WorldWideScience

Sample records for array readout chip

  1. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  2. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  3. Thermopile Area Array Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA/JPL thermopile detector linear arrays, wire bonded to Black Forest Engineering (BFE) CMOS readout integrated circuits (ROICs), have been utilized in NASA...

  4. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  5. Towards third generation pixel readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@lbl.gov; Mekkaoui, A.; Ganani, D.

    2013-12-11

    We present concepts and prototyping results towards a third generation pixel readout chip. We consider the 130 nm feature size FE-I4 chip, in production for the ATLAS IBL upgrade, to be a second generation chip. A third generation chip would have to go significantly further. A possible direction is to make the IC design generic so that different experiments can configure it to meet significantly different requirements, without the need for everybody to develop their own ASIC from the ground up. In terms of target technology, a demonstrator 500-pixel matrix containing analog front ends only (no complex functionality), was designed and fabricated in 65 nm CMOS and irradiated with protons in December 2011 and May 2012.

  6. LSST camera readout chip ASPIC: test tools

    Science.gov (United States)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  7. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  8. Advanced ACTPol Cryogenic Detector Arrays and Readout

    Science.gov (United States)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  9. XA readout chip characteristics and CdZnTe spectral measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, L.M.; Birsa, F.; Odom, J. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States)] [and others

    1999-02-01

    The authors report on the performance of a CdZnTe (CZT) array readout by an XA (X-ray imaging chip produced at the AMS foundry) application specific readout chip (ASIC). The array was designed and fabricated at NASA/Goddard Space Flight Center (GSFC) as a prototype for the Burst Arc-Second Imaging and Spectroscopy gamma-ray instrument. The XA ASIC was obtained from Integrated Detector and Electronics (IDE), in Norway. Performance characteristics and spectral data for {sup 241}Am are presented both at room temperature and at {minus}20 C. The measured noise ({sigma}) was 2.5 keV at 60 keV at room temperature. This paper represents a progress report on work with the XA ASIC and CZT detectors. Work is continuing and in particular, larger arrays are planned for future NASA missions.

  10. Radiation tolerance of prototype BTeV pixel detector readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Gabriele Chiodini et al.

    2002-07-12

    High energy and nuclear physics experiments need tracking devices with increasing spatial precision and readout speed in the face of ever-higher track densities and increased radiation environments. The new generation of hybrid pixel detectors (arrays of silicon diodes bump bonded to arrays of front-end electronic cells) is the state of the art technology able to meet these challenges. We report on irradiation studies performed on BTeV pixel readout chip prototypes exposed to a 200 MeV proton beam at Indiana University Cyclotron Facility. Prototype pixel readout chip preFPIX2 has been developed at Fermilab for collider experiments and implemented in standard 0.25 micron CMOS technology following radiation tolerant design rules. The tests confirmed the radiation tolerance of the chip design to proton total dose up to 87 MRad. In addition, non destructive radiation-induced single event upsets have been observed in on-chip static registers and the single bit upset cross section has been extensively measured.

  11. Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol

    CERN Document Server

    Henderson, Shawn W; Amiri, Mandana; Austermann, Jason; Beall, James A; Chaudhuri, Saptarshi; Cho, Hsiao-Mei; Choi, Steve K; Cothard, Nicholas F; Crowley, Kevin T; Duff, Shannon M; Fitzgerald, Colin P; Gallardo, Patricio A; Halpern, Mark; Hasselfield, Matthew; Hilton, Gene; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D; Koopman, Brian J; Li, Dale; Li, Yaqiong; McMahon, Jeff; Nati, Federico; Niemack, Michael D; Reintsema, Carl D; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L; Simon, Sara M; Staggs, Suzanne T; Vavagiakis, Eve M; Ward, Jonathan T

    2016-01-01

    Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor (TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID parameters required to readout each Advanced ACTPol...

  12. Beetle A radiation hard readout chip for the LHCb experiment

    CERN Document Server

    Agari, M; Bauer, C; Baumeister, D; Van Beuzekom, M G; Feuerstack-Raible, M; Harnew, N; Hofmann, W; Jans, E; Klous, S; Knöpfle, K T; Löchner, S; Schmelling, M; Sexauer, E; Smale, N J; Trunk, U; Verkooijen, H

    2004-01-01

    A new radiation hard pipelined readout chip is being developed for the LHCb-experiment. Appropriate design measures have been taken to ensure the radiation hardness against total ionising dose effects in excess of 45 Mrad, as well as radiation effects induced by single particles.

  13. Fermilab silicon strip readout chip for BTev

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  14. Development, optimisation and characterisation of a radiation hard mixed-signal readout chip for LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Loechner, S.

    2006-07-26

    The Beetle chip is a radiation hard, 128 channel pipelined readout chip for silicon strip detectors. The front-end consists of a charge-sensitive preamplifier followed by a CR-RC pulse shaper. The analogue pipeline memory is implemented as a switched capacitor array with a maximum latency of 4us. The 128 analogue channels are multiplexed and transmitted off chip in 900ns via four current output drivers. Beside the pipelined readout path, the Beetle provides a fast discrimination of the front-end pulse. Within this doctoral thesis parts of the radiation hard Beetle readout chip for the LHCb experiment have been developed. The overall chip performances like noise, power consumption, input charge rates have been optimised as well as the elimination of failures so that the Beetle fulfils the requirements of the experiment. Furthermore the characterisation of the chip was a major part of this thesis. Beside the detailed measurement of the chip performance, several irradiation tests and an Single Event Upset (SEU) test were performed. A long-time measurement with a silicon strip detector was also part of this work as well as the development and test of a first mass production test setup. The Beetle chip showed no functional failure and only slight degradation in the analogue performance under irradiation of up to 130Mrad total dose. The Beetle chip fulfils all requirements of the vertex detector (VELO), the trigger tracker (TT) and the inner tracker (IT) and is ready for the start of LHCb end of 2007. (orig.)

  15. Digital Power Consumption Estimations for CHIPIX65 Pixel Readout Chip

    CERN Document Server

    Marcotulli, Andrea

    2016-01-01

    New hybrid pixel detectors with improved resolution capable of dealing with hit rates up to 3 GHz/cm2 will be required for future High Energy Physics experiments in the Large Hadron Collider (LHC) at CERN. Given this, the RD53 collaboration works on the design of the next generation pixel readout chip needed for both the ATLAS and CMS detector phase 2 pixel upgrades. For the RD53 demonstrator chip in 65nm CMOS technology, different architectures are considered. In particular the purpose of this work is estimating the power consumption of the digital architecture of the readout ASIC developed by CHIPIX65 project of the INFN National Scientific Committee. This has been done with modern chip design tools integrated with the VEPIX53 simulation framework that has been developed within the RD53 collaboration in order to assess the performance of the system in very high rate, high energy physics experiments.

  16. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  17. Pixel readout chip for the ATLAS experiment

    CERN Document Server

    Ackers, M; Blanquart, L; Bonzom, V; Comes, G; Fischer, P; Keil, M; Kühl, T; Meuser, S; Delpierre, P A; Treis, J; Raith, B A; Wermes, N

    1999-01-01

    Pixel detectors with a high granularity and a very large number of sensitive elements (cells) are a very recent development used for high precision particle detection. At the Large Hadron Collider LHC at CERN (Geneva) a pixel detector with 1.4*10/sup 8/ individual pixel cells is developed for the ATLAS detector. The concept is a hybrid detector. Consisting of a pixel sensor connected to a pixel electronics chip by bump and flip chip technology in one-to-one cell correspondence. The development and prototype results of the pixel front end chip are presented together with the physical and technical requirements to be met at LHC. Lab measurements are reported. (6 refs).

  18. FFTS readout for large arrays of Microwave Kinetic Inductance Detectors

    CERN Document Server

    Yates, S J C; Baselmans, J J A; Klein, B; Güsten, R

    2009-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) have great potential for large very sensitive detector arrays for use in, for example, sub-mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing $\\sim$1000s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present here the concept and experimental demonstration of the use of Fast Fourier Transform Spectrometer (FFTS) readout, showing no deterioration of the noise performance compared to low noise analog mixing while allowing high multiplexing ratios.

  19. TID-dependent current measurements of IBL readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Dette, Karola [TU Dortmund, Experimentelle Physik IV (Germany); CERN (Switzerland); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    The ATLAS detector consists of several subsystems with a hybrid pixel detector as the innermost component of the tracking system. The pixel detector has been composed of three layers of silicon sensor assemblies during the first data taking run of the LHC and has been upgraded with a new 4th layer, the so-called Insertable B-Layer (IBL), in summer 2014. Each silicon sensor of the IBL is connected to a Front End readout chip (FE-I4) via bump bonds. During the first year of data taking an increase of the LV current produced by the readout chips was observed. This increase could be traced back to radiation damage inside the silicon. The dependence of the current on the Total Ionizing Dose (TID) and temperature has been tested with X-ray irradiations and will be presented in this talk.

  20. Towards a new generation of pixel detector readout chips

    CERN Document Server

    Campbell, M; Ballabriga, R.; Frojdh, E.; Heijne, E.; Llopart, X.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.

    2016-01-01

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile- ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.

  1. Development of arrays of Silicon Drift Detectors and readout ASIC for the SIDDHARTA experiment

    Science.gov (United States)

    Quaglia, R.; Schembari, F.; Bellotti, G.; Butt, A. D.; Fiorini, C.; Bombelli, L.; Giacomini, G.; Ficorella, F.; Piemonte, C.; Zorzi, N.

    2016-07-01

    This work deals with the development of new Silicon Drift Detectors (SDDs) and readout electronics for the upgrade of the SIDDHARTA experiment. The detector is based on a SDDs array organized in a 4×2 format with each SDD square shaped with 64 mm2 (8×8) active area. The total active area of the array is therefore 32×16 mm2 while the total area of the detector (including 1 mm border dead area) is 34 × 18mm2. The SIDDHARTA apparatus requires 48 of these modules that are designed and manufactured by Fondazione Bruno Kessler (FBK). The readout electronics is composed by CMOS preamplifiers (CUBEs) and by the new SFERA (SDDs Front-End Readout ASIC) circuit. SFERA is a 16-channels readout ASIC designed in a 0.35 μm CMOS technology, which features in each single readout channel a high order shaping amplifier (9th order Semi-Gaussian complex-conjugate poles) and a high efficiency pile-up rejection logic. The outputs of the channels are connected to an analog multiplexer for the external analog to digital conversion. An on-chip 12-bit SAR ADC is also included. Preliminary measurements of the detectors in the single SDD format are reported. Also measurements of low X-ray energies are reported in order to prove the possible extension to the soft X-ray range.

  2. Thin film magnetostrictive sensor with on-chip readout

    Science.gov (United States)

    Lu, Yong

    We report the first successful integration of magnetostrictive Metglas2605S2 (Fesb{78}Sisb9Bsb{13}) thin film sensor system on silicon with high resolution capacitive readout. A deposition process for Metglas thin film has been developed to allow easy control of thin film composition. An amorphous microstructure has been achieved over a wide temperature range, and in-situ magnetic domain alignment can be accomplished at room temperature as the film is deposited. The thin film has been characterized by Inductively Coupled Plasma (ICP) analysis for composition, X-Ray Diffraction (XRD) spectrum for microstructure, magnetization measurement for domain alignment and capacitive measurement for magnetostriction. The thin film is suitable for any magnetostrictive sensor applications, in particular, for IC compatible microsensors and microactuators. We have demonstrated the subsequent process integration with IC fabrication technology. Here, the Metglas thin film has been successfully incorporated to micromechanical structures using surface micromachining with appropriate choice of sacrificial layer and low stress mechanical layers. In addition, we present the development of a high resolution capacitive readout circuit co-integrated with the sensor. The readout circuit is based on a floating gate MOSFET configuration, requiring just a single transistor and operated at DC or low frequencies. Using the prototype developed in-house, we have successfully demonstrated a resolution capability of 10sp{-17} F, this translates to a few A in terms of cantilever beam deflection of the sensor. The floating gate readout technique is readily applicable to any capacitive sensors with a need for on-chip readout. It is also an ideal in-situ test structure for on IC chip process characterization and parameter extraction.

