WorldWideScience

Sample records for arrays reveal electrochemically

  1. Electrochemical Preparation of WO_3 Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Ordered WO3 nanowires arrays have been fabricated by electrochemical deposition with anodic aluminum oxide (AAO) templates and annealing the W nanowire arrays in air at 400 ℃. The morphology and the chemical composition of WO3 nanowires arrays were characterized by Scanning Electron Microscopy (SEM),Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-ray diffraction (XRD). The results show that the diameters of the WO3 nanowires are about 90 nm, which is in go...

  2. ELECTROCHEMICALLY SYNTHESIZED COPPER NANOTUBES AND NANOROD ARRAYS IN POLYCARBONATE MEMBRANES

    OpenAIRE

    SHOUHONG XUE; ZHENGDE WANG

    2006-01-01

    The large area, highly uniform copper nanorod arrays with cylindrical morphology in polycarbonate membranes (PC) have been successfully prepared by electrochemical deposition. The copper nanorod arrays have the length of 3 μm, the diameter of 400 nm, approximately, which correspond closely to the pore diameter and thickness of membranes. The copper nanotubes were also obtained by controlling initial voltage and polycarbonate membranes treatment process. The possible growing mechanisms of copp...

  3. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Janos Vörös

    2010-11-01

    Full Text Available This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR. The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance.

  4. A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array.

    Science.gov (United States)

    Manickam, Arun; Chevalier, Aaron; McDermott, Mark; Ellington, Andrew D; Hassibi, Arjang

    2010-12-01

    In this paper, we present a fully integrated biosensor 10 × 10 array in a standard complementary metal-oxide semiconducor process, which takes advantage of electrochemical impedance spectroscopy (EIS). We also show that this system is able to detect various biological analytes, such as DNA and proteins, in real time and without the need for molecular labels. In each pixel of this array, we implement a biocompatible Au electrode transducer and embedded sensor circuitry which takes advantage of the coherent detector to measure the impedance of the associated electrode-electrolyte interface. This chip is capable of concurrently measuring admittance values as small as 10(-8) Ω(-1) within the array with the detection dynamic range of more than 90 dB in the frequency range of 10 Hz-50 MHz. PMID:23850755

  5. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Liu Jinping

    2010-01-01

    Full Text Available Abstract SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2, low detection limit (0.2 μM and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  6. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    OpenAIRE

    Chen Zhao, Martin M Thuo and Xinyu Liu

    2013-01-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The b...

  7. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays.

    Science.gov (United States)

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment. PMID:21730530

  8. New Applications of Electrochemically Produced Porous Semiconductors and Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Leisner Malte

    2010-01-01

    Full Text Available Abstract The growing demand for electro mobility together with advancing concepts for renewable energy as primary power sources requires sophisticated methods of energy storage. In this work, we present a Li ion battery based on Si nanowires, which can be produced reliable and cheaply and which shows superior properties, such as a largely increased capacity and cycle stability. Sophisticated methods based on electrochemical pore etching allow to produce optimized regular arrays of nanowires, which can be stabilized by intrinsic cross-links, which serve to avoid unwanted stiction effects and allow easy processing.

  9. Nanopatterning of transition metal surfaces via electrochemical dimple array formation.

    Science.gov (United States)

    Singh, Sherdeep; Barden, Warren R T; Kruse, Peter

    2008-12-23

    Nanoscale surface patterning is of great importance for applications ranging from catalysts to biomaterials. We show the formation of ordered nanoscale dimple arrays on titanium, tungsten, and zirconium during electropolishing, demonstrating versatility of a process previously only reported for tantalum. This is a rare example of an electrochemical pattern formation process that can be translated to other materials. The dimpled surfaces have been characterized with scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, and electrochemical conditions were optimized for each material. While conditions for titanium and tungsten resemble those for tantalum, zirconium requires a different type of electrolyte. Given the appropriate electropolishing chemistry, formation of these patterns should be possible on any metal surface. The process is very robust on homogeneous surfaces, but sensitive to inhomogeneities in chemical composition, such as in the case of differentially etched alloys. An alternative process for some materials such as platinum is the coating of a dimpled substrate with a thin film of the required material. PMID:19206279

  10. AC Electrochemical Deposition of CdS Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    QIN; DongHuan

    2001-01-01

    Since the successful growth of carbon nanotubes, one-dimensional materials have been a focused research field both because of their fundamental importance and the wide-ranging potential applications in nano devices. Many approaches are used to fabricate nanowires, such as crystal growth. In order to obtain nanowires whose growth is more easily controlled, electrochemical synthesis in a template is taken as one of the most efficient methods. To date, Co, Fe, Ni, CuCo1-3 and other nanowire arrays have been fabricated successfully by electrodepositing corresponding metal ion into the porous aluminum oxide (PAO) membrane or other non-magnetic materials. Cadmium sulfide(CdS), as one of the most important semiconductor material, is a n-type semiconductor. The ability to fine tune their fundamental electronic and optical properties by simply varying the cruster size, rather than composition, makes them highly attractive for a variety of possible application. In this paper, we report our work of fabricating CdS nanowire arrays based on AC electrolysis into the pores of an anodic aluminum oxide(AAO), the structure and morphology were characterized by XRD and TEM.  ……

  11. AC Electrochemical Deposition of CdS Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    QIN DongHuan; LI HuLin

    2001-01-01

    @@ Since the successful growth of carbon nanotubes, one-dimensional materials have been a focused research field both because of their fundamental importance and the wide-ranging potential applications in nano devices. Many approaches are used to fabricate nanowires, such as crystal growth. In order to obtain nanowires whose growth is more easily controlled, electrochemical synthesis in a template is taken as one of the most efficient methods. To date, Co, Fe, Ni, CuCo1-3 and other nanowire arrays have been fabricated successfully by electrodepositing corresponding metal ion into the porous aluminum oxide (PAO) membrane or other non-magnetic materials. Cadmium sulfide(CdS), as one of the most important semiconductor material, is a n-type semiconductor. The ability to fine tune their fundamental electronic and optical properties by simply varying the cruster size, rather than composition, makes them highly attractive for a variety of possible application. In this paper, we report our work of fabricating CdS nanowire arrays based on AC electrolysis into the pores of an anodic aluminum oxide(AAO), the structure and morphology were characterized by XRD and TEM.

  12. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    Directory of Open Access Journals (Sweden)

    Chen Zhao, Martin M Thuo and Xinyu Liu

    2013-01-01

    Full Text Available Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

  13. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    Science.gov (United States)

    Zhao, Chen; Thuo, Martin M.; Liu, Xinyu

    2013-10-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

  14. Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes

    Science.gov (United States)

    Lu, Fang; Qiu, Mengchun; Qi, Xiang; Yang, Liwen; Yin, Jinjie; Hao, Guolin; Feng, Xiang; Li, Jun; Zhong, Jianxin

    2011-08-01

    Highly ordered NiO coated Si nanowire arrays are fabricated as electrode materials for electrochemical supercapacitors (ES) via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The electrochemical tests reveal that the constructed electrode has superior electrical conductibility and more active sites per unit area for chemical reaction processes, thereby possessing good cycle stability, high specific capacity, and low internal resistance. The specific capacity is up to 787.5 F g-1 at a discharge current of 2.5 mA and decreases slightly with 4.039% loss after 500 cycles, while the equivalent internal resistance is ˜3.067 Ω. Owing to its favorable electrochemical performance, this ordered hybrid array nanostructure is a promising electrode material in future commercial ES.

  15. MnO 2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors

    Science.gov (United States)

    Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li

    Highly ordered MnO 2 nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO 2 nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO 2 nanotube array electrode has superior capacitive behaviour to that of the MnO 2 nanowire array electrode. In addition to high specific capacitance, the MnO 2 nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors.

  16. MnO{sub 2} nanotube and nanowire arrays by electrochemical deposition for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2010-07-01

    Highly ordered MnO{sub 2} nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO{sub 2} nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO{sub 2} nanotube array electrode has superior capacitive behaviour to that of the MnO{sub 2} nanowire array electrode. In addition to high specific capacitance, the MnO{sub 2} nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors. (author)

  17. Mathematical modeling of interdigitated electrode arrays in finite electrochemical cells

    CERN Document Server

    Guajardo, Cristian; Surareungchai, Werasak

    2016-01-01

    Accurate theoretical results for interdigitated array of electrodes (IDAE) in semi-infinite cells can be found in the literature. However, these results are not always applicable when using finite cells. In this study, theoretical expressions for IDAE in a finite geometry cell are presented. At known current density, transient and steady state concentration profiles were obtained as well as the response time to a current step. Concerning the diffusion limited current, a lower bound was derived from the concentration profile and an upper bound was obtained from the limiting current of the semi-infinite case. The lower bound, which is valid when Kirchhoff's current law applies to the unit cell, can be useful to ensure a minimum current level during the design of the electrochemical cell. Finally, a criterion was developed defining when the behaviors of finite and semi-infinite cells are comparable. This allows to obtain higher current levels in finite cells, approaching that of the semi-infinite case. Examples ...

  18. Nanocavity crossbar arrays for parallel electrochemical sensing on a chip

    Directory of Open Access Journals (Sweden)

    Enno Kätelhön

    2014-07-01

    Full Text Available We introduce a novel device for the mapping of redox-active compounds at high spatial resolution based on a crossbar electrode architecture. The sensor array is formed by two sets of 16 parallel band electrodes that are arranged perpendicular to each other on the wafer surface. At each intersection, the crossing bars are separated by a ca. 65 nm high nanocavity, which is stabilized by the surrounding passivation layer. During operation, perpendicular bar electrodes are biased to potentials above and below the redox potential of species under investigation, thus, enabling repeated subsequent reactions at the two electrodes. By this means, a redox cycling current is formed across the gap that can be measured externally. As the nanocavity devices feature a very high current amplification in redox cycling mode, individual sensing spots can be addressed in parallel, enabling high-throughput electrochemical imaging. This paper introduces the design of the device, discusses the fabrication process and demonstrates its capabilities in sequential and parallel data acquisition mode by using a hexacyanoferrate probe.

  19. Electrochemical Patterning and Detection of DNA Arrays on a Two-Electrode Platform

    OpenAIRE

    Furst, Ariel; Landefeld, Sally; Hill, Michael G.; Barton, Jacqueline K.

    2013-01-01

    We report a novel method of DNA array formation that is electrochemically formed and addressed with a two-electrode platform. Electrochemical activation of a copper catalyst, patterned with one electrode, enables precise placement of multiple sequences of DNA onto a second electrode surface. The two-electrode patterning and detection platform allows for both spatial resolution of the patterned DNA array and optimization of detection through DNA-mediated charge transport with electrocatalysis....

  20. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi2Te3-Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO2+ and Bi3+/ HTeO2+ ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  1. Effect of doping level of colored TiO2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties.

    Science.gov (United States)

    Kim, Choonsoo; Kim, Seonghwan; Hong, Sung Pil; Lee, Jaehan; Yoon, Jeyong

    2016-06-01

    Recently, two types of TiO2 nanotube arrays (NTAs) (blue- and black-colored TiO2 NTAs), which are easily fabricated by electrochemical self-doping, have gained much attention due particularly to their enhanced capacitive and oxidant-generating properties. These enhanced electrochemical properties mean that they have potential as basic materials for energy and environmental applications, such as in supercapacitors and anodes for water treatment. However, the understanding of the effect of the doping level of these TiO2 NTAs on their electrochemical properties is limited because there is no direct comparison or relevant discussion of their respective electrochemical properties under the same conditions, despite the similar surface characteristics of the TiO2 NTAs obtained by comparable electrochemical doping. Therefore, the objective of this study was to investigate the effect of the doping level of blue and black TiO2 NTAs on their electrochemical properties, including the capacitive and oxidant-generating properties. Although no significant difference in their surface properties was found using SEM, XRD and XPS, the black TiO2 NTA revealed a slightly higher doping level than the blue TiO2 NTA, which is caused by the order of the electrochemical self-doping and annealing conditions. With the different doping levels of the two TiO2 NTAs, the black TiO2 NTA showed a higher areal capacitance, indicating good capacitive properties, and better service life in oxidant-generation than that of the blue TiO2 NTA. The blue TiO2 NTA exhibited a larger oxygen evolution overpotential and higher chlorine evolution efficiency than that of the black TiO2 NTA. We report that the new knowledge on blue and black TiO2 NTAs from this study can contribute to the further development of supercapacitors and oxidant-generating anodes for water treatment. PMID:27169417

  2. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions

    International Nuclear Information System (INIS)

    Highlights: ► PPy nanotube arrays were electropolymerized using ZnO nanowire arrays as templates. ► PPy nanotube arrays were anchored onto ITO glass without any chemical linker. ► Using SWV, the biosensor was found to be highly sensitive and selective to Cu2+. ► The biosensor was successfully applied for the determination of Cu2+ in drinking water. - Abstract: A novel electrochemical biosensor based on functionalized polypyrrole (PPy) nanotube arrays modified with a tripeptide (Gly-Gly-His) proved to be highly effective for electrochemical analysis of copper ions (Cu2+). The vertically oriented PPy nanotube arrays were electropolymerized by using modified zinc oxide (ZnO) nanowire arrays as templates which were electrodeposited on indium–tin oxide (ITO) coated glass substrates. The electrodes were functionalized by appending pyrrole-α-carboxylic acid onto the surface of polypyrrole nanotube arrays by electrochemical polymerization. The carboxylic groups of the polymer were covalently coupled with the amine groups of the tripeptide, and its structural features were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The tripeptide modified PPy nanotube arrays electrode was used for the electrochemical analysis of various trace copper ions by square wave voltammetry. The electrode was found to be highly sensitive and selective to Cu2+ in the range of 0.1–30 μM. Furthermore, the developed biosensor exhibited a high stability and reproducibility, despite the repeated use of the biosensor electrode.

  3. Preparation of Electrode Array by Electrochemical Etching Based on FEM

    Institute of Scientific and Technical Information of China (English)

    Minghuan WANG; Di ZHU; Lei WANG

    2008-01-01

    Process technology of multiple cylindrical micro-pins by wire-electrical discharge machining (wire-EDM) and electrochemical etching was presented.A row of rectangular micro-columns were machined by wire-EDM and then machined into cylindrical shape by electrochemical etching.However,the shape of the multiple electrodes and the consistent sizes of the electrodes row are not easy to be controlled.In the electrochemical process,the shape of the cathode electrode determines the current density distribution on the anode and so the forming of multiple electrodes.This paper proposes a finite element method (FEM) to accurately optimize the electrode profile.The microelectrodes row with uniformity diameters with size from hundreds micrometers to several decades could be fabricated,and mathematical model controlling the shape and diameter of multiple microelectrodes was provided.Furthermore,a good agreement between experimental and theoretical results was confirmed.

  4. Electrochemical Deposition and Properties of ZnTe Nanowire Array

    Institute of Scientific and Technical Information of China (English)

    YANG You-Wen; LI Liang; YE Min; WU Yu-Cheng; XIE Ting; LI Guang-Hai

    2007-01-01

    Pulsed electrodeposited technique is applied to fabricate ZnTe nanowire arrays with different diameters into the anodic alumina membrane in citric acid solution. The x-ray powder diffraction, scanning electron microscopy and transmission electron microscopy indicate that the high ordered, uniform and single-crystalline nanowires have been fabricated. The optical absorption spectra of the nanowire array show that the optical absorption band edge of the ZnTe nanowire array exhibit a blue shift compared with that of bulk ZnTe, and the nonlinear current-voltage characteristic is observed.

  5. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Lin Meng; Hu Xiaoke [Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003 (China); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003 (China); Ma Zhaohu [Marine Environmental Monitoring and Forecasting Center of Yantai, Yantai 264003 (China); Chen Lingxin, E-mail: lxchen@yic.ac.cn [Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003 (China); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003 (China)

    2012-10-09

    Highlights: Black-Right-Pointing-Pointer PPy nanotube arrays were electropolymerized using ZnO nanowire arrays as templates. Black-Right-Pointing-Pointer PPy nanotube arrays were anchored onto ITO glass without any chemical linker. Black-Right-Pointing-Pointer Using SWV, the biosensor was found to be highly sensitive and selective to Cu{sup 2+}. Black-Right-Pointing-Pointer The biosensor was successfully applied for the determination of Cu{sup 2+} in drinking water. - Abstract: A novel electrochemical biosensor based on functionalized polypyrrole (PPy) nanotube arrays modified with a tripeptide (Gly-Gly-His) proved to be highly effective for electrochemical analysis of copper ions (Cu{sup 2+}). The vertically oriented PPy nanotube arrays were electropolymerized by using modified zinc oxide (ZnO) nanowire arrays as templates which were electrodeposited on indium-tin oxide (ITO) coated glass substrates. The electrodes were functionalized by appending pyrrole-{alpha}-carboxylic acid onto the surface of polypyrrole nanotube arrays by electrochemical polymerization. The carboxylic groups of the polymer were covalently coupled with the amine groups of the tripeptide, and its structural features were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The tripeptide modified PPy nanotube arrays electrode was used for the electrochemical analysis of various trace copper ions by square wave voltammetry. The electrode was found to be highly sensitive and selective to Cu{sup 2+} in the range of 0.1-30 {mu}M. Furthermore, the developed biosensor exhibited a high stability and reproducibility, despite the repeated use of the biosensor electrode.

  6. Finger Probe Array for Topography-Tolerant Scanning Electrochemical Microscopy of Extended Samples

    OpenAIRE

    Lesch, Andreas; Chen, Po-Chung; Roelfs, Folkert; Dosche, Carsten; Momotenko, Dmitry; Cortes-Salazar, Fernando; Girault, Hubert H.; Wittstock, Gunther

    2014-01-01

    Scanning electrochemical microscopy with soft microelectrode array probes has recently been used to enable reactivity imaging of extended areas and to compensate sample corrugation perpendicular to the scanning direction. Here, the use of a new type of microelectrode arrays is described in which each individual microelectrode can independently compensate corrugations of the sample surface. It consists of conventional Pt microelectrodes enclosed in an insulating glass sheath. The microelectrod...

  7. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  8. Organic electrochemical transistors based on a dielectrophoretically aligned nanowire array

    Directory of Open Access Journals (Sweden)

    Choi WooSeok

    2011-01-01

    Full Text Available Abstract In this study, we synthesized an organic electrochemical transistor (OECT using dielectrophoresis of a carbon nanotube-Nafion (CNT-Nafion suspension. Dielectrophoretically aligned nanowires formed a one-dimensional submicron bundle between triangular electrodes. The CNT-Nafion composite nanowire bundles showed p-type semiconductor characteristics. The drain-source current decreased with increasing gate voltage. The nanowire bundles showed potential as pH sensor because the drain-source current ratio varied linearly according to the gate voltage in pH buffers.

  9. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    International Nuclear Information System (INIS)

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g−1 at 2 A g−1 and impressive high-rate capability with a specific capacitance of 338 F g−1 at 40 A g−1. In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g−1, a high capacitance of 660 F g−1 is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties

  10. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-15

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g{sup −1} at 2 A g{sup −1} and impressive high-rate capability with a specific capacitance of 338 F g{sup −1} at 40 A g{sup −1}. In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g{sup −1}, a high capacitance of 660 F g{sup −1} is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties.

  11. Electrochemical etching of sharp tips for STM reveals singularity

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Oddershede, Lene

    2002-01-01

    Electrochemical etching of metal wires is widely used to produce atomically sharp tips for use in scanning tunneling microscopy (STM). In this letter we uncover the existence of a finite-time singularity in the process: Several of the physical parameters describing the system exhibit scaling...

  12. Electro-chemical sensors, sensor arrays and circuits

    Science.gov (United States)

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  13. Bioactivity of zirconia nanotube arrays fabricated by electrochemical anodization

    International Nuclear Information System (INIS)

    Zirconia nanotubes with a diameter of 50 nm and a length of 20 μm were fabricated by anodic oxidation of zirconium in (NH4)2SO4 electrolyte containing NH4F. The structure and phase composition of the zirconia nanotube layers were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The bioactivity was assessed by investigating the formation of apatite on the surface of zirconia nanotubes after soaking in simulated body fluids (SBF) for 20-30 days. The results indicate that bone-like apatite can be formed on the surface of the zirconia nanotube layers in our SBF immersion experiments. Microstructure of zirconia nanotubes with apatite layer was observed by SEM. Substance and phase compositions were characterized respectively by energy dispersive X-ray spectrometer (EDS) and XRD. Our results show that zirconia nanotube layers fabricated by electrochemical anodization exhibit favorable bioactivity.

  14. Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography

    International Nuclear Information System (INIS)

    Ordered arrays of nanoelectrodes for electrochemical use are prepared by electron beam lithography (EBL) using polycarbonate as a novel e-beam resist. The nanoelectrodes are fabricated by patterning arrays of holes in a thin film of polycarbonate spin-coated on a gold layer on Si/Si3N4 substrate. Experimental parameters for the successful use of polycarbonate as high resolution EBL resist are optimized. The holes can be filled partially or completely by electrochemical deposition of gold. This enables the preparation of arrays of nanoelectrodes with different recession degree and geometrical characteristics. The polycarbonate is kept on-site and used as the insulator that separates the nanoelectrodes. The obtained nanoelectrode arrays (NEAs) exhibit steady state current controlled by pure radial diffusion in cyclic voltammetry for scan rates up to approximately 50 mV s-1. Electrochemical results showed satisfactory agreement between experimental voltammograms and suitable theoretical models. Finally, the peculiarities of NEAs versus ensembles of nanoelectrodes, obtained by membrane template synthesis, are critically evaluated.

  15. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    International Nuclear Information System (INIS)

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10−3 S cm−1 conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g−1. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO4 as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10−3 S cm−1 and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g−1 using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density

  16. Electrochemical synthesis and crystal structure of ordered arrays of Со – nanotubes

    Directory of Open Access Journals (Sweden)

    Artem Kozlovskiy

    2015-09-01

    Full Text Available In this paper, using the method of electrochemical template synthesis, ordered arrays of metallic nanostructures on the basis of cobalt with various dimensions (180-380 nm were obtained. The diameter of Co-nanotubes was controlled by original polymer matrix, which provided to prepare arrays consisting of individually standing cobalt nanotubes. The crystal structure of the synthesized samples was studied by X-ray diffraction to determine cell parameters and crystallite size. Decrease of the conductive properties of Co - nanotubes can be explained by inhomogeneity of the crystallites formed during synthesis, because the growth rate of nanostructures directly affects the size of the crystallites.

  17. Electron transport in two-dimensional arrays of gold nanocrystals investigated by scanning electrochemical microscopy.

    Science.gov (United States)

    Liljeroth, Peter; Vanmaekelbergh, Daniël; Ruiz, Virginia; Kontturi, Kyösti; Jiang, Hua; Kauppinen, Esko; Quinn, Bernadette M

    2004-06-01

    This article reports the use of the scanning electrochemical microscope (SECM) to investigate the electronic properties of Langmuir monolayers of alkane thiol protected gold nanocrystals (NCs). A substantial increase in monolayer conductivity upon mechanical compression of the Au NC monolayer is reported for the first time. This may be the room temperature signature of the insulator to metal transition previously reported for comparable silver NC monolayers. Factors influencing the conductivity of the monolayer NC array are discussed. PMID:15174884

  18. Electrochemical etching of sharp tips for STM reveals singularity

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Oddershede, Lene

    2002-01-01

    towards and away from a particular singular point in time, exactly the time at which the wire breaks. The obtained scaling exponents coincide with exponents reported from other singular dynamical systems. The results also provide knowledge of how to control STM tip properties on the nano-scale.......Electrochemical etching of metal wires is widely used to produce atomically sharp tips for use in scanning tunneling microscopy (STM). In this letter we uncover the existence of a finite-time singularity in the process: Several of the physical parameters describing the system exhibit scaling...

  19. Micro-Drilling of Polymer Tubular Ultramicroelectrode Arrays for Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Niels B. Larsen

    2013-05-01

    Full Text Available We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene (PEDOT, a conductive polymer. Arrays of Ø 100 µm tubular electrodes each having a height of 0.37 ± 0.06 µm were reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM.

  20. Fabrication of micro-Ni arrays by electroless and electrochemical depositions with etched porous aluminum template

    Indian Academy of Sciences (India)

    Houfang Lu; Kangping Yan; Jixin Yan; Jianzhong Wang

    2010-10-01

    Nickel micro-arrays were fabricated by electroless and electrochemical deposition in an etched porous aluminum membrane. The aluminum membrane with metal characteristic could be fabricated from high-purity aluminium by electrochemical method. The aluminum reduced Ni2+ into Ni and the formed Ni nuclei served as the catalyst for further reduction of Ni2+ in electroless solution. With the help of the membrane, nickel micro-columns of about 1–2 m diameter were obtained. The surface-deposited nickel layer served as a substrate for the nickel micro-columns, and the resulting material possessed strong mechanical strength. Electrochemical deposition was operated without preparing a conductive layer on the template due to the conductivity of the aluminum membrane. Nickel micro-tubes with an outer diameter of about 1–2 m and a wall thickness in the order of tens of nm were obtained. The nickel micro-arrays were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  1. Fabrication of microlens array on silicon surface using electrochemical wet stamping technique

    Science.gov (United States)

    Lai, Lei-Jie; Zhou, Hang; Zhu, Li-Min

    2016-02-01

    This paper focuses on the fabrication of microlens array (MLA) on silicon surface by taking advantage of a novel micromachining approach, the electrochemical we stamping (E-WETS). The E-WETS allows the direct imprinting of MLA on an agarose stamp into the substrate through a selective anodic dissolution process. The pre-patterned agarose stamp can direct and supply the solution preferentially on the contact area between the agarose stamp and the substrate, to which the electrochemical reaction is confined. The anodic potential vs. saturated calomel electrode is optimized and 1.5 V is chosen as the optimum value for the electrochemical polishing of p-Si. A refractive MLA on a PMMA mold is successfully transferred onto the p-Si surface. The machining deviations of the fabricated MLA from those on the mold are 0.44% in diameter and 2.1% in height respectively, and the machining rate in HF is around 1.1 μm/h. The surface roughness of the fabricated MLA is less than 12 nm owing to the electrochemical polishing process. The results demonstrate that E-WETS is a promising approach to fabricate MLA on p-Si surface with high accuracy and efficiency.

  2. Finger probe array for topography-tolerant scanning electrochemical microscopy of extended samples.

    Science.gov (United States)

    Lesch, Andreas; Chen, Po-Chung; Roelfs, Folkert; Dosche, Carsten; Momotenko, Dmitry; Cortés-Salazar, Fernando; Girault, Hubert H; Wittstock, Gunther

    2014-01-01

    Scanning electrochemical microscopy with soft microelectrode array probes has recently been used to enable reactivity imaging of extended areas and to compensate sample corrugation perpendicular to the scanning direction. Here, the use of a new type of microelectrode arrays is described in which each individual microelectrode can independently compensate corrugations of the sample surface. It consists of conventional Pt microelectrodes enclosed in an insulating glass sheath. The microelectrodes are individually fixed to a new holder system by magnetic forces. The concept was tested using a large 3D sample with heights up to 12 μm specially prepared by inkjet printing. The microelectrodes follow the topography in a constant working distance independently from each other while exerting low pressure on the surface. PMID:24328212

  3. Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chunmee; Hong, Hun-Gi [Seoul National University, Seoul (Korea). Department of Chemistry Education; Shin, Woonsup [Sogang University, Seoul (Korea). Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology

    2007-12-01

    Gold nanopillar array electrodes were prepared by electrochemical deposition of gold into the nanopores of anodic aluminum oxide membrane placed onto the gold thin film electrode surface, which was in advance modified with cysteamine self-assembled monolayer as an anchoring layer. The Au nanopillar electrode is electrochemically stable and consists of highly dense, upstanding pillars assembled on the cysteamine monolayer. The structural morphology and chemical composition of the nanoarray electrode was characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Electrochemical measurements indicate that the Au nanopillar electrode possesses high electrocatalytic activities in the reduction of hydrogen peroxide and molecular oxygen, especially in glucose oxidation due to its higher electroactive surface area. The electro-oxidation studies of several electroactive neurotransmitters demonstrate that the nanopillar electrode can be utilized as a promising material for the construction of novel electrochemical sensor. (author)

  4. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors

    Science.gov (United States)

    Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su

    2015-06-01

    Tricobalt tetroxide (Co3O4) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)2) NPAs were electrochemically deposited on FCFs by applying an external voltage of -1.5 V for 30 min. Then, the Co3O4 NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)2 NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co3O4 NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge-discharge measurements in 1 M KOH electrolyte solution. The Co3O4 NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co3O4 nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.

  5. Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity.

    Science.gov (United States)

    Maher, Sean; Basit, Hajra; Forster, Robert J; Keyes, Tia E

    2016-12-01

    Microcavity supported lipid bilayers, MSLBs, were applied to an electrochemical investigation of ionophore mediated ion transport. The arrays comprise of a 1cm(2) gold electrode imprinted with an ordered array of uniform spherical-cap pores of 2.8μm diameter prepared by gold electrodeposition through polystyrene templating spheres. The pores were pre-filled with aqueous buffer prior to Langmuir-Blodgett assembly of a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer. Fluorescence lifetime correlation spectroscopy enabled by the micron dimensions of the pores permitted study of lipid diffusion across single apertures, yielding a diffusion coefficient of 12.58±1.28μm(2)s(-1) and anomalous exponent of 1.03±0.02, consistent with Brownian motion. From FLCS, the MSLBs were stable over 3days and electrochemical impedance spectroscopy of the membrane with and without ionic gradient over experimental windows of 6h showed excellent stability. Two ionophores were studied at the MSLBs; Valinomycin, a K(+) uniporter and Nigericin, a K(+)/H(+) antiporter. Ionophore reconstituted into the DOPC bilayer resulted in a decrease and increase in membrane resistance and capacitance respectively. Significant increases in Valinomycin and Nigericin activity were observed, reflected in large decreases in membrane resistance when K(+) was present in the contacting buffer and in the presence of H(+) ionic gradient across the membrane respectively. PMID:27420132

  6. Electrochemical detection of methyl nicotinate biomarker using functionalized anodized titania nanotube arrays

    International Nuclear Information System (INIS)

    Sensing and detection of volatile organic compounds (VOCs) from exhaled breath is a possible method for early diagnosis of several pulmonary diseases. The use of solid-state TiO2 nanotube array sensors for VOC sensing applications has been of great interest. In this study, titania nanotubular arrays (TNAs) were synthesized through electrochemical anodization and used for the electrochemical detection of methyl nicotinate biomarker vapor. Functionalization of the TNA with cobalt was found to be necessary for methyl nicotinate detection. Titanium dioxide films synthesized through high temperature oxidation and functionalized with cobalt were also compared with cobalt functionalized TNA. The ordered TNA demonstrated itself to be an effective substrate for cobalt deposition and subsequent biomarker detection over thin titanium dioxide films. Surface analysis of the cobalt functionalized TNA by x-ray photoelectron spectroscopy (XPS) studies observed cobalt deposits exist as cobalt hydroxide on the surface. Exposure of the sensor surface to methyl nicotinate vapor results in the reduction of cobalt hydroxide to cobalt metal on the surface. Two mechanisms have been proposed to describe the binding of the nicotinate biomarker to cobalt functionalized TNA consistent with the XPS studies and band theory. (paper)

  7. Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Highlights: ► Fabrication of TiO2 nanotube arrays. ► Photoelectrochemical deposition of PbO2 nanoparticles. ► Electrochemical oxidation of lignin at the TiO2-supported PbO2 nanoparticles to value-added products. - Abstract: In this study, we have successfully fabricated lead dioxide (PbO2) nanoparticles supported on TiO2 nanotubes (TiO2NT/PbO2) for the treatment of kraft lignin. The TiO2 nanotubes were grown directly on Ti substrates by electrochemical anodization and the PbO2 nanoparticles were formed by the combination of photochemical and electrochemical deposition. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) were employed to study the surface morphology and composition of the fabricated Ti/TiO2NT/PbO2 electrodes. The resulting electrode was utilized as a novel approach for the oxidation and modification of lignin. UV–vis spectroscopy was employed to monitor the lignin oxidation process in situ. The effects of concentration, current and temperature on the oxidation of lignin have been investigated, as well as post-oxidation changes in the chemical oxygen demand (COD) of the lignin solution. Fourier transform Infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) were used to characterize the oxidized lignin as well as the resulting products. Our study shows that the electrochemical oxidation of lignin via the fabricated Ti/TiO2NT/PbO2 electrode is a promising approach for the remediation of lignin wastewater and the generation of lignin-derived value-added products.

  8. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    OpenAIRE

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-01-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agre...

  9. Reduction Mechanism and Capacitive Properties of Highly Electrochemically Reduced TiO2 Nanotube Arrays

    International Nuclear Information System (INIS)

    Highlights: • Highly reduced and ordered TiO2 nanotube arrays have been fabricated using two-step anodization and three-electrode reduction. • The reduced TiO2 nanotube arrays show a high specific capacitance of 24.07 mF cm-2 at a scan rate of 10 mV s-1, which is 1094 times higher than the capacitance of pristine nanotube arrays (0.02 mF cm-2). • They also show an excellent long-term cycling stability with only 1.9% reduction of capacitance after 2000 cycles. • Under optimized reduction conditions, about 22% of Ti4+ ions in tube surface regions are converted into Ti3+ ions. • A proton-electron coupled reduction mechanism has been proposed based on the combined paradigms of a conventional energy-band model and chemical evolution of basic building blocks of TiO2. - Abstract: Highly reduced and ordered TiO2 nanotube arrays have been fabricated using two-step anodization and three-electrode reduction. A proton-electron coupled reduction mechanism has been proposed based on the combined paradigms of a conventional energy-band model and chemical evolution of basic building blocks of TiO2. Under optimized reduction conditions, about 22% of Ti4+ ions in tube surface regions are converted into Ti3+ ions while the morphology of the highly reduced TiO2 nanotube arrays keeps unchanged. The reduced nanotube arrays show superior electrochemical properties such as high areal capacitance, good rate capability, and high cycling stability. The areal capacitance of the reduced electrode is 24.07 mF cm−2 at a scan rate of 10 mV s−1, much higher than that of the pristine TiO2 nanotube arrays (0.02 mF cm−2). This kind of highly reduced one-dimensional oxide nanostructures can find a large array of applications in supercapacitors, photocatalysis, electrochromic display, and Li ion batteries

  10. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Ling Chen; Kuan Hong Xue; Wei Shen; Fei Fei Tao; Shou Yin Yin; Wen Xu [Nanjing Normal University (China). Chemistry Dept.

    2004-09-30

    The multiwalled carbon nanotube (MWNT) array was fabricated by chemical vapor deposition (CVD) in the template of porous alumina from the carbonaceous source of C{sub 2H}2 in the presence of a catalyst of ferric metals. To utilize the external surface other than the inner surface of the carbon nanotubes, 1 mol/L sulfuric acid was applied to remove off the most part of AAO template on the carbon nanotube electrode. The electrochemical performances of the carbon nanotube array electrode were investigated by use of the cyclic voltammetry, galvanostatic charge/discharge and ac impedance methods for its application in supercapacitors. The specific capacitance of 365 F/g of the electrode was achieved with the discharge current density of 210 mA/g in the solution of 1 mol/L H{sub 2}SO{sub 4}. In addition, the carbon nanotube array electrode was found to have low equivalent series resistance (ESR) and good cycling stability. (author)

  11. Superhydrophobic Surface Enhanced Raman Scattering Sensing using Janus Particle Arrays Realized by Site-Specific Electrochemical Growth

    OpenAIRE

    Yang, Shikuan; Hricko, Patrick John; Huang, Po-Hsun; Li, Sixing; Zhao, Yanhui; Xie, Yuliang; Guo, Feng; Wang, Lin; Huang, Tony Jun

    2013-01-01

    Site-specific electrochemical deposition is used to prepare polystyrene (PS)-Ag Janus particle arrays with superhydrophobic properties. The analyte molecules can be significantly enriched using the superhydrophobic property of the PS-Ag Janus particle array before SERS detections, enabling an extremely sensitive detection of molecules in a highly diluted solution (e.g., femtomolar level). This superhydrophobic surface enhanced Raman scattering sensing concept described here is of critical sig...

  12. Nanoscaled redox active protein adsorption on Au-dot arrays: An electrochemical scanning probe microscopic investigation for application in nano-biodevices

    Energy Technology Data Exchange (ETDEWEB)

    Yagati, Ajay Kumar; Jung, Mi; Kim, Sang-Uk [Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [College of Bionanotechnology, Kyungwon University, Bokjung-dong, Sujung-gu, Seongnam 461-701 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.k [Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of); Department of Chemical and Biomolecular Engineering, Interdisciplinary Program of Integrated Biotechnology Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2009-11-30

    Highly dense and uniform protein dot arrays on Au-nanodots using size controllable method were fabricated on indium tin oxide (ITO) substrate in order to develop an electrochemical nanobiochip. Cysteine modified azurin was directly immobilized on the fabricated Au-nanodots without any linker materials. Atomic force microscopy was used for characterizing Au-dots formed on ITO substrate. Electrochemical scanning tunneling microscopy (ECSTM) revealed the monolayer formation with an in situ cyclic voltammetry to observe redox behaviour of both bare Au-dots and protein immobilized Au-dots. I-V characteristics were obtained on both bare Au-dots and protein immobilized Au-dots structured on ITO conductive electrodes.

  13. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection.

    Science.gov (United States)

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-01-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe. PMID:27112197

  14. Polypyrrole sensitized ZnO nanorod arrays for efficient photo-electrochemical splitting of water

    International Nuclear Information System (INIS)

    In this paper, we report the fabrication and characterization of PPy sensitized ZnO nanorod arrays (PPy/ZnO NRs), and its use as a photo-electrode for efficient photo-electrochemical splitting of water under solar light. PPy/ZnO NRs were synthesized on a large scale on indium tin oxide (ITO) by a simple two-step method. UV–vis spectrum showed that PPy/ZnO NRs had strong absorption in nearly the visible light spectrum. FTIR results indicated that there might be a strong interaction between PPy and ZnO with the valence bond of C3O3Zn. The photo-electrochemical measurements of PPy/ZnO NRs exhibited extreme optimal photocurrent up to 0.68 mA/cm2. The results implied that PPy/ZnO NRs offerred improved light absorption, increased photocurrent generation due to the effective charge separation in PPy and ZnO NRs, and enhanced oxidized H2O kinetics because of the synergistic effect of PPy and ZnO NRs

  15. Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching.

    Science.gov (United States)

    Wang, Jinwen; Xu, Guangqing; Zhang, Xu; Lv, Jun; Zhang, Xinyi; Zheng, Zhixiang; Wu, Yucheng

    2015-04-28

    Novel mesoporous TiO2 nanotube arrays (TiO2 NTAs) were synthesized by an anodization method combined with chemical etching in HF solution, and the electrochemical performance was studied. Glucose oxidase (GOx) was immobilized on the mesoporous TiO2 NTAs to achieve an efficient biosensor for amperometric detection of glucose. The morphology, structure, component and electrochemical performance of mesoporous TiO2 NTAs were characterized by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectrometry and an electrochemical workstation, respectively. The influence of the mesoporous structure on the electrochemical performance is discussed in detail by comparing the cyclic voltammograms and electrochemical impedance spectrum of TiO2 and mesoporous TiO2 NTAs in different conditions. High electrochemical active surface area and electron transfer rate play key roles in enhancing the electrochemical performance of mesoporous TiO2 NTAs. When used as the basis of a biosensor, the amperometric response of glucose on a GOx/TiO2-0.5 NTAs electrode is linearly proportion to the glucose concentration in the range from 0.1 to 6 mM with a sensitivity of 0.954 μA mM(-1) cm(-2), which is 14.3 times that of un-etched GOx/TiO2 NTAs. PMID:25811301

  16. Optical properties of TiO2 nanotube arrays fabricated by the electrochemical anodization method

    Science.gov (United States)

    Ly, Ngoc Tai; Chien Nguyen, Van; Hoa Dao, Thi; Hoang To, Le Hong; Pham, Duy Long; Do, Hung Manh; Vu, Dinh Lam; Le, Van Hong

    2014-03-01

    Perpendicularly self-aligned TiO2 nanotube samples of size of 3 × 5 cm2 were fabricated by the electrochemical anodization method using a solution containing NH4F. Influences of the technological conditions such as NH4F concentration and anodization voltage were studied. It was found that NH4F concentration in the solution and anodization voltage significantly affect the diameter and length of a TiO2 nanotube. The diameter and the length of a TiO2 nanotube were observed and estimated by using scanning electron microscopy. It has shown that the largest diameter and the longest length of about 80 nm and 20 μm, respectively, were obtained for the sample anodized in a solution containing 0.4% of NH4F, under a voltage of 48 V. Photoluminescence spectra excited by laser lights having wavelengths of 325 and 442 nm (having energies higher and lower than the band gap energy of TiO2) was recorded at room temperature for the TiO2 nanotube arrays. An abnormal luminescence result was observed. It is experimental evidence that the manufactured TiO2 nanotube array is an expected material for hydrogen splitting from water by photochemical effect under sunlight as well as for the nano solar cells.

  17. Optical properties of TiO2 nanotube arrays fabricated by the electrochemical anodization method

    International Nuclear Information System (INIS)

    Perpendicularly self-aligned TiO2 nanotube samples of size of 3 × 5 cm2 were fabricated by the electrochemical anodization method using a solution containing NH4F. Influences of the technological conditions such as NH4F concentration and anodization voltage were studied. It was found that NH4F concentration in the solution and anodization voltage significantly affect the diameter and length of a TiO2 nanotube. The diameter and the length of a TiO2 nanotube were observed and estimated by using scanning electron microscopy. It has shown that the largest diameter and the longest length of about 80 nm and 20 μm, respectively, were obtained for the sample anodized in a solution containing 0.4% of NH4F, under a voltage of 48 V. Photoluminescence spectra excited by laser lights having wavelengths of 325 and 442 nm (having energies higher and lower than the band gap energy of TiO2) was recorded at room temperature for the TiO2 nanotube arrays. An abnormal luminescence result was observed. It is experimental evidence that the manufactured TiO2 nanotube array is an expected material for hydrogen splitting from water by photochemical effect under sunlight as well as for the nano solar cells. (paper)

  18. Electrochemically controlled fabrication of lightly doped porous Si nanowire arrays with excellent antireflective and self-cleaning properties

    International Nuclear Information System (INIS)

    The doping level and morphology of porous Si nanowire (SiNW) arrays are critical for their electrical, optical and surface properties, but preparation of lightly doped porous SiNW arrays with uniform length still remains a challenge. By integrating electroless chemical etching with a proposed electrochemical route, lightly doped single-crystalline porous SiNW arrays with uniform length were prepared from Si wafers with resistivity of 1–770 Ω cm for the first time. Scanning electron microscopy and transmission electron microscopy images show that the size of pores in the NWs is enlarged by increasing the duration of electrochemical process. Based on current–voltage measurements, thermionic emission is proposed to be responsible for the pore formation mechanism. The photoluminescence spectrum of the porous SiNWs shows an obvious peak centered at 680 nm, which is attributed to the quantum confinement effect due to porous structures, evidenced by the shift of Raman peak from 520.7 to 519.7 cm−1. Reflectivity spectra show the average reflectivity of SiNW arrays after electrochemical treatments was further decreased to less than 1.8% in the 350–600 nm wavelength range. Contact angle measurements show that the porous SiNW arrays possess superhydrophobic characteristics with a contact angle of up to 164°. Compared with previous studies, the proposed integrated route can not only prepare uniform, lightly doped, and porous SiNW arrays, but also provide an efficient way to independently control the lengths of NWs and sizes of nanopores in them. The SiNW arrays can be employed as an excellent antireflective and self-cleaning substrate for high efficiency opto-electronic devices.

