) from human serum samples followed by separation and quantification using ultrahigh performance liquid chromatography-tandem mass spectrometry. The method involves an enzymatic treatment to quantify the total content of parabens. The extraction parameters (solvent and disperser solvent, extractant and dispersant volume, pH of the sample, salt addition, and extraction time) were accurately optimized using multivariate optimization strategies. Ethylparaben ring (13)C6-labeled was used as surrogate. Limits of quantification ranging from 0.2 to 0.7 ng mL(-1) and an interday variability (evaluated as relative standard deviations) from 3.8 to 11.9 % were obtained. The method was validated using matrix-matched calibration standard and a spike recovery assay. Recovery rates for spiked samples ranged from 96 to 106 %, and a good linearity up to concentrations of 100 ng mL(-1) was obtained. The method was satisfactorily applied for the determination of target compounds in human serum samples.

  2. Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani

    2015-01-01

    A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples.

  3. Estrogenic compounds determination in water samples by dispersive liquid-liquid microextraction and micellar electrokinetic chromatography coupled to mass spectrometry.

    Science.gov (United States)

    D'Orazio, Giovanni; Asensio-Ramos, María; Hernández-Borges, Javier; Fanali, Salvatore; Rodríguez-Delgado, Miguel Ángel

    2014-05-30

    In this work, a group of 12 estrogenic compounds, i.e., four natural sexual hormones (estrone, 17β-estradiol, 17α-estradiol and estriol), an exoestrogen (17α-ethynylestradiol), a synthetic stilbene (dienestrol), a mycotoxin (zearalenone) and some of their major metabolites (2-methoxyestradiol, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol) have been separated and determined by micellar electrokinetic chromatography (MEKC) coupled to electrospray ion trap mass spectrometry. For this purpose, a background electrolyte containing an aqueous solution of 45 mM of perfluorooctanoic acid (PFOA) adjusted to pH 9.0 with an ammonia solution, as MS friendly surfactant, and methanol (10% (v/v)), as organic modifier, was used. To further increase the sensitivity, normal stacking mode was applied by injecting the sample dissolved in an aqueous solution of 11.5mM of ammonium PFO (APFO) at pH 9.0 containing 10% (v/v) of methanol for 25s. Dispersive liquid-liquid microextraction, using 110 μL of chloroform and 500 μL of acetonitrile as extraction and dispersion solvents, respectively, was employed to extract and preconcentrate the target analytes from different types of environmental water samples (mineral, run-off and wastewater) containing 30% (w/v) NaCl and adjusted to pH 3.0 with 1M HCl. The limits of detection achieved were in the range 0.04-1.10 μg/L. The whole method was validated in terms of linearity, precision, recovery and matrix effect for each type of water, showing determination coefficients higher than 0.992 for matrix-matched calibration and absolute recoveries in the range 43-91%.

  4. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thu Huong; Kim, Tae Hyun [Kongju National University, Cheonan (Korea, Republic of); Um, Byung Hwan [Hankyong National University, Anseong (Korea, Republic of)

    2015-12-15

    Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l{sup -1} acetic acid and 5.0 g l{sup -1} ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

  5. SBA-15分子筛用于组装二溴对氯偶氮胂%USE OF MOLECULAR SIEVE SBA - 15 FOR INCORPORATION OF DIBROMOCHLORO-ARSENAZO

    Institute of Scientific and Technical Information of China (English)

    翟庆洲; 于辉; 蔡建岩; 秦亮

    2006-01-01

    Molecular sieve (SBA - 15)-(dibromochloro-arsenazo, DBC-ASA) host-guest composite materials were prepared by a liquid-phase grafting method using the calcined SBA- 15 molecular sieve as the host material, the DBC-ASA solution as the guest material, and water as the medium. The composite materials (SBA- 15)-(DBC-ASA) were characterized by X-ray diffraction(XRD), Fourier transform infrared(FTIR)spectra, solid state diffuse reflectance absorption spectra, and luminescence studies. The XRD results show that the molecular sieve framework in the (SBA- 15)-(DBC-ASA) host-guest composite materials is retained, and is highly ordered. The FTIR spectra indicate that the framework of the SBA- 15 molecular sieve is retained when a small amount of DBC-ASA is incorporated into it, the order degree of the molecular sieve decreases when a large amount of DBC-ASA is incorporated into it. The solid state diffuse reflectance absorption spectra show that DBC-ASA is located in the channel of the SBA - 15 molecular sieve, and the channel of SBA - 15 has stereoconfinment. The luminescence spectra show a strong non-radiation transition processes in the prepared samples, and this results in very strong electron-photon interaction causing a charge transfer transition. The Stokes displacement takes place and the spectrum bands broaden.%以煅烧的分子筛SBA-15为主体材料,二溴对氯偶氮胂(dibromochloro-arsenazo,DBC-ASA)作客体材料,以水为介质,用液相移植法制备了(SBA-15)-(DBC-ASA)主客体复合材料.用粉末X射线衍射、Fourier变换红外光谱、固体扩散漫反射吸收光谱及发光研究表征了所制得的复合材料(SBA-15)-(DBC-ASA)的性质.X射线衍射结果表明:(SBA-15)-(DBC-ASA)主客体复合材料分子筛骨架存在且有序度高.红外光谱分析表明:较低量的DBC-ASA引入SBA-15分子筛中,分子筛骨架结构仍然存在,但引入量较大时,分子筛的骨架有序度明显降低.固体扩散漫反射吸收光谱研

  6. Application and optimization of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for sensitive determination of polyamines in turkey breast meat samples.

    Science.gov (United States)

    Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar

    2016-01-01

    A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method.

  7. Quantum chemical approach in the description of the amphiphile clusterization at the air/liquid and liquid/liquid interfaces with phase nature accounting. I. Aliphatic normal alcohols at the air/water interface.

    Science.gov (United States)

    Vysotsky, Yuri B; Belyaeva, Elena A; Kartashynska, Elena S; Fainerman, Valentine B; Smirnova, Natalia A

    2015-02-19

    A new model based on the quantum chemical approach is proposed to describe structural and thermodynamic parameters of clusterization for substituted alkanes at the air/liquid and liquid/liquid interfaces. The new model by the authors, unlike the previous one, proposes an explicit account of the liquid phase (phases) influence on the parameters of monomers, clusters and monolayers of substituted alkanes at the regarded interface. The calculations were carried out in the frameworks of the quantum chemical semiempirical PM3 method (Mopac 2012), using the COSMO procedure. The new model was tested in the calculations of the clusterization parameters of fatty alcohols under the standard conditions at the air/water interface. The enthalpy, Gibbs' energy and absolute entropy of formation for alcohol monomers alongside with clusterization parameters for the cluster series including the monolayer at air/water interface were calculated. In our calculations the sinkage of monomers, molecules in clusters and monolayers was varied from 1 up to 5 methylene groups. Thermodynamic parameters calculated using the proposed model for the alcohol monolayers are in a good agreement with the corresponding experimental data. However, the proposed model cannot define the most energetically preferable immersion of the monolayer molecules in the water phase.

  8. Fabrication of composite thin films with microstructures of honeycomb, foam, and nanosphere arrays through adsorption and self-assembly of block copolymers at the liquid/liquid interface.

    Science.gov (United States)

    Liu, Yanan; Chen, Lifang; Geng, Yuanyuan; Lee, Yong-Ill; Li, Ying; Hao, Jingcheng; Liu, Hong-Guo

    2013-10-01

    The adsorption and self-organization behaviors of two kinds of block copolymers, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and poly(4-vinylpyridine)-block-polystyrene-block-poly(4-vinylpyridine) (P4VP-b-PS-b-P4VP), at planar liquid/liquid interfaces were investigated. A gel film decorating with honeycomb-like microstructures forms at the liquid/liquid interface between PS-b-P4VP chloroform solution and chloroauric acid aqueous solution. However, foam films were developed when the chloroauric acid aqueous solution was replaced by a chloroplatinic acid solution or a silver nitrate solution. Furthermore, a free-standing film containing the ordered arrays of nanospheres appeared at the liquid/liquid interface between P4VP-b-PS-b-P4VP chloroform solution and chloroauric acid aqueous solution. The formation of these microstructures was attributed to the adsorption of polymer molecules, combining with inorganic ions and the self-assembly of the composite species at the interface. The doped metal ions and complex ions were transformed to metal nanoparticles after further treatment. This is a facile and convenient method to prepare polymer/inorganic nanoparticle composites. These results also indicate the great influences of the polymer structures and the inorganic species in the aqueous phases on the self-assembly behaviors of the polymers at the interfaces, the final morphology, and structure of the composites. In addition, the formed thin composite films doped with well-dispersed, homogeneous small noble metal nanoparticles exhibit great and durable catalytic activities for the reduction of 4-nitrophenol (4-NP) by potassium borohydride.

  9. Determination of chlorobenzenes in textiles by pressurized hot water extraction followed by vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Lu, Yang; Zhu, Yan

    2013-12-06

    A method for quantitative determination of chlorobenzenes in textiles is developed, using pressurized hot water extraction (PHWE), vortex-assisted liquid-liquid microextraction (VALLME) and gas chromatography-mass spectrometry (GC-MS). VALLME serves as a trapping step after PHWE. The extraction conditions are investigated, as well as the quantitative features such as linearity, limits of detection (LODs), limits of quantification (LOQs), repeatabilities and reproducibilities between days. LOQs of 0.018-0.032mg/kg were achieved. The present method provides good repeatabilities (RSDGC-MS is a simple, rapid and environmentally friendly method for determination of chlorobenzenes in textiles.

  10. Determination of methylphenidate in Calliphorid larvae by liquid-liquid extraction and liquid chromatography mass spectrometry - Forensic entomotoxicology using an in vivo rat brain model

    DEFF Research Database (Denmark)

    Bushby, Sarah K.; Thomas, Nicky; Priemel, Petra A.;

    2012-01-01

    and Calliphorid larvae) by liquid-liquid extraction with recovery of >80%, and quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS assay was validated for entomotoxicological use and initially applied to male Sprague-Dawley rats (n=6) that were dosed with MPH (20mg/kg) ante......The aim of this study was to examine the potential forensic utilisation of blowfly larvae (Diptera: Calliphoridae) as an alternative toxicological specimen for the detection of the psychotropic model drug methylphenidate (MPH). MPH was extracted from biological matrices (rat brain, serum...

  11. 水-丁酸-壬醇三相系统的液液平衡%Liquid-Liquid Equilibria of Water + Butyric Acid + Nonanol Ternary System

    Institute of Scientific and Technical Information of China (English)

    S.üsmail K1rbaslar; Sema Yüksel; Erol ínce; ísmail Boz

    2004-01-01

    Liquid-liquid equilibrium (LLE) data for the water + butyric acid + nonanol system have been determined experimentally at the temperatures of 298.15 K, 308.15 K and 318.15 K. Tie-line compositions were correlated by Othmer-Tobias method. The universal quasichemical functional group activity coefficient (UNIFAC) and modified UNIFAC methods were used to predict the phase equilibrium in the system using the interaction parameters between CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  12. Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE) Using a pH-Responsive Fluorine-Based Surfactant

    OpenAIRE

    2015-01-01

    A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE) using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, La, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn, and Zr) were examined. By changing pH from a neutral or alkaline solu...

  13. (Liquid + liquid) equilibrium of {l_brace}water + phenol + (1-butanol, or 2-butanol, or tert-butanol){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadlich de Oliveira, Leonardo [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil)

    2010-11-15

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  14. (Liquid + liquid) phase equilibria for (water + 2,3-butanediol + oleyl alcohol) at T = (300.2, 307.2, and 314.2) K

    Energy Technology Data Exchange (ETDEWEB)

    Khayati, Gholam [Department of Chemical Engineering, Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-143 Tehran (Iran, Islamic Republic of); Pahlavanzadeh, Hassan [Department of Chemical Engineering, Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-143 Tehran (Iran, Islamic Republic of)], E-mail: pahlavzh@modares.ac.ir; Vasheghani-Farahani, Ebrahim [Department of Chemical Engineering, Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-143 Tehran (Iran, Islamic Republic of); Ghaemi, Nasser [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of)

    2009-02-15

    (Liquid + liquid equilibrium) (LLE) data for ternary system: (water + 2,3-butanediol + oleyl alcohol) has been measured at T = (300.2, 307.2, and 314.2) K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer-Tobias and Bachman methods. The nonrandom two liquids equation (NRTL) was used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that NRTL could give a good correlation for the LLE data. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  15. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants; Cinetique d`extraction liquide-liquide du nitrate d`uranyle et des nitrates d`actinides (III) et de lanthanides (III) par des extractants a fonction amide

    Energy Technology Data Exchange (ETDEWEB)

    Toulemonde, V. [CEA Centre d`Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France)]|[CEA Centre d`Etudes de la Vallee du Rhone, 30 -Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement

    1995-12-20

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author). 89 refs.

  16. Determination of multiple phytohormones in fruits by high-performance liquid chromatography with fluorescence detection using dispersive liquid-liquid microextraction followed by precolumn fluorescent labeling.

    Science.gov (United States)

    Li, Guoliang; Lu, Shuaimin; Wu, Hongliang; Chen, Guang; Liu, Shucheng; Kong, Xiaojian; Kong, Weiheng; You, Jinmao

    2015-01-01

    Plant hormone determination in food matrices has attracted more and more attention because of their potential risks to human health. However, analytical methods for the analysis of multiple plant hormones remain poorly investigated. In the present study, a convenient, selective, and ultrasensitive high-performance liquid chromatography method for the simultaneous determination of multiple classes of plant hormones has been developed successfully using dispersive liquid-liquid microextraction followed by precolumn fluorescent labeling. Eight plant hormones in fruits including jasmonic acid, 12-oxo-phytodienoic acid, indole-3-acetic acid, 3-indolybutyric acid, 3-indolepropionic acid, gibberellin A3 , 1-naphthylacetic acid, and 2-naphthaleneacetic acid were analyzed by this method. The conditions employed for dispersive liquid-liquid microextraction were optimized systematically. The linearity for all plant hormones was found to be >0.9993 (R(2) values). This method offered low detection limits of 0.19-0.44 ng/mL (at a signal-to-noise ratio of 3), and method accuracies were in the range of 92.32-103.10%. The proposed method was applied to determine plant hormones in five kinds of food samples, and this method can achieve a short analysis time, low threshold levels of detection, and a high specificity for the analysis of targeted plant hormones present at trace level concentrations in complex matrices.

  17. Rapid determination of some psychotropic drugs in complex matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography.

    Science.gov (United States)

    Asghari, Alireza; Fahimi, Ebrahim; Bazregar, Mohammad; Rajabi, Maryam; Boutorabi, Leila

    2017-03-15

    Simple and rapid determinations of some psychotropic drugs in some pharmaceutical wastewater and human plasma samples were successfully accomplished via the tandem dispersive liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection (TDLLME-HPLC-UV). TDLLME of the three psychotropic drugs clozapine, chlorpromazine, and thioridazine was easily performed through two consecutive dispersive liquid-liquid microextractions. By performing this convenient method, proper sample preconcentrations and clean-ups were achieved in just about 7min. In order to achieve the best extraction efficiency, the effective parameters involved were optimized. The optimal experimental conditions consisted of 100μL of CCl4 (as the extraction organic solvent), and the pH values of 13 and 2 for the donor and acceptor phases, respectively. Under these optimum experimental conditions, the proposed TDLLME-HPLC-UV technique provided a good linearity in the range of 5-3000ngmL(-1) for the three psychotropic drugs with the correlation of determinations (R(2)s) higher than 0.996. The limits of quantification (LOQs) and limits of detection (LODs) obtained were 5.0ngmL(-1) and 1.0-1.5ngmL(-1), respectively. Also the proper enrichment factors (EFs) of 96, 99, and 88 for clozapine, chlorpromazine, and thioridazine, respectively, and good extraction repeatabilities (relative standard deviations below 9.3%, n=5) were obtained.