  3. A readout for large arrays of Microwave Kinetic Inductance Detectors

    CERN Document Server

    McHugh, Sean; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as Transition Edge Sensors (TESs), but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry (ARCONS). This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). Designed principally for radio telescope backends, it is flexible...

  4. A readout for large arrays of microwave kinetic inductance detectors.

    Science.gov (United States)

    McHugh, Sean; Mazin, Benjamin A; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-04-01

    Microwave kinetic inductance detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as transition edge sensors, but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper, we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry. This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research. Designed principally for radio telescope backends, it is flexible enough to be used for a variety of signal processing applications.

  5. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O' CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  6. Advanced ACTPol Cryogenic Detector Arrays and Readout

    CERN Document Server

    Henderson, S W; Austermann, J; Baildon, T; Battaglia, N; Beall, J A; Becker, D; De Bernardis, F; Bond, J R; Calabrese, E; Choi, S K; Coughlin, K P; Crowley, K T; Datta, R; Devlin, M J; Duff, S M; Dunner, R; Dunkley, J; van Engelen, A; Gallardo, P A; Grace, E; Hasselfield, M; Hills, F; Hilton, G C; Hincks, A D; Hlozek, R; Ho, S P; Hubmayr, J; Huffenberger, K; Hughes, J P; Irwin, K D; Koopman, B J; Kosowsky, A B; Li, D; McMahon, J; Munson, C; Nati, F; Newburgh, L; Niemack, M D; Niraula, P; Page, L A; Pappas, C G; Salatino, M; Schillaci, A; Schmitt, B L; Sehgal, N; Sherwin, B D; Sievers, J L; Simon, S M; Spergel, D N; Staggs, S T; Stevens, J R; Thornton, R; Van Lanen, J; Vavagiakis, E M; Ward, J T; Wollack, E J

    2015-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope (ACT), adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background (CMB) anisotropies -- imaged in intensity and polarization at few arcminute-scale resolution -- will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor (TES) polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new ...

  7. Frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    Science.gov (United States)

    Hoskinson, Emile; Whittaker, J. D.; Swenson, L. J.; Volkmann, M. H.; Spear, P.; Altomare, F.; Berkley, A. J.; Bumble, B.; Bunyk, P.; Day, P. K.; Eom, B. H.; Harris, R.; Hilton, J. P.; Johnson, M. W.; Kleinsasser, A.; Ladizinsky, E.; Lanting, T.; Oh, T.; Perminov, I.; Tolkacheva, E.; Yao, J.

    Frequency multiplexed arrays of superconducting microresonators have been used as detectors in a variety of applications. The degree of multiplexing achievable is limited by fabrication variation causing non-uniform shifts in resonator frequencies. We have designed, implemented and characterized a superconducting microresonator readout that incorporates two tunable inductances per detector, allowing independent control of each detector frequency and sensitivity. The tunable inductances are adjusted using on-chip programmable digital-to-analog flux converters, which are programmed with a scalable addressing scheme that requires few external lines.

  8. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  9. A 4k-Pixel CTIA Readout for Far IR Photodetector Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a low noise, two-side buttable, 64x64 readout multiplexer with the following key design features: 1- By far the largest readout array developed...

  10. KLauS – A charge readout and fast discrimination chip for silicon photomultipliers

    CERN Document Server

    Dorn, M; Shen, W; Sidlauskas, G; Schultz-Coulon, H.C

    2012-01-01

    photomultipliers. The chip has been designed for the application in the analog hadronic calorimeter developed by the CALICE collaboration for the next linear collider experiment . To address the severe power constraints introduced by the highly granular design of the calorimeter, the chip has been designed for low power consumption while maintaining the high dynamic range and timing precision required by the experiment. In addition, a power gating scheme has been implemented to further decrease the average power consumption. For a duty cycle of 1% a value of 25µW per channel is achieved without affecting the readout capabilities of the chip. The chip has been designed in the 0.35µm SiGe technology and provides a low power readout channel for SiPMs with low gain for the input stage of the existing readout chip SPIROC. The analog channel of KLauS will be implemented in a future version of the SPIROC chip.

  11. The CMS Pixel Readout Chip for the Phase 1 Upgrade

    Science.gov (United States)

    Hits, D.; Starodumov, A.

    2015-05-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25 ns and to be efficient up to the nominal instantaneous luminosity of 1034 cm-2 s-1. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach 2×1034 cm-2 s-1 before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250 nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented together with measured performance of the chip.

  12. Silicon ball grid array chip carrier

    Science.gov (United States)

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  13. The CMS pixel readout chip for the Phase 1 Upgrade

    CERN Document Server

    Hits, Dmitry

    2015-01-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25\\,ns and to be efficient up to the nominal instantaneous luminosity of 10$^{34} \\rm cm^{-2} \\rm s^{-1}$. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach $2\\times10^{34} \\rm cm^{-2} \\rm s^{-1}$ before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250\\,nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented togeth...

  14. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    Energy Technology Data Exchange (ETDEWEB)

    Allman, M. S., E-mail: shane.allman@boulder.nist.gov; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328 (United States); Marsili, F.; Beyer, A.; Shaw, M. D. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, California 91109 (United States); Kumor, D. [Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907 (United States)

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  15. A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout

    CERN Document Server

    Allman, M S; Stevens, M; Gerrits, T; Horansky, R D; Lita, A E; Marsili, F; Beyer, A; Shaw, M D; Kumor, D; Mirin, R; Nam, S W

    2015-01-01

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

  16. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.

    2015-01-01

    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  17. NIRCA ASIC for the readout of focal plane arrays

    Science.gov (United States)

    Pâhlsson, Philip; Steenari, David; Øya, Petter; Otnes Berge, Hans Kristian; Meier, Dirk; Olsen, Alf; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Talebi, Jahanzad; Azman, Suleyman; Gheorghe, Codin; Ackermann, Jörg; Mæhlum, Gunnar; Johansen, Tor Magnus; Stein, Timo

    2016-05-01

    This work is a continuation of our preliminary tests on NIRCA - the Near Infrared Readout and Controller ASIC [1]. The primary application for NIRCA is future astronomical science and Earth observation missions where NIRCA will be used with mercury cadmium telluride image sensors (HgCdTe, or MCT) [2], [3]. Recently we have completed the ASIC tests in the cryogenic environment down to 77 K. We have verified that NIRCA provides to the readout integrated circuit (ROIC) regulated power, bias voltages, and fully programmable digital sequences with sample control of the analogue to digital converters (ADC). Both analog and digital output from the ROIC can be acquired and image data is 8b/10bencoded and delivered via serial interface. The NIRCA also provides temperature measurement, and monitors several analog and digital input channels. The preliminary work confirms that NIRCA is latch-up immune and able to operate down to 77 K. We have tested the performance of the 12-bit ADC with pre-amplifier to have 10.8 equivalent number of bits (ENOB) at 1.4 Msps and maximum sampling speed at 2 Msps. The 1.8-V and 3.3-V output regulators and the 10-bit DACs show good linearity and work as expected. A programmable sequencer is implemented as a micro-controller with a custom instruction set. Here we describe the special operations of the sequencer with regards to the applications and a novel approach to parallel real-time hardware outputs. The test results of the working prototype ASIC show good functionality and performance from room temperature down to 77 K. The versatility of the chip makes the architecture a possible candidate for other research areas, defense or industrial applications that require analog and digital acquisition, voltage regulation, and digital signal generation.

  18. A Trigger and Readout Scheme for future Cherenkov Telescope Arrays

    CERN Document Server

    Hermann, G; Foehr, C; Hofmann, W; Kihm, T; Köck, F

    2008-01-01

    The next generation of ground-based gamma-ray observatories, such as e.g. CTA, will consist of about 50-100 telescopes, and cameras with in total ~100000 to ~200000 channels. The telescopes of the core array will cover and effective area of ~ 1 km2 and will be possibly accompanied by a large halo of smaller telescopes spread over about 10 km2 . In order to make maximum use of the stereoscopic approach, a very flexible inter-telescope trigger scheme is needed which allows to couple telescopes that located up to ~1 km apart. The development of a cost effective readout scheme for the camera signals exhibits a major technological challenge. Here we present ideas on a new asynchronous inter-telescope trigger scheme, and a very cost-effective, high-bandwidth frontend to backend data transfer system, both based on standard Ethernet components and an Ethernet front-end interface based on mass production standard FPGAs.

  19. Performance of CATIROC: ASIC for smart readout of large photomultiplier arrays

    Science.gov (United States)

    Blin, S.; Callier, S.; Conforti Di Lorenzo, S.; Dulucq, F.; De La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N.

    2017-03-01

    CATIROC (Charge And Time Integrated Read Out Chip) is a complete read-out chip manufactured in AustriaMicroSystem (AMS) SiGe 0.35 μm technology, designed to read arrays of 16 photomultipliers (PMTs). It is an upgraded version of PARISROC2 [1] designed in 2010 in the context of the PMm2 (square meter PhotoMultiplier) project [2]. CATIROC is a SoC (System on Chip) that processes analog signals up to the digitization and sparsification to reduce the cost and cable number. The ASIC is composed of 16 independent channels that work in triggerless mode, auto-triggering on the single photo-electron. It provides a charge measurement up to 400 photoelectrons (70 pC) on two scales of 10 bits and a timing information with an accuracy of 200 ps rms. The ASIC was sent for fabrication in February 2015 and then received in September 2015. It is a good candidate for two Chinese projects (LHAASO and JUNO). The architecture and the measurements will be detailed in the paper.

  20. Fast, High-Precision Readout Circuit for Detector Arrays

    Science.gov (United States)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  1. Low noise CMOS readout for CdZnTe detector arrays

    CERN Document Server

    Jakobson, C G; Lev, S B; Nemirovsky, Y

    1999-01-01

    A low noise CMOS readout for CdTe and CdZnTe X- and gamma-ray detector arrays has been designed and implemented in the CMOS 2 mu m low noise analog process provided by the multi-chip program of Metal Oxide Semiconductor Implementation Service. The readout includes CMOS low noise charge sensitive preamplifier and a multiplexed semi-Gaussian pulse shaper. Thus, each detector has a dedicated charge sensitive preamplifier that integrates its signal, while a single shaping amplifier shapes the pulses after the multiplexer. Low noise and low-power operation are achieved by optimizing the input transistor of the charge sensitive preamplifier. Two optimization criteria are used to reduce noise. The first criterion is based on capacitance matching between the input transistor and the detector. The second criterion is based on bandwidth optimization, which is obtained by tailoring the shaper parameters to the particular noise mechanisms of the MOS transistor and the CdZnTe detector. Furthermore, the multiplexing functi...

  2. The charge pump PLL clock generator designed for the 1.56 ns bin size time-to-digital converter pixel array of the Timepix3 readout ASIC

    CERN Document Server

    Fu, Y et al.

    2014-01-01

    Timepix3 is a newly developed pixel readout chip which is expected to be operated in a wide range of gaseous and silicon detectors. It is made of 256×256 pixels organized in a square pixel-array with 55 µm pitch. Oscillators running at 640 MHz are distributed across the pixel-array and allow for a highly accurate measurement of the arrival time of a hit. This paper concentrates on a low-jitter phase locked loop (PLL) that is located in the chip periphery. This PLL provides a control voltage which regulates the actual frequency of the individual oscillators, allowing for compensation of process, voltage, and temperature variations.

