WorldWideScience

Sample records for array x-ray detector

  1. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  2. MOS solid-state detector arrays for x-ray imaging

    International Nuclear Information System (INIS)

    Koppel, L.N.

    1977-01-01

    Two types of MOS detector arrays were used to sense directly patterns of soft x-rays, in the Lawrence Livermore Laboratory experimental laser-fusion program. A linear self-scanning photodiode array (SSPA) is used in a wave-length-dispersive spectrometer. A frame transfer charge-coupled device (CCD) facilitates the use of an x-ray microscope. Measurements and calculations of the x-ray sensitivity of these devices are presented. Their linearity and dynamic range are discussed, as well as data recovery systems for each detector. Experiences in using these devices to detect pulses of x-rays in laser-fusion experiments are described

  3. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol [Cornell Univ., Ithaca, NY (United States)

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  4. A new MBE CdTe photoconductor array detector for X-ray applications

    International Nuclear Information System (INIS)

    Yoo, S.S.; Sivananthan, S.; Faurie, J.P.; Rodricks, B.; Bai, J.; Montano, P.A.; Argonne National Lab., IL

    1994-10-01

    A CdTe photoconductor array x-ray detector was grown using Molecular Beam Epitaxially (MBE) on a Si (100) substrate. The temporal response of the photoconductor arrays is as fast as 21 psec risetime and 38 psec Full Width Half Maximum (FWHM). Spatial and energy responses were obtained using x-rays from a rotating anode and synchrotron radiation source. The spatial resolution of the photoconductor was good enough to provide 75 microm FWHM using a 50 microm synchrotron x-ray beam. A substantial number of x-ray photons are absorbed effectively within the MBE CdTe layer as observed from the linear response up to 15 keV. These results demonstrate that MBE grown CdTe is a suitable choice of the detector materials to meet the requirements for x-ray detectors in particular for the new high brightness synchrotron sources

  5. Study on data acquisition circuit used in SSPA linear array detector X-ray detection

    CERN Document Server

    Wei Biao; Che Zhen Ping

    2002-01-01

    After SSPA used as X-ray array detector is developed, the authors take a research on the data acquisition circuit applied to the detector. The experiment designed has verified the feasibility of application of this array detector and its data acquisition circuit to X-ray computed tomography (X-CT). The preliminary test results indicate that the method of the X-ray detection is feasible for industry X-CT nondestructive testing, which brings about advantage for detecting and measuring with high resolution, good efficiency and low cost

  6. Pixel array detector for X-ray free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Hromalik, Marianne [Electrical and Computer Engineering, SUNY Oswego, Oswego, NY 13126 (United States); Tate, Mark; Koerner, Lucas [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Wilson Laboratory, Cornell University, CHESS, Ithaca, NY 14853 (United States)

    2011-09-01

    X-ray free electron lasers (XFELs) promise to revolutionize X-ray science with extremely high peak brilliances and femtosecond X-ray pulses. This will require novel detectors to fully realize the potential of these new sources. There are many current detector development projects aimed at the many challenges of meeting the XFEL requirements . This paper describes a pixel array detector (PAD) that has been developed for the Coherent X-ray Imaging experiment at the Linac Coherent Light Source (LCLS) at the SLAC National Laboratory . The detector features 14-bit in-pixel digitization; a 2-level in-pixel gain setting that can be used to make an arbitrary 2-D gain pattern that is adaptable to a particular experiment; the ability to handle instantaneous X-ray flux rates of 10{sup 17} photons per second; and continuous frames rates in excess of 120 Hz. The detector uses direct detection of X-rays in a silicon diode. The charge produced by the diode is integrated in a pixilated application specific integrated circuit (ASIC) which digitizes collected holes with single X-ray photon capability. Each ASIC is 194x185 pixels, each pixel is 110{mu}mx110{mu}m on a side. Each pixel can detect up to 2500 X-rays per frame in low-gain mode, yet easily detects single photons at high-gain. Cooled, single-chip detectors have been built and meet all the required specifications. SLAC National Laboratory is engaged in constructing a tiled, multi-chip 1516x1516 pixel detector.

  7. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  8. X-ray microcalorimeter arrays fabricated by surface micromachining

    International Nuclear Information System (INIS)

    Hilton, G.C.; Beall, J.A.; Deiker, S.; Vale, L.R.; Doriese, W.B.; Beyer, Joern; Ullom, J.N.; Reintsema, C.D.; Xu, Y.; Irwin, K.D.

    2004-01-01

    We are developing arrays of Mo/Cu transition edge sensor-based detectors for use as X-ray microcalorimeters and sub-millimeter bolometers. We have fabricated 8x8 pixel X-ray microcalorimeter arrays using surface micromachining. Surface-micromachining techniques hold the promise of scalability to much larger arrays and may allow for the integration of in-plane multiplexer elements. In this paper we describe the surface micromachining process and recent improvements in the device geometry that provide for increased mechanical strength. We also present X-ray and heat pulse spectra collected using these detectors

  9. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    International Nuclear Information System (INIS)

    Sun, Cheng-Jun; Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-01-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr 0.67 Sr 0.33 MnO 3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam

  10. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    Science.gov (United States)

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  11. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  12. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  13. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  14. Soft x-ray detection with diamond photoconductive detectors

    International Nuclear Information System (INIS)

    Kania, D.R.; Pan, L.; Kornblum, H.; Bell, P.; Landen, O.N.; Pianetta, P.

    1990-01-01

    Photoconductive detectors fabricated from natural lla diamonds have been used to measure the x-ray power emitted from laser produced plasmas. The detector was operated without any absorbing filters to distort the x-ray power measurement. The 5.5 eV bandgap of the detector material practically eliminates its sensitivity to scattered laser radiation thus permitting filterless operation. The detector response time or carrier life time was 90 ps. Excellent agreement was achieved between a diamond PCD and a multichannel photoemissive diode array in the measurement of radiated x-ray power and energy. 4 figs

  15. Performance study of monochromatic synchrotron X-ray computed tomography using a linear array detector

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Masahiro; Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Akiba, Masahiro; Yuasa, Tetsuya; Hyodo, Kazuyuki; Ando, Masami; Akatsuka, Takao

    1997-09-01

    Monochromatic x-ray computed tomography (CT) using synchrotron radiation (SR) is being developed for detection of non-radioactive contrast materials at low concentration for application in clinical diagnosis. A new SR-CT system with improved contrast resolution, was constructed using a linear array detector which provides wide dynamic ranges and a double monochromator. The performance of this system was evaluated in a phantom and a rat model of brain ischemia. This system consists of a silicon (111) double crystal monochromator, an x-ray shutter, an ionization chamber, x-ray slits, a scanning table for the target organ, and an x-ray linear array detector. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. In this experiment, the reconstructed image of the spatial-resolution phantom clearly showed the 1 mm holes. At 1 mm slice thickness, the above K-edge image of the phantom showed contrast resolution at the concentration of 200 {mu}g/ml iodine-based contrast materials whereas the K-edge energy subtraction image showed contrast resolution at the concentration of 500 {mu}g/ml contrast materials. The cerebral arteries filled with iodine microspheres were clearly revealed, and the ischemic regions at the right temporal lobe and frontal lobe were depicted as non-vascular regions. The measured minimal detectable concentration of iodine on the above K-edge image is about 6 times higher than the expected value of 35.3 {mu}g/ml because of the high dark current of this detector. Thus, the use of a CCD detector which is cooled by liquid nitrogen to improve the dynamic range of the detector, is being under construction. (author)

  16. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  17. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  18. Graphical user interface for a dual-module EMCCD x-ray detector array

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  19. Scintillating ribbon x-ray detector

    International Nuclear Information System (INIS)

    Kinchen, B.E.; Rogers, A.

    1995-01-01

    A patent in the early 1970's by Aerojet Corporation in Sacramento, CA put forth the idea of using an array of scintillating fibers for x-ray detection and imaging. In about 1975, Pratt and Whitney Aircraft in East Hartford, CT designed and manufactured an imaging system based on the patent. The device was 1.75 in thick in the direction of the x-ray beam and about 4 in. by 4 in. square. The device was used with a 8 MeV x-ray source to image and measure internal clearances within operating aircraft, gas turbines engines. There are significant advantages of fiber optic detectors in x-ray detection. However, the advantages are often outweighed by the disadvantages. Two of the advantages of scintillating fiber optic x-ray detectors are: (1) high limiting spatial frequency -- between 20 and 25 lp/mm; and (2) excellent x-ray stopping power -- they can be made thick and retain spatial resolution. In traditional fiber optic detectors the x-rays are oriented parallel to the long axis of the fiber. For the scintillating ribbon x-ray sensor, the x-rays are oriented normal to the fiber long axis. This ribbon sensor technique has a number of advantages over the two current radiographic techniques digital x-radiography and x-ray film: The main advantage the ribbon has is size and shape. It can be as thin as 0.05 in., virtually any width or length, and flexible. Once positioned in a given location, 20 to 100 square inches of the object being inspected can be imaged with a single x-ray beam sweep. It is clear that conventional digital cameras do not lend themselves to placement between walls of aircraft structures or similar items requiring x-ray inspections. A prototype scintillating ribbon x-ray sensor has been fabricated and tested by Synergistic Detector Designs. Images were acquired on corrosion test panels of aluminum fabricated by Iowa State University

  20. Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2011-03-16

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  1. X-ray detectors in medical imaging

    International Nuclear Information System (INIS)

    Spahn, Martin

    2013-01-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd 2 O 2 S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  2. Development of a fast pixel array detector for use in microsecond time-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Barna, S.L.; Gruner, S.M.; Shepherd, J.A.

    1995-01-01

    A large-area pixel x-ray detector is being developed to collect eight successive frames of wide dynamic range two-dimensional images at 200kHz rates. Such a detector, in conjunction with a synchrotron radiation x-ray source, will enable time-resolved x-ray studies of proteins and other materials on time scales which have previously been inaccessible. The detector will consist of an array of fully-depleted 150 micron square diodes connected to a CMOS integrated electronics layer with solder bump-bonding. During each framing period, the current resulting from the x-rays stopped in the diodes is integrated in the electronics layer, and then stored in one of eight storage capacitors underneath the pixel. After the last frame, the capacitors are read out at standard data transmission rates. The detector has been designed for a well-depth of at least 10,000 x-rays (at 20keV), and a noise level of one x-ray. Ultimately, the authors intend to construct a detector with over one million pixels (1024 by 1024). They present the results of their development effort and various features of the design. The electronics design is discussed, with special attention to the performance requirements. The choice and design of the detective diodes, as they relate to x-ray stopping power and charge collection, are presented. An analysis of various methods of bump bonding is also presented. Finally, the authors discuss the possible need for a radiation-blocking layer, to be placed between the electronics and the detective layer, and various methods they have pursued in the construction of such a layer

  3. Fabrication and characterization of a 32 x 32 array digital Si-PIN X-ray detector for a single photon counting image sensor

    International Nuclear Information System (INIS)

    Seo, Jungho; Kim, Jinyoung; Lim, Hyunwoo; Park, Jingoo; Lee, Songjun; Kim, Bonghoe; Jeon, Sungchae; Huh, Young

    2010-01-01

    A Si-PIN X-ray detector for digital x-ray imaging with single photon counting capability has been fabricated and characterized. It consists of an array of 32 x 32 pixels with an area of 80 x 80 μm 2 . An extrinsic gettering process was performed to reduce the leakage current by removing the impurities and defects from the X-ray detector's Si substrate. Multiple guard-rings (MGRs) and metal filed plates (MFPs) techniques were adopted to reduce the leakage current and to improve the breakdown performance. The simulation verified that the breakdown voltage was improved with the MGRs and that the leakage current was significantly reduced with the MFPs. The electrical properties, such as the leakage current and the breakdown voltage, of the Si-PIN X-ray detector were characterized. The extrinsic gettering process played a significant role in reducing the leakage current, and a leakage current lower than 60 pA could be achieved at 100 V dc .

  4. Recent X-ray hybrid CMOS detector developments and measurements

    Science.gov (United States)

    Hull, Samuel V.; Falcone, Abraham D.; Burrows, David N.; Wages, Mitchell; Chattopadhyay, Tanmoy; McQuaide, Maria; Bray, Evan; Kern, Matthew

    2017-08-01

    The Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors (TIS), have progressed their efforts to improve soft X-ray Hybrid CMOS detector (HCD) technology on multiple fronts. Having newly acquired a Teledyne cryogenic SIDECARTM ASIC for use with HxRG devices, measurements were performed with an H2RG HCD and the cooled SIDECARTM. We report new energy resolution and read noise measurements, which show a significant improvement over room temperature SIDECARTM operation. Further, in order to meet the demands of future high-throughput and high spatial resolution X-ray observatories, detectors with fast readout and small pixel sizes are being developed. We report on characteristics of new X-ray HCDs with 12.5 micron pitch that include in-pixel CDS circuitry and crosstalk-eliminating CTIA amplifiers. In addition, PSU and TIS are developing a new large-scale array Speedster-EXD device. The original 64 × 64 pixel Speedster-EXD prototype used comparators in each pixel to enable event driven readout with order of magnitude higher effective readout rates, which will now be implemented in a 550 × 550 pixel device. Finally, the detector lab is involved in a sounding rocket mission that is slated to fly in 2018 with an off-plane reflection grating array and an H2RG X-ray HCD. We report on the planned detector configuration for this mission, which will increase the NASA technology readiness level of X-ray HCDs to TRL 9.

  5. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  6. Sixa-silicon x-ray array

    International Nuclear Information System (INIS)

    Taylor, I.

    1995-01-01

    Full text: The Spectrum-X-Gamma (SRG) satellite is scheduled for launch in 1995-96. Mission objectives include broad and narrow band imaging spectroscopy over a wide range of energies from the EUV through hard X-rays with an emphasis on studying galactic and extragalactic X-ray sources. Timing and moderate resolution spectroscopy can be performed with the solid state spectrometer SIXA (Silicon X-Ray Array), placed on the focal plane of the SODART telescope with total effective area of 1150 cm 2 at 6 keV (for f = 8 in telescope). The detector consists of 19 circular Si(Li) pixels, each with an active diameter of 9.2 min and thickness of 3 min. A radiative cooler will be used to bring the detector to the proper operating temperature (120-130 K). The energy range 0.5-20 keV is divided into 1024 channels of 20 eV size. Photons can be recorded with 30 μs time resolution and 160-200 eV (1-7 keV) energy resolution. Potential observing programmes (for e.g. time-resolved Iron Kα line spectroscopy) include stellar coronae, cataclysmic variables and X-ray binaries; accretion discs and coronae of neutron stars and black hole candidates; supernova remnants, active galactic nuclei and clusters of galaxies. (author)

  7. Fast photoconductor CdTe detectors for synchrotron x-ray studies

    International Nuclear Information System (INIS)

    Yoo, Sung Shik; Faurie, J.P.; Huang Qiang; Rodricks, B.

    1993-09-01

    The Advanced Photon Source will be that brightest source of synchrotron x-rays when it becomes operational in 1996. During normal operation, the ring will be filled with 20 bunches of positrons with an interbunch spacing of 177 ns and a bunch width of 119 ps. To perform experiments with x-rays generated by positrons on these time scales one needs extremely high speed detectors. To achieve the necessary high speed, we are developing MBE-grown CdTe-base photoconductive position sensitive array detectors. The arrays fabricated have 64 pixels with a gap of 100 μm between pixels. The high speed response of the devices was tested using a short pulse laser. X-ray static measurements were performed using an x-ray tube and synchrotron radiation to study the device's response to flux and wavelength changes. This paper presents the response of the devices to some of these tests and discusses different physics aspects to be considered when designing high speed detectors

  8. High-speed imaging at high x-ray energy: CdTe sensors coupled to charge-integrating pixel array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Julian; Tate, Mark W.; Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Purohit, Prafull [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Chamberlain, Darol [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.

  9. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K., E-mail: bill@xia.com [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Harris, J.T. [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Friedrich, S. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100–2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays – currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I–V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  10. A general technique for characterizing x-ray position sensitive arrays

    International Nuclear Information System (INIS)

    Dufresne, E.; Bruning, R.; Sutton, M.; Stephenson, G.B.

    1994-03-01

    We present a general statistical technique for characterizing x-ray sensitive linear diode arrays and CCD arrays. We apply this technique to characterize the response of a linear diode array, Princeton Instrument model X-PDA, and a virtual phase CCD array, TI 4849, to direct illumination by x-rays. We find that the response of the linear array is linearly proportional to the incident intensity and uniform over its length to within 2 %. Its quantum efficiency is 38 % for Cu K α x-rays. The resolution function is evaluated from the spatial autocorrelation function and falls to 10 % of its peak value after one pixel. On the other hand, the response of the CCD detecting system to direct x-ray exposure is non-linear. To properly quantify the scattered x-rays, one must correct for the non- linearity. The resolution is two pixels along the serial transfer direction. We characterize the noise of the CCD and propose a model that takes into account the non-linearity and the resolution function to estimate the quantum efficiency of the detector. The quantum efficiency is 20 %

  11. A high-spatial-resolution three-dimensional detector array for 30-200 keV X-rays based on structured scintillators

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis

    2008-01-01

    A three-dimensional X-ray detector for imaging 30-200 keV photons is described. It comprises a set of semi-transparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described...

  12. Cosmic ray effect on the X-ray Trigger Telescope of UFFO/Lomonosov using YSO scintillation crystal array in space

    DEFF Research Database (Denmark)

    Kim, M. B.; Jeong, S.; Jeong, H. M.

    2017-01-01

    UFFO Burst Alert and Trigger telescope (UBAT) is the X-ray trigger telescope of UFFO/Lomonosov to localize X-ray source with coded mask method and X-ray detector. Its X-ray detector is made up of 36 8×8 pixels Yttrium OxyorthoSilicate (Y2SiO5:Ce, YSO) scintillation crystal arrays and 36 64-channe...

  13. Si(Li) X-ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Li Zhiyong; Hong Xiuse

    1990-08-01

    The fabrication technology of the 10∼80 mm 2 Si(Li) X-ray detectors are described and some problems concerning technology and measurement are discussed. The specifications of the detectors are shown as well. The Si(Li) X-ray detector is a kind of low energy X-ray detectors. Owing to very high energy resolution, fine linearity and high detection efficiency in the range of low energy X-rays, it is widely used in the fields of nuclear physics, medicine, geology and environmental protection, etc,. It is also a kernel component for the scanning electron microscope and X-ray fluorescence analysis systems

  14. Digital signal processors for cryogenic high-resolution x-ray detector readout

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Bechstein, Sylke; Hennig, Wolfgang; Momayezi, Michael

    2003-01-01

    We are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer online filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. We discuss DSP performance with our 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy. (author)

  15. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  16. Analysis of the charge collection process in solid state X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Nils

    2009-02-12

    Physics with X-rays spans from observing large scales in X-ray astronomy down to small scales in material structure analyses with synchrotron radiation. Both fields of research require imaging detectors featuring spectroscopic resolution for X-rays in an energy range of 0.1 keV to 20.0 keV. Originally driven by the need for an imaging spectrometer on ESA's X-ray astronomy satellite mission XMM-Newton, X-ray pnCCDs were developed at the semiconductor laboratory of the Max-Planck-Institute. The pnCCD is a pixel array detector made of silicon. It is sensitive over a wide band from near infrared- over optical- and UV-radiation up to X-rays. This thesis describes the dynamics of signal electrons from the moment after their generation until their collection in the potential minima of the pixel structure. Experimentally, a pinhole array was used to scan the pnCCD surface with high spatial resolution. Numerical simulations were used as a tool for the modeling of the electrical conditions inside the pnCCD. The results predicted by the simulations were compared with the measurements. Both, experiment and simulation, helped to establish a model for the signal charge dynamics in the energy range from 0.7 keV to 5.5 keV. More generally, the presented work has enhanced the understanding of the detector system on the basis of a physical model. The developed experimental and theoretical methods can be applied to any type of array detector which is based on the full depletion of a semiconductor substrate material. (orig.)

  17. Analysis of the charge collection process in solid state X-ray detectors

    International Nuclear Information System (INIS)

    Kimmel, Nils

    2009-01-01

    Physics with X-rays spans from observing large scales in X-ray astronomy down to small scales in material structure analyses with synchrotron radiation. Both fields of research require imaging detectors featuring spectroscopic resolution for X-rays in an energy range of 0.1 keV to 20.0 keV. Originally driven by the need for an imaging spectrometer on ESA's X-ray astronomy satellite mission XMM-Newton, X-ray pnCCDs were developed at the semiconductor laboratory of the Max-Planck-Institute. The pnCCD is a pixel array detector made of silicon. It is sensitive over a wide band from near infrared- over optical- and UV-radiation up to X-rays. This thesis describes the dynamics of signal electrons from the moment after their generation until their collection in the potential minima of the pixel structure. Experimentally, a pinhole array was used to scan the pnCCD surface with high spatial resolution. Numerical simulations were used as a tool for the modeling of the electrical conditions inside the pnCCD. The results predicted by the simulations were compared with the measurements. Both, experiment and simulation, helped to establish a model for the signal charge dynamics in the energy range from 0.7 keV to 5.5 keV. More generally, the presented work has enhanced the understanding of the detector system on the basis of a physical model. The developed experimental and theoretical methods can be applied to any type of array detector which is based on the full depletion of a semiconductor substrate material. (orig.)

  18. 4H-SiC Schottky diode arrays for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Chan, H.K. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Gohil, T. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Vassilevski, K.V.; Wright, N.G.; Horsfall, A.B. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Barnett, A.M. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2016-12-21

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm{sup 2} at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  19. New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy

    Science.gov (United States)

    Kilbourne, Caroline

    We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.

  20. High-speed x-ray imaging with the Keck pixel array detector (Keck PAD) for time-resolved experiments at synchrotron sources

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY (United States); Chamberlain, Darol; Gruner, Sol M. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY (United States)

    2016-07-27

    Modern storage rings are readily capable of providing intense x-ray pulses, tens of picoseconds in duration, millions of times per second. Exploiting the temporal structure of these x-ray sources opens avenues for studying rapid structural changes in materials. Many processes (e.g. crack propagation, deformation on impact, turbulence, etc.) differ in detail from one sample trial to the next and would benefit from the ability to record successive x-ray images with single x-ray sensitivity while framing at 5 to 10 MHz rates. To this end, we have pursued the development of fast x-ray imaging detectors capable of collecting bursts of images that enable the isolation of single synchrotron bunches and/or bunch trains. The detector technology used is the hybrid pixel array detector (PAD) with a charge integrating front-end, and high-speed, in-pixel signal storage elements. A 384×256 pixel version, the Keck-PAD, with 150 µm × 150 µm pixels and 8 dedicated in-pixel storage elements is operational, has been tested at CHESS, and has collected data for compression wave studies. An updated version with 27 dedicated storage capacitors and identical pixel size has been fabricated.

  1. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  2. Cooled CdZnTe detectors for X-ray astronomy

    CERN Document Server

    Bale, G; Seller, P; Lowe, B

    1999-01-01

    Recent results combining thermoelectrically cooled CdZnTe detectors with a low-noise Pentafet preamplifier are presented. Cooling between -30 deg. C and -40 deg. C reduces the leakage current of the detectors and allows the use of a pulsed reset preamplifier and long shaping times, significantly improving the energy resolution. Mn K subalpha X-rays at 5.9 keV have been observed with a resolution of less than 280 eV FWHM and a peak to background of more than 200:1. The Fano factor of the material has been estimated at 0.11+-0.012 at -40 deg. C. The detector requirement for X-ray astronomy will be a photon-counting imaging spectrometer. A 16x16 element, bump bonded pixel detector is described and results from a prototype silicon array presented. The detector is constructed with ASIC amplifiers with a system noise of <25 electrons rms and should give an energy resolution comparable to the Pentafet results presented here.

  3. Segmented Monolithic Germanium Detector Arrays for X-ray Absorption Spectroscopy. Final Report

    International Nuclear Information System (INIS)

    Hull, Ethan L.

    2011-01-01

    The experimental results from the Phase I effort were extremely encouraging. During Phase I PHDs Co. made the first strides toward a new detector technology that could have great impact on synchrotron x-ray absorption (XAS) measurements, and x-ray detector technology in general. Detector hardware that allowed critical demonstration measurements of our technology was designed and fabricated. This new technology allows good charge collection from many pixels on a single side of a multi-element monolithic germanium planar detector. The detector technology provides 'dot-like' collection electrodes having very low capacitance. The detector technology appears to perform as anticipated in the Phase I proposal. In particular, the 7-pixel detector studied showed remarkable properties; making it an interesting example of detector physics. The technology is enabled by the use of amorphous germanium contact technology on germanium planar detectors. Because of the scalability associated with the fabrication of these technologies at PHDs Co., we anticipate being able to supply larger detector systems at significantly lower cost than systems made in the conventional manner.

  4. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  5. CCD-based X-ray detectors for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Ito, K.; Amemiya, Y.

    1999-01-01

    CCD-based X-ray detectors are getting to be used for X-ray diffraction studies especially in the studies where real time (automated) measurements and time-resolved measurements are required. Principles and designs of two typical types of CCD-based detectors are described; one is ths system in which x-ray image intensifiers are coupled to maximize the detective quantum efficiency for time-resolved measurements, and the other is the system in which tapered optical fibers are coupled for the reduction of the image into the CCD, which is optimized for automated measurements for protein crystallography. These CCD-based X-ray detectors have an image distortion and non-uniformity of response to be corrected by software. Correction schemes which we have developed are also described. (author)

  6. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    An overview is given of the different types of position-sensitive X-ray detectors used in kinetic studies of biological molecule state changes using X-ray diffraction with synchrotron radiation as a probe. The detector requirements and principles of operation of proportional counters are outlined. Multiwire proportional chamber systems and their readout techniques are described. Other detectors discussed include a drift chamber type detector, microchannel plates, charge-couple devices and, for high count rates, an integrating TV-detector. (U.K.)

  7. Detector unit for X-ray diagnosis

    International Nuclear Information System (INIS)

    Svobodova, B.; Hamouz, J.; Pavlicek, Z.; Jursova, L.; Pohanka, J.

    1983-01-01

    The detector unit is applied in the medical and industrial X-ray diagnosis and analysis. It controls the X-ray dosing by exposure and brightness automation. The detector field is generated from a carrier, in which detector elements with light quides are situated, tapped on optical detectors with level converters outside the detector field. The detector field and the optical detectors with level converters are located in a light-resistent shell. This arrangement of the detector unit allows to use the impulse skiascopy instead of permanent X-ray examinations or the skiagraphy with multienergy levels which considerably improves the diagnostic value of the exposures and the working conditions. 1 cl., 1 fig

  8. Two dimensional CCD [charged coupled device] arrays as parallel detectors in electron energy loss and x-ray wavelength dispersive spectroscopy

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1988-08-01

    Parallel detection systems for spectroscopy have generally been based upon linear detector arrays. Replacing the linear arrays with two dimensional systems yields more complicated devices; however, there are corresponding benefits which can be realized for both x-ray and electron energy loss spectroscopy. The operational design of these systems, as well as preliminary results from the construction of such a device used for electron spectroscopy, are presented. 10 refs., 8 figs

  9. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  10. Gated x-ray detector for the National Ignition Facility

    International Nuclear Information System (INIS)

    Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal

    2006-01-01

    Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections

  11. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    International Nuclear Information System (INIS)

    Ulbricht, Gerhard; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-01-01

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV

  12. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, Gerhard, E-mail: ulbricht@physics.ucsb.edu; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Bumble, Bruce [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91125 (United States)

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  13. Development of Ta-based Superconducting Tunnel Junction X-ray Detectors for Fluorescence XAS

    International Nuclear Information System (INIS)

    Friedrich, S.; Drury, O.; Hall, J.; Cantor, R.

    2009-01-01

    We are developing superconducting tunnel junction (STJ) soft X-ray detectors for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS). Our 36-pixel Nb-based STJ spectrometer covers a solid angle (Omega)/4π ∼ 10 -3 , offers an energy resolution of ∼10-20 eV FWHM for energies up to ∼1 keV, and can be operated at total count rates of ∼10 6 counts/s. For increased quantum efficiency and cleaner response function, we have now started the development of Ta-based STJ detector arrays. Initial devices modeled after our Nb-based STJs have an energy resolution below 10 eV FWHM for X-ray energies below 1 keV, and pulse rise time discrimination can be used to improve their response function for energies up to several keV. We discuss the performance of the Ta-STJs and outline steps towards the next-generation of large STJ detector arrays with higher sensitivity.

  14. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...... (P) along a first axis, a plurality of drift electrodes, a readout circuitry being configured to read out signals from the plurality of detector electrodes and a processing unit connected to the readout circuitry and being configured to detect an event in the converter element. The readout circuitry...... is further configured to read out signals from the plurality of drift electrodes, and the processing unit is further configured to estimate a location of the event along the first axis by processing signals obtained from both the detector electrodes and the drift electrodes, the location of the event along...

  15. X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector

    CERN Document Server

    Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J

    1999-01-01

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...

  16. Position sensitive X-ray or X-ray detector and 3-D-tomography using same

    International Nuclear Information System (INIS)

    1975-01-01

    A fan-shaped beam of penetrating radiation, such as X-ray or γ-ray radiation, is directed through a slice of the body to be analyzed into a position sensitive detector for deriving a shadowgraph of transmission or absorption of the penetrating radiation by the body. A number of such shadowgraphs are obtained for different angles of rotation of the fan-shaped beam relative to the center of the slice being analyzed. The detected fan beam shadowgraph data is reordered into shadowgraph data corresponding to sets of parallel paths of radiation through the body. The reordered parallel path shadowgraph data is then convoluted in accordance with a 3-D reconstruction method by convolution in a computer to derive a 3-D reconstructed tomograph of the body under analysis. In a preferred embodiment, the position sensitive detector comprises a multiwire detector wherein the wires are arrayed parallel to the direction of the divergent penetrating rays to be detected. A focussed grid collimator is interposed between the body and the position sensitive detector for collimating the penetrating rays to be detected. The source of penetrating radiation is preferably a monochromatic source

  17. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    Science.gov (United States)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and

  18. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  19. Gas position sensitive x-ray detectors

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1994-12-01

    The construction of gas x-ray detectors used to count and localize x-ray photons in one and two dimensions is reported. The principles of operation of the detectors are described, as well as the electronic modules comprised in the data acquisition system. Results obtained with detectors built at CBPF are shown, illustrating the performance of the Linear Position Sensitive Detectors. (author). 6 refs, 14 figs

  20. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

    OpenAIRE

    D. L. Fehl; G. A. Chandler; W. A. Stygar; R. E. Olson; C. L. Ruiz; J. J. Hohlfelder; L. P. Mix; F. Biggs; M. Berninger; P. O. Frederickson; R. Frederickson

    2010-01-01

    An algorithm for spectral reconstructions (unfolds) and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD) is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA), and serves as both a plasma probe and a gauge of accelerato...

  1. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  2. An x-ray detector using superconducting aluminum tunnel junctions

    International Nuclear Information System (INIS)

    Barber, W.C.; Bland, R.W.; Carpenter, J.W.; Johnson, R.T.; Laws, K.E.; Lockhart, J.; Lee, J.S.; Watson, R.M.

    1992-01-01

    We report on tests of a prototype detector for 6-keV X-rays, using series arrays of tunnel junction. Tests with higher-energy particles indicate an energy resolution of 4 keV, at 0.3K and with a warm pre-amp. At lower temperatures and with a cooled FET, the resolution should approach 100 eV

  3. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  4. Small area silicon diffused junction x-ray detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm 2 and a thickness of 100 μm. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150 0 K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs

  5. Small area silicon diffused junction X-ray detectors

    Science.gov (United States)

    Walton, J. T.; Pehl, R. H.; Larsh, A. E.

    1982-01-01

    The low-temperature performance of silicon diffused junction detectors in the measurement of low energy X-rays is reported. The detectors have an area of 0.04 sq cm and a thickness of 100 microns. The spectral resolutions of these detectors were found to be in close agreement with expected values, indicating that the defects introduced by the high-temperature processing required in the device fabrication were not deleteriously affecting the detection of low-energy X-rays. Device performance over a temperature range of 77 K to 150 K is given. These detectors were designed to detect low-energy X-rays in the presence of minimum ionizing electrons. The successful application of silicon-diffused junction technology to X-ray detector fabrication may facilitate the development of other novel silicon X-ray detector designs.

  6. Computerized tomographic x-ray scanner system and gantry assembly

    International Nuclear Information System (INIS)

    Doyd, D.P.; Lanzara, G.

    1991-01-01

    This patent describes a scanner assembly. It comprises: a support head, a C-shaped gantry, means for supporting the gantry in the support head for rotating movement, an x-ray source mounted on one side of the gantry for independent movement with respect to a detector array along the gantry, the x-ray source projecting x-rays across the gantry, and a detector array mounted on the other side of a gantry for independent movement with respect to the x-ray source along the gantry, the detector array serving to receive the projected x-rays

  7. Charge collection and absorption-limited x-ray sensitivity of pixellated x-ray detectors

    International Nuclear Information System (INIS)

    Kabir, M. Zahangir; Kasap, S.O.

    2004-01-01

    The charge collection and absorption-limited x-ray sensitivity of a direct conversion pixellated x-ray detector operating in the presence of deep trapping of charge carriers is calculated using the Shockley-Ramo theorem and the weighting potential of the individual pixel. The sensitivity of a pixellated x-ray detector is analyzed in terms of normalized parameters; (a) the normalized x-ray absorption depth (absorption depth/photoconductor thickness), (b) normalized pixel width (pixel size/thickness), and (c) normalized carrier schubwegs (schubweg/thickness). The charge collection and absorption-limited sensitivity of pixellated x-ray detectors mainly depends on the transport properties (mobility and lifetime) of the charges that move towards the pixel electrodes and the extent of dependence increases with decreasing normalized pixel width. The x-ray sensitivity of smaller pixels may be higher or lower than that of larger pixels depending on the rate of electron and hole trapping and the bias polarity. The sensitivity of pixellated detectors can be improved by ensuring that the carrier with the higher mobility-lifetime product is drifted towards the pixel electrodes

  8. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  9. Development of X-ray detector based on phototransistor

    International Nuclear Information System (INIS)

    Ramacos Fardela; Kusminarto

    2014-01-01

    X-ray interaction with matter can produce phenomenon of fluorescence that emits visible light. This phenomenon has been exploited to design an X-ray detector based on photo transistor by attaching a screen ZnS(Ag) on the surface of the photo transistor which is arranged in a Darlington circuit. Response of detector was done by collimating of X-rays beam from the X-ray generator tube Philips 2000 watts, 60 kV type PW 2215/20 NR 780 026 and measure the detector output voltage (V out ). Varying the current by 5, 10, 15, 20, 25, 30, 35 and 40 mA in the X-ray panel. The experimental results showed that the Darlington circuit can be applied to design the detector of X-ray based on phototransistor. The results show that there is a linear relationship between the change in the intensity of X-ray detectors with voltage output phototransistor when it was closed with fluorescence materials ZnS(Ag), the linearity coefficient was R 2 = 0.99. Sensitivity of detector was obtained to be 3.7 x 10 -2 mV per cpm. (author)

  10. Large area x-ray detectors for cargo radiography

    Science.gov (United States)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  11. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  12. X-ray focusing using capillary arrays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Chapman, H.N.

    1990-01-01

    A new form of X-ray focusing device based on glass capillary arrays is presented. Theoretical and experimental results for array of circular capillaries and theoretical and computational results for square hole capillaries are given. It is envisaged that devices such as these will find wide applications in X-ray optics as achromatic condensers and collimators. 3 refs., 4 figs

  13. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  14. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  15. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics

    Science.gov (United States)

    Bandler, Simon

    The "X-ray Surveyor" has been listed by NASA as one of the four major large mission concepts to be studied in the next Astrophysics Decadal Review in its preliminary list of large concepts. One of the key instruments on such a mission would be a very large format X-ray microcalorimeter array, with an array size of greater than 100 thousand pixels. Magnetically-coupled microcalorimeters (MCC) are one of the technologies with the greatest potential to meet the requirements of this mission, and this proposal is one to carry out research specifically to reach the goals of this vision. The "X-ray Surveyor" is a concept for a future mission that will make X-ray observations that are instrumental to understanding the quickly emerging population of galaxies and supermassive black holes at z ~10. The observations will trace the formation of galaxies and their assembly into large-scale structures starting from the earliest possible epochs. This mission would be observing baryons and large-scale physical processes outside of the very densest regions in the local Universe. This can be achieved with an X-ray observatory with similar angular resolution as Chandra but with significantly improved optic area and detector sensitivity. Chandra-scale angular resolution (1" or better) is essential in building more powerful, higher throughput observatories to avoid source confusion and remain photon-limited rather than background-limited. A prime consideration for the microcalorimeter camera on this type of mission is maintaining ~ 1 arcsec spatial resolution over the largest possible field of view, even if this means a slight trade-off against the spectral resolution. A uniform array of 1" pixels covering at least 5'x5' field of view is desired. To reduce the number of sensors read out, in geometries where extremely fine pitch (~50 microns) is desired, the most promising technologies are those in which a thermal sensor such an MCC can read out a sub-array of 20-25 individual 1'

  16. Ultrafast secondary emission x-ray imaging detectors

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Majewski, S.

    1991-07-01

    Fast high accuracy, x-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electron emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantage of solid x-ray detectors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanoseconds) response. These x-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation,with a reduced dE/dx background. We present experimental results on the operation of the secondary emission x-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors based on CsI transition radiation convertors. (author)

  17. The digital flat-panel X-Ray detectors

    International Nuclear Information System (INIS)

    Risticj, S. Goran

    2013-01-01

    In a digital imaging system, the incident x-ray image must be sampled both in the spatial and intensity dimensions. In the spatial dimensions, samples are obtained as averages of the intensity over picture elements or pixels. In the intensity dimension, the signal is digitalized into one of a finite number of levels or bits. Two main types of digital flat-panel detectors are based on the direct conversion, which contains the photoconductor, and on indirect conversion, which contains phosphor. The basics of these detectors are given. Coupling traditional x-ray detection material such as photoconductors and phosphors with a large-area active-matrix readout structure forms the basis of flat panel x-ray images. Active matrix technology provides a new, highly efficient, real time method for electronically storing and measuring the product of the x-ray interaction stage whether the product is visible wavelength photons or electrical charges. The direct and indirect detectors, made as the active-matrix flat-panel detectors containing sensing/storage elements, switching elements (diodes or thin film transistors (TFTS)) and image processing module, are described. Strengths and limitations of stimulable phosphors are discussed. The main advantages and disadvantages of mentioned x-ray detectors are also analyzed. (Author)

  18. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    International Nuclear Information System (INIS)

    FEHL, DAVID LEE; BIGGS, F.; CHANDLER, GORDON A.; STYGAR, WILLIAM A.