  18. Rapid determination of polycyclic aromatic hydrocarbons in rainwater by liquid-liquid microextraction and LC with core-shell particles column and fluorescence detection.

    Science.gov (United States)

    Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella

    2013-02-01

    Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples.

  19. Reversed-phase vortex-assisted liquid-liquid microextraction: a new sample preparation method for the determination of amygdalin in oil and kernel samples.

    Science.gov (United States)

    Hosseini, Mohammad; Heydari, Rouhollah; Alimoradi, Mohammad

    2015-02-01

    A novel, simple, and rapid reversed-phase vortex-assisted liquid-liquid microextraction coupled with high-performance liquid chromatography has been introduced for the extraction, clean-up, and preconcentration of amygdalin in oil and kernel samples. In this technique, deionized water was used as the extracting solvent. Unlike the reversed-phase dispersive liquid-liquid microextraction, dispersive solvent was eliminated in the proposed method. Various parameters that affected the extraction efficiency, such as extracting solvent volume and its pH, vortex, and centrifuging times were evaluated and optimized. The calibration curve shows good linearity (r(2) = 0.9955) and precision (RSD < 5.2%) in the range of 0.07-20 μg/mL. The limit of detection and limit of quantitation were 0.02 and 0.07 μg/mL, respectively. The recoveries were in the range of 96.0-102.0% with relative standard deviation values ranging from 4.0 to 5.1%. Unlike the conventional extraction methods for plant extracts, no evaporative and re-solubilizing operations were needed in the proposed technique.

  20. Ion-transfer voltammetric determination of the beta-blocker propranolol in a physiological matrix at silicon membrane-based liquid|liquid microinterface arrays.

    Science.gov (United States)

    Collins, Courtney J; Arrigan, Damien W M

    2009-03-15

    In this work, the ion-transfer voltammetric detection of the protonated beta-blocker propranolol in artificial saliva is presented. Cyclic voltammetry, differential pulse voltammetry, and differential pulse stripping voltammetry (DPSV) were employed in the detection of the cationic drug based on ion-transfer voltammetry across arrays of microinterfaces between artificial saliva and an organogel phase. It was found that the artificial saliva matrix decreased the available potential window for ion-transfer voltammetry at this liquid|liquid interface but transfer of protonated propranolol was still achieved. The DPSV method employed a preconditioning step as well as a preconcentration step followed by analytical signal generation based on the back-transfer of the drug across the array of microinterfaces. The DPSV peak current response was linear with drug concentration in the artificial saliva matrix over the concentration range of 0.05-1 microM (i(p) = -8.13 (nA microM(-1))(concentration) + 0.07 (nA), R = 0.9929, n = 7), and the calculated detection limit (3s(b)) was 0.02 microM. These results demonstrate that DPSV at arrays of liquid|liquid microinterfaces is a viable analytical approach for pharmaceutical determinations in biomimetic matrixes.

  1. Suitability of dispersive liquid-liquid microextraction for the in situ silylation of chlorophenols in water samples before gas chromatography with mass spectrometry.

    Science.gov (United States)

    Saraji, Mohammad; Ghambari, Hoda

    2015-10-01

    Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid-liquid microextraction was carried out using an organic solvent lighter than water (n-hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05-100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, respectively. The values of intra- and inter-day relative standard deviations were in the range of 3.0-6.4 and 6.1-9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples.

  2. [Determination of five triazine herbicides in infant milk powder by high performance liquid chromatography coupled with ionic liquid-based homogeneous liquid-liquid microextraction].

    Science.gov (United States)

    Zhang, Liyuan; Yao, Di; Li, Na; Zhang, Hanqi; Yu, Aimin

    2015-07-01

    A high performance liquid chromatography coupled with homogeneous liquid-liquid microextraction was developed for the determination of five triazine herbicides in infant milk powders. The ionic liquid was used as microextraction solvent. The separation of the herbicides was performed on an Eclipse XDB-C18 column using acetonitrile and water as mobile phases in gradient mode. The effects of homogeneous liquid-liquid extraction conditions on the experimental results were investigated in detail. Under the optimized experimental conditions, the calibration curves for determining the analytes were linear and the correlation coefficients were ≥ 0.9992. The limits of detection for cyanazine, desmetryn, terbumeton, terbuthylazine and dimethametryn were 12.1, 13.8, 11.8, 14.6 and 13.7 μg/kg, respectively. The recoveries of the analytes spiked in four infant milk powders ranged from 92.2% to 103.2% and the relative standard deviations were lower than 6%. This method is sensitive, simple, and suitable for the determination of triazine herbicides in milk powder samples.

  3. Ultrasound-assisted dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-fluorescence detection for sensitive determination of biogenic amines in rice wine samples.

    Science.gov (United States)

    Huang, Ke-Jing; Wei, Cai-Yun; Liu, Wei-Li; Xie, Wan-Zhen; Zhang, Jun-Feng; Wang, Wei

    2009-09-18

    Ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5-500 microg mL(-1) (octopamine and tyramine) and 0.025-2.5 microg mL(-1) (phenethylamine). The relative standard deviations were 2.4-3.2% (n=6) and the limits of detection were in the range of 0.02-5 ng mL(-1). The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42-104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid-liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.

  4. Ultrasound-assisted emulsification microextraction for the determination of ephedrines in human urine by capillary electrophoresis with direct injection. Comparison with dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Alshana, Usama; Göğer, Nilgün G; Ertaş, Nusret

    2012-08-01

    Ultrasound-assisted emulsification microextraction and dispersive liquid-liquid microextraction were compared for extraction of ephedrine, norephedrine, and pseudoephedrine from human urine samples prior to their determination by capillary electrophoresis. Formation of a microemulsion of the organic extract with an aqueous solution (at pH 3.2) containing 10% methanol facilitated the direct injection of the final extract into the capillary. Influential parameters affecting extraction efficiency were systematically studied and optimized. In order to enhance the sensitivity further, field-amplified sample injection was applied. Under optimum extraction and stacking conditions, enrichment factors of up to 140 and 1750 as compared to conventional capillary zone electrophoresis were obtained resulting in limits of detection of 12-33 μg/L and 1.0-2.8 μg/L with dispersive liquid-liquid microextraction and ultrasound-assisted emulsification microextraction when combined with field-amplified sample injection. Calibration graphs showed good linearity for urine samples by both methods with coefficients of determination higher than 0.9973 and percent relative standard deviations of the analyses in the range of 3.4-8.2% for (n = 5). The results showed that the use of ultrasound to assist microextraction provided higher extraction efficiencies than disperser solvents, regarding the hydrophilic nature of the investigated analytes.

  5. Dispersive liquid-liquid microextraction with little solvent consumption combined with gas chromatography-mass spectrometry for the pretreatment of organochlorine pesticides in aqueous samples.

    Science.gov (United States)

    Tsai, Wan-Chun; Huang, Shang-Da

    2009-07-03

    Dispersive liquid-liquid microextraction with little solvent consumption (DLLME-LSC), a novel dispersive liquid-liquid microextraction (DLLME) technique with few solvent requirements (13 microL of a binary mixture of disperser solvent and extraction solvent in the ratio of 6:4) and short extraction time (90 s), has been developed for extraction of organochlorine pesticides (OCPs) from water samples prior to gas chromatography/mass spectrometry analysis. In DLLME-LSC, much less volume of organic solvent is used as compared to DLLME. The new technique is less harmful to environment and yields a higher enrichment factor (1885-2648-fold in this study). Fine organic droplets were formed in the sample solution by manually shaking the test tube containing the mixture of sample solution and extraction solvent. The large surface area of the organic solvent droplets increases the rate of mass transfer from the water sample to the extractant and produces efficient extraction in a short period of time. DLLME-LSC shows good repeatability (RSD: 4.1-9.7% for reservoir water; 5.6-8.9% for river water) and high sensitivity (limits of detection: 0.8-2.5 ng/L for reservoir water; 0.4-1.3 ng/L for river water). The method can be used on various water samples (river water, tap water, sea water and reservoir water). It can be used for routine work for the investigation of OCPs.

  6. Optimization of two different dispersive liquid-liquid microextraction methods followed by gas chromatography-mass spectrometry determination for polycyclic aromatic hydrocarbons (PAHs) analysis in water.

    Science.gov (United States)

    Tseng, Wan-Chi; Chen, Pai-Shan; Huang, Shang-Da

    2014-03-01

    Novel sample preparation methods termed "up-and-down shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME)" and "water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction (WLSEME)" coupled with gas chromatography-mass spectrometry (GC-MS) have been developed for the analysis of 11 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. For UDSA-DLLME, an up-and-down shaker-assisted emulsification was employed. Extraction was complete in 3min. Only 14 μL of 1-heptanol was required, without a dispersive solvent. Under the optimum conditions, the linear range was 0.08-100 µg L(-1), and the LODs were in the range 0.022-0.060 µg L(-1). The enrichment factors (EFs) ranged from 392 to 766. Relative recoveries were between 84% and 113% for river, lake, and field water. In WLSEME, 9 μL of 1-nonanol as extraction solvent and 240 μL of 1 mg L(-1) Triton X-100 as surfactant were mixed in a microsyringe to form a cloudy emulsified solution, which was then injected into the samples. Compared with other surfactant-assisted emulsion methods, WLSEME uses much less surfactant. The linear range was 0.08-100 µg L(-1), and the LODs were 0.022-0.13 µg L(-1). The EFs ranged from 388 to 649. The relative recoveries were 86-114% for all three water specimens.

  7. Assessment of dispersive liquid-liquid microextraction conditions for gas chromatography time-of-flight mass spectrometry identification of organic compounds in honey.

    Science.gov (United States)

    Moniruzzaman, M; Rodríguez, I; Rodríguez-Cabo, T; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-14

    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas.

  8. Analysis of triazine herbicides using an up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Chen, Pai-Shan; Haung, Wan-Yun; Huang, Shang-Da

    2014-04-01

    In dispersive liquid-liquid microextraction, a few hundred microliters to a few milliliters of water-miscible dispersive solvent are commonly used to assist emulsification in aqueous samples. In the present study, a consistent and automatic up-and-down-shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME) that does not require a dispersive solvent was developed. The enrichment factors (EFs) of the targets obtained using the automatic shaker were 361-1391 for UDSA-DLLME, 51-77 for ultrasonication, and 298-922 for vortexing. The linearity of the method was in the range 0.2-200μgL(-1), and its limit of detections was within 0.02-0.04μgL(-1). The intraday and interday relative standard deviations ranged from 5.7 to 10.0% and 5.5 to 10.3%, respectively. The relative recoveries of river and lake samples spiked with 2.0μgL(-1) of triazines were 94.2-102.2% and 98.5-104.1%, respectively. The technique provided high repeatability and recovery. No matrix interference from river and lake water was observed. The method also achieved high EFs compared with those obtained through other emulsification methods such as vortexing and ultrasonication. UDSA-DLLME is an alternative sample preparation technique with good performance.

  9. Interfacial-tension-force model for the wavy stratified liquid-liquid flow pattern transition: The usage of two different approaches

    Science.gov (United States)

    de Castro, Marcelo Souza; Rodriguez, Oscar Mauricio Hernandez

    2016-06-01

    The study of the hydrodynamic stability of flow patterns is important in the design of equipment and pipelines for multiphase flows. The maintenance of a particular flow pattern becomes important in many applications, e.g., stratified flow pattern in heavy oil production avoiding the formation of emulsions because of the separation of phases and annular flow pattern in heat exchangers which increases the heat transfer coefficient. Flow maps are drawn to orientate engineers which flow pattern is present in a pipeline, for example. The ways how these flow maps are drawn have changed from totally experimental work, to phenomenological models, and then to stability analysis theories. In this work an experimental liquid-liquid flow map, with water and viscous oil as work fluids, drawn via subjective approach with high speed camera was used to compare to approaches of the same theory: the interfacial-tension-force model. This theory was used to drawn the wavy stratified flow pattern transition boundary. This paper presents a comparison between the two approaches of the interfacial-tension-force model for transition boundaries of liquid-liquid flow patterns: (i) solving the wave equation for the wave speed and using average values for wave number and wave speed; and (ii) solving the same equation for the wave number and then using a correlation for the wave speed. The results show that the second approach presents better results.

  10. Development of counter current salting-out homogenous liquid-liquid extraction for isolation and preconcentration of some pesticides from aqueous samples.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Feriduni, Behruz; Afshar Mogaddam, Mohammad Reza

    2015-07-23

    In this paper, a new version of salting-out homogenous liquid-liquid extraction based on counter current mode combined with dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of some pesticides from aqueous samples and their determination by gas chromatography-flame ionization detection. In order to perform the method, aqueous solution of the analytes containing acetonitrile and 1,2-dibromoethane is transferred into a narrow bore tube which is filled partially with NaCl. During passing the solution through the tube, fine droplets of the organic phase are produced at the interface of solution and salt which go up through the tube and form a separated layer on the aqueous phase. The collected organic phase is removed and injected into de-ionized water for more enrichment of the analytes. Under the optimum extraction conditions, the method shows broad linear ranges for the target analytes. Enrichment factors and limits of detection for the selected pesticides are obtained in the ranges of 3480-3800 and 0.1-5μgL(-1), respectively. Relative standard deviations are in the range of 2-7% (n=6, C=50 or 100μgL(-1), each analyte). Finally, some aqueous samples were successfully analyzed using the developed method.

  11. High-throughput salting-out-assisted homogeneous liquid-liquid extraction with acetonitrile for determination of baicalin in rat plasma with high-performance liquid chromatography.

    Science.gov (United States)

    Li, Tingting; Zhang, Lei; Tong, Ling; Liao, Qiongfeng

    2014-05-01

    Baicalin is the main indicator for qualitative and quantitative analysis of Scutellaria baicalensis Georgi and its prescription in vivo and in vitro. Owing to its insolubility and instability, the analysis of baicalin in biological samples is analytically challenging. Although there have been many pharmacokinetic or metabolism studies on baicalin, the current reported sample pretreatment methods are not the optimal choice with regard to absolute recovery and operation procedure. Here we report a high-throughput salting-out-assisted homogeneous liquid-liquid extraction method with acetonitrile and ammonium sulfate. Eight kinds of commonly used salts, preferred salt concentration and auxiliary solvents were investigated. The extraction efficiency in the presence of ammonium salt and auxiliary solvent (methanol) in comparison to that from the salt-free aqueous increased to above 90%. The performance of the developed pretreatment method was further evaluated through testing specificity, linearity, precision, accuracy, extraction recovery and stability. In particular, the stability investigation results proved that the operation at low temperature would no longer necessary be for salting-out-assisted homogeneous liquid-liquid extraction compared with protein precipitation, and the pretreatment method would be valuable if the compounds were unstable within matrices.