  19. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic illustration for the electron transport between the current collector and the active CoAl LDH arrays, where the yellow arrows indicate the high resistance of CoAl LDH, while the green arrows present the high conductivity of Pt films on LDH. -- Highlights: •CoAl layered double hydroxide nanosheet arrays are synthesized by hydrothermal method. •Pt films coated on surface of CoAl nanosheets facilitate fast electron transport. •CoAl LDH nanosheets coated with Pt film for 5 min have an excellent performance. -- Abstract: Three-dimensional network of cobalt and aluminum layered double hydroxide (LDH) nanosheets was synthesized on nickel foam by a simple hydrothermal method. The CoAl-LDH nonosheets were subsequently coated by ion sputtering with thin layers of Pt films to facilitate fast electron transport between current collector and the CoAl-LDH active materials. The optimal thickness of the Pt film acquiring the best performance was identified by applying various sputtering time in controlled experiments. The supercapacitor built by the CoAl-LDH nanosheets coated with Pt film sputtered for 5 min has a high specific capacitance (734.4 F g−1 at 3 A g−1), excellent rate capability as well as cycling stability. Moreover, it showed a long life of 77% retention after 6000 cycles and its general morphology was preserved after the test. The synergetic affect of conductive layer of Pt films and CoAl-LDH on the improvement of electrochemical properties was discussed and this would provide a useful clue in designing novel and effective electrode materials for supercapacitors

  20. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation

    Science.gov (United States)

    Huang, Jianfei; Zhao, Shunan; Chen, Wei; Zhou, Ying; Yang, Xiaoling; Zhu, Yihua; Li, Chunzhong

    2016-03-01

    This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications.This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications. Electronic supplementary information (ESI) available: Experimental details, additional figures and table. See DOI: 10.1039/c5nr06512g

  1. Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    A bramble-like ZnO array with a special three-dimensional (3D) nanostructure was successfully fabricated on Zn foil through a facile two-step hydrothermal process. A possible growth mechanism of the bramble-like ZnO array was proposed. In the first step of hydrothermal process, the crystal nucleus of Zn(OH)42− generated by the zinc atoms and OH− ions fold together preferentially along the positive polar (0001) to form the needle-like ZnO array. In the second step of hydrothermal process, the crystal nuclei of Zn(OH)42− adjust their posture to keep their c-axes vertical to the perching sites due to the sufficient environmental force and further grow preferentially along the (0001) direction so as to form bramble-like ZnO array. The electrochemical properties of the needle- and bramble-like ZnO arrays as anode materials for lithium-ion batteries were investigated and compared. The results show that the bramble-like ZnO material exhibits much better lithium storage properties than the needle-like ZnO sample. Reasons for the enhanced electrochemical performance of the bramble-like ZnO material were investigated

  2. Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Junfeng [Northwest University, School of Information Science and Technology (China); Wang, Gang [Northwest University, Institute of Photonics & Photon-Technology (China); Wang, Hui, E-mail: huiwang@nwu.edu.cn [Northwest University, College of Chemistry and Materials Science (China); Zhang, Zhiyong; Ruan, Xiongfei; Zhao, Wu; Yun, Jiangni; Xu, Manzhang [Northwest University, School of Information Science and Technology (China)

    2015-01-15

    A bramble-like ZnO array with a special three-dimensional (3D) nanostructure was successfully fabricated on Zn foil through a facile two-step hydrothermal process. A possible growth mechanism of the bramble-like ZnO array was proposed. In the first step of hydrothermal process, the crystal nucleus of Zn(OH){sub 4}{sup 2−} generated by the zinc atoms and OH{sup −} ions fold together preferentially along the positive polar (0001) to form the needle-like ZnO array. In the second step of hydrothermal process, the crystal nuclei of Zn(OH){sub 4}{sup 2−} adjust their posture to keep their c-axes vertical to the perching sites due to the sufficient environmental force and further grow preferentially along the (0001) direction so as to form bramble-like ZnO array. The electrochemical properties of the needle- and bramble-like ZnO arrays as anode materials for lithium-ion batteries were investigated and compared. The results show that the bramble-like ZnO material exhibits much better lithium storage properties than the needle-like ZnO sample. Reasons for the enhanced electrochemical performance of the bramble-like ZnO material were investigated.

  3. Planar Arrays of Nanoporous Gold Nanowires: When Electrochemical Dealloying Meets Nanopatterning.

    Science.gov (United States)

    Chauvin, Adrien; Delacôte, Cyril; Molina-Luna, Leopoldo; Duerrschnabel, Michael; Boujtita, Mohammed; Thiry, Damien; Du, Ke; Ding, Junjun; Choi, Chang-Hwan; Tessier, Pierre-Yves; El Mel, Abdel-Aziz

    2016-03-16

    Nanoporous materials are of great interest for various technological applications including sensors based on surface-enhanced Raman scattering, catalysis, and biotechnology. Currently, tremendous efforts are dedicated to the development of porous one-dimensional materials to improve the properties of such class of materials. The main drawback of the synthesis approaches reported so far includes (i) the short length of the porous nanowires, which cannot reach the macroscopic scale, and (ii) the poor organization of the nanostructures obtained by the end of the synthesis process. In this work, we report for the first time on a two-step approach allowing creating highly ordered porous gold nanowire arrays with a length up to a few centimeters. This two-step approach consists of the growth of gold/copper alloy nanowires by magnetron cosputtering on a nanograted silicon substrate, serving as a physical template, followed by a selective dissolution of copper by an electrochemical anodic process in diluted sulfuric acid. We demonstrate that the pore size of the nanowires can be tailored between 6 and 21 nm by tuning the dealloying voltage between 0.2 and 0.4 V and the dealloying time within the range of 150-600 s. We further show that the initial gold content (11 to 26 atom %) and the diameter of the gold/copper alloy nanowires (135 to 250 nm) are two important parameters that must carefully be selected to precisely control the porosity of the material. PMID:26926232

  4. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    OpenAIRE

    Helmut Föll; Jürgen Carstensen; Enrique Quiroga-González

    2013-01-01

    Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. I...

  5. Electrochemical fabrication of lanthanum-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability

    International Nuclear Information System (INIS)

    Highlights: ► La-doped TiO2 nanotube array electrode was successfully fabricated by electrochemical method. ► The doped electrode showed high photoelectrocatalytic activity for degradation of PNP. ► Effective separation of photogenerated electron–hole pairs. -- Abstract: Highly ordered lanthanum-doped (La-doped) TiO2 nanotube arrays were prepared by electrochemical anodization process on a Ti sheet, followed by cathodic electrochemical process using lanthanum nitrate solution as the La source, and at last were analyzed by SEM, XPS, FTIR, XRD, and DRS characterization techniques. The analytical results demonstrated that the La doping could promoted phase transformation of TiO2 from the anatase to rutile. Red shifted and enhanced absorption intensities of certain peaks in both UV and visible light regions were also observed. Moreover, a new state of Ti3+ was founded after calcinations. The photoelectrochemical results indicated that La doping can significantly enhance the photoconversion efficiency of the TiO2 nanotube array electrode. The maximum photoconversion efficiency was 0.598%, which was obviously more than 2-fold higher than the undoped one (0.257%) under the same supporting electrolyte solution. The photoelectrocatalytic (PEC) degradation result of p-nitrophenol (PNP) was used to investigate the PEC activities of the as-prepared electrode. The La-doped TiO2 nanotube array electrode showed much higher degradation efficiencies (99.33%) than the undoped TiO2 nanotube array electrode (70.16%) under the same condition

  6. Synthesis of Millimeter-Scale Carbon Nanotube Arrays and Their Applications on Electrochemical Supercapacitors

    Science.gov (United States)

    Cui, Xinwei

    This research is aimed at synthesizing millimeter-scale carbon nanotube arrays (CNTA) by conventional chemical vapor deposition (CCVD) and water-assisted chemical vapor deposition (WACVD) methods, and exploring their application as catalyst supports for electrochemical supercapacitors. The growth mechanism and growth kinetics of CNTA under different conditions were systematically investigated to understand the relationship among physical characteristics of catalyst particles, growth parameters, and carbon nanotube (CNT) structures within CNTAs. Multiwalled CNT (MWCNT) array growth demonstrates lengthening and thickening stages in CCVD and WACVD. In CCVD, the lengthening and thickening were found to be competitive. By investigating catalyst particles after different pretreatment conditions, it has been found that inter-particle spacing plays a significant role in influencing CNTA height, CNT diameter and wall number. In WACVD, a long linear lengthening stage has been found. CNT wall number remains constant and catalysts preserve the activity in this stage, while MWCNTs thicken substantially and catalysts deactivate following the previously proposed radioactive decay model in the thickening stage of WACVD. Water was also shown to preserve the catalyst activity by significantly inhibiting catalyst-induced and gas phase-induced thickening processes in WACVD. Mn3O4 nanoparticles were successfully deposited and uniformly distributed within millimeter-long CNTAs by dip-casting method from non-aqueous solutions. After modification with Mn3O4 nanoparticles, CNTAs have been changed from hydrophobic to hydrophilic without their alignment and integrity being destroyed. The hydrophilic Mn 3O4/CNTA composite electrodes present ideal capacitive behavior with high reversibility. This opens up a new route of utilizing ultra-long CNTAs, based on which a scalable and cost-effective method was developed to fabricate composite electrodes using millimeter-long CNTAs. To improve the

  7. Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist

    Institute of Scientific and Technical Information of China (English)

    Qu Ningsong; Chen Xiaolei; Li Hansong; Zeng Yongbin

    2014-01-01

    The application of surface textures has been employed to improve the tribological per-formance of various mechanical components. Various techniques have been used for the application of surface textures such as micro-dimple arrays, but the fabrication of such arrays on cylindrical inner surfaces remains a challenge. In this study, a dry-film photoresist is used as a mask during through-mask electrochemical micromachining to successfully prepare micro-dimple arrays with dimples 94 lm in diameter and 22.7 lm deep on cylindrical inner surfaces, with a machining time of 9 s and an applied voltage of 8 V. The versatility of this method is demonstrated, as are its poten-tial low cost and high efficiency. It is also shown that for a fixed dimple depth, a smaller dimple diameter can be obtained using a combination of lower current density and longer machining time in a passivating sodium nitrate electrolyte.

  8. A compact microelectrode array chip with multiple measuring sites for electrochemical applications

    DEFF Research Database (Denmark)

    Dimaki, Maria; Vergani, Marco; Heiskanen, Arto;

    2014-01-01

    In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes f...

  9. NiO nanowall array prepared by a hydrothermal synthesis method and its enhanced electrochemical performance for lithium ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: Self-supported NiO nanowall array is fabricated by a facile hydrothermal synthesis method and exhibits noticeable Li ion battery performance with good cycle life and high capacity. Highlights: ► NiO nanowall array is prepared by a hydrothermal synthesis method. ► NiO nanowall array with high capacity as anode material for Li ion battery. ► Nanowall array structure is favorable for fast ion/electron transfer. - Abstract: Free-standing quasi-single-crystalline NiO nanowall array is successfully fabricated via a simple hydrothermal synthesis method. The as-prepared NiO film exhibits a highly porous nanowall structure composed of many interconnected nanoflakes with thicknesses of ∼20 nm. The NiO nanowalls arrange vertically to the substrate resulting in the formation of extended porous net-like structure with pores of 30–300 nm. As anode material for lithium ion batteries, the quasi-single-crystalline NiO nanowall array exhibits pretty good electrochemical performances with high capacity, weaker polarization, higher coulombic efficiency and better cycling performance as compared to the dense polycrystalline NiO film. The quasi-single-crystalline NiO nanowall array presents an initial coulombic efficiency of 76% and good cycling life with a capacity of 564 mAh g−1 at 0.5 A g−1 after 50 cycles, higher than that of the dense polycrystalline NiO film (358 mAh g−1). The enhanced performance is due to the unique nanowall array structure providing faster ion/electron transport and better morphological stability

  10. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Jiye Zhan

    2015-10-01

    Full Text Available Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g−1 at 0.2 C and good cycle stability (425 mAh·g−1 at 1 C up to 150 cycles. The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials.

  11. An Electrochemical Sensing Platform Based on Liquid-Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes.

    Science.gov (United States)

    Alvarez de Eulate, Eva; Strutwolf, Jörg; Liu, Yang; O'Donnell, Kane; Arrigan, Damien W M

    2016-03-01

    Arrays of microscale interfaces between two immiscible electrolyte solutions (μITIES) were formed using glass membranes perforated with microscale pores by laser ablation. Square arrays of 100 micropores in 130 μm thick borosilicate glass coverslips were functionalized with trichloro(1H,1H,2H,2H-perfluorooctyl)silane on one side, to render the surface hydrophobic and support the formation of aqueous-organic liquid-liquid microinterfaces. The pores show a conical shape, with larger radii at the laser entry side (26.5 μm) than at the laser exit side (11.5 μm). The modified surfaces were characterized by contact angle measurements and X-ray photoelectron spectroscopy. The organic phase was placed on the hydrophobic side of the membrane, enabling the array of μITIES to be located at either the wider or narrower pore mouth. The electrochemical behavior of the μITIES arrays were investigated by tetrapropylammonium ion transfer across water-1,6-dichlorohexane interfaces together with finite element computational simulations. The data suggest that the smallest microinterfaces (formed on the laser exit side) were located at the mouth of the pore in hemispherical geometry, while the larger microinterfaces (formed on the laser entry side) were flatter in shape but exhibited more instability due to the significant roughness of the glass around the pore mouths. The glass membrane-supported μITIES arrays presented here provide a new platform for chemical and biochemical sensing systems. PMID:26853853

  12. Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2014-11-01

    Full Text Available Yu Zhao,1 Qi Xing,2 Jagadeesh Janjanam,3 Kun He,1,4 Fei Long,1 Ke-Bin Low,5 Ashutosh Tiwari,3 Feng Zhao,2 Reza Shahbazian-Yassar,1 Craig Friedrich,1,8 Tolou Shokuhfar1,6–81Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI, USA; 2Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA; 3Department of Chemistry, Michigan Technological University, Houghton, MI, USA; 4School of Materials Science and Engineering, Shandong University, Jinan, People’s Republic of China; 5Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA; 6Department of Physics, University of Illinois at Chicago, Chicago, IL, USA; 7Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA; 8Multi-Scale Technologies Institute, Michigan Technological University, Houghton, MI, USAAbstract: Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II oxide deposited TiO2 nanotubes (TiNTs using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the

  13. Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry

    OpenAIRE

    Koehne, Jessica E.; Marsh, Michael; Boakye, Adwoa; Douglas, Brandon; Kim, In Yong; Chang, Su-Youne; Jang, Dong-Pyo; Bennet, Kevin E.; Kimble, Christopher; Andrews, Russell; Meyyappan, M.; Lee, Kendall H.

    2011-01-01

    A carbon nanofiber (CNF) electrode array was integrated with the Wireless Instantaneous Neurotransmitter Sensor System (WINCS) for detection of dopamine using fast scan cyclic voltammetry (FSCV). Dopamine detection performance by CNF arrays was comparable to that of traditional carbon fiber microelectrodes (CFMs), demonstrating that CNF arrays can be utilized as an alternative carbon electrodes for neurochemical monitoring.

  14. Fabrication, Modification, and Emerging Applications of TiO2 Nanotube Arrays by Electrochemical Synthesis: A Review

    Directory of Open Access Journals (Sweden)

    Jian-Ying Huang

    2013-01-01

    Full Text Available Titania nanotube arrays (TNAs as a hot nanomaterial have a unique highly ordered array structure and good mechanical and chemical stability, as well as excellent anticorrosion, biocompatible, and photocatalytic performance. It has been fabricated by a facile electrochemical anodization in electrolytes containing small amounts of fluoric ions. In combination with our research work, we review the recent progress of the new research achievements of TNAs on the preparation processes, forming mechanism, and modification. In addition, we will review the potential and significant applications in the photocatalytic degradation of pollutants, solar cells, water splitting, and other aspects. Finally, the existing problems and further prospects of this renascent and rapidly developing field are also briefly addressed and discussed.

  15. Improved electrochemical performances of CuO nanotube array prepared via electrodeposition as anode for lithium ion battery

    International Nuclear Information System (INIS)

    Graphical abstract: CuO nanotube array electrodes prepared by electrodeposition method exhibit an excellent lithium ion storage ability as anode of Li-ion battery. - Highlights: • CuO nanotube arrays are synthesized by an electrodeposition method. • CuO nanotube shows a high-rate performance. • CuO nanotube shows an excellent cycling performance. - Abstract: We report a facile strategy to prepared CuO nanotube arrays directly grown on Cu plate through the electrodeposition method. The as-prepared CuO nanotubes show a quasi-cylinder nanostructure with internal diameters of ca. ∼100 nm, external diameters of ca. ∼120 nm, and average length of ∼3 μm. As an anode for lithium ion batteries, the electrochemical properties of the CuO nanotube arrays are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. Due to the unique nanotube nanostructure, the as-prepared CuO electrodes exhibit good rate performance (550 mAh g−1 at 0.1 C and 464 mAh g−1 at 1 C) and cycling performance (581 mAh g−1 at 0.1 C and 538 mAh g−1 at 0.5 C)

  16. Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: ► Single step electrochemical synthesis of N-doped TiO2 nanotube array films. ► Effective substitutional N-doping achieved. ► Different N-concentrations were achieved by varying the N-precursor concentration in the electrolyte. ► Visible light absorption observed at high N-doping. -- Abstract: Visible light absorbing vertically aligned N-doped anatase nanotube array thin films were synthesized by anodizing Ti foils in ethylene glycol + NH4F + water mixture containing urea as nitrogen source. Different nitrogen concentrations were achieved by varying the urea content in the electrolyte. The structure, morphology, composition and optical band gap of the nanotube arrays were determined by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy, respectively. The substitution of O2− ions by N3− ions in the anion sublattice as well as the formulae of the doped samples was confirmed from the results of XPS. The optical band gap of the nanotube arrays was found to decrease with N-concentration. The sample with the highest concentration corresponding to the formula TiO1.83N0.14 showed two regions in the Tauc's plot indicating the presence of interband states.

  17. Improved electrochemical performances of CuO nanotube array prepared via electrodeposition as anode for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: CuO nanotube array electrodes prepared by electrodeposition method exhibit an excellent lithium ion storage ability as anode of Li-ion battery. - Highlights: • CuO nanotube arrays are synthesized by an electrodeposition method. • CuO nanotube shows a high-rate performance. • CuO nanotube shows an excellent cycling performance. - Abstract: We report a facile strategy to prepared CuO nanotube arrays directly grown on Cu plate through the electrodeposition method. The as-prepared CuO nanotubes show a quasi-cylinder nanostructure with internal diameters of ca. ∼100 nm, external diameters of ca. ∼120 nm, and average length of ∼3 μm. As an anode for lithium ion batteries, the electrochemical properties of the CuO nanotube arrays are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. Due to the unique nanotube nanostructure, the as-prepared CuO electrodes exhibit good rate performance (550 mAh g{sup −1} at 0.1 C and 464 mAh g{sup −1} at 1 C) and cycling performance (581 mAh g{sup −1} at 0.1 C and 538 mAh g{sup −1} at 0.5 C)

  18. Electrochemical genosensor array for the simultaneous detection of multiple high-risk human papillomavirus sequences in clinical samples

    Energy Technology Data Exchange (ETDEWEB)

    Civit, Laia [Nanobiotechnology and Bioanalysis Group, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Fragoso, Alex, E-mail: alex.fragoso@urv.cat [Nanobiotechnology and Bioanalysis Group, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Hoelters, Sebastian; Duerst, Matthias [Department for Gynecology, Jena University Hospital, Friedrich-Schiller-University Jena, D-07743 Jena (Germany); O' Sullivan, Ciara K., E-mail: ciara.osullivan@urv.cat [Nanobiotechnology and Bioanalysis Group, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluis Companys 23, 08010 Barcelona (Spain)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer High-risk human papillomavirus is detected in virtually all-invasive cervical cancers. Black-Right-Pointing-Pointer Electrochemical genosensor for simultaneous detection of multiple high-risk HPV applied to cervical scrape samples. Black-Right-Pointing-Pointer Excellent correlation with HPV genotyping carried out within a hospital laboratory. - Abstract: An electrochemical genosensor array for the simultaneous detection of three high-risk human papillomavirus (HPV) DNA sequences, HPV16, 18 and 45, exhibiting high sensitivity and selectivity is presented. The electrodes of a 4 Multiplication-Sign 4 array were modified via co-immobilization of a 1:100 (mol/mol) mixture of a thiolated probe and an oligoethyleneglycol-terminated bipodal thiol. Detection of synthetic and PCR products was carried out in a sandwich type format, with the target hybridized between a surface immobilized probe and a horseradish peroxidase-labelled secondary reporter probe. The detection limits obtained in the detection of each individual target were in the pM range, allowing the application of this sensor for the detection of samples obtained from PCR amplification of cervical scrape samples. The results obtained exhibited an excellent correlation with the HPV genotyping carried out within a hospital laboratory. Multiplexing and cross-reactivity studies demonstrated high selectivity over potential interfering sequences, facilitating application of the developed platform for the high-throughput screening of multiple high-risk DNA sequences.

  19. Immobilizing Enzymes onto Electrode Arrays by Hydrogel Photolithography to Fabricate Multi-Analyte Electrochemical Biosensors

    OpenAIRE

    Yan, Jun; Pedrosa, Valber A.; Simonian, Aleksandr L.; Revzin, Alexander

    2010-01-01

    This paper describes a biomaterial microfabrication approach for interfacing functional biomolecules (enzymes) with electrode arrays. Poly (ethylene glycol) (PEG) hydrogel photopatterning was employed to integrate gold electrode arrays with enzymes - glucose oxidase (GOX) and lactate oxidase (LOX). In this process, PEG diacrylate (DA)-based prepolymer containing enzyme molecules as well as redox species (vinylferrocene) was spin-coated, registered and UV cross-linked on top of an array of gol...

  20. Fingerprinting the Asterid species using subtracted diversity array reveals novel species-specific sequences.

    Directory of Open Access Journals (Sweden)

    Nitin Mantri

    Full Text Available BACKGROUND: Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade. METHODOLOGY/PRINCIPAL FINDINGS: Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5% subtraction efficiency. Twenty-five Asterid species (mostly medicinal representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants. CONCLUSIONS/SIGNIFICANCE: Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting plant species. In addition, this method allowed detection of several new loci that can be

  1. Application of Electrochemical Impedance for Characterising Arrays of Bi2S3 Nanowires

    International Nuclear Information System (INIS)

    Electrochemical Impedance Spectroscopy (EIS) was used to characterise the electrical properties of bismuth sulphide (Bi2S3) nanowires (NWs) templated within anodic aluminium oxide (AAO) membranes. A specially engineered cell, with a nominal electrolyte volume of 0.1–0.2 ml, was used to hold and measure the electrochemical impedance of the fragile NW/AAO samples. An equivalent circuit model was developed to determine the filling density of nanowires within the porous templates. The EIS method can be utilised to probe the nanowire filling density in porous membranes over large sample areas, which is often unobtainable using electron microscopy and conductive atomic force microscopy techniques

  2. Fabrication of Self-Standing Silver Nano plate Arrays by Seed-Decorated Electrochemical Route and Their Structure-Induced Properties

    International Nuclear Information System (INIS)

    We present an electrochemical route to synthesize silver nano plates on seed-decorated Indium tin oxide (ITO) glass substrate. The nano plates are several tens of to several hundred nanometers in dimension. The density of nano plates covered on the substrate can be controlled well by adjusting the amounts of seed. All the nano plates are standing on the substrate uniformly even at very high density. Silver nano plate arrays displayed an extraordinary super hydrophobicity after chemical modification and can serve as highly active surface-enhanced Raman scattering (SERS) substrates for micro detection. The arrays can also be used as electrodes for electrochemical capacitor with high power density.

  3. The electrochemical behavior of Cl− assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries

    International Nuclear Information System (INIS)

    The titanium dioxide nanotube array (TiO2-NTA) is prepared by a two-step anodic oxidation method and annealed at 450 ∘C subsequently. The Al-inserted TiO2-NTA is prepared by polarizing the TiO2-NTAs electrode at 0.4 mA for 2 min in 1 mol/L AlCl3. The results show that the Al-inserted sample still remains pure anatase TiO2 phase (by XRD) and keeps intact nanotube array structure (by FE-SEM). The X-ray photoelectron spectroscopy (XPS) analysis indicates that the insertion of Al3+ into TiO2-NTAs facilitates in the reduction of Ti4+ to Ti3+. Electrochemical investigation on the Al3+ insertion process reveals that presence of Cl− ions plays vital role for the effective insertion and de-insertion of Al3+ into/from the TiO2-NTA

  4. Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist

    Directory of Open Access Journals (Sweden)

    Qu Ningsong

    2014-08-01

    Full Text Available The application of surface textures has been employed to improve the tribological performance of various mechanical components. Various techniques have been used for the application of surface textures such as micro-dimple arrays, but the fabrication of such arrays on cylindrical inner surfaces remains a challenge. In this study, a dry-film photoresist is used as a mask during through-mask electrochemical micromachining to successfully prepare micro-dimple arrays with dimples 94 μm in diameter and 22.7 μm deep on cylindrical inner surfaces, with a machining time of 9 s and an applied voltage of 8 V. The versatility of this method is demonstrated, as are its potential low cost and high efficiency. It is also shown that for a fixed dimple depth, a smaller dimple diameter can be obtained using a combination of lower current density and longer machining time in a passivating sodium nitrate electrolyte.

  5. A Compact Microelectrode Array Chip with Multiple Measuring Sites for Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Maria Dimaki

    2014-05-01

    Full Text Available In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in close proximity. The electrodes are made of gold on a silicon oxide substrate and are passivated by a silicon nitride membrane. A method for avoiding the creation of high edges at the electrodes (known as lift-off ears is presented. The microchip design is highly symmetric to accommodate easy electronic integration and provides space for microfluidic inlets and outlets for integrated custom-made microfluidic systems on top.

  6. Electrochemical biosensor based on microfabricated electrode arrays for life sciences applications

    OpenAIRE

    Mohd Said, Nur Azura

    2014-01-01

    In developing a biosensor, the utmost important aspects that need to be emphasized are the specificity and selectivity of the transducer. These two vital prerequisites are of paramount in ensuring a robust and reliable biosensor. Improvements in electrochemical sensors can be achieved by using microelectrodes and to modify the electrode surface (using chemical or biological recognition layers to improve the sensitivity and selectivity). The fabrication and characterisations of silicon-based a...

  7. Microelectrode array in mixed alkanethiol self-assembled monolayers: Electrochemical studies

    International Nuclear Information System (INIS)

    We report an efficient alternative to obtain recessed microelectrodes device on gold electrode surface, in which mixed self-assembled monolayer of long and short carbon alkanethiol chains was used for this purpose. Development of the modified electrodes included the chemical adsorption of 11-mercaptoundecanoic acid and 2-mercaptoethanol solution, as well as their mixtures, on gold surface, resulting in the final mixed self-assembled monolayer configuration. For comparison, the electrochemical performance of self-assembled monolayer of 11-mercaptoundecanoic acid, 3-mercaptopropionic acid, 4-mercapto-1-butanol and 6-mercapto-1-hexanol modified electrodes was also investigated. It was verified that, in the mixed self-assembled monolayer, the 11-mercaptoundecanoic acid acts as a barrier for electron transfer while the short alkanethiol chair is deposited in an island-like shape through which electrons can be freely transferred to ions in solution, allowing electrochemical reactions to occur. The performance of the modified electrodes toward microelectrode behavior was investigated via cyclic voltammetry and electrochemical impedance spectroscopy measurements using [Fe(CN)6]3−/4− redox couple as a probe. In this case, sigmoidal voltammetric responses were obtained, very similar to those observed for microelectrodes. Such behavior reinforces the proposition of electron transfer through the short alkanethiol chain layer and surface blockage by the long chain one. Electrochemical impedance results allowed calculated the mean radius value of each microelectrode disks of 3.8 μm with about 22 μm interval between them. The microelectrode environment provided by the mixed self-assembled monolayer can be conveniently used to provide an efficient catalytic conversion in biosensing applications.

  8. Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties

    Science.gov (United States)

    Ko, Yeong Hwan; Kim, Myung Sub; Park, Wook; Yu, Jae Su

    2013-01-01

    We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of -2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density.

  9. Determination of illicit drugs and related substances by high-performance liquid chromatography with an electrochemical coulometric-array detector.

    Science.gov (United States)

    Achilli, G; Cellerino, G P; Melzi d'Eril, G V; Tagliaro, F

    1996-04-01

    A general method for the simultaneous determination of fifteen common drugs (6-acetylmorphine, 3,4-methylenedioxymetamphetamine, buprenorphin, cocaine, codeine, dihydrocodeine, ethylmorphine, heroin, hydrocodone, lidocaine, methadone, morphine, naloxone, procaine and thebaine) was developed using reversed-phase HPLC and electrochemical detection. The separation of the drugs was achieved by using as the mobile phase 20 mM monobasic sodium phosphate-acetonitrile (90:10) with a gradient to 50% of the organic modifier, on a silica based C18 column (150 x 4.6 mm I.D.) of 3 microns particle size and by the selectivity supplied by an array of eight coulometric electrodes at increasing potential. It was possible to identify and to determine fifteen different drugs in the same chromatographic run in 50 min. The method was tentatively applied to the determination of drugs in extracts of human hair. PMID:9004949

  10. Study of Halitosis-Substance Sensing at Low Concentration Using an Electrochemical Sensor Array Combined with a Preconcentrator

    Science.gov (United States)

    Sasaya, Yosuke; Nakamoto, Takamichi

    A method for quantitative detection and discrimination of volatile sulfur compounds (VSCs) using an electrochemical sensor array combined with a preconcentrator was proposed. Halitosis is due to VSCs produced by bacterial metabolism inside the oral cavity. An organoleptic test is typically performed by a dental clinician for the assessment of halitosis, although it is a subjective test. Thus, an objective evaluation of halitosis is required. In this study, it was possible to discriminate among the VSCs such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and dimethyl sulfide ((CH3)2S) over the range of 200ppb to 1000ppb. Moreover, mixture of two VSC vapors (H2S and CH3SH) at various mixing ratios were measured. The results indicated that the sensor responses to mixed samples satisfied the linear superposition. The mixture compositions of VSCs were almost correctly obtained from the sensor responses using partial least squares (PLS) regression analysis.

  11. Photo-assisted electrodeposition of an electrochemically active polypyrrole layer on anatase type titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Our purpose is here to produce a large area 3D junction between anatase type TiO2 and polypyrrole (PPy) in a Ti/TiO2 nanotube array (NTA)/PPy assembly with the help of electrochemical methods only. We report herein the influence of light and background salt on the electrochemical polymerization of pyrrole from aqueous electrolytic solutions on titanium oxide NTAs, a well-known large specific area n-type semiconductor substrate. As titanium dioxide is known to be poorly conducting in the anodic potential range, we confirmed that light is able to initiate a polymerization process of pyrrole, at a moderately high anodic potential. For comparison with results obtained in sodium dodecylbenzenesulfonate (SDBS) at micellar concentration, we used here also lithium perchlorate as background salt at a 0.1 M concentration, and PPy growth was found to be faster in the presence of LiClO4. Moreover in the latter case polypyrrole could be initiated in the dark as well, yet at an enhanced deposition rate under UV light. In the two solutions. the resulting polypyrrole films were found to be electroactive, i.e. able to undergo electrochemically driven doping/undoping processes, yet with a higher electroactivity for the film obtained in LiClO4. SEM-FEG and Raman spectroscopy experiments confirmed respectively that i) the initial steps of the photo-assisted electrodeposition of polypyrrole films occur first at the mouth of the titanium dioxide nanotubes, before leading to the well-known cauliflower-like morphology for PPy and ii) PPy is systematically produced in a doped state

  12. A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property

    International Nuclear Information System (INIS)

    Highlights: ► Cr-TiO2NTs were prepared via an electrochemical oxidation method. ► Potassium dichromate was used as the source of Cr dopant. ► Cr-TiO2NTs showed high photoelectrocatalytic activity to remove organic pollutant. - Abstract: Highly ordered Cr-doped TiO2 nanotube arrays (Cr-TiO2NTs) were prepared by the electrochemical oxidation of Ti substrate in glycerol/fluoride electrolyte solution containing potassium dichromate. The Cr-TiO2NTs were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr3+ was successfully introduced into TiO2 nanotubes and Cr doping inhibited the crystal phase change of TiO2 from anatase to rutile under high annealing temperature. Compared with pure TiO2NTs, the Cr-doped TiO2NTs exhibited higher photocurrent response, which was influenced by the concentration of Cr(VI) dopant and annealing temperature. The efficient removal of methyl orange (MO) indicated the high photoelectrocatalytic (PEC) activity of Cr-TiO2NTs.

  13. Electrochemically conductive treatment of TiO2 nanotube arrays in AlCl3 aqueous solution for supercapacitors

    Science.gov (United States)

    Zhong, Wenjie; Sang, Shangbin; Liu, Yingying; Wu, Qiumei; Liu, Kaiyu; Liu, Hongtao

    2015-10-01

    Highly ordered TiO2 nanotube arrays (NTAs) with excellent stability and large specific surface area make them competitive using as supercapacitor materials. Improving the conductivity of TiO2 is of great concern for the construction of high-performance supercapacitors. In this work, we developed a novel approach to improve the performance of TiO2 materials, involving the fabrication of Al-doped TiO2 NTAs by a simple electrochemical cathodic polarization treatment in AlCl3 aqueous solution. The prepared Al-doped TiO2 NTAs exhibited excellent electrochemical performances, attributing to the remarkably improved electrical conductivity (i.e., from approx. 10 kΩ to 20 Ω). Further analysis showed that Al3+ ions rather than H+ protons doped into TiO2 lattice cause this high conductivity. A MnO2/Al-TiO2 composite was evaluated by cyclic voltammetry, and achieved the specific capacitance of 544 F g-1, and the Ragone plot of the sample showed a high power density but less reduction of energy density. These results indicate that the MnO2/Al-TiO2 NTAs sample could be served as a promising electrode material for high -performance supercapacitors.

  14. Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    MnO2 is electrodeposited onto ZnO nanorod array grown on Ni foil, forming a binder-free ZnO/MnO2 composited electrode. XRD, EDS, SEM and TEM are used to analyze the phase and microstructure of this composite. Burr-like MnO2 nanoflakes grows on ZnO nanorod array, the top of the composite is hollow and at the bottom exists ZnO large block core as an internal support, forming ZnO/MnO2 sea urchin-like sleeve array. As anode material for lithium ion batteries, ZnO/MnO2 sleeve array exhibits higher discharge capacity and coulombic efficiency, better rate performance and cycling stability than single ZnO nanorod array or directly electrodepsited MnO2, and the composite effect is very remarkable. After 100 cycles, the discharge capacity of ZnO/MnO2 still reaches 1259 mA h g−1, and coulombic efficiency surpasses 98%, higher than those of ZnO nanorod array (111 mA h g−1) and directly electrodeposited MnO2 (507 mA h g−1). The improvement of the electrochemical performances is due to the unique sea urchin-like sleeve array architecture. MnO2 burr tube shell structure leads to high electrochemical activity while the internal ZnO core support ensures good structure stability. The gradually opening of sea urchin-like sleeve during the cycling further enhances the electrochemical activity of MnO2, stabilizing and increasing electrochemical performances of the ZnO/MnO2 composite

  15. Arrays of nanofibers composed of a TiC core and a carbon coating for sensitive electrochemical detection of hydrazine

    International Nuclear Information System (INIS)

    Arrays made from quasi-aligned nanofibers consisting of a TiC/C composite were produced directly on a titanium alloy substrate by a thermochemical process. Their morphology, structure and composition were characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The arrays were directly utilized as an electrode without further treatment and display high catalytic activity in terms of hydrazine oxidation. The low overpotential decreases gradually when increasing pH values from 5 to 10. The detection range is linear from 0.1 to 1,635 μM concentrations, and the detection limit is as low as 0.026 μM (S/N=3). The selectivity of the electrode and its general performance and stability are very good. The improved electrochemical properties of the new electrode are attributed to the synergic effect of the highly conducting TiC nanowire core and an abundant amount of edge-plane-like defects on the carbon shells. (author)

  16. Electrochemically synthesis and magnetic properties of Ni nanotube arrays with small diameter

    International Nuclear Information System (INIS)

    Ni nanotube arrays with smaller diameter (around 45 nm) have been fabricated by direct-current electrodeposition into the pores of porous anodic alumina membrane. The crystal structure and micrograph of Ni nanotube arrays were characterized by X-ray diffraction, field-emission scanning electron microscopy. It is found that the diameter of Ni nanotubes is corresponding to the pore size of the porous anodic alumina membrane used in our work. The magnetic hysteresis loops obtained by a Physical Property Measurement System show that the coercivity of Ni nanotubes is smaller than that of Ni nanowires with the same diameter, and larger than that of Ni nanotubes with larger diameter reported in the previous works. The study of Ni nanotubes with small diameter may open up new opportunities for the design and control of nanostructures such as the fabrication of magnetic recording devices

  17. Urea assisted electrochemical synthesis of flower-like platinum arrays with high electrocatalytic activity

    International Nuclear Information System (INIS)

    Graphical abstract: A simple, facile, and controllable method was developed for preparation of well-defined flower-like Pt arrays via one-step electrodeposition, assisted with urea as a growth directing agent. The as-prepared Pt nanocrystals have a larger electroactive surface area and higher electrocatalytic activity toward ethylene glycol and methanol oxidation in acid media, compared with Pt nanoparticles and commercial Pt black catalysts. - Highlights: • Well-defined flower-like Pt arrays were prepared via one-step electrodeposition, assisted with urea as a growth directing agent. • This method is simple, facile, and controllable, without using any template, seed or surfactant. • The Pt arrays show an enhanced electrocatalytic activity toward ethylene glycol and methanol oxidation. - Abstract: In this paper, well-defined flower-like Pt arrays were prepared on the glassy carbon electrode by one-step electrodeposition at–0.3 V for 600 s in 0.5 M H2SO4 containing 5 mM H2PtCl6 and 150 mM urea. This method is simple, facile, and controllable, without using any template, seed or surfactant. The experimental parameters were investigated and found urea acted as a growth directing agent. The as-prepared Pt nanocrystals were preferentially growing along the (111) directions, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX). Moreover, the flower-like Pt nanoarrays exhibited a large effective surface area (EASA) and enhanced performance toward the oxidation of ethylene glycol and methanol in acid media, compared with Pt nanoparticles and commercial Pt black catalysts. This strategy can be extended to prepare other noble metal nanostructures as good electrocatalysts in fuel cells

  18. Electrochemical detection of ractopamine at arrays of micro-liquid | liquid interfaces.

    Science.gov (United States)

    Sairi, Masniza; Arrigan, Damien W M

    2015-01-01

    The behaviour of protonated ractopamine (RacH(+)) at an array of micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) was investigated via cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV). The micro-ITIES array was formed at silicon membranes containing 30 pores of radius 11.09±0.12 µm and pore centre-to-centre separation of 18.4±2.1 times the pore radius. CV shows that RacH(+) transferred across the water |1,6-dichlorohexane µITIES array at a very positive applied potential, close to the upper limit of the potential window. Nevertheless, CV was used in the estimation of some of the drug's thermodynamic parameters, such as the formal transfer potential and the Gibbs transfer energy. LSSV was implemented by pre-concentration of the drug, into the organic phase, followed by voltammetric detection, based on the back-transfer of RacH(+) from the organic to aqueous phase. Under optimised pre-concentration and detection conditions, a limit of detection of 0.1 µM was achieved. In addition, the impact of substances such as sugar, ascorbic acid, metal ions, amino acid and urea on RacH(+) detection was assessed. The detection of RacH(+) in artificial serum indicated that the presence of serum protein interferes in the detection signal, so that sample deproteinisation is required for feasible bioanalytical applications. PMID:25476299

  19. Effects of ion insertion on cycling performance of miniaturized electrochemical capacitor of carbon nanotubes array

    International Nuclear Information System (INIS)

    Capacity degradation and ion insertion of a miniaturized electrochemical capacitor are studied using ionic liquid [EMI] [TFSI] as the electrolyte. This capacitor is featured with two comb-like electrodes of vertical carbon nanotubes, ∼70 μm in height and 20 μm in interelectrode gap. We quantify the levels of ion insertion damage with Raman spectroscopy after the electrode experiences 120 consecutive voltammetric cycles to various potential limits. Distinct structural damage emerges due to [EMI] when the negative potential reaches −1.7 V, and those due to [TFSI] arise when the positive potential reaches 1.7 V vs. RHE. Judging from the peak broadenings, [EMI] is more detrimental than [TFSI]. When the voltage window ΔU is set as less than or equal to 2.8 V, both electrode potentials are within the two intercalation limits, little or no decay is observed in 104 charge/discharge cycles. When ΔU is 3.4 V, the positive potential exceeds the upper limit, but the negative potential stays within the lower limit, the cell capacitance decreases moderately. When ΔU increases to 3.8 V, both electrodes suffer from damages because of exceeding the intercalation limits. And the cell capacitance decreases substantially, even leading to a premature failure. (paper)

  20. Effect of Tin+ defects on electrochemical properties of highly-ordered titania nanotube arrays

    International Nuclear Information System (INIS)

    In this paper, highly-ordered TiO2 nanotube (TNT) electrodes fabricated by anodization at 20 V in 0.1 M F--based solution were annealed in O2, N2 and CO respectively. The surface properties of the TiO2 electrodes after annealing treatment by different gases were studied by means of photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the TNT electrodes were investigated by cyclic voltammetry, steady-state polarization and photocurrent response measurements. The results showed that Tin+ (n = 0-3) cations and oxygen vacancies existed in the TNT electrode after annealing in CO, leading to a very efficient electron transfer rate of 1.34 x 10-3 cm/s. Steady-state polarization measurement and photocurrent response demonstrated that the electrode potential of oxygen evolution reaction (OER) reduced by 20% and the photocurrent response increased by 50% for CO-annealed TNT electrode compared with O2-annealed TNT electrode.

  1. Fabrication and electrochemical behavior of flower-like ZnO-CoO-C nanowall arrays as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: → Flower-like ZnO-CoO-C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. → The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. → The catalytic effect of Co phase on the decomposition of Li2O mainly account for the high capacity. → The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability. - Abstract: This study reported the electrochemical performance of flower-like ZnO-CoO-C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400 deg. C. At a rate of 0.5 C, the arrays exhibited a delithiation capacity of 438 mA h g-1 at the 50th cycle. The arrays still delivered a reversible capacity of 224 mA h g-1 at 2.0 C rate, much higher than those of the flower-like ZnO and ZnO-C nanowall arrays. The mechanism for the high capacity of flower-like ZnO-CoO-C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc.

  2. In situ electrochemical STM study of platinum nanodot arrays on highly oriented pyrolythic graphite prepared by electron beam lithography

    Science.gov (United States)

    Foelske-Schmitz, A.; Peitz, A.; Guzenko, V. A.; Weingarth, D.; Scherer, G. G.; Wokaun, A.; Kötz, R.

    2012-12-01

    Model electrodes consisting of platinum dots with a mean diameter of (30 ± 5) nm and heights of 3-5 nm upon highly oriented pyrolytic graphite (HOPG) were prepared by electron beam lithography and subsequent sputtering. The Pt nanodot arrays were stable during scanning tunnelling microscopy (STM) measurements in air and in sulphuric acid electrolyte, indicating the presence of "anchors", immobilising the dots on the HOPG surface. Electrochemical STM was used to visualise potential induced Pt, carbon and Pt-influenced carbon corrosion in situ in 0.5 M sulphuric acid under ambient conditions. Potentiostatic hold experiments show that the Pt dots start to disappear at electrode potentials of E > 1.4 V vs. SHE. With increasing time and potential a hole pattern congruent to the original dot pattern appears on the HOPG basal planes. Corrosion and peeling of the HOPG substrate could also be followed in situ. Dissolution of Pt dots appears to be accelerated for potential cycling experiments compared to the potential hold statistics.