    2000-01-01

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ((le)2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model

  19. Low-energy CZT detector array for the ASIM mission

    DEFF Research Database (Denmark)

    Cenkeramaddi, Linga Reddy; Genov, Georgi; Kohfeldt, Anja

    2012-01-01

    In this article we introduce the low-energy CZT (CdZnTe) 16 384-pixel detector array on-board the Atmosphere Space Interaction Monitor (ASIM), funded by the European Space Agency. This detector is a part of the larger Modular X-and Gamma-ray sensor (MXGS). The CZT detector array is sensitive...... to photons with energies between 15 keV and 400 keV. The principal objective of the MXGS instrument is to detect Terrestrial Gamma ray Flashes (TGFs), which are related to thunderstorm activity. The concept of the detector array is presented, together with brief descriptions of its mechanical structure...

  20. A VXI-based high speed x-ray CCD detector

    International Nuclear Information System (INIS)

    Huang, Qiang; Hopf, R.; Rodricks, B.

    1993-01-01

    For time-resolved x-ray scattering, one ideally wants a high speed detector that also is capable of giving position sensitive information. Charge Coupled Devices (CCDS) have been used successfully as x-ray detectors. Unfortunately, they are inherently slow because of the serial readout EEV has developed a CCD that has eight channels of parallel readout, thus increasing the speed eight fold. Using state-of-the-art VXI electronics, we have developed a readout system that could read the entire array in 2.5 ms using a 20-MHz readout clock. For testing and characterization the device was clocked at a significantly slower speed of 30 kHz. The data is preamplified and all eight channels of output are simultaneously digitized to 12 bits and stored in buffer memory. The system is controlled by a 486-based PC through an MXI bus and VXI controller using commercially available software. The system is also capable of real-time image display and manipulation

  1. Local polarization phenomena in In-doped CdTe x-ray detector arrays

    International Nuclear Information System (INIS)

    Sato, Toshiyuki; Sato, Kenji; Ishida, Shinichiro; Kiri, Motosada; Hirooka, Megumi; Yamada, Masayoshi; Kanamori, Hitoshi

    1995-01-01

    Local polarization phenomena have been studied in detector arrays with the detector element size of 500 microm x 500 microm, which are fabricated from high-resistivity In-doped CdTe crystals grown by the vertical Bridgman technique. It has been found for the first time that a polarization effect, which is characterized by a progressive decrease of the pulse counting rate with increasing photon fluence, strongly depends on the detector elements, that is, the portion of crystals used. The influence of several parameters, such as the applied electric field strength, time, and temperature, on this local polarization effect is also investigated. From the photoluminescence measurements of the inhomogeneity of In dopant, it is concluded that the local polarization effect observed here originates from a deep level associated with In dopant in CdTe crystals

  2. Hight resolution Si(Li) X ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Huang Naizhang; Lin Maocai; Li Zhiyong

    1985-01-01

    This paper describes the fabrication technology of GL1221 type Si(Li) X ray detector core and the pulse light feedback colded preamplifier fitted on the detector. The energy resolution of the detector system is 165 eV (At 5.89 KeV Mn-K α X ray); the counting rate is 1020 cps, and the electronics noise is 104 eV. The performace of the detector keeps up with the business level of a foreign product of the same kind

  3. CdTe and CdZnTe detectors behavior in X-ray computed tomography conditions

    CERN Document Server

    Ricq, S; Garcin, M

    2000-01-01

    The application of CdTe and CdZnTe 2D array detectors for medical X-ray Computed Tomography (XCT) is investigated. Different metallic electrodes have been deposited on High-Pressure Bridgman Method CdZnTe and on Traveling Heater Method CdTe:Cl. These detectors are exposed to X-rays in the CT irradiation conditions and are characterized experimentally in current mode. Detectors performances such as sensitivity and response speed are studied. They are correlated with charge trapping and de-trapping. The trapped carrier space charges may influence the injection from the electrodes. This enables one to get information on the nature of the predominant levels involved. The performances achieved are encouraging: dynamic ranges higher than 4 decades and current decreases of 3 decades in 4 ms after X-ray beam cut-off are obtained. Nevertheless, these detectors are still limited by high trap densities responsible for the memory effect that makes them unsuitable for XCT.

  4. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  5. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  6. Photon counting and energy discriminating X-ray detectors. Benefits and applications

    International Nuclear Information System (INIS)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe

    2016-01-01

    Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging.

  7. Applications for X-ray detectors in astrophysics

    International Nuclear Information System (INIS)

    Remillard, R.A.

    2003-01-01

    Full text: Position-sensitive X-Ray detectors continue to playa central role in high-energy astrophysics. The current science goals are reviewed with emphasis on requirements in terms of camera performance. Wide-field imaging techniques, including coded mask cameras, are an essential part of space programs because of the transient nature of high-priority targets, e.g. eruptions from black-hole binaries and cosmic explosions such as gamma ray bursts. Pointing X-ray telescopes are being planned with a wide range of photon energies and with collection designs that include both mirrors and coded masks. Requirements for high spectral resolution and high time resolution are driven by diverse types of X-ray sources such as msec pulsars, quasars with emission-line profiles shaped by general relativity, and X-ray binaries that exhibit quasi-periodic oscillations in the range of 40-1300 Hz. Many laboratories and universities are involved in space-qualification of new detector technologies, e.g. CZT cameras, X-ray calorimeters, new types of CCDs, and GEM detectors. Even X-ray interferometry is on the horizon of NASA's science roadmap. The difficulties in advancing new technologies for space science applications require careful coordinations between industry and science groups in order to solve science problems while minimizing risk

  8. Thermally stimulated investigations on diamond X-Ray detectors

    International Nuclear Information System (INIS)

    Tromson, D.; Bergonzo, P.; Brambilla, A.; Mer, C.; Foulon, F.; Amosov, V.N.

    1999-01-01

    Intrinsic diamond material is increasingly used for the fabrication of radiation detectors. However, the presence of inherent defects has a strong impact on the detector characteristics such as the time dependent stability of the detection signal. In order to draw better insights into this effect, comparative investigations of the X-ray responses with thermally stimulated current (TSC) measurements were carried out on natural diamond detectors. TSC revealed the presence of four peaks or shoulders on natural samples in the 200 to 500 K domain. Three energy levels were identified at about 0.7, 0.71 and 0.95 eV. Time dependent X-ray detector sensitivity was investigated for various initial conditions. The results give evidence of the improvement of the detection properties after having filled traps in the material by X-ray irradiation. The comparison between the X-ray response and the TSC spectra indicate that trapping levels emptied at room temperature appear to significantly affect the performance of radiation detectors. (authors)

  9. X-ray imaging bilinear staggered GaAs detectors

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A.; Dvoryankin, V.F. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A

    2004-09-21

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 {mu}A min/(Gy cm{sup 2}). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received.

  10. X-ray imaging bilinear staggered GaAs detectors

    International Nuclear Information System (INIS)

    Achmadullin, R.A.; Dvoryankin, V.F.; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A.

    2004-01-01

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 μA min/(Gy cm 2 ). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received

  11. Detectors for X-ray diffraction and scattering: a user's overview

    International Nuclear Information System (INIS)

    Bruegemann, Lutz; Gerndt, E.K.E.

    2004-01-01

    An overview of the applications of X-ray detectors to material research is given. Four experimental techniques and their specific detector requirements are described. Detector types are classified and critical parameters described in the framework of X-ray diffraction and X-ray scattering experiments. The article aims at building a bridge between detector end-users and detector developers. It gives limits of critical detector parameters, like angular resolution, energy resolution, dynamic range, and active area

  12. Flat-panel detectors in x-ray diagnosis

    International Nuclear Information System (INIS)

    Spahn, M.; Heer, V.; Freytag, R.

    2003-01-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography, mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method.For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications.Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography.Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods. (orig.) [de

  13. The one- and two-coordinate x-ray detectors

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Baru, S.E.; Khabakhpashev, A.G.; Savinov, G.A.

    1992-01-01

    The Institute of Nuclear Physics has designed and fabricated one- and two-coordinate x-ray detectors since 1975. For photon detection multiwire proportional chambers that operate in direct pulse count mode are employed. The characteristics of the detectors allow successful use of them for a wide range of diffractive x-ray structure studies, including studies of dynamics of structure variation (x-ray diffractive movies) and measurements at synchrotron radiation channels

  14. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    Science.gov (United States)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  15. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    Energy Technology Data Exchange (ETDEWEB)

    Gottardi, L., E-mail: l.gottardi@sron.nl [SRON Netherlands Institute for Space Research, Utrecht (Netherlands); Akamatsu, H.; Bruijn, M.P.; Hartog, R. den; Herder, J.-W. den; Jackson, B. [SRON Netherlands Institute for Space Research, Utrecht (Netherlands); Kiviranta, M. [VTT, Espoo (Finland); Kuur, J. van der; Weers, H. van [SRON Netherlands Institute for Space Research, Utrecht (Netherlands)

    2016-07-11

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3–12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum efficiency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-of-the art of the FDM read-out.

  16. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  17. An x-ray detector for time-resolved studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.; Clarke, R.; Lowe, W.

    1992-01-01

    The development of ultrahigh-brightness x-ray sources makes time-resolved x-ray studies more and more feasible. Improvements in x-ray optics components are also critical for obtaining the appropriate beam for a particular type of experiment. Moreover, fast parallel detectors will be essential in order to exploit the combination of high intensity x-ray sources and novel optics for time-resolved experiments. A CCD detector with a time resolution of microseconds has been developed at the Advanced Photon Source (APS). This detector is fully programmable using CAMAC electronics and a Micro Vax computer. The techniques of time-resolved x-ray studies, which include scattering, microradiography, microtomography, stroboscopy, etc., can be applied to a range of phenomena (including rapid thermal annealing, surface ordering, crystallization, and the kinetics of phase transition) in order to understand these time-dependent microscopic processes. Some of these applications will be illustrated by recent results performed at synchrotrons. New powerful x-ray sources now under construction offer the opportunity to apply innovative approaches in time-resolved work

  18. Conference on physics from large {gamma}-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    The conference on {open_quotes}Physics from Large {gamma}-ray Detector Arrays{close_quotes} is a continuation of the series of conferences that have been organized every two years by the North American Heavy-ion Laboratories. The aim of the conference this year was to encourage discussion of the physics that can be studied with such large arrays. This volume is the collected proceedings from this conference. It discusses properties of nuclear states which can be created in heavy-ion reactions, and which can be observed via such detector systems.

  19. In-flight performance of the soft x-ray spectrometer detector system on Astro-H

    Science.gov (United States)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kilbourne, Caroline Anne; Leutenegger, Maurice A.; McCammon, Daniel; Mitsuda, Kazuhisa; Sato, Kosuke; Seta, Hiromi; Sawada, Makoto; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tashiro, Makoto S.; Tsujimoto, Masahiro; Watanabe, Tomomi; Yamada, Shinya

    2018-01-01

    The soft x-ray spectrometer (SXS) instrument was launched aboard the Astro-H (Hitomi) observatory on February 17, 2016. The SXS is based on a high-sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and suborbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In preflight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous bandpass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anticoincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain stability and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7-eV FWHM at 6-keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here, we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in preflight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  20. Tutorial on X-ray photon counting detector characterization.

    Science.gov (United States)

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  1. Design of a linear detector array unit for high energy x-ray helical computed tomography and linear scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Tae; Park, Jong Hwan; Kim, Gi Yoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Dong Geun [Medical Imaging Department, ASTEL Inc., Seongnam (Korea, Republic of); Park, Shin Woong; Yi, Yun [Dept. of Electronics and Information Eng, Korea University, Seoul (Korea, Republic of); Kim, Hyun Duk [Research Center, Luvantix ADM Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    A linear detector array unit (LdAu) was proposed and designed for the high energy X-ray 2-d and 3-d imaging systems for industrial non-destructive test. Specially for 3-d imaging, a helical CT with a 15 MeV linear accelerator and a curved detector is proposed. the arc-shape detector can be formed by many LdAus all of which are arranged to face the focal spot when the source-to-detector distance is fixed depending on the application. An LdAu is composed of 10 modules and each module has 48 channels of CdWO{sub 4} (CWO) blocks and Si PIn photodiodes with 0.4 mm pitch. this modular design was made for easy manufacturing and maintenance. through the Monte carlo simulation, the CWO detector thickness of 17 mm was optimally determined. the silicon PIn photodiodes were designed as 48 channel arrays and fabricated with NTD (neutron transmutation doping) wafers of high resistivity and showed excellent leakage current properties below 1 nA at 10 V reverse bias. to minimize the low-voltage breakdown, the edges of the active layer and the guard ring were designed as a curved shape. the data acquisition system was also designed and fabricated as three independent functional boards; a sensor board, a capture board and a communication board to a Pc. this paper describes the design of the detectors (CWO blocks and Si PIn photodiodes) and the 3-board data acquisition system with their simulation results.

  2. Radiation detectors of PIN type for X-rays

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, F.J.

    2003-01-01

    In this laboratory session, tree experiments are proposed: the measurement of X-ray energy spectra from radioactive sources with a high resolution cooled Si-Li detector, with a room temperature PIN diode and the measurement of the response of a PIN diode to the intensity of X-rays of radio-diagnostic units. The spectra obtained with the Si-Li detector help to understand the energy distribution of X-rays and are used as a reference to compare the results obtained with the PIN diode. Measurements in medical X-ray machines are proposed. Low cost, simple electronic instruments and systems are used as tools to make measurements in X-ray units used in radio-diagnostic

  3. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a scientific assessment of the observational capabilities in the hard X-ray band

    Science.gov (United States)

    D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.

    2017-12-01

    ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.

  4. Characterization of an x-ray hybrid CMOS detector with low interpixel capacitive crosstalk

    OpenAIRE

    Griffith, Christopher V.; Bongiorno, Stephen D.; Burrows, David N.; Falcone, Abraham D.; Prieskorn, Zachary R.

    2012-01-01

    We present the results of x-ray measurements on a hybrid CMOS detector that uses a H2RG ROIC and a unique bonding structure. The silicon absorber array has a 36{\\mu}m pixel size, and the readout array has a pitch of 18{\\mu}m; but only one readout circuit line is bonded to each 36x36{\\mu}m absorber pixel. This unique bonding structure gives the readout an effective pitch of 36{\\mu}m. We find the increased pitch between readout bonds significantly reduces the interpixel capacitance of the CMOS ...

  5. Calorimetric low - temperature detectors for high resolution X-ray spectroscopy on stored highly stripped heavy ions

    International Nuclear Information System (INIS)

    Bleile, A.; Egelhof, P.; Kraft, S.; Meier, H.J.; Shrivastava, A.; Weber, M.; McCammon, D.; Stahle, C.K.

    2001-09-01

    The accurate determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman-α transitions in 208 Pb 81+ or 238 U 91+ with sufficient accuracy, a high resolution calorimetric detector for hard X-rays (E ≤ 100 keV) is presently being developed. The detector modules consist of arrays of silicon thermistors and of X-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3 He/ 4 He dilution refrigerator with a side arm which fits to the internal target geometry of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.2 mm 2 x 47 μm Pb absorber an energy resolution of ΔE FWHM = 65 eV is obtained for 60 keV X-rays. (orig.)

  6. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  7. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  8. X-ray detectors based on image sensors

    International Nuclear Information System (INIS)

    Costa, A.P.R.

    1983-01-01

    X-ray detectors based on image sensors are described and a comparison is made between the advantages and the disadvantages of such a kind of detectors with the position sensitive detectors. (L.C.) [pt

  9. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    Science.gov (United States)

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  10. Monte Carlo simulation of the imaging properties of scintillator-coated X-ray pixel detectors

    International Nuclear Information System (INIS)

    Hjelm, M.; Norlin, B.; Nilsson, H.-E.; Froejdh, C.; Badel, X.

    2003-01-01

    The spatial resolution of scintillator-coated X-ray pixel detectors is usually limited by the isotropic light spread in the scintillator. One way to overcome this limitation is to use a pixellated scintillating layer on top of the semiconductor pixel detector. Using advanced etching and filling techniques, arrays of CsI columns have been successfully fabricated and characterized. Each CsI waveguide matches one pixel of the semiconductor detector, limiting the spatial spread of light. Another concept considered in this study is to detect the light emitted from the scintillator by diodes formed in the silicon pore walls. There is so far no knowledge regarding the theoretical limits for these two approaches, which makes the evaluation of the fabrication process difficult. In this work we present numerical calculations of the signal-to-noise ratio (SNR) for detector designs based on scintillator-filled pores in silicon. The calculations are based on separate Monte Carlo (MC) simulations of X-ray absorption and light transport in scintillator waveguides. The resulting data are used in global MC simulations of flood exposures of the detector array, from which the SNR values are obtained. Results are presented for two scintillator materials, namely CsI(Tl) and GADOX

  11. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B. [Xsirius, Inc, Camarillo, CA (United States)

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  12. Imaging plate, a new type of x-ray area detector

    International Nuclear Information System (INIS)

    Kamiya, Nobuo; Amemiya, Yoshiyuki; Miyahara, Junji.

    1986-01-01

    In respective fields of X-ray crystallography, for the purpose of the efficient collection of reciprocal space information, two-dimensional X-ray detectors such as multiwire proportional chambers and X-ray television sets have been used together with conventional X-ray films. X-ray films are characterized by uniform sensitivity and high positional resolution over a wide area, but the sensitivity is low, and the range of action and the linearity of the sensitivity is problematic. They require the development process, accordingly lack promptitude. The MWPCs and X-ray television sets are superior in the sensitivity, its linearity, the range of action and promptitude, but interior in the uniformity and resolution to the films. Imaging plate is a new X-ray area detector developed by Fuji Photo Film Co., Ltd., for digital X-ray medical image diagnosis. This detector is superior in all the above mentioned performances, and it seems very useful also for X-ray crystallography. In this paper, the system composed of an imaging plate and its reader is described, and the basic performance as an X-ray area detector and the results of having recorded the diffraction images of protein crystals as the example of applying it to X-ray crystallography are reported. The imaging plate is that the crystalline fluorescent powder of BaFBr doped with Eu 2+ ions is applied on plastic films. (Kako, I.)

  13. Development of multiwire gas detectors for X-rays

    International Nuclear Information System (INIS)

    Sales, Eraldo de

    2015-01-01

    This work presents the prototype of a 2D position sensitive gas detector for application in X-ray scattering and diffraction experiments. Starting from a detector initially developed for other applications and will show the required changes on the original concept of this device. The strategy used to determine the necessary adaptations were based on searching in the literature for the overall characteristics of a multi-wire X-ray detector (choice of gas, pressure, window, etc.), the use of simulations, implementation of the changes and finally operational tests. Computational tools were used to calculate the mechanical strength and attenuation of the X-ray photons that helped to determine the most appropriate material for the construction of the entrance window. Detector simulations were built with Garfield software and were used to study the overall properties of the detector, and to determine the optimum parameters for the equipment operation. Typical parameters are the distance between the wires, wire diameter, high voltage to be used, among several other parameters. The results obtained showed that the multi-wire detector concept with the implemented adaptations allowed the detection of X-rays. However, depending on the application, it may be necessary improve the resolution of the equipment, in order to have a better description of the collected data. Several ideas are suggested for this improvement. It is also presented interesting results obtained with a microscopic pattern detector called triple GEM. This device belongs to the Gas Detectors Development group (GDD group) at CERN and was used in my training at this institution. The results showed the potential of the equipment for detection of X-rays. The results and simulations presented in this work, confirmed that the changes in the concept of the original detector permitted it use on X-ray detection applications. Also, it was possible to obtain several indications for further optimization, which may

  14. Development of an X-ray detector using surface plasmon resonance

    International Nuclear Information System (INIS)

    Kunieda, Y.; Nagashima, K.; Hasegawa, N.; Ochi, Y.

    2009-01-01

    A new X-ray detector using surface plasmon resonance (SPR) is proposed. The detector consists of a prism coated with a thin metal film and semiconductor film. Optical laser pulse induces SPR condition on the metal surface, and synchronized X-ray pulse which is absorbed into the semiconductor film can be detected by measuring the change of the resonance condition of the surface plasmon. The expected time and spatial resolution of this detector is better than that of conventional X-ray detectors by combining this SPR measurement with ultra-short laser pulse as the probe beam. Our preliminary investigation using Au and ZnSe coated prism implies this scheme works well as the detector for the ultra-short X-ray pulse.

  15. Recent developments in detectors/phantoms for dosimetry, X-ray quality assurance and imaging

    International Nuclear Information System (INIS)

    Sankaran, A.

    2009-01-01

    During the past years, many new developments have taken place in detectors/phantoms for high energy photon and electron dosimetry (for radiotherapy), protection monitoring, X-ray quality assurance and X-ray imaging (for radiodiagnosis). A variety of detectors and systems, quality assurance (QA) gadgets and special phantoms have been developed for diverse applications. This paper discusses the important developments with some of which the author was actively associated in the past. For dosimetry and QA of 60 Co and high energy X-ray units, state-of-the-art radiation field analyzers, matrix ion chambers, MOSFET devices and Gafchromic films are described. OSL detectors find wide use in radiotherapy dosimetry and provide a good alternative for personnel monitoring. New systems introduced for QA/dosimetry of X-ray units and CT scanners include: multi-function instruments for simultaneous measurement of kVp, dose, time, X-ray waveform and HVT on diagnostic X-ray units; pencil chamber with head and body phantoms for CTDI check on CT scanners. Examples of phantoms used for dosimetry and imaging are given. Advancements in the field of diagnostic X-ray imaging (with applications in portal imaging/dosimetry of megavoltage X-ray units) have led to emergence of: film-replacement systems employing CCD-scintillator arrays, computed radiography (CR) using storage phosphor plate; digital radiography (DR), using a pixel-matrix of amorphous selenium, or amorphous silicon diode coupled to scintillator. All these provide (a) in radiotherapy, accurate dose delivery to tumour, saving the surrounding tissues and (b) in radiodiagnosis, superior image quality with low patient exposure. Lastly, iPODs and flash drives are utilized for storage of gigabyte-size images encountered in medical and allied fields. Although oriented towards medical applications, some of these have been of great utility in other fields, such as industrial radiography as well as a host of other research areas. (author)

  16. VUV and ultrasoft X-ray diode detectors for tokamak plasmas

    International Nuclear Information System (INIS)

    Lee, P.; Snider, R.T.; Gernhardt, J.; Armontrout, C.J.

    1987-11-01

    Ultrasoft X-ray diode (USXRD) arrays have been used on D-IIID and ASDEX to study plasma edge radiation, in the photon energy range from 10 eV to 10 keV. The detectors are extremely useful and versatile due to their simplicity and compactness. Furthermore, absolute quantum efficiencies (QE) of many photocathodes such as vitreous C, Al, Cu CuI, CsI and Au have been measured in recent years. With filter technique, broadband resolution, E/ΔE ≅ 1, is possible. QE comparison of USXRD with semiconductor XRD is also presented to better understand the regions of applicability for each detector. (orig.)

  17. The NSLS 100 element solid state array detector

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Beren, J.; Kraner, H.W.; Rogers, L.C.; Stephani, D.; Beuttenmuller, R.H.; Cramer, S.P.

    1992-01-01

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500 000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 elements Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10 x 10 matrix of 4 mm x 4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramming memory module provide for complete diagnostics and channel calibration. The entrie instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. (orig.)

  18. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  19. X-ray imaging with the PILATUS 100k detector

    DEFF Research Database (Denmark)

    Bech, Martin; Bunk, O.; David, C.

    2008-01-01

    We report on the application of the PILATUS 100K pixel detector for medical imaging. Experimental results are presented in the form of X-ray radiographs using standard X-ray absorption contrast and a recently developed phase contrast imaging method. The results obtained with the PILATUS detector...... are compared to results obtained with a conventional X-ray imaging system consisting of an X-ray scintillation screen, lens optics, and a charge coupled device. Finally, the results for both systems are discussed more quantitatively based on an image power spectrum analysis. Udgivelsesdato: April...

  20. Modeling and design of X-rays bidimensional detectors

    International Nuclear Information System (INIS)

    Quisbert, Elmer Paz Alcon

    2000-03-01

    In this work has been developed the scintillating fiber optic and semiconductor devices based 2-D detector design, modeling and performance evaluation using Monte Carlo methods, for high X-ray energy range (10-140 kV) radiography and tomography applications. These processes allowed us, also, the imaging system parameters and components optimization and appropriate detector design. The model estimated the detectors performance parameters (DQE, MTF and SNR), and radiation risk (in terms of mean absorbed dose in the patient) and to show up how the sequence of physical processes in X-ray detection influence the performance of this imaging PFOC detectors. In this way, the modeling of the detector includes the statistics of the spatial distribution of absorbed X-rays and of X-ray to light conversion, its transmission, and the light quanta conversion into electrons. Also contributions to noise from the detection system chain is included, mainly the CCD detector ambient noise. Performance prediction, based on calculation taken from simulations, illustrates how such detectors meet the exacting requirements of some medical and industrial applications. Also, it is envisaged that our modeling procedure of the imaging system will be suitable not only for investigating how the system components should be best designed but for CT and RD system performance prediction. The powerful techniques would enable us to give advice for future development, in this field, in search of more dose-efficient imaging systems. (author)

  1. A balloon-borne solid state cosmic X-ray detector

    International Nuclear Information System (INIS)

    Proctor, R.; Pietsch, W.; Reppin, C.

    1982-01-01

    On 9th May 1980 a MPI/AIT hard X-ray balloon payload successfully observed numerous cosmic X-ray sources. The payload consisted of a 2400 cm 2 Phoswich detector and a 114 cm 2 solid state detector. The solid state detector is described in this report. It consists of six intrinsic germanium planar crystals in a vacuum cryostat cooled by liquid nitrogen. The detector operates in the hard X-ray energy range of 20-150 keV and had in-flight a mean energy resolution of 2.75 keV at 60 keV. A hexagonal molybdenum collimator defined the field of view as approximately 4 0 fwhm. A CsI(Na) and plastic active shield and passive shielding provided background rejection. Mean background values of 1.3 X 10 -3 counts/(sec x cm 2 x keV) at 60 keV were obtained. (orig.)

  2. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  3. X-ray Peltier cooled detectors for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Loupilov, A.; Sokolov, A.; Gostilo, V.

    2001-01-01

    The recent results on development of X-ray Si(Li), Si-planar and CdTe p-i-n detectors cooled by Peltier coolers for fabrication of laboratory and portable XRF analysers for different applications are discussed. Low detection limits of XRF analysers are provided by increasing of detectors sensitive surface; improvement of their spectrometrical characteristics; decreasing of front-end-electronics noise level; Peltier coolers and vacuum chambers cooling modes optimization. Solution of all mentioned tasks allowed to develop Peltier cooled detectors with the following performances: (1.) Si(Li) detectors: S=20 mm 2 , thickness=3.5 mm, 175 eV (5.9 keV), 430 eV (59.6 keV); S=100 mm 2 ; thickness=4.5 mm, 270 eV (5.9 keV), 485 eV (59.6 keV). (2.) Si-planar detector: S=10 mm 2 , thickness=0.4 mm, 230 eV (5.9 keV), 460 eV (59.6 keV). (3.) CdTe p-i-n detectors: S=16 mm 2 , thickness=0.5 mm, 350 eV (5.9 keV), 585 eV (59.6 keV). S=16 mm 2 , thickness=1.2 mm, 310 eV (5.9 keV), 600 eV (59.6 keV). Advantages and disadvantages of all types of detectors for X-ray fluorescence analysis are compared. Spectra are presented. Application of different XRF analysers based on developed detectors in medicine, environmental science, industry, cryminalistics and history of art are demonstrated

  4. X-ray Peltier cooled detectors for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Loupilov, A.; Sokolov, A.; Gostilo, V.

    2000-01-01

    The recent results on development of X-ray Si(Li), Si-planar and CdTe p-i- n detectors cooled by Peltier coolers for fabrication of laboratory and portable XRF analysers for different applications are discussed. Low detection limits of XRF analysers are provided by increasing of detectors sensitive surface; improvement of their spectrometrical characteristics; decreasing of front-end-electronics noise level; Peltier coolers and vacuum chambers cooling modes optimization. Solution of all mentioned tasks allowed to develop Peltier cooled detectors with the following performances: (1) Si(Li) detectors: S = 20 mm 2 , thickness = 3.5 mm, 175 eV (5.9 keV), 430 eV (59.6 keV); S = 100 mm 2 ; thickness = 4.5 mm, 270 eV (5.9 keV), 485 eV (59,6 keV). (2) Si-planar detector: S = 10 mm 2 , thickness = 0.4 mm, 230 eV (5.9 keV), 460 eV (59.6 keV). (3) CdTe p-i-n detectors: S = 16 mm 2 , thickness 0.5 mm, 350 eV (5.9 keV), 585 eV (59.6 keV). S = 16 mm 2 , thickness = 1.2 mm, 310 eV (5.9 keV), 600 eV (59.6 keV). Advantages and disadvantages of all types of detectors for X-ray fluorescence analysis are compared. Spectra are presented. Application of different XRF analysers based on developed detectors in medicine, environmental science, industry, criminalistics and history of art are demonstrated. (author)

  5. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  6. Flat-response x-ray-diode-detector development

    International Nuclear Information System (INIS)

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage

  7. Photovoltaic X-ray detectors based on epitaxial GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Artemov, V.V. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, 59 Leninski pr., Moscow B-333, 117333 (Russian Federation); Dvoryankin, V.F. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation)]. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Dikaev, Yu.M. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakov, M.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakova, O.N. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Chmil, V.B. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Holodenko, A.G. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Kudryashov, A.A.; Krikunov, A.I.; Petrov, A.G.; Telegin, A.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Vorobiev, A.P. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation)

    2005-12-01

    A new type of the photovoltaic X-ray detector based on epitaxial p{sup +}-n-n'-n{sup +} GaAs structures which provides a high efficiency of charge collection in the non-bias operation mode at room temperature is proposed. The GaAs epitaxial structures were grown by vapor-phase epitaxy on heavily doped n{sup +}-GaAs(1 0 0) substrates. The absorption efficiency of GaAs X-ray detector is discussed. I-V and C-V characteristics of the photovoltaic X-ray detectors are analyzed. The built-in electric field profiles in the depletion region of epitaxial structures are measured by the EBIC method. Charge collection efficiency to {alpha}-particles and {gamma}-radiation are measured. The application of X-ray detectors is discussed.

  8. Improvements in X-ray detectors

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1979-01-01

    Multicellular, spatially separate, gaseous ionization detectors for use in computerized tomography are described. They have high sensitivity, short recovery time, fine spatial resolution and are relatively insensitive to the adverse effects of k shell x-ray fluoresecence.(UK)

  9. Self-propelled x-ray flaw detector

    International Nuclear Information System (INIS)

    Ershov, L.S.; Krasilnikov, S.B.; Lozovoi, L.N.; Losev, J.F.; Morgovsky, L.Y.; Pelix, E.A.; Khakimyanov, R.R.

    1988-01-01

    A self-propelled X-ray flaw detector for radiographic inspection of welded joints in pipelines comprises a carriage mounting a motor, a detector having two Geiger counters, a pulsed X-ray generator, and an exposure and carriage electronic control system. A memory unit in the control system has four storage elements containing information about the motion of the carriage. As the carriage moves in direction A, first one and then the other of the Geiger counters receives radiation from an isotope source positioned near a joint, and by means of logic circuitry in the control system, the information in the storage elements is modified to stop the carriage and to operate a timer to expose the weld. During exposure the X-rays may interfere with the information in the storage elements, but by means of a square-wave generator and the logic circuitry, the stored information is correctly reset in order to eliminate false operation of the memory unit. (author)

  10. Microsecond-scale X-ray imaging with Controlled-Drift Detectors

    International Nuclear Information System (INIS)

    Castoldi, A.; Galimberti, A.; Guazzoni, C.; Rehak, P.; Strueder, L.

    2006-01-01

    The Controlled-Drift Detector is a fully-depleted silicon detector that allows 2-D position sensing and energy spectroscopy of X-rays in the range 0.5-20keV with excellent time resolution (few tens of μs) and limited readout channels. In this paper we review the Controlled-Drift Detector operating principle and we present the X-ray imaging and spectroscopic capabilities of Controlled Drift Detectors in microsecond-scale experiments and the more relevant applications fields

  11. An X-ray gas position sensitive detector: construction and characterization

    International Nuclear Information System (INIS)

    Barbosa, A.F.; Gabriel, A.; Gabriel, A.; Craievich, A.

    1988-01-01

    A linear x-ray gas position sensitive detector with delay line readout has been constructed. The detector is described, characterized and used for detecting x-ray diffraction patterns from polycrystals. (author) [pt

  12. CONTINUING THE DEVELOPMENT OF A 100 FEMTOSECOND X-RAY DETECTOR

    International Nuclear Information System (INIS)

    Zenghu Chang

    2005-01-01

    The detector is an x-ray streak camera running in accumulation mode for time resolved x-ray studies at the existing third generation synchrotron facilities and will also be used for the development and applications of the fourth generation x-ray sources. We have made significant progress on both the detector development and its applications at Synchrotron facilities

  13. Analysis and operation of DePFET X-ray imaging detectors

    International Nuclear Information System (INIS)

    Lauf, Thomas

    2011-01-01

    The latest active pixel sensor for X-ray imaging spectroscopy developed at the Max-Planck-Halbleiterlabor (HLL) is the Depleted P-channel Field Effect Transistor (DePFET). This detector type unites detector and first stage amplification and has excellent energy resolution, low noise readout at high speed and low power consumption. This is combined with the possibility of random accessibility of pixels and on-demand readout. In addition it possesses all advantages of a sidewards depleted device, i.e. 100% fill factor and very good quantum efficiency. In the course of the development of DePFET detectors the need of a data analysis software for DePFET devices became apparent. A new tool was developed within the scope of this thesis, which should enable scientists to analyze DePFET data, but also be flexible enough so it can be adapted to new device variants and analysis challenges. A modular concept was thus implemented: a base program running an analysis by individual steps encapsulating algorithms, which can be interchanged. The result is a flexible, adaptable, and expandable analysis software. The software was used to investigate and qualify different structural variants of DePFET detectors. Algorithms to examine detector effects and methods to correct them were developed and integrated into the software. This way, a standard analysis suite for DePFET data was built up which is used at the HLL. Beside the planned use as detector for the wide field imager in the space X-ray observatory IXO, DePFET matrices will be used as focal plane array on the Mercury Imaging X-ray Spectrometer on board the Mercury probe BepiColombo which is scheduled for launch in 2014. The developed analysis software was used in the detector development for this mission to qualify test structures, analyze detector effects and study experimental results. In the course of this development, detector prototypes were studied in respect of linearity, charge collection and detection efficiency in an

  14. Analysis and operation of DePFET X-ray imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, Thomas

    2011-04-28

    The latest active pixel sensor for X-ray imaging spectroscopy developed at the Max-Planck-Halbleiterlabor (HLL) is the Depleted P-channel Field Effect Transistor (DePFET). This detector type unites detector and first stage amplification and has excellent energy resolution, low noise readout at high speed and low power consumption. This is combined with the possibility of random accessibility of pixels and on-demand readout. In addition it possesses all advantages of a sidewards depleted device, i.e. 100% fill factor and very good quantum efficiency. In the course of the development of DePFET detectors the need of a data analysis software for DePFET devices became apparent. A new tool was developed within the scope of this thesis, which should enable scientists to analyze DePFET data, but also be flexible enough so it can be adapted to new device variants and analysis challenges. A modular concept was thus implemented: a base program running an analysis by individual steps encapsulating algorithms, which can be interchanged. The result is a flexible, adaptable, and expandable analysis software. The software was used to investigate and qualify different structural variants of DePFET detectors. Algorithms to examine detector effects and methods to correct them were developed and integrated into the software. This way, a standard analysis suite for DePFET data was built up which is used at the HLL. Beside the planned use as detector for the wide field imager in the space X-ray observatory IXO, DePFET matrices will be used as focal plane array on the Mercury Imaging X-ray Spectrometer on board the Mercury probe BepiColombo which is scheduled for launch in 2014. The developed analysis software was used in the detector development for this mission to qualify test structures, analyze detector effects and study experimental results. In the course of this development, detector prototypes were studied in respect of linearity, charge collection and detection efficiency in an

  15. Development of an X-ray detector using photodiodes

    International Nuclear Information System (INIS)

    Gonzalez G, J.; Azorin V, J. C.; Sosa A, M. A.; Ceron, P.

    2016-10-01

    Currently the radiation detectors for medical applications are very high value in the market and are difficult to access as training material. In the Sciences and Engineering Division of the Guanajuato University (Mexico) investigations are carried out related to ionizing radiations, especially with X-rays. To overcome the lack of materials has had to resort to borrowing equipment from other institutions, so its use and availability are intermittent. For these reasons is proposed to design and implement an X-ray detector for the use of the work group and the University. This work aims to build an X-ray semiconductor detector using inexpensive and affordable materials, is also proposed the use of a photodiode sensor and an Arduino analog-digital card and a LCD display showing the data. (Author)

  16. The water Cherenkov detector array for studies of cosmic rays at the University of Puebla

    International Nuclear Information System (INIS)

    Cotzomi, J.; Moreno, E.; Murrieta, T.; Palma, B.; Perez, E.; Salazar, H.; Villasenor, L.

    2005-01-01

    We describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla (19 - bar N, 90 - bar W, 800g/cm 2 ) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1PeV, i.e., around the knee of the cosmic ray spectrum. The array consists of 3 water Cherenkov detectors of 1.86m 2 cross-section and 12 liquid scintillator detectors of 1m 2 distributed in a square grid with a detector spacing of 20m over an area of 4000m 2 . We discuss the calibration and stability of the array for both sets of detectors and report on preliminary measurements and reconstruction of the lateral distributions for the electromagnetic (EM) and muonic components of extensive air showers. We also discuss how the hybrid character of the array can be used to measure mass composition of the primary cosmic rays by estimating the relative contents of muons with respect to the EM component of extensive air showers. This facility is also used to train students interested in the field of cosmic rays

  17. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography

    International Nuclear Information System (INIS)

    Cowen, A.R.; Davies, A.G.; Sivananthan, M.U.