  12. Comparative study for determination of some polycyclic aromatic hydrocarbons 'PAHs' by a new spectrophotometric method and multivariate calibration coupled with dispersive liquid-liquid extraction.

    Science.gov (United States)

    Abdel-Aziz, Omar; El Kosasy, A M; El-Sayed Okeil, S M

    2014-12-10

    A modified dispersive liquid-liquid extraction (DLLE) procedure coupled with spectrophotometric techniques was adopted for simultaneous determination of naphthalene, anthracene, benzo(a)pyrene, alpha-naphthol and beta-naphthol in water samples. Two different methods were used, partial least-squares (PLS) method and a new derivative ratio method, namely extended derivative ratio (EDR). A PLS-2 model was established for simultaneous determination of the studied pollutants in methanol, by using twenty mixtures as calibration set and five mixtures as validation set. Also, in methanol a novel (EDR) method was developed for determination of the studied pollutants, where each component in the mixture of the five PAHs was determined by using a mixture of the other four components as divisor. Chemometric and EDR methods could be also adopted for determination of the studied PAH in water samples after transferring them from aqueous medium to the organic one by utilizing dispersive liquid-liquid extraction technique, where different parameters were investigated using a full factorial design. Both methods were compared and the proposed method was validated according to ICH guidelines and successfully applied to determine these PAHs simultaneously in spiked water samples, where satisfactory results were obtained. All the results obtained agreed with those of published methods, where no significant difference was observed.

  13. Simultaneous derivatization and air-assisted liquid-liquid microextraction of some parabens in personal care products and their determination by GC with flame ionization detection.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Khosrowshahi, Elnaz Marzi; Khorram, Parisa

    2013-11-01

    A simultaneous derivatization/air-assisted liquid-liquid microextraction technique has been developed for the sample pretreatment of some parabens in aqueous samples. The analytes were derivatized and extracted simultaneously by a fast reaction/extraction with butylchloroformate (derivatization agent/extraction solvent) from the aqueous samples and then analyzed by GC with flame ionization detection. The effect of catalyst type and volume, derivatization agent/extraction solvent volume, ionic strength of aqueous solution, pH, numbers of extraction, aqueous sample volume, etc. on the method efficiency was investigated. Calibration graphs were linear in the range of 2-5000 μg/L with squared correlation coefficients >0.990. Enhancement factors and enrichment factors ranged from 1535 to 1941 and 268 to 343, respectively. Detection limits were obtained in the range of 0.41-0.62 μg/L. The RSDs for the extraction and determination of 250 μg/L of each paraben were <4.9% (n = 6). In this method, the derivatization agent and extraction solvent were the same and there is no need for a dispersive solvent, which is common in a traditional dispersive liquid-liquid microextraction technique. Furthermore, the sample preparation time is very short.

  14. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid-liquid microextraction coupled with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Anthemidis, Aristidis N., E-mail: anthemid@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece); Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D. [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer A dispersive liquid-liquid micro extraction method for lead and copper determination. Black-Right-Pointing-Pointer A micro-volume transportation system for extractant solvent lighter than water. Black-Right-Pointing-Pointer Analysis of natural water samples. - Abstract: A simple and fast preconcentration/separation dispersive liquid-liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 {mu}g L{sup -1} and 3.3% for lead and 0.12 {mu}g L{sup -1} and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.

  15. Detection of the liquid-liquid transition in the deeply cooled water confined in MCM-41 with elastic neutron scattering technique

    Science.gov (United States)

    Wang, Zhe; Ito, Kanae; Chen, Sow-Hsin

    2016-05-01

    In this paper we present a review on our recent experimental investigations into the phase behavior of the deeply cooled water confined in a nanoporous silica material, MCM-41, with elastic neutron scattering technique. Under such strong confinement, the homogeneous nucleation process of water is avoided, which allows the confined water to keep its liquid state at temperatures and pressures that are inaccessible to the bulk water. By measuring the average density of the confined heavy water, we observe a likely first-order low-density liquid (LDL) to high-density liquid (HDL) transition in the deeply cooled region of the confined heavy water. The phase separation starts from 1.12±0.17{ kbar} and 215±1{ K} and extends to higher pressures and lower temperatures in the phase diagram. This starting point could be the liquid-liquid critical point of the confined water. The locus of the Widom line is also estimated. The observation of the liquid-liquid transition in the confined water has potential to explain the mysterious behaviors of water at low temperatures. In addition, it may also have impacts on other disciplines, because the confined water system represents many biological and geological systems in which water resides in nanoscopic pores or in the vicinity of hydrophilic or hydrophobic surfaces.

  16. PEG-salt aqueous two-phase systems: an attractive and versatile liquid-liquid extraction technology for the downstream processing of proteins and enzymes.

    Science.gov (United States)

    Glyk, Anna; Scheper, Thomas; Beutel, Sascha

    2015-08-01

    Nowadays, there is an increasing demand to establish new feasible, efficient downstream processing (DSP) techniques in biotechnology and related fields. Although several conventional DSP technologies have been widely employed, they are usually expensive and time-consuming and often provide only low recovery yields. Hence, the DSP is one major bottleneck for the commercialization of biological products. In this context, polyethylene glycol (PEG)-salt aqueous two-phase systems (ATPS) represent a promising, efficient liquid-liquid extraction technology for the DSP of various biomolecules, such as proteins and enzymes. Furthermore, ATPS can overcome the limitations of traditional DSP techniques and have gained importance for applications in several fields of biotechnology due to versatile advantages over conventional DSP methods, such as biocompatibility, technical simplicity, and easy scale-up potential. In the present review, various practical applications of PEG-salt ATPS are presented to highlight their feasibility to operate as an attractive and versatile liquid-liquid extraction technology for the DSP of proteins and enzymes, thus facilitating the approach of new researchers to this technique. Thereby, single- and multi-stage extraction, several process integration methods, as well as large-scale extraction and purification of proteins regarding technical aspects, scale-up, recycling of process chemicals, and economic aspects are discussed.

  17. Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry.

    Science.gov (United States)

    Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong

    2015-10-01

    In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually extraction and analysis of essential oil.

  18. Liquid-liquid transition in supercooled aqueous solution involving a low-temperature phase similar to low-density amorphous water

    CERN Document Server

    Woutersen, Sander; Zhao, Zuofeng; Angell, C Austen

    2016-01-01

    The striking anomalies in physical properties of supercooled water that were discovered in the 1960-70s, remain incompletely understood and so provide both a source of controversy amongst theoreticians, and a stimulus to experimentalists and simulators to find new ways of penetrating the "crystallization curtain" that effectively shields the problem from solution. Recently a new door on the problem was opened by showing that, in ideal solutions, made using ionic liquid solutes, water anomalies are not destroyed as earlier found for common salt and most molecular solutes, but instead are enhanced to the point of precipitating an apparently first order liquid-liquid transition. The evidence was a spike in apparent heat capacity during cooling that could be fully reversed during reheating before any sign of ice crystallization appeared. Here, we use decoupled-oscillator infrared spectroscopy to define the structural character of this phenomenon using similar down and upscan rates as in the calorimetric study. Th...

  19. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Rezaee Aghdam, Samaneh; Nouri, Nina; Bamorrowat, Mahdi

    2016-12-01

    In the present study, an elevated temperature, dispersive, liquid-liquid microextraction/gas chromatography-flame ionization detection was investigated for the determination, pre-concentration, and extraction of six organophosphorus pesticides (malathion, phosalone, dichlorvos, diazinon, profenofos, and chlorpyrifos) residues in fruit juice and aqueous samples. A mixture of 1,2-dibromoethane (extraction solvent) and dimethyl sulfoxide (disperser solvent) was injected rapidly into the sample solution heated at an elevated temperature. Analytical parameters, including enrichment factors (1600-2075), linearity (r>0.994), limits of detection (0.82-2.72ngmL(-1)) and quantification (2.60-7.36ngmL(-1)), relative standard deviations (<7%) and extraction recoveries (64-83%), showed the high efficiency of the method developed for analysis of the target analytes. The proposed procedure was used effectively to analyse selected analytes in river water and fruit juice, and diazinon was found at ngmL(-1) concentrations in apple juice.

  20. Low density solvent-based dispersive liquid-liquid microextraction for the determination of synthetic antioxidants in beverages by high-performance liquid chromatography.

    Science.gov (United States)

    Çabuk, Hasan; Köktürk, Mustafa

    2013-01-01

    A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL(-1). The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries.

  1. Toxicological evaluation of liquids proposed for use in direct contact liquid--liquid heat exchangers for solar heated and cooled buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, R.M.; Majestic, J.R.; Billau, R.

    1976-09-01

    This report contains the results of the toxicological evaluation part of the project entitled, ''Direct Contact Liquid-Liquid Heat Exchangers for Solar Heated and Cooled Buildings.'' Obviously any liquid otherwise suitable for use in such a device should be subjected to a toxicological evaluation. 34 liquids (24 denser than water, 10 less dense) have physical and chemical properties that would make them suitable for use in such a device. In addition to the complexity involved in selecting the most promising liquids from the standpoint of their chemical and physical properties is added the additional difficulty of also considering their toxicological properties. Some of the physical and chemical properties of these liquids are listed. The liquids are listed in alphabetical order within groups, the denser than water liquids are listed first followed by those liquids less dense than water.

  2. Determination of Macrolide Antibiotics Using Dispersive Liquid-Liquid Microextraction Followed by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Chen, Kuan-Yu; Yang, Thomas C.; Chang, Sarah Y.

    2012-06-01

    A novel method for the determination of macrolide antibiotics using dispersive liquid-liquid microextraction coupled to surface-assisted laser desorption/ionization mass spectrometric detection was developed. Acetone and dichloromethane were used as the disperser solvent and extraction solvent, respectively. A mixture of extraction solvent and disperser solvent were rapidly injected into a 1.0 mL aqueous sample to form a cloudy solution. After the extraction, macrolide antibiotics were detected using surface-assisted laser desorption/ionization mass spectrometry (SALDI/MS) with colloidal silver as the matrix. Under optimum conditions, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 2, 3, 3, and 2 nM for erythromycin (ERY), spiramycin (SPI), tilmicosin (TILM), and tylosin (TYL), respectively. This developed method was successfully applied to the determination of macrolide antibiotics in human urine samples.

  3. Molecularly imprinted solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction for the determination of four Sudan dyes in sausage samples.

    Science.gov (United States)

    Yan, Hongyuan; Qiao, Jindong; Wang, Hui; Yang, Gengliang; Row, Kyung Ho

    2011-06-21

    A simple and highly selective molecularly imprinted solid-phase extraction (MISPE) combined with ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) was developed for the determination of four Sudan dye (I, II, III, and IV) residues in sausage products. The novel molecularly imprinted microspheres (MIMs) synthesized by aqueous suspension polymerization using phenylamine-naphthol as the dummy template show high affinity to the four Sudan dyes and were applied as selective sorbents of MISPE-DLLME to overcome the drawbacks of template leakage in quantitative analysis. Good linearity was obtained in a range of 0.005-2.0 μg g(-1) and the average recoveries of the four Sudan dyes at three spiked levels ranged from 86.3 to 107.5%. The MISPE-DLLME-HPLC protocol significantly improved the purification and enrichment of the analytes and eliminated the template leakage of the conventional MISPE on quantitative analysis.

  4. Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis.

    Science.gov (United States)

    Aguirre, M A; Selva, E J; Hidalgo, M; Canals, A

    2015-01-01

    A rapid and efficient Dispersive Liquid-Liquid Microextraction (DLLME) followed by Laser-Induced Breakdown Spectroscopy detection (LIBS) was evaluated for simultaneous determination of Cr, Cu, Mn, Ni and Zn in water samples. Metals in the samples were extracted with tetrachloromethane as pyrrolidinedithiocarbamate (APDC) complexes, using vortex agitation to achieve dispersion of the extractant solvent. Several DLLME experimental factors affecting extraction efficiency were optimized with a multivariate approach. Under optimum DLLME conditions, DLLME-LIBS method was found to be of about 4.0-5.5 times more sensitive than LIBS, achieving limits of detection of about 3.7-5.6 times lower. To assess accuracy of the proposed DLLME-LIBS procedure, a certified reference material of estuarine water was analyzed.

  5. Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS for determination of trace Cu and Zn in water Samples

    Directory of Open Access Journals (Sweden)

    Ghorbani A.

    2014-07-01

    Full Text Available Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS was proposed for the determination of trace amounts of Copper and Zinc ions using 8-hydroxyquinoline (8-HQ as chelating agent. Several factors influencing the microextraction efficiency of Cu and Zn and their subsequent determinations, such as pH, extraction and disperser solvent type and their volume, concentration of the chelating agent and extraction time were studied, and the optimized experimental conditions were established. After extraction, the enrichment factors were 25 and 26 for Cu and Zn, respectively. The detection limits of the method were 0.025 and 0.0033 μg/L for Cu and Zn, and the relative standard deviations (R.S.D for five determinations of 1 ng/ml Cu and Zn were 8.51% and 7.41%, respectively.

  6. Comparison of ultrasound-assisted cloud point extraction and ultrasound-assisted dispersive liquid liquid microextraction for copper coupled with spectrophotometric determination

    Science.gov (United States)

    Yang, Shengchun; Fang, Xiang; Duan, Liju; Yang, Shu; Lei, Zirong; Wen, Xiaodong

    2015-09-01

    In this work, ultrasound-assisted cloud point extraction (UA-CPE) and ultrasound-assisted dispersive liquid liquid microextraction (UA-DLLME) were investigated and compared firstly as ultrasound-assisted liquid phase microextraction methods, which were coupled with spectrophotometer for copper preconcentration and detection. Compared to conventional CPE and DLLME, the extraction patterns were changed and improved by the effect of ultrasound. As novel methods, their applications were expanded and the analytical performance of spectrophotometric determination for copper was considerably improved. The influence factors of UA-CPE and UA-DLLME were studied in detail. Under the optimal conditions, the limits of detection (LODs) for copper were 0.7 μg L-1 of UA-CPE and 0.8 μg L-1 of UA-DLLME with sensitivity enhancement factors (EFs) of 17 and 16. The developed methods were applied to the determination of trace copper in real water samples with satisfactory analytical results.

  7. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters

    Science.gov (United States)

    Li, Yong; Peng, Guilong; He, Qiang; Zhu, Hui; Al-Hamadani, Sulala M. Z. F.

    2015-04-01

    In the present work, a dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of Pb, Co, Cu, Ni, Zn. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent volume, concentration of chelating agent on the quantitative recoveries of Pb, Co, Cu, Ni, Zn were investigated. The effect of the interfering ions on the analytes recovery was also investigated. Under the optimized conditions, the limits of detection were 0.97-2.18 ng L-1. The relative standard deviations (RSDs) were 2.62-4.51% (n = 7, C = 20 ng L-1). The proposed method was successfully applied for the analysis of ultra trace metals in wastewater samples.

  8. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector Using Non-invasive Laser, Optical and X-ray Techniques

    Science.gov (United States)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  9. Ultrasonic nebulization extraction assisted dispersive liquid-liquid microextraction followed by gas chromatography for the simultaneous determination of six parabens in cosmetic products.