  3. FPHX: A New Silicon Strip Readout Chip for the PHENIX Experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, James R.; Zimmerman, Tom N.; Yarema, Raymond J.; /Fermilab; Kapustinsky, Jon S.; Brookes, Melynda L.; /LOS ALAMOS

    2009-01-01

    The FPHX chip is a silicon strip readout chip developed at Fermilab for use in the FVTX Detector of the PHENIX experiment at RHIC. Each front end consists of an integrator which is AC coupled to a shaper, followed by a discriminator and a 3-bit analog-to-digital converter. The backend is a novel architecture in two stages that permits dead-timeless operation and high-speed readout with very low latency. A slow controller provides an interface for all on-chip programmable functions. This chip has been fabricated in the 0.25um TSMC process. All functionality including the analog front-end, the digital back-end, and the slow controller has been verified experimentally.

  4. Studies of MaPMTs with beetle-chip read-out

    CERN Document Server

    Muheim, F

    2005-01-01

    We have evaluated the 64-channel Multianode Photo-Multiplier (MaPMT) with 8-stage dynodes for the LHCb RICH detectors. With a Beetle1.2 chip to read-out the MaPMT, we have demonstrated that the MaPMT performance is as expected using particle beams and LED light sources. We have also measured the pulse shape from 12-stage dynode MaPMTs, read out with the Beetle1.2-MA0 chip.

  5. Studies of MaPMTs with beetle-chip read-out

    CERN Document Server

    Muheim, F

    2005-01-01

    We have evaluated the 64-channel Multianode Photo-Multiplier (MaPMT) with 8-stage dynodes for the LHCb RICH detectors. With a Beetle 1.2 chip to read-out the MaPMT, we have demonstrated that the MaPMT performance is as expected using particle beams and LED light sources. We have also measured the pulse shape from 12-stage dynode MaPMTs, read out with the Beetle 1.2-MA0 chip.

  6. Preliminary validation results of an ASIC for the readout and control of near-infrared large array detectors

    Science.gov (United States)

    Pâhlsson, Philip; Meier, Dirk; Otnes Berge, Hans Kristian; Øya, Petter; Steenari, David; Olsen, Alf; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Talebi, Jahanzad; Azman, Suleyman; Gheorghe, Codin; Ackermann, Jörg; Mæhlum, Gunnar

    2015-06-01

    In this paper we present initial test results of the Near Infrared Readout and Controller ASIC (NIRCA), designed for large area image sensors under contract from the European Space Agency (ESA) and the Norwegian Space Center. The ASIC is designed to read out image sensors based on mercury cadmium telluride (HgCdTe, or MCT) operating down to 77 K. IDEAS has developed, designed and initiated testing of NIRCA with promising results, showing complete functionality of all ASIC sub-components. The ASIC generates programmable digital signals to clock out the contents of an image array and to amplify, digitize and transfer the resulting pixel charge. The digital signals can be programmed into the ASIC during run-time and allows for windowing and custom readout schemes. The clocked out voltages are amplified by programmable gain amplifiers and digitized by 12-bit, 3-Msps successive approximation register (SAR) analogue-to-digital converters (ADC). Digitized data is encoded using 8-bit to 10-bit encoding and transferred over LVDS to the readout system. The ASIC will give European researchers access to high spectral sensitivity, very low noise and radiation hardened readout electronics for astronomy and Earth observation missions operating at 77 K and room temperature. The versatility of the chip makes the architecture a possible candidate for other research areas, or defense or industrial applications that require analog and digital acquisition, voltage regulation, and digital signal generation.

  7. Evaluation of 320x240 pixel LEC GaAs Schottky barrier X-ray imaging arrays, hybridized to CMOS readout circuit based on charge integration

    CERN Document Server

    Irsigler, R; Alverbro, J; Borglind, J; Froejdh, C; Helander, P; Manolopoulos, S; O'Shea, V; Smith, K

    1999-01-01

    320x240 pixels GaAs Schottky barrier detector arrays were fabricated, hybridized to silicon readout circuits, and subsequently evaluated. The detector chip was based on semi-insulating LEC GaAs material. The square shaped pixel detector elements were of the Schottky barrier type and had a pitch of 38 mu m. The GaAs wafers were thinned down prior to the fabrication of the ohmic back contact. After dicing, the chips were indium bump, flip-chip bonded to CMOS readout circuits based on charge integration, and finally evaluated. A bias voltage between 50 and 100 V was sufficient to operate the detector. Results on I-V characteristics, noise behaviour and response to X-ray radiation are presented. Images of various objects and slit patterns were acquired by using a standard dental imaging X-ray source. The work done was a part of the XIMAGE project financed by the European Community (Brite-Euram). (author)

  8. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2007-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  9. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Dulucq, Frédéric; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2009-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  10. Faraday Cup Array Integrated with a Readout IC and Method for Manufacture Thereof

    Science.gov (United States)

    Bower, Christopher A. (Inventor); Hedgepath Gilchrist, Kristin (Inventor); Stoner, Brian R. (Inventor); Temple, Dorota (Inventor)

    2014-01-01

    A detector array and method for making the detector array. The array includes a substrate including a plurality of trenches formed therein, and includes a plurality of collectors electrically isolated from each other, formed on the walls of the trenches, and configured to collect charge particles incident on respective ones of the collectors and to output from said collectors signals indicative of charged particle collection. The array includes a plurality of readout circuits disposed on a side of the substrate opposite openings to the collectors. The readout circuits are configured to read charge collection signals from respective ones of the plurality of collectors.

  11. SPIROC (SiPM Integrated Read-Out Chip): dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    Science.gov (United States)

    Bouchel, M.; Callier, S.; Dulucq, F.; Fleury, J.; Jaeger, J.-J.; de La Taille, C.; Martin-Chassard, G.; Raux, L.

    2011-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC (International Linear Collider) prototype of hadronic calorimeter using Silicon photomultiplier (SiPM) or Multi-Pixel Photon Counters (MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2010. SPIROC is an evolution of FLC-SiPM used for the ILC Analogue HCAL physics prototype. The first prototype of SPIROC was submitted in June 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35 μm SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, dual gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2,000 photoelectron and the time with a 100 ps accurate Time-to-digital Converter (TDC). An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson Analogue-to-digital Converter (ADC) has been embedded to digitize the analogue memory content (time and charge on 2 gains). The data are then stored in a 4 Kbytes RAM. A very complex digital part has been integrated to manage all these features and to transfer the data to the DAQ which is described in Dulucq et al. After an exhaustive description, the extensive measurement results of this new front-end chip are presented.

  12. Multiplexed readout of MMC detector arrays using non-hysteretic rf-SQUIDs

    OpenAIRE

    Kempf, S.; Wegner, M; Gastaldo, L.; Fleischmann, A.; Enss, C.

    2013-01-01

    Metallic magnetic calorimeters (MMCs) are widely used for various experiments in fields ranging from atomic and nuclear physics to x-ray spectroscopy, laboratory astrophysics or material science. Whereas in previous experiments single pixel detectors or small arrays have been used, for future applications large arrays are needed. Therefore, suitable multiplexing techniques for MMC arrays are currently under development. A promising approach for the readout of large arrays is the microwave SQU...

  13. Real-Time Discrete SPAD Array Readout Architecture for Time of Flight PET

    CERN Document Server

    Tétrault, M -A; Boisvert, A; Thibaudeau, C; Dubois, F; Fontaine, R; Pratte, J -F

    2014-01-01

    Single photon avalanche diode (SPAD) arrays have proven themselves as serious candidates for time of flight positron emission tomography (PET). Discrete readout schemes mitigate the low-noise requirements of analog schemes and offer very fine control over threshold levels and timing pickup strategies. A high optical fill factor is paramount to timing performance in such detectors, and consequently space is limited for closely integrated electronics. Nonetheless, a production, daily used PET scanner must minimize bandwidth usage, data volume, data analysis time and power consumption and therefore requires a real-time readout and data processing architecture as close to the detector as possible. We propose a fully digital, embedded real-time readout architecture for SPAD-based detector. The readout circuit is located directly under the SPAD array instead of within or beside it to remove the fill factor versus circuit capabilities tradeoff. The overall real-time engine reduces transmitted data by a factor of 8 i...

  14. A read-out system for the Medipix2 chip capable of 500 frames per second

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, M. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain)]. E-mail: maiorino@ifae.es; Martinez, R. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Pellegrini, G. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Blanchot, G. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Chmeissani, M. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Garcia, J. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Lozano, M. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Puigdengoles, C. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Ullan, M. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain)

    2006-07-01

    High-speed X-ray-imaging acquisition technique is a growing field that can be used to understand microscopic mechanism of different phenomena in biology and material science. IFAE and CNM developed a very high-speed readout system, named DEMAS, for the Medipix2. The system is able to read a single Medipix2 chip through the parallel bus at a rate of 1 kHz.With a duty cycle of 50%, the real sampling speed is 500 frames per second (fps). This implies that 1 ms is allocated to the exposure time and another millisecond is devoted to the read-out of the chip. In such configuration, the raw data throughput is about 500 Mbit/s. For the first time we present examples of acquisition at 500 fps of moving samples with X-rays working in direct capture and photon counting mode.

  15. Production Testing and Quality Assurance of CMS Silicon Microstrip Tracker Readout Chips

    CERN Document Server

    Barrillon, Pierre; Hall, Geoffrey; Leaver, James; Noah, E; Raymond, M; Bisello, Dario; Candelori, Andrea; Kaminski, A; Stefanuti, L; Tessaro, Mario; French, Marcus

    2004-01-01

    The APV25 is the 128 channel CMOS chip developed for readout of the silicon microstrip tracker in the CMS experiment at the CERN Large Hadron Collider. The detector is now under construction and will be the largest silicon microstrip system ever built, with ~200m^2 of silicon sensors. Around 10^5 chips are required to instrument the system, which must operate for about 10 years in a high radiation environment with little or no possibility of microstrip system ever built, with ~200m^2 of silicon sensors. Around 10^5 chips are required to instrument the system, which must operate for about 10 years in a high radiation environment with little or no possibility of assurance of long term performance of the readout electronics, especially verification of radiation tolerance, is highly desirable. This has been achieved by means of automated probe testing of every chip on the silicon wafers from the foundry, followed by studies of sample die to evaluate in more detail properties of the chips which cannot easily be ex...

  16. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    Science.gov (United States)

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-01-01

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively. PMID:27792131

  17. Simulation of an efficiency measurement of the CMS pixel Read-Out Chip at high rates.

    CERN Document Server

    Delcourt, Martin

    2014-01-01

    My summer student project investigates the effects on the efficiency of out-of-sync events during a beam test at Fermilab on pixel detectors for the phase 1 upgrade of the CMS. While the best results of this project came from direct lab measurements, most of my work was focused on the development of a wider simulation to have a better understanding of the behaviour of the read-out chips during the beam test.

  18. Performance of CMS silicon microstrip detectors with the APV6 readout chip

    CERN Document Server

    Meschini, M; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A J; Bagliesi, G; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Bosi, F; Borrello, L; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Buffini, A; Busoni, S; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Civinini, C; Creanza, D; D'Alessandro, R; Da Rold, M; Demaria, N; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Peisert, Anna; Feld, L; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Fürtjes, A; Giassi, A; Giorgi, M A; Giraldo, A; Glessing, B; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; Saint-Koenig, M; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Messineo, A; My, S; Paccagnella, A; Palla, Fabrizio; Pandoulas, D; Papi, A; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Radicci, V; Raffaelli, F; Raymond, M; Santocchia, A; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Skog, K; Starodumov, Andrei; Stavitski, I; Stefanini, G; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Xie, Z; Li Ya Hong; Watts, S; Wittmer, B

    2000-01-01

    We present results obtained with full-size wedge silicon microstrip detectors bonded to APV6 (Raymond et al., Proceedings of the 3rd Workshop on Electronics for LHC Experiments, CERN/LHCC/97-60) readout chips. We used two identical modules, each consisting of two crystals bonded together. One module was irradiated with 1.7*10/sup 14/ neutrons/cm/sup 2/. The detectors have been characterized both in the laboratory and by exposing them to a beam of minimum ionizing particles. The results obtained are a good starting point for the evaluation of the performance of the "ensemble" detector plus readout chip in a version very similar to the final production one. We detected the signal from minimum ionizing particles with a signal-to- noise ratio ranging from 9.3 for the irradiated detector up to 20.5 for the non-irradiated detector, provided the parameters of the readout chips are carefully tuned. (9 refs).