    2008-01-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design

  18. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    International Nuclear Information System (INIS)

    Shan, Jing; Lee, Yueh Z; Lu, Jianping; Zhou, Otto; Tucker, Andrew W; Heath, Michael D; Wang, Xiaohui; Foos, David H

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs −1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm −1 along the scanning direction, and 3.4 cycles mm −1 perpendicular to the scanning direction. As the angular coverage of 11.6°–34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible. (paper)

  19. Development of multiwire gas detectors for X-rays; Desenvolvimento de detectores a gas multifilares para raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Eraldo de

    2015-06-01

    This work presents the prototype of a 2D position sensitive gas detector for application in X-ray scattering and diffraction experiments. Starting from a detector initially developed for other applications and will show the required changes on the original concept of this device. The strategy used to determine the necessary adaptations were based on searching in the literature for the overall characteristics of a multi-wire X-ray detector (choice of gas, pressure, window, etc.), the use of simulations, implementation of the changes and finally operational tests. Computational tools were used to calculate the mechanical strength and attenuation of the X-ray photons that helped to determine the most appropriate material for the construction of the entrance window. Detector simulations were built with Garfield software and were used to study the overall properties of the detector, and to determine the optimum parameters for the equipment operation. Typical parameters are the distance between the wires, wire diameter, high voltage to be used, among several other parameters. The results obtained showed that the multi-wire detector concept with the implemented adaptations allowed the detection of X-rays. However, depending on the application, it may be necessary improve the resolution of the equipment, in order to have a better description of the collected data. Several ideas are suggested for this improvement. It is also presented interesting results obtained with a microscopic pattern detector called triple GEM. This device belongs to the Gas Detectors Development group (GDD group) at CERN and was used in my training at this institution. The results showed the potential of the equipment for detection of X-rays. The results and simulations presented in this work, confirmed that the changes in the concept of the original detector permitted it use on X-ray detection applications. Also, it was possible to obtain several indications for further optimization, which may

  20. Large Imaging X-ray MKID Arrays for Astrophysics

    Science.gov (United States)

    Mazin, Benjamin

    Microwave Kinetic Inductance Detectors, or MKIDs, are a relatively new type of superconducting detector with built-in frequency domain multiplexing. Like Transition Edge Sensors (TESs) microbolometers, MKIDs can count single X-ray photons over a wide energy range and determine their energy and arrival time. MKIDs allow very large pixel counts with a simple room temperature microwave readout. In this investigation we will develop a new type of detector based on a MKID called the Thermal Kinetic Inductance Detector, or TKID. A TKID changes the basic MKID architecture by placing the inductor of the MKID on a suspended SiN membrane. The capacitor will remain on the bulk Si to reduce noise. Much like a TES, the TKID will sense changes in temperature of the isolated SiN island caused by photon absorption. The advantages of a TKID include lack of positional/geometry dependence, a more tunable pulse decay time, a relaxation of the MKID resonator material requirements, and more. We have already fabricated a TKID with the best energy resolution seen to date in any KID. Here we propose to improve the energy resolution below 10 eV, develop mushroom absorbers compatible with our TKIDs, and integrate these detectors into small arrays.

  1. Hard X-Ray PHA System on the HT-7 Tokamak

    International Nuclear Information System (INIS)

    Lin Shiyao; Shi Yuejiang; Wan Baonian; Chen Zhongyong; Hu Liqun

    2006-01-01

    A new hard X-ray pulse-height analysis (PHA) system has been established on HT-7 tokamak for long pulse steady-state operation. This PHA system consists of hard X-ray diagnostics and multi-channel analysers (MCA). The hard X-ray diagnostics consists of a vertical X-ray detector array (CdTe) and a horizontal X-ray detector array (NaI). The hard X-ray diagnostics can provide the profile of power deposition and the distribution function of fast electron during radio frequency (RF) current drive. The MCA system is the electronic part of the PHA system, which has been modularized and linked to PC through LAN. Each module of MCA can connect with 8 X-ray detectors. The embedded Ethernet adapter in the MCA module makes the data communication between PC and MCA very convenient. A computer can control several modules of MCA through certain software and a hub. The RAM in MCA can store 1024 or more spectra for each detector and therefore the PHA system can be applied in the long pulse discharge of several minutes

  2. Flexible X-ray detector based on sliced lead iodide crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui; Gao, Xiuying [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); Department of Materials Science, Sichuan University, Chengdu (China); Zhao, Beijun [Department of Materials Science, Sichuan University, Chengdu (China); Yang, Dingyu; Wangyang, Peihua; Zhu, Xinghua [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China)

    2017-02-15

    A promising flexible X-ray detector based on inorganic semiconductor PbI{sub 2} crystal is reported. The sliced crystals mechanically cleaved from an as-grown PbI{sub 2} crystal act as the absorber directly converting the impinging X-ray photons to electron hole pairs. Due to the ductile feature of the PbI{sub 2} crystal, the detector can be operated under a highly curved state with the strain on the top surface up to 1.03% and still maintaining effective detection performance. The stable photocurrent and fast response were obtained with the detector repeated bending to a strain of 1.03% for 100 cycles. This work presents an approach for developing efficient and cost-effective PbI{sub 2}-based flexible X-ray detector. Photocurrent responses of the flexible PbI{sub 2} X-ray detector with the strain on the top surface up to 1.03% proposed in this work with the cross sectional structure and curved detector photograph as insets. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. PILATUS: a two-dimensional X-ray detector for macromolecular crystallography

    CERN Document Server

    Eikenberry, E F; Huelsen, G; Toyokawa, H; Horisberger, R P; Schmitt, B; Schulze-Briese, C; Tomizaki, T

    2003-01-01

    A large quantum-limited area X-ray detector for protein crystallography is under development at the Swiss Light Source. The final detector will be 2kx2k pixels covering 40x40 cm sup 2. A three-module prototype with 1120x157 pixels covering an active area of 24.3x3.4 cm sup 2 has been tested. X-rays above 6 keV with peak count rates exceeding 5x10 sup 5 X-ray/pixel/s could be detected in single photon counting mode. Statistics of module production and results of threshold trimming are presented. To demonstrate the potential of this new detector, protein crystal data were collected at beamline 6S of the SLS.

  4. CVD diamond based soft X-ray detector with fast response

    International Nuclear Information System (INIS)

    Li Fang; Hou Lifei; Su Chunxiao; Yang Guohong; Liu Shenye

    2010-01-01

    A soft X-ray detector has been made with high quality chemical vapor deposited (CVD) diamond and the electrical structure of micro-strip. Through the measurement of response time on a laser with the pulse width of 10 ps, the full width at half maximum of the data got in the oscilloscope was 115 ps. The rise time of the CVD diamond detector was calculated to be 49 ps. In the experiment on the laser prototype facility, the signal got by the CVD diamond detector was compared with that got by a soft X-ray spectrometer. Both signals coincided well. The detector is proved to be a kind of reliable soft X-ray detector with fast response and high signal-to-noise ratio. (authors)

  5. Ultra high resolution X-ray detectors

    International Nuclear Information System (INIS)

    Hess, U.; Buehler, M.; Hentig, R. von; Hertrich, T.; Phelan, K.; Wernicke, D.; Hoehne, J.

    2001-01-01

    CSP Cryogenic Spectrometers GmbH is developing cryogenic energy dispersive X-ray spectrometers based on superconducting detector technology. Superconducting sensors exhibit at least a 10-fold improvement in energy resolution due to their low energy gap compared to conventional Si(Li) or Ge detectors. These capabilities are extremely valuable for the analysis of light elements and in general for the analysis of the low energy range of the X-ray spectrum. The spectrometer is based on a mechanical cooler needing no liquid coolants and an adiabatic demagnetization refrigerator (ADR) stage which supplies the operating temperature of below 100 mK for the superconducting sensor. Applications include surface analysis in semiconductor industry as well material analysis for material composition e.g. in ceramics or automobile industry

  6. Medical imaging: Material change for X-ray detectors

    Science.gov (United States)

    Rowlands, John A.

    2017-10-01

    The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87

  7. Modeling and design of X-rays bidimensional detectors; Modelagem e projeto de detectores bidimensionais para radiacao-X

    Energy Technology Data Exchange (ETDEWEB)

    Quisbert, Elmer Paz Alcon

    2000-03-01

    In this work has been developed the scintillating fiber optic and semiconductor devices based 2-D detector design, modeling and performance evaluation using Monte Carlo methods, for high X-ray energy range (10-140 kV) radiography and tomography applications. These processes allowed us, also, the imaging system parameters and components optimization and appropriate detector design. The model estimated the detectors performance parameters (DQE, MTF and SNR), and radiation risk (in terms of mean absorbed dose in the patient) and to show up how the sequence of physical processes in X-ray detection influence the performance of this imaging PFOC detectors. In this way, the modeling of the detector includes the statistics of the spatial distribution of absorbed X-rays and of X-ray to light conversion, its transmission, and the light quanta conversion into electrons. Also contributions to noise from the detection system chain is included, mainly the CCD detector ambient noise. Performance prediction, based on calculation taken from simulations, illustrates how such detectors meet the exacting requirements of some medical and industrial applications. Also, it is envisaged that our modeling procedure of the imaging system will be suitable not only for investigating how the system components should be best designed but for CT and RD system performance prediction. The powerful techniques would enable us to give advice for future development, in this field, in search of more dose-efficient imaging systems. (author)

  8. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  9. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  10. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  11. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  12. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  13. Position sensitive x-ray detector

    International Nuclear Information System (INIS)

    Macchione, E.L.A.

    1990-01-01

    A multi ware position sensitive gas counter for X-ray detection was developed in our laboratory, making use of commercial delay-lines for position sensing. Six delay-line chips (50 ns delay each, 40 Mhz cut-off frequency) cover a total sensitive length of 150 mm leading to a delay-risetime ratio that allows for a high-resolution position detection. Tests using the 5,9 keV X-ray line from a 55 Fe source and integral linearity better than 0,1% and a maximal differential linearity of ±4,0% were obtained operating the detector with an Ar-C H 4 (90%-10%) gas mixture at 700 torr. Similar tests were performed, using the 8,04 keV line from a Cu x-ray tube. A total resolution of 330 μm, and the same integral and differential linearities were obtained. (author)

  14. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  15. Fabrication of Sparse Readout Detectors for X-ray Astronomy

    Science.gov (United States)

    Burrows, David

    We propose to continue our detector development program in X-ray astronomy. Under our current APRA grant we have fabricated a new read out integrated circuit that is one half of a hybrid CMOS detector. Here we propose to build and test these innovative detectors, which could potentially be flown on future X-ray missions with focused optics and/or large effective area. This proposal supports NASA's goals of technical advancement of technologies suitable for future missions and training of graduate students.

  16. Gamma detector for use with luggage X-ray systems

    International Nuclear Information System (INIS)

    McHugh, H.; Quam, W.

    1998-01-01

    A new gamma radiation sensor has been designed for installation on several types of luggage x-ray machines and mobile x-ray vans operated by the U.S. Customs Service and the U.S. Department of State. The use of gamma detectors on x-ray machines imposed difficulties not usually encountered in the design of gamma detectors because the spectrum of scattered x-rays, which varied from machine to machine, extended to energies significantly higher than those of the low-energy isotopic emissions. In the original design, the lower level discriminator was raised above the x-ray end point energy resulting in the loss of the americium line associated with plutonium. This reduced the overall sensitivity to unshielded plutonium by a factor of approximately 100. An improved method was subsequently developed wherein collimation was utilized in conjunction with a variable counting threshold to permit accommodation of differing conditions of x-ray scattering. This design has been shown to eliminate most of the problems due to x-ray scattering while still capturing the americium emissions. The overall sensitivity has remained quite high, though varying slightly from one model of x-ray machine to another, depending upon the x-ray scattering characteristics of each model. (author)

  17. Diagnostic x-ray spectra measurements using a silicon surface barrier detector

    International Nuclear Information System (INIS)

    Pani, R.; Laitano, R.F.

    1987-01-01

    A silicon surface barrier detector having a low efficiency for x-ray is used to analyse diagnostic x-ray spectra. This characteristic is advantageous in overcoming experimental problems caused by high fluence rates typical of diagnostic x-ray beams. The pulse height distribution obtained with silicon surface barrier detectors is very different from the true photon spectra because of the presence of escaped Compton photons and the fact that detection efficiency falls abruptly when photon energy increases. A detailed analysis of the spurious effects involved in detection is made by a Monte Carlo method. A stripping procedure is described for implementation on a personal computer. The validity of this method is tested by comparison with experimental results obtained with a Ge detector. The spectra obtained with the Si detector are in fairly good agreement with the analogous spectra measured with a Ge detector. The advantages of using Si as opposed to Ge detectors in x-ray spectrometry are: its simplicity of use, its greater economy for use in routine diagnostic x-ray spectroscopy and the possibility that the stripping procedure can be implemented on a personal computer. (author)

  18. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68 eV) and high X- and gamma-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and gamma-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation gamma-ray (511 keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56 keV FWHM (11%) for 511 keV gamma-rays. Energy resolution of 1.81 keV FWHM for 5.9 keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and 1/f noise were dominant noise sources in the detector...

  19. Evaluation of K x-ray escape and crosstalk in CdTe detectors and multi-channel detectors

    International Nuclear Information System (INIS)

    Ohtsuchi, Tetsuro; Ohmori, Koichi; Tsutsui, Hiroshi; Baba, Sueki

    1995-01-01

    The simple structure of CdTe semiconductor detectors facilitates their downsizing, and their possible application to radiographic sensors has been studied. The escape of K X-rays from these detectors increases with reduction of their dimensions and affects the measurements of X- and gamma-ray spectra. K X-rays also produce crosstalk in multi-channel detectors with adjacent channels. Therefore, K X-rays which escape from the detector elements degrade both the precision of energy spectra and spatial resolution. The ratios of escape peak integrated counts to total photon counts for various sizes of CdTe single detectors were calculated for gamma rays using the Monte Carlo method. Also, escape and crosstalk ratios were simulated for the CdTe multi-channel detectors. The theoretical results were tested experimentally for 59.54-keV gamma rays from a 241 Am radioactive source. Results showed that escape ratios for single detectors were strongly dependent on element size and thickness. The escape and crosstalk ratios increased with closer channel pitch. The calculated results showed a good agreement with the experimental data. The calculations made it clear that K X-rays which escaped to neighboring channels induced crosstalk more frequently at smaller channel pitch in multichannel detectors. A radiation shielding grid which blocked incident photons between the boundary channels was also tested by experiment and by calculation. It was effective in reducing the probability of escape and crosstalk

  20. A semiempirical linear model of indirect, flat-panel x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M. [Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 92106 (United States); Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817 (United States)

    2012-04-15

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r

  1. A semiempirical linear model of indirect, flat-panel x-ray detectors

    International Nuclear Information System (INIS)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M.

    2012-01-01

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r 2 of

  2. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    Science.gov (United States)

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to k

  3. Characterization of X3 Silicon Detectors for the ELISSA Array at ELI-NP

    Science.gov (United States)

    Chesnevskaya, S.; Balabanski, D. L.; Choudhury, D.; Cognata, M. La; Constantin, P.; Filipescu, D. M.; Ghita, D. G.; Guardo, G. L.; Lattuada, D.; Matei, C.; Rotaru, A.; Spitaleri, C.; State, A.; Xu, Y.

    2018-01-01

    Position-sensitive silicon strip detectors represent one of the best solutions for the detection of charged particles as they provide good energy and position resolution over a large range of energies. A silicon array coupled with the gamma beams at the ELI-NP facility would allow measuring photodissociation reactions of interest for Big Bang Nucleosynthesis and on heavy nuclei intervening in the p-process. Forty X3 detectors for our ELISSA (ELI-NP Silicon Strip Detectors Array) project have been recently purchased and tested. We investigated several specifications, such as leakage currents, depletion voltage, and detector stability under vacuum. The energy and position resolution, and ballistic deficit were measured and analyzed. This paper presents the main results of our extensive testing. The measured energy resolution for the X3 detectors is better than results published for similar arrays (ANASEN or ORRUBA).

  4. Development of an X-ray detector using photodiodes; Desarrollo de un detector de rayos X usando fotodiodos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez G, J.; Azorin V, J. C.; Sosa A, M. A.; Ceron, P., E-mail: gonzalezgj2012@licifug.ugto.mx [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque No. 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2016-10-15

    Currently the radiation detectors for medical applications are very high value in the market and are difficult to access as training material. In the Sciences and Engineering Division of the Guanajuato University (Mexico) investigations are carried out related to ionizing radiations, especially with X-rays. To overcome the lack of materials has had to resort to borrowing equipment from other institutions, so its use and availability are intermittent. For these reasons is proposed to design and implement an X-ray detector for the use of the work group and the University. This work aims to build an X-ray semiconductor detector using inexpensive and affordable materials, is also proposed the use of a photodiode sensor and an Arduino analog-digital card and a LCD display showing the data. (Author)

  5. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector.

    Science.gov (United States)

    Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J

    2012-02-01

    Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using

  6. X-ray and gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    1991-09-01

    The IAEA established a Co-ordinated Research Programme (CRP) on the Measurements and Evaluation of X- and Gamma-Ray Standards for Detector Efficiency Calibration in 1986 with the aim of alleviating the generation of such discrepancies. Within the framework of this CRP, representatives of nine research groups from six Member States and one international organization performed a number of precise measurements and systematic in-depth evaluations of the required decay data. They have also contributed to the development of evaluation methodology and measurement techniques, and stimulated a number of such studies at laboratories not directly involved in the IAEA project. The results of the work of the CRP, which was finished in 1990, are presented in this report. Recommended values of half-lives and photon emission probabilities are given for a carefully selected set of radionuclides that are suitable for detector efficiency calibration (X-rays from 5 to 90 keV and gamma-rays from 30 to about 3000 keV). Detector efficiency calibration for higher gamma-ray energies (up to 14 MeV) is also considered. The evaluation procedures used to obtain the recommended values and their estimated uncertainties are reported, and a summary of the remaining discrepancies is given. Refs and tabs

  7. A high-resolution multiwire area detector for X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Faruqi, A R; Andrews, H [Medical Research Council, Cambridge (UK). Lab. of Molecular Biology

    1989-11-10

    A high-resolution multiwire area detector has been developed for recording X-ray scattering from biological specimens. The detector is 100x100 mm{sup 2} and, under the present operating conditions, has a spatial resolution of about 250 {mu}m in both directions. The detector is set up on a double-mirror focusing camera on a rotating anode X-ray generator and has been used in a number of small-angle experiments, two of which are described in this paper. (orig.).

  8. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  9. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    International Nuclear Information System (INIS)

    Thil, Ch.; Baron, A.Q.R.; Fajardo, P.; Fischer, P.; Graafsma, H.; Rueffer, R.

    2011-01-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm 2 active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280μmx280μm size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  10. The FPGA Pixel Array Detector

    International Nuclear Information System (INIS)

    Hromalik, Marianne S.; Green, Katherine S.; Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.

    2013-01-01

    A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC) layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can be allocated to perform user defined tasks on the pixel data streams, including the implementation of a direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been designed and simulated. A 16×16 pixel prototype of the ASIC has been fabricated and is being tested. -- Highlights: ► We describe the novelty and need for the FPGA Pixel Array Detector. ► We describe the specifications and design of the Diode, ASIC and FPGA layers. ► We highlight the Autocorrelation Function (ACF) for speckle as an example application. ► Simulated FPGA output calculates the ACF for different input bitstreams to 100 ns. ► Reduced data transfer rate by 640× and sped up real-time ACF by 100× other methods.

  11. The hyperion particle-γ detector array

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.O.; Burke, J.T.; Casperson, R.J.; Ota, S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Fisher, S.; Parker, J. [Science, Technology and Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Beausang, C.W. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Dag, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Humby, P. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Department of Physics, University of Surrey, Surrey GU27XH (United Kingdom); Koglin, J. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McCleskey, E.; McIntosh, A.B.; Saastamoinen, A. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Tamashiro, A.S. [Department of Nuclear Science and Engineering, Oregon State University, Corvallis, OR 97331 (United States); Wilson, E. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Wu, T.C. [Department of Physics and Astronomy, University of Utah, Salt Lake City UT 84112-0830 (United States)

    2017-06-01

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. This article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  12. Research on influence of energy spectrum response of ICT detector arrays

    International Nuclear Information System (INIS)

    Zhou Rifeng; Gao Fuqiang; Zhang Ping

    2008-01-01

    The energy spectrum response is important characteristic for X-ray ICT detector. But there exist many difficulties to measure these parameters by experiments. The energy spectrum response of CdWO 4 detector was simulated by using the EGSnrc code. Meanwhile the effect of detection efficiency was analyzed by the distribution of accelerator bremsstrahlung spectra and the X-ray spectrum hardening, and some theoretic parameters were offered for the consistent and no-linearity correction of detector arrays. It was applied to ICT image correction, and a satisfying result was obtained. (authors)

  13. Conference on physics from large γ-ray detector arrays

    International Nuclear Information System (INIS)

    1995-01-01

    The conference on open-quotes Physics from Large γ-ray Detector Arraysclose quotes is a continuation of the series of conferences that have been organized every two years by the North American Heavy-ion Laboratories. The aim of the conference this year was to encourage discussion of the physics that can be studied with such large arrays. This volume is the collected proceedings from this conference. It discusses properties of nuclear states which can be created in heavy-ion reactions, and which can be observed via such detector systems

  14. Charge-coupled-device X-ray detector performance model

    Science.gov (United States)

    Bautz, M. W.; Berman, G. E.; Doty, J. P.; Ricker, G. R.

    1987-01-01

    A model that predicts the performance characteristics of CCD detectors being developed for use in X-ray imaging is presented. The model accounts for the interactions of both X-rays and charged particles with the CCD and simulates the transport and loss of charge in the detector. Predicted performance parameters include detective and net quantum efficiencies, split-event probability, and a parameter characterizing the effective thickness presented by the detector to cosmic-ray protons. The predicted performance of two CCDs of different epitaxial layer thicknesses is compared. The model predicts that in each device incomplete recovery of the charge liberated by a photon of energy between 0.1 and 10 keV is very likely to be accompanied by charge splitting between adjacent pixels. The implications of the model predictions for CCD data processing algorithms are briefly discussed.

  15. Silicon detectors for x and gamma-ray with high radiation resistance

    International Nuclear Information System (INIS)

    Cimpoca, Valerica; Popescu, Ion V.; Ruscu, Radu

    2001-01-01

    Silicon detectors are widely used in X and gamma-ray spectroscopy for direct detection or coupled with scintillators in high energy nuclear physics (modern collider experiments are representative), medicine and industrial applications. In X and gamma dosimetry, a low detection limit (under 6 KeV) with silicon detectors becomes available. Work at the room temperature is now possible due to the silicon processing evolution, which assures low reverse current and high life time of carriers. For several years, modern semiconductor detectors have been the primary choice for the measurement of nuclear radiation in various scientific fields. Nowadays the recently developed high resolution silicon detectors found their way in medical applications. As a consequence many efforts have been devoted to the development of high sensitivity and radiation hardened X and gamma-ray detectors for the energy range of 5 - 150 keV. The paper presents some results concerning the technology and behaviour of X and Gamma ray silicon detectors used in physics research, industrial and medical radiography. The electrical characteristics of these detectors, their modification after exposure to radiation and the results of spectroscopic X and Gamma-ray measurements are discussed. The results indicated that the proposed detectors enables the development of reliable silicon detectors to be used in controlling the low and high radiation levels encountered in a lot of application

  16. Gas pixel detector for X-ray observation

    CERN Document Server

    Attié, D; Chefdeville, M; Colas, P; Delagnes, E; Giomataris, Y; van der Graaf, H; Llopart, X; Timmermans, J; Visschers, J

    2009-01-01

    We report on the status of the R&D for a digital Time Projection Chamber (TPC) based on Micromegas (MICRO MEsh GAseous Structure) detectors using the CMOS chip TimePix as a direct readout anode protected by highly resistive a-Si:H layer. A small chamber was built as a demonstrator of the 2-D and 3-D imaging capabilities of this technique. We illustrate the new capabilities of this detector for X-ray observation with data taken from radioactive sources. This small TPC is a very useful tool both for studying gas properties thanks to its good efficiency for single electrons, and for reconstructing photoelectron direction for use as a soft X-ray polarimeter.

  17. Evaluation of In-Vacuum Imaging Plate Detector for X-Ray Diffraction Microscopy

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Takahashi, Yukio; Yamamoto, Masaki; Ishikawa, Tetsuya

    2007-01-01

    We performed evaluation tests of a newly developed in-vacuum imaging plate (IP) detector for x-ray diffraction microscopy. IP detectors have advantages over direct x-ray detection charge-coupled device (CCD) detectors, which have been commonly used in x-ray diffraction microscopy experiments, in the capabilities for a high photon count and for a wide area. The detector system contains two IPs to make measurement efficient by recording data with the one while reading or erasing the other. We compared speckled diffraction patterns of single particles taken with the IP and a direct x-ray detection CCD. The IP was inferior to the CCD in spatial resolution and in signal-to-noise ratio at a low photon count

  18. 3D non-destructive fluorescent X-ray computed tomography (FXCT) with a CdTe array

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chang Yeon; Lee, Won Ho; Kim, Young Hak [Dept. of Bio-convergence Engineering, Korea University Graduate School, Seoul (Korea, Republic of)

    2015-10-15

    In our research, the material was exposed to an X-ray and not only the conventional transmission image but also 3D images based on the information of characteristic X-ray detected by a 2D CdTe planar detector array were reconstructed. Since atoms have their own characteristic X-ray energy, our system was able to discriminate materials of even a same density if the materials were composed of different atomic numbers. We applied FXCT to distinguish various unknown materials with similar densities. The materials with similar densities were clearly distinguished in the 3D reconstructed images based on the information of the detected characteristic X-ray, while they were not discriminated from each other in the images based on the information of the detected transmission X-ray. In the fused images consisting of 3D transmitted and characteristic X-ray images, all of the positions, densities and atomic numbers of materials enclosed in plastic phantom or pipe were clearly identified by analyzing energy, position and amount of detected radiation.

  19. Study of semiconductor detectors applied to diagnostic X-ray

    International Nuclear Information System (INIS)

    Salgado, Cesar Marques

    2003-08-01

    This work aims an evaluation of procedures for photons spectrum determination, produced by a X ray tube, normally used for medical diagnoses which operation voltage ranges from 20 to 150 kVp, to allow more precise characterization of the photon beam. The use of spectrum analysis will contribute to reduce the uncertainty in the ionization camera calibrations. For this purpose, two kind of detectors were selected, a Cadmium Zinc Telluride (CZT) and a planar HPGe detector. The X ray interaction with the detector's crystal produces, by electronic processes, a pulse high distribution as an output, which is no the true photon spectrum, due to the presence of K shell escape peaks, Compton scattering and to the fact that the detectors efficiency diminish rapidly with the increase of the photon energy. A detailed analysis of the contributing factors to distortions in the spectrum is necessary and was performed by Monte Carlo calculation with the MCNP 4B computer code. In order to determine the actual photon spectrum for a X ray tube a spectra stripping procedure is described for the HPGe detector. The detector's response curves, determined by the Monte Carlo calculation, were compared to the experimental ones, for isotropic point sources. For the methodology validation, stripped spectra were compared to the theoretical ones, for the same X ray tube's settings, for a qualitative evaluation. The air kerma rate calculated with the photon spectra were compared to the direct measurement using an ionization chamber, for a quantitative evaluation. (author)

  20. Dual-array valence emission spectrometer (DAVES): A new approach for hard x-ray photon-in photon-out spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Lyndaker, A.; Krawcyk, T.; Conrad, J. [CHESS Wilson Lab, Cornell University, Ithaca, NY 14853 (United States); Pollock, C. J. [Dept. of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-27

    CHESS has developed and successfully deployed a novel Dual Array Valence Emission Spectrometer (DAVES) for high energy resolution, hard x-ray spectroscopy. DAVES employs the simplest method for scanning multiple spherical crystals along a Rowland Circle. The new design achieves unique 2-color collection capability and is built to take special advantage of pixel array detectors. Our initial results show why these detectors greatly improve data quality. The presentation emphasizes flexibility of experimental design offered by DAVES. Prospects and benefits of 2-color spectroscopy are illustrated and discussed.

  1. Soft X-ray radiation power characteristics of tungsten wire arrays on Yang accelerator

    International Nuclear Information System (INIS)

    Zhang Siqun; Ouyang Kai; Huang Xianbin; Dan Jiakun; Zhou Rongguo; Yang Liang

    2013-01-01

    A series of experiments were carried out to research the X-ray radiation characteristics of tungsten wire arrays on Yang accelerator. In those experiments, we charged the Marx generator of 60 kV, and the load current of 0.85-1.00 MA, the rise time of 75-90 ns (10%-90%). A soft X-ray scintillator powermeter which responded flatly to 50-1800 eV X-rays was used to measure the power of soft X-ray emitted from implosion plasma. In this paper, we present the measuring results of time-resolved soft X-ray radiation power, and discuss the radiation characteristics of implosion plasma by analyzing the correlations of soft X-ray radiant power and the diameter, length, wire number of the tungsten wire arrays. The optimizing wire array configuration parameters on Yang are as follows: 8 mm array diameter, 15 mm wire length, and 24 wire number. We also present the radiant power difference in radial and axial directions of the wire arrays. (authors)

  2. X-ray detectors in axial computed tomography development; Sensori di radiazioni X negli sviluppi della tomografia assiale computerizzata

    Energy Technology Data Exchange (ETDEWEB)

    Gislon, R.; Imperiali, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione

    1996-12-01

    The increase of potentially of axial computed tomography as a non destructive investigation method in industrial field is particularly tied to the development of the X-rays detectors. The transition from the first gas ionization detectors to the last semiconductor detectors has indeed dramatically increased the performances of tomographic systems. In this report, after a quick analysis of fundamental principles of tomography, the most significant parameters for a detector to be used in a tomographic system are reviewed. The examination of the principal kinds of detectors that have been up to now used, with their working schemes, allows to delineate their characteristics and so to compare them with the ideal detector sketched above. The necessity of using high definition arrays brings to put into evidence the inadequacy of both gas and liquid ionization detectors and also of those types of light conversion devices which utilize for signal amplification a photomultiplier tube. Systems based on charge coupled devices or on a light conversion obtained with semiconductor photodiode arrays are definitely to be preferred. The progress of the last years in microelectronic technologies has brought great improvements in this field.

  3. X-ray Hybrid CMOS Detectors : Recent progress in development and characterization

    Science.gov (United States)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.

    2017-08-01

    PennState high energy astronomy laboratory has been working on the development and characterization of Hybrid CMOS Detectors (HCDs) for last few years in collaboration with Teledyne Imaging Sensors (TIS). HCDs are preferred over X-ray CCDs due to their higher and flexible read out rate, radiation hardness and low power which make them more suitable for next generation large area X-ray telescopic missions. An H2RG detector with 36 micron pixel pitch and 18 micron ROIC, has been selected for a sounding rocket flight in 2018. The H2RG detector provides ~2.5 % energy resolution at 5.9 keV and ~7 e- read noise when coupled to a cryo-SIDECAR. We could also detect a clear Oxygen line (~0.5 keV) from the detector implying a lower energy threshold of ~0.3 keV. Further improvement in the energy resolution and read noise is currently under progress. We have been working on the characterization of small pixel HCDs (12.5 micron pixel; smallest pixel HCDs developed so far) which is important for the development of next generation high resolution X-ray spectroscopic instrument based on HCDs. Event recognition in HCDs is another exciting prospect which have been successfully shown to work with a 64 X 64 pixel prototype SPEEDSTAR-EXD which use comparators at each pixel to read out only those pixels having detectable signal, thereby providing an order of magnitude improvement in the read out rate. Currently, we are working on the development of a large area SPEEDSTAR-EXD array for the development of a full fledged instrument. HCDs due to their fast read out, can also be explored as a large FOV instrument to study GRB afterglows and variability and spectroscopic study of other astrophysical transients. In this context, we are characterizing a Lobster-HCD system at multiple energies and multiple off-axis angles for future rocket or CubeSate experiments. In this presentation, I will briefly present these new developments and experiments with HCDs and the analysis techniques.

  4. Final report on the scientific and engineering design of a soft X-ray diode array diagnostic system for JET (KJ 1)

    International Nuclear Information System (INIS)

    Fahrbach, H.U.; Goss, H.; Harmeyer, E.; Schramm, G.

    1982-07-01

    This report describes the Soft-X-Ray Diode Array Diagnostic System for JET. It was designed by the IPP under an Article 14 contract for Phase I. The diagnostics will be capable of measuring the Soft-X-ray emission from H and D plasmas in JET with high resolution in space and time. Two slot-hole cameras with 150 detectors viewing the same toroidal cross-section of the plasma are foreseen. Thin beryllium and aluminium filters in the line of sight of the detectors allow simultaneous measurements within different limits of the X-ray spectrum. Heavy shielding against neutron and gamma radiation is provided in order to reduce radiation induced signals and to increase detector lifetimes. The signals of 100 detectors can be simultaneously sampled with a sampling rate variable up to 250 KHz and stored in 12 bit memories of about 20 Kwords size. (orig.)

  5. An InGrid based Low Energy X-ray Detector

    CERN Document Server

    Krieger, Christoph; Kaminski, Jochen; Lupberger, Michael; Vafeiadis, Theodoros

    2014-01-01

    An X-ray detector based on the combination of an integrated Micromegas stage with a pixel chip has been built in order to be installed at the CERN Axion Solar Telescope. Due to its high granularity and spatial resolution this detector allows for a topological background suppression along with a detection threshold below $1\\,\\text{keV}$. Tests at the CAST Detector Lab show the detector's ability to detect X-ray photons down to an energy as low as $277\\,\\text{eV}$. The first background data taken after the installation at the CAST experiment underline the detector's performance with an average background rate of $5\\times10^{-5}\\,/\\text{keV}/\\text{cm}^2/\\text{s}$ between 2 and $10\\,\\text{keV}$ when using a lead shielding.

  6. Silicon lithium detector for x ray fluorescence

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.; Noriega Scull, C.; Martinez Munoz, O.; Diaz Cepeda, R.

    1997-01-01

    The Silicon Lithium detector is the system for the detection of nuclear radiation. It transforms the charge that was produced inside of Silicon material as a result of the incidence of particles and X rays, in voltage pulses at the output of the preamplifier. In this work was made the adjustment of the technological process of manufacture of the detector. Also was made the design and construction of the cryostat and preamplifier and then the validation of the system in a Cuban Dewar. The system, which was made for the first time in our country, has an energy resolution of 185 eV for the Fe-55 source (E=5.9 KeV), which has permitted its implementation in energy dispersive X ray fluorescence. (author) [es

  7. Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution

    CERN Document Server

    Rossi, G; Fajardo, P; Morse, J

    1999-01-01

    We present Monte Carlo computer simulations of the X-ray response of a micro-strip germanium detector over the energy range 30-100 keV. The detector consists of a linear array of lithographically defined 150 mu m wide strips on a high purity monolithic germanium crystal of 6 mm thickness. The simulation code is divided into two parts. We first consider a 10 mu m wide X-ray beam striking the detector surface at normal incidence and compute the interaction processes possible for each photon. Photon scattering and absorption inside the detector crystal are simulated using the EGS4 code with the LSCAT extension for low energies. A history of events is created of the deposited energies which is read by the second part of the code which computes the energy histogram for each detector strip. Appropriate algorithms are introduced to account for lateral charge spreading occurring during charge carrier drift to the detector surface, and Fano and preamplifier electronic noise contributions. Computed spectra for differen...

  8. Evaluation of 320x240 pixel LEC GaAs Schottky barrier X-ray imaging arrays, hybridized to CMOS readout circuit based on charge integration

    CERN Document Server

    Irsigler, R; Alverbro, J; Borglind, J; Froejdh, C; Helander, P; Manolopoulos, S; O'Shea, V; Smith, K

    1999-01-01

    320x240 pixels GaAs Schottky barrier detector arrays were fabricated, hybridized to silicon readout circuits, and subsequently evaluated. The detector chip was based on semi-insulating LEC GaAs material. The square shaped pixel detector elements were of the Schottky barrier type and had a pitch of 38 mu m. The GaAs wafers were thinned down prior to the fabrication of the ohmic back contact. After dicing, the chips were indium bump, flip-chip bonded to CMOS readout circuits based on charge integration, and finally evaluated. A bias voltage between 50 and 100 V was sufficient to operate the detector. Results on I-V characteristics, noise behaviour and response to X-ray radiation are presented. Images of various objects and slit patterns were acquired by using a standard dental imaging X-ray source. The work done was a part of the XIMAGE project financed by the European Community (Brite-Euram). (author)

  9. Energy dependence evaluation of a ZnO detector for diagnostic X-ray beam

    International Nuclear Information System (INIS)

    Valença, C.P.V.; Silveira, M.A.L.; Macedo, M.A.; Santos, M.A.