    Science.gov (United States)

    Wei, Hongmin; Yang, Jinjuan; Zhang, Hanqi; Shi, Yuhua

    2014-09-01

    A simple, rapid, and efficient method of ultrasonic nebulization extraction assisted dispersive liquid-liquid microextraction was developed for the simultaneous determination of six parabens in cosmetic products. The analysis was carried out by gas chromatography. Water was used as the dispersive solvent instead of traditional organic disperser. The experimental factors affecting the extraction yield, such as the extraction solvent and volume, extraction time, dispersive solvent and volume, ionic strength, and centrifuging condition were studied and optimized in detail. The limit of detections for the target analytes were in the range of 2.0-9.5 μg/g. Good linear ranges were obtained with the coefficients ranging from 0.9934 to 0.9969. The proposed method was successfully applied to the analysis of six parabens in 16 cosmetic products. The recoveries of the target analytes in real samples ranged from 81.9 to 108.7%, and the relative standard deviations were <5.3%.

  10. Application of response surface method for optimization of dispersive liquid-liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil.

    Science.gov (United States)

    Sereshti, Hassan; Karimi, Maryam; Samadi, Soheila

    2009-01-09

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the determination of Rose water constituents. The effective parameters such as volume of extraction and disperser solvents, temperature, and salt effect were inspected by a full factorial design to identify important parameters and their interactions. It showed that salt addition had no effect on the efficiency. Next, a central composite design was applied to obtain optimum point of the important parameters. The optimal condition was obtained as 37.0 microL for extractor, 0.42 mL for disperser and temperature for 48 degrees C. The main components that were extracted at the optimum point were benzeneethanol (24.87%), geraniol (23.07%), beta-citronellol (22.38%), nerol (8.48%), eugenol (5.98%) and linalool (5.62%).

  11. Liquid-liquid reductive extraction in molten fluoride salt/liquid aluminium as a core of process for the An/Ln group separation

    Energy Technology Data Exchange (ETDEWEB)

    Conocar, O

    2007-06-15

    This report concerns a pyrochemical process based on liquid-liquid extraction in a molten fluoride/liquid aluminium system as a core process for actinide (An)/lanthanide (Ln) group separation, studied at CEA. The basic and demonstrative experiments have established the feasibility of the An/Ln group separation in the molten fluoride/liquid aluminium system (U, Pu, Np, Am, Cm traces from Nd, Ce, Eu, Sm, Eu, La - An/Ln separation factors over 1000 - An recovery yield over 98 % in one batch). The main experimental efforts must now be targeted on the recovery of actinides from the Al matrix. A thermodynamic and bibliographical survey has been done. It shows that back-extraction in a molten chloride melt could be a promising technique for this purpose.

  12. Method for determination of uranium isotopes in environmental samples by liquid-liquid extraction with triisooctylamine/xylene in hydrochloric media and alpha spectrometry.

    Science.gov (United States)

    Popov, L

    2012-10-01

    Alternative method for determination of uranium isotopes in various environmental samples is presented. The method is based on total decomposition of the solid materials and preconcentration of liquid samples. The separation of uranium from interfering radionuclides and stable matrix elements is attained by liquid-liquid extraction with triisooctylamine/xylene in hydrochloric media. After the additional removal of stable iron by extraction with diisopropyl ether, purified uranium is electrodeposited on stainless steel disks and measured by alpha spectrometry. The analytical method has been successfully applied to the determination of uranium isotopes in water and bottom sediments from the rivers Danube, Ogosta and Tzibritza in Northwestern Bulgaria. The analytical quality was checked by analyzing reference materials with different matrices.

  13. Ternary liquid-liquid equilibria of dimethyl carbonate + 2-propanol + water system at 303.15 and 313.15 K

    Science.gov (United States)

    Ginting, Rizqy Romadhona; Mustain, Asalil; Tetrisyanda, Rizki; Gunardi, Ignatius; Wibawa, Gede

    2015-12-01

    In this work, liquid-liquid equilibria data of dimethyl carbonate (DMC) + 2-propanol + water system were accurately determined at 303.15 and 313.15 K using stirred and jacketed equilibrium cell under atmospheric pressure. The reliabilities of the experimental data were confirmed using Bachman-Brown correlation giving r-squared value of 0.9993 and 0.9983 at 303.15 and 313.15 K, respectively. Experimental data obtained in this work exhibit Treybal's Type I ternary phase behavior. The selectivity and distribution coefficient of DMC increases with addition of DMC concentration in the organic phase. On the other hand, the effect of temperature to phase boundary was found to be not significant. The data were correlated well using the Non-Random Two Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coefficient models with root-mean-square deviation of 1.5% and 1.3%, respectively.

  14. Determination of aflatoxin B1 in cereals by homogeneous liquid-liquid extraction coupled to high performance liquid chromatography-fluorescence detection.

    Science.gov (United States)

    Sheijooni-Fumani, Neda; Hassan, Jalal; Yousefi, Seyed R

    2011-06-01

    A simple and rapid method based on homogeneous liquid-liquid extraction coupled to HPLC with fluorescence detection was developed for the determination of aflatoxin B1 (AFB1) in the rice and grain samples after post-column derivatization. The proposed method eliminated the use of immunoaffinity columns for clean-up in the determination of AFB1. The parameters affecting recovery and preconcentration such as type and volume of organic solvent, volume ratio of water/methanol, concentration of phase separator reagent and extraction time were optimized. Under the optimized conditions, the calibration graph was linear in the concentration range of 0.01-1.0 ng/g with the detection limit of 0.003 ng/g. This method was successfully applied for the analysis of AFB1 in different cereal samples.

  15. Vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction for the determination of carbamates in juices by micellar electrokinetic chromatography tandem mass spectrometry.

    Science.gov (United States)

    Moreno-González, David; Huertas-Pérez, José F; García-Campaña, Ana M; Gámiz-Gracia, Laura

    2015-07-01

    A new method based on vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction has been developed for the extraction of carbamate pesticides in juice samples prior to their determination by micellar electrokinetic chromatography coupled to tandem mass spectrometry. This sample treatment allowed the satisfactory extraction and the extract clean-up of 25 carbamates from different fruit and vegetal juices (banana, tomato, and peach). In this study, the addition of ammonium perfluorooctanoate in the aqueous sample in combination with vortex agitation, provided very clean extracts with short extraction times. Under optimized conditions, recoveries of the proposed method for these pesticides from fortified juice samples ranged from 81% to 104%, with relative standard deviations lower than 15%. Limits of quantification were between 2.3µgkg(-)(1) and 4.7µgkg(-)(1), showing the high sensitivity of this fast and simple method.

  16. Comparison of ultrasound-assisted cloud point extraction and ultrasound-assisted dispersive liquid liquid microextraction for copper coupled with spectrophotometric determination.

    Science.gov (United States)

    Yang, Shengchun; Fang, Xiang; Duan, Liju; Yang, Shu; Lei, Zirong; Wen, Xiaodong

    2015-09-01

    In this work, ultrasound-assisted cloud point extraction (UA-CPE) and ultrasound-assisted dispersive liquid liquid microextraction (UA-DLLME) were investigated and compared firstly as ultrasound-assisted liquid phase microextraction methods, which were coupled with spectrophotometer for copper preconcentration and detection. Compared to conventional CPE and DLLME, the extraction patterns were changed and improved by the effect of ultrasound. As novel methods, their applications were expanded and the analytical performance of spectrophotometric determination for copper was considerably improved. The influence factors of UA-CPE and UA-DLLME were studied in detail. Under the optimal conditions, the limits of detection (LODs) for copper were 0.7 μg L(-1) of UA-CPE and 0.8 μg L(-1) of UA-DLLME with sensitivity enhancement factors (EFs) of 17 and 16. The developed methods were applied to the determination of trace copper in real water samples with satisfactory analytical results.

  17. Baseline-Corrected Second-Order Derivative Electroanalysis Combined With Ultrasound-Assisted Liquid-Liquid Microextraction: Simultaneous Quantification of Fluoroquinolones at Low Levels.

    Science.gov (United States)

    de Oliveira, Luiz Henrique; Trindade, Magno Aparecido Gonçalves

    2016-06-21

    A baseline-corrected second-order derivative procedure and a miniaturized sample preparation based on low-density solvent and ultrasound-assisted liquid-liquid microextraction (LDS-UA-LLME) was combined to provide the simultaneous electroanalysis of three fluoroquinolones (FQ) as emerging contaminants (ECs). The enhanced mathematical processing provided the best separation with an accurate measurement of the overlapping peaks during the simultaneous electro-oxidation of target FQs that were directly dropped on the surface of carbon nanofiber-modified screen-printed electrodes. The adapted LDS-UA-LLME protocol was the key step involved in the sample preparation, which preconcentrate target analytes from diluted tap water samples with an enrichment factor of around 80×, allowing their quantification at trace levels. This combined feature demonstrated the unique application of an electroanalytical technique for the simultaneous electroanalysis of three FQs in spiked tap water samples, with recovery values remarkably close to 100%.

  18. Ionic liquid-based dispersive liquid-liquid microextraction and enhanced spectrophotometric determination of molybdenum (VI) in water and plant leaves samples by FO-LADS.

    Science.gov (United States)

    Gharehbaghi, Maysam; Shemirani, Farzaneh

    2011-02-01

    A new simple and rapid ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) has been applied to preconcentrate trace levels of molybdenum (VI) as a prior step to its enhanced determination by fiber optic-linear array detection spectrophotometry (FO-LADS). In this method, a small amount of [Hmim][Tf(2)N] (1-hexyl-3-methylimmidazolium bis (trifluormethylsulfonyl) imid) as an extraction solvent was applied to extract molybdenum - pyrogallol red complex, which was formed in an aqueous solution in the presence of N-cetyl-N-N-N-trimethyl ammonium chloride as a sensitizing agent. Under optimum conditions, enhancement factor, detection limit and relative standard deviation (n=5, for 30 μg L(-1) of molybdenum (VI)) in 10 mL water sample were 72.6, 1.43 μg L(-1) and 2.8%, respectively.

  19. Direct contact liquid-liquid heat exchanger for solar heated and cooled buildings. Final report, January 1, 1979-May 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Karaki, S.; Brothers, P.

    1980-06-01

    The technical and economic feasibility of using a direct contact liquid-liquid heat exchanger (DCLLHE) storage unit in a solar heating and cooling system is established. Experimental performance data were obtained from the CSU Solar House I using a DCLLHE for both heating and cooling functions. A simulation model for the system was developed. The model was validated using the experimental data and applied in five different climatic regions of the country for a complete year. The life-cycle cost of the system was estimated for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger. It is concluded that while thare is a performance advantage with a DCLLHE system over a conventional solar system, the advantage is not sufficiently large to overcome slightly higher capital and operating costs for the DCLLHE system.

  20. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-vis spectrophotometry.

    Science.gov (United States)

    Pourreza, Nahid; Rastegarzadeh, Saadat; Larki, Arash

    2015-03-01

    This article presents a new and sensitive method for the determination of trace amounts of fungicide carbendazim by dispersive liquid-liquid microextraction (DLLME) combined with UV-vis spectrophotometry. The method is based on the reduction of Fe(III) to Fe(II) by carbendazim, its reaction with potassium ferricynide to form a blue product and extraction into CCL4 by DLLME technique using methyltrioctylammonium chloride (Aliquat 336) as a disperser agent. Under the established optimum conditions, the calibration graph was linear in the range of 5-600 ng mL(-1) of carbendazim with a limit of detection of 2.1 ng mL(-1). The relative standard deviations for eight replicate determinations of 50 and 300 ng mL(-1) of carbendazim were 3.9% and 1.0%, respectively. The proposed method was successfully applied to determination of carbendazim in soil and water samples.

  1. Rapid and sensitive determination of benzaldehyde arising from benzyl alcohol used as preservative in an injectable formulation solution using dispersive liquid-liquid microextraction followed by gas chromatography.

    Science.gov (United States)

    Mashayekhi, Hossein Ali; Rezaee, Mohammad; Garmaroudi, Shirin Sadeghi; Montazeri, Naser; Ahmadi, Seyed Javad

    2011-01-01

    A rapid and sensitive method has been developed for the determination of benzaldehyde, a toxic oxidation product of the widely used preservative and co-solvent benzyl alcohol in injectable formulations of non-steroidal anti-inflammatory drugs, diclofenac, vitamin B-complex and Voltaren injection solutions by using dispersive liquid-liquid microextraction followed by gas chromatography. This method involves the use of an appropriate mixture of extraction solvent (43.0 µL 1,2-dichloroethane) and disperser solvent (1.0 mL acetonitrile) for the formation of a cloudy solution in a 5.0-mL aqueous sample containing benzaldehyde. The linear range was 1.0-1000 µg L(-1), and the limit of detection was 0.2 µg L(-1) for benzaldehyde.

  2. [Determination of trichlorobenzenes in water-based cutting fluids and wastewater of machining using dispersive liquid-liquid microextraction-gas chromatography/mass spectrometry].

    Science.gov (United States)

    Shen, Haoyu; Zhao, Yonggang; Huai, Mingmin; Jiang, Hailiang

    2009-01-01

    The determination of trichlorobenzenes (TCBs) in water-based cutting fluids and wastewater of machining has been carried out. A gas chromatography/mass spectrometry (GC/ MS) method with selected ion monitoring (SIM) mode was employed. The target analyte was extracted from the matrix using dispersive liquid-liquid microextraction. Comparing with gas chromatography/electronic capture detection (GC/ECD) coupled with traditional sample preparation procedures, e.g. head-space extraction, liquid-liquid extraction and solid-phase extraction, the present method was accurate with broader linear range, better enrichment property, better replicability, easier to be operated and less interference. Overall recoveries were 94.7% - 104.3% with the relative standard deviations (RSDs) of at 2.3% - 7.8%. The detective limits for 1,3,5-, 1,2,4- and 1,2,3-trichlorobenzene were 2.0, 6.0 and 3.0 microg/L, respectively. The parameters, such as the nature and volume of extraction solvent, dispersive solvent, extraction time and salt effect, were studied and optimized. Some important factors, e.g., the concentration of common used additives in water-based cutting fluids, which may affect the recoveries and replicabilities for the determination of trichlorobenzenes, have been investigated. The result showed that no significant effects have been observed when the concentrations of NaNO2 and polyethylene glycol (PEG) were up to 1.0%. The present method has been applied for the determination of the trichlorobenzenes in 4 real samples. The result showed that two of them were found to contain these trichlorobenzenes. The TCBs in the samples were 0.15 - 1.67 mg/L.

  3. Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for determination of three antifungal drugs in water and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Shojaie, Mehran; Abdi, Khosrou; Karimi, Mohammad Ali

    2017-03-01

    A novel ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet (UAAD-LLM-SFO) followed by HPLC-UV detection was developed for the analysis of three antifungal drugs in water and biological samples. In this method, 1-dodecanol was used as the extraction solvent. The emulsion was rapidly formed by pulling in and pushing out the mixture of sample solution and extraction solvent for 5 times repeatedly using a 10-mL glass syringe while sonication was performed. Therefore, an organic dispersive solvent required in common microextraction methods was not used in the proposed method. After dispersing, an aliquot of acetonitrile was introduced as a demulsifier solvent into the sample solution to separate two phases. Therefore, some additional steps, such as the centrifugation, ultrasonication, or agitation of the sample solution, are not needed. Parameters influencing the extraction recovery were investigated. The proposed method showed a good linearity for the three antifungal drugs studied with the correlation coefficients (R (2) > 0.9995). The limits of detection (LODs) and the limits of the quantification (LOQs) were between 0.01-0.03 μg L(-1) and 0.03-0.08 μg L(-1), respectively. The preconcentration factors (PFs) were in the range of 107-116, respectively. The precisions, as the relative standard deviations (RSDs) (n = 5), for inter-day and intra-day analysis were in the range of 2.1-4.5% and 6.5-8.5%, respectively. This method was successfully applied to determine the three antifungal drugs in tap water and biological samples. The recoveries of antifungal drugs in these samples were 92.4-98.5%. Graphical abstract Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for the analysis of three antifungal drugs prior HPLC-UV.