  19. Performance of CMS silicon microstrip detectors with the APV6 readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, M. E-mail: meschini@fi.infn.it; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell' Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; McEvoy, B.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Li Yahong; Watts, S.; Wittmer, B

    2000-06-01

    We present results obtained with full-size wedge silicon microstrip detectors bonded to APV6 (Raymond et al., Proceedings of the 3rd Workshop on Electronics for LHC Experiments, CERN/LHCC/97-60) readout chips. We used two identical modules, each consisting of two crystals bonded together. One module was irradiated with 1.7x10{sup 14} neutrons/cm{sup 2}. The detectors have been characterized both in the laboratory and by exposing them to a beam of minimum ionizing particles. The results obtained are a good starting point for the evaluation of the performance of the 'ensemble' detector plus readout chip in a version very similar to the final production one. We detected the signal from minimum ionizing particles with a signal-to-noise ratio ranging from 9.3 for the irradiated detector up to 20.5 for the non-irradiated detector, provided the parameters of the readout chips are carefully tuned.

  20. Alternative post-processing on a CMOS chip to fabricate a planar microelectrode array.

    Science.gov (United States)

    López-Huerta, Francisco; Herrera-May, Agustín L; Estrada-López, Johan J; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S

    2011-01-01

    We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+ -type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications.

  1. Alternative Post-Processing on a CMOS Chip to Fabricate a Planar Microelectrode Array

    Science.gov (United States)

    López-Huerta, Francisco; Herrera-May, Agustín L.; Estrada-López, Johan J.; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S.

    2011-01-01

    We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+-type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications. PMID:22346681

  2. HEXITEC ASIC-a pixellated readout chip for CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)], E-mail: l.l.jones@stfc.ac.uk; Seller, Paul; Wilson, Matthew; Hardie, Alec [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20x20 pixel ASIC has been developed and manufactured on a standard 0.35 {mu}m CMOS process.

  3. HEXITEC ASIC—a pixellated readout chip for CZT detectors

    Science.gov (United States)

    Jones, Lawrence; Seller, Paul; Wilson, Matthew; Hardie, Alec

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20×20 pixel ASIC has been developed and manufactured on a standard 0.35 μm CMOS process.

  4. Characterizing the Noise Performance of the KPiX ASIC Readout Chip

    Energy Technology Data Exchange (ETDEWEB)

    Carman, Jerome Kyrias; /Cabrillo Coll. /SLAC

    2007-11-07

    AKPiX is a prototype front-end readout chip designed for the Silicon Detector Design Concept for the International Linear Collider (ILC). It is targeted at readout of the outer tracker and the silicon-tungsten calorimeter and is under consideration for the hadronic calorimeter and muon systems. This chip takes advantage of the ILC timing structure by implementing pulsed-power operation to reduce power and cooling requirements and buffered readout to minimize material. Successful implementation of this chip requires optimal noise performance, of which there are two measures. The first is the noise on the output signal, previously measured at 1500e{sup -}, which is much larger than the anticipated 500e{sup -}. The other is the noise on the trigger logic branch, which determines where thresholds must be set in order to eliminate noise hits, thus defining the smallest signals to which the chip can be sensitive. A test procedure has been developed to measure the noise in the trigger branch by scanning across the pedestal in trigger threshold and taking self-triggered data to measure the accept rate at each threshold. This technique measures the integral of the pedestal shape. Shifts in the pedestal mean from injection of known calibration charges are used to normalize the distribution in units of charge. The shape of the pedestal is fit well by a Gaussian, the width of which is determined to be 2480e{sup -}, far in excess of the expected noise. The variation of the noise as a function of several key parameters was studied, but no significant source has been clearly isolated. However, several problems have been identified that are being addressed or are under further investigation. Meanwhile, the techniques developed here will be critical in ultimately verifying the performance goals of the KPiX chip.

  5. CHIP, CHIP, ARRAY! THREE CHIPS FOR POST-GENOMIC RESEARCH

    Science.gov (United States)

    Cambridge Healthtech Institute recently held the 4th installment of their popular "Lab-on-a-Chip" series in Zurich, Switzerland. As usual, it was enthusiastically received and over 225 people attended the 2-1/2 day meeting to see and hear about some of the latest developments an...

  6. A binary readout chip for silicon microstrip detector in proton imaging application

    Science.gov (United States)

    Sipala, V.; Bruzzi, M.; Bondì, M.; Bonanno, D.; Cadeddu, S.; Carpinelli, M.; Cirrone, G. A. P.; Civinini, C.; Cuttone, G.; Lai, A.; Leonora, E.; Lo Presti, D.; Maccioni, G.; Pallotta, S.; Randazzo, N.; Scaringella, M.; Talamonti, C.; Tesi, M.; Vanzi, E.

    2017-01-01

    The mixed-signal PRIMA-chip has been developed for sensitive-position silicon detector in proton imaging application. The chip is based upon the binary readout architecture which, providing fully parallel signal processing, is a good solution for high intensity radiation application. It includes 32-front-end channels with a charge preamplifier, a shaper and a comparator. In order to adjust the comparator thresholds, each channel contains a 8-bit DAC, programmed using an I2C like interface. The PRIMA-chip has been fabricated using the AMS 0.35 μm standard CMOS process and its performances have been tested coupling it to the detectors used in the tracker assembled for the pCT (proton Computed Tomography) apparatus.

  7. A monolithic charge-to-amplitude converter (QAC) chip for fast readout of photomultiplier

    CERN Document Server

    Inaba, S; Takamatsu, K; Inaba, M; Baba, T; Sugonyaev, V P; Melebeck, T; Van Bogget, U

    2000-01-01

    A fast charge-to-amplitude converter (QAC) chip has been developed for the readout electronics of the electromagnetic calorimeter (ECAL) of the COMPASS experiment at CERN SPS. It is fabricated using a new advanced complementary bipolar process from Harris Semiconductor with intrinsic radiation hardness. The new QAC chip performs the conversion of fast current pulses generated by a photomultiplier tube (PMT) into voltage signals. The output voltage of the QAC is directly proportional to the input current signal. The circuit block diagram, main features and characteristics of the chip are described. Simulation curves as well as test results of QAC prototypes are presented. They show excellent performances for the COMPASS experiment as well as for uses in high energy and nuclear physics experiments to manage fast current signals.

  8. Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Yates, S. J. C.; Baryshev, A. M.; Baselmans, J. J. A.; Klein, B.; Guesten, R.

    2009-01-01

    Microwave kinetic inductance detectors have great potential for large, very sensitive detector arrays for use in, for example, submillimeter imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing similar to 1000 s of devi

  9. Test Beam Data Analysis for a Timepix3 Readout Chip

    CERN Document Server

    Williams, Morag

    2016-01-01

    The vertex and tracker detector R&D for a future linear collider (CLICdp) aims at developing new silicon sensor technologies. The EP-LCD group has been helping develop a novel pixel detector chip called the Timepix3 with a very thick active silicon layer (675 μm). This thick detector can be used to reconstruct the track incidence angle using the charge drift-time information. To evaluate the principle, test beam data was taken in October 2015 and June 2016 with the Timepix3 at various angles to the beam. The data was analysed to evaluate the sensors performance in calculating the track incidence angle. The device angle was determined using three methods: the first using the cluster size information, secondly using the timing information, and finally using a multivariate analysis technique. The timing method proved the principle of the Timepix3 track angle measurements but the MVA method was found to give much better results, especially for smaller angles, than the other two methods and requires fewer cal...

  10. A Zinc Oxide Nanorod Ammonia Microsensor Integrated with a Readout Circuit on-a-Chip

    Directory of Open Access Journals (Sweden)

    Chyan-Chyi Wu

    2011-11-01

    Full Text Available A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 mm complementary metal oxide semiconductor (CMOS process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  11. A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip.

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  12. A Zinc Oxide Nanorod Ammonia Microsensor Integrated with a Readout Circuit on-a-Chip

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature. PMID:22247656

  13. Reusable conductimetric array of interdigitated microelectrodes for the readout of low-density microarrays.

    Science.gov (United States)

    Mallén, Maria; Díaz-González, María; Bonilla, Diana; Salvador, Juan P; Marco, María P; Baldi, Antoni; Fernández-Sánchez, César

    2014-06-17

    Low-density protein microarrays are emerging tools in diagnostics whose deployment could be primarily limited by the cost of fluorescence detection schemes. This paper describes an electrical readout system of microarrays comprising an array of gold interdigitated microelectrodes and an array of polydimethylsiloxane microwells, which enabled multiplexed detection of up to thirty six biological events on the same substrate. Similarly to fluorescent readout counterparts, the microarray can be developed on disposable glass slide substrates. However, unlike them, the presented approach is compact and requires a simple and inexpensive instrumentation. The system makes use of urease labeled affinity reagents for developing the microarrays and is based on detection of conductivity changes taking place when ionic species are generated in solution due to the catalytic hydrolysis of urea. The use of a polydimethylsiloxane microwell array facilitates the positioning of the measurement solution on every spot of the microarray. Also, it ensures the liquid tightness and isolation from the surrounding ones during the microarray readout process, thereby avoiding evaporation and chemical cross-talk effects that were shown to affect the sensitivity and reliability of the system. The performance of the system is demonstrated by carrying out the readout of a microarray for boldenone anabolic androgenic steroid hormone. Analytical results are comparable to those obtained by fluorescent scanner detection approaches. The estimated detection limit is 4.0 ng mL(-1), this being below the threshold value set by the World Anti-Doping Agency and the European Community.

  14. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors

    Directory of Open Access Journals (Sweden)

    Kaiming Nie

    2016-01-01

    Full Text Available This paper presents a full parallel event driven readout method which is implemented in an area array single-photon avalanche diode (SPAD image sensor for high-speed fluorescence lifetime imaging microscopy (FLIM. The sensor only records and reads out effective time and position information by adopting full parallel event driven readout method, aiming at reducing the amount of data. The image sensor includes four 8 × 8 pixel arrays. In each array, four time-to-digital converters (TDCs are used to quantize the time of photons’ arrival, and two address record modules are used to record the column and row information. In this work, Monte Carlo simulations were performed in Matlab in terms of the pile-up effect induced by the readout method. The sensor’s resolution is 16 × 16. The time resolution of TDCs is 97.6 ps and the quantization range is 100 ns. The readout frame rate is 10 Mfps, and the maximum imaging frame rate is 100 fps. The chip’s output bandwidth is 720 MHz with an average power of 15 mW. The lifetime resolvability range is 5–20 ns, and the average error of estimated fluorescence lifetimes is below 1% by employing CMM to estimate lifetimes.

  15. Multiplexed Readout for 1000-pixel Arrays of Microwave Kinetic Inductance Detectors

    CERN Document Server

    van Rantwijk, Joris; van Loon, Dennis; Yates, Stephen; Baryshev, Andrey; Baselmans, Jochem

    2015-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are the most attractive radiation detectors for far-infrared and sub-mm astronomy: They combine ultimate sensitivity with the possibility to create very large detector arrays, in excess of 10 000 pixels. This is possible by reading-out the arrays using RF frequency division multiplexing, which allows multiplexing ratios in excess of 1000 pixels per readout line. We describe a novel readout system for large arrays of MKIDs, operating in a 2 GHz band in the 4-8 GHz range. The readout, which is a combination of a digital front- and back-end and an analog up- and down-converter system, can read out up to 4000 detectors simultaneously with 1 kHz datarate. The system achieves a readout noise power spectral density of -98 dBc/Hz while reading 1000 carriers simultaneously, which scales linear with the number of carriers. We demonstrate that 4000 state-of-the-art Aluminium-NbTiN MKIDs can be read out without deteriorating their intrinsic performance.