    2015-01-01

    In the last decades the international organizations of human health and radiation protection have recommended certain care for using X-ray as a diagnosis tool. The current concern is to avoid any type of radiological accident or overdose to the patient. This can be done assessing the parameters of the X-ray equipment and there are various types of detectors available for that: ionizing chamber, semiconductor devices, etc. These detectors must be calibrated so that they can be used for any energy range and such a procedure is correlated with what is called the energy dependence of the detector. In accordance with the stated requirements of IEC 61267, the standard radiation quality beams and irradiation conditions (RQRs) are the tools and techniques for calibrating diagnostic X-Ray instruments and detectors. The purpose of this work is to evaluate the behavior of the energy dependence of a detector fabricated from a zinc oxide (ZnO) nanofilm. A Pantak industrial X-ray equipment was used to generate the RQR radiation quality beams and test three ZnO detector samples. A 6430 sub-femto-ammeter, Keithley, was used to bias the ZnO detector and simultaneously perform the output readings. The results showed that the ZnO device has some increase in its sensitivity to the ionizing radiation as the X-ray effective energy decreases unlike other types of semiconductor electronic devices typically used as an X-ray detector. We can be concluded that, after calibration, the ZnO device can be used as a diagnostic X-ray detector. (author)

  10. Evaluation of the energy dependence of a zinc oxide nanofilm X-ray detector

    International Nuclear Information System (INIS)

    Valenca, C.P.V.; Silveira, M.A.L.; Macedo, M.A.; Santos, L.A.P

    2015-01-01

    International organizations of human health and radiation protection have recommended certain care for using of the X-ray as a diagnosis tool to avoid any type of radiological accident or overdose to the patient. This can be done assessing the parameters of the X-ray equipment and there are various types of detectors available for that: ionizing chamber, electronic semiconductor devices, etc. These detectors must be calibrated so that they can be used for any energy range and such a procedure is correlated with what is called the energy dependence of the detector. In accordance with the stated requirements of IEC 61267, the standard radiation quality beams and irradiation conditions (RQRs) are the tools and techniques for calibrating diagnostic X-Ray instruments and detectors. The purpose of this work is to evaluate the behavior of the energy dependence of a detector fabricated from a zinc oxide (ZnO) nanofilm. A Pantak industrial X-ray equipment was used to generate the RQR radiation quality beams and test three ZnO detector samples. A 6430 sub-femto-ammeter, Keithley, was used to bias the ZnO detector and simultaneously perform the output readings. The results showed that the ZnO device has some increase in its sensitivity to the ionizing radiation as the X-ray effective energy decreases unlike other types of semiconductor electronic devices typically used as an X-ray detector. We can conclude that the ZnO device can be used as a diagnostic X-ray detector with an appropriate calibration. (author)

  11. Assessing the efficiency position sensitive gaseous X-rays detectors

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines Silvani; Lopes, Ricardo T.

    2009-01-01

    Full text: The efficiency of gaseous X-ray detectors can be evaluated from tabulated data, but this approach assumes that the whole detector volume is permeated by the electrostatic field produced by the anode-cathode. Indeed, the usual detectors are comprised by a cylindrical hull acting as cathode containing a wire at its axis as anode, a configuration which foods the space between them with the electrostatic field. Some specially designed detectors, however, as Position Sensitive Detectors, contain regions which are not submitted to the electrostatic field, and hence, their efficiency could not be assessed from the tabulated data. Direct measurements of this efficiency would require a mono-chromator or set of pure mono-energetic X-rays sources. As only very few of them are really mono-energetic, the detector response to a given energy would be spoiled by to the concomitant contribution of other energies. Yet, the information would not be completely lost, but only concealed due to the convolution carried out by the detector. Therefore, a proper unfolding would be capable to recover the information, yielding the individual detector efficiency for each of the contributing energies. The degraded information is retrieved in this work through a proper mathematical unfolding of the detector response, when exposed to Bremsstrahlung spectra from an X-ray tube submitted to different voltages. For this purpose, Lorentzian functions have been fitted to these spectra - obtained with a NaI(Tl) spectrometer - in order to characterize them with proper parameters. The mathematical convolution of these functions with a theoretical detector efficiency curve yields, after integration, values which, confronted with those experimentally measured, allow the determination of the parameters of the efficiency curve. As some parameters of this curve are well known, it is possible to represent it by proper functions. For argon-filled detectors, for instance, this efficiency has a

  12. X-ray source array

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A circular array of cold cathode diode X-ray sources, for radiation imaging applications, such as computed tomography includes electrically conductive cathode plates each of which cooperates with at least two anodes to form at least two diode sources. In one arrangement, two annular cathodes are separated by radially extending, rod-like anodes. Field enhancement blades may be provided on the cathodes. In an alternative arrangement, the cathode plates extend radially and each pair is separated by an anode plate also extending radially. (author)

  13. Superconducting Thin-Film Interconnects for Cryogenic Photon Detector Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced imaging spectrometers for x-ray astronomy will require significant improvements in the high density interconnects between the detector arrays and the first...

  14. Scalable, large area compound array refractive lens for hard X-rays

    Science.gov (United States)

    Reich, Stefan; dos Santos Rolo, Tomy; Letzel, Alexander; Baumbach, Tilo; Plech, Anton

    2018-04-01

    We demonstrate the fabrication of a 2D Compound Array Refractive Lens (CARL) for multi-contrast X-ray imaging. The CARL consists of six stacked polyimide foils with each displaying a 2D array of lenses with a 65 μm pitch aiming for a sensitivity on sub-micrometer structures with a (few-)micrometer resolution in sensing through phase and scattering contrast at multiple keV. The parabolic lenses are formed by indents in the foils by a paraboloid needle. The ability for fast single-exposure multi-contrast imaging is demonstrated by filming the kinetics of pulsed laser ablation in liquid. The three contrast channels, absorption, differential phase, and scattering, are imaged with a time resolution of 25 μs. By changing the sample-detector distance, it is possible to distinguish between nanoparticles and microbubbles.

  15. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    Science.gov (United States)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  16. Spectrometry of X-ray beams using Cadmium and Zinc Teluride detector

    International Nuclear Information System (INIS)

    Becker, Paulo Henriques Bastos

    1997-06-01

    Determination of X-ray spectra to be utilized for medical diagnostics is a complementary process to the development of procedures to be applied to the quality control of radiodiagnostics X-ray equipment. Until some years ago, that was only possible using Germanium or Silicon detectors. Both have an excellent resolution in this energy range, but present also some restrictions as there are high costs and the necessity of operating them at temperature of liquid Nitrogen, which is not always available at the measurement's place. Room temperature detectors like Cadmium Telluride and Mercury Iodine don't have these restrictions. They, however, have a lower resolution and incomplete collection of the charges produced by their interaction with radiation. With technological advance of crystal growth in general and new techniques like cooling the crystal with a Peltier cell and rise time discrimination circuits, today Cadmium Telluride detectors show a resolution very close to that from Germanium detectors. This work relates to the routine use of Cadmium and Zinc Telluride detectors for measuring X-ray spectra in loco of diagnostic X-ray units. It characterizes the properties of a commercially available detector and offers a model for stripping the measured pulse height distribution. It was also developed a collimator to allow the direct measurement of the beam. The model developed and the constructed set-up were applied to two X-ray tubes and the achieved spectra compared with some spectra available from the literature. (author)

  17. Time response characteristics of X-ray detector system on Silex-Ⅰ laser facility

    International Nuclear Information System (INIS)

    Yi Rongqing; He Xiao'an; Li Hang; Du Huabing; Zhang Haiying; Cao Zhurong

    2013-01-01

    On the Silex-Ⅰ laser facility, the time response characteristics of XRD detector were studied. A laser with a pulse of 32 fs and a wavelength of 800 nm was used to irradiate a plane Au target. X-ray calibrated method of time of exposure X-ray framing camera and time resolution of X-ray streak camera was explored. The time response characteristics of XRD detector and time process of X-ray emission were obtained from experiment. We obtained X-ray calibration method of time of exposure X-ray framing camera and time resolution of X-ray streak camera. (authors)

  18. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  19. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    Science.gov (United States)

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  20. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  1. Development of a lens-coupled CMOS detector for an X-ray inspection system

    International Nuclear Information System (INIS)

    Kim, Ho Kyung; Ahn, Jung Keun; Cho, Gyuseong

    2005-01-01

    A digital X-ray imaging detector based on a complementary metal-oxide-semiconductor (CMOS) image sensor has been developed for X-ray non-destructive inspection applications. This is a cost-effective solution because of the availability of cheap commercial standard CMOS image sensors. The detector configuration adopts an indirect X-ray detection method by using scintillation material and lens assembly. As a feasibility test of the developed lens-coupled CMOS detector as an X-ray inspection system, we have acquired X-ray projection images under a variety of imaging conditions. The results show that the projected image is reasonably acceptable in typical non-destructive testing (NDT). However, the developed detector may not be appropriate for laminography due to a low light-collection efficiency of lens assembly. In this paper, construction of the lens-coupled CMOS detector and its specifications are described, and the experimental results are presented. Using the analysis of quantum accounting diagram, inefficiency of the lens-coupling method is discussed

  2. Quality control measurements for digital x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, N W [Department of Radiology, University Hospitals Leuven, 49 Herenstraat, 3000 Leuven (Belgium); Mackenzie, A [National Co-ordinating Centre for the Physics of Mammography, Medical Physics, Level B, St Luke' s Wing, The Royal Surrey County Hospital NHS Trust, Egerton Road, Guildford, GU2 7XX (United Kingdom); Honey, I D, E-mail: nicholas.marshall@uz.kuleuven.ac.be [Department of Medical Physics, Floor 3, Henriette Raphael House, Guy' s and St Thomas' Hospital, London, SE1 9RT (United Kingdom)

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 {mu}Gy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 {mu}Gy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm{sup -1} {+-} 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 {mu}Gy {+-} 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 x 10{sup -5} mm{sup 2} (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm{sup -1}, with a maximum cov of 10% at 2.9 mm{sup -1}, while the average DQE was 0.56 at 0.5 mm{sup -1} for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found

  3. X-ray detector for automatic exposure control using ionization chamber filled with xenon gas

    CERN Document Server

    Nakagawa, A; Yoshida, T

    2003-01-01

    This report refers to our newly developed X-ray detector for reliable automatic X-ray exposure control, which is to be widely used for X-ray diagnoses in various clinical fields. This new detector utilizes an ionization chamber filled with xenon gas, in contrast to conventional X-ray detectors which use ionization chambers filled with air. Use of xenon gas ensures higher sensitivity and thinner design of the detector. The xenon gas is completely sealed in the chamber, so that the influence of the changes in ambient environments is minimized. (author)

  4. A new miniature microchannel plate X-ray detector for synchrotron radiation

    International Nuclear Information System (INIS)

    Rosemeier, R.G.; Green, R.E. Jr.

    1982-01-01

    A state-of-the-art microchannel plate detector has been developed which allows real time X-ray imaging of X-ray diffraction as well as radiographic phenomenon. Advantages of the device include a 50 mm X-ray input, length less than 4'', and a weight of less than 1 lb. Since the use of synchrotron radiation is greatly facilitated by the capability of remote viewing of X-ray diffraction or radiographic images in real time, a prototype electro-optical system has been designed which couples the X-ray microchannel plate detector with a solid state television camera. Advantages of the miniature, lightweight, X-ray synchrotron camera include a large 50 mm X-ray input window, an output signal that is available in both analog format for display on a television monitor and in digital format for computer processing, and a completely modular design which allows all the components to be exchanged for other components optimally suited for the desired applications. (orig.)

  5. Use of silicon microstrip detectors in medical diagnostic x-rays

    International Nuclear Information System (INIS)

    Cabal Rodriguez, Ana Ester

    2004-11-01

    This work presents the development and characterization of a single photon counting system based on silicon microstrip detectors, used in High Energy Physics experiments, and on low noise multichannel readout electronics. The thesis evaluates the feasibility of dual energy X-ray imaging with silicon microstrip detectors to be applied on medical diagnosis. Dual energy mammographic and angiographic experimental tests have been performed using the developed counting systems proto types, properly phantoms and quasi-monochromatic X ray beams, obtained on a compact dichromatic source based on a conventional X-ray tube and a mosaic crystal. A Monte Carlo simulation of the performance of the experimental setup for dual X-ray imaging has also been carried out using MCNP-4C transport code. We obtained good agreement between MCNP results and the experimental data. (Author)

  6. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    Science.gov (United States)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  7. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    Science.gov (United States)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  8. Diamond detectors for synchrotron radiation X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy)], E-mail: desio@arcetri.astro.it; Pace, E. [Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy); INFN, Sezione di Firenze, v. G. Sansone 1, Sesto Fiorentino, Firenze (Italy); Cinque, G.; Marcelli, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Achard, J.; Tallaire, A. [LIMHP-CNRS, University of Paris XIII, 99 Avenue JB Clement, 93430 Villetaneuse (France)

    2007-07-15

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices.

  9. Diamond detectors for synchrotron radiation X-ray applications

    International Nuclear Information System (INIS)

    De Sio, A.; Pace, E.; Cinque, G.; Marcelli, A.; Achard, J.; Tallaire, A.

    2007-01-01

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices

  10. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  11. The Argonne silicon strip-detector array

    Energy Technology Data Exchange (ETDEWEB)

    Wuosmaa, A H; Back, B B; Betts, R R; Freer, M; Gehring, J; Glagola, B G; Happ, Th; Henderson, D J; Wilt, P [Argonne National Lab., IL (United States); Bearden, I G [Purdue Univ., Lafayette, IN (United States). Dept. of Physics

    1992-08-01

    Many nuclear physics experiments require the ability to analyze events in which large numbers of charged particles are detected and identified simultaneously, with good resolution and high efficiency, either alone, or in coincidence with gamma rays. The authors have constructed a compact large-area detector array to measure these processes efficiently and with excellent energy resolution. The array consists of four double-sided silicon strip detectors, each 5x5 cm{sup 2} in area, with front and back sides divided into 16 strips. To exploit the capability of the device fully, a system to read each strip-detector segment has been designed and constructed, based around a custom-built multi-channel preamplifier. The remainder of the system consists of high-density CAMAC modules, including multi-channel discriminators, charge-sensing analog-to-digital converters, and time-to-digital converters. The array`s performance has been evaluated using alpha-particle sources, and in a number of experiments conducted at Argonne and elsewhere. Energy resolutions of {Delta}E {approx} 20-30 keV have been observed for 5 to 8 MeV alpha particles, as well as time resolutions {Delta}T {<=} 500 ps. 4 figs.

  12. Measurement of central nickel density in Doublet III plasmas with a soft x-ray diode array

    International Nuclear Information System (INIS)

    Groebner, R.J.; Jahns, G.L.; Ejima, S.; Hsieh, C.L.

    1985-01-01

    An array of soft x-ray diodes has been used to obtain central nickel densities for discharges in the Doublet III tokamak, during operation with an inconel primary limiter, in which nickel L-line radiation dominated the diode signals. The nature of the diode signals is determined primarily by comparison with soft x-ray spectra. The contribution of the continuum portion of the spectra to the central diode signal can be calculated and compared to the observed signal. When the diode signal is dominated by nickel L-line emission, the observed signal is considerably larger than the calculated continuum contribution. Chordal data from the array of diodes are inverted to provide the spatial profile of soft x-ray emission. Because the diodes are absolute detectors of radiation, the soft x-ray emission profile is used to obtain the absolute nickel concentration and density profile in the center of the plasma. A computer code, including over 100 nickel L-line transitions, has been developed to obtain the nickel density. The nickel L-line cooling rate, calculated with the code, is presented. The nickel density obtained by this technique agrees well with that obtained from the K/sub α/ line intensity measured with a soft x-ray spectrometer and that obtained from a bolometric measurement of central radiated power coupled with a coronal equilibrium model of the radiation

  13. CCD [charge-coupled device] sensors in synchrotron x-ray detectors

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.; Zaluzec, N.J.

    1987-01-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ∼1 CCD electron/x-ray photon, a peak saturation capacity of >10 6 x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of ∼1 frame/s or a complete 3-dimensional data set from a single crystal in ∼2 min. 16 refs., 16 figs., 2 tabs

  14. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  15. Epitaxial Ge-crystal arrays for X-ray detection

    International Nuclear Information System (INIS)

    Kreiliger, T; Falub, C V; Müller, E; Känel, H von; Isa, F; Isella, G; Chrastina, D; Bergamaschini, R; Marzegalli, A; Miglio, L; Kaufmann, R; Niedermann, P; Neels, A; Dommann, A; Meduňa, M

    2014-01-01

    Monolithic integration of an X-ray absorber layer on a Si CMOS chip might be a potentially attractive way to improve detector performance at acceptable costs. In practice this requires, however, the epitaxial growth of highly mismatched layers on a Si-substrate, both in terms of lattice parameters and thermal expansion coefficients. The generation of extended crystal defects, wafer bowing and layer cracking have so far made it impossible to put the simple concept into practice. Here we present a way in which the difficulties of fabricating very thick, defect-free epitaxial layers may be overcome. It consists of an array of densely packed, three-dimensional Ge-crystals on a patterned Si(001) substrate. The finite gap between neighboring micron-sized crystals prevents layer cracking and substrate bowing, while extended defects are driven to the crystal sidewalls. We show that the Ge-crystals are indeed defect-free, despite the lattice misfit of 4.2%. The electrical characteristics of individual Ge/Si heterojunction diodes are obtained from in-situ measurements inside a scanning electron microscope. The fabrication of monolithically integrated detectors is shown to be compatible with Si-CMOS processing

  16. Uncooled Radiation Hard Large Area SiC X-ray and EUV Detectors and 2D Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize large area, uncooled and radiative hard 4H-SiC EUV ? soft X-ray detectors capable of ultra...

  17. High gain gas microstrip detectors for soft x-ray detection

    International Nuclear Information System (INIS)

    Bateman, J.; Barlow, R.; Derbyshire, G.

    2001-01-01

    This report describes development work in which systematic changes in the pitch of the electrode pattern of a Gas Microstrip Detector are explored in the search for higher avalanche gains and enhanced stability. With the cathode width set to half of the pitch, gas gains of >50 000 are comfortably attainable with low detector noise so that x-rays can potentially be detected down to the limit of a single x-ray-produced photoelectron. (author)

  18. Adjustment of a low energy, X-rays generator (6 kV - 50 mA). Application to X-rays detectors calibration

    International Nuclear Information System (INIS)

    Legistre, C.

    1995-02-01

    The aim of this memoir is the calibration of an aluminium photocathode X-rays photoelectric detector, in the spectral range 0,5 keV - 1,5 KeV, with a continuous X-ray source. The detectors's calibration consist to measure the detector's sensitivity versus incident energy. In order to produce monochromatic incident beam on the detector, we used a multilayer mirror whose reflectivity was characterized. The measurements are compared to those realized in an other laboratory. (authors). 36 refs., 61 figs., 13 tabs., 2 photos

  19. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  20. The surface detector array of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Allen, M.; Anderson, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Azuma, R. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Cheon, B.G. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Cho, E.J. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Cho, W.R. [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukuda, T. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Gorbunov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); and others

    2012-10-11

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  1. The surface detector array of the Telescope Array experiment

    International Nuclear Information System (INIS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; Cheon, B.G.; Chiba, J.; Chikawa, M.; Cho, E.J.; Cho, W.R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Gorbunov, D.

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  2. Micro-array collimators for X-rays and neutrons

    International Nuclear Information System (INIS)

    Cimmino, A.; Allman, B.E.; Klein, A.G.; Bastie, P.

    1998-08-01

    The authors describe the fabrication techniques of novel, compact optical elements for collimating and/or focusing beams of X-rays or thermal neutrons. These optical elements are solid composite arrays consisting of regular stacks of alternating micro-foils, analogous in action to Soller slit collimators, but up to three orders of magnitude smaller. The arrays are made of alternating metals with suitable refractive indices for reflection and/or absorption of the specific radiation. In one implementation, the arrays are made of stacked micro-foils of transmissive elements (Al, Cu) coated and/or electroplated with absorbing elements (Gd, Cd), which are repeatedly rolled or drawn and restacked to achieve the required collimation parameters. The authors present results of these collimators using both X-rays and neutrons. The performance of the collimating element is limited only by the choice of micro-foil materials and the uniformity of their interfaces

  3. Diagnostic X-ray spectrometry using a commercial CdZnTe detector

    International Nuclear Information System (INIS)

    Becker, P.H.B.

    1998-01-01

    X ray spectrometry using Ge or Si detectors is an established tool to measure characterization parameters of X-ray beams. This work describes how a commercial CdZnTe was used to perform diagnostic X-ray spectrometry. Spectra were measured for two X-ray machines and compared with similar data found in the literature with an agreement of 2% rms

  4. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  5. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  6. Charge diffusion in CCD X-ray detectors

    International Nuclear Information System (INIS)

    Pavlov, George G.; Nousek, John A.

    1999-01-01

    Critical to the detection of X-rays by CCDs, is the detailed process of charge diffusion and drift within the device. We reexamine the prescriptions currently used in the modeling of X-ray CCD detectors to provide analytic expressions for the charge distribution over the CCD pixels which are suitable for use in numerical simulations of CCD response. Our treatment results in models which predict charge distributions which are more centrally peaked and have flatter wings than the Gaussian shapes predicted by previous work and adopted in current CCD modeling codes

  7. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    International Nuclear Information System (INIS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-01-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%

  8. EIGER: Next generation single photon counting detector for X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Dinapoli, Roberto, E-mail: roberto.dinapoli@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bergamaschi, Anna; Henrich, Beat; Horisberger, Roland; Johnson, Ian; Mozzanica, Aldo; Schmid, Elmar; Schmitt, Bernd; Schreiber, Akos; Shi, Xintian; Theidel, Gerd [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2011-09-11

    EIGER is an advanced family of single photon counting hybrid pixel detectors, primarily aimed at diffraction experiments at synchrotrons. Optimization of maximal functionality and minimal pixel size (using a 0.25{mu}m process and conserving the radiation tolerant design) has resulted in 75x75{mu}m{sup 2} pixels. Every pixel comprises a preamplifier, shaper, discriminator (with a 6 bit DAC for threshold trimming), a configurable 4/8/12 bit counter with double buffering, as well as readout, control and test circuitry. A novel feature of this chip is its double buffered counter, meaning a next frame can be acquired while the previous one is being readout. An array of 256x256 pixels fits on a {approx}2x2cm{sup 2} chip and a sensor of {approx}8x4cm{sup 2} will be equipped with eight readout chips to form a module containing 0.5 Mpixel. Several modules can then be tiled to form larger area detectors. Detectors up to 4x8 modules (16 Mpixel) are planned. To achieve frame rates of up to 24 kHz the readout architecture is highly parallel, and the chip readout happens in parallel on 32 readout lines with a 100 MHz Double Data Rate clock. Several chips and singles (i.e. a single chip bump-bonded to a single chip silicon sensor) were tested both with a lab X-ray source and at Swiss Light Source (SLS) beamlines. These tests demonstrate the full functionality of the chip and provide a first assessment of its performance. High resolution X-ray images and 'high speed movies' were produced, even without threshold trimming, at the target system frame rates (up to {approx}24kHz in 4 bit mode). In parallel, dedicated hardware, firmware and software had to be developed to comply with the enormous data rate the chip is capable of delivering. Details of the chip design and tests will be given, as well as highlights of both test and final readout systems.

  9. Effect of the phosphor screen optics on the Swank noise performance in indirect-conversion x-ray imaging detectors

    International Nuclear Information System (INIS)

    Lim, C H; Moon, M-K; Kam, S; Han, J C; Yun, S; Youn, H; Kim, H K; Jeon, H

    2014-01-01

    The optics between the scintillators and photodiode arrays of indirect-conversion x-ray imaging systems requires careful design because it can be a cause of secondary quantum sink, which reduces the detective quantum efficiency at high spatial frequencies. The aim of this study was the investigation of the effect of the optical properties of granular phosphor screens — including optical coupling materials and passivation layers in photodiode arrays — on the imaging performance of indirect-conversion x-ray imaging detectors using the Monte Carlo technique. In the Monte Carlo simulations, various design parameters were considered, such as the refractive index of the optical coupler and the passivation layer, the reflection coefficient at the screen backing, and the thickness of the optical coupler. We developed a model that describes the optical pulse-height distributions based on the depth-dependent collection efficiency obtained from the simulations. We used the model to calculate the optical Swank noise. A loss in the number of collected optical photons was inevitable owing to the introduction of intermediate optics and mismatches in the optical design parameters. However, the collection efficiency marginally affected the optical Swank factor performance. The results and methodology of this study will facilitate better designs and optimization of indirect-conversion x-ray detectors

  10. A new X-ray detector for magnetic circular dichroism experiments

    CERN Document Server

    Bateman, J E; Dudzik, E; Laan, G V D; Lipp, J D; Smith, A D; Stephenson, R

    2001-01-01

    X-ray magnetic circular dichroism (XMCD) studies of magnetic 3d transition metal samples require the recording of high quality absorption scans in high magnetic fields using circularly polarised soft X-rays of energies in the range 0.5-1 keV. A Gas Microstrip Detector is described which permits the option of using the X-ray fluorescence signal instead of the usual electron yield signal.

  11. Gas Pixel Detectors for low energy X-ray polarimetry

    International Nuclear Information System (INIS)

    Spandre, Gloria

    2007-01-01

    Gas Pixel Detectors are position-sensitive proportional counters in which a complete integration between the gas amplification structure and the read-out electronics has been reached. Various generation of Application-Specific Integrated Circuit (ASIC) have been designed in deep submicron CMOS technology to realize a monolithic device which is at the same time the charge collecting electrode and the analog amplifying and charge measuring front-end electronics. The experimental response of a detector with 22060 pixels at 80 μm pitch to polarized and un-polarized X-ray radiation is shown and the application of this device for Astronomical X-ray Polarimetry discussed

  12. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  13. Spectral correction algorithm for multispectral CdTe x-ray detectors

    DEFF Research Database (Denmark)

    Christensen, Erik D.; Kehres, Jan; Gu, Yun

    2017-01-01

    Compared to the dual energy scintillator detectors widely used today, pixelated multispectral X-ray detectors show the potential to improve material identification in various radiography and tomography applications used for industrial and security purposes. However, detector effects, such as charge...

  14. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    Science.gov (United States)

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-10-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  15. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    Science.gov (United States)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  16. Application of energy dispersive X-ray spectrometers with semiconductor detectors in radiometric analyses

    International Nuclear Information System (INIS)

    Jugelt, P.; Schieckel, M.

    1983-01-01

    Problems and possibilities of applying semiconductor detector spectrometers in radiometric analyses are described. A summary of the state of the art and tendencies of device engineering and spectra evaluation is given. Liquid-nitrogen cooled Li-drifted Si-detectors and high-purity Ge-detectors are compared. Semiconductor detectors working at room temperature are under development. In this connection CdTe and HgI 2 semiconductor detectors are compared. The use of small efficient computers in the spectrometer systems stimulates the development of algorithms for spectra analyses and for determining the concentration. Fields of application of energy dispersive X-ray spectrometers are X-ray diffraction and X-ray macroanalysis in investigating the structure of extensive surface regions

  17. A gas pixel detector for X-ray imaging

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1991-11-01

    A simple, robust form of gas pixel detector is discussed which is based on the use of electronic connector pins as the gain elements. With a rate capability of >10 5 counts/s per pin, an X-ray imaging detector system capable of counting at global rates of the order of 10 10 counts/s is foreseen. (author)

  18. X-ray analysis of electron Bernstein wave heating in MST

    Energy Technology Data Exchange (ETDEWEB)

    Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.; Almagri, A.; Forest, C. B. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  19. Evaluation of electrical crosstalk in high-density photodiode arrays for X-ray imaging applications

    International Nuclear Information System (INIS)

    Ji Fan; Juntunen, Mikko; Hietanen, Iiro

    2009-01-01

    Electrical crosstalk is one of the important parameters in the photodiode array detector for X-ray imaging applications, and it becomes more important when the density of the photodiode array becomes higher. This paper presents the design of the high-density photodiode array with 250 μm pitch and 50 μm gap. The electrical crosstalk of the demonstrated samples is evaluated and compared with different electrode configurations: cathode bias mode and anode bias mode. The measurement results show good electrical crosstalk, ∼0.23%, in cathode bias mode regardless of the bias voltage, and slightly decreased or increased electrical crosstalk in anode bias mode. Moreover, the quantum efficiency is also evaluated from the same samples, and it behaves similar to the electrical crosstalk. Finally, some design guidance of the high-density photodiode array is given based on the discussion.

  20. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  1. Energy Calibration of the Pixels of Spectral X-ray Detectors

    CERN Document Server

    Panta, Raj Kumar; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-01-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have deve...

  2. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States)

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  3. Filter-fluorescer x-ray spectrometer using solid state detectors for γ-ray background reduction

    International Nuclear Information System (INIS)

    Yokoi, Takashi; Kitagawa, Yoneyoshi; Shiraga, Hiroyuki; Matsunaga, Hirohide; Kato, Yoshiaki; Yamanaka, Chiyoe.

    1986-01-01

    Filter-fluorescer x-ray spectrometer using solid state photo-detectors instead of the photomultiplier tubes in order to reduce the γ-ray background noise is reported. A significant reduction of the γ-ray background noise is expected, because solid state photo-detectors are very small in size compared with the photomultiplier tubes. It has been confirmed that the γ-ray background is reduced in the target irradiation experiments with the Gekko MII glass laser. (author)

  4. Effective and cheap X-ray television detector

    International Nuclear Information System (INIS)

    Artem'ev, A.N.; Potlovskij, K.G.; Rezvov, V.A.; Yudin, L.I.

    2002-01-01

    The position sensitive detector (PSD) is designed for investigations with traditional X-ray tubes and synchrotron radiation from 3 to 30 keV. PSD consists of light-tight box, which transforms X-ray photons to light photons. Light photons are registered with the help of TV camera. Then an image is digitized and introduced into computer. Software provides registration of the dim beam images by means of accumulation of the information. Statistic processing of the image series allows to determine of the parameters of the image. Sensitivity is 41 phot/pixel. Spatial resolution is not worse then 400 μ [ru

  5. X-ray scattering from periodic arrays of quantum dots

    International Nuclear Information System (INIS)

    Holy, V; Stangl, J; Lechner, R T; Springholz, G

    2008-01-01

    Three-dimensional periodic arrays of self-organized quantum dots in semiconductor multilayers are investigated by high-resolution x-ray scattering. We demonstrate that the statistical parameters of the dot array can be determined directly from the scattering data without performing a numerical simulation of the scattered intensity.

  6. Transition-Edge Sensor Pixel Parameter Design of the Microcalorimeter Array for the X-Ray Integral Field Unit on Athena

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of approximately 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 kiloelectronvolts. The instrument will provide unprecedented spectral resolution of approximately 2.5 electronvolts at energies of up to 7 kiloelectronvolts and will accommodate photon fluxes of 1 milliCrab (90 counts per second) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28 arcseconds pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 by × 18 small pixel array (SPA) of 2 arcseconds pixels in the central approximately 36 arcseconds region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 milliCrabs (900 counts per second) or alternately for improved spectral performance (less than 1.5 electronvolts) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  7. A high rate, low noise, x-ray silicon strip detector system

    International Nuclear Information System (INIS)

    Ludewigt, B.; Jaklevic, J.; Kipnis, I.; Rossington, C.; Spieler, H.

    1993-11-01

    An x-ray detector system, based on a silicon strip detector wire-bonded to a low noise charge-senstive amplifier integrated circuit, has been developed for synchrotron radiation experiments which require very high count rates and good energy resolution. Noise measurements and x-ray spectra were taken using a 6 mm long, 55 μm pitch strip detector in conjunction with a prototype 16-channel charge-sensitive preamplifier, both fabricated using standard 1.2 μm CMOS technology. The detector system currently achieves an energy resolution of 350 eV FWHM at 5.9 key, 2 μs peaking time, when cooled to -5 degree C

  8. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  9. Performance of low-cost X-ray area detectors with consumer digital cameras

    International Nuclear Information System (INIS)

    Panna, A.; Gomella, A.A.; Harmon, K.J.; Chen, P.; Miao, H.; Bennett, E.E.; Wen, H.

    2015-01-01

    We constructed X-ray detectors using consumer-grade digital cameras coupled to commercial X-ray phosphors. Several detector configurations were tested against the Varian PaxScan 3024M (Varian 3024M) digital flat panel detector. These include consumer cameras (Nikon D800, Nikon D700, and Nikon D3X) coupled to a green emission phosphor in a back-lit, normal incidence geometry, and in a front-lit, oblique incidence geometry. We used the photon transfer method to evaluate detector sensitivity and dark noise, and the edge test method to evaluate their spatial resolution. The essential specifications provided by our evaluation include discrete charge events captured per mm 2 per unit exposure surface dose, dark noise in equivalents of charge events per pixel, and spatial resolution in terms of the full width at half maximum (FWHM) of the detector's line spread function (LSF). Measurements were performed using a tungsten anode X-ray tube at 50 kVp. The results show that the home-built detectors provide better sensitivity and lower noise than the commercial flat panel detector, and some have better spatial resolution. The trade-off is substantially smaller imaging areas. Given their much lower costs, these home-built detectors are attractive options for prototype development of low-dose imaging applications

  10. The X-ray mirror telescope and the pn-CCD detector of CAST

    CERN Document Server

    Kuster, M; Englhauser, J; Franz, J; Friedrich, P; Hartmann, R; Kang, D; Kotthaus, R; Lutz, Gerhard; Moralez, J; Serber, W; Strüder, L

    2004-01-01

    The Cern Axion Solar Telescope - CAST - uses a prototype 9 Tesla LHC superconducting dipole magnet to search for a hypothetical pseudoscalar particle, the axion, which was proposed by theory in the 1980s to solve the strong CP problem and which could be a dark matter candidate. In CAST a strong magnetic field is used to convert the solar axions to detectable photons via inverse Primakoff effect. The resulting X-rays are thermally distributed in the energy range of 1-7 keV and can be observed with conventional X-ray detectors. The most sensitive detector system of CAST is a pn-CCD detector originally developed for XMM-Newton combined with a Wolter I type X-ray mirror system. The combination of a focusing X-ray optics and a state of the art pn-CCD detector which combines high quantum efficiency, good spacial and energy resolution, and low background improves the sensitivity of the CAST experiment such that for the first time the axion photon coupling constant can be probed beyond the best astrophysical constrai...

  11. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  12. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  13. Phonon-mediated distributed transition-edge-sensor X-ray detectors for surveys of galaxy clusters and the warm-hot interstellar medium

    International Nuclear Information System (INIS)

    Leman, Steven W.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Chakraborty, Sudeepto; Deiker, Steve; Kahn, Steve; Martinez-Galarce, Dennis S.; Stern, Robert A.; Tomada, Astrid

    2006-01-01

    We are developing a novel phonon-mediated distributed-TES X-ray detector in which X-rays are absorbed in a large germanium or silicon crystal, and the energy is read out by four distributed TESs. This design takes advantage of existing TES technology while overcoming the difficulties of designing spatially large arrays. The sum of the four TES signals will yield energy resolution of E/δE∼1000 and the partitioning of energy between the four will yield position resolution of X/δX and Y/δY∼100. These macropixels, with advances in multiplexing, could be close-packed into 30x30 arrays equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to galaxy cluster searches and studies of the Warm-Hot Interstellar Medium

  14. Two-dimensional imaging detectors for structural biology with X-ray lasers.

    Science.gov (United States)

    Denes, Peter

    2014-07-17

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors--monolithic or hybrid--are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. X-ray system with coupled source drive and detector drive

    International Nuclear Information System (INIS)

    1976-01-01

    An electronic coupling replacing the (more expensive) mechanical coupling which controls the speed of two sets of two electric motors, one driving an X-ray source and the other an X-ray detector, is described. Source and detector are kept rotating in parallel planes with a fairly constant velocity ratio. The drives are controlled by an electronic system comprising a comparator circuit comparing the position-indicative signals, a process control circuit and an inverter switch. The control system regulates the speed of the electric motors. The signal processing is described

  16. Multicell x-ray detector

    International Nuclear Information System (INIS)

    Stone, B.N.; Shelley, P.S.; Love, W.D.

    1981-01-01

    This invention is concerned with improving multicell detectors, particularly those used in computerized tomography. Existing ionization detectors have problems maintaining the precise dimensional spacing between electrodes required for accuracy. In addition, mechanical vibrations set up microphonic effects between the electrode plates. In this invention, pairs of electrode plates are separated by grooved insulating members. The upper and lower edges of an array of electrode plates are inserted in corresponding grooves in the insulating members, and, the whole electrode assembly is securely anchored in the detector chamber

  17. Applications of 'edge-on' illuminated porous plate detectors for diagnostic X-ray imaging

    CERN Document Server

    Shikhaliev, P M

    2002-01-01

    Scanning X-ray imaging systems for non-invasive diagnostics have several advantages over conventional imaging systems using area detectors. They significantly reduce the detected scatter radiation, cover large areas and potentially provide high spatial resolution. Applications of one-dimensional gaseous detectors and 'edge-on' illuminated silicon strip detectors for scanning imaging systems are currently under intensive investigation. The purpose of this work is to investigate 'edge-on' illuminated Porous Plate (PP) detectors for applications in diagnostic X-ray imaging. MicroChannel Plate (MCP), which is a common type of PP, has previously been investigated as a detector in surface-on illumination mode for medical X-ray imaging. However, its detection efficiency was too low for medical imaging applications. In the present study, the PP are used in the 'edge-on' illumination mode. Furthermore, the structural parameters of different PP types are optimized to improve the detection efficiency in the diagnostic X...

  18. Analysis of the direct x-ray absorption noise in phosphor-coupled CMOS detectors

    International Nuclear Information System (INIS)

    Han, Jong Chul; Yun, Seung Man; Kim, Ho Kyung; Cunningham, Ian; Achterkirchen, Thorsten

    2009-01-01

    It is known that the indirect conversion detectors have an NPS (noise power spectrum), which decreases with the spatial frequency, and the direct conversion detector have a nearly constant NPS with the spatial frequency (or white NPS). This explains that when a significant amount of x rays are not absorbed in the phosphor layer, then the additional absorption of x-rays in the semiconductor layers (or the photodiodes) with their white noise contributions degrades the total NPS performance. From the fact, we investigated how the direct x-ray affects CMOS detectors in terms of NPS and DQE (detective quantum efficiency)

  19. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Betin, J; Zhabin, E; Krampit, I; Smirnov, V

    1980-04-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc.

  20. Position sensitive detector for X-ray photons

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1988-01-01

    This work reports the theoretical basis and the details of the construction process, characterization and application of gas X-ray position sensitive detectors. The unidimensional detector consists of a gas camera (argon and CH 4 ), a metallic anode, a cathode and a delay line. Details of the construction process are given in order to allow the reproduction of the detector. It has been characterized by measuring its spatial resolution, homogeneity and linerity. The built linear detector has been used to obtain diffraction diagrams from polycrystalline silicon, C 23 H 48 paraffin and glassy carbon. These diagrams have been compared with those obtained under equivalent conditions with a conventional proportional detector by the step scanning method. It has been shown that the detector provides diffraction diagrams of equivalent quality to those obtained by the step scanning method, in appreciably lower time intervals. (author) [pt

  1. Pixelated transmission-mode diamond X-ray detector.

    Science.gov (United States)

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-11-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60-100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼ 1 kHz, which leads to an image sampling rate of ∼ 30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5-15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10(-2) to 90 W mm(-2). Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  2. Considerations for application of Si(Li) detectors in analyses of sub-keV, ion-induced x rays

    International Nuclear Information System (INIS)

    Musket, R.G.