  4. Dispersive liquid-liquid microextraction based on solidification of floating organic droplets followed by high performance liquid chromatography for the determination of duloxetine in human plasma.

    Science.gov (United States)

    Suh, Joon Hyuk; Lee, Yun Young; Lee, Hee Joo; Kang, Myunghee; Hur, Yeoun; Lee, Sun Neo; Yang, Dong-Hyug; Han, Sang Beom

    2013-03-05

    A novel dispersive liquid-liquid microextraction method based on solidification of floating organic droplets (DLLME-SFO) technique was developed for the determination of duloxetine in human plasma samples by high performance liquid chromatography with fluorescence detection (HPLC-FLD). During the extraction procedure, plasma protein was precipitated by using a mixture of zinc sulfate solution and acetonitrile. After the protein precipitation step, duloxetine in an alkaline sample solution was quickly extracted by DLLME-SFO with 50 μL of 1-undecanol (extractant). Disperser was unnecessary because the small amount of remaining acetonitrile, which acts as a protein precipitating reagent, was also employed as a disperser; therefore, organic solvent consumption was reduced as much as possible. The emulsion was centrifuged and then fine droplets were floated to the top of the sample solution. The floated droplets were solidified in an ice bath and easily transferred. Various DLLME-SFO parameters such as extractant type, extractant amount, ionic strength, pH and extraction time were optimized. The chromatographic separation of duloxetine was carried out using ethanol as mobile phase. Validation of the method was performed with respect to linearity, intra- and inter-day accuracy and precision, limit of quantification (LOQ), and recovery. Calibration curves for duloxetine showed good linearity with correlation coefficients (r²) higher than 0.99. The method showed good precision and accuracy, with intra- and inter-assay coefficients of variation less than 15% (LOQ: less than 20%) at all concentrations. The recovery was carried out following the standard addition procedure with yields ranging from 59.6 to 65.5%. A newly developed environmentally friendly method was successfully applied to the pharmacokinetic study of duloxetine in human plasma and was shown to be an alternative green approach compared with the conventional solid-phase microextraction (SPME) and dispersive

  5. Determination of urinary biogenic amines' biomarker profile in neuroblastoma and pheochromocytoma patients by MEKC method with preceding dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Miękus, Natalia; Olędzka, Ilona; Plenis, Alina; Kowalski, Piotr; Bień, Ewa; Miękus, Aleksandra; Krawczyk, Małgorzata Anna; Adamkiewicz-Drożyńska, Elżbieta; Bączek, Tomasz

    2016-11-15

    The unbalanced secretion of biogenic amines (BAs) is considered to be a relevant biochemical biomarker in the screening for neuroendocrine tumors, such as: neuroblastoma and pheochromocytoma. However, there is still a need to improve the bioanalytical procedures for BA determination in biological samples due to their instability (photo- and thermosensitivity, easy oxidation) and low concentration in the body fluids. In this study, the primary analytical challenge was to optimize the method of extraction of seven compounds from among BAs and their precursors from urine samples. Several methods based on liquid-liquid extraction (LLE) or solid phase extraction (SPE) techniques were tested. By optimization of the extraction and data analysis using chemometric tool, the dispersive liquid-liquid microextraction (DLLME) has been chosen due to its low solvents consumption, high efficiency of isolation, preconcentration and suitable clean-up of biological matrix. Further, α-cyclodextrin-modified micellar electrokinetic chromatography (MEKC) with ultraviolet detection (UV) has been applied for quantification of the analyzed biologically active compounds with limits of detection (LOD) and limits of quantification (LOQ) at 0.15 and 0.5μgmL(-1), respectively. Finally, the optimized and validated DLLME-MEKC-UV method has been employed for the analysis of real urine samples, obtained from 6 children with neuroendocrine tumors and 6 healthy children. It was stated that concentrations of BA could serve to differentiate between the patients and healthy children. This pilot study indicates that the elaborated fast and sensitive DLLME-MEKC-UV method for determination of panel of biomarkers could be successfully applied in everyday clinical practice to help to confirm the clinical diagnosis of neuroendocrine tumors in children.

  6. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Molaakbari, Elaheh [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Young Research Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mostafavi, Ali, E-mail: mostafavi.ali@gmail.com [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment and Nanochemistry Department, Research Institute of Environmental Science, International Center for Science, High Technology and Environmental Science, Kerman (Iran, Islamic Republic of); Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-01-30

    In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 {mu}L ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL{sup -1}, the detection limit was 0.37 ng mL{sup -1} (3S{sub b}/m, n = 7) and the relative standard deviation was {+-}1.63% (n = 7, C = 200 ng mL{sup -1}). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

  7. Comparison of solid phase- and liquid/liquid-extraction for the purification of hair extract prior to multi-class pesticides analysis.

    Science.gov (United States)

    Duca, Radu-Corneliu; Salquebre, Guillaume; Hardy, Emilie; Appenzeller, Brice M R

    2014-04-01

    The present study focuses on the influence of a purification step - after extraction of pesticides from hair and before analysis of the extract - on the sensitivity of analytical methods including compounds from different chemical classes (both parent and metabolites). Sixty-seven pesticides and metabolites from different chemical classes were tested here: organochlorines, organophosphates, carbamates, pyrethroids, ureas, azoles, phenylpyrazoles and neonicotinoids. Two gas chromatography-negative chemical ionization-tandem mass spectrometry methods and one based on ultra-performance liquid chromatography-electrospray tandem mass spectrometry were used. Seven solid-phase extraction cartridges: C18, S-DVB, PS-DVB, GCB, GCB/PSA, SAX/PSA and Florisil/PSA were tested and compared to more classical liquid-liquid extraction procedures using ethyl acetate, hexane and dichloromethane. Although LLE allowed obtaining good results for some compounds, on the whole, SPE clearly provided better recovery for the majority of the pesticide residues tested in the present study. GCB/PSA was clearly the best suited to non-polar compounds such as organochlorines, pyrethroids and organophosphates, with recovery ranging from 45.9% (diflufenican) to 117.1% (parathion methyl). For hydrophilic metabolites (e.g. dialkyl phosphates and other organophosphate metabolites, pyrethroid metabolites, phenols and carbamate metabolites), the best results were obtained with PS-DVB, with recovery ranged from 10.3% (malathion monocarboxylic acid) to 93.1% (para-nitrophenol). For hydrophilic parent pesticides (e.g. neonicotinoids, carbamates, azoles) and metabolites without nucleophilic functions, the best recovery was obtained with SAX/PSA, with recovery ranging from 52.1% (3-hydroxycarbofuran) to 100.9% (3,4-dichloroaniline). Solid phase extraction was found to be more suitable than the liquid-liquid extraction for pesticides and their metabolites determination in terms of number of extracted compounds

  8. Analyses of polychlorinated biphenyls in waters and wastewaters using vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ozcan, Senar

    2011-03-01

    A method was developed for viable and rapid determination of seven polychlorinated biphenyls (PCBs) in water samples with vortex-assisted liquid-liquid microextraction (VALLME) using gas chromatography-mass spectrometry (GC-MS). At first, the most suitable extraction solvent and extraction solvent volume were determined. Later, the parameters affecting the extraction efficiency such as vortex extraction time, rotational speed of the vortex, and ionic strength of the sample were optimized by using a 2(3) factorial experimental design. The optimized extraction conditions for 5 mL water sample were as follows: extractant solvent 200 μL of chloroform; vortex extraction time of 2 min at 3000 rpm; centrifugation 5 min at 4000 rpm, and no ionic strength. Under the optimum condition, limits of detection (LOD) ranged from 0.36 to 0.73 ng/L. Mean recoveries of PCBs from fortified water samples are 96% for three different fortification levels and RSDs of the recoveries are below 5%. The developed procedure was successfully applied to the determination of PCBs in real water and wastewater samples such as tap, well, surface, bottled waters, and municipal, treated municipal, and industrial wastewaters. The performance of the proposed method was compared with traditional liquid-liquid extraction (LLE) of real water samples and the results show that efficiency of proposed method is comparable to the LLE. However, the proposed method offers several advantages, i.e. reducing sample requirement for measurement of target compounds, less solvent consumption, and reducing the costs associated with solvent purchase and waste disposal. It is also viable, rapid, and easy to use for the analyses of PCBs in water samples by using GC-MS.

  9. Determination of ultraviolet filters in water samples by vortex-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Zhang, Yufeng; Lee, Hian Kee

    2012-08-03

    For the first time, a simple solvent microextraction method termed vortex-assisted liquid-liquid microextraction (VADLLME) coupled with gas chromatography-mass spectrometry (GC-MS) has been developed and used for the analysis of six benzophenone ultraviolet (UV) filters (i.e. benzhydrol, 2,4-dihydroxybenzophenone, benzophenone, 2-hydroxy-4-methoxybenzophenone, ethylhexyl salicylate and homosalate) in water samples. The most favorable extraction variables in the VADLLME process were determined. In the extraction procedure, 40 μL of tetrachloroethene as extraction solvent were directly injected into a 15-mL centrifuge tube containing 10 mL of aqueous sample, adjusted to pH 4 for VADLLME. After VADLLME, the extract was evaporated under a gentle nitrogen gas stream and then reconstituted with N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA), thus allowing the target analytes to be converted into their trimethylsilyl derivatives to optimize the GC-MS analysis. No centrifugation and disperser solvent were required in this microextraction procedure. Significantly, short extraction time and high extraction efficiency were achieved. This method opens up a potentially new horizon for on-site dispersive liquid-liquid microextraction. Under the optimum conditions, the proposed method provided good enrichment factors up to 310, with relative standard deviations ranging from 6.1 to 12.9%. The limits of quantification were in the range of 20-100 ng/L, depending on the analytes. The linearities were between 0.05 and 10 μg/L and 0.1 and 10 μg/L for different UV filters. Finally, the proposed method was successfully applied to the determination of UV filters from spiked genuine water samples and acceptable recoveries over the range of 71.0-120.0% were obtained.

  10. No Previous Public Services Required

    Science.gov (United States)

    Taylor, Kelley R.

    2009-01-01

    In 2007, the Supreme Court heard a case that involved the question of whether a school district could be required to reimburse parents who unilaterally placed their child in private school when the child had not previously received special education and related services in a public institution ("Board of Education v. Tom F."). The…

  11. CHEMOMETRICS IN BIOANALYTICAL SAMPLE PREPARATION - A FRACTIONATED COMBINED MIXTURE AND FACTORIAL DESIGN FOR THE MODELING OF THE RECOVERY OF 5 TRICYCLIC AMINES FROM PLASMA AFTER LIQUID-LIQUID-EXTRACTION PRIOR TO HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY

    NARCIS (Netherlands)

    WIELING, J; MENSINK, CK; JONKMAN, JHG; COENEGRACHT, PMJ; DUINEVELD, CAA; DOORNBOS, DA

    1993-01-01

    A general systematic approach is described for the chemometric modelling of liquid-liquid extraction data of drugs from biological fluids. Extraction solvents were selected from Snyder's solvent selectivity triangle: methyl tert.-butyl ether, methylene chloride and chloroform. The composition of a m

  12. SELECTION OF ROBUST COMBINATIONS OF EXTRACTION LIQUID COMPOSITION AND INTERNAL STANDARD - MONTE-CARLO SIMULATION OF IMPROVEMENT OF ASSAY-METHODS WITH LIQUID-LIQUID-EXTRACTION PRIOR TO HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY

    NARCIS (Netherlands)

    WIELING, J; COENEGRACHT, PMJ; MENSINK, CK; JONKMAN, JHG; DOORNBOS, DA

    1992-01-01

    The liquid-liquid extraction of a mixture of sulphonamides was achieved to examine the correlation between the experimental errors in the recoveries. Also, the impact of the composition of the extraction liquid was investigated. Six sulphonamides were repeatedly extracted simultaneously with ten dif

  13. Phase separation in polymer solutions. I. Liquid-liquid phase separation of PPO poly (2, 6-dimethyl 1, 4-phenylene oxide) in binary mixtures with toluene and ternary mixtures with toluene and ethyl alcohol

    NARCIS (Netherlands)

    Emmerik, van P.T.; Smolders, C.A.

    1972-01-01

    In the system poly(2, 6-dimethy1-1, 4-phenylene oxide) (PPO)-toluene three phase separation lines can be detected: the melting point curve, the cloud point curve, and the spinodial. Because crystallization of PPO occurs very slowly, a phase transition will always be initiated by liquid-liquid phase

  14. Pretreatment method for immunoassay of polychlorinated biphenyls in transformer oil using multilayer capillary column and microfluidic liquid-liquid partitioning.

    Science.gov (United States)

    Aota, Arata; Date, Yasumoto; Terakado, Shingo; Ohmura, Naoya

    2013-01-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that are present in the insulating oil inside a large number of transformers. To aid in eliminating PCB-contaminated transformers, PCBs in oil need to be measured using a rapid and cost-effective analytical method. We previously reported a pretreatment method for the immunoassay of PCBs in oil using a large-scale multilayer column and a microchip with multiple microrecesses, which permitted concentrated solvent extraction. In this paper, we report on a more rapid and facile pretreatment method, without an evaporation process, by improving the column and the microchip. In a miniaturized column, the decomposition and separation of oil were completed in 2 min. PCBs can be eluted from the capillary column at concentrations seven-times higher than those from the previous column. The total volume of the microrecesses was increased by improving the microrecess structure, the enabling extraction of four-times the amount of PCBs achieved with the previous system. By interfacing the capillary column with the improved microchip, PCBs in the eluate from the column were extracted into dimethyl sulfoxide in microrecesses with high enrichment and without the need for evaporation. Pretreatment was completed within 20 min. The pretreated oil was analyzed using a flow-based kinetic exclusion immunoassay. The limit of detection of PCBs in oil was 0.15 mg kg(-1), which satisfies the criterion set in Japan of 0.5 mg kg(-1).

  15. Combination of dispersive liquid-liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Assadi, Yaghoub [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)], E-mail: y_assadi@iust.ac.ir

    2008-03-03

    The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 {mu}L volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 {mu}g L{sup -1} with a detection limit of 0.5 {mu}g L{sup -1}. The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 {mu}g L{sup -1} of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 {mu}g L{sup -1} ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.

  16. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-01-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples.

  17. Pipette vial dispersive liquid-liquid microextraction combined with high-performance liquid chromatography for the determination of benzoylurea insecticide in fruit juice.