  16. Improved Circuits with Capacitive Feedback for Readout Resistive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Óscar Oballe-Peinado

    2016-01-01

    Full Text Available One of the most suitable ways of distributing a resistive sensor array for reading is an array with M rows and N columns. This allows reduced wiring and a certain degree of parallelism in the implementation, although it also introduces crosstalk effects. Several types of circuits can carry out the analogue-digital conversion of this type of sensors. This article focuses on the use of operational amplifiers with capacitive feedback and FPGAs for this task. Specifically, modifications of a previously reported circuit are proposed to reduce the errors due to the non-idealities of the amplifiers and the I/O drivers of the FPGA. Moreover, calibration algorithms are derived from the analysis of the proposed circuitry to reduce the crosstalk error and improve the accuracy. Finally, the performances of the proposals is evaluated experimentally on an array of resistors and for different ranges.

  17. LHCb - SALT, a dedicated readout chip for strip detectors in the LHCb Upgrade experiment

    CERN Multimedia

    Swientek, Krzysztof Piotr

    2015-01-01

    Silicon strip detectors in the upgraded Tracker of LHCb experiment will require a new readout 128-channel ASIC called SALT. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of analogue front-end and ultra-low power ($<$0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. A prototype of first 8-channel version of SALT chip, comprising all important functionalities, was submitted. Its design and possibly first tests results will be presented.

  18. Cool Timepix – Electronic noise of the Timepix readout chip down to −125 °C

    Energy Technology Data Exchange (ETDEWEB)

    Schön, R., E-mail: rolfs@nikhef.nl; Alfonsi, M.; Bakel, N. van; Beuzekom, M. van; Koffeman, E.

    2015-01-21

    The Timepix readout chip with its 65k pixels on a sensitive area of 14 mm×14 mm provides a fine spatial resolution for particle tracking or medical imaging. We explore the operation of Timepix in a dual-phase xenon environment (around −110 °C). Used in dual-phase xenon time projection chambers, e.g. for dark matter search experiments, the readout must have a sufficiently low detection limit for small energy deposits. We measured the electronic pixel noise of three bare Timepix chips. For the first time Timepix readout chips were cooled to temperatures as low as −125 °C. In this work, we present the results of analysing noise transition curves recorded while applying a well-defined charge to the pixel's input. The electronic noise reduces to an average of 99e{sup −}, a reduction of 23% compared to operation at room temperature.

  19. Analyses of test beam data for the ATLAS upgrade readout chip (ABC130)

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, Richard [DESY, Hamburg (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    As part of the ATLAS phase II upgrade it is planned to replace the current tracker with an all silicon tracker. The outer part of the new tracker will consist of silicon strip detectors. For the readout of the strip detector a new Analog to Binary Converter chip (ABC130) was designed. The chip is processed in the 130 nm technology. In laboratory measurements the preamplifier of the new ABC130 showed a significant lower gain than expected. From the measurements in the laboratory it was not possible to distinguish if the malfunction is in the preamplifier or in the test circuit. Therefore an unbiased test was mandatory. Among other measurements, one was a test beam campaign at the Stanford Linear Accelerator Collider (SLAC). The result of measurement is shown in the presentation.

  20. First measurements on Inner Tracker silicon prototype sensors using the BEETLE v1.1 readout chip

    CERN Document Server

    Glebe, T; Pugatch, V; Schmelling, M; Lehner, F; Sievers, P; Steinkamp, O; Straumann, U; Vollahrdt, A; Ziegler, M

    2002-01-01

    Inner Tracker silicon prototype sensors were connected to the BEETLE v1.1 readout chip and evaluated in a test beam, performed at the X7 facility in October 2001. The main aim of this test was to integrate for the first time different components (BEETLE chip, ODE prototype board) of the readout chain into a running system. Noise characteristics and pulse shape were investigated in the test beam and in a laboratory test setup in Zuerich. We also present measurements of the S/N-ratio and efficiency.

  1. Code-division-multiplexed readout of large arrays of TES microcalorimeters

    Science.gov (United States)

    Morgan, K. M.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.

    2016-09-01

    Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray microcalorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code-division multiplexing circuit based on superconducting quantum interference device (SQUID) amplifiers. The best detector has energy resolution of 2.28 ± 0.12 eV FWHM at 5.9 keV and the array has mean energy resolution of 2.77 ± 0.02 eV over 30 working sensors. The readout channels are sampled sequentially at 160 ns/row, for an effective sampling rate of 5.12 μs/channel. The SQUID amplifiers have a measured flux noise of 0.17 μΦ0/√Hz (non-multiplexed, referred to the first stage SQUID). The multiplexed noise level and signal slew rate are sufficient to allow readout of more than 40 pixels per column, making CDM compatible with requirements outlined for future space missions. Additionally, because the modulated data from the 32 SQUID readout channels provide information on each X-ray event at the row rate, our CDM architecture allows determination of the arrival time of an X-ray event to within 275 ns FWHM with potential benefits in experiments that require detection of near-coincident events.

  2. Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades

    CERN Document Server

    Garcia-Sciveres, Mauricio

    2016-01-01

    A pixel readout test chip called FE65-P2 has been fabricated on 65 nm CMOS technology. FE65-P2 contains a matrix of 64 x 64 pixels on 50 micron by 50 micron pitch, designed to read out a bump bonded sensor. The goals of FE65-P2 are to demonstrate excellent analog performance isolated from digital activity well enough to achieve 500 electron stable threshold, be radiation hard to at least 500 Mrad, and prove the novel concept of isolated analog front ends embedded in a flat digital design, dubbed “analog islands in a digital sea”. Experience from FE65-P2 and hybrid assemblies will be applied to the design for a large format readout chip, called RD53A, to be produced in a wafer run in early 2017 by the RD53 collaboration. We review the case for 65 nm technology and report on threshold stability test results for the FE65-P2.

  3. COLIBRI: partial camera readout and sliding trigger for the Cherenkov Telescope Array CTA

    Science.gov (United States)

    Naumann, C. L.; Tejedor, L. A.; Martínez, G.

    2013-06-01

    Plans for the future Cherenkov telescope array CTA include replacing the monolithic camera designs used in H.E.S.S. and MAGIC-I by one that is built up from a number of identical segments. These so-called clusters will be relatively autonomous, each containing its own triggering and readout hardware. While this choice was made for reasons of flexibility and ease of manufacture and maintenance, such a concept with semi-independent sub-units lends itself quite naturally to the possibility of new, and more flexible, readout modes. In all previously-used concepts, triggering and readout of the camera is centralised, with a single camera trigger per event that starts the readout of all pixels in the camera at the same time and within the same integration time window. The limitations of such a trigger system can reduce the performance of a large array such as CTA, due to the huge amount of useless data created by night-sky background if trigger thresholds are set low enough to achieve the desired 20 GeV energy threshold, and to image losses at high energies due to the rigid readout window. In this study, an alternative concept (``COLIBRI'' = Concept for an Optimised Local Image Building and Readout Infrastructure) is presented, where only those parts of the camera which are likely to actually contain image data (usually a small percentage of the total pixels) are read out. This leads to a significant reduction of the expected data rate and the dead-times incurred in the camera. Furthermore, the quasi-independence of the individual clusters can be used to read different parts of the camera at slightly different times, thus allowing the readout to follow the slow development of the shower image across the camera field of view. This concept of flexible, partial camera readout is presented in the following, together with a description of Monte-Carlo studies performed to evaluate its performance as well as a hardware implementation proposed for CTA.

  4. Multiplexed readout of MMC detector arrays using non-hysteretic rf-SQUIDs

    CERN Document Server

    Kempf, S; Gastaldo, L; Fleischmann, A; Enss, C

    2013-01-01

    Metallic magnetic calorimeters (MMCs) are widely used for various experiments in fields ranging from atomic and nuclear physics to x-ray spectroscopy, laboratory astrophysics or material science. Whereas in previous experiments single pixel detectors or small arrays have been used, for future applications large arrays are needed. Therefore, suitable multiplexing techniques for MMC arrays are currently under development. A promising approach for the readout of large arrays is the microwave SQUID multiplexer that operates in the frequency domain and that employs non-hysteretic rf-SQUIDs to transduce the detector signals into a frequency shift of high $Q$ resonators which can be monitored by using standard microwave measurement techniques. In this paper we discuss the design and the expected performance of a recently developed and fabricated 64 pixel detector array with integrated microwave SQUID multiplexer. First experimental data were obtained characterizing dc-SQUIDs with virtually identical washer design.

  5. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C., E-mail: christian.irmler@oeaw.ac.at [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kah, D.H.; Kang, K.H. [Kyungpook National University, Department of Physics, 1370 Sankyuk Dong, Buk Gu, Daegu 702-701 (Korea, Republic of); Rao, K.K. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Kato, E. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Mohanty, G.B. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Negishi, K. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Onuki, Y.; Shimizu, N. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-12-21

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO{sub 2} system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules.

  6. Multiplexed Readout of MMC Detector Arrays Using Non-hysteretic rf-SQUIDs

    Science.gov (United States)

    Kempf, S.; Wegner, M.; Gastaldo, L.; Fleischmann, A.; Enss, C.

    2014-08-01

    Metallic magnetic calorimeters (MMCs) are widely used for various experiments in fields ranging from atomic and nuclear physics to X-ray spectroscopy, laboratory astrophysics or material science. Whereas in previous experiments single pixel detectors or small arrays have been used, for future applications large arrays are needed. Therefore, suitable multiplexing techniques for MMC arrays are currently under development. A promising approach for the readout of large arrays is the microwave SQUID multiplexer that employs non-hysteretic rf-SQUIDs to create a frequency shift of high resonators that is in accordance with the detector signal and that can be monitored by using standard microwave measurement techniques. In this paper we discuss the design of a recently developed and fabricated 64 pixel detector array with integrated microwave SQUID multiplexer that was produced to test the suitability of this readout technique. The characterization of dc-SQUIDs with virtually identical washer design compared to the rf-SQUIDs of the SQUID multiplexer revealed that the crucial SQUID parameters such as the critical current of the Josephson junctions or the washer inductance are close to the design values and anticipates a successful operation of the SQUID multiplexer.

  7. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    Energy Technology Data Exchange (ETDEWEB)

    Kahle, Duncan [NASA, Goddard Space Flight Center, Detector Systems Branch, Greenbelt, MD 20771 (United States); Aslam, Shahid, E-mail: shahid.aslam-1@nasa.gov [NASA, Goddard Space Flight Center, Planetary Systems Laboratory, Greenbelt, MD 20771 (United States); Herrero, Federico A.; Waczynski, Augustyn [NASA, Goddard Space Flight Center, Detector Systems Branch, Greenbelt, MD 20771 (United States)

    2016-09-11

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  8. New CMOS readout circuit with background suppression and CDS for infrared focal plane array applications

    Institute of Scientific and Technical Information of China (English)

    LI Xin-yi; ZHAO Yi-qiang; YAO Su-ying

    2009-01-01

    A high injection, large dynamic range, stable detector bias, small area and low power consumption CMOS readout circuit with background current suppression and correlated double sampling (CDS) for a high-resolution infrared focal plane array applications is proposed. The detector bias error in this structure is less than 0.1 mV. The input resistance is ideally zero, which is important to obtain high injection efficiency. Unit-cell occupies 10 μm × 15 μm area and consumes less than 0.4 mW power. Charge storage capacity is 3 × 108 electrons. The function and performance of the proposed readout circuit have been verified by experimental results.