  3. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  4. Titanium dioxide nanotube arrays modified with a nanocomposite of silver nanoparticles and reduced graphene oxide for electrochemical sensing

    International Nuclear Information System (INIS)

    We report on a new nanocomposite material for electrochemical sensing of hydrogen peroxide using a titanium dioxide nanotube arrays modified with reduced graphene oxide onto which silver nanoparticles (AgNPs) were chemically deposited. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray and Raman spectroscopy were used to characterize its microstructure and morphology. The results demonstrated that the AgNPs were uniformly dispersed on the surface of the modified electrode which was investigated with respect to capability for sensing hydrogen peroxide (H2O2). Under optimized experimental condition, the electrode responds to H2O2 with a sensitivity of 1152 μA mM−1 cm−2 at a working potential of −0.6 V. The current response is linearly related to the concentration of H2O2 in the range from 50 to 15.5 mM (with a correlation coefficient of 0.9997), and the detection limit is 2.2 μM. The sensor exhibits good stability and excellent selectivity for H2O2. By immobilizing glucose oxidase on the surface of this electrode, a glucose biosensor was obtained that responds to glucose in the 0.5 to 50 mM concentration range. (author)

  5. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays

    Science.gov (United States)

    Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Wu, Shishan; Yan, Chenglin

    2015-10-01

    We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm-3 (˜40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm-3, which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm-3 after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices.

  6. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes.

    Science.gov (United States)

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H₂O₂) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM⁻¹·cm⁻²) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  7. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  8. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach

    International Nuclear Information System (INIS)

    Although one-dimensional anodic TiO2 nanotube arrays have shown promise as supercapacitor electrode materials, their poor electronic conductivity embarrasses the practical applications. Here, we develop a simple electrochemical doping method to significantly improve the electronic conductivity and the electrochemical performances of TiO2 nanotube electrodes. These TiO2 nanotube electrodes treated by the electrochemical hydrogenation doping (TiO2-H) exhibit a very high average specific capacitance of 20.08 mF cm−2 at a current density of 0.05 mA cm−2, ∼20 times more than the pristine TiO2 nanotube electrodes. The improved electrochemical performances can be attributed to ultrahigh conductivity of TiO2-H due to the introduction of interstitial hydrogen ions and oxygen vacancies by the doping. The supercapacitor device assembled by the doped electrodes delivers a specific capacitance of 5.42 mF cm−2 and power density of 27.66 mW cm−2, on average, at the current density of 0.05 mA cm−2. The device also shows an outstanding rate capability with 60% specific capacitance retained when the current density increases from 0.05 to 4.00 mA cm−2. More interestingly, the electrochemical performances of the supercapacitor after cycling can be recovered by the same doping process. This strategy boosts the performances of the supercapacitor, especially cycling stability

  9. High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We prepared a self-supported porous Co3O4/C core/shell nanowire array. • Core/shell nanowire array showed high pseudo-capacitive properties. • Core/shell array structure was favorable for fast ion and electron transfer. - Abstract: High-reactivity electrode materials are indispensible for developing high-performance electrochemical energy storage devices. Herein, we report self-supported core/shell Co3O4/C nanowire arrays by using hydrothermal synthesis and chemical vapor deposition methods. A uniform and thin carbon shell is coated on the surface of Co3O4 nanowire forming core/shell nanowires with diameters of ∼100 nm. Asymmetric supercapacitors have been assembled with the core/shell Co3O4/C nanowire arrays as the positive electrode and activated carbon (AC) as the negative electrode. The core/shell Co3O4/C nanowire arrays exhibit a specific capacity of 116 mAh g−1 at the working current of 100 mA (4 A g−1), and a long cycle life along with ∼ 92% retention after 8000 cycles at 4 A g−1, higher than the unmodified Co3O4 nanowire arrays (81 mAh g−1 at 4 A g−1). The introduction of uniform carbon layer into the core/shell structure is favorable for the enhancement of supercapacitor due to the improved electrical conductivity and reaction kinetics

  10. Electrochemical Oxidation and Determination of Glucose in Alkaline Media Based on Au (111)-Like Nanoparticle Array on Indium Tin Oxide Electrode

    International Nuclear Information System (INIS)

    Graphical abstract: In this work, Au (111)-like nanoparticle array was electrodeposited by novel electrochemical protocol. This work provided a feasible approach to prepare Au (111)-like nanoparticle array with a controllable, cost-effective, and without any template or surfactant way. The electrochemical behavior of oxidation of glucose in alkaline media on the as-prepared electrode was discussed. In addition, the as-prepared electrode was served as an enzyme-free glucose sensor to detect the concentration of glucose. - Abstract: In this article, the electrochemical oxidation and the non-enzymatic voltammetric and amperometric detection of glucose using an Au (111)-like nanoparticle-ensemble electrode is described. Moreover, the electrochemical behavior of oxidation of glucose in alkaline media on the as-prepared electrode is discussed. The as-prepared electrode was characterized by field emission scanning electron microscope, cyclic voltammetry. The as-prepared electrode provided excellent electrochemical performance for kinetic-controlled non-enzymatic glucose oxidation reaction with a linear response range from 30 μM to 45 mM, a low detection limit of 10 μM (signal to noise ratio of 3) and a high sensitivity 67.2 μA mM−1 cm−2 without the interference of 0.15 M chloride, which could be ascribed to the unique ratio of the different crystal planes exposed on the nanocrystal surface. In addition, the amperometric response of the sensor showed a linear relationship up to a glucose concentration of 11 mM with a high sensitivity of 23.0 μA mM−1 cm−2. The Au (111)-like nanoparticle-ensemble electrode with high sensitivity, good stability and reproducibility as well as excellent biocompatibility made it promising for the development of enzyme-free sensors

  11. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    Directory of Open Access Journals (Sweden)

    Domenico F. Galati

    2016-01-01

    Full Text Available Multi-ciliated cells (MCCs use polarized fields of undulating cilia (ciliary array to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs that are arranged within a spatially complex 3-dimensional geometry (3D. Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  12. Spin-coated Au-nanohole arrays engineered by nanosphere lithography for a Staphylococcus aureus 16S rRNA electrochemical sensor.

    Science.gov (United States)

    Purwidyantri, Agnes; Chen, Ching-Hsiang; Hwang, Bing-Joe; Luo, Ji-Dung; Chiou, Chiuan-Chian; Tian, Ya-Chung; Lin, Chan-Yu; Cheng, Chi-Hui; Lai, Chao-Sung

    2016-03-15

    The nanopatterning of gold nanoparticle (AuNP) arrays on an indium tin oxide (ITO) electrode using efficient and low-cost methods is described. This process used nanosphere lithography (NSL) encompassing the deposition of monolayered Polystyrene (PS) followed by a convective self-assembly drop coating protocol onto the ITO substrate that further acted as the mask after the AuNP assembly. The results showed that spin-coating allowed AuNPs to follow the contour and adhere to the PS nanospheres. The final products, after etching the PS, generated a highly ordered Au-nanohole array on an ITO substrate. The Au-nanohole arrays on the ITO electrode provided a greater surface area and successfully enhanced the peak current of electrochemical measurements by 82% compared with bare ITO and was used to detect Staphylococcus aureus 16S rRNA hybridization. In contrast to non-templated AuNP structures, the Au-nanohole arrays on the ITO electrode contributed to an optimum sensitivity improvement in DNA hybridization detection by 23%, along with an impressive limit of detection (LOD) of 10 pM. The high specificity of this distinguished structure was also achieved in the hybridization measurements of multi-analyte pathogens. These findings indicate that the combination of PS nanosphere lithography, followed by the spin-coating of AuNPs, leads to an inexpensive and simple engineering process that effectively generates uniform Au-nanohole arrays on ITO, which provides a greater surface area to optimize the electrochemical performance of the DNA biosensor. PMID:26556186

  13. Facile growth of hexagonal NiO nanoplatelet arrays assembled by mesoporous nanosheets on Ni foam towards high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Highlights: ► Hexagonal nickel oxide nanoplatelet arrays free-standing on Ni foam. ► NiO nanoplatelets were assembled by ultrathin mesoporous nanosheets. ► Binder-free NiO arrays deliver high specific capacitance at high rates. ► Self-supported NiO arrays electrode kept excellent cycling stability. - Abstract: In the work, we develop a novel two-step strategy to synthesize self-supported hexagonal nickel oxide nanoplatelet arrays on Ni foam: precipitating hydroxides followed by calcinating process. These nanoplatelets are composed of a multilayer of ultrathin mesoporous NiO nanosheets. The unique Ni foam-supported mesoporous NiO nanoplatelet arrays electrode promises fast ion and electron transport, large electroactive surface area, and excellent structural stability. As a result, superior pseudocapacitive performance is achieved with large specific capacitance in the range of 1124–864 F g−1 and excellent cycling stability up to 5000 cycles, suggesting their promising application for electrochemical capacitors.

  14. Optical and structural properties of electrochemically deposited ZnO nanorod arrays suitable for improvement of the light harvesting in thin film solar cells

    International Nuclear Information System (INIS)

    The results of study of the optical and structural properties of ZnO nanorods (NR) arrays electrochemically deposited on two type substrates – the ITO surface on the front side of Si heterojunction (SHJ) solar cells and on stainless steel plate used for formation of a-Si:H thin film solar cells, are reported. The surface morphology of the NS arrays is examined by Scanning Electron Microscopy and AFM. The spectra of specular diffused and total reflection, and haze ratio in reflectance are compared before and after deposition of the ZnO NR arrays. In the case of deposition on ITO surface of SHJ solar cells the values of the direct and diffused reflection of the ZnO NR array decrease demonstrating good antireflection properties. Deposition of ZnO NS arrays on stainless steel plates leads to increasing the values of the diffused reflection and the total reflectance. Possible application of ZnO NS structures for the processing of advanced Si based solar cells for increasing light harvesting is discussed

  15. Effect of diameter and height of electrochemically-deposited ZnO nanorod arrays on the performance of piezoelectric nanogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su, E-mail: jsyu@khu.ac.kr

    2015-01-15

    We investigated the performance of zinc oxide (ZnO) nanorod arrays (NRAs)-based piezoelectric nanogenerators (NGs) by controlling their diameter and height which are closely related to piezoelectric output current. The ZnO NRAs as a nanostructured piezoelectric material were synthesized on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) (i.e., ITO/PET) substrates by a facile electrochemical deposition (ED) method. As the zinc nitrate concentration and growth time increased, the diameter and height of ZnO NRAs also increased. Based on the ZnO NRAs on ITO/PET, piezoelectric NGs were fabricated with an opposite electrode of gold-coated PET film (i.e. Au/PET). At 10 mM of zinc nitrate concentration and 1 h of growth time, the ZnO NRAs exhibited relatively regular and higher output currents, leading to an estimated average value of ∼10.4 nA/cm{sup 2} under a low external pushing force of 0.98 N. For the samples at 1 and 100 mM, piezoelectric currents were relatively low (∼4.34 and 1.45–5.21 nA/cm{sup 2}, respectively). It was found that the ZnO NRAs with high diameter/height uniformity and good alignment tend to be bent more easily for efficiently generating piezoelectric currents. The bending efficiency of ZnO NRAs was also analysed theoretically by calculating the strain distribution of ZnO NRAs-based NGs with different diameters and heights of the nanorods. - Highlights: • ZnO NRAs were synthesized on ITO/PET substrate by a facile ED process. • The diameter and height of ZnO NRAs were controlled by varying growth parameters. • Under an optimized condition, the NG exhibited a relatively high output current. • Theoretical results confirmed the bending efficiency of various ZnO NRAs.

  16. Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: two reaction modes are revealed

    International Nuclear Information System (INIS)

    The lithiation reaction of ZnO as an anode in a lithium-ion battery (LIB) is unclear. The electrochemical behavior of ZnO was investigated inside a transmission electron microscope (TEM) by constructing a nano-LIB using an individual ZnO/graphene sheet as the electrode. The lithiation reaction of ZnO/graphene was monitored by simultaneous determination of the structure with high-resolution TEM, electron diffraction pattern and electron energy-loss spectroscopy. Two kinds of reaction modes were revealed in terms of different reaction rates. One was the violent reaction mode, in which one particle can evolve into an aggregate of many nanoparticles within the Li2O matrix in 1–2 min. The other was the peaceful evolution mode, in which each ZnO nanoparticle evolves into a core–shell particle with multi-domains constituted of Zn and LiZn nanograins. Abnormally large Zn nanocrystals grow quickly in the violent reaction mode, which can suppress the formation of LiZn and impair the reversible capacity. Our observations give direct evidence and important insights for the lithiation mechanism of metal oxide anodes in LIBs. (paper)

  17. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells.

    Science.gov (United States)

    Zan, Xiaoli; Bai, Hongwei; Wang, Chenxu; Zhao, Faqiong; Duan, Hongwei

    2016-04-01

    To circumvent the bottlenecks of non-flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil-water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm(-2) μM(-1), up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nM, and a wide linear range of 87 nM to 100 μM. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well-tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil-water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. PMID:26918612

  18. Electrochemical construction of a bio-inspired micro/nano-textured structure with cell-sized microhole arrays on biomedical titanium to enhance bioactivity

    International Nuclear Information System (INIS)

    Highlights: • The bio-inspired structure mimicked mulit-level structures of natural bone. • Ordered cell-sized microhole arrays were employed as microscale structure. • High surface roughness and superhydrophilicity were achieved on the titanium surface. • The bio-inspired titanium surface showed superior ability of biomineralization. • Cell responses were enhanced on the bio-inspired micro/nano-texutred surface. - Abstract: Biomimetic surface design of medical implants is vitally crucial to improve cellular responses and the integration of tissue onto materials. In this study, a novel hierarchical cell-sized microhole array combined with a nano-network structure was fabricated on a medical titanium surface to mimic multi-level bone structure. A three-step procedure was developed as follows: 1) electrochemical self-organization of etching on titanium substrate to create highly ordered cell-sized microhole arrays, 2) suitable dual acid etching to increase the roughness of the microholes, and then 3) electrochemical anodization in a NaOH electrolyte to construct a nano-network porous titania layer on the above micro-roughened surface. The bio-inspired micro/nano-textured structure presented the enhanced wettability and superhydrophilicity. The ability of in vitro biomineralization and corrosion resistance of the bio-inspired micro/nano-textured structure were enhanced after annealing treatment. More importantly, the bio-inspired micro/nano-textured structure on the titanium surface possessed a favourable interfacial environment to enhance attachment and proliferation of human osteoblast-like MG63 cells. All of the results demonstrated that such a bio-inspired surface of micro/nano-textured porous TiO2 is a most promising candidate for the next generation of titanium implants

  19. Anti-wetting Cu/Cr coating with micro-posts array structure fabricated by electrochemical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yufeng [College of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai, 201620 (China); Hang, Tao, E-mail: hangtao@sjtu.org [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Li, Feng; Li, Ming [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China)

    2013-04-15

    Microposts structured Cu/Cr multilayer coating was prepared by a simple two-step approach combining electroless and electro deposition. Surface morphologies of the as-prepared Cu/Cr multilayer coating characterized by field emission scanning electron microscopy show that this multilayer coating exhibits micro-posts arrayed structure with a layer of Cr uniformly covering the circular conical surface of Cu micro-cones array. The wettability test shows that the contact angle of Cu/Cr multilayer surface with water drop can be greater than 140° by optimizing the electrodeposition time of Cr. The mechanism of hydrophobicity of both the micro-cones arrayed and micro-posts arrayed structures was briefly discussed by comparing two different wetting modes. Due to its good anti-wetting property and unique structure, the micro-posts arrayed Cu/Cr multilayer coating is expected for extensive practical applications.

  20. Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a highly malignant bone neoplasm of children and young adults. It is characterized by extremely complex karyotypes and high frequency of chromosomal amplifications. Currently, only the histological response (degree of necrosis) to therapy represent gold standard for predicting the outcome in a patient with non-metastatic osteosarcoma at the time of definitive surgery. Patients with lower degree of necrosis have a higher risk of relapse and poor outcome even after chemotherapy and complete resection of the primary tumor. Therefore, a better understanding of the underlying molecular genetic events leading to tumor initiation and progression could result in the identification of potential diagnostic and therapeutic targets. We used a genome-wide screening method – array based comparative genomic hybridization (array-CGH) to identify DNA copy number changes in 48 patients with osteosarcoma. We applied fluorescence in situ hybridization (FISH) to validate some of amplified clones in this study. Clones showing gains (79%) were more frequent than losses (66%). High-level amplifications and homozygous deletions constitute 28.6% and 3.8% of tumor genome respectively. High-level amplifications were present in 238 clones, of which about 37% of them showed recurrent amplification. Most frequently amplified clones were mapped to 1p36.32 (PRDM16), 6p21.1 (CDC5L, HSPCB, NFKBIE), 8q24, 12q14.3 (IFNG), 16p13 (MGRN1), and 17p11.2 (PMP22 MYCD, SOX1,ELAC27). We validated some of the amplified clones by FISH from 6p12-p21, 8q23-q24, and 17p11.2 amplicons. Homozygous deletions were noted for 32 clones and only 7 clones showed in more than one case. These 7 clones were mapped to 1q25.1 (4 cases), 3p14.1 (4 cases), 13q12.2 (2 cases), 4p15.1 (2 cases), 6q12 (2 cases), 6q12 (2 cases) and 6q16.3 (2 cases). This study clearly demonstrates the utility of array CGH in defining high-resolution DNA copy number changes and refining amplifications. The resolution of array CGH

  1. Independent component analysis reveals new and biologically significant structures in micro array data

    Directory of Open Access Journals (Sweden)

    Veerla Srinivas

    2006-06-01

    Full Text Available Abstract Background An alternative to standard approaches to uncover biologically meaningful structures in micro array data is to treat the data as a blind source separation (BSS problem. BSS attempts to separate a mixture of signals into their different sources and refers to the problem of recovering signals from several observed linear mixtures. In the context of micro array data, "sources" may correspond to specific cellular responses or to co-regulated genes. Results We applied independent component analysis (ICA to three different microarray data sets; two tumor data sets and one time series experiment. To obtain reliable components we used iterated ICA to estimate component centrotypes. We found that many of the low ranking components indeed may show a strong biological coherence and hence be of biological significance. Generally ICA achieved a higher resolution when compared with results based on correlated expression and a larger number of gene clusters with significantly enriched for gene ontology (GO categories. In addition, components characteristic for molecular subtypes and for tumors with specific chromosomal translocations were identified. ICA also identified more than one gene clusters significant for the same GO categories and hence disclosed a higher level of biological heterogeneity, even within coherent groups of genes. Conclusion Although the ICA approach primarily detects hidden variables, these surfaced as highly correlated genes in time series data and in one instance in the tumor data. This further strengthens the biological relevance of latent variables detected by ICA.

  2. Quantification of individual phenolic compounds' contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection.

    Science.gov (United States)

    Plaza, Merichel; Kariuki, James; Turner, Charlotta

    2014-01-15

    Phenolics, particularly from apples, hold great interest because of their antioxidant properties. In the present study, the total antioxidant capacity of different apple extracts obtained by pressurized hot water extraction (PHWE) was determined by cyclic voltammetry (CV), which was compared with the conventional antioxidant assays. To measure the antioxidant capacity of individual antioxidants present in apple extracts, a novel method was developed based on high-performance liquid chromatography (HPLC) with photodiode array (DAD), electrochemical (ECD), and charged aerosol (CAD) detection. HPLC-DAD-ECD-CAD enabled rapid, qualitative, and quantitative determination of antioxidants in the apple extracts. The main advantage of using CAD was that this detector enabled quantification of a large number of phenolics using only a few standards. The results showed that phenolic acids and flavonols were mainly responsible for the total antioxidant capacity of apple extracts. In addition, protocatechuic acid, chlorogenic acid, hyperoside, an unidentified phenolic acid, and a quercetin derivative presented the highest antioxidant capacities. PMID:24345041

  3. Controllable electrochemical synthesis of ZnO nanorod arrays on flexible ITO/PET substrate and their structural and optical properties

    International Nuclear Information System (INIS)

    Highlights: ► Vertically aligned ZnO nanorod arrays were grown on flexible transparent substrate by the electrodeposition. ► Morphology and optical properties were controlled by varying the deposition voltage and the concentration of growth solution. ► Crystallinity and photoluminescence were studied under different growth conditions. ► Well aligned ZnO nanorod arrays show the good antireflection and wetting properties. ► Optimized ZnO nanorod arrays exhibit an increased diffuse light scattering with keeping high transparency. - Abstract: The structural and optical properties of vertically aligned zinc oxide (ZnO) nanorod arrays (NRAs) which were grown on the flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrate (i.e., ITO/PET substrate) with a thin sputtered ZnO seed layer via the electrochemical deposition method were studied. By changing the applied voltage and zinc nitrate concentration, the height/width and density of ZnO NRAs were controlled, with investigation on their crystallinity and optical properties. To understand the effect of ZnO seed layer on the growth property of ZnO nanorods, they were also grown on ITO/PET without any seed layer. Under an applied cathodic voltage of −2 V and zinc nitrate concentration of 10 mM, the ZnO NRAs increased the total transmittance up to 88.7% in the visible wavelength region due to the antireflective property and their X-ray diffraction (0 0 2) peak intensity was largely enhanced. Additionally, the near band edge emission of ZnO was significantly enhanced in photoluminescence spectrum. The light scattering and surface wetting properties were also explored.

  4. Preparation of SnO2@C-doping TiO2 nanotube arrays and its electrochemical and photoelectrochemical properties

    International Nuclear Information System (INIS)

    Highlights: ► SnO2 nanoparticels synthesized by hydrothermal method were loaded on carbon doping TiO2NTs. ► SnO2@C-TiO2NTs showed optimal electrochemical and photoelectrochemical properties due to the heterojunction formed at the interface and the synergistic effect of the electrode. -- Abstract: SnO2@carbon-doping TiO2 nanotube arrays (SnO2@C-TiO2NTs) were synthesized by hydrothermal method and evaluated for lithium ion insertion and photoelectrochemical activity. The composite electrode prepared for 5 h as anode materials for lithium-ion batteries exhibited much improved electrochemical performance due to the aligned pore structure and the synergistic effect of the electrode. A capacity of 142 μA h cm−2 can be obtained after 50 discharge/charge cycles at a high current density of 200 μA cm−2. Moreover, UV–vis results of the sample showed stronger absorption intensity in the range of 200–800 nm compared with bare TiO2NTs. The composite electrode displayed the maximum photocurrent density of 1.80 mA cm−2. This is attributed to the heterojunction formed at the interface between SnO2 and TiO2NTs resulting the enhance charge separation efficiency. Eletrochemical impendence spectroscopy (EIS) also shows that SnO2@C-TiO2 NTs has a noticeably lower charge-transfer resistance

  5. Ultrasensitive electrochemical immunoassay for surface array protein, a Bacillus anthracis biomarker using Au-Pd nanocrystals loaded on boron-nitride nanosheets as catalytic labels.

    Science.gov (United States)

    Sharma, Mukesh Kumar; Narayanan, J; Pardasani, Deepak; Srivastava, Divesh N; Upadhyay, Sanjay; Goel, Ajay Kumar

    2016-06-15

    Bacillus anthracis, the causative agent of anthrax, is a well known bioterrorism agent. The determination of surface array protein (Sap), a unique biomarker for B. anthracis can offer an opportunity for specific detection of B. anthracis in culture broth. In this study, we designed a new catalytic bionanolabel and fabricated a novel electrochemical immunosensor for ultrasensitive detection of B. anthracis Sap antigen. Bimetallic gold-palladium nanoparticles were in-situ grown on poly (diallyldimethylammonium chloride) functionalized boron nitride nanosheets (Au-Pd NPs@BNNSs) and conjugated with the mouse anti-B. anthracis Sap antibodies (Ab2); named Au-Pd NPs@BNNSs/Ab2. The resulting Au-Pd NPs@BNNSs/Ab2 bionanolabel demonstrated high catalytic activity towards reduction of 4-nitrophenol. The sensitivity of the electrochemical immunosensor along with redox cycling of 4-aminophenol to 4-quinoneimine was improved to a great extent. Under optimal conditions, the proposed immunosensor exhibited a wide working range from 5 pg/mL to 100 ng/mL with a minimum detection limit of 1 pg/mL B. anthracis Sap antigen. The practical applicability of the immunosensor was demonstrated by specific detection of Sap secreted by the B. anthracis in culture broth just after 1h of growth. These labels open a new direction for the ultrasensitive detection of different biological warfare agents and their markers in different matrices. PMID:26874112

  6. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Zulin; Dai, Zhangyan [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098 (China); Bai, Xue, E-mail: baixue10@tsinghua.org.cn [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098 (China); Ye, Zhengfang [Key Laboratory of Water and Sediment Sciences of the Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China); Gu, Haixin; Huang, Xin [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098 (China)

    2015-08-15

    Highlights: • Fe, N, F tri-doped TiO{sub 2} was prepared by a facile one-step electrochemical method. • Fe, N, F tri-doping resulted in a synergetic effect for the enhanced photoactivity. • The formation of N 2p near the valence band contributed to visible light absorption. • Doping fluorine and Fe{sup 3+} ions reduced the recombination of photogenerated e{sup −}–h{sup +}. • The synergistic effect in Fe, N, F tri-doping was confirmed by XPS and FTIR. - Abstract: Highly ordered iron, nitrogen, and fluorine tri-doped TiO{sub 2} (Fe, (N, F)-TiO{sub 2}) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH{sub 4}F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO{sub 2} showed higher photoactivities than undoped TiO{sub 2} under visible light. The optimum Fe{sup 3+} doping amount at 0.005 M exhibited the highest photoactivity and exceeded that of undoped TiO{sub 2} by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe{sup 3+} ions reduced the photogenerated electrons–holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO{sub 2}, which enhanced visible light photoactivity. The Fe, (N, F)-TiO{sub 2} photocatalyst exhibited high stability.

  7. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity

    International Nuclear Information System (INIS)

    Highlights: • Fe, N, F tri-doped TiO2 was prepared by a facile one-step electrochemical method. • Fe, N, F tri-doping resulted in a synergetic effect for the enhanced photoactivity. • The formation of N 2p near the valence band contributed to visible light absorption. • Doping fluorine and Fe3+ ions reduced the recombination of photogenerated e−–h+. • The synergistic effect in Fe, N, F tri-doping was confirmed by XPS and FTIR. - Abstract: Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe3+ doping amount at 0.005 M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe3+ ions reduced the photogenerated electrons–holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability

  8. Nylon Filter Arrays Reveal Differential Expression of Expressed Sequence Tags in Wheat Roots Under Aluminum Stress

    Institute of Scientific and Technical Information of China (English)

    Kai XIAO; Gui-Hua BAI; Brett F CARVER

    2005-01-01

    To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) nearisogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2+ transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways.The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.

  9. Substrate-free fabrication of self-supported V2O5 nanobelt arrays by a low-temperature solvothermal method with high electrochemical performance

    Science.gov (United States)

    Xu, Haitao; Zhang, Huijuan; Liu, Li; Fang, Ling; Wang, Yu

    2016-08-01

    In the designed synthesis, self-supported NH4V3O8 nanobelt arrays were prepared via a low-temperature solvothermal method. Then the NH4V3O8 nanobelt arrays were calcined in air atmosphere. Finally, a self-supported pattern of oriented V2O5 nanobelts was obtained for the first time. Further characterization methods certified that the growth direction of NH4V3O8 nanobelts was perpendicular to the orientation plane of self-formed NH4V3O8 sheet-like substrates. As a result, the nanobelts should stretch easily on the sheet-like substrate in an oriented manner. We prove that the solvent of ethanol plays a key role in the reaction and crystal growth process. It balances the two competing oxolation and olation reactions. Furthermore, the unique pattern served as high performance a lithium-ion battery and supercapacitor. Overall, the excellent electrochemical performances, for example, outstanding rate stability, remarkable cycling capacitance and ultrahigh capacity verify that the self-supported alignments have great potential applications in lithium-ion batteries and supercapacitors.

  10. Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity

    Science.gov (United States)

    Arefpour, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    While a variety of template-based strategies have been developed in the fabrication of nanowires (NWs), a uniform pore filling across the template still poses a major challenge. Here, we present a large area controlled pore filling strategy in the reproducible fabrication of various magnetic and metallic NW arrays, embedded inside anodic aluminum oxide templates. Using a diffusive pulsed electrodeposition (DPED) technique, this versatile strategy relies on the optimized filling of branched nanopores at the bottom of templates with Cu. Serving the Cu filled nanopores as appropriate nucleation sites, the DPED is followed by a uniform and homogeneous deposition of magnetic (Ni and Fe) and metallic (Cu and Zn) NWs at a current density of 50 mA cm‑2 for an optimal thickness of alumina barrier layer (∼18 nm). Our strategy provides large area uniformity (exceeding 400 μm2) in the fabrication of 16 μm long free-standing NW arrays. Using hysteresis loop measurements and scanning electron microscopy images, the electrodeposition efficiency (EE) and pore filling percentage (F p) are evaluated, leading to maximum EE and F p values of 91% and 95% for Ni and Zn, respectively. Moreover, the resulting NW arrays are found to be highly crystalline. Accordingly, the DPED technique is capable of cheaply and efficiently controlling NW growth over a large area, providing a tool for various nanoscale applications including biomedical devices, electronics, photonics, magnetic storage medium and nanomagnet computing.

  11. An array of asymmetries in Saturn's structure revealed by its rings

    Science.gov (United States)

    Hedman, Matthew M.; Nicholson, Philip D.; El Moutamid, Maryame; Graven, Stephanie

    2016-05-01

    Previous investigations of high-resolution stellar occultation data obtained by the Cassini spacecraft have revealed that Saturn's C ring contains numerous density waves that are probably generated by structures inside the planet. In particular, five features were attributed to long-lived asymmetries in the planet's gravity field because they had pattern speeds similar to the range of rotation rates found in Saturn's winds. Using wavelet-based techniques, we have performed a more comprehensive search for similar structures, and found that the above five waves are just the most obvious members of an entire population of ring disturbances spread over several thousand kilometers of the C ring. These structures should provide new insights into the dynamics of Saturn's deep atmosphere.

  12. Liquid crystalline phase synthesis of nanoporous MnO2 thin film arrays as an electrode material for electrochemical capacitors

    International Nuclear Information System (INIS)

    Graphical abstract: Three-dimensional (3D) MnO2 thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO2 materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of −0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g−1 are achieved in 0.5 M Na2SO4 solution at a charge/discharge current density of 4 A g−1. Highlights: ► 3D MnO2 thin film arrays with nanoporous structure is fabricated for the first time. ► A maximum specific capacitance as high as 462 F g−1 is obtained. ► The 3D and nanoporous superarchitecture facilitate electrolyte penetration. -- Abstract: Three-dimensional (3D) MnO2 thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO2 materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of −0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g−1 are achieved in 0.5 M Na2SO4 solution at a charge/discharge current density of 4 A g−1.

  13. Synthesis and electrochemical properties of CeO2 nanoparticle modified TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    In this paper, a cerium dioxide (CeO2) modified titanium dioxide (TiO2) nanotube array film was fabricated by electrodeposition of CeO2 nanoparticles onto an anodized TiO2 nanotube array. The structural investigation by X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicated that the CeO2 nanoparticles grew uniformly on the walls of the TiO2 nanotubes. The composite was composed of cubic-phase CeO2 crystallites and anatase-phase TiO2 after annealing at 450 oC. The cyclic voltammetry and chronoamperometric charge/discharge measurement results indicated that the CeO2 modification obviously increased the charge storage capacity of the TiO2 nanotubes. The charge transfer process at the surface, that is, the pseudocapacitance, was the dominate mechanism of the charge storage in CeO2-modified TiO2 nanotubes. The greater number of surface active sites resulting from uniform application of the CeO2 nanoparticles to the well-aligned TiO2 nanotubes contributed to the enhancement of the charge storage density.

  14. Synthesis and electrochemical properties of CeO{sub 2} nanoparticle modified TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wen Hao [Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Liu Zhifu; Yang Qunbao [Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li Yongxiang, E-mail: yxli@mail.sic.ac.c [Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Yu, Jerry [Sensor Technology Lab., School of Electrical and Computer Engineering, RMIT University, Melbourne 3001 (Australia)

    2011-02-28

    In this paper, a cerium dioxide (CeO{sub 2}) modified titanium dioxide (TiO{sub 2}) nanotube array film was fabricated by electrodeposition of CeO{sub 2} nanoparticles onto an anodized TiO{sub 2} nanotube array. The structural investigation by X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicated that the CeO{sub 2} nanoparticles grew uniformly on the walls of the TiO{sub 2} nanotubes. The composite was composed of cubic-phase CeO{sub 2} crystallites and anatase-phase TiO{sub 2} after annealing at 450 {sup o}C. The cyclic voltammetry and chronoamperometric charge/discharge measurement results indicated that the CeO{sub 2} modification obviously increased the charge storage capacity of the TiO{sub 2} nanotubes. The charge transfer process at the surface, that is, the pseudocapacitance, was the dominate mechanism of the charge storage in CeO{sub 2}-modified TiO{sub 2} nanotubes. The greater number of surface active sites resulting from uniform application of the CeO{sub 2} nanoparticles to the well-aligned TiO{sub 2} nanotubes contributed to the enhancement of the charge storage density.

  15. Highly Disordered Array of Silicon Nanowires: an Effective and Scalable Approach for Performing and Flexible Electrochemical Biosensors.

    Science.gov (United States)

    Maiolo, Luca; Polese, Davide; Pecora, Alessandro; Fortunato, Guglielmo; Shacham-Diamand, Yosi; Convertino, Annalisa

    2016-03-01

    The direct integration of disordered arranged and randomly oriented silicon nanowires (SiNWs) into ultraflexible and transferable electronic circuits for electrochemical biosensing applications is proposed. The working electrode (WE) of a three-electrode impedance device, fabricated on a polyimide (PI) film, is modified with SiNWs covered by a thin Au layer and functionalized to bind the sensing element. The biosensing behavior is investigated through the ligand-receptor binding of biotin-avidin system. Impedance measurements show a very efficient detection of the avidin over a broad range of concentrations from hundreds of micromolar down to the picomolar values. The impedance response is modeled through a simple equivalent circuit, which takes into account the unique WE morphology and its modification with successive layers of biomolecules. This approach of exploiting highly disordered SiNW ensemble in biosensing proves to be very promising for the following three main reasons: first, the system morphology allows high sensing performance; second, these nanostructures can be built via scalable and transferable fabrication methodology allowing an easy integration on non-conventional substrates; third, reliable modeling of the sensing response can be developed by considering the morphological and surface characteristics over an ensemble of disordered NWs rather than over individual NWs. PMID:26717420

  16. Thin-film microelectric arrays for amperometric enzyme biosensors with electrochemically synthesized glucose oxidase-polyaniline membrane

    Science.gov (United States)

    Dzyadevich, Sergei V.; Rossokhaty, Victor K.; Shram, Nataly; Shul'ga, Alexander A.; Soldatkin, Alexey P.; Strikha, Vitaly I.

    1994-10-01

    An amperometric glucose biosensor was fabricated by the electrochemical polymerization of aniline onto a gold electrodes in presence of glucose oxidase in phosphate buffer solution, pH 7.0. Aniline is easily polymerized forming a thin film, which adheres tightly on the electrodes surface. During the electropolymerization process the enzyme was entrapped into the polyaniline film being able to catalyze the hydrolysis of glucose. The experiments were performed to determine the optimal condition for polyaniline-glucose oxidase film preparation. Glucose can be determined by the biosensor in the concentration range 10-4 M to 2 X 10-2 M. The linearity of the biosensor response was observed from 2 X 10-4 M to 6 X 10-3 M glucose, which demonstrated that the internal diffusion of substrates and products of reaction through the polyaniline layer to the electrodes surface was the main limiting factor controlling the response value. The method of electropolymerization was found to have several advantage in comparison with other approaches especially for further mass manufacturing of the biosensors.

  17. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction

    Science.gov (United States)

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-02-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g-1 is achieved at a current density of 50 mA g-1. It also shows a greatly improved cycle life (~215 mAh g-1 after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g-1). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

  18. An Electrochemical Microsensor Based on a AuNPs-Modified Microband Array Electrode for Phosphate Determination in Fresh Water Samples

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    2014-12-01

    Full Text Available This work describes the fabrication, characterization, and application of a gold microband array electrode (MAE for the determination of phosphate in fresh water samples. The working principle of this MAE is based on the reduction of a molybdophosphate complex using the linear sweep voltammetric (LSV method. The calibration of this microsensor was performed with standard phosphate solutions prepared with KH2PO4 and pH adjusted to 1.0. The microsensor consists of a platinum counter electrode, a gold MAE as working electrode, and an Ag/AgCl electrode as reference electrode. The microelectrode chips were fabricated by the Micro Electro-Mechanical System (MEMS technique. To improve the sensitivity, gold nanoparticles (AuNPs were electrodeposited on the working electrode. With a linear range from 0.02 to 0.50 mg P/L, the sensitivity of the unmodified microsensor is 2.40 µA per (mg P/L (R2 = 0.99 and that of the AuNPs-modified microsensor is 7.66 µA per (mg P/L (R2 = 0.99. The experimental results showed that AuNPs-modified microelectrode had better sensitivity and a larger current response than the unmodified microelectrode.

  19. The non-specific inhibition of enzymes by environmental pollutants: a study of a model system towards the development of electrochemical biosensor arrays.

    Science.gov (United States)

    Young, S J; Hart, J P; Dowman, A A; Cowell, D C

    2001-12-01

    Previous research has shown that lactate dehydrogenase (LDH) was competitively inhibited by pentachlorophenol (PCP) and a modified assay produced a detection limit of 1 microM (270 microg l(-1)). This work used spectrophotometric rate-determination but in order to move towards biosensor development the selected detection method was electrochemical. The linkage of LDH to lactate oxidase (LOD) provided the electroactive species, hydrogen peroxide. This could be monitored using a screen-printed carbon electrode (SPCE) incorporating the mediator, cobalt phthalocyanine, at a potential of +300 mV (vs. Ag/AgCl). A linked LDH/LOD system was optimised with respect to inhibition by PCP. It was found that the SPCE support material, PVC, acted to reduce inhibition, possibly by combining with PCP. A cellulose acetate membrane removed this effect. Inhibition of the system was greatest at enzyme activities of 5 U ml(-1) LDH and 0.8 U ml(-1) LOD in reactions containing 246 microM pyruvate and 7.5 microM NADPH. PCP detection limits were an EC(10) of 800 nM (213 microg l(-1)) and a minimum inhibition detectable (MID) limit of 650 nM (173 microg l(-1)). The inclusion of a third enzyme, glucose dehydrogenase (GDH), provided cofactor recycling to enable low concentrations of NADPH to be incorporated within the assay. NADPH was reduced from 7.5 to 2 microM. PCP detection limits were obtained for an assay containing 5 U ml(-1) LDH, 0.8 U ml(-1) LOD and 0.1 U ml(-1) GDH with 246 microM pyruvate, 400 mM glucose and 2 microM NADPH. The EC(10) limit was 150 nM (39.9 microg l(-1)) and the MID was 100 nM (26.6 microg l(-1)). The design of the inhibition assays discussed has significance as a model for other enzymes and moves forward the possibility of an electrochemical biosensor array for pollution monitoring. PMID:11679267

  20. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    Science.gov (United States)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  1. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction.

    Science.gov (United States)

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-12-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g(-1) is achieved at a current density of 50 mA g(-1). It also shows a greatly improved cycle life (~215 mAh g(-1) after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g(-1)). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change. PMID:26831683

  2. Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3.

    Science.gov (United States)

    Lu, C; Chen, Q; Zhou, T; Bozic, D; Fu, Z; Pan, J Q; Feng, G

    2016-02-01

    Numerous risk genes have recently been implicated in susceptibility to autism and schizophrenia. Translating such genetic findings into disease-relevant neurobiological mechanisms is challenging due to the lack of throughput assays that can be used to assess their functions on an appropriate scale. To address this issue, we explored the feasibility of using a micro-electrode array (MEA) as a potentially scalable assay to identify the electrical network phenotypes associated with risk genes. We first characterized local and global network firing in cortical neurons with MEAs, and then developed methods to analyze the alternation between the network active period (NAP) and the network inactive period (NIP), each of which lasts tens of seconds. We then evaluated the electric phenotypes of neurons derived from Shank3 knockout (KO) mice. Cortical neurons cultured on MEAs displayed a rich repertoire of spontaneous firing, and Shank3 deletion led to reduced firing activity. Enhancing excitation with CX546 rescued the deficit in the spike rate in the Shank3 KO network. In addition, the Shank3 KO network produced a shorter NIP, and this altered network firing pattern was normalized by clonazepam, a positive modulator of the GABAA receptor. MEA recordings revealed electric phenotypes that displayed altered excitation and inhibition in the network lacking Shank3. Thus, our study highlights MEAs as an experimental framework for measuring multiple robust neurobiological end points in dynamic networks and as an assay system that could be used to identify electric phenotypes in cultured neuronal networks and to analyze additional risk genes identified in psychiatric genetics. PMID:26598066

  3. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis

    OpenAIRE

    Patra, Amlan K.; Yu, Zhongtang

    2015-01-01

    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L) on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number o...

  4. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis

    OpenAIRE

    Amlan Kumar Patra; Zhongtang eYu

    2015-01-01

    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number ...

  5. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays.

    Science.gov (United States)

    Titmarsh, Drew M; Glass, Nick R; Mills, Richard J; Hidalgo, Alejandro; Wolvetang, Ernst J; Porrello, Enzo R; Hudson, James E; Cooper-White, Justin J

    2016-01-01

    Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) - a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration. PMID:27097795

  6. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L. reveals patterns of SNP variation associated with breeding

    Directory of Open Access Journals (Sweden)

    Zhu Tong

    2009-10-01

    Full Text Available Abstract Background Cultivated tomato (Solanum lycopersicum L. has narrow genetic diversity that makes it difficult to identify polymorphisms between elite germplasm. We explored array-based single feature polymorphism (SFP discovery as a high-throughput approach for marker development in cultivated tomato. Results Three varieties, FL7600 (fresh-market, OH9242 (processing, and PI114490 (cherry were used as a source of genomic DNA for hybridization to oligonucleotide arrays. Identification of SFPs was based on outlier detection using regression analysis of normalized hybridization data within a probe set for each gene. A subset of 189 putative SFPs was sequenced for validation. The rate of validation depended on the desired level of significance (α used to define the confidence interval (CI, and ranged from 76% for polymorphisms identified at α ≤ 10-6 to 60% for those identified at α ≤ 10-2. Validation percentage reached a plateau between α ≤ 10-4 and α ≤ 10-7, but failure to identify known SFPs (Type II error increased dramatically at α ≤ 10-6. Trough sequence validation, we identified 279 SNPs and 27 InDels in 111 loci. Sixty loci contained ≥ 2 SNPs per locus. We used a subset of validated SNPs for genetic diversity analysis of 92 tomato varieties and accessions. Pairwise estimation of θ (Fst suggested significant differentiation between collections of fresh-market, processing, vintage, Latin American (landrace, and S. pimpinellifolium accessions. The fresh-market and processing groups displayed high genetic diversity relative to vintage and landrace groups. Furthermore, the patterns of SNP variation indicated that domestication and early breeding practices have led to progressive genetic bottlenecks while modern breeding practices have reintroduced genetic variation into the crop from wild species. Finally, we examined the ratio of non-synonymous (Ka to synonymous substitutions (Ks for 20 loci with multiple SNPs (≥ 4 per

  7. A Low Velocity Zone along the Chaochou Fault in Southern Taiwan: Seismic Image Revealed by a Linear Seismic Array

    Directory of Open Access Journals (Sweden)

    Hsin-Chieh Pu

    2010-01-01

    Full Text Available The Chaochou fault is one of the major boundary faults in southern Taiwan where strong convergence has taken place between the Eurasian and Philippine Sea plates. The surface fault trace between the Pingtung plain and the Central Range follows a nearly N-S direction and stretches to 80 km in length. In order to examine the subsurface structures along the Chaochou fault, a linear seismic array with 14 short-period stations was deployed across the fault to record seismic data between August and December 2001. Detailed examination of seismic data generated by 10 local earthquakes and recorded by the linear array has shown that the incidence angles of the first P-waves recorded by several seismic stations at the fault zone were significantly larger than those located farther away from the fault zone. This difference might reflect the lateral variation of velocity structures across the Chaochou fault. Further examination of ray-paths of seismic wave propagation indicates that a low-velocity zone along the Chaochou fault is needed to explain the significant change in incidence angles across the fault zone. Although we do not have adequate information to calculate the exact geometry of the fault zone well, the variation in incidence angles across the fault can be explained by the existence of a low-velocity zone that is about 3 km in width on the surface and extends downward to a depth of 5 km. The low-velocity zone along the Chaochou fault might imply that the fault system consists of several splay faults on the hanging wall in the Central Range.