    1985-01-01

    Spectroscopy of ion-induced x rays is commonly performed using lithium-drifted, silicon detectors, Si(Li), with beryllium windows. Strong absorption of x rays with energies below 1 keV occurs in even the thinnest commercially available beryllium windows and precludes useful analysis of sub-keV x rays. Access to the sub-keV x ray region can be achieved using windowless (WL) and ultra-thin-windowed (UTW) Si(Li) detectors. These detectors have been shown to be useful for spectroscopy of x rays with energies above approximately 200 eV. The properties of such detectors are reviewed with regard to analysis of ion-induced x rays. In particular, considerations of detection efficiency, output linearity, energy resolution, peak shapes, and vacuum requirements are presented. The use of ion excitation for determination of many detector properties serves to demonstrate the usefulness of WL and UTW detectors for the spectroscopy of sub-keV, ion-induced x rays. 23 refs., 4 figs

  3. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    Science.gov (United States)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  4. Response of CZT drift-strip detector to X- and gamma rays

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Gerward, Leif

    2001-01-01

    The drift-strip method for improving the energy response of a CdZnTe (CZT) detector to hard X- and gamma rays is discussed. Results for a 10 x 10 x 3 mm(3) detector crystal demonstrate a remarkable improvement of the energy resolution. The full width at half maximum (FWHM) is 2.18 keV (3.6%), 2...

  5. Developments in gas detectors for synchrotron x-ray radiation

    International Nuclear Information System (INIS)

    Fischer, J.; Radeka, V.; Smith, G.C.

    1985-09-01

    New results on the physical limitations to position resolution in gas detectors for x-rays (approx. =3 to 20 keV) due to the range of photoelectrons and Auger electrons are discussed. These results were obtained with a small gap detector in which position readout was accomplished by using a very low noise centroid finding technique. A description is given of position sensitive detectors for medium rates (a few x 10 5 photons per second), using delay line readout, and for very high rates (approx. =10 8 photons per second), using fast signal shaping on the output of each anode wire

  6. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  7. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    International Nuclear Information System (INIS)

    Betin, J.; Zhabin, E.; Krampit, I.; Smirnov, V.

    1980-01-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc. (M.S.)

  8. Linearity discontinuities in Xe-filled X-ray microstrip detectors

    DEFF Research Database (Denmark)

    Zavattini, G.; Feroci, M.; Budtz-Jørgensen, Carl

    1997-01-01

    A prototype Xe + 10% CH4 microstrip detector was used to study the K-edge discontinuity in the pulse-height distribution as a function of the energy of incident X-rays. The electronics used was such that a pulse-shape rejection could be made of K-fluorescence reabsorption in the detector. The mea...

  9. Development of flat panel X-ray detector utilizing a CdZnTe film as conversion layer

    International Nuclear Information System (INIS)

    Tokuda, Satoshi; Kishihara, Hiroyuki; Kaino, Masatomo; Sato, Toshiyuki

    2006-01-01

    A polycrystalline CdZnTe film formed by the CSS (closed-spaced sublimation) method is one of the most promising materials as a conversion layer of next-generation highly efficient flat-panel X-ray detectors. Therefore, we have developed a prototype of a new flat-panel X-ray detector (a sensing region of 3 inches by 3 inches) with the film and evaluated its commercial feasibility. This paper describes evaluation of the physical and imaging properties of the prototype and explains the features of the CdZnTe film and the construction, specifications, and fabrication procedures of the prototype. Also included in this paper are formation of a semiconductor thin film barrier layer by the CBD (chemical bath deposition) method and conjunction of a sensor substrate and a TFT array substrate with the bump electrodes formed by screen printing, both of which we have developed during the course of the development of the prototype. (author)

  10. Calibration of the hard x-ray detectors for the FOXSI solar sounding rocket

    Science.gov (United States)

    Athiray, P. S.; Buitrago-Casas, Juan Camilo; Bergstedt, Kendra; Vievering, Juliana; Musset, Sophie; Ishikawa, Shin-nosuke; Glesener, Lindsay; Takahashi, Tadayuki; Watanabe, Shin; Courtade, Sasha; Christe, Steven; Krucker, Säm.; Goetz, Keith; Monson, Steven

    2017-08-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment conducts direct imaging and spectral observation of the Sun in hard X-rays, in the energy range 4 to 20 keV. These high-sensitivity observations are used to study particle acceleration and coronal heating. FOXSI is designed with seven grazing incidence optics modules that focus X-rays onto seven focal plane detectors kept at a 2m distance. FOXSI-1 was flown with seven Double-sided Si Strip Detectors (DSSD), and two of them were replaced with CdTe detectors for FOXSI-2. The upcoming FOXSI-3 flight will carry DSSD and CdTe detectors with upgraded optics for enhanced sensitivity. The detectors are calibrated using various radioactive sources. The detector's spectral response matrix was constructed with diagonal elements using a Gaussian approximation with a spread (sigma) that accounts for the energy resolution of the detector. Spectroscopic studies of past FOXSI flight data suggest that the inclusion of lower energy X-rays could better constrain the spectral modeling to yield a more precise temperature estimation of the hot plasma. This motivates us to carry out an improved calibration to better understand the finer-order effects on the spectral response, especially at lower energies. Here we report our improved calibration of FOXSI detectors using experiments and Monte-Carlo simulations.

  11. Wide Bandgap Semiconductor Detector Optimization for Flash X-Ray Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, Caleb Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schirato, Richard C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-17

    Charge trapping, resulting in a decreased and spatially dependent electric field, has long been a concern for wide bandgap semiconductor detectors. While significant work has been performed to characterize this degradation at varying temperatures and radiation environments, this work concentrates upon examining the event-to-event response in a flash X-ray environment. The following work investigates if charge trapping is a problem for CZT detectors, with particular emphasis on flash X-ray radiation fields at cold temperatures. Results are compared to a non-flash radiation field, using an Am-241 alpha source and similar temperature transitions. Our ability to determine if a response change occurred was hampered by the repeatability of our flash X-ray systems; a small response change was observed with the Am-241 source. Due to contrast of these results, we are in the process of revisiting the Am-241 measurements in the presence of a high radiation environment. If the response change is more pronounced in the high radiation environment, a similar test will be performed in the flash X-ray environment.

  12. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  13. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

    Science.gov (United States)

    Fehl, D. L.; Chandler, G. A.; Stygar, W. A.; Olson, R. E.; Ruiz, C. L.; Hohlfelder, J. J.; Mix, L. P.; Biggs, F.; Berninger, M.; Frederickson, P. O.; Frederickson, R.

    2010-12-01

    An algorithm for spectral reconstructions (unfolds) and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD) is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA), and serves as both a plasma probe and a gauge of accelerator performance. The unfold method, suitable for online analysis, arises naturally from general assumptions about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided into two consecutive papers. This paper considers three major issues: (a) Formulation of the unfold method.—The mathematical background, assumptions, and procedures leading to the algorithm are described: the spectral reconstruction Sunfold(E,t)—five histogram x-ray bins j over the x-ray interval, 137≤E≤2300eV at each time step t—depends on the shape and overlap of the calibrated channel responses and on the maximum electrical power delivered to the plasma. The x-ray flux Funfold is estimated as ∫Sunfold(E,t)dE. (b) Validation with simulations.—Tests of the unfold algorithm with known static and time-varying spectra are described. These spectra included—but were not limited to—Planckian spectra Sbb(E,T) (25≤T≤250eV), from which noise-free channel data were simulated and unfolded. For Planckian simulations with 125≤T≤250eV and typical responses, the binwise unfold values Sj and the corresponding binwise averages ⟨Sbb⟩j agreed to ˜20%, except where Sbb≪max⁡{Sbb}. Occasionally, unfold values Sj≲0 (artifacts) were encountered. The algorithm recovered ≳90% of the x-ray flux over the wider range, 75≤T≤250eV. For lower T, the

  14. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    International Nuclear Information System (INIS)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye

    2009-01-01

    The energy spectrum of cosmic rays in the range E∼10 15 eV to 6x10 19 eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10 15 and ∼10 19 eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  15. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye [Shafer Institute for Cosmophysical Research and Aeronomy, Yakutsk 677980 (Russian Federation)], E-mail: ivanov@ikfia.ysn.ru

    2009-06-15

    The energy spectrum of cosmic rays in the range E{approx}10{sup 15} eV to 6x10{sup 19} eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10{sup 15} and {approx}10{sup 19} eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  16. Development of CdZnTe X-ray detectors at DSRI

    DEFF Research Database (Denmark)

    van Pamelen, M.A.J.; Budtz-Jørgensen, Carl; Kuvvetli, Irfan

    2000-01-01

    An overview of the development of CdZnTe X-ray detectors at the Danish Space Research Institute is presented. Initiated in the beginning of 1996, the main motivation at that time was to develop focal plane detectors for the novel type of hard X-ray telescopes, which are currently under study...... developed a technique, which, with the use of microstrip electrodes, is able to compensate for the signal loss caused by trapping of positive charge carriers. This technique leads to a dramatic improvement of the achievable energy resolution, even for crystals of poor quality. With the technique, hole...

  17. Developments in microchannel plate detectors for imaging x-ray astronomy

    International Nuclear Information System (INIS)

    Fraser, G.W.; Whiteley, M.J.; Pearson, J.F.

    1985-01-01

    The authors present new results in four areas of microchannel plate (MCP) X-ray detector operation. The performance in pulse counting mode of MCPs with 8 micron channel diameters is reported. The effects on MCP quantum detection efficiency and energy discrimination of multiple CsI coatings are described. A new mode of operation of two-stage multipliers is evaluated. Replacing the conventional electron-accelerating inter-plate potential difference by a retarding field is shown to result in definite advantages with regard to X-ray energy discrimination and detector lifetime. The source of the MCP internal background is discussed

  18. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    Science.gov (United States)

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  19. Optimising the design of gas microstrip detectors for soft x-ray detection

    International Nuclear Information System (INIS)

    Bateman, J.; Barlow, R.; Derbyshire, G.

    2001-01-01

    This report describes development work in which systematic changes in the electrode pattern of a Gas Microstrip Detector are explored in the search for higher avalanche gains and enhanced stability. It is found that the width of the cathode structure is the main determinant of the detector stability. With the correct cathode width, gas gains of >50 000 are comfortably attainable with low detector noise so that x-rays can potentially be detected down to the limit of a single x-ray-produced photoelectron. (author)

  20. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.

    Science.gov (United States)

    Russo, Paolo; Mettivier, Giovanni

    2011-04-01

    The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35

  1. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  2. X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1978-01-01

    Two-dimensional X-ray diffraction patterns may be recorded quantitatively by means of X-ray-to-electron converters which are scanned in a television-type raster scan. Detectors of this type are capable of operating over the whole range of counting rates from very low to higher than those with which other types of converters can deal. The component parts of an X-ray television detector are examined and the limits to the precision of the measurements are analysed. (Auth.)

  3. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    Science.gov (United States)

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  4. Characterization of a spectroscopic detector for application in x-ray computed tomography

    Science.gov (United States)

    Dooraghi, Alex A.; Fix, Brian J.; Smith, Jerel A.; Brown, William D.; Azevedo, Stephen G.; Martz, Harry E.

    2017-09-01

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are +/- 0.4 and +/- 0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 +/- 5 ns. This is consistent with the manufacturer's quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9 % (typical) and 12 % (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of 20 mm shows an underestimation of attenuation by about 10 % at 60 keV. This error is due to partial energy deposition from higher energy (>60 keV) photons into a lower-energy ( 60 keV) bin, reducing the apparent attenuation. A radiograph of a polytetrafluoroethylene (PTFE) cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is

  5. Characterization of a spectroscopic detector for application in x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fix, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, W. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are ±0.4 and ±0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 ± 5 ns. This is consistent with the manufacturer’s quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9% (typical) and 12% (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of about 20 mm shows an underestimation of attenuation by about 10% at 60 keV. This error is due to partial energy deposition from higher-energy (> 60 keV) photons into a lower-energy (~60 keV) bin, reducing the apparent attenuation. A radiograph of a PTFE cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is reconstructed using Abel inversion

  6. Evaluation of a hybrid photon counting pixel detector for X-ray polarimetry

    International Nuclear Information System (INIS)

    Michel, T.; Durst, J.

    2008-01-01

    It has already been shown in literature that X-ray sensitive CCDs can be used to measure the degree of linear polarization of X-rays using the effect that photoelectrons are emitted with a non-isotropic angular distribution in respect to the orientation of the electric field vector of impinging photons. Up to now hybrid semiconductor pixel detectors like the Timepix-detector have never been used for X-ray polarimetry. The main reason for this is that the pixel pitch is large compared to CCDs which results in a much smaller analyzing power. On the other hand, the active thickness of the sensor layer can be larger than in CCDs leading to an increased efficiency. Therefore hybrid photon counting pixel detectors may be used for imaging and polarimetry at higher photon energies. For irradiation with polarized X-ray photons we were able to measure an asymmetry between vertical and horizontal double hit events in neighboring pixels of the hybrid photon counting Timepix-detector at room temperature. For the specific spectrum used in our experiment an average polarization asymmetry of (0.96±0.02)% was measured. Additionally, the Timepix-detector with its spectroscopic time-over-threshold-mode was used to measure the dependence of the polarization asymmetry on energy deposition in the detector. Polarization asymmetries between 0.2% at 29 keV and 3.4% at 78 keV energy deposition were determined. The results can be reproduced with our EGS4-based Monte-Carlo simulation

  7. Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; di Matteo, A.; Fujii, T.; Fujita, K.; Fukushima, M.; Furlich, G.; Goto, T.; Hanlon, W.; Hayashi, M.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jeong, H. M.; Jeong, S. M.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kuznetsov, M.; Kwon, Y. J.; Lee, K. H.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuyama, T.; Matthews, J. N.; Mayta, R.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, R.; Nakamura, T.; Nonaka, T.; Oda, H.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Okuda, T.; Omura, Y.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sahara, R.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Seki, T.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takagi, Y.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamamoto, M.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhezher, Y.; Zundel, Z.; Telescope Array Collaboration

    2018-05-01

    The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth’s atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed {X}\\max distributions with Monte Carlo {X}\\max distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data {X}\\max distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic {X}\\max shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.

  8. Reconstruction of quasimonochromatic images for multispectral x-ray imaging with a pinhole array and a flat Bragg mirror

    International Nuclear Information System (INIS)

    Izumi, N.; Barbee, T. W.; Koch, J. A.; Mancini, R. C.; Welser, L. A.

    2006-01-01

    We have developed a software package for reconstruction of quasimonochromatic images from a multiple monochromatic x-ray imager for inertial confinement fusion implosions. The instrument consists of a pinhole array, a multilayer Bragg mirror, and an image detector. The pinhole array projects hundreds of images onto the detector after reflection off the multilayer Bragg mirror, which introduces spectral dispersion along the reflection axis. The quasimonochromatic images of line emissions and continuum emissions can be used for measurement of temperature and density maps of implosion plasmas. In this article, we describe a computer-aided processing technique for systematic reconstruction of quasimonochromatic images from raw data. This technique provides flexible spectral bandwidth selection and allows systematic subtraction of continuum emission from line emission images

  9. Portable X-Ray, K-Edge Heavy Metal Detector

    International Nuclear Information System (INIS)

    Fricke, V.

    1999-01-01

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available

  10. Operation of an InGrid based X-ray detector at the CAST experiment

    Science.gov (United States)

    Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael

    2018-02-01

    The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the

  11. X-Ray Beam Studies of Charge Sharing in Small Pixel, Spectroscopic, CdZnTe Detectors

    Science.gov (United States)

    Allwork, Christopher; Kitou, Dimitris; Chaudhuri, Sandeep; Sellin, Paul J.; Seller, Paul; Veale, Matthew C.; Tartoni, Nicola; Veeramani, Perumal

    2012-08-01

    Recent advances in the growth of CdZnTe material have allowed the development of small pixel, spectroscopic, X-ray imaging detectors. These detectors have applications in a diverse range of fields such as medical, security and industrial sectors. As the size of the pixels decreases relative to the detector thickness, the probability that charge is shared between multiple pixels increases due to the non zero width of the charge clouds drifting through the detector. These charge sharing events will result in a degradation of the spectroscopic performance of detectors and must be considered when analyzing the detector response. In this paper charge sharing and charge loss in a 250 μm pitch CdZnTe pixel detector has been investigated using a mono-chromatic X-ray beam at the Diamond Light Source, U.K. Using a 20 μm beam diameter the detector response has been mapped for X-ray energies both above (40 keV) and below (26 keV) the material K-shell absorption energies to study charge sharing and the role of fluorescence X-rays in these events.

  12. Array-scale performance of TES X-ray Calorimeters Suitable for Constellation-X

    Science.gov (United States)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.; hide

    2008-01-01

    Having developed a transition-edge-sensor (TES) calorimeter design that enables high spectral resolution in high fill-factor arrays, we now present array-scale results from 32-pixel arrays of identical closely packed TES pixels. Each pixel in such an array contains a Mo/Au bilayer with a transition temperature of 0.1 K and an electroplated Au or Au/Bi xray absorber. The pixels in an array have highly uniform physical characteristics and performance. The arrays are easy to operate due to the range of bias voltages and heatsink temperatures over which solution better than 3 eV at 6 keV can be obtained. Resolution better than 3 eV has also been obtained with 2x8 time-division SQUID multiplexing. We will present the detector characteristics and show spectra acquired through the read-out chain from the multiplexer electronics through the demultiplexer software to real-time signal processing. We are working towards demonstrating this performance over the range of count rates expected in the observing program of the Constellation-X observatory. We mill discuss the impact of increased counting rate on spectral resolution, including the effects of crosstalk and optimal-filtering dead time.

  13. Current applications of semiconductor x-ray detectors in chemical analysis

    International Nuclear Information System (INIS)

    Whitehead, N.E.

    1975-07-01

    In the last few years, semiconductor detectors have been used as X-ray detectors with great success, and the routine rapid accumulation of X-ray spectra is now possible. This review surveys the historical development of the detectors, the utilisation, and relative merits of various means of exciting the X-radiation from the elements in the sample, and compares the technique with other methods claiming to offer the capability of simultaneous multi-element analysis. It is concluded that it is of average sensitivity, but offers some advantages from its non-destructive nature, and in some cases its ability to offer information about the spatial distribution of elements in a sample. Other types of analysis may also be possible simultaneously. Sample preparation techniques are reviewed, especially techniques of manufacturing thin samples. An appendix contains details of the very wide variety of samples which have been analysed. More than 350 references are included. (auth.)

  14. Plastic nuclear track detectors as high x-ray and gamma dosimeters

    International Nuclear Information System (INIS)

    Chong Chon Sing

    1995-01-01

    A brief review of recent studies on the effects of high doses of x-ray and gamma ray on the track registration properties of several plastic track detectors is presented. The bulk etching rates and the etched track sizes have been found to increase with the dose in the range up to 100 Mrad. These results suggest that the changes in track registration characteristics can be employed as an index of the radiation dose in the megarad region. In particular, recent results on the effect of X-ray irradiation on two types of cellulose nitrate track detectors obtained in our laboratory are reported in this paper. (author)

  15. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gianoncelli, Alessandra, E-mail: alessandra.gianoncelli@elettra.eu [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bufon, Jernej [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Ahangarianabhari, Mahdi [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Altissimo, Matteo [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bellutti, Pierluigi [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Bertuccio, Giuseppe [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Borghes, Roberto [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Carrato, Sergio [University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Cautero, Giuseppe [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Fabiani, Sergio [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Giacomini, Gabriele [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Giuressi, Dario [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Kourousias, George [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Menk, Ralf Hendrik [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Picciotto, Antonino; Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Rachevski, Alexandre [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); and others

    2016-04-21

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  16. In-line X-ray lensless imaging with lithium fluoride film detectors

    International Nuclear Information System (INIS)

    Bonfigli, F.; Cecilia, A.; Bateni, S. Heidari; Nichelatti, E.; Pelliccia, D.; Somma, F.; Vagovic, P.; Vincenti, M.A.; Baumbach, T.; Montereali, R.M.

    2013-01-01

    In this work, we present preliminary in-line X-ray lensless projection imaging results at a synchrotron facility by using novel solid-state detectors based on non-destructive readout of photoluminescent colour centres in lithium fluoride thin films. The peculiarities of LiF radiation detectors are high spatial resolution on a large field of view, wide dynamic range, versatility and simplicity of use. These properties offered the opportunity to test a broadband X-ray synchrotron source for lensless projection imaging experiments at the TopoTomo beamline of the ANKA synchrotron facility by using a white beam spectrum (3–40 keV). Edge-enhancement effects were observed for the first time on a test object; they are discussed and compared with simulations, on the basis of the colour centre photoluminescence linear response found in the investigated irradiation conditions. -- Highlights: ► We performed broadband X-ray imaging at synchrotron by novel LiF imaging detectors. ► X-ray phase contrast experiments on LiF crystals and thin films were performed. ► Photoluminescent high-quality X-images on a LiF film only 1 μm thick were obtained. ► Edge-enhancement effects were detected and compared with simulations. ► A linearity of colour centre fluorescence response of LiF film was found

  17. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  18. Soft X-ray radiation parameters of nested tungsten wire array

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Xu Zeping; Li Zhenghong; Yang Jianlun

    2011-01-01

    Implosions with nested tungsten wire array were performed at the Angara-5-1 facility in Russian Research Centre. The experimental results of nested tungsten wire array are compared with those of single array. Radiation parameters of nested array are discussed based on four different dynamic models. When the implosions of outer and inner wire arrays are synchronized,the relatively uniform distribution of inner layer plasma will improve the uniformity of outer layer plasma. As compared with single array, nested array has an increase of 32% in X-ray radiation power. (authors)

  19. A FPGA-based signal processing unit for a GEM array detector

    International Nuclear Information System (INIS)

    Yen, W.W.; Chou, H.P.

    2013-06-01

    in the present study, a signal processing unit for a GEM one-dimensional array detector is presented to measure the trajectory of photoelectrons produced by cosmic X-rays. The present GEM array detector system has 16 signal channels. The front-end unit provides timing signals from trigger units and energy signals from charge sensitive amplifies. The prototype of the processing unit is implemented using commercial field programmable gate array circuit boards. The FPGA based system is linked to a personal computer for testing and data analysis. Tests using simulated signals indicated that the FPGA-based signal processing unit has a good linearity and is flexible for parameter adjustment for various experimental conditions (authors)

  20. Photovoltaic x-ray detectors based on the GaAs epitaxial structures

    CERN Document Server

    Akhmadullin, R A; Dvoryankina, G G; Dikaev, Y M; Ermakov, M G; Ermakova, O N; Krikunov, A I; Kudryashov, A A; Petrov, A G; Telegin, A A

    2002-01-01

    The new photovoltaic detector of the X-ray radiation is proposed on the basis of the GaAs epitaxial structures, which operates with high efficiency of the charge carriers collection without shift voltage and at the room temperature. The structures are grown by the method of the gas-phase epitaxy on the n sup + -type highly-alloyed substrates. The range of sensitivity to the X-ray radiation is within the range of effective energies from 8 up to 120 keV. The detector maximum response in the current short circuit mode is determined

  1. A sounding rocket payload for X-ray astronomy employing high-resolution microcalorimeters

    International Nuclear Information System (INIS)

    McCammon, D.; Almy, R.; Deiker, S.; Morgenthaler, J.; Kelley, R.L.; Marshall, F.J.; Moseley, S.H.; Stahle, C.K.; Szymkowiak, A.E.

    1996-01-01

    We have completed a sounding rocket payload that will use a 36 element array of microcalorimeters to obtain a high-resolution spectrum of the diffuse X-ray background between 0.1 and 1 keV. This experiment uses only mechanical collimation of the incoming X-rays, but the cryostat and detector assembly have been designed to be placed at the focus of a conical foil imaging mirror which will be employed on subsequent flights to do spatially resolved spectroscopy of supernova remnants and other extended objects. The detector system is a monolithic array of silicon calorimeters with ion-implanted thermometers and HgTe X-ray absorbers. The 1 mm 2 pixels achieve a resolution of about 8 eV FWHM operating at 60 mK. (orig.)

  2. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  3. Large area, low capacitance Si(Li) detectors for high rate x-ray applications

    International Nuclear Information System (INIS)

    Rossington, C.S.; Fine, P.M.; Madden, N.W.

    1992-10-01

    Large area, single-element Si(Li) detectors have been fabricated using a novel geometry which yields detectors with reduced capacitance and hence reduced noise at short amplifier pulse-processing times. A typical device employing the new geometry with a thickness of 6 mm and an active area of 175 mm 2 has a capacitance of only 0.5 pf, compared to 2.9 pf for a conventional planar device with equivalent dimensions. These new low capacitance detectors, used in conjunction with low capacitance field effect transistors, will result in x-ray spectrometers capable of operating at very high count rates while still maintaining excellent energy resolution. The spectral response of the low capacitance detectors to a wide range of x-ray energies at 80 K is comparable to typical state-of-the-art conventional Si(Li) devices. In addition to their low capacitance, the new devices offer other advantages over conventional detectors. Detector fabrication procedures, I-V and C-V characteristics, noise performance, and spectral response to 2-60 keV x-rays are described

  4. Gas microstrip detectors for X-ray tomographic flow imaging

    CERN Document Server

    Key, M J; Luggar, R D; Kundu, A

    2003-01-01

    A investigation into the suitability of gas microstrip detector technology for a high-speed industrial X-ray tomography system is reported. X-ray energies in the region 20-30 keV are well suited to the application, which involves imaging two-dimensional slices through gas/liquid multiphase pipeline flows for quantitative component fraction measurement. Stable operation over a period representing several hundred individual tomographic scans at gas gains of 500 is demonstrated using a Penning gas mixture of krypton/propylene.

  5. Upgrade of the InGrid based X-ray detector for the CAST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Klaus; Kaminski, Jochen; Krieger, Christoph; Schmidt, Sebastian [Physikalisches Institut, Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany)

    2016-07-01

    The CERN Axion Solar Telescope (CAST) is a magnetic helioscope searching for solar axions and chameleons using the inverse Primakoff effect. The produced photons are in the low X-ray regime. Chameleon search demands high sensitivity to photons with less than 1 keV and a very low background rate. Several improvements to the detector design used in 2014/15 are envisaged for 2016. The readout system is to be improved by including a flash ADC to read out the analog signal induced on the grid. The pulse shape contains information about the longitudinal shape of the event in addition to the transverse shape given by the pixel read out. Tracks passing through the chip orthogonally resemble photons in transverse shape. A scintillator behind the detector will also allow cross referencing chip and and scintillator signals to further reduce background rates. Finally, a new X-ray window separating detector and X-ray telescope volume from one another will be installed. Due to the low expected signal rate, a window with very low X-ray opacity is needed. Due to a pressure difference of ∝1 bar between detector and the vacuum of CAST this is demanding. The usage of silicon nitride windows is being explored. The current progress of the detector upgrade will be presented.

  6. Energy dependent features of X-ray signals in a GridPix detector

    Science.gov (United States)

    Krieger, C.; Kaminski, J.; Vafeiadis, T.; Desch, K.

    2018-06-01

    We report on the calibration of an argon/isobutane (97.7%/2.3%)-filled GridPix detector with soft X-rays (277 eV to 8 keV) using the variable energy X-ray source of the CAST Detector Lab at CERN. We study the linearity and energy resolution of the detector using both the number of pixels hit and the total measured charge as energy measures. For the latter, the energy resolution σE / E is better than 10% (20%) for energies above 2 keV (0.5 keV). Several characteristics of the recorded events are studied.

  7. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

    Directory of Open Access Journals (Sweden)

    D. L. Fehl

    2010-12-01

    Full Text Available An algorithm for spectral reconstructions (unfolds and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA, and serves as both a plasma probe and a gauge of accelerator performance. The unfold method, suitable for online analysis, arises naturally from general assumptions about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided into two consecutive papers. This paper considers three major issues: (a Formulation of the unfold method.—The mathematical background, assumptions, and procedures leading to the algorithm are described: the spectral reconstruction S_{unfold}(E,t—five histogram x-ray bins j over the x-ray interval, 137≤E≤2300  eV at each time step t—depends on the shape and overlap of the calibrated channel responses and on the maximum electrical power delivered to the plasma. The x-ray flux F_{unfold} is estimated as ∫S_{unfold}(E,tdE. (b Validation with simulations.—Tests of the unfold algorithm with known static and time-varying spectra are described. These spectra included—but were not limited to—Planckian spectra S_{bb}(E,T (25≤T≤250  eV, from which noise-free channel data were simulated and unfolded. For Planckian simulations with 125≤T≤250  eV and typical responses, the binwise unfold values S_{j} and the corresponding binwise averages ⟨S_{bb}⟩_{j} agreed to ∼20%, except where S_{bb}≪max⁡{S_{bb}}. Occasionally, unfold values S_{j}≲0 (artifacts were encountered. The algorithm recovered ≳90% of the x-ray

  8. First examination of CASCADE-X-ray-detector and measurement of neutron-mirrorneutron-oscillation

    International Nuclear Information System (INIS)

    Boehm, B.

    2007-01-01

    The detection of X-radiation is of utmost importance for both fundamental physics and medical diagnostics. This work investigates whether or not the CASCADE detector working principle, first developed for the detection of neutrons, can be adapted for the detection of X-rays. This modular detector concept combines the use of a solid neutron or X-ray converter with the advantages of a counting gas detector. Thus, it gives the possibility to optimize efficiency, dynamics and spatial resolution independently. Firstly, it is necessary to find a suitable converter material that allows for the best possible detector efficiency. In order to do so, a mathematical model of the complete detector system was developed that yields the total efficiency for any given material. Respecting technical constraints, gold and gadolinium showed to be favorable choices. Based on these theoretical considerations a prototype of a CASCADE X-ray detector was built, and measurements for the determination of this detector's efficiency were conducted. In the second part of this work a CASCADE neutron detector was used to conduct the first measurement the neutron-mirrorneutron oscillation time. Mirrormatter was proposed in 1956 by Lee and Yang to allow for symmetry in the description of the universe despite the existence of parity violation. By using neutrons it was possible to determine a lower limit for the oscillation time in this work. (orig.)

  9. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    Science.gov (United States)

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  10. Characteristics of an intrinsic germanium detector for measurement of soft x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Kumagai, Katsuaki; Matoba, Tohru; Funahashi, Akimasa; Kawakami, Tomohide

    1976-09-01

    An intrinsic germanium (Ge(I)) detector has been prepared for measurement of soft X-ray spectra from high-temperature tokamak plasmas. Its characteristics of photo-peak efficiency, escape-peak and Compton scattering were calibrated with standard radioisotopes and soft X-rays from the JFT-2a plasma, and compared with those of a lithium-drifted silicon (Si(Li)) detector. Features of the Ge(I) detector are as follows: (i) high detection efficiency in the high energy range, (ii) wide energy range for measurement of soft X-ray spectra, and (iii) low Compton scattering effect in measurement of continuous spectra. Its dead-layer depth is about 0.06μm, and the minimum detectable energies in the Ge(I) detector are similar to those in the Si(Li) detector. The Ge(I) detector is effective for measuring soft X-ray spectra from high-temperature tokamak plasmas. (auth.)

  11. Oblique incidence effects in direct x-ray detectors: A first-order approximation using a physics-based analytical model

    International Nuclear Information System (INIS)

    Badano, Aldo; Freed, Melanie; Fang Yuan

    2011-01-01

    Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors. Methods: The proposed model is based on a physics-based analytical description developed by Freed et al. [''A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems,'' Med. Phys. 37(6), 2593-2605 (2010)] that describes detector response functions for indirect detectors and oblique incident x rays. The model, modified in this work to address direct detector response, describes the dependence of the response with x-ray energy, thickness of the transducer layer, and the depth-dependent blur and collection efficiency. Results: The authors report the detector response functions for indirect and direct detector models for typical thicknesses utilized in clinical systems for full-field digital mammography (150 μm for indirect CsI:Tl and 200 μm for a-Se direct detectors). The results suggest that the oblique incidence effect in a semiconductor detector differs from that in indirect detectors in two ways: The direct detector model produces a sharper overall PRF compared to the response corresponding to the indirect detector model for normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction compared to that found in indirect detectors with respect to the response at normal incidence angles. Conclusions: Compared to the effect seen in indirect detectors, the direct detector model exhibits a sharper response at normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction with respect to the blur in the

  12. Development of a fast multi-line x-ray CT detector for NDT

    International Nuclear Information System (INIS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Mühlbauer, J.; Schröpfer, S.; Firsching, M.; Uhlmann, N.; Neubauer, H.; Ernst, J.; Schweiger, T.; Oberst, M.; Meyer, A.

    2015-01-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm 2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  13. Structured scintillators for X-ray imaging with micrometre resolution

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis

    2009-01-01

    A 3D X-ray detector for imaging of 30–200 keV photons is described. It comprises a stack of semitransparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theoretically...

  14. Performance of a 6x6 segmented germanium detector for {gamma}-ray tracking

    Energy Technology Data Exchange (ETDEWEB)

    Valiente-Dobon, J.J. E-mail: j.valiente-dobon@surrey.ac.uk; Pearson, C.J.; Regan, P.H.; Sellin, P.J.; Gelletly, W.; Morton, E.; Boston, A.; Descovich, M.; Nolan, P.J.; Simpson, J.; Lazarus, I.; Warner, D

    2003-06-01

    A 36 fold segmented germanium coaxial detector has been supplied by EURISYS MESURES. The outer contact is segmented both radially and longitudinally. The signals from the fast preamplifiers have been digitised by 12 bit, 40 MHz ADCs. In this article we report preliminary results obtained using this detector and their relevance for future germanium {gamma}-ray tracking arrays.

  15. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  16. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  17. One dimensional detector for X-ray diffraction with superior energy resolution based on silicon strip detector technology

    International Nuclear Information System (INIS)

    Dąbrowski, W; Fiutowski, T; Wiącek, P; Fink, J; Krane, H-G

    2012-01-01

    1-D position sensitive X-ray detectors based on silicon strip detector technology have become standard instruments in X-ray diffraction and are available from several vendors. As these devices have been proven to be very useful and efficient further improvement of their performance is investigated. The silicon strip detectors in X-ray diffraction are primarily used as counting devices and the requirements concerning the spatial resolution, dynamic range and count rate capability are of primary importance. However, there are several experimental issues in which a good energy resolution is important. The energy resolution of silicon strip detectors is limited by the charge sharing effects in the sensor as well as by noise of the front-end electronics. The charge sharing effects in the sensor and various aspects of the electronics, including the baseline fluctuations, which affect the energy resolution, have been analyzed in detail and a new readout concept has been developed. A front-end ASIC with a novel scheme of baseline restoration and novel interstrip logic circuitry has been designed. The interstrip logic is used to reject the events resulting in significant charge sharing between neighboring strips. At the expense of rejecting small fraction of photons entering the detector one can obtain single strip energy spectra almost free of charge sharing effects. In the paper we present the design considerations and measured performance of the detector being developed. The electronic noise of the system at room temperature is typically of the order of 70 el rms for 17 mm long silicon strips and a peaking time of about 1 μs. The energy resolution of 600 eV FWHM has been achieved including the non-reducible charge sharing effects and the electronic noise. This energy resolution is sufficient to address a common problem in X-ray diffraction, i.e. electronic suppression of the fluorescence radiation from samples containing iron or cobalt while irradiated with 8.04 ke

  18. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    Science.gov (United States)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  19. (Li) detector characteristics on the accuracy in X-ray analysis using the

    African Journals Online (AJOL)

    A study has been carried out to show how variations in Si(Li) detector characteristics affect the accuracy of X-ray spectra evaluation. The detector characteristics investigated are Be window thickness, Au layer, Si dead layer and Si Detector Sensitive volume. For each of the detector parameters, different thickness values ...

  20. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaolong; He, Yongning, E-mail: yongning@mail.xjtu.edu.cn; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Zhang, Zhongbing; Ouyang, Xiaoping [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-25

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 10{sup 13} Ω cm due to the compensation of the donor defects (V{sub O}) and acceptor defects (V{sub Zn} and O{sub i}) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  1. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications

    International Nuclear Information System (INIS)

    Szeles, Csaba

    2004-01-01

    Good detection efficiency and high energy-resolution make Cadmium Zinc Telluride (CdZnTe) and Cadmium Telluride (CdTe) detectors attractive in many room temperature X-ray and gamma-ray detection applications such as medical and industrial imaging, industrial gauging and non-destructive testing, security and monitoring, nuclear safeguards and non-proliferation, and astrophysics. Advancement of the crystal growth and device fabrication technologies and the reduction of bulk, interface and surface defects in the devices are crucial for the widespread practical deployment of Cd 1-x Zn x Te-based detector technology. Here we review the effects of bulk, interface and surface defects on charge transport, charge transport uniformity and device performance and the progress in the crystal growth and device fabrication technologies aiming at reducing the concentration of harmful defects and improving Cd 1-x Zn x Te detector performance. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Charge sharing and charge loss in a cadmium-zinc-telluride fine-pixel detector array

    International Nuclear Information System (INIS)

    Gaskin, J.A.; Sharma, D.P.; Ramsey, B.D.

    2003-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a cadmium-zinc-telluride multi-pixel detector is ideal for hard X-ray astrophysical observation. As part of on-going research at MSFC to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750 μm pitch), 1 mm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300 μm pitch). Future work will enable us to compare the simulated results for the finer array to measured values

  3. Uses of microchannel plate intensified detectors for imaging applications in the X-ray, EUV and visible wavelength regions

    International Nuclear Information System (INIS)

    Read, P.D.; Carter, M.K.; Pike, C.D.; Harrison, R.A.; Kent, B.J.; Swinyard, B.M.; Patchett, B.E.; Redfern, R.M.; Shearer, A.; Colhoun, M.

    1997-01-01

    The Rutherford Appleton laboratory photon counting detector (RALPCD) has been refined to meet project requirements for a flexible imaging arrangement with applications at X-ray, EUV and visible wavelengths. The basic detector design comprises commercially available high gain microchannel plate intensifiers fibre optically coupled to CID or CCD cameras, to form a modular detector arrangement with the appropriate RAL detection and centroiding software. Frames of data from the cameras are detected and centroided in a transputer or C40 parallel processor array where correction algorithms use look up tables to produce pattern free images at high resolution. Data from completed applications are used to illustrate the performance and future advances are discussed. (orig.)