  9. Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    CERN Document Server

    Albert, J; Alimonti, Gianluca; Allport, Phil; Altenheiner, Silke; Ancu, Lucian; Andreazza, Attilio; Arguin, Jean-Francois; Arutinov, David; Backhaus, Malte; Bagolini, Alvise; Ballansat, Jacques; Barbero, Marlon; Barbier, Gérard; Bates, Richard; Battistin, Michele; Baudin, Patrick; Beau, Tristan; Beccherle, Roberto; Beck, Hans Peter; Benoit, Mathieu; Bensinger, Jim; Bomben, Marco; Borri, Marcello; Boscardin, Maurizio; Botelho Direito, Jose Antonio; Bousson, Nicolas; Boyd, George Russell Jr; Breugnon, Patrick; Bruni, Graziano; Bruschi, Marco; Buchholz, Peter; Buttar, Craig; Cadoux, Franck; Calderini, Giovanni; Caminada, Leah; Capeans, Mar; Casse, Gianluigi; Catinaccio, Andrea; Cavalli-Sforza, Matteo; Chauveau, Jacques; Chu, Ming-Lee; Ciapetti, Marco; Cindro, Vladimir; Citterio, Mauro; Clark, Allan; Cobal, Marina; Coelli, Simone; Colijn, Auke-Pieter; Colin, Daly; Collot, Johann; Crespo-Lopez, Olivier; Dalla Betta, Gian-Franco; Darbo, Giovanni; DaVia, Cinzia; David, Pierre-Yves; Debieux, Stéphane; Delebecque, Pierre; Devetak, Erik; DeWilde, Burton; Di Girolamo, Beniamino; Dinu, Nicoleta; Dittus, Fridolin; Diyakov, Denis; Djama, Fares; Dobos, Daniel Adam; Doonan, Kate; Dopke, Jens; Dorholt, Ole; Dube, Sourabh; Dushkin, Andrey; Dzahini, Daniel; Egorov, Kirill; Ehrmann, Oswin; Elldge, David; Elles, Sabine; Elsing, Markus; Eraud, Ludovic; Ereditato, Antonio; Eyring, Andreas; Falchieri, Davide; Falou, Aboud; Fang, Xiaochao; Fausten, Camille; Favre, Yannick; Ferrere, Didier; Fleta, Celeste; Fleury, Julien; Flick, Tobias; Forshaw, Dean; Fougeron, Denis; Fritzsch, Thomas; Gabrielli, Alessandro; Gaglione, Renaud; Gallrapp, Christian; Gan, K; Garcia-Sciveres, Maurice; Gariano, Giuseppe; Gastaldi, Thibaut; Gemme, Claudia; Gensolen, Fabrice; George, Matthias; Ghislain, Patrick; Giacomini, Gabriele; Gibson, Stephen; Giordani, Mario Paolo; Giugni, Danilo; Gjersdal, Håvard; Glitza, Karl Walter; Gnani, Dario; Godlewski, Jan; Gonella, Laura; Gorelov, Igor; Gorišek, Andrej; Gössling, Claus; Grancagnolo, Sergio; Gray, Heather; Gregor, Ingrid-Maria; Grenier, Philippe; Grinstein, Sebastian; Gromov, Vladimir; Grondin, Denis; Grosse-Knetter, Jörn; Hansen, Thor-Erik; Hansson, Per; Harb, Ali; Hartman, Neal; Hasi, Jasmine; Hegner, Franziska; Heim, Timon; Heinemann, Beate; Hemperek, Tomasz; Hessey, Nigel; Hetmánek, Martin; Hoeferkamp, Martin; Hostachy, Jean-Yves; Hügging, Fabian; Husi, Coralie; Iacobucci, Giuseppe; Idarraga, John; Ikegami, Yoichi; Janoška, Zdenko; Jansen, Jens; Jansen, Luc; Jensen, Frank; Jentzsch, Jennifer; Joseph, John; Kagan, Harris; Karagounis, Michael; Kass, Richard; Kenney, Christopher J; Kersten, Susanne; Kind, Peter; Klingenberg, Reiner; Kluit, Ruud; Kocian, Martin; Koffeman, Els; Kok, Angela; Korchak, Oleksandr; Korolkov, Ilya; Kostyukhin, Vadim; Krieger, Nina; Krüger, Hans; Kruth, Andre; Kugel, Andreas; Kuykendall, William; La Rosa, Alessandro; Lai, Chung-Hang; Lantzsch, Kerstin; Laporte, Didier; Lapsien, Tobias; Lounis, abdenour; Lozano, Manuel; Lu, Yunpeng; Lubatti, Henry; Macchiolo, Anna; Mallik, Usha; Mandić, Igor; Marchand, Denis; Marchiori, Giovanni; Massol, Nicolas; Matthias, Wittgen; Mättig, Peter; Mekkaoui, Abderrazak; Menouni, Mohsine; Menu, Johann; Meroni, Chiara; Mesa, Javier; Micelli, Andrea; Michal, Sébastien; Miglioranzi, Silvia; Mikuž, Marko; Mitsui, Shingo; Monti, Mauro; Moore, J; Morettini, Paolo; Muenstermann, Daniel; Murray, Peyton; Nellist, Clara; Nelson, David J; Nessi, Marzio; Neumann, Manuel; Nisius, Richard; Nordberg, Markus; Nuiry, Francois-Xavier; Oppermann, Hermann; Oriunno, Marco; Padilla, Cristobal; Parker, Sherwood; Pellegrini, Giulio; Pelleriti, Gabriel; Pernegger, Heinz; Piacquadio, Nicola Giacinto; Picazio, Attilio; Pohl, David; Polini, Alessandro; Popule, Jiří; Portell Bueso, Xavier; Povoli, Marco; Puldon, David; Pylypchenko, Yuriy; Quadt, Arnulf; Quirion, David; Ragusa, Francesco; Rambure, Thibaut; Richards, Erik; Ristic, Branislav; Røhne, Ole; Rothermund, Mario; Rovani, Alessandro; Rozanov, Alexandre; Rubinskiy, Igor; Rudolph, Matthew Scott; Rummler, André; Ruscino, Ettore; Salek, David; Salzburger, Andreas; Sandaker, Heidi; Schipper, Jan-David; Schneider, Basil; Schorlemmer, Andre; Schroer, Nicolai; Schwemling, Philippe; Seidel, Sally; Seiden, Abraham; Šícho, Petr; Skubic, Patrick; Sloboda, Michal; Smith, D; Sood, Alex; Spencer, Edwin; Strang, Michael; Stugu, Bjarne; Stupak, John; Su, Dong; Takubo, Yosuke; Tassan, Jean; Teng, Ping-Kun; Terada, Susumu; Todorov, Theodore; Tomášek, Michal; Toms, Konstantin; Travaglini, Riccardo; Trischuk, William; Troncon, Clara; Troska, Georg; Tsiskaridze, Shota; Tsurin, Ilya; Tsybychev, Dmitri; Unno, Yoshinobu; Vacavant, Laurent; Verlaat, Bart; Vianello, Elisa; Vigeolas, Eric; von Kleist, Stephan; Vrba, Václav; Vuillermet, Raphaël; Wang, Rui; Watts, Stephen; Weber, Michele; Weber, Marteen; Weigell, Philipp; Weingarten, Jens; Welch, Steven David; Wenig, Siegfried; Wermes, Norbert; Wiese, Andreas; Wittig, Tobias; Yildizkaya, Tamer; Zeitnitz, Christian; Ziolkowski, Michal; Zivkovic, Vladimir; Zoccoli, Antonio; Zorzi, Nicola; Zwalinski, Lukasz

    2012-01-01

    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.

  10. The FE-I4 Pixel Readout Chip and the IBL Module

    CERN Document Server

    Barbero, Marlon; Backhaus, Malte; Fang, Xiaochao; Gonella, Laura; Hemperek, Tomasz; Karagounis, Michael; Krueger, Hans; Kruth, Andre; Wermes, Norbert; Breugnon, Patrick; Fougeron, Denis; Gensolen, Fabrice; Menouni, Mohsine; Rozanov, Sasha; Caminada, Lea; Dube, Sourabh; Fleury, Julien; Gnani, Dario; Garcia-Sciveres, Maurice; Jensen, Frank; Lu, Yunpeng; Mekkaoui, Abderrezak; Gromov, Vladimir; Kluit, Ruud; Schipper, Jan David; Zivkovic, Vladimir; Grosse-Knetter, Joern; Weingarten; Kocian, Martin

    2011-01-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the “Insertable B-Layer” project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on test results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.

  11. SALT, a dedicated readout chip for high precision tracking silicon strip detectors at the LHCb Upgrade

    Science.gov (United States)

    Bugiel, Sz.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kuczynska, M.; Moron, J.; Swientek, K.; Szumlak, T.

    2016-02-01

    The Upstream Tracker (UT) silicon strip detector, one of the central parts of the tracker system of the modernised LHCb experiment, will use a new 128-channel readout ASIC called SALT. It will extract and digitise analogue signals from the UT sensors, perform digital signal processing and transmit a serial output data. The SALT is being designed in CMOS 130 nm process and uses a novel architecture comprising of analog front-end and fast (40 MSps) ultra-low power (designed, fabricated and tested. A prototype of an 8-channel version of the SALT chip, comprising all important functionalities was also designed and fabricated. The architecture and design of the SALT, together with the selected preliminary tests results, are presented.

  12. The FE-I4 Pixel Readout Chip and the IBL Module

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Marlon; Arutinov, David; Backhaus, Malte; Fang, Xiao-Chao; Gonella, Laura; Hemperek, Tomasz; Karagounis, Michael; Hans, Kruger; Kruth, Andre; Wermes, Norbert; /Bonn U.; Breugnon, Patrick; Fougeron, Denis; Gensolen, Fabrice; Menouni, Mohsine; Rozanov, Alexander; /Marseille, CPPM; Beccherle, Roberto; Darbo, Giovanni; /INFN, Genoa; Caminada, Lea; Dube, Sourabh; Fleury, Julien; Gnani, Dario; /LBL, Berkeley /NIKHEF, Amsterdam /Gottingen U. /SLAC

    2012-05-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on test results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.

  13. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    CERN Document Server

    AUTHOR|(SzGeCERN)696050; Garelli, N.; Herbst, R.T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A.J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Bartoldus, R.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambe...

  14. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    CERN Document Server

    ATLAS CSC Collaboration; The ATLAS collaboration

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgrade during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chamber...

  15. The PASTA chip. A free-running readout ASIC for silicon strip sensors in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, Andre; Stockmanns, Tobias; Ritman, James [Forschungszentrum Juelich GmbH, Juelich (Germany); Rivetti, Angelo [INFN Sezione di Torino, Torino (Italy); Collaboration: PANDA-Collaboration

    2015-07-01

    The PANDA experiment is a multi purpose detector, investigating hadron physics in the charm quark mass regime. It is one of the main experiments at the future FAIR accelerator facility, using anti pp annihilations from a 1.5-15 GeV/c anti-proton beam. Because of the broad physics spectrum and the similarity of event and background signals, PANDA does an event selection based on the complete raw data of the detector. The innermost of PANDA's sub-systems is the Micro Vertex Detector (MVD), consisting of silicon pixel and strip sensors. The latter will be read out by a specialized, free-running readout front-end called PANDA Strip ASIC (PASTA). It has to face a high event rate of up to 40 kHz/ch in an radiation-intense environment. To fulfill the MVD's requirements, it has to give accurate timing information to incoming events (<10 ns) and determine the collected charge with an 8-bit precision. All this has to be done with a very low power design (<4 mW/ch) on a small footprint with less than 21 mm{sup 2} and 60 μm input pitch for 64 channels per chip. Therefore, a simple, time-based readout approach with two independent thresholds is chosen. In this talk, the conceptual design of the full front-end and some aspects of the digital part are presented.