  8. HIGH VELOCITY PRECESSING JETS FROM THE WATER FOUNTAIN IRAS 18286–0959 REVEALED BY VERY LONG BASELINE ARRAY OBSERVATIONS

    International Nuclear Information System (INIS)

    We report the results of multi-epoch Very Long Baseline Array observations of the 22.2 GHz H2O maser emission associated with the 'water fountain' IRAS 18286–0959. We suggest that this object is the second example of a highly collimated bipolar precessing outflow traced by H2O maser emission, the other is W 43A. The detected H2O emission peaks are distributed over a velocity range from –50 km s–1 to 150 km s–1. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (jet 1) extended southeast to northwest; the remaining features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a 'double-helix' pattern which lies across ∼200 mas. The maser distribution is reasonably fit by a model consisting of two bipolar precessing jets. The three-dimensional velocities of jet 1 and jet 2 are derived to be 138 km s–1 and 99 km s–1, respectively. The precession period of jet 1 is about 56 years. For jet 2, three possible models are tested and they give different values for the kinematic parameters. We propose that the appearance of two jets is the result of a single driving source with significant proper motion.

  9. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis.

    Science.gov (United States)

    Patra, Amlan K; Yu, Zhongtang

    2015-01-01

    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L) on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number of operational taxonomic units, OTUs) in the phylum Firmicutes, especially those in the class Clostridia, was decreased by ORO and GAO, but increased by PEO, while that in the phylum Bacteroidetes was increased by ORO and PEO. Species richness in the genus Butyrivibrio was lowered by all the EOs. Increases of Bacteroidetes OTUs mainly resulted from increases of Prevotella OTUs. Overall, 67 individual OTUs showed significant differences (P ≤ 0.05) in relative abundance across the EO treatments. The predominant OTUs affected by EOs were diverse, including those related to Syntrophococcus sucromutans, Succiniclasticum ruminis, and Lachnobacterium bovis, and those classified to Prevotella, Clostridium, Roseburia, Pseudobutyrivibrio, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bacteroidales, and Clostridiales. In total, 60 OTUs were found significantly (P ≤ 0.05) correlated with feed degradability, ammonia concentration, and molar percentage of volatile fatty acids. Taken together, this study demonstrated extensive impact of EOs on rumen bacterial communities in an EO type-dependent manner, especially those in the predominant families Prevotellaceae, Lachnospiraceae, and Ruminococcaceae. The information from this study may aid in understanding the effect of EOs on feed digestion and fermentation by rumen bacteria. PMID:25914694

  10. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray analysis

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2015-04-01

    Full Text Available In a previous study origanum oil (ORO, garlic oil (GAO, and peppermint oil (PEO were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L, on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number of operational taxonomic units, OTUs in the phylum Firmicutes, especially those in the class Clostridia, was decreased by ORO and GAO, but increased by PEO, while that in the phylum Bacteroidetes was increased by ORO and PEO. Species richness in the genus Butyrivibrio was lowered by all the EOs. Increases of Bacteroidetes OTUs mainly resulted from increases of Prevotella OTUs. Overall, 67 individual OTUs showed significant differences (P≤0.05 in relative abundance across the EO treatments. The predominant OTUs affected by EOs were diverse, including those related to Syntrophococcus sucromutans, Succiniclasticum ruminis, and Lachnobacterium bovis, and those classified to Prevotella, Clostridium, Roseburia, Pseudobutyrivibrio, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bacteroidales, and Clostridiales. In total, 60 OTUs were found significantly (P≤0.05 correlated with feed degradability, ammonia concentration, and molar percentage of volatile fatty acids. Taken together, this study demonstrated extensive impact of EOs on rumen bacterial communities in an EO type-dependent manner, especially those in the predominant families Prevotellaceae, Lachnospiraceae and Ruminococcaceae. The information from this study may aid in understanding the effect of EOs on feed digestion and fermentation by rumen bacteria.

  11. Genome-wide single nucleotide polymorphism array analysis reveals recurrent genomic alterations associated with histopathologic features in intrahepatic cholangiocarcinoma

    Science.gov (United States)

    Huang, Wan-Ting; Weng, Shao-Wen; Wei, Yu-Ching; You, Huey-Ling; Wang, Jui-Tzu; Eng, Hock-Liew

    2014-01-01

    Recent studies indicate that genomic alterations (GAs) are associated with many human malignancies. Genome-wide analysis of GAs involved in intrahepatic cholangiocarcinoma (ICC) and association with histopathologic features are limited. To help characterize this relatively rare neoplasm, we collected 32 frozen tissue samples of ICC to study GAs and molecular karyotypes by using single-nucleotide polymorphism array. Recurrent GAs occurring in at least 40% of the patients were further correlated with histopathologic features. Gain of 1q21.3-q23.1 and losses of 1p36.33-p35.3 and 3p26.3-p13 were significantly associated with larger tumor size more than 5 cm in diameter; and loss of 4q13.2-q35.2 with tumor multiplicity. Moreover, losses of 1p36.32-p35.3, 3p26.3-p22.2, 4q13.1-q21.23, 4q31.3-q34.3 and 4q34.3-35.2 were inclined to be associated with high histological grade. As to tumor vascular invasion, gain of 1q21.3-q23.1 and losses of 3p22.1-p12.3 and 4q13.2-q35.2 were significantly associated with tumor vascular invasion. Some regions were concurrently associated with multiple histopathologic characteristics, including loss of 4q13.2-q35.2 associated with larger tumor size, high histological grade and vascular invasion; losses of 1p36.33-p35.3 and 3p26.3-p22.2 with larger tumor size and high histological grade; and gain of 1q21.3-q23.1 with larger tumor size and vascular invasion. Our study indicates that complex chromosomal instability is characteristic of ICC. Detecting crucial GAs will enable risk stratification and development of personalized therapies. PMID:25400767

  12. Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements.

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Sun-Hee; Kouprina, Natalay; Grimwood, Jane; Kim, Jung-Hyun; Mullokandov, Michael; Yoon, Young-Ho; Chae, Ji-Youn; Morgan, Jenna; Lucas, Susan; Richardson, Paul; Detter, Chris; Glavina, Tijana; Rubin, Eddy; Barrett, J. Carl; Larionov, Vladimir

    2003-09-01

    The reported human genome sequence includes about 400 gaps of unknown sequence that were not found in the bacterial artificial chromosome (BAC) and cosmid libraries used for sequencing of the genome. These missing sequences correspond to {approx} 1 percent of euchromatic regions of the human genome. Gap filling is a laborious process because it relies on analysis of random clones of numerous genomic BAC or cosmid libraries. In this work we demonstrate that closing the gaps can be accelerated by a selective recombinational capture of missing chromosomal segments in yeast. The use of both methodologies allowed us to close the four remaining gaps on the human chromosome 19. Analysis of the gap sequences revealed that they contain several abnormalities that could result in instability of the sequences in microbe hosts, including large blocks of micro- and minisatellites and a high density of Alu repeats. Sequencing of the gap regions, in both BAC and YAC forms, allowed us to generate a complete sequence of four genes, including the neuronal cell signaling gene SCK1/SLI. The SCK1/SLI gene contains a record number of minisatellites, most of which are polymorphic and transmitted through meiosis following a Mendelian inheritance. In conclusion, the use of the alternative recombinational cloning system in yeast may greatly accelerate work on closing the remaining gaps in the human genome (as well as in other complex genomes) to achieve the goal of annotation of all human genes.

  13. Scanning electrochemical microscope characterization of thin film combinatorial libraries for fuel cell electrode applications

    Science.gov (United States)

    Black, M.; Cooper, J.; McGinn, P.

    2005-01-01

    Pt-Ru combinatorial libraries of potential fuel cell anode catalysts are formed by sequential sputter deposition through masks onto Si wafers. Scanning electrochemical microscopy (SECM) is employed for characterization of electrocatalytic activity. Aspects of using a scanning electrochemical microscope for characterization of an array of thin film fuel cell electrode materials are discussed. It is shown that in applying SECM to library characterization, careful attention must be paid to thin film annealing, specimen topography and tip degradation in order to realize meaningful results. Results from a Pt-Ru thin film library reveal the most active members near the 50 Pt/50 Ru composition.

  14. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment of a c...

  15. Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition

    International Nuclear Information System (INIS)

    In this work, two kinds of one-dimensional ZnO nanowires (NWs) and nanotubes (NTs) were synthesized by using electrochemical deposition with the aid of a high aspect ratio anodic alumina oxide (AAO) template. ZnO NWs and NTs were characterized by using X-ray diffraction, field emission scanning microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. An AAO template was fabricated by two-step anodization in 0.3 M oxalic acid with a voltage of 80 V. The thickness and channel diameter of the AAO template were about 150 μm and 120–150 nm, respectively. The morphologies of the ZnO nanostructures synthesized under 20 vol.% H2O2 with various electrolyte concentrations of 0.1 M and 0.5 M ZnSO4, were NTs and NWs, respectively. Both NTs and NWs were uniform in size, which corresponded to the sizes of AAO pores. The thickness of the NTs walls can be controlled based on the deposition time and current density. The crystallinity of the ZnO NTs and NWs annealing in the air were restricted by AAO pore. The growth of the ZnO NTs and NWs was caused by heterogeneous nucleation, and different growth rates through the wall of the AAO will result in different nanostructures, with the growth of the NTs being slower than that of the NWs. - Highlights: • Templated electrodeposition of ZnO nanotubes (NTs) and nanowires (NWs) • ZnO NTs and NWs fabricated using anodic alumina oxide templates • The growth mechanism of ZnO NTs and NWs is modeled

  16. Effects of electrical and optical properties of thickness condition of ZnO nanorod array layer for efficient electrochemical luminescence cell device

    Science.gov (United States)

    Choi, Hye Su; Chansri, Pakpoom; Sung, Youl Moon

    2016-02-01

    In this paper, we report on electrochemical luminescence (ECL) cells with a ZnO nanorod (ZNR) layer. The investigated ECL cells were composed of F-doped SnO2 (FTO) glass/Ru(II)/ZNRs/FTO glass, which used a ZNR layer as an electrode and the Ru(II) complex [Ru(bpy)32+] as a light-emitting material. The ECL cells were fabricated by changing the thickness of ZNRs from 5 to 12.5 µm. The luminescence property of the ECL cells was strongly affected by the variation in the thickness of the ZNR layer. The threshold voltage for the light emission from the ECL cells was 2 V for 10 µm thick ZNRs, which was lower than that of the thickness of the ECL cells without a ZNR layer. Also, the intensity of luminance from the ECL cells with ZNRs was much higher than that from the ECL cells without ZNRs at the same operating voltage. The efficiency of the ECL cells without ZNRs measured at 3 V was 0.0049 lm/W, while those of the ECL cells with ZNRs were 0.0121, 0.0157, 0.0354, and 0.024 lm/W for the ZNRs layer thicknesses 5, 7.5, 10, and 12.5 µm, respectively. However, the peak light intensity at the wavelength was 623 nm which had not affected the all ZNRs thicknesses. The best lifetime of the ECL cells with these thicknesses was 40 min for ZNRs 10 µm. The use of the ZNR layer in the ECL cells significantly improves the luminescence performance.

  17. Time-dependent c-Myc transactomes mapped by Array-based nuclear run-on reveal transcriptional modules in human B cells.

    Directory of Open Access Journals (Sweden)

    Jinshui Fan

    Full Text Available BACKGROUND: The definition of transcriptional networks through measurements of changes in gene expression profiles and mapping of transcription factor binding sites is limited by the moderate overlap between binding and gene expression changes and the inability to directly measure global nuclear transcription (coined "transactome". METHODOLOGY/PRINCIPAL FINDINGS: We developed a method to measure nascent nuclear gene transcription with an Array-based Nuclear Run-On (ANRO assay using commercial microarray platforms. This strategy provides the missing component, the transactome, to fully map transcriptional networks. ANRO measurements in an inducible c-Myc expressing human P493-6 B cell model reveals time-dependent waves of transcription, with a transactome early after c-Myc induction that does not persist at a late, steady-state phase, when genes that are regulated by c-Myc and E2F predominate. Gene set matrix analysis further uncovers functionally related groups of genes putatively regulated by waves of transcription factor motifs following Myc induction, starting with AP1 and CREB that are followed by EGR1, NFkB and STAT, and ending with E2F, Myc and ARNT/HIF motifs. CONCLUSIONS/SIGNIFICANCE: By coupling ANRO with previous global mapping of c-Myc binding sites by chromatin immunoprecipitation (ChIP in P493-6 cells, we define a set of transcriptionally regulated direct c-Myc target genes and pave the way for the use of ANRO to comprehensively map any transcriptional network.

  18. Microarray of programmable electrochemically active elements

    DEFF Research Database (Denmark)

    S. McCaskill, John; Maeke, Thomas; Straczek, Lukas; Oehm, Jürgen; Funke, Dominic; Mayr, Pierre; Sharma, Abhishek; Müller, Asbjørn; Tangen, Uwe; H. Packard, Norman; Rasmussen, Steen

    This paper describes possible applications of a two dimensional array of programmable electrochemically active elements to Alife. The array has been developed as part of the MICREA-gents project, and after several design phases, is now a mature enough device for general use beyond the project. He...

  19. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  20. Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO2 nanotube electrodes

    International Nuclear Information System (INIS)

    To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO2 nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO2 NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

  1. Array-based comparative genomic hybridization analysis reveals chromosomal copy number aberrations associated with clinical outcome in canine diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Arianna Aricò

    Full Text Available Canine Diffuse Large B-cell Lymphoma (cDLBCL is an aggressive cancer with variable clinical response. Despite recent attempts by gene expression profiling to identify the dog as a potential animal model for human DLBCL, this tumor remains biologically heterogeneous with no prognostic biomarkers to predict prognosis. The aim of this work was to identify copy number aberrations (CNAs by high-resolution array comparative genomic hybridization (aCGH in 12 dogs with newly diagnosed DLBCL. In a subset of these dogs, the genetic profiles at the end of therapy and at relapse were also assessed. In primary DLBCLs, 90 different genomic imbalances were counted, consisting of 46 gains and 44 losses. Two gains in chr13 were significantly correlated with clinical stage. In addition, specific regions of gains and losses were significantly associated to duration of remission. In primary DLBCLs, individual variability was found, however 14 recurrent CNAs (>30% were identified. Losses involving IGK, IGL and IGH were always found, and gains along the length of chr13 and chr31 were often observed (>41%. In these segments, MYC, LDHB, HSF1, KIT and PDGFRα are annotated. At the end of therapy, dogs in remission showed four new CNAs, whereas three new CNAs were observed in dogs at relapse compared with the previous profiles. One ex novo CNA, involving TCR, was present in dogs in remission after therapy, possibly induced by the autologous vaccine. Overall, aCGH identified small CNAs associated with outcome, which, along with future expression studies, may reveal target genes relevant to cDLBCL.

  2. Photo-Current Enhancement in Carbon Quantum Dots Functionalized Titania Nanotube Arrays.

    Science.gov (United States)

    Rani, Sanju; Borse, Pramod H; Pareek, Alka; Rajalakshmi, N; Dhathathreyan, K S

    2016-06-01

    Highly aligned, vertically oriented, TiO2 nanotube arrays fabricated by electrochemical anodization were functionalised by carbon quantum dots (CQD) synthesized by an electrochemical reduction technique. Here, we report the photo-electrochemical properties of such TiO2 nanotubes array-CQD composite material and it has been found that the properties are significantly enhanced compared to that in pristine (bare) nanotubes. The TiO2 nanotubes were characterized by X-ray diffraction and scanning electron microscopy, whereas the CQD samples were characterized by transmission electron microscopy, optical absorption spectroscopy. CQDs synthesized under two different conditions showed a distinct size difference and corresponding absorption spectra revealed concominant shift in the absorption edges. Furthermore, the photo-electrochemical measurements were carried out with the help of photo-current, incident photon to current conversion efficiency (IPCE), Mott-Schottky plots and the impedance analysis. The photo-current data revealed 30% improvement in TiO2-CQD samples compared to bare TiO2 nanotubes samples. A higher photo-conversion efficiency was observed along with the shifting of the peak value towards visible wavelengths. The Mott-Schottky plots revealed shift in the flat-band potential in the CQD-TiO2 samples and corresponding lowering of the charge transfer resistance was observed through the impedance spectroscopy. PMID:27427662

  3. Method for the electro-addressable functionalization of electrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Jason C.; Polsky, Ronen; Dirk, Shawn M.; Wheeler, David R.; Arango, Dulce C.; Brozik, Susan M.

    2015-12-15

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable conversion of the unreactive group to a chemical or biological recognition group. Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes.

  4. Electrochemical sensing of nuclear matrix protein 22 in urine with molecularly imprinted poly(ethylene-co-vinyl alcohol) coated zinc oxide nanorod arrays for clinical studies of bladder cancer diagnosis.

    Science.gov (United States)

    Lee, Mei-Hwa; Thomas, James L; Chang, Yu-Chia; Tsai, Yuh-Shyan; Liu, Bin-Da; Lin, Hung-Yin

    2016-05-15

    In 1996 and 2000, the US Food and Drug Administration (FDA) approved the use of Nuclear matrix protein 22 (NMP22) as a monitoring tool for predicting the recurrence/clearing of bladder cancer, and for screening undiagnosed individuals who have symptoms of, or are at risk for, that disease. The fabrication of electrodes for sensing NMP22 and their integration with a portable potentiostat in a homecare system may have great value. This work describes a sensing element comprised of molecularly imprinted polymers (MIPs) for the specific recognition of NMP22 target molecules. Zinc oxide (ZnO) nanorods (214±45nm in diameter and 1.08±0.11μm long) were hydrothermally grown on the sensing electrodes to increase the surface area to be coated with MIPs. A portable potentiostat was assembled and a data acquisition (DAQ) card and the Labview program were utilized to monitor electrochemical reaction to sense NMP22 in urine samples. Finally, in phase 0 clinical trials, measurements were made of samples from a few patients with bladder cancer using the NMP22 MIP-coated ZnO nanorods electrodes that were integrated into a portable potentiostat, revealing NMP 22 concentrations in the range 128±19 to 588±53ng/mL. PMID:26774095

  5. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers

    DEFF Research Database (Denmark)

    Gaasenbeek, Michelle; Howarth, Kimberley; Rowan, Andrew J;

    2006-01-01

    Cancers with chromosomal instability (CIN) are held to be aneuploid/polyploid with multiple large-scale gains/deletions, but the processes underlying CIN are unclear and different types of CIN might exist. We investigated colorectal cancer cell lines using array-comparative genomic hybridization ...

  6. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    Science.gov (United States)

    Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...

  7. Electrochemically controlled patterning for biosensor arrays.

    OpenAIRE

    Dondapati, Srujan Kumar

    2006-01-01

    Existe una demanda creciente de dispositivos de análisis multianalito, con aplicaciones potenciales en los campos de la biomedicina y biotecnología, así como en el ámbito industrial y ambiental. Para el desarrollo de estos dispositivos resulta esencial un buen control espacial durante la etapa de inmovilización de las biomoléculas de interés; cada una de ellas debe ser depositada de forma precisa sobre la superficie del sensor (por ejemplo, un transductor amperométrico), evitan...

  8. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0

  9. Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO{sub 2} nanotube electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [The State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhu, Jinwei [China Aerospace Science and Technology Corporation Fourty-fourth Research Institution (China); Wang, Ying; Feng, Jiangtao [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yan, Wei, E-mail: yanwei@mail.xjtu.edu.cn [The State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Hao, E-mail: xuhao@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO{sub 2} nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO{sub 2} NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

  10. Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane

    Science.gov (United States)

    Sánchez-Barriga, J.; Lucas, M.; Rivero, G.; Marin, P.; Hernando, A.

    2007-05-01

    Arrays of Cobalt nanowires with a controlled length of 6 μm have been fabricated by electrochemical deposition into the pores of track-etched polycarbonate membranes with a nominal pore diameter of 30 nm. The magnetic properties of Co-deposited nanowires and the effects of a magnetic field applied during electrodeposition of the arrays have been studied. An enhancement of the mass deposition rate due to the presence of a 50 Oe magnetic field along the nanowire axis has been observed by measuring the experimental development of the current in the electrochemical cell during the fabrication process. X-ray diffraction measurements reveal a different polycrystalline degree for each deposition configuration, indicating that the crystalline structure of the deposited material has been substantially modified. Magnetic measurements show a clear dependence of the anisotropy directions on the orientation of the magnetic field applied during the electrodeposition.

  11. Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane

    International Nuclear Information System (INIS)

    Arrays of Cobalt nanowires with a controlled length of 6μm have been fabricated by electrochemical deposition into the pores of track-etched polycarbonate membranes with a nominal pore diameter of 30nm. The magnetic properties of Co-deposited nanowires and the effects of a magnetic field applied during electrodeposition of the arrays have been studied. An enhancement of the mass deposition rate due to the presence of a 50Oe magnetic field along the nanowire axis has been observed by measuring the experimental development of the current in the electrochemical cell during the fabrication process. X-ray diffraction measurements reveal a different polycrystalline degree for each deposition configuration, indicating that the crystalline structure of the deposited material has been substantially modified. Magnetic measurements show a clear dependence of the anisotropy directions on the orientation of the magnetic field applied during the electrodeposition

  12. Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Barriga, J. [Instituto de Magnetismo Aplicado (UCM-RENFE-CSIC), P.O. Box 155, 28230, Las Rozas, Madrid (Spain)]. E-mail: sbarriga@bessy.de; Lucas, M. [Technische Universitaet Berlin, Institut fuer Theoretische Physik, Hardenbergstr. 36, D-10623 Berlin (Germany); Rivero, G. [Instituto de Magnetismo Aplicado (UCM-RENFE-CSIC), P.O. Box 155, 28230, Las Rozas, Madrid (Spain); Marin, P. [Instituto de Magnetismo Aplicado (UCM-RENFE-CSIC), P.O. Box 155, 28230, Las Rozas, Madrid (Spain); Hernando, A. [Instituto de Magnetismo Aplicado (UCM-RENFE-CSIC), P.O. Box 155, 28230, Las Rozas, Madrid (Spain)

    2007-05-15

    Arrays of Cobalt nanowires with a controlled length of 6{mu}m have been fabricated by electrochemical deposition into the pores of track-etched polycarbonate membranes with a nominal pore diameter of 30nm. The magnetic properties of Co-deposited nanowires and the effects of a magnetic field applied during electrodeposition of the arrays have been studied. An enhancement of the mass deposition rate due to the presence of a 50Oe magnetic field along the nanowire axis has been observed by measuring the experimental development of the current in the electrochemical cell during the fabrication process. X-ray diffraction measurements reveal a different polycrystalline degree for each deposition configuration, indicating that the crystalline structure of the deposited material has been substantially modified. Magnetic measurements show a clear dependence of the anisotropy directions on the orientation of the magnetic field applied during the electrodeposition.

  13. Magnetoelectrolysis of Co nanowire arrays grown in a tracketched polycarbonate membrane

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Florin [BESSY GmbH, Berlin (Germany); Rivero, Guillermo; Marin, Pilar; Hernando, Antonio [Instituto de Magnetismo Aplicado, Madrid (Spain); Sanchez-Barriga, J. [Instituto de Magnetismo Aplicado, Madrid (Spain); BESSY GmbH, Berlin (Germany); Lucas, M. [Inst. fuer Theoretische Physik, Technische Univ. Berlin (Germany)

    2007-07-01

    Arrays of Cobalt nanowires with a controlled length of 6{mu}m have been fabricated by electrochemical deposition into the pores of track-etched polycarbonate membranes with a nominal pore diameter of 30 nm. The magnetic properties of Co-deposited nanowires and the effects of a magnetic field applied during electrodeposition of the arrays have been studied. An enhancement of the mass deposition rate due to the presence of a 50 Oe magnetic field along the nanowire axis has been observed by measuring the experimental development of the current in the electrochemical cell during the fabrication process. X-Ray diffraction measurements reveal a different polycrystalline degree for each deposition configuration, indicating that the crystalline structure of the deposited material has been substantially modified. Magnetic measurements show a clear dependence of the anisotropy directions on the orientation of the magnetic field applied during the electrodeposition.

  14. Genetic–geographic correlation revealed across a broad European ecotypic sample of perennial ryegrass (Lolium perenne) using array-based SNP genotyping

    OpenAIRE

    Blackmore, T.; Thomas, I.; McMahon, R.; Powell, W.; Hegarty, M

    2015-01-01

    Key message Publically available SNP array increases the marker density for genotyping of forage crop, Lolium perenne . Applied to 90 European ecotypes composed of 716 individuals identifies a significant genetic–geographic correlation. Abstract Grassland ecosystems are ubiquitous across temperate and tropical regions, totalling 37 % of the terrestrial land cover of the planet, and thus represent a global resource for understanding local adaptations to environment. However, genomic resources ...

  15. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    OpenAIRE

    Grzebelus, Dariusz; Iorizzo, Massimo; Senalik, Douglas; Ellison, Shelby; Cavagnaro, Pablo; Macko-Podgorni, Alicja; Heller-Uszynska, Kasia; Kilian, Andrzej; Nothnagel, Thomas; Allender, Charlotte; Simon, Philipp W; Baranski, Rafal

    2013-01-01

    Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attribu...

  16. BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21.1

    Directory of Open Access Journals (Sweden)

    Estivill Xavier

    2009-12-01

    Full Text Available Abstract Background Microdeletion of the chromosome 22q11.2 region is the most common genetic aberration among patients with velocardiofacial syndrome (VCFS but a subset of subjects do not show alterations of this chromosome region. Methods We analyzed 18 patients with VCFS-like features by comparative genomic hybridisation (aCGH array and performed a face-to-face slide hybridization with two different arrays: a whole genome and a chromosome 22-specific BAC array. Putative rearrangements were confirmed by FISH and MLPA assays. Results One patient carried a combination of rearrangements on 1q21.1, consisting in a microduplication of 212 kb and a close microdeletion of 1.15 Mb, previously reported in patients with variable phenotypes, including mental retardation, congenital heart defects (CHD and schizophrenia. While 326 control samples were negative for both 1q21.1 rearrangements, one of 73 patients carried the same 212-kb microduplication, reciprocal to TAR microdeletion syndrome. Also, we detected four copy number variants (CNVs inherited from one parent (a 744-kb duplication on 10q11.22; a 160 kb duplication and deletion on 22q11.21 in two cases; and a gain of 140 kb on 22q13.2, not present in control subjects, raising the potential role of these CNVs in the VCFS-like phenotype. Conclusions Our results confirmed aCGH as a successful strategy in order to characterize additional submicroscopic aberrations in patients with VCF-like features that fail to show alterations in 22q11.2 region. We report a 212-kb microduplication on 1q21.1, detected in two patients, which may contribute to CHD.

  17. Alumina Template-Dependant Growth of Cobalt Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    L. Malferrari

    2009-01-01

    Full Text Available Different electrochemical regimes and porous alumina were applied for template synthesis of cobalt nanowire (nw arrays, revealing several peculiar cases. In contrast to quite uniform filling of sulfuric acid alumina templates by alternating current deposition, nonuniform growth of the Co nw tufts and mushrooms was obtained for the case of oxalic acid templates. We showed herein for the first time that such configurations arise from the spontaneous growth of cobalt nw groups evolving from the cobalt balls at the Al/alumina interface. Nevertheless, the uniform growth of densely packed cobalt nw arrays, up to tens of micrometers in length, was obtained via long-term direct current galvanostatic deposition at low current density using oxalic acid templates one-side coated by conducting layer. The unique point of this regime is the formation of hexagonal lattice Co nws with a preferred (100 growth direction.

  18. Electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Rudge, Andrew J. (Los Alamos, NM); Ferraris, John P. (Dallas, TX); Gottesfeld, Shimshon (Los Alamos, NM)

    1996-01-01

    A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.

  19. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings.

    Science.gov (United States)

    Kummer, Kai K; El Rawas, Rana; Kress, Michaela; Saria, Alois; Zernig, Gerald

    2015-01-01

    Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations. PMID:25592253

  20. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  1. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...... arrays towards potassium ferrocyanide. A sensor application was demonstrated by amperometric detection of hydrogen peroxide concentrations in the range of 0.1 to5 mM. Planar electrodes were fabricated by hot embossing of a microfluidic channel with sloped sidewalls into a PEDOT covered COC bulk material...

  2. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection

    Science.gov (United States)

    Kogut, Michael H.; Swaggerty, Christina L.; Byrd, James Allen; Selvaraj, Ramesh; Arsenault, Ryan J.

    2016-01-01

    Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4–14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market. PMID:27472318

  3. A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies.

    Science.gov (United States)

    Kanno, Yusuke; Ino, Kosuke; Shiku, Hitoshi; Matsue, Tomokazu

    2015-12-01

    An electrochemical device, which consists of electrode arrays, nanocavities, and microwells, was developed for multi-electrochemical detection with high sensitivity. A local redox cycling-based electrochemical (LRC-EC) system was used for multi-electrochemical detection and signal amplification. The LRC-EC system consists of n(2) sensors with only 2n bonding pads for external connection. The nanocavities fabricated in the sensor microwells enable significant improvement of the signal amplification compared with the previous devices we have developed. The present device was successfully applied for evaluation of embryoid bodies (EBs) from embryonic stem (ES) cells via electrochemical measurements of alkaline phosphatase (ALP) activity in the EBs. In addition, the EBs were successfully trapped in the sensor microwells of the device using dielectrophoresis (DEP) manipulation, which led to high-throughput cell analysis. This device is considered to be useful for multi-electrochemical detection and imaging for bioassays including cell analysis. PMID:26481771

  4. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  5. Electrochemical Discharge Machining Process

    Directory of Open Access Journals (Sweden)

    Anjali V. Kulkarni

    2007-09-01

    Full Text Available Electrochemical discharge machining process is evolving as a promising micromachiningprocess. The experimental investigations in the present work substantiate this trend. In the presentwork, in situ, synchronised, transient temperature and current measurements have been carriedout. The need for the transient measurements arose due to the time-varying nature of the dischargeformation and time varying circuit current. Synchronised and transient measurements revealedthe discrete nature of the process. It also helped in formulating the basic mechanism for thedischarge formation and the material removal in the process. Temperature profile on workpieceand in electrochemical discharge machining cell is experimentally measured using pyrometer,and two varieties of K-type thermocouples. Surface topography of the discharge-affected zoneson the workpiece has been carried out using scanning electron microscope. Measurements andsurface topographical studies reveal the potential use of this process for machining in micronregime. With careful experimental set-up design, suitable supply voltage and its polarity, theprocess can be applied for both micromachining and micro-deposition. It can be extended formachining and or deposition of wide range of materials.

  6. Smooth bumps in H/V curves over a broad area from single-station ambient noise recordings are meaningful and reveal the importance of Q in array processing: The Boumerdes (Algeria) case

    Science.gov (United States)

    Guillier, B.; Chatelain, J.-L.; Hellel, M.; Machane, D.; Mezouer, N.; Ben Salem, R.; Oubaiche, E. H.

    2005-12-01

    Single-station H/V curves from ambient noise recordings in Boumerdes (Algeria) show smooth bumps around 1 and 3 Hz. A complementary microtremor study, based on two 34 and 134-meter aperture arrays, evidences that these bumps are indeed real peaks produced by two strong VS contrasts at 37 and 118 meters depth, strongly smoothed by very high S-wave attenuation in the two sedimentary layers. These two H/V bumps, observed over a broad area, are meaningful and reveal the importance of Q in S-wave velocity modeling from microtremor array data processing. It also appears that Tertiary rocks should be, at least in some cases, taken into account, together with the Quaternary sediments, to explain single-station H/V frequency peaks, and therefore that considering only the first 30 m of soil for VS amplification evaluation, as usually recommended, sometimes leads to flaky results by artificially eliminating non-explained low-frequency peaks from the analysis.

  7. B cell depletion with rituximab in patients with rheumatoid arthritis: Multiplex bead array reveals the kinetics of IgG and IgA antibodies to citrullinated antigens.

    Science.gov (United States)

    Cambridge, Geraldine; Leandro, Maria J; Lahey, Lauren J; Fairhead, Thomas; Robinson, William H; Sokolove, Jeremy

    2016-06-01

    The serology of patients with Rheumatoid arthritis (RA) is characterized by persistently raised levels of autoantibodies: Rheumatoid Factors (RhF) against Fc of IgG, and to citrullinated (Cit) protein/peptide sequences: ACPA, recognizing multiple Cit-sequences. B cell depletion therapy based on rituximab delivers good clinical responses in RA patients, particularly in the seropositive group, with responses sometimes lasting beyond the phase of B cell reconstitution. In general, ACPA levels fall following rituximab, but fluctuations with respect to predicting relapse have proved disappointing. In order to identify possible immunodominant specificities within either IgG- or IgA-ACPA we used a Multiplex bead-based array consisting of 30 Cit-peptides/proteins and 22 corresponding native sequences. The kinetics of the serum ACPA response to individual specificities was measured at key points (Baseline, B cell depletion phase, Relapse) within an initial cycle of rituximab therapy in 16 consecutive patients with severe, active RA. All had achieved significant decreases in Disease Activity Scores-28 and maintained B cell depletion in the peripheral blood (<5 CD19+cells/μl) for at least 3 months. At Baseline, mean fluorescence intensity shown by individual IgG- and IgA-ACPA were strongly correlated (R(2) = 0.75; p < 0.0001) but IgA-ACPA were approximately 10-fold lower. Data were Z-normalised in order to compare serial results and antibody classes. At Baseline, a total of 68 IgG- and 51 IgA-ACPA had Z-scores ≥ 1 (above population mean) were identified, with at least one Cit-antigen identified in each serum. ACPA to individual specificities subsequently fluctuated with 3 different patterns. Most 51/68 (75%) IgG- and 48/51 IgA-ACPA (94%) fell between Baseline and Depletion, of which 57% IgG- and 65% IgA-ACPA rebounded pre-Relapse. Interestingly, 17/68 IgG-ACPA (25%) and some IgA-ACPA (3/51; 6%) transiently increased from Baseline, subsequently falling pre

  8. TiO(2) nanotube arrays: intrinsic peroxidase mimetics.

    Science.gov (United States)

    Zhang, Lingling; Han, Lei; Hu, Peng; Wang, Li; Dong, Shaojun

    2013-11-18

    TiO2 nanotube arrays (NTA), prepared by potentiostatic anodization, were discovered to possess an intrinsic peroxidase-like activity. The colorimetric and electrochemical assays both demonstrated their excellent catalytic activity towards H2O2 reduction. On this basis, a simple and inexpensive electrochemical biosensor for glucose detection was developed. PMID:24084751

  9. Electrochemical kinetics theoretical aspects

    CERN Document Server

    Vetter, Klaus J

    1967-01-01

    Electrochemical Kinetics: Theoretical Aspects focuses on the processes, methodologies, reactions, and transformations in electrochemical kinetics. The book first offers information on electrochemical thermodynamics and the theory of overvoltage. Topics include equilibrium potentials, concepts and definitions, electrical double layer and electrocapillarity, and charge-transfer, diffusion, and reaction overvoltage. Crystallization overvoltage, total overvoltage, and resistance polarization are also discussed. The text then examines the methods of determining electrochemical reaction mechanisms

  10. Magnetic Electrochemical Finishing Machining

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    How to improve the finishing efficiency and surface roughness have been all along the objective of research in electrochemical polishing. However, the research activity, i.e. during electrochemical polishing, directly introduce the magnetic field to study how the magnetic field influences on the finishing efficiency, quality and the electrochemical process in the field of finishing machining technology, is insufficient. When introducing additional magnetic field in the traditional electrochemical pol...

  11. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction

    Directory of Open Access Journals (Sweden)

    Redondo-Nieto Miguel

    2013-01-01

    Full Text Available Abstract Background Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported. Results Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins. Conclusions The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.

  12. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.

    Science.gov (United States)

    Zhang, Diming; Lu, Yanli; Jiang, Jing; Zhang, Qian; Yao, Yao; Wang, Ping; Chen, Bilian; Cheng, Qiaoyuan; Liu, Gang Logan; Liu, Qingjun

    2015-05-15

    The nanoscale Lycurgus cup arrays were hybrid structures of nanocups and nanoparticles with ultrasensitivity to refractive index change. In this study, an electrochemical localized surface plasmon resonance (LSPR) sensor was developed by coupling electrochemistry to LSPR spectroscopy measurement on the nanoscale cup arrays (nanoCA). Based on the combination of electrochemistry and LSPR measurement, the electrochemical LSPR on nanoCA was observed with significant resonance wavelength shifts in electrochemical modulation. The synchronous implementation of cyclic voltammetry and optical transmission spectrum can be used to obtain multiply sensing information and investigate the enhancement for LSPR from electrochemical scanning. The electrochemical enhanced LSPR was utilized as biosensor to detect biomolecules. The electrochemical LSPR biosensor with synchronous electrochemical and optical implement showed higher sensitivity than that of conventional optical LSPR measurement. Detecting with multi-transducer parameters and high sensitivity, the electrochemical LSPR provided a promising approach for chemical and biological detection. PMID:25172029

  13. Embroidered electrochemical sensors for biomolecular detection.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2016-05-24

    Electrochemical sensors are powerful analytical tools which possess the capacity for rapid detection of biomarkers in clinical specimens. While most electrochemical sensors are fabricated on rigid substrates, there is a growing need for sensors that can be manufactured on inexpensive and flexible materials. Here, we present a unique embroidered electrochemical sensor that is capable of quantitative analytical measurements using raw biofluid samples. Conductive threads immobilized with enzyme probes were generated using a simple and robust fabrication process and used to fabricate flexible, mechanically robust electrodes on textiles. For proof of concept, measurements were performed to detect glucose and lactate in buffer and whole blood samples, which exhibited excellent specificity and accuracy. We also demonstrate that our embroidered biosensor can be readily fabricated in two-dimensional (2D) arrays for multiplexed measurements. Lastly, we show that this biosensor exhibits good resiliency against mechanical stress and superior repeatability, which are important requirements for flexible sensor platforms. PMID:27156700

  14. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti–6Al–7Nb for biomedical applications

    International Nuclear Information System (INIS)

    In the present work, we investigate the formation of self-organized titanium oxide nanotube layers by anodic oxidation on titanium alloy Ti–6Al–7Nb in electrolyte solution containing sulfuric acid and hydrofluoric acid. The anodized surface was characterized by micro-Raman, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDS). The corrosion behavior of the treated and untreated samples was investigated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies in simulated body fluid (Hanks' solution). The investigations show that the native oxide on the sample is replaced by self-assembled nanoarray by anodization. FESEM of samples annealed at 450 to 800 °C show tubular morphology whereas those annealed at 850 °C show collapse of nanotubes. Electrochemical impedance data of the substrate and 10 V anodized samples were fitted with a two-time constant equivalent circuit and that of anodized samples (20, 30 V) with a three-time constant equivalent circuit. - Highlights: • Titanium oxide nanotubes (NT) are formed on Ti alloy Ti–6Al–7Nb by anodization. • Pore diameters with ~ 35, 100 and 125 nm are formed at different voltages. • Vacuum annealing at 850 °C increases the rutile content. • Collapse of NT with more needle shaped (nanowires) structure at 850 °C • NT sample shows better passivation behavior in Hanks' solution

  15. Metal nanorod arrays and their magnetic properties

    International Nuclear Information System (INIS)

    Large-area, highly uniform metal nanorod arrays (iron, cobalt, nickel) with variable diameters have been successfully synthesized by electrochemical deposition method using polycarbonate (PC) membrane template. By means of X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) at room temperature, their microstructures and magnetic properties were investigated. The mechanism of crystals nucleated and grown theories in metal nanorod arrays were also discussed

  16. Fabrication of high aspect ratio microtube arrays for 2D photonic crystals

    International Nuclear Information System (INIS)

    This paper describes the fabrication of 2D photonic crystals made of high aspect ratio Si microtube arrays. The tube fabrication is based on the creation of macropore arrays in n-doped Si substrates via photoassisted electrochemical etching. These macropores are successively filled using thermal oxidation and chemical vapor depostion. The substrate material is partially removed by a KOH immersion, and the filled macropores are exposed, forming arrays of microtubes with very high aspect ratios of up to 1:60. Point and line defects are introduced into some of the tube arrays by selectively omitting macropores during the fabrication. The mechanical properties of the tubes were investigated by measuring their stiffness and elastic modulus using an atomic force microscope based setup. Additionally, the resonant modes of the microtubes were simulated with FEM methods. Optical simulations reveal that these tube arrays form 2D photonic crystals, which can contain bandgaps for TM polarized light. It is also shown that the optical properties of the photonic crystals depend strongly on the tube filling factor. Adjusting the filling factor of the tubes allows tuning of the photonic properties of the tube arrays. (papers)

  17. Electrochemically driven mechanical energy harvesting

    Science.gov (United States)

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-01

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress-voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition-voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities.

  18. Preparation and characterization of haematite nanowire arrays

    CERN Document Server

    Xue, D S; Liu, Q F; Zhang, L Y

    2003-01-01

    Arrays of alpha-Fe sub 2 O sub 3 nanowires embedded in anodic alumina membranes were obtained after heat-treating beta-FeOOH nanowire arrays fabricated by electrochemical deposition. Haematite polycrystalline nanowires with maximum length of about 7 mu m and average diameter of about 120 nm were characterized by means of x-ray diffraction and transmission electron microscopy. The Morin temperature below 80 K and Neel temperature of about 350 K for the alpha-Fe sub 2 O sub 3 nanowire arrays, far lower than those of bulk material, were measured by Moessbauer spectroscopy and using a Magnetic Property Measurement System.

  19. Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms

    Directory of Open Access Journals (Sweden)

    Stuart D. Collyer

    2010-05-01

    Full Text Available The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm–2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes.

  20. Electrochemical Synthesis and Structural Characterization of Titania Nanotubes

    OpenAIRE

    Nguyen, Que Anh

    2010-01-01

    Titania nanotubes have emerged as an exciting new material with a wide array of applications such as sensors, dye sensitized solar cells, and batteries due to their semi-conducting nature, high surface area, and distinct morphology. The nanotubes, synthesized electrochemically in a fluoride-containing electrolyte, are vertically aligned, close-packed, organized structures, with similar diameter and length. The formation mechanism responsible for the organized nanopore/nanotube arrays were exa...