    Science.gov (United States)

    Xi, Xuefei; Yang, Miyi; Shen, Ganni; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang

    2016-01-01

    A simple, sensitive, and efficient method of using a pipette vial to perform dispersive liquid-liquid microextraction based on the solidification of floating organic droplets was coupled with high-performance liquid chromatography (HPLC) and a diode array detector for the preconcentration and analysis of four benzoylurea insecticides in fruit juice. In this method, 1-dodecanol was used as an extractant, and a snipped pipette was used as an experimental vial to simplify the procedure of collecting and separating solidified extractant. The experimental parameters were optimized using a Plackett-Burman design and one-factor-at-a-time method. Under the optimal conditions in the water model, the limits of detection for analytes varied from 0.03 to 0.28 μg/L, and the enrichment factors ranged from 147 to 206. Linearity was achieved for diflubenzuron and flufenoxuron in a range of 0.5-500 μg/L, for hexaflumuron in a range of 1-500 μg/L, and for triflumuron in a range of 5-500 μg/L. The correlation coefficients for the analytes ranged from 0.9986 to 0.9994 with recoveries of 91.4-110.9%. Finally, the developed technique was successfully applied to fruit juice samples with acceptable results. The relative standard deviations of the analytes at two spiking levels (50 and 200 μg/L) varied between 0.2 and 4.5%.

  18. Ultrasound-assisted ionic liquid-based homogeneous liquid-liquid microextraction high-performance liquid chromatography for determination of tanshinones in Salvia miltiorrhiza Bge. root.

    Science.gov (United States)

    Wang, Zhibing; Cao, Bocheng; Yu, Aimin; Zhang, Hanqi; Qiu, Fangping

    2015-02-01

    The ultrasound-assisted ionic liquid-based homogeneous liquid-liquid microextraction has been developed and applied to the extraction of four tanshinones, including dihydrotanshinone, tanshinone I, cryptotanshinone and tanshinone IIA in Salvia miltiorrhiza Bge. root. High performance liquid chromatography was applied to the separation and determination of the analytes. The ionic liquid was used as extraction solvent and target analytes were extracted with help of ultrasound. Then, ion-pairing agent was added into the sample solution, which resulted in the formation of water-insoluble ionic liquid in the solution. The phase separation was performed by centrifugation. The extraction, concentration and purification of target analytes were performed simultaneously. The experimental parameters, including type and volume of ionic liquid, sample amount, the size of sample particle, pH value of extraction medium, extraction temperature, extraction time, amount of ion-pairing agent and centrifuging time, were investigated and optimized. The calibration curves showed good linear relationship (r>0.9997). The limits of detection and quantification were in the range of 0.052-0.093 and 0.17-0.31 μg mL(-1), respectively. The recoveries were between 70.45% and 94.23% with relative standard deviations lower than 5.31%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with UAE and HRE. There was no obvious difference in the extraction yields of active constitutions obtained by the three extraction methods.

  19. Sensitive determination of melamine in milk and powdered infant formula samples by high-performance liquid chromatography using dabsyl chloride derivatization followed by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Faraji, M; Adeli, M

    2017-04-15

    A new and sensitive pre-column derivatization with dabsyl chloride followed by dispersive liquid-liquid microextraction was developed for the analysis of melamine (MEL) in raw milk and powdered infant formula samples by high performance liquid chromatography (HPLC) with visible detection. Derivatization with dabsyl chloride leads to improving sensitivity and hydrophobicity of MEL. Under optimum conditions of derivatization and microextraction steps, the method yielded a linear calibration curve ranging from 1.0 to 500μgL(-1) with a determination coefficient (R(2)) of 0.9995. Limit of detection and limit of quantification were 0.1 and 0.3μgL(-1), respectively. The relative standard deviation (RSD%) for intra-day (repeatability) and inter-day (reproducibility) at 25 and 100μgL(-1) levels of MEL was less than 7.0% (n=6). Finally, the proposed method was successfully applied for the preconcentration and determination of MEL in different raw milk and powdered infant formula, and satisfactory results were obtained (relative recovery ⩾94%).

  20. Ion pair-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography as a new method for determining five folate derivatives in foodstuffs.

    Science.gov (United States)

    Nojavan, Yones; Kamankesh, Marzieh; Shahraz, Farzaneh; Hashemi, Maryam; Mohammadi, Abdorreza

    2015-05-01

    A novel technique for simultaneous determination of five folate derivatives in various food matrices was developed by ion pair-based dispersive liquid-liquid microextraction (IP-DLLME) combined with high-performance liquid chromatography (HPLC). In the proposed method, N-methyl-N,N-dioctyloctan-1-ammonium chloride (aliquat-336) was used as an ion-pair reagent. Effective variables of microextraction process were optimized. Under optimum conditions, the method yielded a linear calibration curve ranging from 1-200 ng g(-1) with correlation coefficients (r(2)) higher than 0.98. The relative standard deviation for the seven analyses was 5.2-7.4%. Enrichment factors for the five folates ranged between 108-135. Limits of detection were 2-4.1 ng g(-1). A comparison of this method with other methods described that the new proposed method is rapid and accurate, and gives very good enrichment factors and detection limits for determining five folate derivatives. The newly developed method was successfully applied for the determination of five folate derivatives in wheat flour, egg yolk and orange juice samples.

  1. Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography

    Science.gov (United States)

    De Silva, Deepthika; Lee, Steven; Duke, Anna; Angalakurthi, Siva; Chou, Ching-En; Ebrahimpour, Afshin; Thompson, David E.

    2016-01-01

    These studies represent the first report on the intravascular residence time determinations for the cyanide antidote dimethyl trisulfide (DMTS) in a rat model by using high performance liquid chromatography coupled with ultraviolet absorption spectroscopy (HPLC-UV). The newly developed sample preparation included liquid-liquid extraction by cyclohexanone. The calibration curves showed a linear response for DMTS concentrations between 0.010 and 0.30 mg/mL with R2 = 0.9994. The limit of detection for DMTS via this extraction method was 0.010 mg/mL, and the limit of quantitation was 0.034 mg/mL. Thus this calibration curve provided a tool for determining DMTS in the range between 0.04 and 0.30 mg/mL. Rats were given 20 mg/kg DMTS dose (in 15% Polysorbate 80) intravenously, and blood samples were taken 15, 60, 90, 120, and 240 min after DMTS injections. The data points were plotted as DMTS concentration in RBCs versus time, and the intravascular residence time was determined graphically. The results indicated a half-life of 36 min in a rat model, suggesting that the circulation time is long enough to provide a reasonable time interval for cyanide antagonism. PMID:28053802

  2. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Jia, Xiaoyu; Han, Yi; Liu, Xinli; Duan, Taicheng; Chen, Hangting

    2011-01-01

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg +) and mercury (Hg 2+) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg + and Hg 2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL -1 for MeHg + and 0.0014 ng mL -1 for Hg 2+, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL -1 MeHg + and Hg 2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  3. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg(+)), ethylmercury (EtHg(+)) and inorganic mercury (Hg(2+)) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL(-1) for EtHg(+) and 5-450ngL(-1) for MeHg(+) and Hg(2+). Limits of detection were 3.0ngL(-1) for EtHg(+) and 1.5ngL(-1) for MeHg(+) and Hg(2+). Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%.

  4. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xiaoyu; Han Yi; Liu Xinli [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Duan Taicheng, E-mail: tcduan@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Chen Hangting, E-mail: htchen@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China)

    2011-01-15

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg{sup +}) and mercury (Hg{sup 2+}) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg{sup +} and Hg{sup 2+} were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL{sup -1} for MeHg{sup +} and 0.0014 ng mL{sup -1} for Hg{sup 2+}, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL{sup -1} MeHg{sup +} and Hg{sup 2+} were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  5. Determination of carbohydrates in tobacco by pressurized liquid extraction combined with a novel ultrasound-assisted dispersive liquid-liquid microextraction method.

    Science.gov (United States)

    Cai, Kai; Hu, Deyu; Lei, Bo; Zhao, Huina; Pan, Wenjie; Song, Baoan

    2015-07-02

    A novel derivatization-ultrasonic assisted-dispersive liquid-liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 μL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06-0.90 μg mL(-1) and 0.9987-0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different.

  6. Salting-out assisted liquid-liquid extraction and partial least squares regression to assay low molecular weight polycyclic aromatic hydrocarbons leached from soils and sediments

    Science.gov (United States)

    Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise

    2017-02-01

    A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.

  7. Determination of descriptors for polycyclic aromatic hydrocarbons and related compounds by chromatographic methods and liquid-liquid partition in totally organic biphasic systems.

    Science.gov (United States)

    Ariyasena, Thiloka C; Poole, Colin F

    2014-09-26

    Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values.

  8. Solubility of CO2 in [1-n-butylthiolanium][Tf2N]+toluene mixtures: liquid-liquid phase split separation and modelling.

    Science.gov (United States)

    Canales, Roberto I; Lubben, Michael J; Gonzalez-Miquel, Maria; Brennecke, Joan F

    2015-12-28

    Carbon dioxide has been shown to be an effective antisolvent gas for separating organic compounds from ionic liquids (ILs) by inducing a liquid-vapour to liquid-liquid-vapour transition. Using carbon dioxide, toluene can be separated from imidazolium, phosphonium and pyridinum cation-based ILs with the bis(trifluoromethylsulfonyl)imide anion, which is relatively hydrophobic and has a high toluene solubility. A new IL with relatively low viscosity is tested here for the same toluene separation process: 1-n-butylthiolanium bis(trifluoromethylsulfonyl)imide. Carbon dioxide solubility in binary and ternary systems containing toluene and 1-n-butylthiolanium bis(trifluoromethylsulfonyl)imide is measured at 298.15 and 313.15 K up to 7.4 MPa. Solubility behaviour in this IL is similar to imidazolium-based ILs with the same anion. However, phase split pressures are lower when 1-n-butylthiolanium bis (trifluoromethylsulfonyl)imide is used instead of 1- n-hexyl-3-methylimidazolium bis(trifluoromethylsu- lfonyl)imide at the same conditions of temperature and initial composition of toluene in the IL. Solubility data are modelled with the conductor-like screening model for real solvents combined with the Soave-Redlich-Kwong equation of state, which provides good qualitative results.

  9. Experimental and Model Studies on Continuous Separation of 2-Phenylpropionic Acid Enantiomers by Enantioselective Liquid-Liquid Extraction in Centrifugal Contactor Separators.

    Science.gov (United States)

    Feng, Xiaofeng; Tang, Kewen; Zhang, Pangliang; Yin, Shuangfeng

    2016-03-01

    Multistage enantioselective liquid-liquid extraction (ELLE) of 2-phenylpropionic acid (2-PPA) enantiomers using hydroxypropyl-β-cyclodextrin (HP-β-CD) as extractant was studied experimentally in a counter-current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single-stage model for chiral extraction of 2-PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2-PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP-β-CD concentration of 0.1 mol L(-1) at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%.

  10. Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Ricardo E.; Lopez-Garcia, Ignacio [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)], E-mail: hcordoba@um.es

    2009-04-15

    A new procedure for the determination of inorganic arsenic (III,V) and antimony (III,V) in water samples by dispersive liquid-liquid micro extraction separation and electrothermal atomic absorption spectrometry (ETAAS) is presented. At pH 1, As(III) and Sb(III) are complexed with ammonium pyrrolidine dithiocarbamate and extracted into the fine droplets formed when mixing carbon tetrachloride (extraction solvent), methanol (disperser solvent) and the sample solution. After extraction, the phases are separated by centrifugation, and As(III) and Sb(III) are determined in the organic phase. As(V) and Sb(V) remain in the aqueous layer. Total inorganic As and Sb are determined after the reduction of the pentavalent forms with sodium thiosulphate. As(V) and Sb(V) are calculated by difference. The detection limits are 0.01 and 0.05 {mu}g L{sup -1} for As(III) and Sb(III), respectively, with an enrichment factor of 115. The relative standard deviation is in the 2.9-4.5% range. The procedure has been applied to the speciation of inorganic As and Sb in bottled, tap and sea water samples with satisfactory results.

  11. Determination of estrogenic mycotoxins in environmental water samples by low-toxicity dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Emídio, Elissandro Soares; da Silva, Claudia Pereira; de Marchi, Mary Rosa Rodrigues

    2015-04-24

    A novel, simple, rapid and eco-friendly method based on dispersive liquid-liquid microextraction using a bromosolvent was developed to determine six estrogenic mycotoxins (zearalenone, zearalanone, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol) in water samples by liquid chromatography-electrospray ionization tandem mass spectrometry in the negative mode (LC-ESI-MS/MS). The optimal conditions for this method include the use of 100 μL bromocyclohexane as an extraction solvent (using a non-dispersion solvent), 10 mL of aqueous sample (adjusted to pH 4), a vortex extraction time of 2 min, centrifugation for 10 min at 3500 rpm and no ionic strength adjustment. The calibration function was linear and was verified by applying the Mandel fitting test with a 95% confidence level. No matrix effect was observed. According to the relative standard deviations (RSDs), the precision was better than 13% for the repeatability and intermediate precision. The average recoveries of the spiked compounds ranged from 81 to 118%. The method limits of detection (LOD) and quantification (LOQ) considering a 125-fold pre-concentration step were 4-20 and 8-40 ng L(-1), respectively. Next, the method was applied to the analysis of the environmental aqueous samples, demonstrating the presence of β-zearalanol and zearalanone in the river water samples.

  12. Method for the determination of cadmium, lead, nickel, cobalt and copper in seafood after dispersive liquid-liquid micro-extraction.

    Science.gov (United States)

    Lemos, Valfredo Azevedo; dos Santos Vieira, Emanuel Vitor

    2014-01-01

    A method using dispersive liquid-liquid micro-extraction (DLLME) and detection by inductively coupled plasma optical emission spectroscopy (ICP-OES) was developed for the determination of trace elements in seafood samples. The procedure allowed the simultaneous determination of Cd(II), Pb(II), Ni(II) Cu(II) and Co(II) after pre-concentration using sodium diethyldithiocarbamate (DDTC) as a chelating agent. Under optimised conditions, the method had a limit of detection (LOD) of 0.03, 0.11, 0.12, 0.18 and 0.12 µg l(-1) for Cd(II), Pb(II), Ni(II) Cu(II) and Co(II), respectively. The following enrichment factors were obtained: 16 (Cd), 34 (Pb), 20 (Ni) 34 (Cu) and 12 (Co). The procedure was applied for the determination of these elements in seafood (shrimp, mussel, bass and mullet) samples. The method is simple, efficient and easy to perform for the simultaneous determination of elements in seafood samples by ICP-OES.

  13. In situ ionic liquid dispersive liquid-liquid microextraction and direct microvial insert thermal desorption for gas chromatographic determination of bisphenol compounds.

    Science.gov (United States)

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-01-01

    A new procedure based on direct insert microvial thermal desorption injection allows the direct analysis of ionic liquid extracts by gas chromatography and mass spectrometry (GC-MS). For this purpose, an in situ ionic liquid dispersive liquid-liquid microextraction (in situ IL DLLME) has been developed for the quantification of bisphenol A (BPA), bisphenol Z (BPZ) and bisphenol F (BPF). Different parameters affecting the extraction efficiency of the microextraction technique and the thermal desorption step were studied. The optimized procedure, determining the analytes as acetyl derivatives, provided detection limits of 26, 18 and 19 ng L(-1) for BPA, BPZ and BPF, respectively. The release of the three analytes from plastic containers was monitored using this newly developed analytical method. Analysis of the migration test solutions for 15 different plastic containers in daily use identified the presence of the analytes at concentrations ranging between 0.07 and 37 μg L(-1) in six of the samples studied, BPA being the most commonly found and at higher concentrations than the other analytes.

  14. Ionic liquid-based dispersive liquid-liquid microextraction with back-extraction coupled with capillary electrophoresis to determine phenolic compounds.