  16. Cobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip

    Science.gov (United States)

    Dai, Ching-Liang; Chen, Yen-Chi; Wu, Chyan-Chyi; Kuo, Chin-Fu

    2010-01-01

    The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively. PMID:22294897

  17. Cobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip

    Directory of Open Access Journals (Sweden)

    Ching-Liang Dai

    2010-03-01

    Full Text Available The study presents a micro carbon monoxide (CO sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively.

  18. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Energy Technology Data Exchange (ETDEWEB)

    Claus, R., E-mail: claus@slac.stanford.edu

    2016-07-11

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013–2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  19. An addressable cell array for a platform of biosensor chips

    Science.gov (United States)

    Yang, Seungkyoung; Choi, Soo-hee; Jung, Moon Youn; Song, Kibong; Park, Jeong Won

    2013-05-01

    In order to detect interested matters in fields, various lab-on-a-chips where chemical, physical, or biological sensors are loaded have been developed. eNOSE can be a representative example among them. Because animals can sense 300~1000 different chemicals by olfactory system - smell -, the olfactory system has been spotlighted as new materials in the field of sensing. Those investigations, however, are usually focused on how to detect signals from the olfactory neurons or receptors loaded on chips and enhance sensing efficacy of chips. Therefore, almost of those chips are designed for only one material sensing. Multi-sensing using multi-channels will be needed when the olfactory systems are adopted well on chips. For multiple sensing, we developed an addressable cell array. The chip has 38 cell-chambers arranged in a circle shape and different cell types of thirty eight can be allocated with specific addresses on the chip without any complex valve system. In order to confirm the cell addressing, we loaded EGFP-transfected and empty vector-transfected HEK293a cells into inlets of the cell array in a planned address and those cells were positioned into each chamber by brief aspiration. The arrayed cells were confirmed as a specific pattern through EGFP and nuclei staining. This cell array which can generate address of sensor materials like cells with their own specification is expected to be applied to a platform for a biosensor chip at various sensing fields.

  20. SiPM arrays and miniaturized readout electronics for compact gamma camera

    Science.gov (United States)

    Dinu, N.; Imando, T. Ait; Nagai, A.; Pinot, L.; Puill, V.; Callier, S.; Janvier, B.; Esnault, C.; Verdier, M.-A.; Raux, L.; Vandenbussche, V.; Charon, Y.; Menard, L.

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m2. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm2 sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  1. SiPM arrays and miniaturized readout electronics for compact gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N., E-mail: dinu@lal.in2p3.fr [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Imando, T. Ait; Nagai, A. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Pinot, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Puill, V. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Callier, S. [Omega Microelectronics Group, CNRS, Palaiseau (France); Janvier, B.; Esnault, C.; Verdier, M.-A. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Raux, L. [Omega Microelectronics Group, CNRS, Palaiseau (France); Vandenbussche, V.; Charon, Y.; Menard, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France)

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m{sup 2}. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm{sup 2} sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  2. GEM400: A front-end chip based on capacitor-switch array for pixel-based GEM detector

    Science.gov (United States)

    Li, H. S.; Jiang, X. S.; Liu, G.; Wang, N.; Sheng, H. Y.; Zhuang, B. A.; Zhao, J. W.

    2012-03-01

    The upgrade of Beijing Synchrotron Radiation Facility (BSRF) needs two-dimensional position-sensitive detection equipment to improve the experimental performance. Gas Electron Multiplier (GEM) detector, in particular, pixel-based GEM detector has good application prospects in the domain of synchrotron radiation. The read-out of larger scale pixel-based GEM detector is difficult for the high density of the pixels (PAD for collecting electrons). In order to reduce the number of cables, this paper presents a read-out scheme for pixel-based GEM detector, which is based on System-in-Package technology and ASIC technology. We proposed a circuit structure based on capacitor switch array circuit, and design a chip GEM400, which is a 400 channels ASIC. The proposed circuit can achieve good stability and low power dissipation. The chip is implemented in a 0.35μm CMOS process. The basic functional circuitry in ths chip includes analog switch, analog buffer, voltage amplifier, bandgap and control logic block, and the layout of this chip takes 5mm × 5mm area. The simulation results show that the chip can allow the maximum amount of input charge 70pC on the condition of 100pF external integrator capacitor. Besides, the chip has good channel uniformity (INL is better than 0.1%) and lower power dissipation.

  3. Characterization of edgeless pixel detectors coupled to Medipix2 readout chip

    Science.gov (United States)

    Kalliopuska, Juha; Tlustos, Lukas; Eränen, Simo; Virolainen, Tuula

    2011-08-01

    VTT has developed a straightforward and fast process to fabricate four-side buttable (edgeless) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process relies on advanced ion implantation to activate the edges of the detector instead of using polysilicon. The article characterizes 150 μm thick n-on-n edgeless pixel detector prototypes with a dead layer at the edge below 1 μm. Electrical and radiation response characterization of 1.4×1.4 cm2 n-on-n edgeless detectors has been done by coupling them to the Medipix2 readout chips. The distance of the detector's physical edge from the pixels was either 20 or 50 μm. The leakage current of flip-chip bonded edgeless Medipix2 detector assembles were measured to be ˜90 nA/cm2 and no breakdown was observed below 110 V. Radiation response characterization includes X-ray tube and radiation source responses. The characterization results show that the detector's response at the pixels close to the physical edge of the detector depend dramatically on the pixel-to-edge distance.

  4. Testing System Based on Virtual Instrument for Readout Circuit of Infrared Focal Plane Array

    Institute of Scientific and Technical Information of China (English)

    XUE Lian; MENG Li-ya; YUAN Xiang-hui

    2008-01-01

    Readout integrated circuit(ROIC) is one of the most important components for hybrid-integrated infrared focal plane array(IRFPA). And it should be tested to ensure the product yield before bonding. This paper presents an on-wafer testing system based on Labview for ROIC of IRFPA. The quantitative measurement can be conducted after determining whether there is row crosstalk or not in this system. This low-cost system has the benefits of easy expansion, upgrading, and flexibility, and it has been employed in the testing of several kinds of IRFPA ROICs to measure the parameters of saturated output voltage, non-uniformity, dark noise and dynamic range, etc.

  5. Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance

    CERN Document Server

    Ballabriga, R; Wong, W; Heijne, E; Campbell, M; Llopart, X

    2011-01-01

    Medipix3 is a 256 x 256 channel hybrid pixel detector readout chip working in a single photon counting mode with a new inter-pixel architecture, which aims to improve the energy resolution in pixelated detectors by mitigating the effects of charge sharing between channels. Charges are summed in all 2 x 2 pixel clusters on the chip and a given hit is allocated locally to the pixel summing circuit with the biggest total charge on an event-by-event basis. Each pixel contains also two 12-bit binary counters with programmable depth and overflow control. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are four times greater in area than the readout pixels. In the latter case, event-by-event summing is still possible between the larger pixels. Each pixel has around 1600 transistors and the analog static power consumption is below 15 mu W in the charge summing mode and 9 mu W in the single pixel mode. The chip has been built in an 8-m...

  6. Optical sensitivity non-uniformity analysis and optimization of a tilt optical readout focal plane array

    Science.gov (United States)

    Fu, Jianyu; Shang, Haiping; Shi, Haitao; Li, Zhigang; Ou, Yi; Chen, Dapeng; Zhang, Qingchuan

    2016-02-01

    An optical readout focal plane array (FPA) usually has a differently tilted reflector/absorber at the initial state due to the micromachining technique. The angular deviation of the reflector/absorber has a strong impact on the optical sensitivity non-uniformity, which is a key factor which affects the imaging uniformity. In this study, a theoretical analysis has been developed, and it is found that the stress matching in SiO2-Aluminum (Al) bilayer leg could make a contribution towards reducing the optical sensitivity non-uniformity. Ion implantation of phosphorus (P) has been utilized to control the stress in SiO2 film. By controlling the implantation energy and dose, the stress and stress stability are modified. The optical readout FPA has been successfully fabricated with the stress-control technique based on P+ implantation. It is demonstrated that the gray response non-uniformity of optical readout FPA has decreased from 25.69% to 10.7%.

  7. Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Masuda, Shu; Barrio, Juan Abel; Bigas, Oscar Blanch; Delgado, Carlos; Coromina, Lluís Freixas; Gunji, Shuichi; Hadasch, Daniela; Hatanaka, Kenichiro; Ikeno, Masahiro; Laguna, Jose Maria Illa; Inome, Yusuke; Ishio, Kazuma; Katagiri, Hideaki; Kubo, Hidetoshi; Martínez, Gustavo; Mazin, Daniel; Nakajima, Daisuke; Nakamori, Takeshi; Ohoka, Hideyuki; Paoletti, Riccardo; Ritt, Stefan; Rugliancich, Andrea; Saito, Takayuki; Sulanke, Karl-Heinz; Takeda, Junki; Tanaka, Manobu; Tanigawa, Shunsuke; Tejedor, Luis Ángel; Teshima, Masahiro; Tsuchiya, Yugo; Uchida, Tomohisa; Yamamoto, Tokonatsu

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is required so that the signal integration time can be as short as the Cherenkov light flash duration (a few ns). We have developed a readout board which samples waveforms of seven PMTs per board at a GHz rate. Since a GHz FADC has a high power consumption, leading to large heat dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024 capacitors per channel and can sample the waveform at a GHz rate. Four channels of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors. After a trigger ...

  8. In the photograph, one can see the interconnection from one readout chip to the flexible cable realized with ultrasonic wire bonds (25 microns).

    CERN Multimedia

    Saba, A

    2006-01-01

    2 ladders are connected via a multi layer aluminium polyimide flexible cable with a multi chip module containing several custom designed ASICs. The production of the flexible cable was developed and carrier out at CERN. It provides signal and data lines as well as power to the individual readout chipswith a total thickness of only 220 microns. In the photograph, one can see the interconnection from one readout chip to the flexible cable realized with ultrasonic wire bonds (25 microns).

  9. Study on failure analysis of array chip components in IRFPA

    Science.gov (United States)

    Zhang, Xiaonan; He, Yingjie; Li, Jinping

    2016-10-01

    Infrared focal plane array detector has advantages of strong anti-interference ability and high sensitivity. Its size, weight and power dissipation has been noticeably decreased compared to the conventional infrared imaging system. With the development of the detector manufacture technology and the cost reduction, IRFPA detector has been widely used in the military and commercial fields. Due to the restricting of array chip manufacturing process and material defects, the fault phenomenon such as cracking, bad pixel and abnormal output was showed during the test, which restricts the performance of the infrared detector imaging system, and these effects are gradually intensified with the expanding of the focal plane array size and the shrinking of the pixel size. Based on the analysis of the test results for the infrared detector array chip components, the fault phenomenon was classified. The main cause of the chip component failure is chip cracking, bad pixel and abnormal output. The reason of the failure has been analyzed deeply. According to analyze the mechanism of the failure, a series of measures which contain filtrating materials and optimizing the manufacturing process of array chip components were used to improve the performance of the chip components and the test pass rate, which is used to meet the needs of the detector performance.

  10. Multiplexed readout demonstration of a TES-based detector array in a resistance locked loop

    CERN Document Server

    van der Kuur, Jan; Kiviranta, Mikko; Akamatsu, Hiroki; Khosropanah, Pourya; Hartog, Roland den; Suzuki, Toyoaki; Jackson, Brian

    2015-01-01

    TES-based bolometer and microcalorimeter arrays with thousands of pixels are under development for several space-based and ground-based applications. A linear detector response and low levels of cross talk facilitate the calibration of the instruments. In an effort to improve the properties of TES-based detectors, fixing the TES resistance in a resistance-locked loop (RLL) under optical loading has recently been proposed. Earlier theoretical work on this mode of operation has shown that the detector speed, linearity and dynamic range should improve with respect to voltage biased operation. This paper presents an experimental demonstration of multiplexed readout in this mode of operation in a TES-based detector array with noise equivalent power values (NEP) of $3.5\\cdot 10^{-19} $W/$\\sqrt{\\mathrm{Hz}}$. The measured noise and dynamic properties of the detector in the RLL will be compared with the earlier modelling work. Furthermore, the practical implementation routes for future FDM systems for the readout of ...