  4. Development of Small-Pixel CZT Detectors for Future High-Resolution Hard X-ray Missions

    Science.gov (United States)

    Beilicke, Matthias

    Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolutions of between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of hard X-ray telescopes will require pixelated hard X- ray detectors with pixels on a grid with a lattice constant of between 120 and 240 um. Additional detector requirements include a low energy threshold of less than 5 keV and an energy resolution of less than 1 keV. The science drivers for a high angular-resolution hard X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, AGN feedback, and the behavior of matter at very high densities. We propose a R&D research program to develop, optimize and study the performance of 100-200 um pixel pitch CdTe and Cadmium Zinc Telluride (CZT) detectors of 1-2 mm thickness. Our program aims at a comparison of the performance achieved with CdTe and CZT detectors, and the optimization of the pixel, steering grid, and guard ring anode patterns. Although these studies will use existing ASICs (Application Specific Integrated Circuits), our program also includes modest funds for the development of an ultra-low noise ASIC with a 2-D grid of readout pads that can be directly bonded to the 100-200 um pixel pitch CdTe and CZT detectors. The team includes the Washington University group (Prof. M. Beilicke and Co-I Prof. H.S.W. Krawczynski et al.), and co-investigator G. De Geronimo at Brookhaven National Laboratory (BNL). The Washington University group has a 10 year track record of innovative CZT detector R&D sponsored by the NASA Astronomy and Physics Research and Analysis (APRA) program. The accomplishments to date include the development of CZT detectors with pixel pitches between 350 um and 2.5 mm for the ProtoExist, EXIST, and X-Calibur hard X-ray missions with some of the best

  5. X-ray detector

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1977-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of x-ray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes. 8 figures

  6. Comparison of experimental and theoretical efficiency of HPGe X-ray detector

    International Nuclear Information System (INIS)

    Mohanty, B.P.; Balouria, P.; Garg, M.L.; Nandi, T.K.; Mittal, V.K.; Govil, I.M.

    2008-01-01

    The low energy high purity germanium (HPGe) detectors are being increasingly used for the quantitative estimation of elements using X-ray spectrometric techniques. The softwares used for quantitative estimation normally evaluate model based efficiency of detector using manufacturer supplied detector physical parameters. The present work shows that the manufacturer supplied detector parameters for low energy HPGe detectors need to be verified by comparing model based efficiency with the experimental ones. This is particularly crucial for detectors with ion implanted P type contacts

  7. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  8. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Reno, Nevada 89557 (United States); Ouart, N. D. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  9. Quantitative microanalysis in the analytical electronmicroscope using an HPGe-x ray detector

    International Nuclear Information System (INIS)

    Grogger, W.

    1994-01-01

    Energy dispersive x-ray spectrometry (EDX) is a routine method for determining the chemical composition of a sample in the analytical electronmicroscope. Since some years high purity germanium x-ray detectors (HPGe) are commercially available for use in EDX. This new type of detector offers some advantages over the commonly used Si (Li) detector: better energy resolution, better detector efficiency for high energy lines (> 30 keV) and better stability against exterior influences. For quantitative analysis one needs sensitivity factors (k-factors), which correlate the measured intensity to the concentration of a specific element. These k-factors can be calculated or determined experimentally. For a precise quantitative analysis of light elements measured k-factors are absolutely necessary. In this study k-factors were measured with an HPGe detector using standards. The accuracy of the k-factors was proved using some examples of practical relevance. Additionally some special features of the HPGe detector were examined, which lead to a better understanding of EDX spectrometry using an HPGe detector (escape lines, icing of the detector, artifacts). (author)

  10. Automatic analysis of quality of images from X-ray digital flat detectors

    International Nuclear Information System (INIS)

    Le Meur, Y.

    2009-04-01

    Since last decade, medical imaging has grown up with the development of new digital imaging techniques. In the field of X-ray radiography, new detectors replace progressively older techniques, based on film or x-ray intensifiers. These digital detectors offer a higher sensibility and reduced overall dimensions. This work has been prepared with Trixell, the world leading company in flat detectors for medical radiography. It deals with quality control on digital images stemming from these detectors. High quality standards of medical imaging impose a close analysis of the defects that can appear on the images. This work describes a complete process for quality analysis of such images. A particular focus is given on the detection task of the defects, thanks to methods well adapted to our context of spatially correlated defects in noise background. (author)

  11. Slow scan sit detector for x-ray diffraction studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Milch, J.R.

    1978-01-01

    A TV-type x-ray detector using a SIT vidicon has been used for biological diffraction studies at the EMBL outstation at DESY, Hamburg, Germany. The detector converts the two-dimensional diffraction pattern to a charge pattern on the vidicon target, which is read out in the slow-scan mode. This detector has high DOE, no count-rate limit, and is simple and inexpensive to construct. Radiation from the storage ring DORIS was used to study the structure of live muscle at various phases of contraction. Typically the count-rate on the detector was 10 6 x-rays/sec and a total exposure of a few seconds was needed to record the weak diffraction from muscle. This compares with usual exposure times of several hours using a rotating anode generator and film

  12. Simulated and experimental spectroscopic performance of GaAs X-ray pixel detectors

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Cola, A.; Fantacci, M.E.

    2001-01-01

    In pixel detectors, the electrode geometry affects the signal shape and therefore the spectroscopic performance of the device. This effect is enhanced in semiconductors where carrier trapping is relevant. In particular, semi insulating (SI) GaAs crystals present an incomplete charge collection due to a high concentration of deep traps in the bulk. In the last few years, SI GaAs pixel detectors have been developed as soft X-ray detectors for medical imaging applications. In this paper, we present a numerical method to evaluate the local charge collection properties of pixel detectors. A bi-dimensional description has been used to represent the detector geometry. According to recent models, the active region of a reverse biased SI GaAs detector is almost neutral. Therefore, the electrostatic potential inside a full active detector has been evaluated using the Laplace equation. A finite difference method with a fixed step orthogonal mesh has been adopted. The photon interaction point has been generated with a Monte Carlo method according to the attenuation length of a monochromatic X-ray beam in GaAs. The number of photogenerated carriers for each interaction has been extracted using a gaussian distribution. The induced signal on the collecting electrode has been calculated according to the Ramo's theorem and the trapping effect has been modeled introducing electron and hole lifetimes. The noise of the charge preamplifier have been also taken into account. A comparison between simulated and experimental X-ray spectra from a 241 Am source acquired with different GaAs pixel detectors has been carried out

  13. Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam

    CERN Document Server

    Watt, J; Campbell, M; Mathieson, K; Mikulec, B; O'Shea, V; Passmore, M S; Schwarz, C; Smith, K M; Whitehill, C

    2001-01-01

    Hybrid semiconductor pixel detectors are being investigated as imaging devices for radiography and synchrotron radiation beam applications. Based on previous work in the CERN RD19 and the UK IMPACT collaborations, a photon counting GaAs pixel detector (PCD) has been used in an X-ray powder diffraction experiment. The device consists of a 200 mu m thick SI-LEC GaAs detector patterned in a 64*64 array of 170 mu m pitch square pixels, bump-bonded to readout electronics operating in single photon counting mode. Intensity peaks in the powder diffraction pattern of KNbO/sub 3/ have been resolved and compared with results using the standard scintillator, and a PCD predecessor (the Omega 3). The PCD shows improved speed, dynamic range, 2-D information and comparable spatial resolution to the standard scintillator based systems. It also overcomes the severe dead time limitations of the Omega 3 by using a shutter based acquisition mode. A brief demonstration of the possibilities of the system for dental radiography and...

  14. A large-area, position-sensitive neutron detector with neutron/γ-ray discrimination capabilities

    International Nuclear Information System (INIS)

    Zecher, P.D.; Galonsky, A.; Kruse, J.J.; Gaff, S.J.; Ottarson, J.; Wang, J.; Seres, Z.; Ieki, K.; Iwata, Y.; Schelin, H.

    1997-01-01

    To further study neutron-rich halo nuclei, we have constructed a neutron detector array. The array consists of two separate banks of detectors, each of area 2 x 2 m 2 and containing 250 l of liquid scintillator. Each bank is position-sensitive to better than 10 cm. For neutron time-of-flight measurements, the time resolution of the detector has been demonstrated to be about 1 ns. By using the scintillator NE-213, we are able to distinguish between neutron and γ-ray signals above 1 MeV electron equivalent energy. Although the detector array was constructed for a particular experiment it has also been used in a number of other experiments. (orig.)

  15. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    Science.gov (United States)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  16. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  17. Si(Li)-NaI(Tl) sandwich detector array for measurements of trace radionuclides in soil samples

    International Nuclear Information System (INIS)

    Strauss, M.G.; Sherman, I.S.; Roche, C.T.; Pehl, R.H.

    1986-01-01

    An ultra-sensitive X/γ-ray detector system for assaying trace radioactivity in actinide contaminated soil and ash samples has been developed. The new system consists of an array of 6 large Si(Li) X-ray detectors sensitive on both faces and mounted on edge in a paddle-shaped cryostat with a 14 cm diameter Be window on each side. The paddle, with a sample of the soil placed at each window, is sandwiched between 2 large NaI(Tl) scintillators which suppress the γ background. With X-rays being measured simultaneously from soil in 2 sample holders and background reduced by 50% using anticoincidence, the sensitivity of this detector is 4 times higher than that of conventionally mounted Si(Li) detectors. A soil sample containing 50 pCi/g 239 Pu was measured in 5 min with an uncertainty of 1 and NpLsub(β1) X-ray peaks are resolved thus permitting measurement of trace Pu in the presence of 241 Am. This is the most sensitive and selective detector known for nondestructive assay of radioactivity in soil and other samples. (orig.)

  18. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  19. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  20. Low Energy X-Ray and γ-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer

    Science.gov (United States)

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. Russell

    2013-08-01

    Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and γ-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current ( nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels ( 0.25 eV) in the epi bulk with a density 7×1013 cm-3 related to Al and B impurities and deeper levels located near the metal-semiconductor interface.

  1. Some aspects of detectors and electronics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Goulding, F.S.

    1976-08-01

    Some of the less recognized and potentially important parameters of the electronics and detectors used in X-ray fluorescence spectrometers are discussed. Detector factors include window (dead-layer) effects, time-dependent background and excess background. Noise parameters of field-effect transistors and time-variant pulse shaping are also discussed

  2. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enough to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.

  3. Time-Resolved Hard X-Ray Spectrometer

    International Nuclear Information System (INIS)

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-01-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment

  4. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    Science.gov (United States)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  5. Simultaneous acquisition of X-ray spectra using a multi-wire, position-sensitive gas flow detector

    International Nuclear Information System (INIS)

    Beaven, Peter A.; Marmotti, Mauro; Kampmann, Reinhard; Knoth, Joachim; Schwenke, Heinrich

    2003-01-01

    A multi-wire, gas-filled position-sensitive detector has been developed for the simultaneous recording of wavelength-dispersed X-ray signals that enables X-ray fluorescence spectrometry with a limited multi-element capability in the low Z element range. Details of the modular construction of the detector are given. The detector performance was characterized using Al-Kα radiation and a variable slit system. The detector has been applied in a laboratory spectrometer equipped with an electron source and a double multilayer mirror device as the wavelength-dispersing element. Spectra from Al and Si obtained in the simultaneous acquisition mode show good agreement with calculations performed using a ray-tracing model

  6. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    Energy Technology Data Exchange (ETDEWEB)

    Borm, B.; Gärtner, F.; Khaghani, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Johann Wolfgang Goethe-Universität, Frankfurt am Main (Germany); Neumayer, P. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by a larger drive laser energy.

  7. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  8. Photodiode array for position-sensitive detection using high X-ray flux provided by synchrotron radiation

    Science.gov (United States)

    Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.

    1984-09-01

    Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.

  9. Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen

    2017-08-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.

  10. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    Directory of Open Access Journals (Sweden)

    Jakub Pekárek

    2016-09-01

    Full Text Available This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm − 2 ·s − 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  11. Performance studies of X3 silicon detectors for the future ELISSA array at ELI-NP

    Science.gov (United States)

    Chesnevskaya, S.; Balabanski, D. L.; Choudhury, D.; Constantin, P.; Filipescu, D. M.; Ghita, D. G.; Guardo, G. L.; Lattuada, D.; Matei, C.; Rotaru, A.; State, A.

    2018-05-01

    ELISSA is an array of silicon strip detectors under construction at the ELI-NP facility for measurements of photodissociation reactions using high-brilliance, quasi monoenergetic gamma beams. The detection system consists of 35 single-sided position-sensitive X3 detectors arranged in a cylindrical configuration and eight QQQ3 detectors as end-caps. A batch of forty X3 detectors have been tested at ELI-NP. The energy and position resolution, ballistic deficit, leakage currents, and depletion voltage were measured and analyzed. Measurements of the energy resolution were carried out using two read-out electronic chains, one based on multichannel preamplifiers and another based on multiplexers.

  12. The Cosmic Ray Tracking (CRT) detector system

    International Nuclear Information System (INIS)

    Bernloehr, K.; Gamp, S.; Hermann, G.; Hofmann, W.; Kihm, T.; Knoeppler, J.; Leffers, G.; Matheis, V.; Panter, M.; Trunk, U.; Ulrich, M.; Wolf, T.; Zink, R.; Heintze, J.

    1996-01-01

    The Cosmic Ray Tracking (CRT) project represents a study on the use of tracking detectors of the time projection chamber type to detect secondary cosmic ray particles in extensive air showers. In reconstructing the arrival direction of the primary cosmic ray particles, the CRT detectors take advantage of the angular correlation of secondary particles with the cosmic rays leading to these air showers. In this paper, the detector hardware including the custom-designed electronics system is described in detail. A CRT detector module provides an active area of 2.5 m 2 and allows to measure track directions with a precision of 0.4 circle . It consists of two circular drift chambers of 1.8 m diameter with six sense wires each, and a 10 cm thick iron plate between the two chambers. Each detector has a local electronics box with a readout, trigger, and monitoring system. The detectors can distinguish penetrating muons from other types of charged secondaries. A large detector array could be used to search for γ-ray point sources at energies above several TeV and for studies of the cosmic-ray composition. Ten detectors are in operation at the site of the HEGRA air shower array. (orig.)

  13. Material specific X-ray imaging using an energy-dispersive pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Egan, Christopher K., E-mail: christopher.egan@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul [STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jacques, Simon D.M.; Cernik, Robert J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  14. Hard X-ray test and evaluation of a prototype 32x32 pixel gallium-arsenide array

    International Nuclear Information System (INIS)

    Erd, C.; Owens, A.; Brammertz, G.; Bavdaz, M.; Peacock, A.; Laemsae, V.; Nenonen, S.; Andersson, H.; Haack, N.

    2002-01-01

    We report X-ray measurements on a prototype 1.1 cm 2 , 32x32 GaAs pixel array with a pixel size of 350x350 μm 2 produced to assess the technological feasibility of making large area, almost Fano-limited arrays, which operate near room temperature. Measurements were carried out on four widely separated pixels both in our laboratories and using monochromatic X-ray pencil beams at the HASYLAB synchrotron research facility in Hamburg, Germany. The pixels were found to be very uniform both in their energy and spatial responses. For example, typical energy resolutions of ∼280 eV at 10.5 keV, rising to ∼560 eV at 60 keV were achieved. The corresponding resolutions measured under full-pixel illumination were found to be the same within statistics, indicating uniform crystallinity and stoichiometry. Likewise, by scanning a 15 keV, 15x15 μm 2 beam across the entire surface of each of the pixels, the gain uniformity across the pixels (and by implication the entire array) was determined to be statistically flat

  15. Effects of Mass Ablation on the Scaling of X-Ray Power with Current in Wire-Array Z Pinches

    International Nuclear Information System (INIS)

    Lemke, R. W.; Sinars, D. B.; Waisman, E. M.; Cuneo, M. E.; Yu, E. P.; Haill, T. A.; Hanshaw, H. L.; Brunner, T. A.; Jennings, C. A.; Stygar, W. A.; Desjarlais, M. P.; Mehlhorn, T. A.; Porter, J. L.

    2009-01-01

    X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator

  16. Basis material decomposition method for material discrimination with a new spectrometric X-ray imaging detector

    Science.gov (United States)

    Brambilla, A.; Gorecki, A.; Potop, A.; Paulus, C.; Verger, L.

    2017-08-01

    Energy sensitive photon counting X-ray detectors provide energy dependent information which can be exploited for material identification. The attenuation of an X-ray beam as a function of energy depends on the effective atomic number Zeff and the density. However, the measured attenuation is degraded by the imperfections of the detector response such as charge sharing or pile-up. These imperfections lead to non-linearities that limit the benefits of energy resolved imaging. This work aims to implement a basis material decomposition method which overcomes these problems. Basis material decomposition is based on the fact that the attenuation of any material or complex object can be accurately reproduced by a combination of equivalent thicknesses of basis materials. Our method is based on a calibration phase to learn the response of the detector for different combinations of thicknesses of the basis materials. The decomposition algorithm finds the thicknesses of basis material whose spectrum is closest to the measurement, using a maximum likelihood criterion assuming a Poisson law distribution of photon counts for each energy bin. The method was used with a ME100 linear array spectrometric X-ray imager to decompose different plastic materials on a Polyethylene and Polyvinyl Chloride base. The resulting equivalent thicknesses were used to estimate the effective atomic number Zeff. The results are in good agreement with the theoretical Zeff, regardless of the plastic sample thickness. The linear behaviour of the equivalent lengths makes it possible to process overlapped materials. Moreover, the method was tested with a 3 materials base by adding gadolinium, whose K-edge is not taken into account by the other two materials. The proposed method has the advantage that it can be used with any number of energy channels, taking full advantage of the high energy resolution of the ME100 detector. Although in principle two channels are sufficient, experimental measurements show

  17. Correction method and software for image distortion and nonuniform response in charge-coupled device-based x-ray detectors utilizing x-ray image intensifier

    International Nuclear Information System (INIS)

    Ito, Kazuki; Kamikubo, Hironari; Yagi, Naoto; Amemiya, Yoshiyuki

    2005-01-01

    An on-site method of correcting the image distortion and nonuniform response of a charge-coupled device (CCD)-based X-ray detector was developed using the response of the imaging plate as a reference. The CCD-based X-ray detector consists of a beryllium-windowed X-ray image intensifier (Be-XRII) and a CCD as the image sensor. An image distortion of 29% was improved to less than 1% after the correction. In the correction of nonuniform response due to image distortion, subpixel approximation was performed for the redistribution of pixel values. The optimal number of subpixels was also discussed. In an experiment with polystyrene (PS) latex, it was verified that the correction of both image distortion and nonuniform response worked properly. The correction for the 'contrast reduction' problem was also demonstrated for an isotropic X-ray scattering pattern from the PS latex. (author)

  18. Soft x-ray tomography on TFTR

    International Nuclear Information System (INIS)

    Kuo-Petravic, G.

    1988-12-01

    The tomographic method used for deriving soft x-ray local emissivities on TFTR, using one horizontal array of 60 soft x-ray detectors, is described. This method, which is based on inversion of Fourier components and subsequent reconstruction, has been applied to the study of a sawtooth crash. A flattening in the soft x-ray profile, which we interpret as an m = 1 island, is clearly visible during the precursor phase and its location and width correlate well with those from electron temperature profiles reconstructed from electron cyclotron emission measurement. The limitations of the Fourier method, due notably to the aperiodic nature of the signals in the fast crash phase and the difficulty of obtaining accurately the higher Fourier harmonics, are discussed. 9 refs., 13 figs

  19. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  20. Isotropic gates and large gamma detector arrays versus angular distributions

    International Nuclear Information System (INIS)

    Iacob, V.E.; Duchene, G.

    1997-01-01

    Angular information extracted from in-beam γ ray measurements are of great importance for γ ray multipolarity and nuclear spin assignments. In our days large Ge detector arrays became available allowing the measurements of extremely weak γ rays in almost 4π sr solid angle (e.g., EUROGAM detector array). Given the high detector efficiency it is common for the mean suppressed coincidence multiplicity to reach values as high as 4 to 6. Thus, it is possible to gate on particular γ rays in order to enhance the relative statistics of a definite reaction channel and/or a definite decaying path in the level scheme of the selected residual nucleus. As compared to angular correlations, the conditioned angular distribution spectra exhibit larger statistics because in the latter the gate-setting γ ray may be observed by all the detectors in the array, relaxing somehow the geometrical restrictions of the angular correlations. Since the in-beam γ ray emission is anisotropic one could inquire that gate setting as mentioned above, based on anisotropic γ ray which would perturb the angular distributions in the unfolded events. As our work proved, there is no reason to worry about this if the energy gate runs over the whole solid angle in an ideal 4π sr detector, i.e., if the gate is isotropic. In real quasi 4π sr detector arrays the corresponding quasi isotropic gate preserves the angular properties of the unfolded data, too. However extraction of precise angular distribution coefficient especially a 4 , requires the consideration of the deviation of the quasi isotropic gate relative to the (ideal) isotropic gate

  1. Phonon-mediated superconducting transition-edge sensor X-ray detectors for use in astronomy

    Science.gov (United States)

    Leman, Steven W.; Martinez-Galarce, Dennis S.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Morse, Kathleen; Stern, Robert A.; Tomada, Astrid

    2004-09-01

    Superconducting Transition-Edge Sensors (TESs) are generating a great deal of interest in the areas of x-ray astrophysics and space science, particularly to develop them as large-array, imaging x-ray spectrometers. We are developing a novel concept that is based on position-sensitive macro-pixels placing TESs on the backside of a silicon or germanium absorber. Each x-ray absorbed will be position (X/δX and Y/δY ~ 100) and energy (E/δE ~ 1000) resolved via four distributed TES readouts. In the future, combining such macropixels with advances in multiplexing could lead to 30 by 30 arrays of close-packed macro-pixels equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to a plausible solar satellite mission and plans for future development.

  2. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  3. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    Science.gov (United States)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  4. Material inhomogeneities in Cd1-xZnxTe and their effects on large volume gamma-ray detectors

    International Nuclear Information System (INIS)

    Scyoc, J.M. Van; Lund, J.C.; Morse, D.H.

    1997-01-01

    Cadmium zinc telluride (Cd 1-x Zn x Te or CZT) has shown great promise as a material for room-temperature x-ray and gamma-ray detectors. In particular, polycrystalline material grown by the High Pressure Bridgman method with nominal Zn fraction (x) from 0.1 to 0.2 has been used to fabricate high resolution gamma-ray spectrometers with resolution approaching that of cooled high-purity Ge. For increased sensitivity, large areas (> 1 cm 2 ) are required, and for good sensitivity to high energy gamma photons, thick detectors (on the order of 1 cm) are required. Thus there has been a push for the development of CZT detectors with a volume greater than 1 cm 3 . However, nonuniformities in the material over this scale degrade the performance of the detectors. Variations in the zinc fraction, and thus the bandgap, and changes in the impurity distributions, both of which arise from the selective segregation of elements during crystal growth, result in spectral distortions. In this work several materials characterization techniques were combined with detector evaluations to determine the materials properties limiting detector performance. Materials measurements were performed on detectors found to have differing performance. Measurements conducted include infrared transmission (IR), particle induced x-ray emission (PIXE), photoluminescence (PL), and triaxial x-ray diffraction (TAXRD). To varying degrees, these measurements reveal that poor-performance detectors exhibit higher nonuniformities than spectrometer-grade detectors. This is reasonable, as regions of CZT material with different properties will give different localized spectral responses, which combine to result in a degraded spectrum for the total device

  5. SENSITIVITY OF STACKED IMAGING DETECTORS TO HARD X-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Muleri, Fabio; Campana, Riccardo, E-mail: fabio.muleri@iaps.inaf.it [INAF-IAPS, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2012-06-01

    The development of multi-layer optics which allow to focus photons up to 100 keV and more promises an enormous jump in sensitivity in the hard X-ray energy band. This technology is already planned to be exploited by future missions dedicated to spectroscopy and imaging at energies >10 keV, e.g., Astro-H and NuSTAR. Nevertheless, our understanding of the hard X-ray sky would greatly benefit from carrying out contemporaneous polarimetric measurements, because the study of hard spectral tails and of polarized emission are often two complementary diagnostics of the same non-thermal and acceleration processes. At energies above a few tens of keV, the preferred technique to detect polarization involves the determination of photon directions after a Compton scattering. Many authors have asserted that stacked detectors with imaging capabilities can be exploited for this purpose. If it is possible to discriminate those events which initially interact in the first detector by Compton scattering and are subsequently absorbed by the second layer, then the direction of scattering is singled out from the hit pixels in the two detectors. In this paper, we give the first detailed discussion of the sensitivity of such a generic design to the X-ray polarization. The efficiency and the modulation factor are calculated analytically from the geometry of the instruments and then compared with the performance as derived by means of Geant4 Monte Carlo simulations.

  6. GEM gas detectors for soft X-ray imaging in fusion devices with neutron–gamma background

    Energy Technology Data Exchange (ETDEWEB)

    Pacella, Danilo, E-mail: danilo.pacella@enea.it [Associazione EURATOM-ENEA, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Romano, Afra; Gabellieri, Lori [Associazione EURATOM-ENEA, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Murtas, Fabrizio [Istituto Nazionale di Fisica Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Mazon, Didier [Association EURATOM-CEA, CEA Cadarache, DSM/IRFM, 13108 St. Paul Lez Durance Cedex (France)

    2013-08-21

    A triple gas electron multiplier (GEM) detector has been built and characterized in a collaboration between ENEA, INFN and CEA to develop a soft X-ray imaging diagnostic for magnetic fusion plasmas. It has an active area of 5×5 cm{sup 2}, 128 pixels and electronics in counting mode. Since burning plasma experiments will have a very large background of radiation, this prototype has been tested with contemporary X-ray, neutron and gamma irradiation, to study the detection efficiencies, and the discrimination capabilities. The detector has been preliminarily characterized under DD neutron irradiation (2.45 MeV) up to 2.2×10{sup 6} n/s on the detector active area, showing a detection efficiency of about 10{sup −4}, while the detection efficiency of X-rays is more than three orders of magnitude higher. The detector has been also tested under DT neutron flux (14 MeV) up to 2.8×10{sup 8} n/s on the whole detector, with a detection efficiency of about 10{sup −5}. The calibration of the γ-rays detection has been done by means of a source of {sup 60}Co (gamma rays of energy 1.17 MeV and 1.33 MeV) and the detection efficiency was found of the order of 10{sup −4}. Thanks to the adjustable gain of the detector and the discrimination threshold of the electronics, it is possible to minimize the sensitivity to neutrons and gamma, and discriminate the X-ray signals even with very high radiative background.

  7. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    Science.gov (United States)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  8. Feasibility study of flexible flat-panel X-ray detectors for digital radiography

    International Nuclear Information System (INIS)

    Joe, Ok La; Yun, Seung Man; Kim, Ho Kyung

    2010-01-01

    Flexible flat-panel detectors (FPDs), which utilize both organic photodiode (OPD) and organic thin-film transistor (OTFT) technologies, are recently concerned in digital radiography. The flexible FPD has several potential advantages, such as high accessibility to patient, avoidance of geometrical burr due to the oblique angle incidence of X-ray, great reduction in manufacturing cost due to jet-printing. At once, The OPD/OTFT arrays were fabricated by jet-printing techniques, mechanical robustness due to plastic substrates, and so on. In this study, we have investigated the feasibility of flexible FPD by comparing theoretical detective quantum efficiency (DQE) with that of the conventional amorphous silicon-based FPD. We chose copper phthalocyanine-fullerene (CuPc-C60) organic materials for the construction of the flexible FPD. DQE was calculated by the linear-systems transfer theory

  9. Application of GaAs and CdTe photoconductor detectors to x-ray flash radiography

    International Nuclear Information System (INIS)

    Mathy, F.; Cuzin, M.; Gagelin, J.J.; Mermet, R.; Piaget, B.; Rustique, J.; Verger, L.

    1991-01-01

    Semi-insulating GaAs and CdTe:Cl photoconductor probes were qualified on high energy X ray single shot flash generators. The estimated minimum detected dose per flash corresponding to a 230 mrad direct beam attenuated by 200 mm lead was 20 μrad. The dynamic range was about 4 decades in amplitude or charges, with a good linearity. Such detectors, by locating the origin of the parasitic scattered beam, could be used to eliminate this parasitic beam in X ray flash radiography in detonics experiments. Imaging possibilities are mentioned, as well as X ray generator monitoring with such detectors or with neutron preirradiated photoconductors

  10. Application of GaAs and CdTe photoconductor detectors to X-ray flash radiography

    International Nuclear Information System (INIS)

    Mathy, F.; Cuzin, M.; Gagelin, J.J.; Mermet, R.; Piaget, B.; Rustique, J.; Verger, L.; Hauducoeur, A.; Nicolas, P.; Le Dain, L.; Hyvernage, M.

    1992-01-01

    Some insulating GaAs and CdTe:Cl photoconductor probes were qualified on high energy X-ray single-shot flash generators. The estimated minimum detected dose per flash corresponding to a 230 mrad direct beam attenuated by 200 mm lead was 20 μrad. The dynamic range was about 4 decades in amplitude or charge, with a good linearity. Such detectors, by locating the origin of the parasitic scattered beam, could be used to eliminate this parasitic beam in X-ray flash radiography in detonics experiments. Imaging possibilities are mentioned, as well as X-ray generator monitoring with such detectors or with neutron preirradiated photoconductors. (orig.)

  11. Application of GaAs and CdTe photoconductor detectors to X-ray flash radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mathy, F.; Cuzin, M.; Gagelin, J.J.; Mermet, R.; Piaget, B.; Rustique, J.; Verger, L. (CEA, Direction des Technologies Avancees, Lab. d' Electronique, de Technologie et d' Instrumentation, DSYS, 38 - Grenoble (France)); Hauducoeur, A.; Nicolas, P.; Le Dain, L.; Hyvernage, M. (CEA, Direction des Applications Militaires, 77 - Courtry (France))

    1992-11-15

    Some insulating GaAs and CdTe:Cl photoconductor probes were qualified on high energy X-ray single-shot flash generators. The estimated minimum detected dose per flash corresponding to a 230 mrad direct beam attenuated by 200 mm lead was 20 [mu]rad. The dynamic range was about 4 decades in amplitude or charge, with a good linearity. Such detectors, by locating the origin of the parasitic scattered beam, could be used to eliminate this parasitic beam in X-ray flash radiography in detonics experiments. Imaging possibilities are mentioned, as well as X-ray generator monitoring with such detectors or with neutron preirradiated photoconductors. (orig.).

  12. Application of GaAs and CdTe photoconductor detectors to x-ray flash radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mathy, F.; Cuzin, M.; Gagelin, J.J.; Mermet, R.; Piaget, B.; Rustique, J.; Verger, L. [CEA Centre d`Etudes de Grenoble, 38 (FR). Direction des Technologies Avancees; Hauducoeur, A.; Nicolas, P.; Le Dain, L.; Hyvernage, M. [CEA Centre d`Etudes de Vaujours, 77 - Courtry (FR)

    1991-12-31

    Semi-insulating GaAs and CdTe:Cl photoconductor probes were qualified on high energy X ray single shot flash generators. The estimated minimum detected dose per flash corresponding to a 230 mrad direct beam attenuated by 200 mm lead was 20 {mu}rad. The dynamic range was about 4 decades in amplitude or charges, with a good linearity. Such detectors, by locating the origin of the parasitic scattered beam, could be used to eliminate this parasitic beam in X ray flash radiography in detonics experiments. Imaging possibilities are mentioned, as well as X ray generator monitoring with such detectors or with neutron preirradiated photoconductors.

  13. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

    International Nuclear Information System (INIS)

    Arvanitis, C. D.; Bohndiek, S. E.; Royle, G.; Blue, A.; Liang, H. X.; Clark, A.; Prydderch, M.; Turchetta, R.; Speller, R.

    2007-01-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525x525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25x25 μm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10 5 electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 μm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at ∼0.44 μC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a:Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to structured CsI:Tl can

  14. X-ray measurement with Pin type semiconductor detectors

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1999-01-01

    Here are presented the experimental results of the applications of Pin type radiation detectors developed in a National Institute of Nuclear Research (ININ) project, in the measurement of low energy gamma and X-rays. The applications were oriented mainly toward the Medical Physics area. It is planned other applications which are in process of implementation inside the National Institute of Nuclear Research in Mexico. (Author)

  15. Status of development of the Gamma Ray Energy Tracking Array (GRETA)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.Y.; Schmid, G.J.; Vetter, K. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1996-12-31

    The current generation of large gamma-ray detector arrays, Gammasphere, Eurogam and GASP, are based on modules of Compton suppressed Ge detectors. Due to the solid angle occupied by the Compton shields and to gamma rays escaping the detector, the total peak efficiency of such a design is limited to about 20% for a 1.3 MeV gamma ray. A shell consisting of closely packed Ge detectors has been suggested as the solution to the efficiency limitation. In this case, the entire solid angle is covered by Ge detectors, and by adding the signal from neighboring detectors, the escaped energy is recovered and much higher efficiency can be achieved (e.g. 60% for a 1.3 MeV gamma ray). However, for high multiplicity cascades, the summing of two gamma rays hitting neighboring detectors reduces the efficiency and increases the background. In order to reduce this summing, a large number of detectors is required. For example, with a multiplicity of 25, one needs about 1500 detectors to keep the probability of false summing below 10% and the cost of such a detector array will be prohibitive. Rather than such an approach, the authors are developing a new concept for a gamma-ray array; a shell of closely-packed Ge detectors consisting of 100-200 highly-segmented elements. The high granularity of the segmented Ge detector enables the authors to resolve each of the scattering interactions and determine its position and energy. A tracking algorithm, using the position and energy information, will then identify the interactions belonging to a particular gamma ray and its energy is obtained by summing only these interactions. Such an array can reach a total efficiency about 60%, with a resolving power 1000 times higher than that of current arrays.

  16. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  17. An X-ray imager based on silicon microstrip detector and coded mask

    International Nuclear Information System (INIS)

    Del Monte, E.; Costa, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Frutti, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Porrovecchio, G.; Rapisarda, M.; Rubini, A.; Soffitta, P.; Tavani, M.; Argan, A.

    2007-01-01

    SuperAGILE is the X-ray monitor of AGILE, a satellite mission for gamma-ray astronomy, and it is the first X-ray imaging instrument based on the technology of the silicon microstrip detectors combined with a coded aperture imaging technique. The SuperAGILE detection plane is composed of four 1-D silicon microstrip detector modules, mechanically coupled to tungsten coded mask units. The detector strips are separately and individually connected to the input analogue channels of the front-end electronics, composed of low-noise and low-power consumption VLSI ASIC chips. SuperAGILE can produce 1-D images with 6 arcmin angular resolution and ∼2-3 arcmin localisation capability, for intense sources, in a field of view composed of two orthogonal areas of 107 deg. x 68 deg. The time resolution is 2 μs, the overall dead time is ∼5 μs and the electronic noise is ∼7.5 keV full-width at half-maximum. The resulting instrument is very compact (40x40x14 cm 3 ), light (10 kg) and has low power consumption (12 W). AGILE is a mission of the Agenzia Spaziale Italiana and its launch is planned in 2007 in a low equatorial Earth orbit. In this contribution we present SuperAGILE and discuss its performance and scientific objectives

  18. Si(Li) detectors with thin dead layers for low energy x-ray detection

    International Nuclear Information System (INIS)

    Rossington, C.S.; Walton, J.T.; Jaklevic, J.M.

    1990-10-01

    Regions of incomplete charge collection, or ''dead layers'', are compared for Si(Li) detectors fabricated with Au and Pd entrance window electrodes. The dead layers were measured by characterizing the detector spectral response to x-ray energies above and below the Si Kα absorption edge. It was found that Si(Li) detectors with Pd electrodes exhibit consistently thinner effective Si dead layers than those with Au electrodes. Furthermore, it is demonstrated that the minimum thickness required for low resistivity Pd electrodes is thinner than that required for low resistivity Au electrodes, which further reduces the signal attenuation in Pd/Si(Li) detectors. A model, based on Pd compensation of oxygen vacancies in the SiO 2 at the entrance window Si(Li) surface, is proposed to explain the observed differences in detector dead layer thickness. Electrode structures for optimum Si(Li) detector performance at low x-ray energies are discussed. 18 refs., 8 figs., 1 tab

  19. Soft x-ray measurements on the PLT Tokamak

    International Nuclear Information System (INIS)

    Von Goeler, S.; Sauthoff, N.; Bitter, M.

    1977-10-01

    Four experiments are described that currently run on the PLT tokamak and which utilize the soft x-ray emission of the plasma as a diagnostic: the pulse height analysis system for temperature and impurity measurements; the curved crystal Bragg spectrometer for the determination of ionization states of impurities; ''windowless'' surface barrier detectors for the investigation of the ultra soft x-ray radiation in the energy range 0.1 keV < hν < 1 keV and a silicon diode array for x-ray fluctuation measurements. For each diagnostic a short technical description and some recent results obtained with it on PLT are given in order to demonstrate its use

  20. Application of charge coupled devices as spatially-resolved detectors for X-ray spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Attelan-Langlet, S; Etlicher, B [Ecole Polytechnique, Palaiseau (France); Mishenskij, V O; Papazyan, Yu V; Smirnov, V P; Volkov, G S; Zajtsev, V I [Inst. for Thermonuclear and Innovation Investigations, Troitsk (Russian Federation)

    1997-12-31

    An X-ray crystal spectrograph which contains a CCD linear array as the position-sensitive detector is described. Radiation detection is performed directly onto CCD. The spectrograph has a limit of sensitivity at about 2 J/(A.ster), spectral resolution about 1000 and dynamic range 100-120. The device operates on-line with IBM-PC based control system. Software provides all data acquisition and treatment. Output spectra are presented in absolute units. The device was used during composite Z-pinch experiments at pulse-power installations ``Angara-5-1`` (TRINITI, Troitsk, Russia) and ``GAEL`` (Ecole Polytechnique, Palaiseau, France). Currently the spectrograph is included in the set of diagnostics of the ``Angara-5-1`` facility. Some of the spectra obtained are presented and discussed. (author). 4 figs., 9 refs.

  1. Silicon drift detectors coupled to CsI(Tl) scintillators for spaceborne gamma-ray detectors

    International Nuclear Information System (INIS)

    Marisaldi, M.; Fiorini, C.; Labanti, C.; Longoni, A.; Perotti, F.; Rossi, E.; Soltau, H.