    Science.gov (United States)

    Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong

    2012-04-01

    Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective.

  15. Determination of strobilurin fungicides in cotton seed by combination of acetonitrile extraction and dispersive liquid-liquid microextraction coupled with gas chromatography.

    Science.gov (United States)

    Xue, Jiaying; Li, Huichen; Liu, Fengmao; Jiang, Wenqing; Chen, Xiaochu

    2014-04-01

    The simultaneous determination of four strobilurin fungicides (picoxystrobin, kresoxim-methyl, trifloxystrobin, and azoxystrobin) in cotton seed by combining acetonitrile extraction and dispersive liquid-liquid microextraction was developed prior to GC with electron capture detection. Several factors, including the type and volume of the extraction and dispersive solvents, extraction condition and time, and salt addition, were optimized. The analytes were extracted with acetonitrile from cotton seed and the clean-up was carried out by primary secondary amine. Afterwards, 60 μL of n-hexane/toluene (1:1, v/v) with a lower density than water was mixed with 1 mL of the acetonitrile extract, then the mixture was injected into 7 mL of distilled water. A 0.1 mL pipette was used to collect a few microliters of n-hexane/toluene from the top of the aqueous solution. The enrichment factors of the analytes ranged from 36 to 67. The LODs were in the range of 0.1 × 10(-3) -2 × 10(-3) mg/kg. The relative recoveries varied from 87.7 to 95.2% with RSDs of 4.1-8.5% for the four fungicides. The good performance of the method, compared with the conventional pretreatments, has demonstrated it is suitable for determining low concentrations of strobilurin fungicide residues in cotton seed.

  16. Modeling of dispersive liquid-liquid microextraction for determination of essential oil from Borago officinalis L. by using combination of artificial neural network and genetic algorithm method.

    Science.gov (United States)

    Khajeh, Mostafa; Moghaddam, Zahra Safaei; Bohlooli, Mousa; Khajeh, Ahmad

    2015-01-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography was applied for the extraction and determination of essential oil constituents of the Borago officinalis L. In this study, an experimental data-based artificial neural network (ANN) model was constructed to describe the performance of DLLME method for various operating conditions. The volume of extraction and dispersive solvents, extraction time and salt effect were the input variables of this process, whereas the extraction efficiency was the output. The ANN method was found to be capable of modeling this procedure accurately. The overall agreement between the experimental data and ANN predictions was satisfactory showing a determination coefficient of 0.982. The optimum operating condition was then determined by the genetic algorithm method. The optimal conditions were 248 µL volume of extraction solvent, 260 µL volume of dispersive solvent, 2.5 min extraction time and 0.16 mol L(-1) of salt. The limit of detection and linear dynamic range were 0.15-24.0 and 1.2-1,800 ng mL(-1), respectively. The main components of the essential oil were δ-cadinene (31.02%), carvacrol (24.91%), α-pinene (20.89%) and α-cadinol (16.47%).

  17. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent.

    Science.gov (United States)

    Sereshti, Hassan; Izadmanesh, Yahya; Samadi, Soheila

    2011-07-22

    Ultrasonic assisted extraction-dispersive liquid-liquid microextraction (UAE-DLLME) coupled with gas chromatography (GC) was applied for extraction and determination of essential oil constituents of the plant Oliveria decumbens Vent. Scanning electron microscopy (SEM) was used to see the effect of ultrasonic radiation on the extraction efficiency. By comparison with hydrodistillation, UAE-DLLME is fast, low cost, simple, efficient and consuming small amount of plant materials (∼1.0 g). The effects of various parameters such as temperature, ultrasonication time, volume of disperser and extraction solvents were investigated by a full factorial design to identify significant variables and their interactions. The results demonstrated that temperature and ultrasonication time had no considerable effect on the results. In the next step, a central composite design (CCD) was performed to obtain the optimum levels of significant parameters. The obtained optimal conditions were: 0.45 mL for disperser solvent (acetonitrile) and 94.84 μL for extraction solvent (chlorobenzene). The limits of detection (LODs), linear dynamic range and determination coefficients (R(2)) were 0.2-29 ng mL(-1), 1-2100 ng mL(-1) and 0.995-0.998, respectively. The main components of the essential oil were: thymol (47.06%), carvacrol (23.31%), gamma-terpinene (18.94%), p-cymene (8.71%), limonene (0.76%) and myristicin (0.63%).

  18. Optimization of dispersive liquid-liquid microextraction for the selective determination of trace amounts of palladium by flame atomic absorption spectroscopy.

    Science.gov (United States)

    Kokya, Taher Ahmadzadeh; Farhadi, Khalil

    2009-09-30

    A new simple and reliable method for rapid and selective extraction and determination of the trace levels of Pd(2+) ion was developed by dispersive liquid-liquid microextraction preconcentration and flame atomic absorption spectrometry detection. In the proposed approach, thioridazine HCl (TRH) was used as a Pd(2+) ion selective complexing agent. The effective parameters on the extraction recovery were studied and optimized utilizing two decent optimization methods; factorial design and central composite design (CCD). Through factorial design the best efficiency of extraction acquired using ethanol and chloroform as dispersive and extraction solvents respectively. CCD optimization resulted in 1.50 mL of dispersive solvent; 0.15 mL of extraction solvent; 0.45 mg of TRH and 250 mg of potassium chloride salt per 5 mL of sample solution. Under the optimum conditions the calibration graph was linear over the range 100-2000 microgL(-1). The average relative standard deviation was 0.7% for five repeated determinations. The limit of detection was 90 microg L(-1). The average enrichment factor and recovery reached 45.7% and 74.2% respectively. The method was successfully applied to the determination of trace amounts of palladium in the real water samples.

  19. QbD-oriented development and validation of a bioanalytical method for nevirapine with enhanced liquid-liquid extraction and chromatographic separation.

    Science.gov (United States)

    Beg, Sarwar; Chaudhary, Vandna; Sharma, Gajanand; Garg, Babita; Panda, Sagar Suman; Singh, Bhupinder

    2016-06-01

    The present studies describe the systematic quality by design (QbD)-oriented development and validation of a simple, rapid, sensitive and cost-effective reversed-phase HPLC bioanalytical method for nevirapine in rat plasma. Chromatographic separation was carried out on a C18 column using isocratic 68:9:23% v/v elution of methanol, acetonitrile and water (pH 3, adjusted by orthophosphoric acid) at a flow rate of 1.0 mL/min using UV detection at 230 nm. A Box-Behnken design was applied for chromatographic method optimization taking mobile phase ratio, pH and flow rate as the critical method parameters (CMPs) from screening studies. Peak area, retention time, theoretical plates and peak tailing were measured as the critical analytical attributes (CAAs). Further, the bioanalytical liquid-liquid extraction process was optimized using an optimal design by selecting extraction time, centrifugation speed and temperature as the CMPs for percentage recovery of nevirapine as the CAA. The search for an optimum chromatographic solution was conducted through numerical desirability function. Validation studies performed as per the US Food and Drug Administration requirements revealed results within the acceptance limit. In a nutshell, the studies successfully demonstrate the utility of analytical QbD approach for the rational development of a bioanalytical method with enhanced chromatographic separation and recovery of nevirapine in rat plasma. Copyright © 2015 John Wiley & Sons, Ltd.

  20. (Liquid + liquid) equilibrium of (NaNO{sub 3} + PEG 4000 + H{sub 2}O) ternary system at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Yecid P. [Departamento de Ingenieria Quimica, Universidad de Antofagasta, CICITEM (Chile); Galleguillos, Hector R., E-mail: hgalleguillos@uantof.cl [Departamento de Ingenieria Quimica, Universidad de Antofagasta, CICITEM (Chile)

    2011-11-15

    Highlights: > LLE data for the ATPS NaNO{sub 3} + PEG 4000 were determined at T = (288.15 and 308.15) K. > The experimental data shown that the temperature increases as STL and biphasic area increase. > The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. > The results show that the quality of fitting is better with the UNIQUAC model. - Abstract: Phase diagram and (liquid + liquid) equilibrium (LLE) data for the (NaNO{sub 3} + polyethylene glycol 4000 (PEG 4000) + H{sub 2}O) system have been determined experimentally at T = (288.15 and 308.15) K. The effects of temperature on the binodal curves and tie-lines have been studied and it was found that an increasing in temperature caused the expansion of two-phase region. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. The results show that the quality of fitting is better with the UNIQUAC model.

  1. Dispersive liquid-liquid microextraction for the determination of nitrophenols in soils by microvial insert large volume injection-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2016-07-22

    A rapid and sensitive procedure for the determination of six NPs in soils by gas chromatography and mass spectrometry (GC-MS) is proposed. Ultrasound assisted extraction (UAE) is used for NP extraction from soil matrices to an organic solvent, while the environmentally friendly technique dispersive liquid-liquid microextraction (DLLME) is used for the preconcentration of the resulting UAE extracts. NPs were derivatized by applying an "in-situ" acetylation procedure, before being injected into the GC-MS system using microvial insert large volume injection (LVI). Several parameters affecting UAE, DLLME, derivatization and injection steps were investigated. The optimized procedure provided recoveries of 86-111% from spiked samples. Precision values of the procedure (expressed as relative standard deviation, RSD) lower than 12%, and limits of quantification ranging from 1.3 to 2.6ngg(-1), depending on the compound, were obtained. Twenty soil samples, obtained from military, industrial and agricultural areas, were analyzed by the proposed method. Two of the analytes were quantified in two of the samples obtained from industrial areas, at concentrations in the 4.8-9.6ngg(-1) range.

  2. An in situ derivatization - dispersive liquid-liquid microextraction combined with gas-chromatography - mass spectrometry for determining biogenic amines in home-made fermented alcoholic drinks.

    Science.gov (United States)

    Płotka-Wasylka, Justyna; Simeonov, Vasil; Namieśnik, Jacek

    2016-07-01

    A novel dispersive liquid-liquid microextraction (DLLME) gas chromatography mass-spectrometry (GC-MS) method was developed for the determination of 13 biogenic amines in home-made wine samples. The method allows to simultaneous extraction and derivatization of the amines providing a simple and fast mode of extract enrichment. During the study, two different procedures were examined. Statistical analysis was performed to choose better procedure, as well as the conditions of derivatization reaction. At least, a mixture of methanol (dispersive solvent; 215μL), chloroform (extractive solvent; 400μL), and isobutyl choloroformate (derivatizing reagent; 90μL) was used as extractive/derivatizing reagent, added to 5mL of sample. The addition of mixture of pyridine and HCl was necessary to eliminate the by-products. The proposed method showed good linearity (correlation coefficients >0.9961), good recoveries (from 77 to 105%), and good intra-day precision (below 13%) and inter-day precision (below 10%). Moreover, detection limits were never over 4.1μg/L. The developed method was successfully applied to the analysis of 17 home-made wine samples not regulated by law. All of the biogenic amines analyzed were found in most of the wines.

  3. Simple field-based automated dispersive liquid-liquid microextraction of trace level phthalate esters in natural waters with gas chromatography and mass spectrometric analysis.

    Science.gov (United States)

    Leng, Geng; Chen, Wenjin; Wang, Yong

    2016-09-01

    A small, simple, and field-based automated dispersive liquid-liquid microextraction method followed by gas chromatography mass spectrometric analysis was developed for trace level phthalate esters analysis in natural waters. With a single syringe pump that is coupled with a multiposition valve, the whole extraction procedure including cleaning, sampling, mixing of extractant and disperser solvents, extraction, phase separation, and analytes collection was carried out in a totally automated way with a sample throughput of 21 h(-1) . Key factors, such as type and ratio of the extractant and disperser solvent, aspiration flow rate, extraction time, and matrix effect, were thoroughly investigated. Under the optimum conditions, linearity was found in the range from 0.03 to 60 μg/L. Limits of detection ranged from 0.0015 to 0.003 μg/L. Enrichment factors were in a range of 106-141. Reproducibility and recoveries were assessed by testing a series of three natural water samples that were spiked with different concentration levels. Finally, the proposed method was successfully applied in analysis of real surface waters. The developed system is inexpensive, light (2.6 kg), simple to use, applicable in the field, with high sample throughput, and sensitive enough for trace level phthalate esters analysis in natural waters.

  4. Homogeneous Liquid-Liquid Microextraction for Determination of Organophosphorus Pesticides in Environmental Water Samples Prior to Gas Chromatography-Flame Photometric Detection.

    Science.gov (United States)

    Berijani, Sana; Sadigh, Mirhanif; Pournamdari, Elham

    2016-07-01

    In this study, homogeneous liquid-liquid microextraction (HLLME) was developed for preconcentration and extraction of 15 organophosphorus pesticides (OPPs) from water samples coupling with gas chromatography followed by a flame photometric detector (HLLME-GC-FPD). In this method, OPPs were extracted by the homogeneous phase in a ternary solvent system (water/acetic acid/chloroform). The homogeneous solution was excluded by the addition of sodium hydroxide as a phase separator reagent and a cloudy solution was formed. After centrifugation (3 min at 5,000 rpm), the fine particles of extraction solvent (chloroform) were sedimented at the bottom of the conical test tube (10.0 ± 0.5 µL). Furthermore, 0.5 µL of the sedimented phase was injected into the GC for separation and determination of OPPs. Optimal results were obtained under the following conditions: volume of the extracting solvent (chloroform), 53 µL; volume of the consolute solvent (acetic acid), 0.76 mL and concentration of sodium hydroxide, 40% (w/v). Under the optimum conditions, the enrichment factors of (260-665), the extraction percent of 75.8-104%, the dynamic linear range of 0.03-300 µg L(-1) and the limits of detection of 0.004-0.03 µg L(-1) were obtained for the OPPs. This method was successfully applied for the extraction and determination of the OPPs in environmental water samples.

  5. Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid-liquid extraction and gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Liu, Hongtao; Huang, Liping; Chen, Yuxin; Guo, Liman; Li, Limin; Zhou, Haiyun; Luan, Tiangang

    2015-06-15

    A rapid, precise and accurate method for the simultaneous determination of 5 polycyclic musks (PCMs) in biological fluids was developed by solid supported liquid-liquid extraction (SLE) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS). All parameters influencing SLE-GC-MS performance, including electron energy of electron-impact ionization source, collision energy for tandem mass spectrometer when operated in selected-reaction monitoring (SRM) mode, type and volume of elution reagent, nitrogen evaporation time, pH and salinity of sample have been carefully optimized. Eight milliliter of n-hexane was finally chosen as elution reagent. Blood and urine sample could be loaded into SLE cartridge without adjusting pH and salinity. Deuterated tonalide (AHTN-d3) was chosen as internal standard. The correlation coefficient (r(2)) of the calibration curves of target compounds ranged from 0.9996 to 0.9998. The dynamic range spanned over two orders of magnitude. The limit of detection (LOD) of target compounds in blood and urine ranged from 0.008 to 0.105μgL(-1) and 0.005 to 0.075μgL(-1), respectively. The developed procedure was successfully applied to the analysis of PCMs in human blood and urine obtaining satisfying recoveries on low, medium and high levels. The method was compared with SLE-GC-MS and shown one to two orders of magnitude improvement in sensitivity.