  1. 电化学阻抗谱法研究铈改性TiO2纳米管阵列光电极裂解水产氢动力学%Dynamics Study on the Cerium and Oxidative Cerium Modified TiO2 Nanotube Arrays for Hydrogen Production by Water Splitting Using Electrochemical Impedance Spectrum

    Institute of Scientific and Technical Information of China (English)

    张胜寒; 梁可心; 檀玉

    2012-01-01

    TiO2 nanotube arrays photoelectrodes were prepared by anode oxidation on pure Ti sheet. The donor material glycol (C2H6O2) added in the anode electrolyte significantly reduced the charge transfer impedance of TiO2 nanotubes to promote the photocatalytic water splitting for hydrogen production. TiO2 nanotube arrays electrodes were modified by cerium and oxidative cerium with electrochemical deposition and anodic oxidation. The fiat band potential moves to the negative potential direction after modification. Electrochemical impedance spectrum (EIS) measurement was used to investigate the electron transfer characteristic in photoelectrodes and the interface characteristic in the photoelectrochemical cell (PEC) for hydrogen production. Arcs of EIS and corresponding electrode processes were discussed. Dynamic parameters of the electrodes were calculated by reasonable electrical equivalent circuit fitting. The results indicate that TiO2 nanotube arrays electrode modified by cerium and oxidative cerium could largely decrease the electron transfer resistance which contributes to hydrogen production. The mechanism of the cerium and oxidative cerium acting on TiO2 nanotube arrays to promote charge transfer is discussed.%通过阳极氧化法在纯钛板上制备TiO2纳米管阵列电极.在光电化学电解池阳极中加入供电子物质乙二醇,显著减小了TiO2纳米管的电荷传递阻抗,促进了光电催化裂解水产氢反应.采用阴极电沉积和阳极氧化法制备了单质铈和氧化铈共同改性的TiO2纳米管阵列半导体光阳极,其平带电位向电负方向移动.采用电化学阻抗谱法(EIS)对改性后TiO2纳米管阵列在光电催化裂解水产氢中的电子传输性能以及界面性质进行了表征,确定了各阻抗弧对应的电极过程.采用合理的等效电路模型计算了电极的电子传输动力学参数.结果表明,经铈改性后的TiO2纳米管阵列膜电阻明显减小,

  2. Array tomography: imaging stained arrays.

    Science.gov (United States)

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  3. Array tomography: production of arrays.

    Science.gov (United States)

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy. PMID:21041397

  4. Microelectrode Array Microscopy: Investigation of Dynamic Behavior of Localized Corrosion at Type 304 Stainless Steel Surfaces

    International Nuclear Information System (INIS)

    Scanning electrochemical microscopy (SECM) and a recently developed microelectrode array microscope have been used to study localized corrosion and electron-transfer characteristics of native oxide layers of type 304 stainless steels. The I-/I3- redox couple was employed as a mediator and allowed sensitive detection of oxide breakdown events. In solutions containing I-, a signal at the microelectrode was observed on type 304 stainless steel surfaces at active pitting corrosion sites. Under conditions where pitting corrosion occurs, SECM was used to track the temporal characteristics of the reaction in a spatial manner. However, because of the time required to create an image, much of the temporal information was not obtained. To improve the temporal resolution of the measurement, microelectrode array microscopy (MEAM) was developed as a parallel method of performing SECM. The demonstration shown reveals the potential of MEAM for analysis of surface chemistry on temporal and spatial domains

  5. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  6. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability.

    Science.gov (United States)

    Bandodkar, Amay J; Jeerapan, Itthipon; You, Jung-Min; Nuñez-Flores, Rogelio; Wang, Joseph

    2016-01-13

    We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory. PMID:26694819

  7. Stochastic Electrochemical Kinetics

    CERN Document Server

    Beruski, O

    2016-01-01

    A model enabling the extension of the Stochastic Simulation Algorithm to electrochemical systems is proposed. The physical justifications and constraints for the derivation of a chemical master equation are provided and discussed. The electrochemical driving forces are included in the mathematical framework, and equations are provided for the associated electric responses. The implementation for potentiostatic and galvanostatic systems is presented, with results pointing out the stochastic nature of the algorithm. The electric responses presented are in line with the expected results from the theory, providing a new tool for the modeling of electrochemical kinetics.

  8. Electrochemical metallization memories-fundamentals, applications, prospects

    International Nuclear Information System (INIS)

    This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, RON to ROFF ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed. (topical review)

  9. Electrochemical metallization memories—fundamentals, applications, prospects

    Science.gov (United States)

    Valov, Ilia; Waser, Rainer; Jameson, John R.; Kozicki, Michael N.

    2011-06-01

    This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, RON to ROFF ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed.

  10. Graphene to Graphane: Novel Electrochemical Conversion

    CERN Document Server

    Daniels, Kevin M; Zhang, R; Chowdhury, I; Obe, A; Weidner, J; Williams, C; Sudarshan, T S; Chandrashekhar, MVS

    2010-01-01

    A novel electrochemical means to generate atomic hydrogen, simplifying the synthesis and controllability of graphane formation on graphene is presented. High quality, vacuum grown epitaxial graphene (EG) was used as starting material for graphane conversion. A home-built electrochemical cell with Pt wire and exposed graphene as the anode and cathode, respectively, was used to attract H+ ions to react with the exposed graphene. Cyclic voltammetry of the cell revealed the potential of the conversion reaction as well as oxidation and reduction peaks, suggesting the possibility of electrochemically reversible hydrogenation. A sharp increase in D peak in the Raman spectra of EG, increase of D/G ratio, introduction of a peak at ~2930 cm-1 and respective peak shifts as well as a sharp increase in resistance showed the successful hydrogenation of EG. This conversion was distinguished from lattice damage by thermal reversal back to graphene at 1000{\\deg}C.

  11. Dynamics of electrochemical flows 3 Closure models

    CERN Document Server

    Xu, Chengjun

    2013-01-01

    The electrolyte (comprising of solute ions and solvents) flow-through the porous media is frequently encountered in nature or in many engineering applications, such as the electrochemical systems, manufacturing of composites, oil production, geothermal engineering, nuclear thermal disposal, soil pollution. Our previous work derived the interfacial interaction terms between the solid and the fluid, which can be used to investigate the details of transports of mass, heat, electric flied, potential, or momentum in the process of the electrochemical flows-through porous electrode. In this work, we establish the closure models for these interfacial interaction terms to close the governing equations from mathematical algebra. The interfacial interaction terms regard to the electric field, potential and electric force are firstly revealed. Our new theory provides a new approach to describe the electrochemical flows-through porous media.

  12. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  13. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  14. Free-Standing, Nanopatterned Janus Membranes of Conducting Polymer-Virus Nanoparticle Arrays.

    Science.gov (United States)

    Tiu, Brylee David B; Tiu, Sicily B; Wen, Amy M; Lam, Patricia; Steinmetz, Nicole F; Advincula, Rigoberto C

    2016-06-21

    Nanostructured mesoscale materials find wide-ranging applications in medicine and energy. Top-down manufacturing schemes are limited by the smallest dimension accessible; therefore, we set out to study a bottom-up approach mimicking biological systems, which self-assemble into systems that orchestrate complex energy conversion functionalities. Inspired by nature, we turned toward protein-based nanoparticle structures formed by plant viruses, specifically the cowpea mosaic virus (CPMV). We report the formation of hierarchical CPMV nanoparticle assemblies on colloidal-patterned, conducting polymer arrays using a protocol combining colloidal lithography, electrochemical polymerization, and electrostatic adsorption. In this approach, a hexagonally close-packed array of polystyrene microspheres was assembled on a conductive electrode to function as the sacrificial colloidal template. A thin layer of conducting polypyrrole material was electrodeposited within the interstices of the colloidal microspheres and monitored in situ using electrochemical quartz crystal microbalance with dissipation (EC-QCM-D). Etching the template revealed an inverse opaline conducting polymer pattern capable of forming strong electrostatic interactions with CPMV and therefore enabling immobilization of CPMV on the surface. The CPMV-polymer films were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Furthermore, molecular probe diffusion experiments revealed selective ion transport properties as a function of the presence of the CPMV nanoparticles on the surface. Lastly, by utilizing its electromechanical behavior, the polymer/protein membrane was electrochemically released as a free-standing film, which can potentially be used for developing high surface area cargo delivery systems, stimuli-responsive plasmonic devices, and chemical and biological sensors. PMID:27244119

  15. In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Self-organised TiO2 nanotube arrays (TNT) were developed by anodization. • Zr ions were incorporated onto TNT (Zr-TNT) by dip coating method. • Surface analysis confirmed the presence of ZrTiO4 over the TNT surface. • Zr-TNT was completely covered with HAp after immersion in Hank's solution. • Zr-TNT exhibited higher bioactivity as well as enhanced corrosion resistance. - Abstract: The present investigation deals with the incorporation of zirconium (Zr) ions onto TiO2 nanotube arrays (TNT) by simple dip coating method for biomedical implants. The electrochemical behaviour of the specimens were studied with potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopy (EIS), while surface analysis involved field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, thin film x-ray diffraction (TF-XRD) and contact angle measurements. The FE-SEM morphology revealed that self-organised TNT was tightly arrayed with an average diameter of 110 ± 4 nm. The wall thickness and length of 15 ± 2 nm and 2.1 ± 0.3 μm respectively were developed by electrochemical anodization of titanium sheet in a mixture of ethylene glycol and NH4F electrolyte. The EDS, ATR-FTIR and TF-XRD studies were revealed the incorporation of Zr onto TNT specimens. Hydroxyapatite (HAp) was grown over Zr ions incorporated TNT (Zr-TNT) via in vitro immersion method. The HAp grown Zr-TNT exhibited higher bioactivity as well as enhanced corrosion resistance when compared to other specimen. Hence, Zr-TNT could be a viable material for the use as orthopaedic implant with good bioactivity and corrosion resistance

  16. Electrochemical Oxidation of Rutin

    OpenAIRE

    Ghica, Mariana-Emilia; Brett, Ana Maria Oliveira

    2005-01-01

    An electrochemical investigation of rutin oxidation on a glassy carbon electrode was carried out using cyclic voltammetry, differential pulse voltammetry and square-wave voltammetry over a wide pH interval. The electrochemical oxidation is a complex process, which proceeds in a cascade mechanism, related with the 4-hydroxyl groups of the rutin molecule. The catechol 3prime,4prime-dihydroxyl group is the first to be oxidized by a two-electron - two-proton reversible oxidation reaction, followe...

  17. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  18. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates

    Science.gov (United States)

    Mebed, A. M.; Abd-Elnaiem, Alaa M.; Al-Hosiny, Najm M.

    2016-06-01

    Mechanically stable nickel (Ni) nanowires array and nanowires network were synthesized by pulse electrochemical deposition using 2D and 3D porous anodic alumina (PAA) templates. The structures and morphologies of as-prepared films were characterized by X-ray diffraction and scanning electron microscopy, respectively. The grown Ni nanowire using 3D PAA revealed more strength and larger surface area than has grown Ni use 2D PAA template. The prepared nanowires have a face-centered cubic crystal structure with average grain size 15 nm, and the preferred orientation of the nucleation of the nanowires is (111). The diameter of the nanowires is about 50-70 nm with length 3 µm. The resulting 3D Ni nanowire lattice, which provides enhanced mechanical stability and an increased surface area, benefits energy storage and many other applications which utilize the large surface area.

  19. Photoelectrochemistry of Semiconductor Nanowire Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  20. A Fast, Sensitive and Label Free Electrochemical DNA Sensor

    International Nuclear Information System (INIS)

    A label free and sensitive DNA/RNA silicon based electrochemical microsensor array was developed by using thin film of the conducting polymer polypyrrole doped with an oligonucleotide probe. The electrochemical potential pulse amperometry technique was used for a biowarfare pathogen target DNA detection. The electrical potential assistanted DNA hybridisation method was applied. The sensor signal was increased by increasing the electrical potential assistanted DNA hybridisation time. It was possible to detect 0.34pmol and 0.072fmol of complementary oligonucleotide target in 0.1ml in seconds by using unpolished and polished gold electrode respectively. The probe preparation was also in seconds time, comparing indirect electrochemical DNA sensor, it has a fast sensor preparation as well as sensor response and label free advantages. The silicon microfabrication technique was used for this sensor array fabrication, which holds the potential to integrate with sensor electrical circuits. The conducting polymer polypyrrole was electrochemically deposited on each electrode respectively which has a possibility to dope the different DNA probe into the individual electrode to form a sensor array

  1. Gold nano-island arrays on silicon as SERS active substrate for organic molecule detection

    International Nuclear Information System (INIS)

    Gold islands forming highly controlled arrays have been fabricated by two potential step electrochemical deposition method using nanopatterned Si surface templates. In the present work, the Raman scattering studies realized using 11-mercaptoundecanoic probe molecule showed that such structures exhibit an enhanced Raman signal compared with nanostructured physical deposited thin gold film on flat silicon substrate and can be valued as surface-enhanced Raman scattering substrates. Besides the more appropriate management of nano-island arrays distribution, the high ratio of their Raman signals can be explain by the epitaxial-like growth mechanism of the metallic nano-islands, clearly showed by X-ray diffraction studies. Furthermore, the substrates enabled reproducibility and stability detection due to the chemically assembling of organothiol molecules, the X-ray photoelectron spectroscopy studies confirming formation of the thiolate species which corresponds to Au-S bonds, and also, the unwanted ‘hot-spots’ are missing, which make them suitable for high sensitivity biosensing applications. - Highlights: • Gold nano-islands are electrochemical deposited on nanopatterned silicon. • The X-ray diffraction studies revealed the epitaxial-like growth mechanism. • Enhanced Raman signal of Au nano-islands was observed compared with Au nano-film

  2. Fabrication of ultrahigh-density nanowires by electrochemical nanolithography

    Directory of Open Access Journals (Sweden)

    Jiang Hongquan

    2011-01-01

    Full Text Available Abstract An approach has been developed to produce silver nanoparticles (AgNPs rapidly on semiconductor wafers using electrochemical deposition. The closely packed AgNPs have a density of up to 1.4 × 1011 cm-2 with good size uniformity. AgNPs retain their shape and position on the substrate when used as nanomasks for producing ultrahigh-density vertical nanowire arrays with controllable size, making it a one-step nanolithography technique. We demonstrate this method on Si/SiGe multilayer superlattices using electrochemical nanopatterning and plasma etching to obtain high-density Si/SiGe multilayer superlattice nanowires.

  3. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  4. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu2O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  5. 2D and 3D ordered arrays of Co magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Prida, V.M., E-mail: vmpp@uniovi.es [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Vega, V. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Rosa, W.O. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); Caballero-Flores, R.; Iglesias, L.; Hernando, B. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)

    2015-06-01

    arrays were electrochemically deposited grown in 2D and 3D pore arrangements of planar and cylindrical nanoporous anodic alumina templates. • The intrinsic magnetic properties of Co nanowires grown in both 2D and 3D alumina templates appear to be independent of the geometry of the arrangement. • FORC analysis along the radial axis of Co nanowires array reveals that the magnetization reversal process depends on each nanowire orientation to the applied field direction.

  6. 2D and 3D ordered arrays of Co magnetic nanowires

    International Nuclear Information System (INIS)

    arrays were electrochemically deposited grown in 2D and 3D pore arrangements of planar and cylindrical nanoporous anodic alumina templates. • The intrinsic magnetic properties of Co nanowires grown in both 2D and 3D alumina templates appear to be independent of the geometry of the arrangement. • FORC analysis along the radial axis of Co nanowires array reveals that the magnetization reversal process depends on each nanowire orientation to the applied field direction

  7. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion

  8. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  9. Engineering electrochemical capacitor applications

    Science.gov (United States)

    Miller, John R.

    2016-09-01

    Electrochemical capacitor (EC) applications have broadened tremendously since EC energy storage devices were introduced in 1978. Then typical applications operated below 10 V at power levels below 1 W. Today many EC applications operate at voltages approaching 1000 V at power levels above 100 kW. This paper briefly reviews EC energy storage technology, shows representative applications using EC storage, and describes engineering approaches to design EC storage systems. Comparisons are made among storage systems designed to meet the same application power requirement but using different commercial electrochemical capacitor products.

  10. Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms.

    Science.gov (United States)

    Bellin, Daniel L; Sakhtah, Hassan; Zhang, Yihan; Price-Whelan, Alexa; Dietrich, Lars E P; Shepard, Kenneth L

    2016-01-01

    Monitoring spatial distribution of metabolites in multicellular structures can enhance understanding of the biochemical processes and regulation involved in cellular community development. Here we report on an electrochemical camera chip capable of simultaneous spatial imaging of multiple redox-active phenazine metabolites produced by Pseudomonas aeruginosa PA14 colony biofilms. The chip features an 8 mm × 8 mm array of 1,824 electrodes multiplexed to 38 parallel output channels. Using this chip, we demonstrate potential-sweep-based electrochemical imaging of whole-biofilms at measurement rates in excess of 0.2 s per electrode. Analysis of mutants with various capacities for phenazine production reveals distribution of phenazine-1-carboxylic acid (PCA) throughout the colony, with 5-methylphenazine-1-carboxylic acid (5-MCA) and pyocyanin (PYO) localized to the colony edge. Anaerobic growth on nitrate confirms the O2-dependence of PYO production and indicates an effect of O2 availability on 5-MCA synthesis. This integrated-circuit-based technique promises wide applicability in detecting redox-active species from diverse biological samples. PMID:26813638

  11. Novel electrochemical reactions related to electrodeposition and electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ito Y.

    2003-01-01

    Full Text Available Novel electrochemical reactions in molten salts related to electrodeposition and electrochemical synthesis are reviewed to show their usefulness and possibilities in producing functional materials. Surface nitriding of various metals and stainless steels is possible by the use of anodic reaction of nitride ion (N3- in LiCl-KCl-Li3N melts. Electrochemical hydrogen absorption/desorption reaction occurs in molten salts containing hydride ion (H-. Electrochemical implantation and displantation can be applied to form transition metal-rare earth metal alloys in LiCl-KCl melts containing rare earth chlorides. As non-conventional electrochemical reactions, direct electrochemical reduction of SiO2 to Si, discharge electrolysis to form metal oxide particles and electrochemical plantation of Zr on ceramics are described.

  12. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe; Hao, Jingzu; Min, Yang [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Guo, Litong [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); He, Fei [National Key Laboratory of C1 Chemical Industry, Tianjin University, Tianjin 300072 (China); Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2015-06-01

    TiO{sub 2} nanotube arrays were synthesized on Ti surface by anodic oxidation. The elements of Ca and P were simultaneously incorporated during nanotubes growth in SBF electrolyte, and then Ag was introduced to nanotube arrays by cathodic deposition, which endowed the good osseointegration and antibacterial property of Ti. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. And the antibacterial effect against Staphylococcus aureus was examined by the bacterial counting method. The results showed that the incorporation of Ca, P and Ag elements had no significant influence on the formation of nanotube arrays on Ti surface during electrochemical treatment. Compared to the polished or nanotubular Ti surface, TiO{sub 2} nanotube arrays incorporated with Ca, P and Ag increased the formation of bone-like apatite in simulated body fluid, enhanced cell adhesion and proliferation, and inhibited the bacterial growth. Based on these results, it can be concluded that the nanostructured Ti incorporated with Ca, P and Ag by electrochemical method has promising applications as implant material. - Highlights: • Nanotube arrays were prepared on Ti surface by anodic oxidation. • Ca, P and Ag were incorporated to nanotube arrays by electrochemical method. • Ca, P and Ag endowed Ti with good osseointegration and antibacterial property. • The beneficial effect of electrochemical treatment on Ti implant was demonstrated.

  13. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method

    International Nuclear Information System (INIS)

    TiO2 nanotube arrays were synthesized on Ti surface by anodic oxidation. The elements of Ca and P were simultaneously incorporated during nanotubes growth in SBF electrolyte, and then Ag was introduced to nanotube arrays by cathodic deposition, which endowed the good osseointegration and antibacterial property of Ti. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. And the antibacterial effect against Staphylococcus aureus was examined by the bacterial counting method. The results showed that the incorporation of Ca, P and Ag elements had no significant influence on the formation of nanotube arrays on Ti surface during electrochemical treatment. Compared to the polished or nanotubular Ti surface, TiO2 nanotube arrays incorporated with Ca, P and Ag increased the formation of bone-like apatite in simulated body fluid, enhanced cell adhesion and proliferation, and inhibited the bacterial growth. Based on these results, it can be concluded that the nanostructured Ti incorporated with Ca, P and Ag by electrochemical method has promising applications as implant material. - Highlights: • Nanotube arrays were prepared on Ti surface by anodic oxidation. • Ca, P and Ag were incorporated to nanotube arrays by electrochemical method. • Ca, P and Ag endowed Ti with good osseointegration and antibacterial property. • The beneficial effect of electrochemical treatment on Ti implant was demonstrated

  14. Dissecting graphene capacitance in electrochemical cell

    International Nuclear Information System (INIS)

    Quantum capacitance of graphene plays a significant role for graphene's applications in electrochemical devices and sensors, while the determination of these basic characters of Dirac point, Fermi energy, quantum capacitance, etc is still a subject of considerable debate in both experiments and simulations. Here, we report joint first-principles/continuum calculations (JFPCCs) on a monolayer graphene electrode immersed in an electrolyte coupled with a reference electrode under an applied potential. The JFPCCs gave the Fermi level, charge density on graphene, Dirac point energy, electrostatic potential, electric double layer etc as a function of the applied potential with respect to the reference electrode. These results revealed the strongly coupled relationship between Fermi level change and Dirac point shift in electrochemical cell. The total capacitance of the electrochemical cell was dissected into the quantum capacitance of the graphene electrode and the capacitance of the electric double layer. Furthermore, simple and analytic formulas were proposed for the three capacitances, which predicted, in sufficient accuracy, the behavior of capacitance versus potential. These findings deepen the understanding of quantum capacitance of graphene, which will stimulate novel experimental and theoretical studies and boost the applications of graphene in electrochemical and energy areas

  15. Electrochemical biosensors and nanobiosensors

    Science.gov (United States)

    Hammond, Jules L.; Formisano, Nello; Carrara, Sandro; Tkac, Jan

    2016-01-01

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  16. An electrochemical micro actuator

    NARCIS (Netherlands)

    Hamberg, M.W.; Neagu, C.R.; Gardeniers, J.G.E.; IJntema, D.J.; Elwenspoek, M.C.

    1995-01-01

    In this paper an investigation of the feasibility of a new electrochemical micro actuator is presented. The actuator is fabricated using silicon micro-machining techniques. A gas pressure is generated by electrolysis of an aqueous electrolyte solution. The build up pressure is used to change the def

  17. Electrochemical biosensors and nanobiosensors.

    Science.gov (United States)

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  18. Surface Modification Mechanism of Fine Coal by Electrochemical Methods

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong; WANG Fang-hui; WANG Dian-zuo; OU Ze-shen

    2006-01-01

    In order to reveal the surface modification mechanism of fine coal by electrochemical methods, the structural changes of the coal surface before and after electrochemical modification were investigated by Fourier Transform Infrared Spectra (FTIR) and Raman Spectra. The results show that under certain electrochemical conditions, the oxygen-containing functional group in the coal structure and the oxygen content of absorption could be reduced and the floatability of coal improved. At the same time, the sulfur in the coal was reduced to the hydrophilic S2- which could be separated easily from coal. Thus electrochemical modification methods could be used to change the structure and functional group on the coal surface and to enhance the floatability of coal.

  19. Electrochemical Detection of Multiple Bioprocess Analytes

    Science.gov (United States)

    Rauh, R. David

    2010-01-01

    An apparatus that includes highly miniaturized thin-film electrochemical sensor array has been demonstrated as a prototype of instruments for simultaneous detection of multiple substances of interest (analytes) and measurement of acidity or alkalinity in bioprocess streams. Measurements of pH and of concentrations of nutrients and wastes in cell-culture media, made by use of these instruments, are to be used as feedback for optimizing the growth of cells or the production of desired substances by the cultured cells. The apparatus is designed to utilize samples of minimal volume so as to minimize any perturbation of monitored processes. The apparatus can function in a potentiometric mode (for measuring pH), an amperometric mode (detecting analytes via oxidation/reduction reactions), or both. The sensor array is planar and includes multiple thin-film microelectrodes covered with hydrous iridium oxide. The oxide layer on each electrode serves as both a protective and electrochemical transducing layer. In its transducing role, the oxide provides electrical conductivity for amperometric measurement or pH response for potentiometric measurement. The oxide on an electrode can also serve as a matrix for one or more enzymes that render the electrode sensitive to a specific analyte. In addition to transducing electrodes, the array includes electrodes for potential control. The array can be fabricated by techniques familiar to the microelectronics industry. The sensor array is housed in a thin-film liquid-flow cell that has a total volume of about 100 mL. The flow cell is connected to a computer-controlled subsystem that periodically draws samples from the bioprocess stream to be monitored. Before entering the cell, each 100-mL sample is subjected to tangential-flow filtration to remove particles. In the present version of the apparatus, the electrodes are operated under control by a potentiostat and are used to simultaneously measure the pH and the concentration of glucose

  20. Linear electrochemical gel actuators

    Science.gov (United States)

    Goswami, Shailesh; McAdam, C. John; Hanton, Lyall R.; Moratti, Stephen C.

    2012-04-01

    By using electroactive monomers it is possible to produce gels that respond to oxidation or reduction by swelling and deswelling in the presence of solvent. By the inclusion of an appropriate biasing element such as a spring, it is possible to produce linear, reversible actuation. The process can be driven electrochemically in a standard cell, with driving voltages under +/- 1 V. For many systems, the intrinsic conductivity of the gel, leading to poor or no performance. This can be overcome by blending conductive carbon nanotubes at 1% concentration, which give reasonable conductivity without affecting mechanical performance. Extensions of up to 40% are possible, against an external pressure of 30 kPa. The process is slow, taking up to 160 minutes per cycle due to slow ionic diffusion. The electrochemical cell can be cycled many times without degradation.

  1. Electrochemical Discharge Machining Process

    OpenAIRE

    Anjali V. Kulkarni

    2007-01-01

    Electrochemical discharge machining process is evolving as a promising micromachiningprocess. The experimental investigations in the present work substantiate this trend. In the presentwork, in situ, synchronised, transient temperature and current measurements have been carriedout. The need for the transient measurements arose due to the time-varying nature of the dischargeformation and time varying circuit current. Synchronised and transient measurements revealedthe discrete nature of the pr...

  2. Electrochemical flow capacitors

    Science.gov (United States)

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  3. Nanohole Array-Directed Trapping of Mammalian Mitochondria Enabling Single Organelle Analysis.

    Science.gov (United States)

    Kumar, Shailabh; Wolken, Gregory G; Wittenberg, Nathan J; Arriaga, Edgar A; Oh, Sang-Hyun

    2015-12-15

    We present periodic nanohole arrays fabricated in free-standing metal-coated nitride films as a platform for trapping and analyzing single organelles. When a microliter-scale droplet containing mitochondria is dispensed above the nanohole array, the combination of evaporation and capillary flow directs individual mitochondria to the nanoholes. Mammalian mitochondria arrays were rapidly formed on chip using this technique without any surface modification steps, microfluidic interconnects, or external power sources. The trapped mitochondria were depolarized on chip using an ionophore with results showing that the organelle viability and behavior were preserved during the on-chip assembly process. Fluorescence signal related to mitochondrial membrane potential was obtained from single mitochondria trapped in individual nanoholes revealing statistical differences between the behavior of polarized vs depolarized mammalian mitochondria. This technique provides a fast and stable route for droplet-based directed localization of organelles-on-a-chip with minimal limitations and complexity, as well as promotes integration with other optical or electrochemical detection techniques. PMID:26593329

  4. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Elton J.; Hietbrink, Earl H.

    1981-01-01

    This section includes some historical background of the rise and fall and subsequent rebirth of the electric vehicle; and a brief discussion of current transportation needs, and environmental and energy utilization issues that resulted in the renewed interest in applying electrochemical energy conversion technology to electric vehicle applications. Although energy utilization has evolved to be the most significant and important issue, the environmental issue will be discussed first in this section only because of its chronological occurrence. The next part of the chapter is a review of passenger and commercial electric vehicle technology with emphasis on vehicle design and demonstrated performance of vehicles with candidate power sources being developed. This is followed by a discussion of electrochemical power source requirements associated with future electric vehicles that can play a role in meeting modern transportation needs. The last part of the chapter includes first a discussion of how to identify candidate electrochemical systems that might be of interest in meeting electric vehicle power source requirements. This is then followed by a review of the current technological status of these systems and a discussion of the most significant problems that must be resolved before each candidate system can be a viable power source.

  5. Arrays of Screen-Printed Graphite Microband Electrodes as a Versatile Electroanalysis Platform

    OpenAIRE

    Vagin, Mikhail; Sekretareva, Alina; Sanchez, Rafael; Lundström, Ingemar; Winquist, Fredrik; Eriksson, Mats

    2014-01-01

    Arrays of microband electrodes were developed by screen printing followed by cutting, which enabled the realization of microband arrays at the cut edge. The microband arrays of different designs were characterized by physical and electro-chemical methods. In both cases, the methods showed that the microband width was around 5 mm. Semi-steady-state cyclic voltammetry responses were observed for redox probes, and chronocoulometric measurements showed the establishment of convergent diffusion re...

  6. Voltammetry of electrochemically heterogeneous surfaces

    OpenAIRE

    Ward, Kristopher R.; Compton, Richard G.

    2013-01-01

    In this thesis, mathematical modelling is used to theoretically investigate the electrochemical behaviour of surfaces which can be broadly classified as being ‘electrochemically heterogeneous’. Simulated voltammetry is used in the exploration of a number of specific systems as listed below.The cyclic voltammetry of electrodes composed of two different electroactive materials that differ in terms of their electrochemical rate constants towards any given redox couple. The effect of the distribu...

  7. Electrochemical process of titanium extraction

    Institute of Scientific and Technical Information of China (English)

    CH. RVS. NAGESH; C. S. RAMACHANDRAN

    2007-01-01

    A wide variety of processes are being pursued by researchers for cost effective extraction of titanium metal. Electrochemical processes are promising due to simplicity and being less capital intensive. Some of the promising electrochemical processes of titanium extraction were reviewed and the results of laboratory scale experiments on electrochemical reduction of TiO2 granules were brought out. Some of the kinetic parameters of the reduction process were discussed while presenting the quality improvements achieved in the experimentation.

  8. Electrochemical surface modification technique to impede mild steel corrosion using perfluorooctanoic acid

    Directory of Open Access Journals (Sweden)

    Shubha H Natarj

    2016-02-01

    Full Text Available The present work demonstrated that corrosion inhibition efficiency of electrochemically generated organic coat is remarkably effective than self-assembled monolayer (SAM generated by dip coating technique. Perfluorooctanoic Acid (PFOA is used to modify mild steel surface for effective protection. Infrared reflection absorption spectroscopy and contact angle measurements substantiate the modification of mild steel surface and its effect on surface hydrophobicity. A comparison between electrochemical properties of PFOA SAM generated by dip coat method (DC-PFOA and PFOA coat generated by electrochemical method (EC-PFOA is presented. Electrochemical measurements reveal that the corrosion protection efficiency of EC-PFOA (91% is much superior to DC-PFOA (28%.

  9. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  10. Coherent magnetic semiconductor nanodot arrays

    Directory of Open Access Journals (Sweden)

    Xiu Faxian

    2011-01-01

    Full Text Available Abstract In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation.

  11. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  12. Electrochemical stability of ionic clathrate hydrates and their structural consideration

    International Nuclear Information System (INIS)

    Although electrochemical stability is an essential factor in relation to the potential applications of ionic clathrate hydrates to solid electrolytes, most studies regarding the proton conductors have focused on their ionic conductivity and thermal stability. Solid electrolytes in various electrochemical devices have to endure the applied potentials; thus, we examined the linear sweep voltammograms of various tetraalkylammonium hydroxide hydrates in order to shed light on the trend of electrochemical stability depending on the hydrate structure. We revealed that the electrochemical stability of Me4NOH hydrates is mainly affected by both their ionic concentration and cage occupancy. In particular, the true clathrate structures of β-Me4NOH hydrates are more electrochemically stable than their α-forms that possess partially broken hydrogen bonds. We also observed that the binary THF–Pr4NOH and pure Bu4NOH clathrate hydrates exhibit greater electrochemical stability than those of pure Me4NOH hydrates having lower or similar ionic concentrations. These results are considered to arise from the fact that each of the Pr4N+ and Bu4N+ ions occupies an extended space comprising four cages, which leads to stabilization of the larger unit, whereas a Me4N+ ion is completely included only in one cage

  13. Electrochemical characterization of grouted radioactive waste

    International Nuclear Information System (INIS)

    Any long-term disposal system of radioactive waste will require monitoring to warn against structural deterioration and leach of the radioactive or hazardous components into the environment. Although the existing methods, based on physical sampling and testing, provide a higher level of confidence in the data, it also results in generation of secondary waste streams and increased exposure to radiation for workers. Therefore, it is highly desirable that a method be developed for remotely sensing the grout. Efforts are focused on the application of an array of long lasting electrodes that will sense the dynamic properties of ions in the grout. The basic unit structure consists of four electrodes through which the authors perform a variety of measurements such as impedance, single frequency conductivity, electrochemical potential, cyclic voltammetry, etc. Grout and other cementitious materials are described within the general context of composite media in which morphology, chemistry and conductivity are interdependent. They describe experimental results that include time evolution over many months of the impedance and electrochemical potential of hydrating (and drying) cement composite and their attempts at interpreting these data in terms of conductivity and dielectric constant of the matrix. Along with the time evolution tests; they have performed the resistivity measurement during simulated deionized water flooding into the dry grout. The leach test experiment is designed to establish possible correlation with present quality verification methods and standard leach test or other such accepted tests

  14. Electrochemical Science and Technology

    CERN Document Server

    Oldham, Keith; Bond, Alan

    2011-01-01

    The book addresses the scientific principles underlying electrochemistry. Starting with the basic concepts of electricity, the early chapters discuss the physics and chemistry of the materials from which electrochemical cells are constructed and the properties that make these materials appropriate as cell components. Much of the importance of electrochemistry lies in the conversion of electrical energy into chemical energy and vice versa; the thermodynamics of these processes is described, in the context of a wide range of applications of these interconversions. An electrode is a surface at wh

  15. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.;

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment....... The curve visually shows students that the best HER catalysts are characterized by an optimal hydrogen binding energy (reactivity), as stated by the Sabatier principle. In addition, students may use this volcano curve to predict the activity of an untested catalyst solely from the catalyst reactivity...

  16. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements

    Indian Academy of Sciences (India)

    Jun Ge; Zheng Lou; Hong Cui; Lei Shang; Rasika M Harshey

    2011-09-01

    Of all known transposable elements, phage Mu exhibits the highest transposition efficiency and the lowest target specificity. In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or processes such as transcription. The results confirm and extend previous biochemical and lower resolution in vivo data. Despite the generally random nature of Mu transposition and MuB binding, there were hot and cold insertion sites and MuB binding sites in the genome, and differences between the hottest and coldest sites were large. The new data also suggest that MuB distribution and subsequent Mu integration is responsive to DNA sequences that contribute to the structural organization of the chromosome.

  17. Design and fabrication of nanoelectrodes for applications with scanning electrochemical microscopy

    Science.gov (United States)

    Thakar, Rahul

    Scanning electrochemical microscope (SECM) was introduced two decades ago and has since emerged as a powerful research tool to investigate localized electrochemical reactions at the surface of material and biological samples. The ability to obtain chemical information at a surface differentiates SECM from competing scanning probe microscopy (SPM) techniques. Although, chemical specificity is a unique advantage offered by SECM, inherent limitations due to a slow feedback response, and challenges associated with production of smaller electrodes have remained major drawbacks. Initially in this research, SECM was utilized as a characterization and investigative tool. Later, advances in SECM imaging were achieved with design and production of multifunctional nanoelectrodes. At first, platinum based nanoelectrodes were fabricated for use as electrochemical probes to investigate local electron transfer at chemically-modified surfaces. Further, micron and sub-micron platinum electrodes with chemically modified shrouds were prepared and characterized with voltammetric measurements. Studies reveal experimental evidence for the presence of edge-effects that are typically associated with submicron electrodes. Interestingly, we observed selectivity of these electrodes based on hydrophobic/ hydrophilic character. Through vapor deposition of parylene over microstructured material, single-pore membranes and porous membrane arrays were produced. Pore size characterization within porous membranes was performed with templated growth of micro/nanostructures. Characterization of transport properties of ions and redox-active molecules through hydrophobic parylene membranes was investigated with ion conductance microscopy and SECM, individually. Parylene is an insulative material that is chemically resistant, deposits conformally over high-aspect ratio objects and also converts into conductive carbon at high-temperature pyrolysis. Motivated by these results we identified a unique

  18. Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance.

    Science.gov (United States)

    Ou, Kai-Lin; Ehamparam, Ramanan; MacDonald, Gordon; Stubhan, Tobias; Wu, Xin; Shallcross, R Clayton; Richards, Robin; Brabec, Christoph J; Saavedra, S Scott; Armstrong, Neal R

    2016-08-01

    This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol-gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium-tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples. Compared to bare ITO, the effective electroactive area of ITO under sg-ZnO films was ca. 70%, 10%, and 0.3% for 40, 80, and 120 nm sg-ZnO films. More compact sp-ZnO films required only 30 nm thicknesses to achieve an effective electroactive ITO area of ca. 0.02%. We also examined the electrochemical responses of these same ITO/ZnO heterojunctions overcoated with device thickness pure poly(3-hexylthiophehe) (P3HT), and donor/acceptor blended active layers (P3HT:PCBM). Voltammetric oxidation/reduction of pure P3HT thin films on ZnO/ITO contacts showed that pinhole pathways exist in ZnO films that permit dark oxidation (ITO hole injection into P3HT). In P3HT:PCBM active layers, however, the electrochemical activity for P3HT oxidation is greatly attenuated, suggesting PCBM enrichment near the ZnO interface, effectively blocking P3HT interaction with the ITO contact. The shunt resistance, obtained from dark current-voltage behavior in full P3HT/PCBM OPVs, was dependent on both (i) the porosity of the sg-ZnO or sp-ZnO films (as revealed by probe molecule electrochemistry) and (ii) the apparent enrichment of PCBM at ZnO/P3HT:PCBM interfaces, both effects conveniently revealed by electrochemical characterization. We anticipate that these approaches will be

  19. Thermodynamics of irreversible electrochemical phenomena

    NARCIS (Netherlands)

    Groot, S.R. de; Mazur, P.; Tolhoek, H.A.

    1953-01-01

    A discussion from first principles is given of the energy and entropy laws in electrochemical systems. It is found that it is possible to clarify such controversial concepts as the form of the second law and the role of the electrochemical potential in the systems concerned.

  20. Nanotube Arrays in Porous Anodic Alumina Membranes

    Institute of Scientific and Technical Information of China (English)

    Liang LI; Naoto KOSHIZAKI; Guanghai LI

    2008-01-01

    This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.

  1. Electrochemically Formed Porous Silica

    Directory of Open Access Journals (Sweden)

    Jean-Noël Chazalviel

    2011-04-01

    Full Text Available Controlled electrochemical formation of porous silica can be realized in dilute aqueous, neutral-pH, fluoride medium. Formation of a porous film is initiated by sweeping the potential applied to silicon to values higher than 20 V. Film formation, reaching a steady state, may be pursued in a wide range of potentials, including lower potentials. The origin of a threshold potential for porous film initiation has been explained quantitatively. All of the films appear mesoporous. Films grown at high potentials exhibit a variety of macrostructures superimposed on the mesoporosity. These macrostructures result from selective dissolution of silica induced by local pH lowering due to oxygen evolution. Films grown at potentials lower than 15 V appear uniform on the micrometer scale. However, all of the films also exhibit a stratified structure on the scale of a few tens of nanometres. This periodic structure can be traced back to the oscillatory behavior observed during the electrochemical dissolution of silicon in fluoride medium. It suggests that periodic breaking of the growing film may be responsible for this morphology.

  2. High-Speed Electrochemical Imaging.

    Science.gov (United States)

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques. PMID:26267455

  3. Research on Application of Electrochemical Immune Sensors in Food Safety Detection

    Directory of Open Access Journals (Sweden)

    Lichao Zhang

    2015-08-01

    Full Text Available Currently, research on toxic and hazardous substance in food immunological detection methods focused on conventional enzyme-linked immunosorbent assay, especially relatively few studies Array Detection of toxic foods for electrochemical immunoassay method of harmful substances. The work to build a variety of stable performance, high selectivity and sensitivity of electrochemical immunosensor and applied to the detection of Sudan, clenbuterol and chloramphenicol and other foods toxic and hazardous materials. And for the sample of the large number of food safety testing, testing and testing required to have many kinds of characteristics such as age, photo-electrochemical immune sensor array was prepared and applied to veterinary drug residues in food in a fast, high-throughput analysis.

  4. Development of inlaid electrodes for whole column electrochemical detection in HPLC.

    Science.gov (United States)

    Seo, Jung-Ho; Leow, Pei Ling; Cho, Si-Hyeong; Lim, Hyun-Woo; Kim, Jin-Young; Patel, Bhavik Anil; Park, Jin-Goo; O'Hare, Danny

    2009-08-01

    An electrochemical microfluidic device has been fabricated on PET (polyethylene terephthalate) substrate using an imprinting method. The imprinting transfers patterns from a stamp into a substrate mechanically. However, a blanket mould imprinting process has been introduced to embed the photolithographically produced gold metal electrode lines into the PET substrate resulting in an individually addressable array flush to better than 100 nm. The device formed one wall of a packed chromatography column. The array was electrochemically characterised using standard redox probes in both stagnant conditions and under flow. Both numerical modelling and experimental data show improved sensitivity under flow and a limiting current which scaled linearly with the cube root of the volume flow rate. A chromatographic separation of the bioanalytical significant neurotransmitter dopamine (DA) and its metabolite DOPAC was achieved and electrochemically detected at multiple locations within the column. The PET device was stable and robust to leaks to pressures well in excess of those required for chromatographic separations. PMID:19606303

  5. Nanostructuring of nickel hydroxide via a template solution approach for efficient electrochemical devices.

    Science.gov (United States)

    Guo, Li; Ren, Yi; Liu, Junyi; Chiam, Sing Yang; Chim, Wai Kin

    2014-07-01

    Nanostructuring is a key approach in enhancing the performance of electrochemical devices. In this work, nanostructuring is achieved by the electrodeposition of nickel hydroxide nanowire arrays, with both open-ended and close-ended structures, through anodized aluminium oxide (AAO) templates that are directly fabricated on indium tin oxide/glass substrates. The open-ended and close-ended nanostructures are compared together with identically fabricated thin films to show the effects of nanostructuring. Open-ended nanowire arrays demonstrated the best electrochemical activity with superior transmittance modulation and faster activation, while the thin film showed the worst performance. In comparing with the close-ended structures, enhanced performance is observed for the open-ended structures despite the use of less material for the latter. This demonstrates that in designing nanostructures or porous materials, it is important for the porosity to have both interconnectivity and exposure to the electrolyte in electrochemical reactions. PMID:24634166

  6. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  7. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  8. Radiometric stability of Phase 3 WISP arrays

    Science.gov (United States)

    Flynn, David S.; Marlow, Steven A.; Bergin, Thomas P.; Murrer, Robert Lee

    2000-07-01

    Phase 3 WISP arrays and BRITE arrays are currently being used extensively in many projection systems in many different facilities. These arrays have not been annealed at the factory, and previous tests with the arrays have revealed instabilities in the radiometric output when the arrays are driven at higher voltages. In some applications, the instabilities can be avoided by operating the arrays at lower voltages. In many KHILS applications, it is desirable to drive the arrays with the highest possible voltages to simulate hot missile targets. In one KHILS application (the KHILS VAcuum Cold Chamber, KVACC), the arrays are cooled to near cryogenic temperatures and then driven to high voltages. At lower substrate temperatures, the characteristic responses of the emitters change. Thus, it is important that the response and the stability of the radiometric output of the arrays be well understood for various substrate temperatures, and that the arrays either be annealed or operated below the voltage where the emitters begin to anneal. KHILS has investigated annealing procedures in the past, but there was concern that the annealing procedures themselves -- driving the arrays at high voltages for long times -- would damage the arrays. In order to understand the performance of the arrays better, and to reduce risks associated with driving the arrays at high voltages and operating the arrays at low substrate temperatures, a systematic measurement program was initiated. The radiometric output of new Phase 3 WISP arrays was accurately measured as a function of voltage and time. Arrays designated for testing were driven to the higher voltages and the radiometric output was measured for as long as two hours. Curves indicative of the annealing were observed, and it was determined that the maximum stable output without annealing was about 500 K (MWIR apparent temperature). Blocks of emitters were annealed and tested again. It was determined that stable output of as much as 680 K

  9. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  10. Electrochemical Biochip for Drug Screening At Cellular Level

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yu [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); Cui Huiang [Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore); Ye Jianshan [Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore); Chong Serchoong [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); Lim Titmeng [Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore); Sheu Fwushan [Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore); Hui Wingcheong [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore)

    2006-04-01

    Drug screening at cellular level has becomes an attractive field of research. Different researchers have tried to record cellular response to drugs by electrical or optical approach using both invasive and non-invasive methods. Silicon-based microelectrode integrated microchips are useful tools for in situ temporal recording of neurotransmitter releasing from neural cells. A microfabricated electrochemical biochip is presented in this paper. Using dopaminergic cells grown on the chip, the dopamine excytosis can be electrochemical amperomatric detected non-invasively from drug incubated dopaminegic cells by the microelectrode integrated on chip. This silicon-based electrochemical chip has been designed with an electrode array located on the cell culture chamber bottom. Each electrode is individually electrical controlled. MN9D and PC12 dopaminergic cell lines have been demonstrated on this chip for drug effects study. This silicon-based electrochemical microchip provides a non-invasive, in situ, temporal detection of dopamine exocytosis from dopaminegic cells, and holds the potential for applications in studying the mechanisms of dopamine exocytosis and drug screening. It is also extendable for other cell culture and drug effects study.