    2006-01-01

    Silicon Drift Detectors (SDDs), thanks to their peculiar low noise characteristics, have proven to be excellent photodetectors for CsI(Tl) scintillation light detection. Two basic detector configurations have been developed: either a single SDD or a monolithic array of SDDs coupled to a single CsI(Tl) crystal. A 16 independent detectors prototype is under construction, designed to work in conjunction with the MEGA Compton telescope prototype under development at MPE, Garching, Germany. A single SDD coupled to a CsI(Tl) crystal has also been tested as a monolithic detector with an extended energy range between 1.5 keV and 1 MeV. The SDD is used as a direct X-ray detector for low energy photons interacting in silicon and as a scintillation light photodetector for photons interacting in the crystal. The type of interaction is identified by means of pulse shape discrimination technique. Detectors based on an array of SDDs coupled to a single CsI(Tl) crystal have also been built. The readout of these detectors is based on the Anger camera technique, and submillimeter spatial resolution can be achieved. The two detectors' approaches and their applications will be described

  2. Calculation of Si(Li) x-ray detector efficiencies

    International Nuclear Information System (INIS)

    Zaluzec, N.; Holton, R.

    1984-01-01

    The calculation of detector efficiency functions is an important step in the quantitative analysis of x-ray spectra when approached by a standardless technique. In this regard, it becomes essential that the analyst not only model the physical aspects of the absorption and transmission of the various windows present, but also use the most accurate data available for the mass absorption coefficients required in these calculations. The topic of modeling the size and shape of the windows present is beyond the scope of this paper and the authors instead concentrate on the mass absorption coefficients used in the calculations and their implications to efficiency calculations. For the purposes of this paper, the authors consider that the relative detector efficiency function of a conventional Si(Li) detector can be modeled by a simple expression

  3. High-density arrays of x-ray microcalorimeters for Constellation-X

    Science.gov (United States)

    Kilbourne, Caroline A.; Bandler, Simon R.; Brown, Ari D.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Iyomoto, Naoko; Kelley, Richard L.; Porter, F. Scott; Saab, Tarek; Sadleir, John; White, Jennifer

    2006-06-01

    We have been developing x-ray microcalorimeters for the Constellation-X mission. Devices based on superconducting transition-edge sensors (TES) have demonstrated the potential to meet the Constellation-X requirements for spectral resolution, speed, and array scale (> 1000 pixels) in a close-packed geometry. In our part of the GSFC/NIST collaboration on this technology development, we have been concentrating on the fabrication of arrays of pixels suitable for the Constellation-X reference configuration. We have fabricated 8x8 arrays with 0.25-mm pixels arranged with 92% fill factor. The pixels are based on Mo/Au TES and Bi/Cu or Au/Bi absorbers. We have achieved a resolution of 4.0 eV FWHM at 6 keV in such devices, which meets the Constellation-X resolution requirement at 6 keV. Studies of the thermal transport in our Bi/Cu absorbers have shown that, while there is room for improvement, for 0.25-mm pixels the standard absorber design is adequate to avoid unacceptable line-broadening from position dependence caused by thermal diffusion. In order to improve reproducibility and to push closer to the 2-eV goal at 6 keV, however, we are refining the design of the TES and the interface to the absorber. Recent efforts to introduce a barrier layer between the Bi and the Mo/Au to avoid variable interface chemistry and thus improve the reproducibility of device characteristics have thus far yielded unsatisfactory results. However, we have developed a new set of absorber designs with contacts to the TES engineered to allow contact only in regions that do not serve as the active thermometer. We have further constrained the design so that a low-resistance absorber will not electrically short the TES. It is with such a design that we have achieved 4.0 eV resolution at 6 keV.

  4. arXiv Energy Dependent Features of X-ray Signals in a GridPix Detector

    CERN Document Server

    Krieger, Christoph; Vafeiadis, Theodoros; Desch, Klaus

    2018-06-11

    We report on the calibration of an argon/isobutane (97.7%/2.3%)-filled GridPix detector with soft X-rays (277 eV to 8 keV) using the variable energy X-ray source of the CAST Detector Lab at CERN. We study the linearity and energy resolution of the detector using both the number of pixels hit and the total measured charge as energy measures. For the latter, the energy resolution σE∕E is better than 10% (20%) for energies above 2 keV (0.5 keV). Several characteristics of the recorded events are studied.

  5. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    International Nuclear Information System (INIS)

    Jurdit, M.; Moulin, V.; Ouvrier-Buffet, P.; Verger, L.; Brambilla, A.; Radisson, P.

    2017-01-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm 2 . Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 10 6 incident photons.s −1 .mm −2 .

  6. Neon dewar for the X-ray spectrometer onboard Suzaku

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, R. [Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Sagamihara 229-8510 (Japan)]. E-mail: fujimoto@isas.jaxa.jp; Mitsuda, K. [Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Sagamihara 229-8510 (Japan); Hirabayashi, M. [Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Sobiraki-cho, Niihama 792-8588 (Japan); Narasaki, K. [Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Sobiraki-cho, Niihama 792-8588 (Japan); Breon, S. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Boyle, R. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Di Pirro, M. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Volz, S.M. [NASA Headquarters, Washington, DC 20546-0001 (United States); Kelley, R.L. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States)

    2006-04-15

    The X-ray spectrometer (XRS) onboard Suzaku is the first X-ray microcalorimeter array in orbit. The sensor array is operated at 60mK, which is attained by an adiabatic demagnetization refrigerator and superfluid liquid helium. The neon dewar is a vacuum-insulated container for the XRS. The requirements for the XRS dewar are to maintain the detector and the cryogenic system under the mechanical environment at launch ({approx}15G), and to attain a lifetime of 3 years in a near-earth orbit. It is characterized with adoptions of solid neon as the second cryogen and a mechanical cooler, design optimization of the support straps for the neon tank to reduce the heat load as much as possible, and shock absorbers to mitigate the mechanical environment at launch. Microphonics from the mechanical cooler was one of the concerns for the detector performance, but the ground test results proved that they do not interfere with the detector. After about 1 month in orbit, its thermal performance showed that the dewar potentially achieves its design goals.

  7. A method to unfold the efficiency of gaseous detectors exposed to broad X-ray spectra

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines S. de; Lopes, Ricardo T.

    2000-01-01

    A method to obtain the efficiency of a gaseous detector exposed to broad energy X-ray spectra was developed. It consists in the de-convolution of the integrated detector response using the shapes of those spectra as a tool to unfold the aimed detector efficiency curve. For this purpose, the spectra emitted by a X-ray tube under several anode voltages, were properly characterized through measurements with a NaI(Tl) spectrometer. A Lorentz function was then fitted to each of the spectra, and their parameters expressed as a function of the anode voltage, by using polynomial and gaussian fittings. The integral of the product of each Lorentz function, by another unknown Lorentz function, expressing the detector efficiency curve, represents the response of the detector for each anode tension, e.g., each X-ray spectrum. The symbolical integration of that product, produces a general function containing the unknown parameters of the unknown efficiency curve. A non-linear fitting of this general function, to the detector response points, as experimentally obtained, generates the aimed parameters for the efficiency curve. The final detector efficiency curve is obtained after normalization procedures. (author)

  8. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    Science.gov (United States)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  9. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. II. Error analysis and generalization

    Directory of Open Access Journals (Sweden)

    D. L. Fehl

    2010-12-01

    Full Text Available A five-channel, filtered-x-ray-detector (XRD array has been used to measure time-dependent, soft-x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA. The preceding, companion paper [D. L. Fehl et al., Phys. Rev. ST Accel. Beams 13, 120402 (2010PRABFM1098-4402] describes an algorithm for spectral reconstructions (unfolds and spectrally integrated flux estimates from data obtained by this instrument. The unfolded spectrum S_{unfold}(E,t is based on (N=5 first-order B-splines (histograms in contiguous unfold bins j=1,…,N; the recovered x-ray flux F_{unfold}(t is estimated as ∫S_{unfold}(E,tdE, where E is x-ray energy and t is time. This paper adds two major improvements to the preceding unfold analysis: (a Error analysis.—Both data noise and response-function uncertainties are propagated into S_{unfold}(E,t and F_{unfold}(t. Noise factors ν are derived from simulations to quantify algorithm-induced changes in the noise-to-signal ratio (NSR for S_{unfold} in each unfold bin j and for F_{unfold} (ν≡NSR_{output}/NSR_{input}: for S_{unfold}, 1≲ν_{j}≲30, an outcome that is strongly spectrally dependent; for F_{unfold}, 0.6≲ν_{F}≲1, a result that is less spectrally sensitive and corroborated independently. For nominal z-pinch experiments, the combined uncertainty (noise and calibrations in F_{unfold}(t at peak is estimated to be ∼15%. (b Generalization of the unfold method.—Spectral sensitivities (called here passband functions are constructed for S_{unfold} and F_{unfold}. Predicting how the unfold algorithm reconstructs arbitrary spectra is thereby reduced to quadratures. These tools allow one to understand and quantitatively predict algorithmic distortions (including negative artifacts, to identify potentially troublesome spectra, and to design more useful response functions.

  10. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    Science.gov (United States)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  11. Possible use of CdTe detectors in kVp monitoring of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Krmar, M.; Bucalovic, N.; Baucal, M.; Jovancevic, N.

    2010-01-01

    It has been suggested that kVp of diagnostic X-ray devices (or maximal energy of X-ray photon spectra) should be monitored routinely; however a standardized non-invasive technique has yet to be developed and proposed. It is well known that the integral number of Compton scattered photons and the intensities of fluorescent X-ray lines registered after irradiation of some material by an X-ray beam are a function of the maximal beam energy. CdTe detectors have sufficient energy resolution to distinguish individual X-ray fluorescence lines and high efficiency for the photon energies in the diagnostic region. Our initial measurements have demonstrated that the different ratios of the integral number of Compton scattered photons and intensities of K and L fluorescent lines detected by CdTe detector are sensitive function of maximal photon energy and could be successfully applied for kVp monitoring.

  12. Applying x-ray digital imaging to the verification of cadmium in fuel-storage components

    International Nuclear Information System (INIS)

    Dabbs, R.D.; Cook, D.H.

    1997-01-01

    The High Flux Isotope Reactor utilizes large underwater fuel-storage arrays to stage irradiated fuel before it is shipped from the facility. Cadmium is required as a thermal neutron absorber in these fuel-storage arrays to produce an acceptable margin of nuclear subcriticality during both normal and off-normal operating conditions. Due to incomplete documentation from the time of their fabrication, the presence of cadmium within two stainless-steel parts of fuel-storage arrays must be experimentally verified before they are reused in new fuel-storage arrays. A cadmium-verification program has been developed in association with the Waste Examination and Assay Facility located at the Oak Ridge national Laboratory to nondestructively examine these older shroud assemblies. The program includes the following elements (1) x-ray analog imaging, (2) x-ray digital imaging, (3) prompt-gamma-ray spectroscopy measurements, and (4) neutron-transmission measurements. X-ray digital imaging utilizes an analog-to-digital convertor to record attenuated x-ray intensities observed on a fluorescent detector by a video camera. These x-ray intensities are utilized in expressions for cadmium thickness based upon x-ray attenuation theory

  13. A gas microstrip X-ray detector for soft energy fluorescence EXAFS

    CERN Document Server

    Smith, A D; Derbyshire, G E; Duxbury, D M; Lipp, J; Spill, E J; Stephenson, R

    2001-01-01

    Gas microstrip detectors have been previously developed by the particle physics community, where their robustness, compactness and high counting speed have been recognised. These features are particularly attractive to synchrotron radiation use. In this paper, we describe a gas microstrip detector employing multi-element readout and specifically developed for high count rate fluorescence EXAFS at soft X-ray energies below 4 keV.

  14. An X-ray scanner prototype based on a novel hybrid gaseous detector

    CERN Document Server

    Iacobaeus, C; Lund-Jensen, B; Peskov, Vladimir

    2007-01-01

    We have developed a prototype of a new type of hybrid X-ray detector. It contains a thin wall (few μm) edge- illuminated lead glass capillary plate (acting as a converter of X-rays photons to primary electrons) combined with a microgap parallel-plate avalanche chamber operating in various gas mixtures at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0° to 90°. The detection efficiency, depending on the geometry, photon's energy, incident angle and the mode of operation, was between a few and 40%. The position resolution achieved was 50 μm in digital form and was practically independent of the photon's energy or gas mixture. The developed detector may open new possibilities for medical imaging, for example in mammography, portal imaging, radiography (including security devices), crystallography and many other applications.

  15. The ROSPHERE γ-ray spectroscopy array

    Energy Technology Data Exchange (ETDEWEB)

    Bucurescu, D.; Căta-Danil, I.; Ciocan, G.; Costache, C.; Deleanu, D.; Dima, R. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, R-077125 Bucharest (Romania); Filipescu, D. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, R-077125 Bucharest (Romania); Extreme Light Infrastructure Nuclear Physics - ELI-NP, Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, R-077125 Bucharest (Romania); Florea, N.; Ghiţă, D.G.; Glodariu, T.; Ivaşcu, M.; Lică, R.; Mărginean, N.; Mărginean, R. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, R-077125 Bucharest (Romania); Mihai, C., E-mail: cmihai@tandem.nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, R-077125 Bucharest (Romania); Negret, A.; Niţă, C.R.; Olăcel, A.; Pascu, S.; Sava, T. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, R-077125 Bucharest (Romania); and others

    2016-11-21

    The ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) has been designed as a multi-detector setup dedicated to γ-ray spectroscopy studies at the Bucharest 9 MV Tandem accelerator. Consisting of up to 25 detectors (either Compton suppressed HPGe detectors or fast LaBr{sub 3}(Ce) scintillator detectors) together with a state of the art plunger device, ROSPHERE is a powerful tool for lifetime measurements using the Recoil Distance Doppler Shift (RDDS) and the in-beam Fast Electronic Scintillation Timing (FEST) methods. The array's geometry, detectors, electronics and data acquisition system are described. Selected results from the first experimental campaigns are also presented.

  16. Detectors for X-ray diffraction and scattering: current technology and future challenges

    International Nuclear Information System (INIS)

    Bahr, D.; Brugemann, L.; Gerndt, E.

    2003-01-01

    Full text: Detectors are crucial devices determining the quality, the reliability and the throughput of x-ray diffraction (XRD) and scattering investigations. This is of utmost importance in an industrial environment where in many cases untrained personnel or even without human intervention the experiments and data evaluations are running. The currently used technology of 0-dimensional to 2-dim XRD detectors is presented using selected examples. The application specific requirements on e.g. energy range and resolution, count rate limit, background and dynamic range, and size versus price are discussed. Due to the fact that x-ray diffraction investigations are becoming increasingly attractive in science, research and industry the advance in detector technology is pushed beyond existing limits. The discussion of the resultant market opportunities versus the cost of ownership and market entrance barrier is the final section of the presentation

  17. Detective studies of soft X-ray tomography on controlled thermonuclear fusion device

    International Nuclear Information System (INIS)

    Li Linzhong; Su Fei

    2004-01-01

    In is necessary to design tomographic detective system with very high accuracy and high quality. It is such a detective system that its five resolutions are all very high quality. The five resolutions are: the radial resolution, the angular resolution, the spatial resolution of detector, the resolution of detector array, and the time resolution. The radial resolution is decided by the number of detectors in detector array. The angular resolutions depend on the number of detector arrays. According to the concrete condition of controlled device, through making special rectangular detector the optimum spatial resolution of detector and the optimum spatial resolution of detector array can be obtained. The high time resolution can be got by making wide-band ampli-filter circuit system. The tomographic system with high quality can use the multi-angle multi-array mode or perfect single array mode. The soft X-ray tomographic system with high sensitivity can measure the stable signal and perform the tomography under the conditions of Te ∼150 eV, ne ∼1013 cm-3 on the small Tokamak devices. (authors)

  18. Array Detector Modules for Spent Fuel Verification

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey

    2018-05-07

    Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.

  19. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope-ProtoEXIST1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J., E-mail: jaesub@head.cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Allen, B.; Grindlay, J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Barthelemy, S.; Baker, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Garson, A.; Krawczynski, H. [Washington University in St. Louis and the McDonnell Center for the Space Sciences, St. Louis, MO 63130 (United States); Apple, J.; Cleveland, W.H. [NASA Marshall Space Flight Center and Universities Space Research Association, Huntsville, AL 35812 (United States)

    2011-10-21

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8x8 array of closely tiled 2 cmx2 cmx0.5 cm thick pixellated CZT crystals, each with 8x8 pixels, mounted on a set of readout electronics boards and covering a 256 cm{sup 2} active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9{sup o}x9{sup o} (and 19{sup o}x19{sup o} for 50% coding fraction) with an angular resolution of 20'. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cmx26 cmx2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as {>=}100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for {approx}1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4{sup o} off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2{sigma} in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The

  20. The application of photoconductive detectors to the measurement of x-ray production in laser produced plasmas

    International Nuclear Information System (INIS)

    Kania, D.R.; Bell, P.; Trebes, J.

    1987-08-01

    Photoconductive detectors (PCDs) offer an attractive alternative for the measurement of pulsed x-rays from laser produced plasmas. These devices are fast (FWHM ∼100 ps), sensitive and simple to use. We have used InP, GaAs, and Type IIa diamond as PCDs to measure x-rays emission from 100 eV to 100 keV. Specifically, we have used these detectors to measure total radiation yields, corona temperatures, and hot electron generated x-rays from laser produced plasmas. 5 refs., 4 figs

  1. Cold cathode diode X-ray source

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A cold cathode diode X-ray source for radiation imaging, especially computed tomography, comprises a rod-like anode and a generally cylindrical cathode, concentric with the anode. The spacing between anode and cathode is so chosen that the diode has an impedance in excess of 100 ohms. The anode may be of tungsten, or of carbon with a tungsten and carbon coating. An array of such diodes may be used with a closely packed array of detectors to produce images of rapidly moving body organs, such as the beating heart. (author)

  2. A large area detector for x-ray applications

    International Nuclear Information System (INIS)

    Rodricks, B.; Huang, Qiang; Hopf, R.; Wang, Kemei.

    1993-01-01

    A large area detector for x-ray synchrotron applications has been developed. The front end of this device consist of a scintillator coupled to a fiber-optic taper. The fiber-optic taper is comprised of 4 smaller (70 mm x 70 mm) tapers fused together in a square matrix giving an active area of 140 mm x 140 mm. Each taper has a demagnification of 5.5 resulting in four small ends that are 12 mm diagonally across. The small ends of each taper are coupled to four microchannel-plate-based image intensifiers. The output from each image intensifier is focused onto a Charge Coupled Device (CCD) detector. The four CCDs are read out in parallel and are independently controlled. The image intensifiers also act as fast (20 ns) electronic shutters. The system is capable of displaying images in real time. Additionally, with independent control on the readout of each row of data from the CCD, the system is capable of performing high speed imaging through novel readout manipulation

  3. Si(Li) detector system for application to x-ray astronomy rocket experiments

    International Nuclear Information System (INIS)

    Griffiths, R.E.; Cheron, C.; Friant, A.; Jehanno, C.; Rocchia, R.; Rothenflug, R.; Testard, O.

    1975-01-01

    The problems associated with the use of Si(Li) detectors in x-ray astronomy rocket experiments are discussed. In particular a detector system is described that can be used at the focus of a grazing-incidence paraboloid telescope for the energy range 0.3 to 2 keV. (U.S.)

  4. High resolution X-ray detector for synchrotron-based microtomography

    CERN Document Server

    Stampanoni, M; Wyss, P; Abela, R; Patterson, B; Hunt, S; Vermeulen, D; Rueegsegger, P

    2002-01-01

    Synchrotron-based microtomographic devices are powerful, non-destructive, high-resolution research tools. Highly brilliant and coherent X-rays extend the traditional absorption imaging techniques and enable edge-enhanced and phase-sensitive measurements. At the Materials Science Beamline MS of the Swiss Light Source (SLS), the X-ray microtomographic device is now operative. A high performance detector based on a scintillating screen optically coupled to a CCD camera has been developed and tested. Different configurations are available, covering a field of view ranging from 715x715 mu m sup 2 to 7.15x7.15 mm sup 2 with magnifications from 4x to 40x. With the highest magnification 480 lp/mm had been achieved at 10% modulation transfer function which corresponds to a spatial resolution of 1.04 mu m. A low-noise fast-readout CCD camera transfers 2048x2048 pixels within 100-250 ms at a dynamic range of 12-14 bit to the file server. A user-friendly graphical interface gives access to the main parameters needed for ...

  5. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    International Nuclear Information System (INIS)

    Song, Tae Yong; Wu Heyu; Komarov, Sergey; Tai, Yuan-Chuan; Siegel, Stefan B

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm 3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  6. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  7. Rapid X-ray and optical variability in the X-ray selected BL Lacertae object IE 1402.3 + 0416

    International Nuclear Information System (INIS)

    Giommi, P.; Barr, P.; Gioia, I.M.; Maccacaro, T.; Schild, R.; Harvard-Smithsonian Center for Astrophysics, Cambridge)

    1986-01-01

    Results from X-ray and optical observations of the X-ray-discovered BL Lac object 1E 1402.3 + 0416 are presented, where the X-ray measurements were carried out with the Channel Multiplier Array (CMA) and Medium Energy experiment (ME) detectors on board Exosat. These measurements revealed an intensity decrease by a factor of two on a time scale of a few hours. At maximum flux, the source was significantly greater than at the time of the Einstein Image Proportional Counter (IPC) discovery observation. The 2-6 keV X-ray spectrum was determined by the ME experiment, and IPC, HRI, and CMA data were subsequently compared. The source varied over the years by a factor of five; its brightest state was within the last three years. It is noted that a redshift greater than 0.2 would require that anisotropic emission mechanisms be invoked. 18 references

  8. JEM-X: The X-ray monitor on INTEGRAL

    DEFF Research Database (Denmark)

    Lund, Niels; Budtz-Jørgensen, Carl; Westergaard, Niels Jørgen Stenfeldt

    1999-01-01

    and identification of gamma ray sources as well as in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture X-ray telescope consisting of two identical detectors. Each detector has a sensitive area of 500 cm(2), and views the sky (6.6 deg FOV, FWHM) through...

  9. Application of a radiation detector in the interdisciplinary study. 1. Portable fluorescent X-ray analysis using the Si-PIN photodiode

    International Nuclear Information System (INIS)

    Ito, Yutaka

    2000-01-01

    As a semiconductor used for X-ray detector has excellent resolution, it must be cooled by liquid nitrogen at its use, which is a limitation on its actual use and applications. Then, a compound detector with wider bandwidth such as CdTe and HgI 2 has conventionally been used to attempt to use the detector at room temperature. Here was adopted an Si-PIN photodiode for a representative small type semiconductor detector unnecessary for liquid nitrogen, to introduce small and portable fluorescent X-ray analyzer for its application. As Si-PIN can work at room temperature, it has large leak current and insufficiently spread empty phase, so it is used by cooling due to Peltier element and so on. Then, here was used an X-ray detector, XR-100CR of AMPTEK Inc. composed of Si-PIN photodiode and a Pre-AMP. And, for a portable fluorescent X-ray analyzer, the Si-PIN photodiode detector of AMPTEK Inc., and a closely sealed small radiation source of 50 μ Ci 241 Am for excitation of X-ray in specimen were used. Its working principle consists of excitation of elements in a specimen with X- and gamma-ray from 241 Am, and detection of emitted fluorescent X-ray with Si-PIN photodiode. (G.K.)

  10. Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope

    Science.gov (United States)

    Limousin, O.; Meuris, A.; Lugiez, F.; Gevin, Olivier; Pinsard, F.; Blondel, C.; Le Mer, I.; Delagnes, E.; Vassal, M. C.; Soufflet, F.; Bocage, R.; Penquer, A.; Billot, M.

    2017-11-01

    In the frame of the hard X-ray Simbol-X observatory, a joint CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event timetagging capability. Caliste 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 × 1 × 2 cm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of 65 electrons rms over the 64 channels. For the first prototypes, we chose Pt//CdTe//Al/Ti/Au Schottky detectors because of their very low dark current and excellent spectroscopic performances. Recently a Caliste 64 prototype has been also equipped with a 2 mm thick Au//CdZnTe//Au detector. This paper presents the performances of these four prototypes and demonstrates spectral performances better than 1 keV fwhm at 59.54 keV when the samples are moderately cooled down to -10°C.

  11. The Water Recovery X-ray Rocket (WRX-R)

    Science.gov (United States)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  12. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    International Nuclear Information System (INIS)

    Kim, Y.-S.; Park, H.-S.; Park, S.-J.; Choi, S.; Lee, H.; Kim, H.-J.; Lee, D.; Choi, Y.-W.

    2016-01-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R 2 >0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types

  13. Soft x-ray tomography on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Camacho, J.F.

    1985-06-01

    A soft x-ray tomography experiment has been performed on the Alcator C tokamak. An 80-chord array of detectors consisting of miniature PIN photodiodes was used to obtain tomographic reconstructions of the soft x-ray emissivity function's poloidal cross-section. The detectors are located around the periphery of the plasma at one toroidal location (top and bottom ports) and are capable of yielding useful information over a wide range of plasma operating parameters and conditions. The reconstruction algorithm employed makes no assumption whatsoever about plasma rotation, position, or symmetry. Its performance was tested, and it was found to work well and to be fairly insensitive to estimated levels of random and systematic errors in the data

  14. A new cone-beam X-ray CT system with a reduced size planar detector

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Zhang Li; Xing Yuxiang; Kang Kejun

    2006-01-01

    In a traditional cone-beam CT system, the cost of product and computation is very high. The authors propose a transversely truncated cone-beam X-ray CT system with a reduced size detector positioned off-center, in which X-ray beams only cover half of the object. The reduced detector size cuts the cost and the X-ray dose of the CT system. The existing CT reconstruction algorithms are not directly applicable in this new CT system. Hence, the authors develop a BPF-type direct backprojection algorithm. Different from the traditional rebinding methods, our algorithm directly backprojects the pretreated projection data without rebinding. This makes the algorithm compact and computationally more efficient. Finally, some numerical simulations and practical experiments are done to validate the proposed algorithm. (authors)

  15. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  16. Polarization phenomena in Al/p-CdTe/Pt X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Principato, F., E-mail: fabio.principato@unipa.it; Turturici, A.A.; Gallo, M.; Abbene, L.

    2013-12-01

    Over the last decades, CdTe detectors are widely used for the development of room temperature X-ray and gamma ray spectrometers. Typically, high resolution CdTe detectors are fabricated with blocking contacts (indium and aluminum) ensuring low leakage currents and high electric field for optimum charge collection. As well known, time instability under bias voltage (termed as polarization) is the major drawback of CdTe diode detectors. Polarization phenomena cause a progressive degradation of the spectroscopic performance with time, due to hole trapping and detrapping from deep acceptors levels. In this work, we studied the polarization phenomenon on new Al/p-CdTe/Pt detectors, manufactured by Acrorad (Japan), through electrical and spectroscopic approaches. In particular, we investigated on the time degradation of the spectroscopic response of the detectors at different temperatures, voltages and energies. Current transient measurements were also performed to better understand the properties of the deep acceptor levels and their correlation with the polarization effect.

  17. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-01-01

    We are developing large pixel count, fast (≥100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory

  18. CCD[charge-coupled device]-based synchrotron x-ray detector for protein crystallography: Performance projected from an experiment

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.

    1986-01-01

    The intense x radiation from a synchrotron source could, with a suitable detector, provide a complete set of diffraction images from a protein crystal before the crystal is damaged by radiation (2 to 3 min). An area detector consisting of a 40 mm dia. x-ray fluorescing phosphor, coupled with an image intensifier and lens to a CCD image sensor, was developed to determine the effectiveness of such a detector in protein crystallography. The detector was used in an experiment with a rotating anode x-ray generator. Diffraction patterns from a lysozyme crystal obtained with this detector are compared to those obtained with film. The two images appear to be virtually identical. The flux of 10 4 x-ray photons/s was observed on the detector at the rotating anode generator. At the 6-GeV synchrotron being designed at Argonne, the flux on an 80 x 80 mm 2 detector is expected to be >10 9 photons/s. The projected design of such a synchrotron detector shows that a diffraction-peak count >10 6 could be obtained in ∼0.5 s. With an additional ∼0.5 s readout time of a 512 x 512 pixel CCD, the data acquisition time per frame would be ∼1 s so that ninety 1 0 diffraction images could be obtained, with approximately 1% precision, in less than 3 min

  19. Upsurge of X-ray astronomy 230-

    International Nuclear Information System (INIS)

    Hudec, D.R.

    1978-01-01

    Instruments are described used for X-ray astronomy, namely X-ray detectors and X-ray telescopes. Unlike telescopes, the detectors do not comprise X-ray optics. A survey is given of the results obtained in solar and stellar X-ray astronomy and hypotheses are submitted on the origin of X radiation in the interstellar space. (J.B.)

  20. Scintillator materials for x-ray detectors and beam monitors

    Czech Academy of Sciences Publication Activity Database

    Martin, T.; Koch, A.; Nikl, Martin

    2017-01-01

    Roč. 42, č. 6 (2017), s. 451-456 ISSN 0883-7694 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : scintillator * X-ray detector * beam monitor * synchrotron * thin film Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 5.199, year: 2016

  1. Development of (Cd,Zn)Te X-ray and gamma ray radiation detectors for medical and security applications

    International Nuclear Information System (INIS)

    Franc, J.; Hoeschl, P.; Belas, E.; Grill, V.; Fauler, A.; Dambacher, M.; Procz, S.

    2011-01-01

    Full text: There is a growing need for large area X-and Gamma radiation detectors for penetrating radiations in various fields of application e.g. astronomy, detectors for nuclear medicine, biosensor materials, security, non-proliferation of hazardous materials, and environmental applications etc. Direct X-rays conversion into electric charges in a semiconductor is envisaged with better spectroscopic characteristics to improve contrast and quantitative measurements compared to indirect detection using scintillators. The family of II-VI semiconductor materials combine a range of excellent properties such as their high sensitivity due to the high mobility-lifetime products, their high energy resolution as a consequence of the electron-hole pair formation energy, their reasonable maturity in terms of microelectronic technologies required for commercial detector fabrication, wide range of stopping power and band-gaps available. In particular, CdTe and Cd x Zn 1-x Te (CZT) with Zn=0.1 offer a favorable combination of physical and chemical properties that makes it attractive as a room temperature X-ray detector material of choice for many applications involving photon energies up to several hundreds of keV. From the scientific experience accumulated in the past years, the detector properties are strongly dependent on a series of parameters which must be strictly controlled during crystal growth, such as the homogeneity, stoichiometry and the related intrinsic defects which appear during the material growth, a high mobility-lifetime for electron and holes is mandatory etc. Production of detector-grade CdTe and CdZnTe on industrial scale is still a challenge and optimal growth methods and growth conditions have been under intensive investigation. Progress in crystal growth and characterization achieved in a project of Institute partnership between Charles University in Prague and University of Freiburg, Germany which was sponsored by Alexander von Humboldt Foundation, will

  2. Educational Cosmic Ray Arrays

    International Nuclear Information System (INIS)

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  3. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  4. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  5. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  6. The development of high resolution silicon x-ray microcalorimeters

    Science.gov (United States)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  7. Multi-energy x-ray detectors to improve air-cargo security

    Science.gov (United States)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  8. Monte-Carlo background simulations of present and future detectors in x-ray astronomy

    Science.gov (United States)

    Tenzer, C.; Kendziorra, E.; Santangelo, A.

    2008-07-01

    Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newton's EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.

  9. X-ray detector

    International Nuclear Information System (INIS)

    Houston, J.M.; Whetten, N.R.

    1981-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of xray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes

  10. Development of a 3-D X-ray system

    Science.gov (United States)

    Evans, James Paul Owain

    The interpretation of standard two-dimensional x-ray images by humans is often very difficult. This is due to the lack of visual cues to depth in an image which has been produced by transmitted radiation. The solution put forward in this research is to introduce binocular parallax, a powerful physiological depth cue, into the resultant shadowgraph x-ray image. This has been achieved by developing a binocular stereoscopic x-ray imaging technique, which can be used for both visual inspection by human observers and also for the extraction of three-dimensional co-ordinate information. The technique is implemented in the design and development of two experimental x-ray systems and also the development of measurement algorithms. The first experimental machine is based on standard linear x-ray detector arrays and was designed as an optimum configuration for visual inspection by human observers. However, it was felt that a combination of the 3-D visual inspection capability together with a measurement facility would enhance the usefulness of the technique. Therefore, both a theoretical and an empirical analysis of the co-ordinate measurement capability of the machine has been carried out. The measurement is based on close-range photogrammetric techniques. The accuracy of the measurement has been found to be of the order of 4mm in x, 3mm in y and 6mm in z. A second experimental machine was developed and based on the same technique as that used for the first machine. However, a major departure has been the introduction of a dual energy linear x-ray detector array which will allow, in general, the discrimination between organic and inorganic substances. The second design is a compromise between ease of visual inspection for human observers and optimum three-dimensional co-ordinate measurement capability. The system is part of an on going research programme into the possibility of introducing psychological depth cues into the resultant x-ray images. The research presented in

  11. High spin gamma-ray coincidence spectroscopy with large detector arrays

    International Nuclear Information System (INIS)

    Bergstroem, M.H.

    1992-12-01

    In-beam γ-ray spectroscopy has been used to study rapidly rotating nuclei in the rare-earth region. The experiments were performed using the high-resolution multi detector arrays ESSA30 and TESSA3 at the Nuclear Structure Facility, Daresbury Laboratories in Great Britain and the NORDBALL at the Niels Bohr Tandem Accelerator at Risoe in Denmark. The studied nuclei were produced using heavy-ion induced fusion-evaporation reactions. New techniques for the analysis of γ-γ correlation spectra were developed. These involves viewing the two-dimensional γ-γ spectrum as well as projection in both energy axes, determination of centroids and volumes of peaks and full two-dimensional Gauss fits of an arbitrarily shaped area. The data acquisition system of the NORDBALL multi detector array is presented. In two of the studied nuclei ( 167 Lu and 163 Tm) the strongly shape driving πh 9/2 [541]1/2 - is studied. The shift to larger frequency of the neutron AB crossing in these decay sequences is not fully understood. The study of 171 Re revealed a second backbend of the [402]5/2 + band. The observed bandcrossings are interpreted using the CSM and three-band mixing calculations. The study of 171,172 W revealed five new bands and although these nuclei are expected to be stably deformed the small differences in the formation showed to be crucial in order to reproduce data well. (au)

  12. Improvement of an X-ray imaging detector based on a scintillating guides screen

    CERN Document Server

    Badel, X; Linnros, J; Kleimann, P; Froejdh, C; Petersson, C S

    2002-01-01

    An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achie...

  13. A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    CERN Document Server

    Aznar, F; Christensen, F E; Dafni, T; Decker, T A; Ferrer-Ribas, E; Garcia, J A; Giomataris, I; Gracia, J G; Hailey, C J; Hill, R M; Iguaz, F J; Irastorza, I G; Jakobsen, A C; Luzon, G; Mirallas, H; Papaevangelou, T; Pivovaroff, M J; Ruz, J; Vafeiadis, T; Vogel, J K

    2015-01-01

    We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas (micromesh gaseous structure) detector of the microbulk technique. The detector is made from radiopure materials and is placed at the focal point of a $\\sim$~5 cm diameter, 1.3 m focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector) proposed in the conceptual design of the project. It is innovative for two reasons: it is the first time an x-ray optic has been designed and fabricated specifically for axion research, and the first time a Micromegas detector has been operated with an x-ray optic. The line has been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for s...

  14. Application of MSM InP detectors to the measurement of pulsed X-ray radiation

    Czech Academy of Sciences Publication Activity Database

    Ryc, L.; Dobrzanski, L.; Dubecký, L.; Kaczmarczyk, J.; Pfeifer, Miroslav; Riesz, F.; Slysz, W.; Surma, B.

    2008-01-01

    Roč. 163, 4-6 (2008), 559-567 ISSN 1042-0150 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : InP detector * X-ray detector * picosecond detector * laser plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.415, year: 2008

  15. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    International Nuclear Information System (INIS)

    Li Yi-Gui; Yang Chun-Sheng; Liu Jing-Quan; Sugiyama Susumu

    2011-01-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm 2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost. (cross-disciplinary physics and related areas of science and technology)

  16. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    Science.gov (United States)

    Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu

    2011-03-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.

  17. Reconstruction of Spectra Using X-ray Flat Panel Detector; Reconstruccion de Espectros de Rayos X Utilizando un Detector Flat Panel

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Pozuelo, F.; Juste, B.; Rodenas, J.; Verdu, G.

    2013-07-01

    In this work, we used a flat panel detector with a wedge of PMMA for absorbed dose curve for given working conditions of X-ray tube The relationship between absorbed dose curve recorded by the flat panel and primary X-ray spectrum is defined by a response function that can be obtained using the Monte Carlo method, namely the MCNP5 code. However there are some problems that affect the applicability of this method such as: flat panel characteristics and the characteristics of the physical process (ill-conditioned problem). Both aspects are discussed in this paper.

  18. Dosimetric properties of a radiochromic gel detector for diagnostic X-rays

    International Nuclear Information System (INIS)

    Bero, M.A.

    2007-01-01

    The gel dosimetry method was found to be capable of addressing complicated issues related to dose measurements particularly in modern sophisticated radiotherapy applications. The Ferrous-sulphate Xylenol-orange and Gelatin (FXG) radiochromic gel dosemeter is one of the systems used for such applications. Some chemical dosemeters show different responses for low- and medium-energy X-rays in comparison with high-energy γ-photons. The energy and dose rate dependence of the FXG dose response was examined. In addition to the detector response, other important dosimetric properties of the system were investigated for different X-ray beam qualities with tube voltages in the range 100-300 kV. An orthovoltage X-ray therapy unit was used to irradiate standard sized samples of FXG from different batches for radiation doses in the range 0-20 Gy

  19. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    International Nuclear Information System (INIS)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S

    2006-01-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process

  20. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-dong, Daejeon (Korea, Republic of)

    2006-04-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process.

  1. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    Science.gov (United States)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  2. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  3. Development of an X-ray imaging system with SOI pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ryutaro, E-mail: ryunishi@post.kek.jp [School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Arai, Yasuo; Miyoshi, Toshinobu [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK-IPNS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK-IMSS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-09-21

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented. - Highlights: • The X-ray imaging system employing the SOI pixel sensor is currently under development. • The DAQ of the first prototype has the bottleneck in the total throughput. • The new DAQ release solve the bottleneck by parallel processing and FIFO buffer. • The new DAQ release was tested using 33.3 keV and 9.5 keV mono X-rays.