  6. Pre-concentration of phenolic compounds in water samples by novel liquid-liquid microextraction and determination by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Faraji, Hakim; Tehrani, Mohammad Saber; Husain, Syed Waqif

    2009-12-04

    Pre-concentration and determination of 8 phenolic compounds in water samples has been achieved by in situ derivatization and using a new liquid-liquid microextraction coupled GC-MS system. Microextraction efficiency factors have been investigated and optimized: 9 microL 1-undecanol microdrop exposed for 15 min floated on surface of a 10 mL water sample at 55 degrees C, stirred at 1200 rpm, low pH level and saturated salt conditions. Chromatographic problems associated with free phenols have been overcome by simultaneous in situ derivatization utilizing 40 microL of acetic anhydride and 0.5% (w/v) K(2)CO(3). Under the selected conditions, pre-concentration factor of 235-1174, limit of detection of 0.005-0.68 microg/L (S/N=3) and linearity range of 0.02-300 microg/L have been obtained. A reasonable repeatability (RSD or =r(2)> or =0.9975) of results illustrated a good performance of the present method. The relative recovery of different natural water samples was higher than 84%.

  7. Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography.

    Science.gov (United States)

    Boonchiangma, Suthasinee; Ngeontae, Wittaya; Srijaranai, Supalax

    2012-01-15

    Dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography (HPLC) with UV detection was applied for the determination of six pyrethroids (tetramethrin, fenpropathrin, cypermethrin, deltamethrin, fenvalerate and permethrin) in various fruit juices including apple, red grape, orange, kiwi, passion fruit, pomegranate and guava juice. Six pyrethroids were separated within 30 min using a Waters Atlantis T3 column under an isocratic elution of acetonitrile-water (72:28). The parameters affecting extraction efficiency of the DLLME method such as type of disperser and extraction solvent, volume of disperser and extraction solvent and centrifugation time were investigated. Under the optimum conditions, 5.00 mL of sample solution, 300 μL of chloroform as extraction solvent and 1.25 mL of methanol as dispersive solvent gave high enrichment factor in the range of 62-84. Good linearity was obtained from 2 to 1,500 μg/L (r(2)>0.995). The mean recoveries of the pyrethroids evaluated by fortification of real samples were in the range of 84-94%. The limits of detection ranging from 2 to 5 μg/L are sufficient to analyze pyrethroid residues at the maximum residue limits (MRLs) established by the European Union (EU) in fruit juices. The proposed method can be applied to direct determination of pyrethroid residues in fruit juices.

  8. Simultaneous determination of six synthetic phenolic antioxidants in edible oils using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with diode array detection.

    Science.gov (United States)

    Xu, Shuangjiao; Liu, Liangliang; Wang, Yanqin; Zhou, Dayun; Kuang, Meng; Fang, Dan; Yang, Weihua; Wei, Shoujun; Xiao, Aiping; Ma, Lei

    2016-08-01

    A simple, rapid, organic-solvent- and sample-saving pretreatment technique, called dispersive liquid-liquid microextraction, was developed for the determination of six synthetic phenolic antioxidants from edible oils before high-performance liquid chromatography with diode array detection. The entire procedure was composed of a two-step microextraction and a centrifugal process and could be finished in about 5 min, only consuming only 25 mg of sample and 1 mL of the organic solvent for each extraction. The influences of several important parameters on the microextraction efficiency were thoroughly investigated. Recovery assays for oil samples were spiked at three concentration levels, 50, 100 and 200 mg/kg, and provided recoveries in the 86.3-102.5% range with a relative standard deviation below 3.5%. The intra-day and inter-day precisions for the analysis were less than 3.8%. The proposed method was successfully applied for the determination of synthetic phenolic antioxidants in different oil samples, and satisfactory results were obtained. Thus, the developed method represents a viable alternative for the quality control of synthetic phenolic antioxidant concentrations in edible oils.

  9. Microwave-assisted ionic liquid homogeneous liquid-liquid microextraction coupled with high performance liquid chromatography for the determination of anthraquinones in Rheum palmatum L.

    Science.gov (United States)

    Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi

    2016-06-01

    The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant.

  10. Intravascular Residence Time Determination for the Cyanide Antidote Dimethyl Trisulfide in Rat by Using Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Deepthika De Silva

    2016-01-01

    Full Text Available These studies represent the first report on the intravascular residence time determinations for the cyanide antidote dimethyl trisulfide (DMTS in a rat model by using high performance liquid chromatography coupled with ultraviolet absorption spectroscopy (HPLC-UV. The newly developed sample preparation included liquid-liquid extraction by cyclohexanone. The calibration curves showed a linear response for DMTS concentrations between 0.010 and 0.30 mg/mL with R2 = 0.9994. The limit of detection for DMTS via this extraction method was 0.010 mg/mL, and the limit of quantitation was 0.034 mg/mL. Thus this calibration curve provided a tool for determining DMTS in the range between 0.04 and 0.30 mg/mL. Rats were given 20 mg/kg DMTS dose (in 15% Polysorbate 80 intravenously, and blood samples were taken 15, 60, 90, 120, and 240 min after DMTS injections. The data points were plotted as DMTS concentration in RBCs versus time, and the intravascular residence time was determined graphically. The results indicated a half-life of 36 min in a rat model, suggesting that the circulation time is long enough to provide a reasonable time interval for cyanide antagonism.

  11. Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food.

    Science.gov (United States)

    Gao, Ming; Wang, Huili; Ma, Meiping; Zhang, Yuna; Yin, Xiaohan; Dahlgren, Randy A; Du, Dongli; Wang, Xuedong

    2015-05-15

    Herein, we developed a novel integrated apparatus to perform phase separation based on magnetic-stirring, salt-induced, liquid-liquid microextraction for determination of five fluoroquinolones in animal-based foods by HPLC analysis. The novel integrated apparatus consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 791 μL of acetone solvent, 2.5 g of Na2SO4, pH 1.7, 3.0 min of stir time, and 5.5 min centrifugation. The limits of detection were 0.07-0.53 μg kg(-1) and recoveries were 91.6-105.0% for the five fluoroquinolones from milk, eggs and honey. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinolones in animal-based foods.

  12. X-ray fluorescence analysis of trace metal ions following a preconcentration of metal-diethyldithiocarbamate complexes by homogeneous liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Atsushi; Igarashi, Shukuro; Ueki, Yasuo [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering; Yamaguchi, Hitoshi [National Research Inst. for Metals, Ibaraki (Japan)

    2000-11-01

    A homogeneous liquid-liquid extraction method for 36 metal ions with diethyldithiocarbamate was studied. As a result, 11 metal ions were extracted as metal-chelates. Under the experimental conditions, the maximum concentration factor was 500 (i.e., 0.1 mL of sedimented liquid phase was produced from 50 mL of aqueous phase). Moreover, the proposed method was utilized as a preconcentration method for X-ray fluorescence analysis of these metals. The recovery of each metal was ca. 97-100%. All calibration curves were linear over the range of 5.0 x 10{sup -7} mol L{sup -1} to 1.0 x 10{sup -5} mol L{sup -1}. The detection limits were at the 10{sup -8} mol L{sup -1} levels and the relative standard deviations were below 5% (5 determinations). When the proposed method was used for the determination of contaminants in a synthetic sample (Al-based alloy model) and of components in an Au-Pd alloy, the results were satisfactory. (orig.)

  13. Ultrasound-assisted low-density solvent dispersive liquid-liquid extraction for the determination of alkanolamines and alkylamines in cosmetics with ion chromatography.

    Science.gov (United States)

    Zhong, Zhixiong; Li, Gongke; Zhong, Xiuhua; Luo, Zhibin; Zhu, Binghui

    2013-10-15

    A new one-step sample preparation technique termed ultrasound-assisted low-density solvent dispersive liquid-liquid extraction (UA-LDS-DLLE) coupled with ion chromatography (IC) was developed for the determination of three alkanolamines and two alkylamines in complex samples. Sample matrices were rapidly dissolved and dispersed to form cloudy solutions by using two solvents, where target analytes were transferred into acid solutions, while liposoluble substances were dissolved in cyclohexane. The obtained extracts could be used directly for injection analysis without any additional purification because the potential matrix interferences had been effectively eliminated in extraction process. The extraction efficiency could be markedly enhanced and the extraction could be quickly accomplished within 13 min under the synergistic effects of ultrasound radiation, vibration and heating. Various parameters influencing extraction efficiency were evaluated using orthogonal array experimental design. The extraction performance of the approach was demonstrated for the determination of target analytes in 15 commercial cosmetics covering very different matrices. Linearity ranges of 0.3-50 mg L(-1) and limits of detection varying from 0.072 to 0.12 mg L(-1) were achieved. The recoveries ranged from 86.9-108.5% with the relative standard deviations (RSDs) of 1.2-6.2%. The method was proved to be a simple and effective extraction technique that provided an attractive alternative to the analysis of trace amounts of target analytes in large numbers of cosmetics.

  14. Preconcentration of Copper Using 1,5-Diphenyl Carbazide as the Complexing Agent via Dispersive Liquid-Liquid Microextraction and Determination by Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Reyhaneh Rahnama

    2013-01-01

    Full Text Available We report a simple and sensitive microextraction system for the preconcentration and determination of Cu (II by flame atomic absorption spectrometry (FAAS. Dispersive liquid-liquid microextraction is a modified solvent extraction method and its acceptor-to-donor phase ratio is greatly reduced compared with other methods. In the proposed approach, 1,5-diphenyl carbazide (DPC was used as a copper ion selective complexing agent. Several variables such as the extraction and dispersive solvent type and volume, pH of sample solution, DPC concentration, extraction time, and ionic strength were studied and optimized for a quantitative preconcentration and determination of copper (II and at the optimized conditions: 60 μL, 0.5 mL, and 5 mL of extraction solvent (chloroform, disperser solvent (ethanol, and sample volume, respectively, a linear calibration graph was obtained over the concentration range of 10–200 μg L−1 for Cu (II with R2 = 0.9966. The limit of detection (3Sb/m, and preconcentration factor are 2 μg L−1 and 25, respectively. The relative standard deviation (n=10 at 100 μg L−1 of Cu (II is 2.5%. The applicability of the developed technique was evaluated by application to spiked environmental water samples.

  15. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa

    2013-01-01

    A new and simple method for the determination of trace amounts of Cu(II) was developed by combination of dispersive liquid-liquid microextraction (DLLME) preconcentration and microsample introduction flame atomic absorption spectrometry. In this method, ethanol and chloroform were chosen as disperser and extraction solvents, respectively, and 1-nitroso-2-naphthol was used as the complexing agent. The factors affecting the extraction efficiency and determination of Cu(II), including extraction and disperser solvent nature and volume, concentration of the complexing agent, pH of the solution, extraction time, and matrix ions, were investigated. Under optimal conditions, the LOD for Cu(II) was 0.95 microg/L with a preconcentration factor of 70. The RSD was 1.9%. The accuracy of the developed DLLME method was verified by determination of Cu(II) in a certified reference material (NRCC-SLRS-4 river water). The relative error was -3.31%. The developed preconcentration procedure was successfully applied to the analysis of bottled drinking water samples.

  16. Simple and fast method for iron determination in white and red wines using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry.

    Science.gov (United States)

    Maciel, Juliana V; Soares, Bruno M; Mandlate, Jaime S; Picoloto, Rochele S; Bizzi, Cezar A; Flores, Erico M M; Duarte, Fabio A

    2014-08-20

    This work reports the development of a method for Fe extraction in white and red wines using dispersive liquid-liquid microextraction (DLLME) and determination by ultraviolet-visible spectrophotometry. For optimization of the DLLME method, the following parameters were evaluated: type and volume of dispersive (1300 μL of acetonitrile) and extraction (80 μL of C(2)Cl(4)) solvents, pH (3.0), concentration of ammonium pyrrolidinedithiocarbamate (APDC, 500 μL of 1% m/v APDC solution), NaCl concentration (not added), and extraction time. The calibration curve was performed using the analyte addition method, and the limit of detection and relative standard deviation were 0.2 mg L(-1) and below 7%, respectively. The accuracy was evaluated by comparison of results obtained after Fe determination by graphite furnace atomic absorption spectrometry, with agreement ranging from 94 to 105%. The proposed method was applied for Fe determination in white and red wines with concentrations ranging from 1.3 to 4.7 mg L(-1).

  17. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    Science.gov (United States)

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples.

  18. Quantification of tetramethyl-terephthalic acid in rat liver, spleen and urine matrices by liquid-liquid phase extraction and HPLC-photodiode array detection.

    Science.gov (United States)

    Baati, Tarek; Horcajada, Patricia; David, Olivier; Gref, Ruxandra; Couvreur, Patrick; Serre, Christian

    2012-01-01

    Tetramethyl-terephthalate (TMT) is the constitutive linker of the flexible porous iron(III) carboxylate Metal Organic Framework (MOF) MIL-88B_4CH₃ based drug nanocarrier (MIL stands for Material from Institut Lavoisier). A method for the determination of the concentration of tetramethyl-terephthalic acid has been developed in different biological rat matrices (liver, spleen and urine) using a liquid-liquid phase extraction and high-performance liquid chromatography (HPLC) coupled to photodiode array detection with 4-aminosalicylic acid as internal standard. The extraction conditions of TMT have been varied from urine to tissue depending on the complexity of the biological matrices. The chromatographic separation was performed with a gradient elution. In all matrices, the limits of detection and quantification of TMT was 0.01 and 0.05 μg ml⁻¹, respectively. The recovery of the TMT reached 86, 89 and 97% for urine, spleen and liver tissues, respectively. The linearity of the calibration curves in urine and tissues was satisfactory in all cases as evidenced by correlation coefficients >0.990. The within-day and between-day precisions were <15% (n=6) and the accuracy ranged in all cases between 86 and 103%. This method has finally allowed the quantification of TMT in rat urine and in tissue samples of rats administered intravenously with iron(III) tetramethyltherepthalate MIL-88B_4CH₃ nanoparticles.

  19. A rapid ultrasound-assisted dispersive liquid-liquid microextraction followed by ultra-performance liquid chromatography for the simultaneous determination of seven benzodiazepines in human plasma samples.

    Science.gov (United States)

    Fernández, Purificación; González, Cristina; Pena, M Teresa; Carro, Antonia M; Lorenzo, Rosa A

    2013-03-12

    A simple and efficient ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) method has been developed for the determination of seven benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, lormetazepam and tetrazepam) in human plasma samples. Chloroform and methanol were used as extractant and disperser solvents, respectively. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, pH, ultrasonic time and ionic strength) was carefully evaluated and optimized, using an asymmetric screening design 3(2)4(2)//16. Analysis of extracts was performed by ultra-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). Under the optimum conditions, two reversed-phases, Shield RP18 and C18 columns were successfully tested, obtaining good linearity in a range of 0.01-5μgmL(-1), with correlation coefficients r>0.996. Quantification limits ranged between 4.3-13.2ngmL(-1) and 4.0-14.8ngmL(-1), were obtained for C18 and Shield RP18 columns, respectively. The optimized method exhibited a good precision level, with relative standard deviation values lower than 8%. The recoveries studied at two spiked levels, ranged from 71 to 102% for all considered compounds. The proposed method was successfully applied to the analysis of seven benzodiazepines in real human plasma samples.

  20. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Le, Peisi; Ito, Kanae; Chen, Sow-Hsin, E-mail: sowhsin@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Leão, Juscelino B. [National Institute of Standards and Technology Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Tyagi, Madhusudan [National Institute of Standards and Technology Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-09-21

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.