  11. Electrochemical behaviors of silicon wafers in silica slurry

    Institute of Scientific and Technical Information of China (English)

    Xiaolan Song; Haiping Yang; Xunda Shi; Xi He; Guanzhou Qiu

    2008-01-01

    The electrochemical behaviors of n-type silicon wafers in silica-based slurry were investigated, and the influences of the pH value and solid content of the slurry on the corrosion of silicon wafers were studied by using electrochemical DC polarization and AC impedance techniques. The results revealed that these factors affected the corrosion behaviors of silicon wafers to different degrees and had their suitable parameters that made the maximum corrosion rate of the wafers. The corrosion potential of (100) surface was lower than that of (111), whereas the current density of (100) was much higher than that of (111).

  12. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    International Nuclear Information System (INIS)

    Graphical abstract: Highlights: · A photoactive anode containing highly ordered TiO2 nanotube array was made and the formation mechanism of self-organized TiO2 nanotube array on Ti was revealed. · Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. · Self-organized TiO2 nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. · The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO2 NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO2 NTs were 88 ± 16 nm, 10 ± 2 nm and 491 ± 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO2 NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO2 nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  13. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  14. Electrochemical reduction of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lund Traulsen, M.

    2012-04-15

    NO and NO{sub 2} (collectively referred to as NO{sub x}) are air pollutants, and the largest single contributor to NO{sub x} pollution is automotive exhaust. This study investigates electrochemical deNO{sub x}, a technology which aims to remove NO{sub x} from automotive diesel exhaust by electrochemical reduction of NO{sub x} to N{sub 2} and O{sub 2}. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNO{sub x} by addition of NO{sub x} storage compounds to the electrodes. Two different composite electrodes, La{sub 0.85}Sr{sub 0.15}MnO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSM15-CGO10) and La{sub 0.85}Sr{sub 0.15}FeO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSF15-CGO10), have been investigated in combination with three different NO{sub x} storage compounds: BaO, K{sub 2}O and MnO{sub x}. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy and cyclic voltammetry. In addition, infrared spectroscopy has been performed to study how NO{sub x} adsorption on the electrodes is affected by the presence of the aforementioned NO{sub x} storage compounds. Furthermore, non-tested and tested electrode microstructures have been thoroughly evaluated by scanning electron microscopy. The studies reveal addition of MnO{sub x} or K{sub 2}O to the electrodes cause severe degradation problems, and addition of these compounds is thus unsuitable for electrode improvement. In contrast, addition of BaO to LSM15-CGO10 electrodes is shown to have a very positive impact on the NO{sub x} conversion. The increased NO{sub x} conversion, following the BaO addition, is attributed to a combination of 1) a decreased electrode polarisation resistance and 2) an altered NO{sub x} adsorption. The NO{sub x} conversion is observed to increase strongly with polarisation, and during 9 V polarisation of an

  15. Electrochemical processes in amalgams

    International Nuclear Information System (INIS)

    By the method of cyclic voltammetry it has been ascertained that in the process of anodic oxidation of liquid amalgams of s-metal (M = Li-Cs, Ca, Sr, Ba) hydrides with hydride content in mercury of 0.01-0.03 mass % in aqueous solutions of electrolytes (o.1-10 M) in the temperature range of 10-50 deg C the previously unknown electrochemical effects are observed: a wide anodic peak of current in the range of potentials from -1.65 to -1.40 V, accompanied by intensive hydrogen evolution and increase in the amalgam volume, as well as a narrow peak of current in the range of potentials of -1.0 V. The phenomena observed have been explained. 4 refs

  16. Electrochemical oxygen meter

    International Nuclear Information System (INIS)

    An electrochemical (electrolytic cell) device is specified for measuring the concentration of oxygen in a liquid alkali metal (e.g. in the liquid sodium heat transfer loops of liquid metal cooled fast breeder reactors). The oxygen content is determined by measuring the e.m.f. generated between a reference electrode and the molten metal by the conduction of oxygen ions there between through a solid electrolyte. A salient feature of the invention is the use, for the reference electrode, of a uniform mixture of either Ga, In or Sn and its oxide, the mixture being liquid at the temperature of operation and in intimate contact with the solid electrolyte. Another salient feature of the invention is the use, for the solid electrolyte, of high purity thoria doped with yttria, the material being sintered and fired to a high temperature to obtain a density of 98 to 99% theoretical. (U.K.)

  17. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  18. Direct electrochemical oxidation of polyacrylates.

    Science.gov (United States)

    Bellagamba, Riccardo; Comninellis, Christos; Vatistas, Nicolaos

    2002-10-01

    A promising elimination treatment of non-biodegradable organic pollutants is the direct electro-oxidation. In this work has been proposed the electrochemical elimination of polyacrylates by using boron-doped diamond (BDD) as anodic material. The complete elimination of organic contaminants has been obtained and this is the first case of successful electrochemical treatment of polymeric and bio-refractory species. The tests of the electrochemical oxidation have been conducted at constant current conditions and a complete elimination of organic species has been reached. The decrease of the COD value with time follows the behaviour of an ideal anode as in the case of low molecular organic compounds. PMID:12489259

  19. Electrochemical structure-switching sensing using nanoplasmonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Patskovsky, Sergiy; Dallaire, Anne-Marie; Blanchard-Dionne, Andre-Pierre; Meunier, Michel [Department of Engineering Physics, Laser Processing and Plasmonics Laboratory, Polytechnique, Montreal, Station Centre-ville, QC (Canada); Vallee-Belisle, Alexis [Laboratory of Biosensors and Nanomachines, Departement de Chimie, Universite de Montreal, QC (Canada)

    2015-12-15

    In this article, the implementation of electrochemical plasmonic nanostructures functionalized with DNA-based structure-switching sensors is presented. eNanoSPR devices with open and microfluidic measurement cells are developed on the base of nanohole arrays in 100 nm gold film and applied for combined microscopic and electrochemical surface plasmon (eSPR) visualization. eSPR voltammograms and spectroscopy are performed using planar three electrode schematic with plasmonic nanostructure operated as working electrode. Limit of detection of eNanoSPR devices for oligonucleotide hybridization is estimated in the low nanomolar and applications for structure-switching electro-plasmonic sensing in complex liquids are discussed. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    Science.gov (United States)

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed. PMID:20540540

  1. The electrochemical properties of bundles of single-walled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zawodzinski, T.A. Jr.; Haridoss, P.; Uribe, F.A.

    1998-12-31

    This is the final report of a Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors studied electrochemical properties of single-walled fullerene nanotube bundles. The materials exhibited a highly anisotropic conductivity. Electrochemical cycling in solutions of alkyl ammonium salts in propylene carbonate revealed that the nanotubes are stable to at least {+-}1.5 V and have a fairly high accessible surface area. Double-layer charging currents of approximately 30 farads per gram were observed. This is on the same order of magnitude, though somewhat lower, than state-of-the-art values for ultra-capacitor materials. Electrochemical insertion of lithium was attempted. Though several features were observed in a slow cyclic voltammetric scan, these features were not reversible, indicating little reversible insertion. Several possible reasons for this behavior are discussed.

  2. Influence of graphene microstructures on electrochemical performance for supercapacitors

    Directory of Open Access Journals (Sweden)

    Youning Gong

    2015-10-01

    Full Text Available The influence of variant graphenes on electrochemical performance for supercapacitors was studied comparatively and systematically by using SEM, FTIR and Raman spectroscopy, cyclic voltammetry (CV, galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS. The results revealed that: 1 the nitrogen-doped graphene (N-G electrode exhibited the highest specific capacitance at the same voltage scan rate; 2 the specific capacitance of the N-G reached up to 243.5 F/g at 1 A/g, while regular graphite oxide (GO was 43.5 F/g and reduced graphene oxide (rGO was 67.9 F/g; 3 N-G exhibited the best supercapacitance performance and the superior electrochemical properties, which made it an ideal electrode material for supercapacitors.

  3. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst.

    Science.gov (United States)

    Xu, Kun; Ding, Hui; Jia, Kaicheng; Lu, Xiuli; Chen, Pengzuo; Zhou, Tianpei; Cheng, Han; Liu, Si; Wu, Changzheng; Xie, Yi

    2016-01-26

    Inorganic nanowire arrays hold great promise for next-generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution-liquid-solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low-temperature solution synthesis. As a proof-of-concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires. PMID:26695560

  4. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.

    Science.gov (United States)

    Li, Q; Walter, E C; van der Veer, W E; Murray, B J; Newberg, J T; Bohannan, E W; Switzer, J A; Hemminger, J C; Penner, R M

    2005-03-01

    Molybdenum disulfide nanowires and nanoribbons have been synthesized by a two-step, electrochemical/chemical synthetic method. In the first step, MoO(x) wires (a mixture of MoO(2) and MoO(3)) were electrodeposited size-selectively by electrochemical step-edge decoration on a highly oriented pyrolytic graphite (HOPG) surface. Then, MoO(x) precursor wires were converted to MoS(2) by exposure to H(2)S either at 500-700 degrees C, producing "low-temperature" or LT MoS(2) nanowires that were predominantly 2H phase, or above 800 degrees C producing "high-temperature" or HT MoS(2) ribbons that were predominantly 3R phase. The majority of these MoS(2) wires and ribbons were more than 50 microm in length and were organized into parallel arrays containing hundreds of wires or ribbons. MoS(2) nanostructures were characterized by X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, selected area electron diffraction, X-ray diffraction, UV-visible absorption spectrometry, and Raman spectroscopy. HT and LT MoS(2) nanowires were structurally distinct: LT MoS(2) wires were hemicylindrical in shape and nearly identical in diameter to the MoO(x) precursor wires from which they were derived. LT MoS(2) wires were polycrystalline, and the internal structure consisted of many interwoven, multilayer strands of MoS(2); HT MoS(2) ribbons were 50-800 nm in width and 3-100 nm thick, composed of planar crystallites of 3R-MoS(2). These layers grew in van der Waals contact with the HOPG surface so that the c-axis of the 3R-MoS(2) unit cell was oriented perpendicular to the plane of the graphite surface. Arrays of MoS(2) wires and ribbons could be cleanly separated from the HOPG surface and transferred to glass for electrical and optical characterization. Optical absorption measurements of HT MoS(2) nanoribbons reveal a direct gap near 1.95 eV and two exciton peaks, A1 and B1, characteristic of 3R-MoS(2). These exciton peaks shifted to higher energy by up to 80 meV as

  5. Physiomics Array: A Platform for Genome Research and Cultivation of Difficult-to-Cultivate Microorganisms Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay D. Keasling

    2006-07-10

    A scalable array technology for parametric control of high-throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed-loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off-the-shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high-density arrays of microreactors. We have scaled the technology to a standard 96-well format and have constructed a system that could be easily assembled.

  6. Multienzyme Inkjet Printed 2D Arrays.

    Science.gov (United States)

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  7. Electrochemical Oscillations Induced by Surfactants

    Institute of Scientific and Technical Information of China (English)

    翟俊红; 贺占博

    2003-01-01

    A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO4 aqueous and an aluminum rod in Al(NO3)3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg2SO4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.

  8. Super phase array

    Energy Technology Data Exchange (ETDEWEB)

    Wee, W H; Pendry, J B [Condensed Matter Theory Group Department of Physics Imperial College London London SW7 2AZ (United Kingdom)], E-mail: w.wee07@imperial.ac.uk

    2010-03-15

    For a long time phase arrays have been used in a variety of wave transmission applications because of their simplicity and versatility. Conventionally there is a trade-off between the compactness of a phase array and its directivity. In this paper we demonstrate how by embedding a normal phase array within a superlens (made of negative refractive index material) we can overcome this constraint and create compact phase arrays with a virtual extent much larger than the physical size of the array. In this paper we also briefly discuss the apparent unphysical field divergences in superlenses and how to resolve this issue.

  9. Super phase array

    International Nuclear Information System (INIS)

    For a long time phase arrays have been used in a variety of wave transmission applications because of their simplicity and versatility. Conventionally there is a trade-off between the compactness of a phase array and its directivity. In this paper we demonstrate how by embedding a normal phase array within a superlens (made of negative refractive index material) we can overcome this constraint and create compact phase arrays with a virtual extent much larger than the physical size of the array. In this paper we also briefly discuss the apparent unphysical field divergences in superlenses and how to resolve this issue.

  10. Electrochemical formation and optimization of Ta-based nanomaterials

    Science.gov (United States)

    Horwood, Corie A.

    The primary focus of this research has been to develop simple and precise methods for the formation of novel Ta-based nanostructures, including Ta oxide nanotubes (NTs) and Ta-supported Au nanoparticle (NP) arrays. These nanomaterials are very useful for applications in sensing, electrocatalysis/catalysis, spectroscopy, and more. The Ta oxide NTs are formed by the electrochemical anodization of Ta, a process which can be modified to produce ordered nanoscale dimples that cover the Ta surface. These dimples can then be used as templates for the formation of ordered Au nanoparticle arrays. An in-depth study of the anodization variables showed that NT growth can be slowed down by decreasing the anodization time and HF concentration in the solution, allowing the controlled formation of short (50--1000 nm) NTs in under one minute. The charge passed during anodization was found to be directly proportional to the length of the NTs formed, making cross-sectional imaging unnecessary. A novel two-step anodization method, interspersed with a thermal annealing or negative polarization step, produced stable and well-ordered NTs free of a problematic thin surface oxide layer. These vertically oriented arrays of short NTs were found to have interesting optical properties, with visible structural colours that depend on NT length. The colour of the NT arrays was also found to depend on the medium inside the NTs (air, water, other solids), used for the first time to monitor NT filling, and to determine the refractive index and porosity of the Ta oxide nanotubular array, properties that are otherwise very difficult to obtain. Dimpled Ta was used to create ordered Au NP arrays using two thin film dewetting methods, thermal annealing and pulsed laser-induced dewetting. These methods yield Au NPs of predictable size, shape, spacing, and surface density, with these parameters varying predictably with the initial thickness of the Au thin film and the technique used for dewetting. The Au

  11. Solution-derived 40 μm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Well-aligned ZnO nanowire arrays with a long length of more than 40 μm were prepared successfully by using the polyethylenimine (PEI)-assisted preheating hydrothermal method (PAPHT). Several important synthetic parameters such as PEI content, growth time, preheating time and zinc salt concentration were found to determine the growth of ultralong ZnO nanowire arrays, including length, diameter, density and alignment degree. The photoluminescence (PL) spectrum of as-grown ultralong ZnO nanowire arrays revealed a UV emission and a yellow emission, which was attributed to the absorbed hydroxyl group based on the peak shift after annealing in various atmospheres. The performance of dye-sensitized solar cells (DSSCs) increased with increasing length of ZnO nanowire arrays, which was mainly ascribed to the aggrandized photocurrent and reduced recombination loss according to electrochemical impedance spectroscopy (EIS). A maximum efficiency of 1.3% for a cell with a short-circuit current density (Jsc) = 4.26 mA cm2, open-circuit voltage (Voc) = 0.69 V and (fill factor) FF = 0.42 was achieved with a length of 40 μm.

  12. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  13. Revealed Attention

    OpenAIRE

    Masatlioglu, Yusufcan; NAKAJIMA, Daisuke; Ozbay, Erkut Y

    2012-01-01

    The standard revealed preference argument relies on an implicit assumption that a decision maker considers all feasible alternatives. The marketing and psychology literatures, however, provide wellestablished evidence that consumers do not consider all brands in a given market before making a purchase (Limited Attention). In this paper, we illustrate how one can deduce both the decision maker's preference and the alternatives to which she pays attention and inattention from the observed behav...

  14. Revealed Attention

    OpenAIRE

    Yusufcan Masatlioglu; Daisuke Nakajima; Ozbay, Erkut Y

    2012-01-01

    The standard revealed preference argument relies on an implicit assumption that a decision maker considers all feasible alternatives. The marketing and psychology literatures, however, provide well-established evidence that consumers do not consider all brands in a given market before making a purchase (Limited Attention). In this paper, we illustrate how one can deduce both the decision maker's preference and the alternatives to which she pays attention and inattention from the observed beha...

  15. Antireflective nanostructured zinc oxide arrays produced by pulsed electrodeposition

    International Nuclear Information System (INIS)

    Conditions for the pulsed electrochemical deposition of nanostructured zinc oxide arrays with a certain morphology, crystal structure, and optical properties from aqueous electrolytes onto substrates of transparent electrically conducting tin dioxide and on single-crystal silicon wafers with built-in homojunctions are studied in order to develop antireflection coatings for solar cells. It is shown that it is possible to obtain single-layer planar antireflection coatings or arrays of nanorods of this material, both having the form of hexagonal prisms and exhibiting the moth-eye effect

  16. A Parylene Bellows Electrochemical Actuator

    OpenAIRE

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2010-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized throug...

  17. Electrochemical reactions and ionization processes

    OpenAIRE

    Girault, Hubert; Liu, Baohong; Qiao, Liang; Bi, Hongyan; Prudent, Michel; Lion, Niels; Abonnenc, Mélanie

    2010-01-01

    Electrochemical or photo-electrochemical reactions in both electrospray ionization and laser desorption ionization are discussed stressing the role of the electrode reaction in influencing the ionization process. In particular, upon application of a high voltage during electrospray ionization, the emitter includes a working electrode, where redox reactions are observed, such as electro-generation of benzoquinone and metal ions. In contrast, the target plate in laser-induced desorption ionizat...

  18. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  19. Array of Cu2O nano-columns fabricated by oblique angle sputter deposition and their application in photo-assisted proton reduction

    International Nuclear Information System (INIS)

    Nano-columnar arrays of Cu2O were grown by the oblique angle sputter deposition technique based on the self-shadowing principle. The as-grown nano-columnar samples are oriented along (111) direction, and they are highly transmitting in the visible range with a low reflectance. In this work, we show the photo-electrochemical activity of nano-columnar array of Cu2O, which shows a higher (∼25%) photocurrent density and a two-fold enhancement in the incident-to-photon conversion efficiency as compared to continuous thin film of Cu2O in photo-assisted proton reduction type reaction. The improvement in electrochemical activity of nano-columnar Cu2O photocathode can be attributed to the change in morphology, crystal structure, as well as electrical property, which shows a higher degree of band bending, increased donor carrier (e−) density and lower width of space charge region as revealed by capacitance measurements and Mott-Schottky analysis

  20. Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved durability

    International Nuclear Information System (INIS)

    Highlights: • TiO2 nanotubes (NTs) are grown onto a Ti foil by ultra-fast anodic oxidation. • NTs exhibit noticeable stability and capacity retention after prolonged cycling. • NTs show improved durability (>1100 cycles) at a very high C-rate. • Short diffusion path and fast kinetics are responsible for superior performance. • TiO2 NTs are interesting candidate for next generation micro Li-based cells. -- Abstract: Vertically oriented arrays of TiO2 nanotubes (NTs) are fabricated by fast and facile, thus easily up-scalable, anodic oxidation of a titanium foil followed by rapid thermal annealing. The structural/morphological characterization shows the formation of well defined one-dimensional nanotube carpets, while the X-ray diffraction analysis reveals the pure anatase crystalline structure of the thermal treated samples. The electrochemical response in laboratory-scale lithium cells is highly satisfying: at a very high discharge/charge rate of 12C, the NTs can perform with good stability and capacity retention after long-term cycling along with improved durability (>1100 cycles). High surface area, self-induced doping, short diffusion path and fast kinetics of the unidirectionally aligned TiO2 nanotube arrays are intriguing prospects which can be considered responsible for the noticeable electrochemical performance obtained in the absence of foreign ingredients such as binders and conductive agents, which would affect the overall energy density

  1. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  2. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    International Nuclear Information System (INIS)

    Highlights: ► A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. ► The sensing system employ an array of biological recognition elements. ► Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. ► The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 μM and 4.5 μM, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 μM and 35 μM respectively, with an RSD% less than 5%.

  3. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scognamiglio, Viviana, E-mail: viviana.scognamiglio@mlib.ic.cnr.it [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano [Biosensor S.r.l. - Via degli Olmetti 44 00060 Formello, Rome (Italy); Buonasera, Katia [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe [Universita di Roma Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche - Via della Ricerca Scientifica 00133, Rome (Italy); Giardi, Maria Teresa [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. Black-Right-Pointing-Pointer The sensing system employ an array of biological recognition elements. Black-Right-Pointing-Pointer Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. Black-Right-Pointing-Pointer The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 {mu}M and 4.5 {mu}M, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 {mu}M and 35 {mu}M respectively, with an RSD% less than 5%.

  4. Electrochemical characterization of electrochemically reduced graphene coatings on platinum. Electrochemical study of dye adsorption

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted - Highlights: • Pt electrodes coated with reduced graphene oxide (RGO) were obtained by CV. • CV and EIS showed the increase in capacitance due to RGO deposition. • Redox mediator influences the electrochemical response observed by SECM. • CV was used to monitor and induce dye adsorption on Pt/RGO electrodes. • Electrochemical adsorption increased dye adsorption compared to ocp adsorption. - Abstract: Reduced graphene oxide coatings were synthesized by cyclic voltammetry on Pt electrodes. Electrochemically reduced graphene oxide was analyzed by scanning electrochemical microscopy for the first time. The redox mediator influences the electrochemical response; thus Ru(NH3)63+ and Fe(CN)63− gave a similar response and Fe3+ gave the poorest response. Pt electrodes coated with reduced graphene oxide were also used in the electrochemical adsorption (performed by cyclic voltammetry) of different dyes (Methylene Blue, Procion MX-2R and Amaranth). Electrochemical methods proved to be useful to monitor the adsorption of dyes on the surface of graphene materials. After adsorption, with Methylene Blue and Procion MX-2R, the appearance of a stable redox pair (with 1 electron transfer) was observed. This redox pair was adsorption controlled since the intensity of the redox pair was proportional to the scan rate used. Electrochemical adsorption multiplied by 3 the electrical charge of the Methylene Blue adsorbed on the surface of reduced graphene oxide when compared with simple adsorption at open circuit potential. In the case of Procion MX-2R, the increase obtained was even higher, with a 6-fold increase

  5. VLSI array processor

    Science.gov (United States)

    Greenwood, E.

    1982-07-01

    The Arithmetic Processor Unit (APU) data base design check was completed. Minor design rule violations and design improvements were accomplished. The APU mask set has been fabricated and checked. Initial checking of all mask layers revealed a design rule problem in one layer. That layer was corrected, refabricated and checked out. The mask set has been delivered to the chip fabrication area. The fabrication process has been initiated. All work on the Array Processor Demonstration System (APDS) has been suspended at CHI until the additionally requested funding was received. That funding has been authorized and CHI will begin work on the APDS in July. The following activities are planned in the following quarter: 1) Complete fabrication of the first lot of VLSI APU devices. 2) Complete integration and check-out of the APDS simulator. 3) Complete integration and check-out of the APU breadboard. 4) Verify the VLSI APU wafer tests with the APU breadboard. 5) Complete check-out of the APDS using the APU breadboard.

  6. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  7. ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications

    International Nuclear Information System (INIS)

    A single crystal domain texture quality (a unique in-plane and out-of-plane crystalline orientation over a large area) ZnO nanostructure of a dense nanowire array on a thick film has been homogeneously synthesized on a-plane sapphire substrates over large areas through a one-step chemical vapor deposition (CVD) process. The growth mechanism is clarified: a single crystal [0 2-bar 1] oriented ZnAl2O4 buffer layer was formed at the ZnO film and the a-plane sapphire substrate interface via a diffusion reaction process during the CVD process, providing improved epitaxial conditions that enable the synthesis of the high crystalline quality ZnO nanowire array on a film structure. The high optoelectronic quality of the ZnO nanowire array on a film sample is evidenced by the free exitonic emissions in the low-temperature photoluminescence spectroscopy. A carrier density of ∼1017 cm−3 with an n-type conductivity of the ZnO nanowire array on a film sample is obtained by electrochemical impedance analysis. Finally, the ZnO nanowire array on a film sample is demonstrated to be an ideal template for a further synthesis of a single crystal quality ZnO–ZnGa2O4 core–shell nanowire array on a film structure. The fabricated ZnO–ZnGa2O4 sample revealed an enhanced anticorrosive ability and photoelectrochemical performance when used as a photoanode in a photoelectrochemical water splitting application. (paper)

  8. Electrochemical Hydrogen Peroxide Generator

    Science.gov (United States)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  9. Electrochemically-Gated Field-Effect Transistor with Indium Tin Oxide Nanoparticles as Active Layer

    International Nuclear Information System (INIS)

    An electrochemically-gated junction field-effect transistor with metallic conducting indium tin oxide nanoparticle array as active layer is reported. Fabrication of a field-effect device with a degenerative semiconductor like indium tin oxide (carrier concentration 1020-1021 cm-3) is possible by exploiting the high surface-to-volume ratio of nanoparticles and high surface charge density achievable by electrochemical gating. The on/off ratio obtained is 325 although the applied potential was restricted to the capacitive double layer region (to ensure high repeatability) without allowing redox reactions to take place at the interface. (authors)

  10. Electrochemical incineration of wastes

    Science.gov (United States)

    Bhardwaj, R. C.; Sharma, D. K.; Bockris, J. Om.

    1990-08-01

    The novel technology of waste removal in space vehicles by electrochemical methods is presented to convert wastes into chemicals that can be eventually recycled. The important consideration for waste oxidation is to select a right kind of electrode (anode) material that should be stable under anodic conditions and also a poor electrocatalyst for oxygen and chlorine evolution. On the basis of long term electrolysis experiments on seven different electrodes and on the basis of total organic carbon reduced, two best electrodes were identified. The effect of redox ions on the electrolyte was studied. Though most of the experiments were done in mixtures of urine and waste, the experiments with redox couples involved 2.5 M sulfuric acid in order to avoid the precipitation of redox ions by urea. Two methods for long term electrolysis of waste were investigated: (1) the oxidation on Pt and lead dioxide electrodes using the galvanostatic methods; and (2) potentiostatic method on other electrodes. The advantage of the first method is the faster rate of oxidation. The chlorine evolution in the second method is ten times less then in the first. The accomplished research has shown that urine/feces mixtures can be oxidized to carbon dioxide and water, but current densities are low and must be improved. The perovskite and Ti4O7 coated with RuO2 are the best electrode materials found. Recent experiment with the redox agent improves the current density, however, sulphuric acid is required to keep the redox agent in solution to enhance oxidation effectively. It is desirable to reduce the use of acid and/or find substitutes.

  11. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  12. Tracking of electrochemical impedance of batteries

    Science.gov (United States)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  13. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  14. Fabrication and characterization of CaP-coated nanotube arrays

    International Nuclear Information System (INIS)

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H3PO4 and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells

  15. Fabrication and characterization of CaP-coated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen; Chen, Jia-Ling [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Liu, Yen-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2015-03-01

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H{sub 3}PO{sub 4} and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells.

  16. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  17. Experimental study on the cooling performance of high power LED arrays under natural convection

    International Nuclear Information System (INIS)

    This paper presents on the cooling performance of high power light emitting diode (LED) arrays under natural convection condition. A series of experiments with different type of LED array arrangements with a commercial heat sink were performed to evaluate their thermal performance. An analytical thermal resistance model was used to calculate thermal resistance. The results reveal that thermal resistance and junction temperature are affected by the type of array. The triangular array of the high power LED revealed the highest heat transfer coefficient with 3.86% compared to the most common square array. It indicates that array arrangement of the LED significantly affect on the excellent performance

  18. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    In this study, ZnO nanorod arrays have been evaluated for the negative electrodes of lithium-ion batteries. The ZnO nanorod arrays with dandelion-like morphology were directly grown on copper substrates by a hydrothermal synthesis process at 80 deg. C. X-ray diffraction, scanning electron microscopy, galvanostatic discharge-charge, and cyclic voltammetry were employed to characterize the structure and electrochemical property of the arrays. The array electrodes showed a stable capacity over 310 mAh g-1 after 40 cycles, and good capacity retention as the anodes of lithium-ion batteries. It was believed that the unique dandelion-like binary-structure played an important role in the electrochemical performance of the array electrodes. The present finding opens the possibility to fabricate micro/nanometer hierarchical ZnO films that might be applied in lithium-ion batteries

  19. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongbo [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pan Qinmin [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: panqm@hit.edu.cn; Cheng Yuexiang [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Zhao Jianwei [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China); Yin Geping [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-04-01

    In this study, ZnO nanorod arrays have been evaluated for the negative electrodes of lithium-ion batteries. The ZnO nanorod arrays with dandelion-like morphology were directly grown on copper substrates by a hydrothermal synthesis process at 80 deg. C. X-ray diffraction, scanning electron microscopy, galvanostatic discharge-charge, and cyclic voltammetry were employed to characterize the structure and electrochemical property of the arrays. The array electrodes showed a stable capacity over 310 mAh g{sup -1} after 40 cycles, and good capacity retention as the anodes of lithium-ion batteries. It was believed that the unique dandelion-like binary-structure played an important role in the electrochemical performance of the array electrodes. The present finding opens the possibility to fabricate micro/nanometer hierarchical ZnO films that might be applied in lithium-ion batteries.

  20. Electrochemical Reduction of Oxygen on Multi-walled Carbon Nanotubes Electrode in Alkaline Solution

    Institute of Scientific and Technical Information of China (English)

    You Qun CHU; Chun An MA; Feng Ming ZHAO; Hui HUANG

    2004-01-01

    The multi-walled carbon nanotubes (MWNTs) electrode was constructed using poly- tetrafluoroethylene as binder, and the electrochemical reductive behavior of oxygen in alkaline solution was first examined on this electrode. Compared with other carbon materials, MWNTs show higher electrocatalytic activity, and the reversibility of O2 reduction reaction is greatly improved. The experiments reveal that the electrochemical reduction of O2 to HO2- is controlled by adsorption. The preliminary results illustrate the potential application of MWNTs in fuel cells.

  1. Electrochemical Sensor for Oxidation of NO Based on Au-Pt Nanoparticles Self-assembly Film

    Institute of Scientific and Technical Information of China (English)

    XIE,Jia; YU,Zhihui; XIA,Dingguo

    2009-01-01

    Au-Pt bimetallic nanoparticles film used as an efficient electrochemical sensor was prepared by self-assembled Au-Pt bimetallic nanoparticles on a glassy carbon (GC) substrate using thioglycolic acid as a linker. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the Au-Pt nanoparticles self-assembly film was dense and uniform. Electrochemical experiments revealed that Au-Pt bimetallic nanoparticles film/GC electrode showed high electrocatalytic activity to the oxidation of nitric oxide.

  2. Antitumor effects of electrochemical treatment

    Institute of Scientific and Technical Information of China (English)

    Héctor Manuel Camué Ciria; Maraelys Morales González; Lisset Ortíz Zamora; Luis Enrique Bergues Cabrales; Gustavo Victoriano Sierra González; Luciana Oliveira de Oliveira; Rodrigo Zanella

    2013-01-01

    Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas.This treatment is noted for its great effectiveness,minimal invasiveness and local effect.Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy.In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained.By this reason,researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells.Although,it is generally accepted this treatment induces electrolysis,electroosmosis and electroporation in tumoral tissues.However,action mechanism of this alternative modality on the tumor tissue is not well understood.Although the principle of Electrochemical treatment is simple,a standardized method is not yet available.The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process.The present work analyzes the latest and most important research done on the electrochemical treatment of tumors.We conclude with our point of view about the destruction mechanism features of this alternative therapy.Also,we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy.In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done.Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods.

  3. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays.

    Science.gov (United States)

    Aria, Adrianus I; Gharib, Morteza

    2014-06-17

    The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a substantial change in surface charge and electrochemical properties. Here, the droplet impact dynamics are characterized in terms of critical Weber number, coefficient of restitution, spreading factor, and contact time. Based on these characteristics, it is found that superhydrophobic carbon nanotube arrays are among the best water-repellent surfaces ever reported. The results presented herein may pave a way for the utilization of superhydrophobic carbon nanotube arrays in numerous industrial and practical applications, including inkjet printing, direct injection engines, steam turbines, and microelectronic fabrication. PMID:24866696

  4. Electrochemical Characterisation of Nanocrystalline Nickel

    Directory of Open Access Journals (Sweden)

    Deepika Sachdeva

    2008-07-01

    Full Text Available Nanocry stalline nickel (nc-Ni coatings were produced by pulse electro deposition using Watts bath with sodium citrate and saccharin added as grain refining agents. The electrochemical nature of nc-Ni coatings, evaluated in 1M H2SO4 solution by electrochemical impedance spectroscopy. The corrosion rate of bulk nickel was lower than that of nc-Ni after stabilisation of free corrosion potential.Defence Science Journal, 2008, 58(4, pp.525-530, DOI:http://dx.doi.org/10.14429/dsj.58.1673

  5. Electrochemical Characterisation of Nanocrystalline Nickel

    OpenAIRE

    Deepika Sachdeva; Naveen Gupta; R. Balasubramaniam

    2008-01-01

    Nanocry stalline nickel (nc-Ni) coatings were produced by pulse electro deposition using Watts bath with sodium citrate and saccharin added as grain refining agents. The electrochemical nature of nc-Ni coatings, evaluated in 1M H2SO4 solution by electrochemical impedance spectroscopy. The corrosion rate of bulk nickel was lower than that of nc-Ni after stabilisation of free corrosion potential.Defence Science Journal, 2008, 58(4), pp.525-530, DOI:http://dx.doi.org/10.14429/dsj.58.1673

  6. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  7. Array for detecting microbes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Gary L.; DeSantis, Todd D.

    2014-07-08

    The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.

  8. Dechlorination by combined electrochemical reduction and oxidation*

    OpenAIRE

    Cong, Yan-qing; Wu, Zu-cheng; Tan, Tian-en

    2005-01-01

    Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method. Results showed that it was feasible to degrade contaminants containing chlorine atoms by electrochemical reduction to form phenol, which was further degraded on the anode by electrochemical oxidation. Chlorophenol removal rate was more than 90% by the combined electrochemical r...

  9. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Feng; Zhao, Yong-Qing; Zhang, Guo-Qing [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Li, Hu-Lin [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautisc, Nanjing 210013 (China); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2007-06-15

    High capacitance at a high charge-discharge current density of 50 mA/cm{sup 2} for a new type of electrochemical supercapacitor cobalt sulfide (CoS{sub x}) have been studied for the first time. The CoS{sub x} was prepared by a very simply chemical precipitation method. The electrochemical capacitance performance of this compound was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge tests with a three-electrode system. The results show that CoS{sub x} has excellent electrochemical capacitive characteristic with potential range -0.3 {proportional_to} 0.35 V (versus SCE) in 6 M KOH solution. Charge-discharge behaviors have been observed with the highest specific capacitance values of 475 F/g at the current density of 5 mA/cm{sup 2}, even at the high current density of 50 mA/cm{sup 2}, CoS{sub x} also shows the high specific capacitance values of 369 F/g. (author)

  10. Micromachined electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat (Edgewood, NM); Wessendorf, Kurt O. (Albuquerque, NM)

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  11. Diode Laser Arrays

    Science.gov (United States)

    Botez, Dan; Scifres, Don R.

    1994-08-01

    This book provides a comprehensive overview of the fundamental principles and applications of semiconductor diode laser arrays. All of the major types of arrays are discussed in detail, including coherent, incoherent, edge- and surface-emitting, horizontal- and vertical-cavity, individually addressed, lattice- matched and strained-layer systems. The initial chapters cover such topics as lasers, amplifiers, external-cavity control, theoretical modeling, and operational dynamics. Spatially incoherent arrays are then described in detail, and the uses of vertical-cavity surface emitter and edge-emitting arrays in parallel optical-signal processing and multi-channel optical recording are discussed. Researchers and graduate students in solid state physics and electrical engineering studying the properties and applications of such arrays will find this book invaluable.

  12. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  13. Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays.

    Science.gov (United States)

    Noskov, Roman E; Belov, Pavel A; Kivshar, Yuri S

    2012-03-01

    We study modulational instability in nonlinear arrays of subwavelength metallic nanoparticles and analyze numerically nonlinear scenarios of the instability development. We demonstrate that modulational instability can lead to the formation of regular periodic or quasiperiodic modulations of the polarization. We reveal that such nonlinear nanoparticle arrays can support long-lived standing and moving oscillating nonlinear localized modes--plasmon oscillons. PMID:22463637

  14. A Substrate-Integrated and Scalable Templated Approach Based on Rusted Steel for the Fabrication of Polypyrrole Nanotube Arrays

    Energy Technology Data Exchange (ETDEWEB)

    J Velazquez; A Gaikwad; T Rout; J Rzayev; S Banerjee

    2011-12-31

    We report here a facile, generalizable, and entirely scalable approach for the fabrication of vertically aligned arrays of Fe{sub 2}O{sub 3}/polypyrrole core-shell nanostructures and polypyrrole nanotubes. Our 'all electrochemical' approach is based on the fabrication of {alpha}-Fe{sub 2}O{sub 3} nanowire arrays by the simple heat treatment of commodity low carbon steel substrates, followed by electropolymerization of conformal polypyrrole sheaths around the nanowires. Subsequently, electrochemical etching of the nanowires yields large-area vertically aligned polypyrrole nanotube arrays on the steel substrate. The developed methodology is generalizable to functionalized pyrrole monomers and represents a significant practical advance of relevance to the technological implementation of conjugated polymer nanostructures in electrochromics, electrochemical energy storage, and sensing.

  15. A substrate-integrated and scalable templated approach based on rusted steel for the fabrication of polypyrrole nanotube arrays.

    Science.gov (United States)

    Velazquez, Jesus M; Gaikwad, Anil V; Rout, Tapan K; Rzayev, Javid; Banerjee, Sarbajit

    2011-04-01

    We report here a facile, generalizable, and entirely scalable approach for the fabrication of vertically aligned arrays of Fe(2)O(3)/polypyrrole core-shell nanostructures and polypyrrole nanotubes. Our "all electrochemical" approach is based on the fabrication of α-Fe(2)O(3) nanowire arrays by the simple heat treatment of commodity low carbon steel substrates, followed by electropolymerization of conformal polypyrrole sheaths around the nanowires. Subsequently, electrochemical etching of the nanowires yields large-area vertically aligned polypyrrole nanotube arrays on the steel substrate. The developed methodology is generalizable to functionalized pyrrole monomers and represents a significant practical advance of relevance to the technological implementation of conjugated polymer nanostructures in electrochromics, electrochemical energy storage, and sensing. PMID:21425803

  16. The electrochemical properties of the cyclic deformed passive metals

    International Nuclear Information System (INIS)

    It has been investigated the influence of chloride environment on corrosion fatigue fracture of different classes stainless steels. The change of electrochemical properties of deformed corrosion resistance steels and alloys during the initial stage of corrosion fatigue fracture has been studied. It has been determined the influence of micro-deformation processes of surface at different tensions on the electrochemical activating of stainless steels. The critical values of electrochemical parameters of the deformed metal has been established, at which probability of corrosion fatigue fracture grows sharply. The features of character change polarization current of stainless steels at loadings even to corrosion fatigue limit has been shown. It served by basis for development of method speed-up determination of corrosion fatigue limit without destruction of specimens. It has been established possibility of decline corrosion currents of stainless steels as a result of deformation at tensions which do not cause destruction. It was revealed the reason of this effect: different acceleration by mechanical tensions of dissolution of alloys separate components, that results in enrichment of surface by a chrome and nickel. It is instrumental in the improvement of protective properties of passive tapes. The analysis of results of the conducted researches allowed to set that corrosion endurance of stainless steels is determined by intensity of their electrochemical activating at tensions of even to corrosive fatigue limit. (authors)

  17. Electrochemical method for transferring graphene

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a method for separating a graphene-support layer laminate from a conducting substrate-graphene-support layer laminate, using a gentle, controllable electrochemical method. In this way, substrates which are fragile, expensive or difficult to manufacture can be used...... - and even re-used - without damage or destruction of the substrate or the graphene....

  18. Separator material for electrochemical cells

    Science.gov (United States)

    Cieslak, Wendy R.; Storz, Leonard J.

    1991-01-01

    An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  19. Electrochemical Reconstitution of Biomolecules for Applications as Electrocatalysts for the Bionanofuel Cell

    Science.gov (United States)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Watt, Gerald D.; Chu, Sang-Hyon; Park, Yeonjoon; Thibeault, Sheila

    2004-01-01

    Platinum-cored ferritins were synthesized as electrocatalysts by electrochemical biomineralization of immobilized apoferritin with platinum. The platinum cored ferritin was fabricated by exposing the immobilized apoferritin to platinum ions at a reduction potential. On the platinum-cored ferritin, oxygen is reduced to water with four protons and four electrons generated from the anode. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This results in a smaller catalyst loading of the electrodes for fuel cells or other electrochemical devices. In addition, the catalytic activity of the ferritin-stabilized platinum nanoparticles is enhanced by the large surface area and particle size phenomena. The work presented herein details the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritin with different inorganic cores, and the fabrication of self-assembled 2-D arrays with thiolated ferritin.

  20. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  1. Biochemical Sensors Using Carbon Nanotube Arrays

    Science.gov (United States)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Cassell, Alan M. (Inventor)

    2011-01-01

    Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes ("CNTs") is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.