  4. Simultaneous investigation of parent electrons and bremsstrahlung x rays by rocket-borne detectors

    International Nuclear Information System (INIS)

    Vij, K.K.; Venkatesan, D.; Sheldon, W.R.; Kern, J.W.; Benbrook, J.R.; Whalen, B.A.

    1975-01-01

    Simultaneous measurements of the energy spectrum of precipitating electrons and the resulting bremsstrahlung X ray spectrum were carried out during an auroral event on March 3, 1971, at the Churchill Research Range, Manitoba, Canada. The electron data were obtained with detectors on a Black Brant VB sounding rocket (275-km apogee), while the X ray flux was measured by an instrument package that was boosted to 60 km on an Arcas rocket. The X ray package was deployed on a parachute at apogee to provide a slow descent through the atmosphere. Thick target bremsstrahlung theory is used to calculate the X ray flux produced by the incident electrons, and a Monte Carlo method is used to predict the X ray spectrum at various altitudes appropriate for comparison with the measured X ray data. Satisfactory agreement between theory and experiment is obtained, and the value of the constant in the thick target theory has been estimated to be (2plus-or-minus0.5) times10 -5

  5. Simultaneous investigation of parent electrons and bremsstrahlung x rays by Rocket--Borne detectors

    International Nuclear Information System (INIS)

    Vij, K.K.; Venkatesan, D.; Sheldon, W.R.; Kern, J.W.; Benbrook, J.R.; Whalen, B.A.

    1975-01-01

    Simultaneous measurements of the energy spectrum of precipitating electrons and the resulting bremsstrahlung X ray spectrum were carried out during an auroral event on March 3, 1971, at the Churchill Research Range, Manitoba, Canada. The electron data were obtained with detectors on a Black Brant VB sounding rocket (275-km apogee), while the X ray flux was measured by an instrument package that was boosted to 60 km on an Arcas rocket. The X ray package was deployed on a parachute apogee to provide a slow descent through the atmosphere. Thick target bremsstrahlung theory is used to calculate the X ray flux produced by the incident electrons, and a Monte Carlo method is used to predict the X ray spectrum at various altitudes appropriate for comparison with the measured X ray data. Satisfactory agreement between theory and experiment is obtained, and the value of the constant in the thick target theory has been estimated to be (2plus-or-minus0.5) times10 -5 . (auth)

  6. Impact of Improved Heat Sinking of an X-Ray Calorimeter Array on Crosstalk, Noise, and Background Events

    Science.gov (United States)

    Kilbourne, C. A.; Adams, J. S.; Brekosky, R. P.; Chervenak, J. A.; Chiao, M. P.; Kelley, R. L.; Kelly, D. P.; Porter, F. S.

    2011-01-01

    The x-ray calorimeter array of the Soft X-ray Spectrometer (SXS) of the Astro-H satellite will incorporate a silicon thermistor array produced during the development of the X-Ray Spectrometer (XRS) of the Suzaku satellite. On XRS, inadequate heat sinking of the array led to several non-ideal effects. The thermal crosstalk, while too small to be confused with x-ray signals, nonetheless contributed a noise term that could be seen as a degradation in energy resolution at high flux. When energy was deposited in the silicon frame around the active elements of the array, such as by a cosmic ray, the resulting pulse in the temperature of the frame resulted in coincident signal pulses on most of the pixels. In orbit, the resolution was found to depend on the particle background rate. In order to minimize these effects on SXS, heat-sinking gold was applied to areas on the front and back of the array die, which was thermally anchored to the gold of its fanout board via gold wire bonds. The thermal conductance from the silicon chip to the fanout board was improved over that of XRS by an order of magnitude. This change was sufficient for essentially eliminating frame events and allowing high-resolution to be attained at much higher counting rates. We will present the improved performance, the measured crosstalk, and the results of the thermal characterization of such arrays.

  7. LAMBDA 2M GaAs—A multi-megapixel hard X-ray detector for synchrotrons

    Science.gov (United States)

    Pennicard, D.; Smoljanin, S.; Pithan, F.; Sarajlic, M.; Rothkirch, A.; Yu, Y.; Liermann, H. P.; Morgenroth, W.; Winkler, B.; Jenei, Z.; Stawitz, H.; Becker, J.; Graafsma, H.

    2018-01-01

    Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature.

  8. Characteristics and quality test of X-ray with CZT detector

    International Nuclear Information System (INIS)

    Rianto, Sugeng

    2000-01-01

    The study examines the use of direct measurements of x-ray spectra for testing the quality of x-ray beam by using a peltier-cooled CZT detector under different conditions. The typical calibration of the spectrometry system shows that the energy resolution of the system is 1,2 keV at 122 keV of 57 Co. The utilization CZT based spectrometer for assessing the quality of x-ray machine on its spectra show that the CZT could accurately measure the spectra at various kVp, m As and filtration, except at the kVp greater than 140 and m As higher than 2 without added filtration. A comparison of CZT with the field instruments showed that there is a reasonable agreement between the Keithley and CZT at lower energies regardless of filtration however at high energies there is a large difference.In contrast the discrepancy between the CZT and Nero increased at lower photon energies particularly for high filtration

  9. A study on characteristics of X-ray detector for CCD-based EPID

    International Nuclear Information System (INIS)

    Chung, Yong Hyun

    1999-02-01

    The combination of the metal plate/phosphor screen as a x-ray detector with a CCD camera is the most popular detector system among various electronic portal imaging devices (EPIDs). There is a need to optimize the thickness of the metal plate/phosphor screen with high detection efficiency and high spatial resolution for effective transferring of anatomical information. In this study, the thickness dependency on the detection efficiency and the spatial resolution of the metal plate/phosphor screen was investigated by calculation and measurement. The result can be used to determine the optimal thickness of the metal plate as well as of the phosphor screen for the x-ray detector design of therapeutic x-ray imaging and for any specific application. Bremsstrahlung spectrum was calculated by Monte Carlo simulation and by Schiff formula. The detection efficiency was calculated from the total absorbed energy in the phosphor screen using the Monte Carlo simulation and the light output was measured. The spatial resolution, which was defined from the spatial distribution of the absorbed energy, was also calculated and the edge spread function was measured. It was found that the detection efficiency and the spatial resolution were mainly determined by the thickness of metal plate and phosphor screen, respectively. It was also revealed that the detection efficiency and the spatial resolution have trade-off in term of the thickness of the phosphor screen. As the phosphor thickness increases, the detection efficiency increases but the spatial resolution decreases. The curve illustrating the trade-off between the detection efficiency and the spatial resolution of the metal plate/phosphor screen detector is obtained as a function of the phosphor thickness. Based on the calculations, prototype CCD-based EPID was developed and then tested by acquiring phantom images for 6 MV x-ray beam. While, among the captured images, each frame suffered from quantum noise, the frame averaging

  10. Thin absorbers for large-area soft X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: rocks@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Brekosky, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sivananthan, S. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Zhao, J. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2006-04-15

    The X-ray Quantum Calorimeter (XQC) sounding rocket experiment utilizes a microcalorimeter array for observing the diffuse soft X-ray background. Observations of such low surface-brightness targets require a large-area detector. We will be using an array of large absorbers. Good absorbers must rapidly and completely thermalize photons, have small heat capacity for high stopping efficiency and have good lateral thermal transport. For observing the soft X-ray background (energies <1 keV), the volume and heat capacity of absorber material can be kept to a minimum by making the absorbers only as thick as needed for high quantum efficiency at these low energies. These thin, large-area absorbers are not self-supporting and have poor lateral heat transport. Depositing the absorber material on a Si substrate provides support and improves lateral thermal conduction. We present heat capacity results for thin HgTe and thin Bi, each on Si substrates. We also describe the HgTe absorber fabrication.

  11. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray...... Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active...

  12. Film replacement by digital x-ray detectors - the correct procedure and equipment

    International Nuclear Information System (INIS)

    Ewert, U.; Zscherpel, U.; Bavendiek, K.

    2004-01-01

    New digital detectors were developed for medical applications, which have the potential to substitute the X-ray film and revolutionise the radiological technique. Digital Detector Arrays (DDA: Flat Panel Detectors, Line Detectors) and Imaging Plates (Computed Radiography) allow a fast detection of radiographic images in a shorter time and with higher dynamic than film applications. Companies report about a reduction of exposure time down to 5 - 25% in comparison to NDT film exposures. This provides together with the reduction of consumables economical (and also ecological) benefits and short amortisation periods. But this does not always provide the same image quality as NDT film. The requirements of the European and USA standards for film radiography are analysed to derive correct requirements for the digital image quality and procedures for prediction and measurement of image quality. Basically the USA standards seem to be more tolerant for these new innovative technologies. New standard proposals use signal/noise ratio and unsharpness as dominant parameters for image quality. Specialised measurement procedures are described. The properties of the new detectors can be controlled by electronics and exposure conditions. New names appear in literature like 'direct radiography' and 'film replacement techniques'. The basic advantage of the new digital techniques is the possibility to use numeric procedures for image interpretation. Industrial radiology can be optimised for crack detection as well as for analysis of flaw depth and shape measurement. Automated flaw detection, measurement of part dimensions and detection of completeness are used for serial part inspection devices. Parallel to the development of DDA's, an extraordinary increase of Computed Tomography (CT) applications can be observed. (author)

  13. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  14. Heel effect adaptive flat field correction of digital x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yongjian [X-ray Products, Varian Medical Systems Inc., Liverpool, New York 13088 (United States); Wang, Jue [Department of Mathematics, Union College, Schenectady, New York 12308 (United States)

    2013-08-15

    Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs. Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disregards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background in the corrected radiographs when the SID settings for calibration and correction differ. In this work, the authors develop a robust and efficient computational method for digital x-ray detector gain correction adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated heel effect models, or multiple-SID calibration and interpolation.Methods: The authors present the Duo-SID projection correction method. In our approach, conventional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is independent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles. The system gain desired at a specific acquisition SID is then constructed using the projected heel pattern and detector gain map.Results: The method was evaluated for flat field and anatomical phantom image corrections. It demonstrated promising improvements over interpolation and conventional gain calibration/correction methods, lowering their correction errors by approximately 70% and 80%, respectively. The separation algorithm was able to extract the detector gain and heel patterns with less than 2% error, and the Duo-SID corrected images showed perceptually appealing uniform background across the detector.Conclusions: The Duo-SID correction method has substantially improved on conventional offset/gain corrections for

  15. Heel effect adaptive flat field correction of digital x-ray detectors

    International Nuclear Information System (INIS)

    Yu, Yongjian; Wang, Jue

    2013-01-01

    Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs. Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disregards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background in the corrected radiographs when the SID settings for calibration and correction differ. In this work, the authors develop a robust and efficient computational method for digital x-ray detector gain correction adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated heel effect models, or multiple-SID calibration and interpolation.Methods: The authors present the Duo-SID projection correction method. In our approach, conventional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is independent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles. The system gain desired at a specific acquisition SID is then constructed using the projected heel pattern and detector gain map.Results: The method was evaluated for flat field and anatomical phantom image corrections. It demonstrated promising improvements over interpolation and conventional gain calibration/correction methods, lowering their correction errors by approximately 70% and 80%, respectively. The separation algorithm was able to extract the detector gain and heel patterns with less than 2% error, and the Duo-SID corrected images showed perceptually appealing uniform background across the detector.Conclusions: The Duo-SID correction method has substantially improved on conventional offset/gain corrections for

  16. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  17. Optimizing detector thickness in dual-shot dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    As a result, there exist apparent limitations in the conventional two-dimensional (2D) radiography: One is that the contrast between the structure of interest and the background in a radiograph is much less than the intrinsic subject contrast (i.e. the difference between their attenuation coefficients; Another is that the superimposed anatomical structures in the 2D radiograph results in an anatomical background clutter that may decrease the conspicuity of subtle underlying features. These limitations in spatial and material discrimination are important motivations for the recent development of 3D (e.g. tomosynthesis) and dual energy imaging (DEI) systems. DEI technique uses a combination of two images obtained at two different energies in successive x-ray exposures by rapidly switching the kilovolage (kV) applied to the x-ray tube. Commercial DEI systems usually employ a 'single' of flat-panel detector (FPD) to obtain two different kV images. However, we have a doubt in the use of the same detector for acquiring two different projections for the low- and high-kV setups because it is typically known that there exists an optimal detector thickness regarding specific imaging tasks or energies used.

  18. MHz rate X-Ray imaging with GaAs:Cr sensors using the LPD detector system

    Science.gov (United States)

    Veale, M. C.; Booker, P.; Cline, B.; Coughlan, J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Lozinskaya, A. D.; Novikov, V. A.; Tolbanov, O. P.; Tyazhev, A.; Zarubin, A. N.

    2017-02-01

    The STFC Rutherford Appleton Laboratory (U.K.) and Tomsk State University (Russia) have been working together to develop and characterise detector systems based on chromium-compensated gallium arsenide (GaAs:Cr) semiconductor material for high frame rate X-ray imaging. Previous work has demonstrated the spectroscopic performance of the material and its resistance to damage induced by high fluxes of X-rays. In this paper, recent results from experiments at the Diamond Light Source Synchrotron have demonstrated X-ray imaging with GaAs:Cr sensors at a frame rate of 3.7 MHz using the Large Pixel Detector (LPD) ASIC, developed by STFC for the European XFEL. Measurements have been made using a monochromatic 20 keV X-ray beam delivered in a single hybrid pulse with an instantenous flux of up to ~ 1 × 1010 photons s-1 mm-2. The response of 500 μm GaAs:Cr sensors is compared to that of the standard 500 μm thick LPD Si sensors.

  19. Comparison of natural and synthetic diamond X-ray detectors

    International Nuclear Information System (INIS)

    Lansley, S. P.; Betzel, G.T.; Meyer, J.; Metcalf, P.; Reinisch, L.

    2010-01-01

    , the synthetic diamond detector performed well in comparison to the natural dia mond detector. Keywords X-ray detector Synthetic diamond Natural diamond Energy dependence Dose linearity . Dose-rate dependence X-ray detectors fabricated from diamond have been co sidered for many years, e.g. [1-5], for reasons including the near-tissue equivalence and high radiation tolerance of diamond, and low leakage current (which helps improve signal-noise ratio) due to high intrinsic resistivity. It is worth noting that, while diamond is described as near-tis sue equivalent because of its atomic number (Z = 6), the mass density of diamond (3.51 g/cm3) is much higher than water (1.00 g/cm/ muscle (1.06 g/cm3) [6] or fat (0.92 gl cm3) [7]. Natural diamond-based detectors for use in high-energy photon and electron beams are only commercially-avai able from Physikalisch- Technische Werkstatten GmbH (PTW, Freiburg, Germany) [8]; they were developed in cooperation with the IPTP Institute in Riga, Latvia. These detectors have a small sensitive volume (1-6 mm3) and hence are marketed as being especially well suited for

  20. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H. [Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Hyogo 678-1297 (Japan); Takeda, S. [SPring-8 Service Co., Ltd., 1-20-5, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan); Yokoyama, K.; Matsui, J. [Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan); Kagoshima, Y. [Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Hyogo 678-1297 (Japan); Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan)

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector of each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.

  1. Energy Reconstruction for Events Detected in TES X-ray Detectors

    Science.gov (United States)

    Ceballos, M. T.; Cardiel, N.; Cobo, B.

    2015-09-01

    The processing of the X-ray events detected by a TES (Transition Edge Sensor) device (such as the one that will be proposed in the ESA AO call for instruments for the Athena mission (Nandra et al. 2013) as a high spectral resolution instrument, X-IFU (Barret et al. 2013)), is a several step procedure that starts with the detection of the current pulses in a noisy signal and ends up with their energy reconstruction. For this last stage, an energy calibration process is required to convert the pseudo energies measured in the detector to the real energies of the incoming photons, accounting for possible nonlinearity effects in the detector. We present the details of the energy calibration algorithm we implemented as the last part of the Event Processing software that we are developing for the X-IFU instrument, that permits the calculation of the calibration constants in an analytical way.

  2. Performance characteristics needed for protein crystal diffraction x-ray detectors

    International Nuclear Information System (INIS)

    Westbrook, E. M.

    1999-01-01

    During the 1990's, macromolecular crystallography became progressively more dependent on synchrotrons X-ray sources for diffraction data collection. Detectors of this diffraction data at synchrotrons beamlines have evolved over the decade, from film to image phosphor plates, and then to CCD systems. These changes have been driven by the data quality and quantity improvements each newer detector technology provided. The improvements have been significant. It is likely that newer detector technologies will be adopted at synchrotron beamlines for crystallographic diffraction data collection in the future, but these technologies will have to compete with existing CCD detector systems which are already excellent and are getting incrementally better in terms of size, speed, efficiency, and resolving power. Detector development for this application at synchrotrons must concentrate on making systems which are bigger and faster than CCDs and which can capture weak data more efficiently. And there is a need for excellent detectors which are less expensive than CCD systems

  3. Search for chameleons with an InGrid based X-ray detector at the CAST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Klaus; Kaminski, Jochen; Krieger, Christoph; Schmidt, Sebastian [Physikalisches Institut, Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany)

    2016-07-01

    The CERN Axion Solar Telescope (CAST) searches for axions and also other exotic particles emerging from the Sun. Chameleons, for example, are part of Dark Energy theories. Like Axions they can be converted into soft X-ray photons in a high magnetic field and should result in an X-ray spectrum peaking below 1 keV. Because of their low energy and weak coupling, detectors with low energy threshold and low background rates are mandatory. Both requirements are met by an X-ray detector based on the combination of a Micromegas gas amplification stage with a highly integrated pixel chip which allows to make full use of the Micromegas structure's granularity. It has been demonstrated that these devices can detect even single electrons. Thus, allowing for a topological background suppression as well as for detection of low energy X-ray photons creating only very few primary electrons. After the detection threshold had been evaluated to be low enough to allow for the detection of the carbon K{sub α} line at 277 eV, the detector was mounted at one of CAST's X-ray telescopes and installed along with its infrastructure in 2014. During data taking until end of 2015 background rates of less than 10{sup -4} keV/(cm{sup 2}.s) have been achieved below 2 keV. First preliminary results of the ongoing chameleon analysis and possibly an improved limit for solar chameleons are presented.

  4. X-ray measurement with Pin type semiconductor detectors; Medicion de rayos X con detectores de semiconductor tipo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, Departamento de Electronica, C.P. 52045 Salazar, Estado de Mexico (Mexico)

    2000-07-01

    Here are presented the experimental results of the applications of Pin type radiation detectors developed in a National Institute of Nuclear Research (ININ) project, in the measurement of low energy gamma and X-rays. The applications were oriented mainly toward the Medical Physics area. It is planned other applications which are in process of implementation inside the National Institute of Nuclear Research in Mexico. (Author)

  5. X-ray tube monitor apparatus

    International Nuclear Information System (INIS)

    Holland, W.P.; Pellergrino, A.

    1981-01-01

    An x-ray tube with a rotating anode target is provided with a detector of x-rays located outside a port of a housing of the tube and positioned at or near a tangent line to the radiating surface for observing variations in the radiation intensity due to rotation of the target, the variations being pronounced due to the heel effect of the radiation pattern. The x-ray detector can employ a scintillation material and be coupled by a light guide to a photodetector which is removed from the path of the radiation and detects scintillations of the x-ray detector. Alternatively, the photodetector and light pipe may be replaced by a detector of germanium, silicon or an ion chamber which converts x-ray photons directly to an electric current. An electronic unit determines the speed of rotation from the electric signal and can also, by fourier transform and signature analysis techniques, monitor the state of the radiating surface. (author)

  6. Improvement of the detector resolution in X-ray spectrometry by using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernández, Jorge E.; Scot, Viviana; Giulio, Eugenio Di; Sabbatucci, Lorenzo

    2015-01-01

    In every X-ray spectroscopy measurement the influence of the detection system causes loss of information. Different mechanisms contribute to form the so-called detector response function (DRF): the detector efficiency, the escape of photons as a consequence of photoelectric or scattering interactions, the spectrum smearing due to the energy resolution, and, in solid states detectors (SSD), the charge collection artifacts. To recover the original spectrum, it is necessary to remove the detector influence by solving the so-called inverse problem. The maximum entropy unfolding technique solves this problem by imposing a set of constraints, taking advantage of the known a priori information and preserving the positive-defined character of the X-ray spectrum. This method has been included in the tool UMESTRAT (Unfolding Maximum Entropy STRATegy), which adopts a semi-automatic strategy to solve the unfolding problem based on a suitable combination of the codes MAXED and GRAVEL, developed at PTB. In the past UMESTRAT proved the capability to resolve characteristic peaks which were revealed as overlapped by a Si SSD, giving good qualitative results. In order to obtain quantitative results, UMESTRAT has been modified to include the additional constraint of the total number of photons of the spectrum, which can be easily determined by inverting the diagonal efficiency matrix. The features of the improved code are illustrated with some examples of unfolding from three commonly used SSD like Si, Ge, and CdTe. The quantitative unfolding can be considered as a software improvement of the detector resolution. - Highlights: • Radiation detection introduces distortions in X- and Gamma-ray spectrum measurements. • UMESTRAT is a graphical tool to unfold X- and Gamma-ray spectra. • UMESTRAT uses the maximum entropy method. • UMESTRAT’s new version produces unfolded spectra with quantitative meaning. • UMESTRAT is a software tool to improve the detector resolution.

  7. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    Science.gov (United States)

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  8. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR)

    DEFF Research Database (Denmark)

    Krawczynski, Henric S.; Stern, Daniel; Harrison, Fiona A.

    2016-01-01

    This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter,radiation ...

  9. X-ray spectral meter of high voltages for X-ray apparatuses

    International Nuclear Information System (INIS)

    Zubkov, I.P.; Larchikov, Yu.V.

    1993-01-01

    Design of the X-ray spectral meter of high voltages (XRSMHV) for medical X-ray apparatuses permitting to conduct the voltage measurements without connection to current circuits. The XRSMHV consists of two main units: the detector unit based on semiconductor detector and the LP4900B multichannel analyzer (Afora, Finland). The XRSMYV was tested using the pilot plant based on RUM-20 X-ray diagnostic apparatus with high-voltage regulator. It was shown that the developed XRSMHV could be certify in the range of high constant voltages form 40 up to 120 kV with the basic relative error limits ±0.15%. The XRSMHV is used at present as the reference means for calibration of high-voltage medical X-ray equipment

  10. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    Science.gov (United States)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  11. First tests of a Medipix-1 pixel detector for X-ray dynamic defectoscopy

    CERN Document Server

    Vavrik, D; Visschers, J; Pospísil, S; Ponchut, C; Zemankova, J

    2002-01-01

    Recent theoretical damage material models describe the dynamic development of voids and microcracks in materials under plastic deformation. For these models, experimental verification is needed. We propose direct and non-destructive observation of the propagation of material damage by measuring changes in transmission of X-rays penetrating a stressed material, using a photon-counting X-ray imager. The present contribution aims to demonstrate the applicability of silicon and gallium-arsenide devices for X-ray transmission measurements with a specimen of high-ductile aluminium alloy under study. The first experiments to determine the resolution and the sensitivity of the proposed method with the Medipix-1 pixel detector are presented.

  12. In-beam test of Neutron detector array facility at IUAC

    International Nuclear Information System (INIS)

    Sugathan, P.; Jhingan, A.; Saneesh, S.

    2014-01-01

    A new experimental facility dedicated for the study of fission dynamics has been installed and commissioned recently at Inter University Accelerator Centre (IUAC), New Delhi. The facility, National Array of Neutron Detectors (NAND) is used for the systematic studies on fission dynamics around Coulomb barrier energies using heavy ion beams from the Tandem plus LINAC accelerator facilities. The detector array consists 100 neutron detectors mounted on a geodesic dome structure at a radial distance of 175 cm from the target and multi wire proportional counters (MWPC) for detection of fission fragments. Each neutron detector is made of 5'' x 5'' cylindrical cell filled with BC501A organic liquid scintillator and coupled to a 5'' photo multiplier tube. A 100 cm diameter spherical vacuum chamber has been installed at the center of the array to house the targets, fission fragment detectors and other ancillary charged particle detectors. The vacuum chamber is made of 4mm thick steel and has target ladder with linear and rotary movements. The detector array is installed on a dedicated beam line of LINAC accelerator facilities at beam hall II. The neutrons are discriminated from gamma rays using pulse shape discrimination (PSD) technique based on conventional analog electronics and the energies of neutrons are measured by the time of flight (TOF) method. For this purpose, custom made electronics modules have been built to process signal from each detector. This module contains the integrated electronics for n - γ discrimination, time of flight (TOF) and light output. The fission fragments are detected in low pressure MWPCs mounted inside the spherical vacuum chamber. The MWPC has been built based on the conventional design using three electrodes, having a central cathode foil electrode sandwiched between two position sensing anode wire/strip frames. In order to acquire data from detector array, the data acquisition system has been implemented using VME based hardware systems

  13. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    International Nuclear Information System (INIS)

    Sandie, W.G.; Nakano, G.H.; Chase, L.F. Jr.; Fishman, G.J.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.

    1988-01-01

    A balloon borne gamma-ray spectrometer comprising an array of high-purity n-type germanium (HPGe) detectors having geometric area 119 cm 2 , resolution 2.5 keV at 1.0 MeV, surrounded by an active NaI (Tl) collimator and Compton suppressing anticoincidence shield nominally 10 cm thick, was flown from Alice Springs, Northern Territory, Australia, on May 29--30, 1987, 96 days after the observed neutrino pulse. The average column depth of residual atmosphere in the direction of SN 1987A at float altitude was 6.3 g cm-2 during the observation. SN 1987A was within the 22-deg full-width-half-maximum (FWHM) field of view for about 3300 s during May 29.9--30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56)-Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. With 80% of the data analyzed, the 3-sigma upper limit obtained for the 1238-keV line from Co(56) at the instrument resolution (about 3 keV) is 1.3 x 10-3 photons cm-2 s-1

  14. Superconducting single X-ray photon detector based on W0.8Si0.2

    Directory of Open Access Journals (Sweden)

    Xiaofu Zhang

    2016-11-01

    Full Text Available We fabricated a superconducting single X-ray photon detector based on W0.8Si0.2, and we characterized its basic detection performance for keV-photons at different temperatures. The detector has a critical temperature of 4.97 K, and it is able to be operated up to 4.8 K, just below the critical temperature. The detector starts to react to X-ray photons at relatively low bias currents, less than 1% of Ic at T = 1.8 K, and it shows a saturated count rate dependence on bias current at all temperatures, indicating that the optimum internal quantum efficiency can always be reached. Dark counts are negligible up to the highest investigated bias currents (99% of Ic and operating temperature (4.8 K. The latching effect affects the detector performance at all temperatures due to the fast recovery of the bias current; however, further modifications of the device geometry are expected to reduce the tendency for latching.

  15. Electrically-cooled HPGe detector for advanced x-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marian, V.; Clauss, J.; Pirard, B.; Quirin, P.; Flamanc, J.; Lampert, M.O. [CANBERRA France, Parc des Tanneries, 1, chemin de la roseraie, 67380 Lingolsheim (France)

    2015-07-01

    High Purity Germanium (HPGe) detectors are used for high-resolution x- and gamma-ray spectroscopy. For their operation, the necessary cryogenic cooling is performed with liquid nitrogen or with electromechanical coolers. Although mature and industrialized solutions, most of HPGe detectors integrating electrical coolers present a limited spectroscopic performance due to the generated mechanical vibration and electromagnetic interference. This paper describes a novel HPGe detector, specifically designed to address the challenges of ultimate x-ray spectroscopy and imaging applications. Due to the stringent demands associated with nano-scale imaging in synchrotron applications, a custom-designed cryostat was built around a Canberra CP5-Plus electrical cooler featuring extremely low vibration levels and high cooling power. The heat generated by the cryo-cooler itself, as well as the electronics, is evacuated via an original liquid cooling circuit. This architecture can also be used to address high ambient temperature, which does not allow conventional cryo-coolers to work properly. The multichannel detector head can consist of a segmented monolithic HPGe sensor, or several closely packed sensors. Each sensor channel is read out by state-of-the-art pulse-reset preamplifiers in order to achieve excellent energy resolution for count rates in excess of 1 Mcps. The sensitive electronics are located in EMI-proof housings to avoid any interference from other devices on a beam-line. The front-end of the detector is built using selected high-purity materials and alloys to avoid any fluorescence effects. We present a detailed description of the detector design and we report on its performance. A discussion is also given on the use of electrically cooled HPGe detectors for applications requiring ultimate energy resolution, such as synchrotron, medicine or nuclear industry. (authors)

  16. Stabilized transistor transformer for self-moving Sirena-1 X-ray flaw detector

    International Nuclear Information System (INIS)

    Krasil'nikov, S.B.; Kristalinskij, A.L.; Lozovoj, L.N.; Markov, S.N.; Sindalovskij, E.I.

    1986-01-01

    Electric circuit of stabilized transistor transformer for self-moving ''Sirena'' type X-ray flaw detector is described. Specifications of the transformer and results of the experimental studies, which can be used when tuning and adjusting the transformer under industrial conditions

  17. A microprogrammable high-speed data collection system for position sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hashizume, H.

    1984-01-01

    A high-speed data acquisition system has been designed which collects digital data from one- and two-dimensional position sensitive X-ray detectors at a maximum average data rate of 1 MHz. The system consists of two separate fast buffer memories, a 64 K word by 20-bit main storage, two timers, a display controller, a computer interface and a keyboard, controlled by a specially designed microprogrammable microprocessor. Data collection is performed by executing a microprogram stored in the control storage; data coming from a detector are first accumulated in a small but fast buffer memory by hardware and transferred to the main storage under control of the microprogram. This design not only permits time-resolved data collections but also provides maximum speed, flexibility and cost-effectiveness simultaneously. The system also accepts data from integrated detectors such as TV cameras. The system has been designed for use in experiments at conventional and synchrotron X-ray sources. (orig.)

  18. Characterization of the imaging performance of the simultaneously counting and integrating X-ray detector CIX

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Johannes

    2010-01-15

    The CIX detector is a direct converting hybrid pixel detector designed for medical X-ray imaging applications. Its de ning feature is the simultaneous operation of a photon counter as well as an integrator in every pixel cell. This novel approach o ers a dynamic range of more than five orders of magnitude, as well as the ability to directly obtain the average photon energy from the measured data. Several CIX 0.2 ASICs have been successfully connected to CdTe, CdZnTe and Si sensors. These detector modules were tested with respect to the imaging performance of the simultaneously counting and integrating concept under X-ray irradiation. Apart from a characterization of the intrinsic benefits of the CIX concept, the sensor performance was also investigated. Here, the two parallel signal processing concepts offer valuable insights into material related effects like polarization and temporal response. The impact of interpixel coupling effects like charge-sharing, Compton scattering and X-ray fluorescence was evaluated through simulations and measurements. (orig.)

  19. Characterization of the imaging performance of the simultaneously counting and integrating X-ray detector CIX

    International Nuclear Information System (INIS)

    Fink, Johannes

    2010-01-01

    The CIX detector is a direct converting hybrid pixel detector designed for medical X-ray imaging applications. Its de ning feature is the simultaneous operation of a photon counter as well as an integrator in every pixel cell. This novel approach o ers a dynamic range of more than five orders of magnitude, as well as the ability to directly obtain the average photon energy from the measured data. Several CIX 0.2 ASICs have been successfully connected to CdTe, CdZnTe and Si sensors. These detector modules were tested with respect to the imaging performance of the simultaneously counting and integrating concept under X-ray irradiation. Apart from a characterization of the intrinsic benefits of the CIX concept, the sensor performance was also investigated. Here, the two parallel signal processing concepts offer valuable insights into material related effects like polarization and temporal response. The impact of interpixel coupling effects like charge-sharing, Compton scattering and X-ray fluorescence was evaluated through simulations and measurements. (orig.)

  20. The X-ray Integral Field Unit (X-IFU) for Athena

    Science.gov (United States)

    Ravera, Laurent; Barret, Didier; Willem den Herder, Jan; Piro, Luigi; Cledassou, Rodolphe; Pointecouteau, Etienne; Peille, Philippe; Pajot, Francois; Arnaud, Monique; Pigot, Claude; hide

    2014-01-01

    Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain.

  1. X-ray data processing

    OpenAIRE

    Powell, Harold R.

    2017-01-01

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most c...

  2. CdZnTe detectors for gamma-ray Burst ArcSecond Imaging and Spectroscopy (BASIS)

    International Nuclear Information System (INIS)

    Stahle, C.M.; Palmer, D.; Bartlett, L.M.; Parsons, A.; Shi Zhiqing; Lisse, C.M.; Sappington, C.; Cao, N.; Shu, P.; Gehrels, N.; Teegarden, B.; Birsa, F.; Singh, S.; Odom, J.; Hanchak, C.; Tueller, J.; Barthelmy, S.; Krizmanic, J.; Barbier, L.

    1996-01-01

    A CdZnTe detector array is being developed for the proposed gamma-ray Burst ArcSecond Imaging and Spectroscopy (BASIS) spaceflight mission to accurately locate gamma-ray bursts, determine their distance scale, and measure the physical characteristics of the emission region. Two-dimensional strip detectors with 100 μm pitch have been fabricated and wire bonded to readout electronics to demonstrate the ability to localize 60 and 122 keV gamma-rays to less than 100 μm. Radiation damage studies on a CdZnTe detector exposed to MeV neutrons showed a small amount of activation but no detector performance degradation for fluences up to 10 10 neutrons/cm 2 . A 1 x 1 in. CdZnTe detector has also been flown on a balloon payload at 115 000 ft in order to measure the CdZnTe background rates. (orig.)

  3. Use of planar HPGe detector as a part of X-ray fluorescent spectrometer for educational purposes

    International Nuclear Information System (INIS)

    Verenchikova, M.S.; Kalinin, V.N.; Mikhajlov, V.A.

    2011-01-01

    This work shows the possibility of use of the nondedicated gamma and X-ray detection head on the basis of planar HPGe detector with a big sensitive area equal to 2000 mm''2 as a part of X-ray fluorescent spectrometer during students' practicum.

  4. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics

    Science.gov (United States)

    Bandler, S. R.; Adams, J. S.; Bailey, C. N.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing small-pixel transition-edge-sensor (TES) for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to accommodate count-rates of up to a few hundred counts/pixel/second at a FWHM energy resolution approximately 2 eV at 6 keV. We have fabricated versions that utilize narrow-line planar and stripline wiring. We present measurements of the performance and uniformity of kilo-pixel arrays, incorporating TESs with single 65-micron absorbers on a 7s-micron pitch, as well as versions with more than one absorber attached to the TES, 4-absorber and 9-absorber "Hydras". We have also fabricated a version of this detector optimized for lower energies and lower count-rate applications. These devices have a lower superconducting transition temperature and are operated just above the 40mK heat sink temperature. This results in a lower heat capacity and low thermal conductance to the heat sink. With individual single pixels of this type we have achieved a FWHM energy resolution of 0.9 eV with 1.5 keV Al K x-rays, to our knowledge the first x-ray microcalorimeter with sub-eV energy resolution. The 4-absorber and 9-absorber versions of this type achieved FWHM energy resolutions of 1.4 eV and 2.1 eV at 1.5 keV respectively. We will discuss the application of these devices for new astrophysics mission concepts.

  5. Application of the alanine detector to gamma-ray, X-ray and fast neutron dosimetry

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Hansen, J.W.; Byrski, E.

    1987-01-01

    A dosimeter based on alanine has been developed at the INP in Krakow and at Risoe National Laboratory. Due to its near tissue-equivalence and stability of signal, measured using ESR spectrometry at room temperature, this free-radical amino-acid dosimetric system is particularly suitable for measuring X-ray, gamma-ray and fast neutron doses in the range 10-10 5 Gy. The relative effectiveness (with respect to 60 Co γ-rays) of the alanine dosimeter to 250 kVp X-rays and to cyclotron-produced fast neutrons (mean neutron energy 5.6 MeV) is measured to be 0.76± 0.06 and 0.60±0.05, respectively. The suitability of the alanine dosimeter for intercomparison gamma-ray dosimetry is also shown. The estimated absolute difference between 60 Co dosimetry at Risoe National Laboratory and at the Centre of Oncology in Krakow is about 5%, somewhat more than the experimental uncertainty. These results are based on ESR measurements performed in Krakow on about 25% of the exposed detectors. 28 refs., 2 figs., 3 tabs. (author)

  6. Multiwire area x-ray diffractometers

    International Nuclear Information System (INIS)

    Hamlin, R.

    1985-01-01

    The multiwire proportional counter is at this writing the only type of two-dimensional position-sensitive X-ray detector capable of collecting diffraction data accurate enough for solution of new protein structures. The first diffractometer system to use this type of detector (the Mark I diffractometer system) was assembled at the University of California, San Diego and has collected the data used to solve for four new protein structures. Similar diffractometer systems using a single thin, flat multiwire counter are now being constructed in several other laboratories around the world, and several of these should routinely be collecting good diffraction data from protein and perhaps even virus crystals by 1986. A table describing some of these other systems is included later in this chapter. The next step in the evolution of area diffractometer systems based on the multiwire proportional counter is more complete coverage of the solid angle of the diffraction pattern - more complete than the 10 - 40% coverage possible with one flat multiwire counter. The phenomenon called ''parallax'' makes it impractical to intercept the whole diffraction pattern with one flat, xenon-filled multiwire counter. Two strategies for dealing with parallax are now being pursued. One strategy involves adding a spherical drift region to the front of a flat multiwire counter and a detector using this idea will be described. The other strategy, one being pursued by the author, involves building an array of flat detectors arranged to approximate a section of the surface of a sphere. The array of flat detectors gives more flexibility in crystal-to-detector distance and distributes the dead time over many detectors, thereby allowing the full array to have a high counting rate capacity even using only medium speed (2 μsec) position readout circuits for each individual detector

  7. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    International Nuclear Information System (INIS)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F.; Korde, R.; Haslett, C.L.; Wall, D.L.; Ruggles, Laurence E.; Ramirez, L.E.; Stygar, William A.; Porter, John Larry Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B.; Pyle, John H.; Mazarakis, Michael Gerrassimos; Ives III, Harry Crockett; Seamen, Johann F.; Simpson, Walter W.