  2. Fast photoresponse of zinc ferrite nanotube arrays fabricated by electrodeposition

    International Nuclear Information System (INIS)

    Although nano-sized zinc ferrite materials exhibit excellent visible light activity, their photoresponse characteristics as photodetectors have rarely been investigated. In this paper, zinc ferrite nanotube arrays were fabricated using electrodeposition with the aid of zinc oxide nanowire arrays as a template. These nanotube arrays showed tens of milliseconds-response photocurrents under the irradiation of a 532 nm solid-state laser, and the magnitudes of the photocurrents were linearly increased with increasing laser power. These features of ZnFe2O4 nanotube arrays revealed their potential applications in high-frequency or high-speed photodevices. (paper)

  3. High-sensitivity electrochemical enzyme-linked assay on a microfluidic interdigitated microelectrode

    OpenAIRE

    Chen, I-Jane; White, Ian M.

    2011-01-01

    A novel enzyme-linked DNA hybridization assay on an interdigitated array (IDA) microelectrode integrated into a microfluidic channel is demonstrated with sub-nM detection limit. To improve the detection limit as compared to conventional electrochemical biosensors, a recyclable redox product, 4-aminophenol (PAP) is used with an IDA microelectrode. The IDA has a modest and easily fabricated inter-digit spacing of 10 μm, yet we were able to demonstrate 97% recycling efficiency of PAP due to the ...

  4. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  5. Permutations of cubical arrays

    International Nuclear Information System (INIS)

    The structure constants of an algebra determine a cube called the cubical array associated with the algebra. The permuted indices of the cubical array associated with a finite semifield generate new division algebras. We do not not require that the algebra be finite and ask 'Is it possible to choose a basis for the algebra such any permutation of the indices of the structure constants leaves the algebra unchanged?' What are the associated algebras? Author shows that the property 'weakly quadratic' is invariant under all permutations of the indices of the corresponding cubical array and presents two algebras for which the cubical array is invariant under all permutations of the indices.

  6. Flexible retinal electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat (Albuquerque, NM); Wessendorf, Kurt O. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  7. Expandable LED array interconnect

    Science.gov (United States)

    Yuan, Thomas Cheng-Hsin; Keller, Bernd

    2011-03-01

    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  8. Engineering Fano resonances in discrete arrays

    International Nuclear Information System (INIS)

    We study transmission properties of discrete arrays composed of a linear waveguide coupled to a system of N side defect states. This simple system can be used to model discrete networks of coupled defect modes in photonic crystals, complex waveguide arrays in two-dimensional nonlinear lattices, and ring-resonator structures. We demonstrate the basic principles of the resonant scattering management through engineering Fano resonances and find exact results for the wave transmission coefficient. We reveal conditions for perfect reflections and transmissions due to either destructive or constructive interferences, and associate them with Fano resonances, also demonstrating how these resonances can be tuned by nonlinear defects

  9. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    Science.gov (United States)

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS). PMID:19441424

  10. Aligators for arrays

    OpenAIRE

    Henzinger, Thomas A.; Hottelier, Thibaud; Kovács, Laura; Rybalchenko, Andrey

    2010-01-01

    This paper presents Aligators, a tool for the generation of universally quantified array invariants. Aligators leverages recurrence solving and algebraic techniques to carry out inductive reasoning over array content. The Aligators’ loop extraction module allows treatment of multi-path loops by exploiting their commutativity and serializability properties. Our experience in applying Aligators on a collection of loops from open source software projects indicates the applicability of recurren...

  11. RFID array sensing

    OpenAIRE

    Capdevila Cascante, Santiago; Jofre Roca, Lluís; Romeu Robert, Jordi; Bolomey, J.Ch

    2010-01-01

    In this paper the use of RFID tags for the measurement of physical parameters in a distributed set of points is presented. Experimental results for two different scenarios are presented; the first uses a 2D RFID array to measure the field distribution of a radiating aperture, while the second detects the change in the close environment of an array of RFID tags to determine the water level of a container.

  12. Microphone arrays fundamentals

    OpenAIRE

    Embrechts, Jean-Jacques

    2011-01-01

    Microphone arrays are essentially directional sensors. They are therefore mainly used for locating, identifying, isolating, measuring and recording individual sound sources. The main principles governing the directivity of microphone arrays are reviewed: phase differences between signals create constructive and destructive interferences, depending on the direction of the sound source. Moreover, signal processing is applied to provide “beamforming”, i.e. beam shaping and steering. Contrary to ...

  13. Broadband-antireflective hybrid nanopillar array for photovoltaic application

    International Nuclear Information System (INIS)

    Subwavelength structures such as nanopillars, nanoholes, and nanodomes have recently attracted considerable attention as antireflective structures for solar cells. Recent studies on the optical property of nanopillar array revealed that the reflection minimum is related to the diameter, the pitch, and the height of nanopillars. Here, we investigate the “hybrid” nanopillar array, which is composed of different diameters of nanopillars. Finite differential time domain simulations revealed that the photogeneration in a hybrid nanopillar array is spatially heterogeneous: carriers are generated mainly in the narrower pillars for short-wavelength incident light and in the thicker pillars for long-wavelength light, respectively. Hybrid silicon nanopillar arrays fabricated by using electron beam lithography and dry etching show excellent broadband antireflection property. Hybrid nanopillar array is thus highly promising for next-generation antireflection for photovoltaic applications

  14. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    Science.gov (United States)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-02-01

    Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.

  15. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    DEFF Research Database (Denmark)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.;

    2012-01-01

    Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion...... potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1wt% NaCl solution at pH 2.8 were...... susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion...

  16. Electrochemical properties of mixed WC and Pt-black powders

    Directory of Open Access Journals (Sweden)

    MAJA D. OBRADOVIC

    2008-12-01

    Full Text Available The electrochemical characteristics of a mixture of Pt-black and WC powders and its catalytic activity for methanol and formic acid oxidation were investigated in acid solution. XRD and AFM measurements revealed that the WC powder employed for the investigation was a single-phase material consisting of crystallites/spherical particles of average size of about 50 nm, which were agglomerated into much larger particles. Cyclic voltammetry showed that the WC underwent electrochemical oxidation, producing tungstate species. In the case of the mixed Pt + WC powders, the tungstate species were deposited on the Pt as a thin film of hydrous tungsten oxide. Enhanced hydrogen intercalation in the hydrous tungsten oxide was observed and it was proposed to be promoted in mixed powders by the presence of hydrogen adatoms on bare Pt sites. The determination of Pt surface area in the Pt + WC layer by stripping of underpotentially deposited Cu revealed that the entire Pt surface was accessible for underpotential deposition of Cu. Investigation of the electrochemical oxidation of methanol and formic acid on Pt + WC and pure Pt layers did not indicate electrocatalytic promotion due to the presence of WC.

  17. Bio-inspired materials for electrochemical devices

    Science.gov (United States)

    Pawlicka, A.; Firmino, A.; Sentanin, F.; Sabadini, R. C.; Jimenez, D. E. Q.; Jayme, C. C.; Mindroiu, M.; Zgarian, R. G.; Tihan, G. T.; Rau, I.; Silva, M. M.; Nogueira, A. F.; Kanicki, J.; Kajzar, F.

    2015-10-01

    Natural macromolecules are very promising row materials to be used in modern technology including security and defense. They are abundant in nature, easy to extract and possess biocompatibility and biodegradability properties. These materials can be modified throughout chemical or physical processes, and can be doped with lithium and rare earth salts, ionic liquids, organic and inorganic acids. In this communication samples of DNA and modified DNA were doped with Prussian Blue (PB), poly(ethylene dioxythiophene) (PEDOT), europium and erbium triflate and organic dyes such as Nile Blue (NB), Disperse Red 1 (DR1) and Disperse Orange 3 (DO3). The colored or colorless membranes were characterized by electrochemical and spectroscopic measurements, and they were applied in electrochromic devices (ECDs) and dye sensitized solar cells (DSSC). ECDs change the color under applied potential, so they can modulate the intensity of transmitted light of 15 to 35%. As the electrochromic materials, WO3 or Prussian blue (PB), are usually blue colored, the color change is from transparent to blue. DNA, and the complexes: DNA-CTMA, DNA-DODA and DNAPEDOT: PSS were also investigated as either hole carrier material (HTM) or polymer electrolyte in dye-sensitized solar cells (DSSC). The DNA-based samples as HTM in small DSSCs revealed a solar energy conversion efficiency of 0.56%. Polymer electrolytes of DNA-CTMA and DNA-DODA, both with 10 wt% of LiI/I2, applied in small DSSC, exhibited the efficiencies of 0.18 and 0.66%, respectively. The obtained results show that natural macromolecules-based membranes are not only environmentally friendly but are also promising materials to be investigated for several electrochemical devices. However, to obtain better performances more research is still needed.

  18. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp2-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  19. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells.

    Science.gov (United States)

    Shashaani, Hani; Faramarzpour, Mahsa; Hassanpour, Morteza; Namdar, Nasser; Alikhani, Alireza; Abdolahad, Mohammad

    2016-11-15

    Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results. PMID:27196254

  20. Electrochemical detection of single molecules.

    Science.gov (United States)

    Fan, F R; Bard, A J

    1995-02-10

    The electrochemical behavior of a single molecule can be observed by trapping a small volume of a dilute solution of the electroactive species between an ultramicroelectrode tip with a diameter of approximately 15 nanometers and a conductive substrate. A scanning electrochemical microscope was used to adjust the tip-substrate distance ( approximately 10 nanometers), and the oxidation of [(trimethylammonio)methyl] ferrocene (Cp(2)FeTMA(+)) to Cp(2)FeTMA(2+) was carried out. The response was stochastic, and anodic current peaks were observed as the molecule moved into and out of the electrode-substrate gap. Similar experiments were performed with a solution containing two redox species, ferrocene carboxylate (Cp(2)FeCOO(-)) and Os(bpy)(3)(2+) (bpy is 2,2'-bipyridyl). PMID:17813918

  1. Electrochemical sensing carcinogens in beverages

    CERN Document Server

    Zia, Asif Iqbal

    2016-01-01

    This book describes a robust, low-cost electrochemical sensing system that is able to detect hormones and phthalates – the most ubiquitous endocrine disruptor compounds – in beverages and is sufficiently flexible to be readily coupled with any existing chemical or biochemical sensing system. A novel type of silicon substrate-based smart interdigital transducer, developed using MEMS semiconductor fabrication technology, is employed in conjunction with electrochemical impedance spectroscopy to allow real-time detection and analysis. Furthermore, the presented interdigital capacitive sensor design offers a sufficient penetration depth of the fringing electric field to permit bulk sample testing. The authors address all aspects of the development of the system and fully explain its benefits. The book will be of wide interest to engineers, scientists, and researchers working in the fields of physical electrochemistry and biochemistry at the undergraduate, postgraduate, and research levels. It will also be high...

  2. Electrochemical promotion of catalytic reactions

    Science.gov (United States)

    Imbihl, R.

    2010-05-01

    The electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became feasible through the use of porous metal electrodes interfaced to a solid electrolyte. With the O 2- conducting yttrium stabilized zirconia (YSZ), the Na + conducting β″-Al 2O 3 (β-alumina), and several other types of solid electrolytes the EPOC effect has been demonstrated for about 100 reaction systems in studies conducted mainly in the mbar range. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of oxygen and alkali metal, respectively, onto the surface of the metal electrodes. For the catalytic promotion effect general concepts and mechanistic schemes were proposed but these concepts and schemes are largely speculative. Applying surface analytical tools to EPOC systems the proposed mechanistic schemes can be verified or invalidated. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

  3. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    1996-10-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories.

  4. Electrochemical micromachining of passive electrodes

    International Nuclear Information System (INIS)

    The electronic model describing the electrochemical micromachining (ECMM) of passive electrodes utilizing the transpassive dissolution is discussed. Numerical simulations are performed on a machining model circuit using measured electrochemical properties of the model system which consisted of a tungsten tool electrode, a 1 M H2SO4 electrolyte and a stainless steel work piece electrode. The results of these simulations were verified by performing machining experiments applying the same model system. For a passive stainless steel electrode it is shown that it can be treated like an actively dissolving electrode with high reaction overpotential. The efficiency of the machining process can be enhanced by polarizing the steel work piece electrode close to the transpassive potential region. Three different ways of achieving this polarization are discussed: by polarizing the work piece electrode only, by polarizing both electrodes and by adding oxidizing species to the electrolyte solution

  5. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  6. Electrochemical oxidation of tamoxifen revisited

    OpenAIRE

    Garrido, Jorge; Quezada, E.; Fajín, J. L. C.; Cordeiro, M. Natália S.; Garrido, E. Manuela; Borges, Fernanda

    2013-01-01

    Tamoxifen is a selective estrogen receptor modulator that is used as an adjuvant and/or chemotherapeutic agent for the treatment of all stages of hormone-dependent breast cancer. Currently there is a deep interest in the study of tamoxifen biotransformation and identification of metabolites since they can significantly contribute to the overall pharmacological or adverse effects of the drug. Accordingly, the study of the electrochemical behavior of tamoxifen in aqueous solution is reported. T...

  7. Electrochemical Design of Optical Nanoantennas

    Directory of Open Access Journals (Sweden)

    Vasilchenko V.E.

    2015-01-01

    Full Text Available Electrochemical techniques for fabricating tapered gold nanoantennas (tips are discussed. In the paper, the tunable design of nanoantennas is demonstrated. Tip parameters such as a tip apex curvature, mesoscopic morphology, aspect ratio and enhancement factor can be varied with etching electrolyte and applied voltage. The low-cost method makes tipehnahced optical spectroscopy and microscopy feasible for routine optical measurements beyond the diffraction limit.

  8. Electrochemical Depositions in Ionic Liquids

    OpenAIRE

    De Vreese, Peter

    2013-01-01

    In this PhD thesis, several aspects of the electrodeposition of metals and alloys in ionic liquids were investigated. First, the deposition of brass from choline acetate was studied. Secondly, the electrodeposition of pure molybdenum from ionic liquids based on phosphonium chloride and zinc chloride was treated. In each case, the influence of water, either as a main constituent of the electrolyte or an impurity, was investigated. When comparing electrochemical processes such as electrodeposit...

  9. Electrochemical analysis of nucleic acids

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Fojta, Miroslav; Jelen, František; Vetterl, Vladimír

    Weinheim : WileyVCH, 2002 - (Bard, A.; Stratmann, M.; Wilson, G.), s. 365-429 ISBN 3-527-30401-0 R&D Projects: GA ČR GV204/97/K084; GA AV ČR IBS5004107; GA AV ČR IAA4004901; GA AV ČR IAA4004002 Institutional research plan: CEZ:AV0Z5004920 Keywords : nucleic acid s * electrochemical analysis * DNA biosensors Subject RIV: BO - Biophysics

  10. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Yang QuanMin; Li Jun; Zhitomirsky Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  11. Supercapacitors and electrochemical pulse sources

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, R.A. [Christian-Albrechts-Universitaet zu Kiel, Kaiserstrasse 2, D-24143 Kiel (Germany)

    2000-10-01

    Although often thought of as an area of low technology that is stagnant and uninteresting in the past, the use of electrochemical cells for energy storage and conversion purposes has received greatly increased attention recently. There are two general directions of interest. One is the long term goal of the development of electrical propulsion for vehicles, and the other is the rapid growth of portable electronic devices that require power sources with maximum energy content and the lowest possible size and weight. Most of the activities have been aimed at the development of electrochemical cells that are optimized toward either maximum specific energy or energy density. On the other hand, some of the current applications require electrical energy at high power levels for short times. These include very short pulses for digital electronic devices, the somewhat longer power pulse demands of some implantable medical devices, and the much larger transient power needs in connection with vehicle traction. Several mechanisms can be used to provide short term energy, and they have fundamentally different characteristics, and thus are potentially applicable to different types of transient output requirements. Some of these provide behavior that is analogous to an electrical capacitor, whereas others have more the character of batteries. The several electrochemical methods that can be used to evaluate the critical materials parameters in materials that might be applicable to such applications are discussed, as well as the use of LaPlace transform methods to convert information about the physical mechanisms and parameters of individual components into the dynamic response of an electrochemical system.

  12. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  13. Exfoliated graphite-ruthenium oxide composite electrodes for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sagar; Lokesh, K.S.; Sampath, S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 (India)

    2008-12-01

    The performance of exfoliated graphite (EG)-ruthenium oxide (RuO{sub x}) composites as binderless electrodes is evaluated for electrochemical capacitors (ECs). A composite of EG-RuO{sub x} is prepared by a modified sol-gel process. The material is characterized using X-ray diffraction and microscopy. Electrochemical capacitors with the composite electrodes in the presence of aqueous sulfuric acid (H{sub 2}SO{sub 4}) electrolyte are evaluated using voltammetry, impedance and charge-discharge studies. Cyclic voltammetry reveals very stable current-voltage behaviour up to several thousands of cycles, as well as high specific capacitances, e.g., a few hundreds of farads per gram for the composite that contains 16.5 wt.% RuO{sub x}. (author)

  14. Exfoliated graphite-ruthenium oxide composite electrodes for electrochemical supercapacitors

    Science.gov (United States)

    Mitra, Sagar; Lokesh, K. S.; Sampath, S.

    The performance of exfoliated graphite (EG)-ruthenium oxide (RuO x) composites as binderless electrodes is evaluated for electrochemical capacitors (ECs). A composite of EG-RuO x is prepared by a modified sol-gel process. The material is characterized using X-ray diffraction and microscopy. Electrochemical capacitors with the composite electrodes in the presence of aqueous sulfuric acid (H 2SO 4) electrolyte are evaluated using voltammetry, impedance and charge-discharge studies. Cyclic voltammetry reveals very stable current-voltage behaviour up to several thousands of cycles, as well as high specific capacitances, e.g., a few hundreds of farads per gram for the composite that contains 16.5 wt.% RuO x.

  15. An electrochemical noise study of tribo-corrosion processes of AISI 304L in Cl- and SO42- media

    International Nuclear Information System (INIS)

    The spectral analysis method of the electrochemical noise has been performed during pin-on-disc friction tests, in which an aluminium oxide pin having a spheric extremity rubbing on a AISI 304L stainless steel disc, in aqueous Cl- and SO42- medium, and submitted or not to an imposed electrochemical polarization. The power spectral densities (PSD) of the free potential and those of the imposed polarization current as well as the normal and tangential forces fluctuations have been analyzed and compared. At frequencies superior to 0.1 Hz, the electrochemical signal PSD seems to mainly depend of the kinetics of the electrochemical phenomena (dissolution, passivation). The PSD signals reveal that the electrochemical phenomena (passivation, re-passivation) inducing the noise are not sensibly affected by an increase of the normal force, but are activated by an increase of the pin rotation velocity. (O.M.)

  16. High damage tolerance of electrochemically lithiated silicon.

    Science.gov (United States)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro-chemo-mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  17. High damage tolerance of electrochemically lithiated silicon

    Science.gov (United States)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro-chemo-mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries.

  18. Optimizing Chemical Sensor Array Sizes

    International Nuclear Information System (INIS)

    Optimal selection of array sensors for a chemical sensing application is a nontrivial task. It is commonly believed that ''more is better'' when choosing the number of sensors required to achieve good chemical selectivity. However, cost and system complexity issues point towards the choice of small arrays. A quantitative array optimization is carried out to explore the selectivity of arrays of partially-selective chemical sensors as a function of array size. It is shown that modest numbers (dozens) of target analytes are completely distinguished with a range of arrays sizes. However, the array selectivity and the robustness against sensor sensitivity variability are significantly degraded if the array size is increased above a certain number of sensors, so that relatively small arrays provide the best performance. The results also suggest that data analyses for very large arrays of partially-selective sensors will be optimized by separately anal yzing small sensor subsets

  19. Biologically Derived Nanoparticle Arrays via a Site-Specific Reconstitution of Ferritin and their Electrochemistry

    Science.gov (United States)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Elliott, James R.; Chu, Sang-Hyon; Park, Yeonjoon; Watt, Gerald D.

    2004-01-01

    Nanoparticle arrays biologically derived from an electrochemically-controlled site-specific biomineralization were fabricated on a gold substrate through the immobilization process of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, the fabrication of self-assembled arrays with the immobilized ferritin, and the electrochemical characterization of various core materials. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of electrochemical site-specific biomineralization with a protein cage loads ferritins with different core materials such as Pt, Co, Mn, and Ni. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. The nano-sized metalcored ferritins on a gold substrate displayed a good electrochemical activity for the electron transport and storage, which is suitable for bioelectronics applications such as biofuel cell, bionanobattery, biosensors, etc. Keywords: Ferritin, immobilization, site-specific reconstitution, biomineralization, and bioelectronics

  20. Imaging antenna arrays

    Science.gov (United States)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  1. Stretchable Micro-Electrode Array

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, M; Hamilton, J; Polla, D; Rose, K; Wilson, T; Krulevitch, P

    2002-03-08

    This paper focuses on the design consideration, fabrication processes and preliminary testing of the stretchable micro-electrode array. We are developing an implantable, stretchable micro-electrode array using polymer-based microfabrication techniques. The device will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces and electroplated electrodes. The metal features are embedded within a thin ({approx}50 micron) substrate fabricated using poly (dimethylsiloxane) (PDMS), a biocompatible elastomeric material that has very low water permeability. The conformable nature of PDMS is critical for ensuring uniform contact with the curved surface of the retina. To fabricate the device, we developed unique processes for metalizing PDMS to produce robust traces capable of maintaining conductivity when stretched (5%, SD 1.5), and for selectively passivating the conductive elements. An in situ measurement of residual strain in the PDMS during curing reveals a tensile strain of 10%, explaining the stretchable nature of the thin metalized devices.

  2. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  3. Fabrication of Micro Components by Electrochemical Deposition

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    The main issue of this thesis is the combination of electrochemical deposition of metals and micro machining. Processes for electroplating and electroless plating of nickel and nickel alloys have been developed and optimised for compatibility with microelectronics and silicon based micromechanics...... of electrochemical machining and traditional machining is compared to micro machining techniques as performed in the field of microelectronics. Various practical solutions and equipment for electrochemical deposition of micro components are demonstrated, as well as the use and experience obtained...

  4. FEL phased array configurations

    Science.gov (United States)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  5. Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Hansen, Rasmus;

    2015-01-01

    In this work we present high-aspect ratio carbon pillars (1.4 μm in diameter and ∼11 μm in height) on top of interdigitated electrode arrays to be used for electrochemical applications. For this purpose, different types of 2D and 3D pyrolysed carbon structures were fabricated and characterised...... including surface- and microstructure, electrical and electrochemical properties. A pre-treatment of oxidised Si wafers is introduced to eliminate electrode delamination and ensure structure stability in water during long time-experiments. Additionally, a heat treatment method is reported for regeneration...

  6. Atacama Compact Array Antennas

    OpenAIRE

    Saito, Masao; Inatani, Junji; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high...

  7. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  8. Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots

    Directory of Open Access Journals (Sweden)

    Song Yang

    2006-01-01

    Full Text Available We developed a quality assurance (QA tool, namely microarray outlier filter (MOF, and have applied it to our microarray datasets for the identification of problematic arrays. Our approach is based on the comparison of the arrays using the correlation coefficient and the number of outlier spots generated on each array to reveal outlier arrays. For a human universal reference (HUR dataset, which is used as a technical control in our standard hybridization procedure, 3 outlier arrays were identified out of 35 experiments. For a human blood dataset, 12 outlier arrays were identified from 185 experiments. In general, arrays from human blood samples displayed greater variation in their gene expression profiles than arrays from HUR samples. As a result, MOF identified two distinct patterns in the occurrence of outlier arrays. These results demonstrate that this methodology is a valuable QA practice to identify questionable microarray data prior to downstream analysis.

  9. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    Science.gov (United States)

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-01

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing. PMID:25805000

  10. Dendritic Heterojunction Nanowire Arrays for High-Performance Supercapacitors

    OpenAIRE

    Rujia Zou; Zhenyu Zhang; Muk Fung Yuen; Junqing Hu; Chun-Sing Lee; Wenjun Zhang

    2015-01-01

    Herein, we designed and synthesized for the first time a series of 3D dendritic heterojunction arrays on Ni foam substrates, with NiCo2S4 nanowires as cores and NiCo2O4, NiO, Co3O4, and MnO2 nanowires as branches, and studied systematically their electrochemical performance in comparison with their counterparts in core/shell structure. Attributed to the following reasons: (1) both core and branch are pseudocapacitively active materials, (2) the special dendritic structure with considerable in...

  11. Nanowire sensors and arrays for chemical/biomolecule detection

    Science.gov (United States)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  12. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    International Nuclear Information System (INIS)

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated

  13. Anderson localization in metallic nanoparticle arrays

    Science.gov (United States)

    Mai, Zhijie; Lin, Fang; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao

    2016-06-01

    Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength.

  14. Anderson localization in metallic nanoparticle arrays

    CERN Document Server

    Mai, Zhijie; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao

    2016-01-01

    Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength.

  15. Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Pil Ho, E-mail: pilho.huh@samsung.com [Samsung Electronics Co., Ltd. Nongseo-Dong, Giheung-Gu, Yongin-City, Gyeonggi-Do 446-711 (Korea, Republic of); Kim, Myunghwan [Samsung Electronics Co., Ltd. Nongseo-Dong, Giheung-Gu, Yongin-City, Gyeonggi-Do 446-711 (Korea, Republic of); Kim, Seong-Cheol, E-mail: sckim07@ynu.ac.kr [School of Textiles, Yeungnam University, Gyeungsan Gyeungbuk 712-749 (Korea, Republic of)

    2012-07-01

    Hybrid 1D nanostructured Au/ZnO arrays were created by heat treatment of a spin-coated zinc acetate-PVA-Au(III) layer on surface relief grating and functioned as an electrochemical and optical D(+)-glucose sensor due to electrochemical oxidation between hybrid nanostructures and D(+)-glucose. The morphology and chemical composition of 1D Au/ZnO hybrid arrays were characterized by means of AFM, SEM, EDAX, and XPS. Electrochemical and optical sensitivities by the addition of D(+)-glucoses on 1D Au/ZnO arrays were investigated using Cyclic voltammetry and UV-vis-NIR spectra in the medical concentration ranges of 0.5, 2.0, and 8.0 mM. - Highlights: Black-Right-Pointing-Pointer Zinc acetate-PVA-Au(III) composites were prepared by simply mixing zinc acetate-PVA and gold(III) chloride trihydrate. Black-Right-Pointing-Pointer Hybrid 1D nanostructured Au/ZnO arrays were easily fabricated using surface relief gratings without additional process steps. Black-Right-Pointing-Pointer Redox and optical sensor to detect D(+)-glucoses.

  16. Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays

    International Nuclear Information System (INIS)

    Hybrid 1D nanostructured Au/ZnO arrays were created by heat treatment of a spin-coated zinc acetate-PVA-Au(III) layer on surface relief grating and functioned as an electrochemical and optical D(+)-glucose sensor due to electrochemical oxidation between hybrid nanostructures and D(+)-glucose. The morphology and chemical composition of 1D Au/ZnO hybrid arrays were characterized by means of AFM, SEM, EDAX, and XPS. Electrochemical and optical sensitivities by the addition of D(+)-glucoses on 1D Au/ZnO arrays were investigated using Cyclic voltammetry and UV–vis-NIR spectra in the medical concentration ranges of 0.5, 2.0, and 8.0 mM. - Highlights: ► Zinc acetate-PVA-Au(III) composites were prepared by simply mixing zinc acetate-PVA and gold(III) chloride trihydrate. ► Hybrid 1D nanostructured Au/ZnO arrays were easily fabricated using surface relief gratings without additional process steps. ► Redox and optical sensor to detect D(+)-glucoses.

  17. Orientation selectivity in a multi-gated organic electrochemical transistor

    Science.gov (United States)

    Gkoupidenis, Paschalis; Koutsouras, Dimitrios A.; Lonjaret, Thomas; Fairfield, Jessamyn A.; Malliaras, George G.

    2016-06-01

    Neuromorphic devices offer promising computational paradigms that transcend the limitations of conventional technologies. A prominent example, inspired by the workings of the brain, is spatiotemporal information processing. Here we demonstrate orientation selectivity, a spatiotemporal processing function of the visual cortex, using a poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) organic electrochemical transistor with multiple gates. Spatially distributed inputs on a gate electrode array are found to correlate with the output of the transistor, leading to the ability to discriminate between different stimuli orientations. The demonstration of spatiotemporal processing in an organic electronic device paves the way for neuromorphic devices with new form factors and a facile interface with biology.

  18. High-frequency synthetic ultrasound array incorporating an actuator

    Science.gov (United States)

    Ritter, Timothy A.; Shrout, Thomas R.; Shung, K. Kirk

    2001-05-01

    Ultrasound imaging at frequencies above 20 MHz relies almost exclusively on single-element transducers. IN order to apply array technology at these frequencies, several practical problems must be solved, including spatial scale and fabrication limitations, low device capacitance, and lack of a hardware beamformer. One method of circumventing these problems is to combine an array, an actuator, and a synthetic aperture software beamformer. The array can use relatively wide elements spaced on a coarse pitch. The actuator is used to move the array in short steps (less than the element pitch), and pulse-echo data is acquired at intermediate sample positions. The synthetic aperture beamformer reconstructs the image from the pulse-echo data. A 50 MHz example is analyzed in detail. Estimates of signal-to-noise reveal performance comparable to a standard phased array; furthermore, the actuated array requires half the number of elements, the elements are 8x wider, and only one channel is required. Simulated three-dimensional point spread functions demonstrate side lobe levels approaching - 40dB and main beam widths of 50 to 100 microns. A 50 MHz piezo-composite array design has been tested which displays experimental bandwidth of 70% while maintaining high sensitivity. Individual composite sub-elements are 18 microns wide. Once this array is integrated with a suitable actuator, it is anticipated that a tractable method of imaging with high frequency arrays will result.

  19. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    Directory of Open Access Journals (Sweden)

    Katarzyna Grochowska

    2014-11-01

    Full Text Available A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs which have a size distribution (80 ± 42 nm and self-organization characterized by a short-distance order (length scale ≈140 nm. For the NP shapes produced, an observably broader tuning range (of about 150 nm of the surface plasmon resonance (SPR band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability.

  20. Tangent hyperbolic circular frequency diverse array radars

    OpenAIRE

    Sarah Saeed; Ijaz Mansoor Qureshi; Waseem Khan; Ayesha Salman

    2016-01-01

    Frequency diverse array (FDA) with uniform frequency offset (UFO) has been in spot light of research for past few years. Not much attention has been devoted to non-UFOs in FDA. This study investigates tangent hyperbolic (TH) function for frequency offset selection scheme in circular FDAs (CFDAs). Investigation reveals a three-dimensional single-maximum beampattern, which promises to enhance system detection capability and signal-to-interference plus noise ratio. Furthermore, by utilising the ...

  1. From single dots to interacting arrays

    OpenAIRE

    Gudmundsson, Vidar; Manolescu, Andrei; Krahne, Roman; Heitmann, Detlef

    2001-01-01

    We explore the structural changes in charge the density and the electron configuration of quantum dots caused by the presence of other dots in an array, and the interaction of neighboring dots. We discuss what recent measurements and calculation of the far-infrared absorption reveal about almost isolated quantum dots and investigate some aspects of the complex transition from isolated dots to dots with strongly overlapping electron density. We also address the the effects on the magnetization...

  2. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.

    Science.gov (United States)

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  3. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  4. Morphological and electrochemical cycling effects in MnO2 nanostructures by 3D electron tomography

    KAUST Repository

    Chen, Wei

    2014-02-12

    In this study, MnO2 nanostructures with well-controlled morphology and crystal phase are successfully prepared by chemical synthesis, and characterized by three-dimensional electron tomography for use as supercapacitor electrode materials. The growth process of the various MnO 2 nanostructures is revealed in detail, and correlated to their electrochemical performance as supercapacitor materials. The specific capacitance of MnO2 electrodes is found to be strongly correlated with the inner morphology and crystal phase of the MnO2 nanostructures. Furthermore, it is demonstrated that the increased capacity with electrochemical cycling of the materials is due to the formation of defective regions embedded in the MnO2 nanostructures; these regions form during electrochemical cycling of the electrodes, resulting in increased porosity, surface area, and consequently, increased electrochemical capacity. The preparation, characterization and supercapacitor application of MnO 2 nanostructures by 3D electron tomography are studied. The electrochemical performance of MnO2 is correlated to its surface area, determined by the morphological effect, as well as the cycling effect, determined by the formation of defective regions on the nanostructures during electrochemical cycling tests. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    International Nuclear Information System (INIS)

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene

  6. Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery

    International Nuclear Information System (INIS)

    Highlights: • MnO2 is recovered from spent zinc–carbon batteries as nanoflowers structure. • Recovered MnO2 nanoflowers show high specific capacitance. • Recovered MnO2 nanoflowers show stable electrochemical cycling up to 900 cycles. • Recovered MnO2 nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO2 nanoflowers recovered from spent household zinc–carbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO2 nanoflowers are recovered from spent zinc–carbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO2 nanoflowers as energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO2 in birnessite phase, while electron microscopy analysis shows the MnO2 is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO2 nanoflowers exhibit high specific capacitance (294 F g−1 at 10 mV s−1; 208.5 F g−1 at 0.1 A g−1) in 1 M Na2SO4 electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO2 nanoflowers recovered from spent zinc–carbon battery in the development of high performance energy storage supercapacitor system

  7. Enhanced photoelectrochemical water splitting from Si quantum dots/TiO{sub 2} nanotube arrays composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong [Department of Materials Science, Fudan University, Shanghai 200433 (China); Cui, Xiaoli, E-mail: xiaolicui@fudan.edu.cn [Department of Materials Science, Fudan University, Shanghai 200433 (China); Hao, Hongchen; Lu, Ming [Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433 (China); Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2015-06-15

    Graphical abstract: Si quantum dots were firstly applied to modify TiO{sub 2} nanotubes and enhanced visible light response was demonstrated for the resulted Si QDs/TiO{sub 2} nanocomposite. Si QDs are promising in photoelectrochemical water splitting and photocatalysis since their low cost, abundance and environmentally-friendliness. - Highlights: • A novel nanocomposite Si QDs/TiO{sub 2} nanotubes was fabricated and characterized. • Enhanced photoelectrochemical water splitting was firstly demonstrated for Si QDs/TiO{sub 2}. • The visible light response of TiO{sub 2} increased with the presence of Si QDs. - Abstract: This work firstly introduced Si quantum dots (QDs) to modify TiO{sub 2} nanotube arrays for photoelectrochemical water splitting. A systematic study using surface and optical characterization tools reveals the nature of the combination of Si QDs and TiO{sub 2} nanotube arrays. Scanning electron microscopy and X-ray photoelectron spectroscopy results show that Si QDs were assembled on the surface of vertically aligned TiO{sub 2} nanotube arrays. The UV–vis diffuse reflectance spectra indicate the improved visible light absorbance. The enhanced photoelectrochemical water splitting was demonstrated under visible light illumination and the photocurrent density was 1.6 times larger than that of pristine TiO{sub 2} electrodes. Electrochemical impedance behavior was measured for the electrodes and the impedance is slightly reduced for the nanocomposite electrode with the presence of Si QDs. This work demonstrated that Si QDs would be a novel and effective choice for improving the utilization of visible light for TiO{sub 2} nanotubes.

  8. Array processors in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  9. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  10. Detector array and method

    International Nuclear Information System (INIS)

    A detector array and method are described in which sets of electrode elements are provided. Each set consists of a number of linear extending parallel electrodes. The sets of electrode elements are disposed at an angle (preferably orthogonal) with respect to one another so that the individual elements intersect and overlap individual elements of the other sets. Electrical insulation is provided between the overlapping elements. The detector array is exposed to a source of charged particles which in accordance with one embodiment comprise electrons derived from a microchannel array plate exposed to photons. Amplifier and discriminator means are provided for each individual electrode element. Detection means are provided to sense pulses on individual electrode elements in the sets, with coincidence of pulses on individual intersecting electrode elements being indicative of charged particle impact at the intersection of the elements. Electronic readout means provide an indication of coincident events and the location where the charged particle or particles impacted. Display means are provided for generating appropriate displays representative of the intensity and locaton of charged particles impacting on the detector array

  11. The Murchison Widefield Array

    NARCIS (Netherlands)

    Mitchell, Daniel A.; Greenhill, Lincoln J.; Ord, Stephen M.; Bernardi, Gianni

    2010-01-01

    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imagin

  12. Cantilever array sensors

    Directory of Open Access Journals (Sweden)

    Hans Peter Lang

    2005-04-01

    Full Text Available Miniaturized microfabricated sensors have enormous potential in gas detection, biochemical analysis, medical applications, quality and process control, and product authenticity issues. Here, we highlight an ultrasensitive mechanical way of converting (bio-chemical or physical processes into a recordable signal using microfabricated cantilever arrays.

  13. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag2+, Co3+, or Fe3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  14. OPTIMIZATION OF ELECTROCHEMICAL MACHINING PROCESS PARAMETERS USING TAGUCHI APPROACH

    Directory of Open Access Journals (Sweden)

    R.Goswami

    2013-05-01

    Full Text Available this research paper, Taguchi method is applied to find optimum process parameters for Electrochemical machining (ECM. The objective of experimental investigation is to conduct research of machining parameters impact on MRR and SR of work piece of Aluminum and Mild steel . The approach was based on Taguchi’s method, analysis of variance and signal to noise ratio (S/N Ratio to optimize the Electrochemical machining process parameters for effective machining and to predict the optimal choice for each ECM parameter such asvoltage, tool feed and current. In this research three level of parameter is considered for experiment. There is L9 orthogonal array used by varying A,B,C respectively and for each combination we have conducted three experiments and with the help of Signal to Noise ratio we find out the optimum results for ECM. It was confirmed that determined optimal combination of ECM process parameters satisfy the real need for machining of Aluminum and Mild steel in actual practice.

  15. PARAMETRIC OPTIMIZATION IN ELECTROCHEMICAL MACHINING USING UTILITY BASED TAGUCHI METHOD

    Directory of Open Access Journals (Sweden)

    SADINENI RAMA RAO

    2015-01-01

    Full Text Available The present work deals the application of Taguchi method with utility concept to optimize the machining parameters with multiple characteristics in electrochemical machining (ECM of Al/B4C composites. L27 orthogonal array was chosen for the experiments. METATECH ECM setup is used to conduct the experiments. The ECM machining parameters namely applied voltage, electrolyte concentration, electrode feed rate and percentage of reinforcement are optimized based on multiple responses, i.e., material removal rate, surface roughness and radial over cut. The optimum machining parameters are calculated by using utility concept and results are compared with ANOVA. The results show that the feed rate is the most influencing parameter which affects the multiple machining characteristics simultaneously. The optimum parametric combination to maximize the material removal rate and to minimize surface roughness and radial over cut simultaneously are, applied voltage 16 V, feed rate 1.0 mm/min, electrolyte concentration 30 g/L and reinforcement content 5 wt%. Experimental results show that the responses in electrochemical machining process can be improved through this approach.

  16. Modeling steady-state experiments with a scanning electrochemical microscope involving several independent diffusing species using the boundary element method.

    Science.gov (United States)

    Sklyar, Oleg; Träuble, Markus; Zhao, Chuan; Wittstock, Gunther

    2006-08-17

    The BEM algorithm developed earlier for steady-state experiments in the scanning electrochemical microscopy (SECM) feedback mode has been expanded to allow for the treatment of more than one independently diffusing species. This allows the treatment of substrate-generation/tip-collection SECM experiments. The simulations revealed the interrelation of sample layout, local kinetics, imaging conditions, and the quality of the obtained SECM images. Resolution in the SECM SG/TC images has been evaluated, and it depends on several factors. For most practical situations, the resolution is limited by the diffusion profiles of the sample. When a dissolved compound is converted at the sample (e.g., oxygen reduction or enzymatic reaction at the sample), the working distance should be significantly larger than in SECM feedback experiments (ca. 3 r(T) for RG = 5) in order to avoid diffusional shielding of the active regions on the sample by the UME body. The resolution ability also depends on the kinetics of the active regions. The best resolution can be expected if all the active regions cause the same flux. In one simulated example, which might mimic a possible scenario of a low-density protein array, considerable compromises in the resolving power, were noted when the flux from two neighboring spots differs by more than a factor of 2. PMID:16898739

  17. Electrochemical approaches for chemical and biological analysis on Mars

    Science.gov (United States)

    Kounaves, Samuel P.

    2003-01-01

    Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and

  18. Electrochemical aspects of ionic liquids

    CERN Document Server

    Ohno, Hiroyuki

    2011-01-01

    The second edition is based on the original book, which has been revised, updated and expanded in order to cover the latest information on this rapidly growing field. The book begins with a description of general and electrochemical properties of ionic liquids and continues with a discussion of applications in biochemistry, ionic devices, functional design and polymeric ionic liquids. The new edition includes new chapters on Li ion Batteries and Actuators, as well as a revision of existing chapters to include a discussion on purification and the effects of impurities, adsorption of ionic liqui

  19. Electrochemical study of neodymium amalgams

    International Nuclear Information System (INIS)

    The electrochemical investigation of neodymium amalgam is performed using t the method of voltampere curves, constant potential coulometry, galvanostatic an potentiostatic methods. The experiments were conducted in a thermostatic electr rolyzer with isolated anode- and cathode spaces. A platinum plate served as a cathode, neodymium amalgam of 1.4 cm2 area served as an anode. A strong irrev versiblility of the anode oxidation process of neodymium amalgam was found. The solubility and diffusion coefficient of neodymium atoms in mercury were determin ned

  20. Hydrogen amalgam in electrochemical systems

    International Nuclear Information System (INIS)

    Hydrogen amalgam is a potential-defining component of many amalgam electrochemical systems. Hydrogen amalgam can be prepared during electrolysis of acid aqueous solutions with a mercury cathode, during anodic oxidation of alkali metal hydride amalgams and thermal decomposition of ammonium amalgam. Possible ways of atomic hydrogen removal from the surface of a mercury electrode in the course of electrolysis have been studied and a mechanism of hydrogen amalgam formation has been suggested. The role of hydrogen amalgam in the processes of applied electrochemistry has been considered. 32 refs

  1. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  2. Preparation of Multi-Walled Carbon Nanotube/Amino-Terminated Ionic Liquid Arrays and Their Electrocatalysis towards Oxygen Reduction

    OpenAIRE

    Li Niu; Ari Ivaska; Carita Kvarnström; Rose-Marie Latonen; Zhijuan Wang

    2010-01-01

    Arrays of aligned multi-walled carbon nanotube-ionic liquid (MIL) were assembled on silicon wafers (Si-MIL). Formation of Si-MIL was confirmed by ATR-FTIR, AFM and Raman techniques. The electrochemical measurements indicated that Si-MIL showed good electrocatalysis towards oxygen reduction compared with MIL drop-cast on a glassy carbon electrode.

  3. Modern electrochemical processes and technologies in ionic melts

    Directory of Open Access Journals (Sweden)

    Omelchuk A.

    2003-01-01

    Full Text Available An analysis of the known methods for the electrochemical purification of non-ferrous metals in ionic melts is presented. A comparative estimation of the results of the electrochemical purification of non-ferrous metals by different methods has been performed. The main regularities of the electrochemical behavior of non-ferrous metals in conventional and electrode micro-spacing electrolysis are presented. It has been found that when electrolyzing some metals, e. g. bismuth, gallium, there is either no mass exchange between the electrodes, or it occurs under filtration conditions. It has been shown that the electrode micro-spacing processes provide a high quality of non-ferrous metals purification at low specific consumption of electric power and reagents. The use of bipolar electrodes and β-alumina diaphragms hinders the transfer of metallic impurities from the anode to the cathode. The effects revealed were used to develop new processes for the separation of non-ferrous metal alloys in ionic melts; most of them have been put into practice in non-ferrous metallurgy.

  4. Multiplexed electrochemical immunoassay of biomarkers using chitosan nanocomposites.

    Science.gov (United States)

    Chen, Xia; Ma, Zhanfang

    2014-05-15

    In this work, a novel and sensitive multiplexed immunoassay protocol for simultaneous electrochemical determination of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) was designed using functionalized chitosan composites. The immunosensing platform was prepared via immobilizing capture anti-AFP and anti-CEA on chitosan-Au nanoparticles (AuNPs) through EDC/NHS linking. The signal tags were fabricated by immobilizing electroactive redox probes - Prussian blue (PB) and ferrocenecarboxylic acid (Fc) on chitosan (CHIT), following by absorbing AuNPs to immobilize labeled anti-AFP and anti-CEA, respectively. A sandwich-type immunoassay format was employed for the simultaneous detection of AFP and CEA. The assay was based on the electrochemical oxidation/reduction of the redox species in signal tags, which has a relationship with the concentration of analytes. Experimental results revealed that the multiplexed electrochemical immunoassay enabled the simultaneous monitoring of AFP and CEA with a wide range of 0.05-100 ng mL(-1) for both AFP and CEA. The detection limits (LOD) was 0.03 ng mL(-1) for AFP and 0.02 ng mL(-1) for CEA (S/N=3). The assay results of serum samples with the proposed method were in a good agreement with the reference values from standard ELISA method. And the negligible cross-reactivity between the two analytes makes it possesses potential promise in clinical diagnosis. PMID:24413402

  5. An electrochemical treatment for aqueous radioactive solutions using pottery

    International Nuclear Information System (INIS)

    A bench scale electrolytic cell made from plexiglas was used for electrochemical separation of 137Cs and 60Co from simullated aqueous radioactive solutions. In this cell, a stainless steel plate represented the anode. The electrochemical treatment technique used depends on forcing the radioactive cations of the solution (137Cs+ and 60Co++) towards the opposite electrode under the influence of applied electric current, where they highly sorbed in the pottery body. The highest removal for137Cs+ and 60Co was in the alkalina medium, especially at pH>9. The investigated factors affected the electrochemicla processes are, applied voltage, treatment duration, hydrogen ion concentration of the radioactive solution, and the consumed electrical energy . It was found that at pH 11, applied voltage 30V and current 100 mA, the highest removal of 137Cs is 99.8% after 2.5 hours, and 99.3% and 99.3% for 60Co after 1.25 hour.The total consumed energy for 137Cs and 60Co were 33.75 and 16.88 W.h.dm-3, respectively. Comparing with other treatment methods, the electrochemical method revealed three advantages: shorter treatment time, low-cost materials, and low consumed energy. The results obtained showed that the dual application of electric current and sorption on the surface of pottery are feasible for the treatment of aqueous radioactive solutions

  6. Monovalent silicotungstate salts as electrolytes for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Highlights: • Li-, Na-, and K- silicotungstate salts were investigated as electrolytes for EDLC. • All salts are neutral and retained the Keggin structure. • All salt solutions showed high ionic conductivity and wide potential windows. • Carbon EDLCs utilizing these salt electrolytes can achieve a 1.5 V cell voltage. - Abstract: Lithium, sodium, and potassium salts of silicotungstic acid were synthesized and characterized as aqueous neutral electrolytes for electrochemical supercapacitors. The acidity of the aqueous solution and the structure of the solid-state anion were examined to confirm the presence of SiW salts. Ionic conductivity and the electrochemical stability potential window were characterized and compared to a silicotungstic acid solution using metallic blocking electrodes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the performance of carbon EDLC cells enabled by the neutral electrolytes and revealed a 1.5 V cell voltage and good cycle life. The similarities and differences among the three salts are explained based on the properties of cations in these neutral electrolytes

  7. Electrochemical preparation of polypyrrole conducting films

    OpenAIRE

    Mária Filkusová*; Renáta Oriňáková

    2010-01-01

    Cyclic voltammetry has been used to investigate the electrochemical polymerization of pyrrole on the surface of a paraffin impregnated graphite electrode (PIGE). Effect of pH and concentration of the electrolyte solution on the electrochemical deposition of polypyrrole (PPy) was studied. The structure of the deposited layers was studied using scanning electron microscope (SEM). Well–adhering black PPy films were obtained.

  8. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  9. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    Science.gov (United States)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium

  10. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.

    Science.gov (United States)

    Brownson, Dale A C; Varey, Sarah A; Hussain, Fiazal; Haigh, Sarah J; Banks, Craig E

    2014-01-01

    We report the electrochemical properties of pristine monolayer, double layer and few-layer (termed quasi-) graphene grown via CVD and transferred using PMMA onto an insulating substrate (silicon dioxide wafers). Characterisation has been performed by Raman spectroscopy, optical spectroscopy, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy, revealing 'true' pristine single-layer graphene (O/C of 0.05) at the former and pristine quasi-graphene at the latter (O/C of 0.07); the term "quasi-graphene" is coined due to the surface comprising on average 4-graphene-layers. The graphene electrodes are electrochemically characterised using both inner-sphere and outer-sphere redox probes with electrochemical performances of the graphene electrodes compared to other available graphitic electrodes, namely that of basal- and edge- plane pyrolytic graphite electrodes constructed from Highly Ordered Pyrolytic Graphite (HOPG), with information on heterogeneous rate constants (k(o)) obtained. The electrochemical rate constants are predominantly influenced by the electronic properties of the graphene surfaces. Monolayer graphene is found to exhibit slow heterogeneous electron transfer (HET) kinetics towards the redox probes studied, with HET rates ca. 2 and 8 times faster at quasi-graphene and HOPG respectively, relative to that of the monolayer graphene electrode. Critically contrasting the performance of monolayer graphene to quasi-graphene and HOPG electrodes reveals that increasing the number of graphene layers results in improved electrochemical properties, where in terms of the electrochemical reversibility of the probes studied: monolayer-graphene graphene electron transfer kinetics at graphitic materials, the slow HET rates at pristine single-layer graphene electrodes are likely due to graphene's fundamental geometry, which comprises a small edge plane and large basal plane contribution. In the case of quasi-graphene and HOPG, they possess increasing global

  11. Electrochemical tip-enhanced Raman spectroscopy (Presentation Recording)

    Science.gov (United States)

    Zeng, Zhicong; Huang, Shengchao; Huang, Tengxiang; Li, Maohua; Ren, Bin

    2015-08-01

    Tip-enhanced Raman spectroscopy (TERS) can not only provide very high sensitivity but also high spatial resolution, and has found applications in various fields, including surface science, materials, and biology. Most of previous TERS studies were performed in air or in the ultrahigh vacuum. If TERS study can be performed in the electrochemical environment, the electronic properties of the surface can be well controlled so that the interaction of the molecules with the substrate and the configuration of the molecules on the surface can also be well controlled. However, the EC-TERS is not just a simple combination of electrochemistry with TERS, or the combination of EC-STM with Raman. It is a merge of STM, electrochemistry and Raman spectroscopy, and the mutual interference among these techniques makes the EC-TERS particularly challenge: the light distortion in EC system, the sensitivity, the tip coating to work under EC-STM and retain the TERS activity and cleanliness. We designed a special spectroelectrochemical cell to eliminate the distortion of the liquid layer to the optical path and obtain TER spectra of reasonably good signal to noise ratio for surface adsorbed molecules under electrochemical potential control. For example, potential dependent TERS signal have been obtained for adsorbed aromatic thiol molecule, and much obvious signal change compared with SERS has been found, manifesting the importance of EC-TERS to reveal the interfacial structure of an electrochemical system. We further extended EC-TERS to electrochemical redox system, and clear dependence of the species during redox reaction can be identified.

  12. Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto graphene

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2014-03-01

    Highlights: • Graphene was grown on Cu foil by mobile thermal chemical vapor deposition system. • CNT was synthesized on graphene for RuO{sub 2} nanostructure growth by thermal chemical vapor deposition system. • The CNT growth location was fixed through the use of photolithography technique, thereby increasing the specific area. • RuO{sub 2} nanostructures were coated onto CNT bundle arrays through metal organic chemical vapor deposition, in order to utilize its pseudo capacitive property. - Abstract: In this study, graphene was used as a conductive substrate for vertically aligned carbon nanotube (CNT) bundle arrays growth, to be used as an electrode for electrochemical double layer capacitor (EDLC), as graphene and CNT exhibit good conductivity and excellent chemical stability. Both of them are composed of carbon, therefore making a superior adhesion between them. The configuration of bundle arrays provided a relatively higher specific surface area in contact with electrolyte, thereby resulting in demonstratively higher capacitance. Moreover, as the RuO{sub 2} nanostructures have good pseudocapacitance characteristics, they were coated onto vertically aligned CNT bundle arrays in order to effectively enhance the EDLC performances. The characteristics of CNT/graphene, CNT bundle/graphene, and RuO{sub 2}/CNT bundle/graphene electrodes were examined with the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Furthermore, their electrochemical properties were investigated by an electrochemical analyzer. The specific capacitances of CNT/graphene, CNT bundle/graphene, and RuO{sub 2}/CNT bundle/graphene were 4.64, 6.65, and 128.40 F/g at the scan rate of 0.01 V/s, respectively.

  13. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  14. Space Electrochemical Research and Technology

    Science.gov (United States)

    Wilson, Richard M. (Compiler)

    1996-01-01

    Individual papers presented at the conference address the following topics: development of a micro-fiber nickel electrode for nickel-hydrogen cell, high performance nickel electrodes for space power application, bending properties of nickel electrodes for nickel-hydrogen batteries, effect of KOH concentration and anions on the performance of a Ni-H2 battery positive plate, advanced dependent pressure vessel nickel hydrogen spacecraft cell and battery design, electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery design, a novel unitized regenerative proton exchange membrane fuel cell, fuel cell systems for first lunar outpost - reactant storage options, the TMI regenerable solid oxide fuel cell, engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle, SPE OBOGS on-board oxygen generating system, hermetically sealed aluminum electrolytic capacitor, sol-gel technology and advanced electrochemical energy storage materials, development of electrochemical supercapacitors for EMA applications, and high energy density electrolytic capacitor.

  15. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  16. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, 99Tc, and 106Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NOx emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal

  17. Electrochemical investigations of high-Tc superconductors - low-temperature electrochemistry

    International Nuclear Information System (INIS)

    This research report presents a summary of results obtained by electrochemical investigations of high-Tc superconductors at room temperature and below the critical temperature (Tc). The studies were to reveal the behaviour of the ceramic superconducting materials at the interface between superconductor and ionic conductor. (MM) With 4 tabs., 8 figs

  18. Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface

    DEFF Research Database (Denmark)

    Brooke, Richard J.; Jin, Chengjun; Szumski, Doug S.;

    2015-01-01

    been shown using non-Au contacts. Remarkably the conductance and gain of the resulting Ni-44BP-Ni electrochemical transistors is significantly higher than analogous Au-based devices. Ab-initio calculations reveal that this behavior arises because charge transport is mediated by spin-polarized Ni d...

  19. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures, to...... the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of...

  20. Concurrent array-based queue

    Energy Technology Data Exchange (ETDEWEB)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  1. Surface photovoltage studies of Si nanocrystallites prepared by electrochemical etching

    Science.gov (United States)

    Patel, B. K.; Rath, S.; Sahu, S. N.

    2006-06-01

    Nanocrystalline Si has been prepared by anodic etching of Si in an electrolyte consisting of ethanol and HF. The structure and surface morphology have been studied using transmission electron microscopy which reveal the cubic structure and porous morphology of Si nanocrystals (NCs). Electrochemical etching has resulted in surface oxidation of Si NCs as confirmed from X-ray photoelectron spectroscopic measurements. The average size of the Si NCs has been estimated from the line broadening analysis of the Raman scattering. Unique optical transitions associated with porous Si/SiO2 quantum well (QW) like structure has been investigated by surface photovoltage (SPV) measurements.

  2. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  3. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  4. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  5. Exploring plasmonic coupling in hole-cap arrays

    OpenAIRE

    Schmidt, Thomas M.; Maj Frederiksen; Vladimir Bochenkov; Sutherland, Duncan S

    2015-01-01

    The plasmonic coupling between gold caps and holes in thin films was investigated experimentally and through finite-difference time-domain (FDTD) calculations. Sparse colloidal lithography combined with a novel thermal treatment was used to control the vertical spacing between caps and hole arrays and compared to separated arrays of holes or caps. Optical spectroscopy and FDTD simulations reveal strong coupling between the gold caps and both Bloch Wave-surface plasmon polariton (BW-SPP) modes...

  6. Multiplex PCB-based electrochemical detection of cancer biomarkers using MLPA-barcode approach.

    Science.gov (United States)

    Sánchez, J L Acero; Henry, O Y F; Joda, H; Solnestam, B Werne; Kvastad, L; Johansson, E; Akan, P; Lundeberg, J; Lladach, N; Ramakrishnan, D; Riley, I; O'Sullivan, C K

    2016-08-15

    Asymmetric multiplex ligation-dependent probe amplification (MLPA) was developed for the amplification of seven breast cancer related mRNA markers and the MLPA products were electrochemically detected via hybridization. Seven breast cancer genetic markers were amplified by means of the MLPA reaction, which allows for multiplex amplification of multiple targets with a single primer pair. Novel synthetic MLPA probes were designed to include a unique barcode sequence in each amplified gene. Capture probes complementary to each of the barcode sequences were immobilized on each electrode of a low-cost electrode microarray manufactured on standard printed circuit board (PCB) substrates. The functionalised electrodes were exposed to the single-stranded MLPA products and following hybridization, a horseradish peroxidase (HRP)-labelled DNA secondary probe complementary to the amplified strand completed the genocomplex, which was electrochemically detected following substrate addition. The electrode arrays fabricated using PCB technology exhibited an excellent electrochemical performance, equivalent to planar photolithographically-fabricated gold electrodes, but at a vastly reduced cost (>50 times lower per array). The optimised system was demonstrated to be highly specific with negligible cross-reactivity allowing the simultaneous detection of the seven mRNA markers, with limits of detections as low as 25pM. This approach provides a novel strategy for the genetic profiling of tumour cells via integrated "amplification-to-detection". PMID:27085955

  7. Microreactor Array Device

    Science.gov (United States)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  8. Optically interconnected phased arrays

    Science.gov (United States)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  9. Atacama Compact Array Antennas

    CERN Document Server

    Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.

  10. The Murchison Widefield Array

    CERN Document Server

    Mitchell, Daniel A; Ord, Stephen M; Bernardi, Gianni; Wayth, Randall B; Edgar, Richard G; Clark, Michael A; Dal, Kevin; Pfister, Hanspeter; Gleadow, Stewart J; Arcus, W; Briggs, F H; Benkevitch, L; Bowman, J D; Bunton, J D; Burns, S; Cappallo, R J; Corey, B E; de Oliveira-Costa, A; Desouza, L; Doeleman, S S; Derome, M F; Emrich, D; Glossop, M; Goeke, R; Krishna, M R Gopala; Hazelton, B; Herne, D E; Hewitt, J N; Kamini, P A; Kaplan, D L; Kasper, J C; Kincaid, B B; Kocz, J; Kowald, E; Kratzenberg, E; Kumar, D; Lonsdale, C J; Lynch, M J; Madhavi, S; Matejek, M; McWhirter, S R; Morales, M F; Morgan, E; Oberoi, D; Pathikulangara, J; Prabu, T; Rogers, A; Salah, J E; Sault, R J; Shankar, N Udaya; Srivani, K S; Stevens, J; Tingay, S J; Vaccarella, A; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C

    2010-01-01

    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.

  11. The Square Kilometre Array

    OpenAIRE

    Lazio, Joseph

    2009-01-01

    The Square Kilometre Array (SKA) is intended as the next-generation radio telescope and will address fundamental questions in astrophysics, physics, and astrobiology. The international science community has developed a set of Key Science Programs: (1) Emerging from the Dark Ages and the Epoch of Reionization, (2) Galaxy Evolution, Cosmology, and Dark Energy, (3) The Origin and Evolution of Cosmic Magnetism, (4) Strong Field Tests of Gravity Using Pulsars and Black Holes, and (5) The Cradle of...

  12. The Cherenkov Telescope Array

    OpenAIRE

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indication...

  13. The Submillimeter Array Polarimeter

    OpenAIRE

    Marrone, Daniel P.; Rao, Ramprasad

    2008-01-01

    We describe the Submillimeter Array (SMA) Polarimeter, a polarization converter and feed multiplexer installed on the SMA. The polarimeter uses narrow-band quarter-wave plates to generate circular polarization sensitivity from the linearly-polarized SMA feeds. The wave plates are mounted in rotation stages under computer control so that the polarization handedness of each antenna is rapidly selectable. Positioning of the wave plates is found to be highly repeatable, better than 0.2 degrees. A...

  14. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  15. Supersymetric laser arrays

    OpenAIRE

    El-Ganainy, Ramy; Ge, Li; Khajavikhan, Mercedeh; Christodoulides, Demetrios

    2015-01-01

    We introduce the concept of supersymmetric laser arrays that consists of a main optical lattice and its superpartner structure, and we investigate the onset of their lasing oscillations. Due to the coupling of the two constituent lattices, their degenerate optical modes form doublets, while the extra mode associated with unbroken supersymmetry forms a singlet state. Singlet lasing can be achieved for a wide range of design parameters either by introducing stronger loss in the partner lattice ...

  16. Microphone array proccesing

    OpenAIRE

    Navarro Contreras, Héctor Ángel

    2010-01-01

    Microphone arrays consist of multiple microphones functioning as a single directional input device: essentially, an acoustic antenna. Using sound propagation principles, the principal sound sources in an environment can be spatially located. Distinguishing sounds based on the spatial location of their source is achieved by filtering and combining the individual microphone signals. The location of the principal sounds sources may be determined dynamically by analyzing peaks i...

  17. Seismometer array station processors

    International Nuclear Information System (INIS)

    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  18. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    Directory of Open Access Journals (Sweden)

    Donna H. Wang

    2011-08-01

    Full Text Available Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM. The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA, due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  19. Spaceborne Processor Array

    Science.gov (United States)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  20. Array processor architecture

    Science.gov (United States)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  1. Synthetic Genetic Array Analysis.

    Science.gov (United States)

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-01-01

    Genetic interaction studies have been used to characterize unknown genes, assign membership in pathway and complex, and build a comprehensive functional map of a eukaryotic cell. Synthetic genetic array (SGA) methodology automates yeast genetic analysis and enables systematic mapping of genetic interactions. In its simplest form, SGA consists of a series of replica pinning steps that enable construction of haploid double mutants through automated mating and meiotic recombination. Using this method, a strain carrying a query mutation, such as a deletion allele of a nonessential gene or a conditional temperature-sensitive allele of an essential gene, can be crossed to an input array of yeast mutants, such as the complete set of approximately 5000 viable deletion mutants. The resulting output array of double mutants can be scored for genetic interactions based on estimates of cellular fitness derived from colony-size measurements. The SGA score method can be used to analyze large-scale data sets, whereas small-scale data sets can be analyzed using SGAtools, a simple web-based interface that includes all the necessary analysis steps for quantifying genetic interactions. PMID:27037072

  2. A polymeric nanocoating on carbon nanotube arrays for developing imprinted protein sensor

    Science.gov (United States)

    Ren, L.; Zhao, H. Z.; Xu, C. J.; Yu, Y.; Wang, H. Z.; Lan, Y. C.; Wagner, D.; Naughton, M. J.; Ren, Z. F.; Chiles, T. C.; Cai, D.

    2010-03-01

    Polyphenol (PPn) was electrodeposited on carbon nanotubes (CNT) arrays at nanoscale thickness. PPn is a non-conductive polymer, so increase of sensor impedance was observed with high density CNT array, low density CNT array, and tip-polished CNT array (tCNTA), while tCNTA was determined to be the best nanosensor platform to incorporate the imprinted PPn coating due to the highest impedance increase. The PPn was characterized by transmission electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry for its thickness, uniformity, stability, resistivity and permittivity etc., as well as the protein entrapment and removal process. The density of the imprint was also evaluated by a PPn refilling experiment. Finally, ferritin was used as the template to develop a highly sensitive and selective protein nanosensor. Therefore, a novel strategy was demonstrated here to deposit and characterize polymeric nanocoating, also to evaluate imprints and detect proteins.

  3. Hydrothermal synthesis of porous Co(OH)2 nanoflake array film and its supercapacitor application

    Indian Academy of Sciences (India)

    Z Chen; Y Chen; C Zuo; S Zhou; A G Xiao; A X Pan

    2013-04-01

    Porous -Co(OH)2 nanoflake array film is prepared by a facile hydrothermal synthesis method. The -Co(OH)2 nanoflake array film exhibits a highly porous net-like structure composed of interconnected nanoflakes with a thickness of 15 nm. The pseudo-capacitive behaviour of the Co(OH)2 nanoflake array film is investigated by cyclic voltammograms (CV) and galvanostatic charge–discharge tests in 2MKOH. The -Co(OH)2 nanoflake array film exhibits high capacitances of 1017 F g-1 at 2Ag-1 and 890 F g-1 at 40Ag-1 as well as rather good cycling stability for supercapacitor application. The porous architecture is responsible for the enhancement of the electrochemical properties because it provides fast ion and electron transfer, large reaction surface area and good strain accommodation.

  4. Hierarchical tree-like heterostructure arrays for enhanced photoeletrochemical activity

    International Nuclear Information System (INIS)

    Graphical abstract: The hierarchical tree-like heterostructure arrays have been fabricated for enhanced photocurrent response and photoelectrochemical activity. - Abstract: The structure of biomimetic approach to converting sunlight was applied for design of composite materials. Here, hierarchical tree-like heterostructure Ag/ZnO (Ag wt%: 8.9%) arrays were fabricated by two-step electrodeposition, and it exhibited improved activity during photoelectrochemical water oxidation. The wurtzite-structured ZnO arrays prepared are the “trunk”. Ag nanoclusters were selectively deposited on the top of arrays as the “leaf”, which can strongly interact with visible light due to surface plasmon resonance. The inducted electromagnetic fields around Ag would efficiently propagate energy to composites by hot electrons injection. Based on morphology and crystal structure analysis, the linear sweep voltammagrams display that photocurrent increase to 0.17 mA/cm2 at 1.23 VRHE, and the photo-to-hydrogen generation is 0.23%. Additionally, the amperometric I-t curves collected without voltage displayed better photocurrent response under sunlight. The kinetics of PEC process at the electrode surface was investigated by electrochemical impedance spectroscopy (EIS). The mechanism was deduced based on the energy level of ZnO and Ag. The designed plasmonic crystal system exhibited that tree-like heterostructure is favorable for improving sunlight absorption and photoeletrochemical performance

  5. Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

    Directory of Open Access Journals (Sweden)

    Eric Broaddus

    2013-01-01

    Full Text Available One-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn much attention for electrocatalytic applications due to potential advantages that include fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. 1D nanostructured electrodes have been fabricated using a variety of methods, typically showing improved current response which has been attributed to improved CO tolerance, enhanced surface activity, and/or improved transport characteristics. A template wetting approach was used to fabricate an array of platinum nanotubules which were examined electrochemically with regard to the electrooxidation of formic acid. Arrays of 100 and 200 nm nanotubules were compared to a traditional platinum black catalyst, all of which were found to have similar surface areas. Peak formic acid oxidation current was observed to be highest for the 100 nm nanotubule array, followed by the 200 nm array and the Pt black; however, CO tolerance of all electrodes was similar, as were the onset potentials of the oxidation and reduction peaks. The higher current response was attributed to enhanced mass transfer in the nanotubule electrodes, likely due to a combination of both the more open nanostructure as well as the lack of a polymeric binder in the catalyst layer.

  6. Pencil probe system for electrochemical analysis and modification in nanometer dimensions

    Science.gov (United States)

    Fasching, Rainer J.; Tao, Ye; Hammerick, Kyle; Prinz, Fritz B.

    2003-04-01

    A pencil-shaped electrochemical transducer system for analysis or surface modification in nanometer dimension has been developed. High aspect ratio tip structures are shaped combining isotropic and anisotropic deep reactive etch processes to form the body of the transducer. In this way, tips with an aspect ratio higher than 20 and a tip radius of smaller than 50 nm can be achieved. Subsequently, a three-layer system (an isolation layer: silicon nitride, a metal layer: platinum or gold and an isolation layer: silicon nitride) was deposited on the tip structure. Planarization of this structure in combination with a back etch process enables a precise exposure of the buried metal layer down to an electrode dimension of 200 nm on the tip. Electrochemical and impedance spectroscopic characterization showed full electrochemical functionality of the transducer system. Due to the high aspect ratio topography, this probe is particularly suited for Scanning Electrochemical Microscope (SECM) - methodologies. Furthermore this technology promises a feasible production possibility for both probe-arrays and probes on cantilevers.

  7. Electrochemical method for rapid synthesis of Zinc Pentacyanonitrosylferrate Nanotubes

    Directory of Open Access Journals (Sweden)

    Rogaieh Bargeshadi

    2014-10-01

    Full Text Available In this paper, a rapid and simple approach was developed for the preparation of zinc pentacyanonitrosylferrate nanotubes (ZnPCNF NTs within the cylindrical pores of anodic aluminum oxide (AAO template by electrochemical method. The AAO was fabricated in two steps anodizing from aluminum foil. The first anodization of aluminum foil was performed in 0.2 mol L-1 H2C2O4 followed by removal of the formed porous oxide film by a solution of 6 wt% of phosphoric acid. The second anodization step was then performed using the same conditions as the previous step. Scanning electron microscope (SEM and X-ray diffraction (XRD method were employed to characterize the resulting highly oriented uniform hollow tube array which its diameter was in the range of 25-75 nm depending on the applied voltage and the length of nanotubes was equal to the thickness of AAO which was about 2 m. The growth properties of the ZnPCNF NTs array film can be achieved by controlling the structure of the template and applied potential across the cell.

  8. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  9. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    Science.gov (United States)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  10. Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization

    Science.gov (United States)

    Kim, Jin Young; Zhu, Kai; Neale, Nathan R.; Frank, Arthur J.

    2014-04-01

    Two-step anodization of transparent TiO2 nanotube arrays has been demonstrated with aid of a Nb-doped TiO2 buffer layer deposited between the Ti layer and TCO substrate. Enhanced physical adhesion and electrochemical stability provided by the buffer layer has been found to be important for successful implementation of the two-step anodization process. With the proposed approach, the morphology and thickness of NT arrays could be controlled very precisely, which in turn, influenced their optical and photoelectrochemical properties.

  11. Silicon-Copper Helical Arrays for New Generation Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B. D.; Keles, O; Amine, K

    2015-09-22

    The helical array (with 10 atom % Cu) exhibits 3130 mAh g–1 with 83% columbic efficiency and retains 83% of its initial discharge capacity after 100th cycle. Homogeneously distributed interspaces between the helical arrays accommodate high volumetric changes upon cycling and copper atoms form a conductive network to buffer the mechanical stress generated in the electrode while minimizing electrochemical agglomeration of Si. Also, ion assistance is believed to enhance the density of the helices at the bottom thus increasing the adhesion

  12. Characterization and Optical Properties of the Single Crystalline SnS Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Yue GH

    2009-01-01

    Full Text Available Abstract The SnS nanowire arrays have been successfully synthesized by the template-assisted pulsed electrochemical deposition in the porous anodized aluminum oxide template. The investigation results showed that the as-synthesized nanowires are single crystalline structures and they have a highly preferential orientation. The ordered SnS nanowire arrays are uniform with a diameter of 50 nm and a length up to several tens of micrometers. The synthesized SnS nanowires exhibit strong absorption in visible and near-infrared spectral region and the direct energy gapE gof SnS nanowires is 1.59 eV.

  13. Atomistic understanding of hydrogen loading phenomenon into palladium cathode: A simple nanocluster approach and electrochemical evidence

    Indian Academy of Sciences (India)

    Mohsen Lashgari; Davood Matloubi

    2015-03-01

    The inherent potency of palladium to sorb hydrogen atoms was examined empirically and theoretically through various electrochemical methods and high-level quantum chemical calculations (HSE06) based on cluster model (CM) and density functional theory (DFT). The CM-DFT approach using QZVP/cc-PV6Z basis sets revealed a strong attraction between Pd nanoclusters and H atoms that generates some charged entities. This atomistically justifies why the electrochemical impedance of the system becomes less by the loading phenomenon. It is concluded that hydrogen atoms enter the palladium subsurface through hollow and bridge sites by diffusing as proton-like species and get loaded predominantly in the octahedral voids.

  14. Electrochemical impedance spectroscopy of oxidized porous silicon

    International Nuclear Information System (INIS)

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm2, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed

  15. Electrochemical impedance spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Tiddia, Maria V. [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d' Armi, 09126 Cagliari (Italy)

    2014-04-01

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm{sup 2}, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed.

  16. Stripe- or square-patterned arrays of tin dioxide nanowires for use in lithium-ion battery electrodes

    Science.gov (United States)

    Lee, Sang Ho; Kim, Won Bae

    2016-03-01

    This paper reports a novel electrode design for use in electrochemical lithium-ion storage. 3-dimensional patterns of tin dioxide nanowires that are grown directly over current collectors are suggested as electrode frameworks, representing the synergetic combination of nanometer-sized 1-dimensional electrode materials and micrometer-scaled hollow channels formed between the patterned nanowire arrays. The lithium-ion storage properties are investigated by changing the pattern geometries of these nanowire arrays in the shape of stripes and squares. The proposed electrode platforms show the enhanced electrochemical storage performances, which might be attributed to the effective diffusion of liquid phase electrolyte through the hollow channels between these patterned nanowire arrays. More interestingly, with increasing the hollow channels in these proposed systems, the high-rate performance and cycling stability are improved even further due to the structural effect of these electrode frameworks.

  17. Electrochemistry reveals archaeological materials

    OpenAIRE

    Costa, Virginia; Leyssens, Karen; Adriaens, Annemie; Richard, N.; Scholz, Fritz

    2010-01-01

    The characterization of materials constituting cultural artefacts is a challenging step in their conservation, due to the object’s uniqueness and the reduced number of conservation institutes able to supply non-destructive analysis. We propose an alternative analytical tool, which combines accessibility (low cost and portable) and high sensitivity, based on electrochemical linear sweep voltammetry (LSV) with paraffin impregnated graphite electrode (PIGE). To investigate the composition of “wh...

  18. Electrochemical studies of corrosion inhibitors

    Science.gov (United States)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  19. Numerical simulation of electrochemical desalination

    Science.gov (United States)

    Hlushkou, D.; Knust, K. N.; Crooks, R. M.; Tallarek, U.

    2016-05-01

    We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier–Stokes, Nernst–Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass–charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration.

  20. Metal-air electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Sarbacher, R. I.; Fechter, H. R.

    1985-01-01

    An electrochemical cell for which fuel is prepared and introduced under artificial gravity forces. The active metal is deposited through the action of the field on an anode current collecting member, effecting good compaction and reduced cell internal impedance. A microprocessor provides control of the induced gravity, flow rates, temperature, and other variables-enabling the active metal to be controlled in its thickness as well as providing a predetermined separation from the cathode. Abrasion of the cathode and the possibility of shorting are avoided by the presence of outwardly directed radial forces. These forces are induced by rotation of the electrolyte, air cathode, anode collector and the active metal. The forces promote also the passage of moisture laden air through the air cathode elements. Reaction products produced within the cell volume are circulated to an outside container for separation and possible reuse.

  1. The origin of electrochemical nomenclature.

    Science.gov (United States)

    Giddens, W R

    2001-09-01

    This article is about the origin and development of certain words that are important in the vocabulary of all physicians and scientists. The words that make up the electrochemical nomenclature were created in 1833 by Michael Faraday and several of his friends. Terms such as electrolyte, ion, and electrode were invented in a fashion that ignored theory but fitted the experimental facts of the laboratory. This nomenclature, derived from Greek, was so accurate and functional that is has been completely incorporated into modern chemistry, a fact that seems remarkable since the structure of the atom was completely unknown at the time. To fully develop the etymology of these words, the life of Faraday is summarized and the deliberations of the men involved are reviewed. PMID:11686262

  2. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    S R C Vivekchand; Chandra Sekhar Rout; K S Subrahmanyam; A Govindaraj; C N R Rao

    2008-01-01

    Graphenes prepared by three different methods have been investigated as electrode materials in electrochemical supercapacitors. The samples prepared by exfoliation of graphitic oxide and by the transformation of nanodiamond exhibit high specific capacitance in aq. H2SO4, the value reaching up to 117 F/g. By using an ionic liquid, the operating voltage has been extended to 3.5 V (instead of 1 V in the case of aq. H2SO4), the specific capacitance and energy density being 75 F/g and 31.9 Wh kg-1 respectively. This value of the energy density is one of the highest values reported to date. The performance characteristics of the graphenes which are directly related to the quality, in terms of the number of layers and the surface area, are superior to that of single-walled and multi-walled carbon nanotubes.

  3. Composite Electrodes for Electrochemical Supercapacitors

    Science.gov (United States)

    Li, Jun; Yang, Quan Min; Zhitomirsky, Igor

    2010-03-01

    Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4-6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7-15 mg cm-2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC). The highest SC of 185 F g-1 was obtained at a scan rate of 2 mV s-1 for mass loading of 7 mg cm-2. The SC decreased with increasing scan rate and increasing electrode mass.

  4. Composite Electrodes for Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yang QuanMin

    2010-01-01

    Full Text Available Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC. The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass.

  5. Investigation of thermal and electrochemical degradation of fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Mei; Ruthkosky, Martin S.; Balogh, Michael P.; Oh, Se H. [General Motors Research and Development Center (United States); Merzougui, Belabbes [Aerotek (United States); Swathirajan, Swathy [General Motors Fuel Cell Activities (United States)

    2006-10-06

    A significant problem hindering large-scale implementation of proton exchange membrane (PEM) fuel cell technology is the loss of performance during extended operation and automotive cycling. Recent investigations of the deterioration of cell performance have revealed that a considerable part of the performance loss is due to the degradation of the electrocatalyst. In this study, an attempt is made to experimentally simulate the degradation processes such as carbon corrosion and platinum (Pt) surface area loss using an accelerated thermal sintering protocol. Two types of Tanaka fuel cell catalyst samples were heat-treated at 250{sup o}C in humidified helium (He) gas streams and several oxygen (O{sub 2}) concentrations. The catalysts were then cycled electrochemically in pellet electrodes to determine the hydrogen adsorption (HAD) area and its evolution in subsequent electrochemical cycling. Samples that had undergone different degrees of carbon corrosion and Pt sintering were characterized for changes in carbon mass, active Pt surface area, BET (Brunauer, Emmett and Teller) surface area, and Pt crystallite size. Studies of the effect of oxygen and water concentration on two Tanaka catalysts, dispersed on carbon supports with varying BET areas, revealed that carbon oxidation in the presence of Pt follows two pathways: an oxygen pathway that leads to mass loss due to formation of gaseous products, and a water pathway that results in mass gains, especially for high BET area supports. These processes may be assisted by the formation of highly reactive OH and OOH type radicals. Platinum surface area loss, measured at varying oxygen concentrations and as a function of sintering time using X-ray diffraction (XRD), CO chemisorption, and electrochemical hydrogen adsorption, reveal an important role for carbon corrosion rather than an increase in Pt particle size for the surface area loss. Platinum surface area loss during 10h of thermal degradation was equivalent to

  6. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@cea.fr [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Warnking, Jan; Depaulis, Antoine [INSERM, U836, Grenoble Institut des Neurosciences, Grenoble (France); Garçon, Laurie Amandine [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); CEA/INAC/SPrAM/CREAB, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Mermoux, Michel [Université Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Eon, David [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Mailley, Pascal [CEA-LETI-DTBS Minatec, 17 rue des Martyres, 38054 Grenoble (France); Omnès, Franck [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France)

    2015-01-01

    Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging. - Highlights: • Microfabrication of all-diamond microelectrode array • Evaluation of as-grown nanocrystalline boron-doped diamond for electrical neural interfacing • MRI compatibility of nanocrystalline boron-doped diamond.

  7. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag2+ or Ce+4 are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs

  8. Electrochemical Measurement of Atmospheric Corrosion

    Science.gov (United States)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  9. Stability of titania nanotube arrays in aqueous environment and the related factors

    OpenAIRE

    Can Cao; Jun Yan; Yumei Zhang; Lingzhou Zhao

    2016-01-01

    Titania nanotube arrays (NTAs) on titanium (Ti) fabricated by electrochemical anodization have attracted tremendous interest for diverse applications, of which most perform in aqueous environment or related to interaction with water. The NTAs are widely studied however the related factor of stability of NTAs when applied in such environment has rarely been concerned. We report that the annealed anatase NTAs are stable but the non-annealed amorphous NTAs are unstable to undergo specific struct...

  10. Stable field emission from arrays of vertically aligned free-standing metallic nanowires

    DEFF Research Database (Denmark)

    Xavier, S.; Mátéfi-Tempfli, Stefan; Ferain, E.;

    2008-01-01

    We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabricat...... density is ∼1 mA cm for a 30 V μm applied electric field. © IOP Publishing Ltd....

  11. Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable High-Rate and Long-Cycle Sodium-Ion Storage.

    Science.gov (United States)

    Xia, Xinhui; Chao, Dongliang; Zhang, Yongqi; Zhan, Jiye; Zhong, Yu; Wang, Xiuli; Wang, Yadong; Shen, Ze Xiang; Tu, Jiangping; Fan, Hong Jin

    2016-06-01

    A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2 O3 nanoflakes, Co3 O4 nanowires, Co3 O4 -CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2 O3 /CNTs core/branch composite arrays as the host for Na(+) storage are investigated in detail. This V2 O3 /CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g(-1) at 0.1 A g(-1) and outstanding high-rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g(-1) , and 70% after 10 000 cycles at 10 A g(-1) ). Kinetics analysis reveals that the Na(+) storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network. PMID:27128527

  12. Electrochemical sensors based on graphene materials

    International Nuclear Information System (INIS)

    Single-layered graphene, emerging as a true two-dimensional nanomaterial, has tremendous potential for electrochemical catalysis and biosensing as a novel electrode material. Considering the excellent properties of graphene, such as large surface-to-volume ratio, high conductivity and electron mobility at room temperature, low energy dynamics of electrons with atomic thickness, robust mechanical and flexibility, we give a general view of recent advances in electrochemical sensors based on graphene. We are highlighting here important applications of graphene and graphene nanocomposites, and the assay strategies in electrochemical sensors for DNA, proteins, neurotransmitters, phytohormones, pollutants, metal ions, gases, hydrogen peroxide, and in medical, enzymatic and immunosensors. (author)

  13. Process for electrochemically gasifying coal using electromagnetism

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  14. Electrochemical Label-Free Nucleotide Sensors.

    Science.gov (United States)

    Aoki, Hiroshi

    2015-12-01

    Numerous researchers have devoted a great deal of effort over the last few decades to the development of electrochemical oligonucleotide detection techniques, owing to their advantages of simple design, inherently small dimensions, and low power requirements. Their simplicity and rapidity of detection makes label-free oligonucleotide sensors of great potential use as first-aid screening tools in the analytical field of environmental measurements and healthcare management. This review article covers label-free oligonucleotide sensors, focusing specifically on topical electrochemical techniques, including intrinsic redox reaction of bases, conductive polymers, the use of electrochemical indicators, and highly ordered probe structures. PMID:26227073

  15. Building micro and nanosystems with electrochemical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Wuethrich, Rolf, E-mail: wuthrich@encs.concordia.c [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada); Allagui, Anis [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada)

    2010-11-30

    Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.

  16. Future thrusts of the NASA space power program. [with emphasis on electrochemical energy conversion and storage

    Science.gov (United States)

    Holcomb, L.

    1978-01-01

    General objectives and plan directions are given for current program support in the following areas: (1) solar cells and arrays; (2) batteries and fuel cells; (3) thermoelectric, thermionic, and Brayton cycle conversion systems; (4) circuits and subsystems for the management and distribution of power; and (5) the interactions of the environment with the power system and the spacecraft. Particular emphasis is given to the electrochemical energy conversion storage portion of the program where efforts are directed to improving the energy density and life of nickel cadmium batteries, to validating flight-weight silver hydrogen cells, to promoting the safe use of lithium primary batteries, to completing the silver zinc batteries and the orbital transfer fuel cell technology, to increasing the capacity of space batteries, to and to evaluating new electrochemical concepts for very high energy density. The use of the fuel cell electrolyzer concept for energy storage in both the dedicated and the truly regenerative mode is also being investigated.

  17. Architecture of a modular, multichannel readout system for dense electrochemical biosensor microarrays

    International Nuclear Information System (INIS)

    The architecture of a modular, multichannel readout system for dense electrochemical microarrays, targeting Lab-on-a-Chip applications, is presented. This approach promotes efficient component reusability through a hybrid multiplexing methodology, maintaining high levels of sampling performance and accuracy. Two readout modes are offered, which can be dynamically interchanged following signal profiling, to cater for both rapid signal transitions and weak current responses. Additionally, functional extensions to the described architecture are discussed, which provide the system with multi-biasing capabilities. A prototype integrated circuit of the proposed architecture’s analog core and a supporting board were implemented to verify the working principles. The system was evaluated using standard loads, as well as electrochemical sensor arrays. Through a range of operating conditions and loads, the prototype exhibited a highly linear response and accurately delivered the readout of input signals with fast transitions and wide dynamic ranges. (paper)

  18. Electrochemical model of polyaniline-based memristor with mass transfer step

    Energy Technology Data Exchange (ETDEWEB)

    Demin, V.A. [National Research Centre ' Kurchatov Institute' , 123182, Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudny, Moscow Region (Russian Federation); Erokhin, V.V. [CNR-IMEM (National Research Council, Institute of Materials for Electronics and Magnetism) and University of Parma, Viale Usberti 7A, 42124, Parma (Italy); Kashkarov, P.K.; Kovalchuk, M.V. [National Research Centre ' Kurchatov Institute' , 123182, Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudny, Moscow Region (Russian Federation); Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991, Moscow (Russian Federation)

    2015-03-10

    The electrochemical organic memristor with polyaniline active layer is a stand-alone device designed and realized for reproduction of some synapse properties in the innovative electronic circuits, such as the new field-programmable gate arrays or the neuromorphic networks capable for learning. In this work a new theoretical model of the polyaniline memristor is presented. The developed model of organic memristor functioning was based on the detailed consideration of possible electrochemical processes occuring in the active zone of this device including the mass transfer step of ionic reactants. Results of the calculation have demonstrated not only the qualitative explanation of the characteristics observed in the experiment, but also quantitative similarities of the resultant current values. This model can establish a basis for the design and prediction of properties of more complicated circuits and systems (including stochastic ones) based on the organic memristive devices.

  19. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Limat, Meriadec; El Roustom, Bahaa [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland); Jotterand, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Physics of the Complex Matter, CH-1015 Lausanne (Switzerland); Foti, Gyoergy [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)], E-mail: gyorgy.foti@epfl.ch; Comninellis, Christos [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)

    2009-03-30

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate.

  20. Electrochemical model of polyaniline-based memristor with mass transfer step

    International Nuclear Information System (INIS)

    The electrochemical organic memristor with polyaniline active layer is a stand-alone device designed and realized for reproduction of some synapse properties in the innovative electronic circuits, such as the new field-programmable gate arrays or the neuromorphic networks capable for learning. In this work a new theoretical model of the polyaniline memristor is presented. The developed model of organic memristor functioning was based on the detailed consideration of possible electrochemical processes occuring in the active zone of this device including the mass transfer step of ionic reactants. Results of the calculation have demonstrated not only the qualitative explanation of the characteristics observed in the experiment, but also quantitative similarities of the resultant current values. This model can establish a basis for the design and prediction of properties of more complicated circuits and systems (including stochastic ones) based on the organic memristive devices