  11. Innovative multi-cantilever array sensor system with MOEMS read-out

    Science.gov (United States)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  12. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-05-18

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach's performance with Multisim simulations and actual experiments.

  13. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    Jianfeng Wu

    2016-05-01

    Full Text Available For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments.

  14. Readout of a 176 pixel FDM system for SAFARI TES arrays

    Science.gov (United States)

    Hijmering, R. A.; den Hartog, R.; Ridder, M.; van der Linden, A. J.; van der Kuur, J.; Gao, J. R.; Jackson, B.

    2016-07-01

    In this paper we present the results of our 176-pixel prototype of the FDM readout system for SAFARI, a TES-based focal-plane instrument for the far-IR SPICA mission. We have implemented the knowledge obtained from the detailed study on electrical crosstalk reported previously. The effect of carrier leakage is reduced by a factor two, mutual impedance is reduced to below 1 nH and mutual inductance is removed. The pixels are connected in stages, one quarter of the array half of the array and the full array, to resolve intermediate technical issues. A semi-automated procedure was incorporated to find all optimal settings for all pixels. And as a final step the complete array has been connected and 132 pixels have been read out simultaneously within the frequency range of 1-3.8MHz with an average frequency separation of 16kHz. The noise was found to be detector limited and was not affected by reading out all pixels in a FDM mode. With this result the concept of using FDM for multiplexed bolometer read out for the SAFARI instrument has been demonstrated.

  15. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-12-06

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  16. Spectroscopic measurements with the ATLAS FE-I4 pixel readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, David-Leon; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Wermes, Norbert [Physikalisches Institut der Univeristaet Bonn (Germany)

    2015-07-01

    The ATLAS FE-I4 pixel readout chip is a large (2 x 2 cm{sup 2}) state of the art ASIC used in high energy physics experiments as well as for research and development purposes. While the FE-I4 is optimized for high hit rates it provides very limited charge resolution. Therefore two methods were developed to obtain high resolution single pixel charge spectra with the ATLAS FE-I4. The first method relies on the ability to change the detection threshold in small steps while counting hits from a particle source and has a resolution limited by electronic noise only. The other method uses a FPGA based time-to-digital-converter to digitize the analog charge signal with high precision. The feasibility, performance and challenges of these methods are discussed. First results of sensor characterizations from radioactive sources and test beams with the ATLAS FE-I4 in view of the charge collection efficiency after irradiation are presented.

  17. Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips

    Science.gov (United States)

    Temiz, Yuksel; Lim, Michel; Delamarche, Emmanuel

    2016-03-01

    We report a concept for the simple fabrication of easy-to-use chips for immunoassays in the context of point-of-care diagnostics. The chip concept comprises mainly three features: (1) the efficient integration of reagents using beads functionalized with receptors, (2) the generation of capillary-driven liquid flows without using external pumps, and (3) a high-sensitivity detection of analytes using fluorescence microscopy. We fabricated prototype chips using dry etching of Si wafers. 4.5-μm-diameter beads were integrated into hexagonal arrays by sedimentation and removing the excess using a stream of water. We studied the effect of different parameters and showed that array occupancies from 30% to 50% can be achieved by pipetting a 250 nL droplet of 1% bead solution and allowing the beads sediment for 3 min. Chips with integrated beads were sealed using a 50-μm-thick dry-film resist laminated at 45 °C. Liquids pipetted to loading pads were autonomously pulled by capillary pumps at a rate of 0.35 nL s-1 for about 30 min. We studied ligand-receptor interactions and binding kinetics using time-lapse fluorescence microscopy and demonstrated a 5 pM limit of detection (LOD) for an anti-biotin immunoassay. As a clinically-relevant example, we implemented an immunoassay to detect prostate specific antigen (PSA) and showed an LOD of 108 fM (i.e. 3.6 pg mL-1). While a specific implementation is provided here for the detection of PSA, we believe that combining capillary-driven microfluidics with arrays of single beads and fluorescence readout to be very flexible and sufficiently sensitive for the detection of other clinically-relevant analytes.

  18. A Noble Gas Detector with Electroluminescence Readout based on an Array of APDs

    CERN Document Server

    Bourguille, B; Gil-Botella, I; Lux, T; Palomares, C; Sanchez, F; Santorelli, R

    2015-01-01

    We present the results of the operation of an array of avalanche photodiodes (APDs) for the readout of an electroluminescence detector. The detector contains 24 APDs with a pitch of 15 mm between them allowing energy and position measurements simultaneously. Measurements were performed in xenon (3.8 bar) and argon (4.8 bar) showing a good energy resolution of 5.3% FWHM at 60 keV in xenon and 9.4% in argon respectively. In X-ray energies of 13 could be clearly separated from the pedestals indicating that this kind of technology might be also interesting for dark matter detectors. Following Monte Carlo studies the performance could be improved significantly by reducing the pitch between the sensors.

  19. Fibre Optic Readout of Microcantilever Arrays for Fast Microorganism Growth Detection

    Directory of Open Access Journals (Sweden)

    N. Maloney

    2012-01-01

    Full Text Available We present a fibre-optic-based device for the automated readout of microcantilever arrays for fast microorganism growth detection. We determined the ability of our device to track shifts in resonance frequency due to an increase in mass on the cantilever surface or changes in mechanical stiffness. The resonance frequency response of 7 μm thick agarose-functionalised cantilevers was tracked as humidity levels were varied revealing a mass responsivity of ~51±1 pg/Hz. The resonance response of microcantilevers coated with Aspergillus niger (A. niger spores was monitored for >48 h revealing a growth detection time of >4 h. The growth of mycelium along the cantilevers surface is seen to result in an increase in resonance frequency due to the reinforcement of the cantilever structure. The use of our fibre optic detection technique allows data to be recorded continuously and faster than previously reported.

  20. An Efficient Test Facility For The Cherenkov Telescope Array FlashCam Readout Electronics Production

    CERN Document Server

    Eisenkolb, F; Kalkuhl, C; Pühlhofer, G; Santangelo, A; Schanz, T; Tenzer, C

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, currently under preparation by a world-wide consortium. The FlashCam group is preparing a photomultiplier-based camera for the Medium Size Telescopes of CTA, with a fully digital Readout System (ROS). For the forthcoming mass production of a substantial number of cameras, efficient test routines for all components are currently under development. We report here on a test facility for the ROS components. A test setup and routines have been developed and an early version of that setup has successfully been used to test a significant fraction of the ROS for the FlashCam camera prototype in January 2016. The test setup with its components and interface, as well as first results, are presented here.

  1. Fiber faceplate modulation readout in Bi-material micro-cantilever mirror array imaging system

    Science.gov (United States)

    Hui, Mei; Xia, Zhengzheng; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2016-05-01

    Fiber faceplate modulation was applied to read out the precise actuation of silicon-based, surface micro-fabricated cantilever mirrors array in optical imaging system. The faceplate was made by ordered bundles consisting of as many as ten thousands fibers. The transmission loss of an individual fiber in the bundles was 0.35dB/cm and the cross talk between neighboring fibers in the faceplate was about 15%. Micro-cantilever mirrors array (Focal-Plane Array (FPA)) which composed of two-level bi-material pixels, absorb incident infrared flux and result in a temperature increase. The temperature distribution of incident flux transformed to the deformation distribution in FPA which has a very big difference in coefficients of thermal expansion. FPA plays the roles of target sensing and has the characteristics of high detection sensitivity. Instead of general filter such as knife edge or pinhole, fiber faceplate modulate the beam reflected by the units of FPA. An optical readout signal brings a visible spectrum into pattern recognition system, yielding a visible image on monitor. Thermal images at room temperature have been obtained. The proposed method permits optical axis compact and image noise suppression.

  2. MUSIC: An 8 channel readout ASIC for SiPM arrays

    Science.gov (United States)

    Gómez, Sergio; Gascón, David; Fernández, Gerard; Sanuy, Andreu; Mauricio, Joan; Graciani, Ricardo; Sanchez, David

    2016-04-01

    This paper presents an 8 channel ASIC for SiPM anode readout based on a novel low input impedance current conveyor (under patent1). This Multiple Use SiPM Integrated Circuit (MUSIC) has been designed to serve several purposes, including, for instance, the readout of SiPM arrays for some of the Cherenkov Telescope Array (CTA) cameras. The current division scheme at the very front end part of the circuit splits the input current into differently scaled copies which are connected to independent current mirrors. The circuit contains a tunable pole zero cancellation of the SiPM recovery time constant to deal with sensors from different manufacturers. Decay times up to 100 ns are supported covering most of the available SiPM devices in the market. MUSIC offers three main features: (1) differential output of the sum of the individual input channels; (2) 8 individual single ended analog outputs and; (3) 8 individual binary outputs. The digital outputs encode the amount of collected charge in the duration of the digital signal using a time over threshold technique. For each individual channel, the user must select the analog or digital output. Each functionality, the signal sum and the 8 A/D outputs, include a selectable dual-gain configuration. Moreover, the signal sum implements dual-gain output providing a 15 bit dynamic range. Full die simulation results of the MUSIC designed using AMS 0.35 µm SiGe technology are presented: total die size of 9 mm2, 500 MHz bandwidth for channel sum and 150 MHz bandwidth for A/D channels, low input impedance (≍32 Ω), single photon output pulse width at half maximum (FWHM) between 5 and 10 ns and with a power consumption of ≍ 30 mW/ch plus ≍ 200 mW for the 8 ch sum. Encapsulated prototype samples of the MUSIC are expected by March 2016.

  3. A readout integrated circuit based on DBI-CTIA and cyclic ADC for MEMS-array-based focal plane

    Science.gov (United States)

    Miao, Liu; Dong, Wu; Zheyao, Wang

    2016-11-01

    A readout integrated circuit (ROIC) for a MEMS (microelectromechanical system)-array-based focal plane (MAFP) intended for imaging applications is presented. The ROIC incorporates current sources for diode detectors, scanners, timing sequence controllers, differential buffered injection-capacitive trans-impedance amplifier (DBI-CTIA) and 10-bit cyclic ADCs, and is integrated with MAFP using 3-D integration technology. A small-signal equivalent model is built to include thermal detectors into circuit simulations. The biasing current is optimized in terms of signal-to-noise ratio and power consumption. Layout design is tailored to fulfill the requirements of 3-D integration and to adapt to the size of MAFP elements, with not all but only the 2 bottom metal layers to complete nearly all the interconnections in DBI-CTIA and ADC in a 40 μm wide column. Experimental chips are designed and fabricated in a 0.35 μm CMOS mixed signal process, and verified in a code density test of which the results indicate a (0.29/-0.31) LSB differential nonlinearity (DNL) and a (0.61/-0.45) LSB integral nonlinearity (INL). Spectrum analysis shows that the effective number of bits (ENOB) is 9.09. The ROIC consumes 248 mW of power at most if not to cut off quiescent current paths when not needed. Project supported by by National Natural Science Foundation of China (No. 61271130), the Beijing Municipal Science and Tech Project (No. D13110100290000), the Tsinghua University Initiative Scientific Research Program (No. 20131089225), and the Shenzhen Science and Technology Development Fund (No. CXZZ20130322170740736).

  4. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  5. Emulation and Calibration of the SALT Read-out Chip for the Upstream Tracker for Modernised LHCb Detector

    CERN Document Server

    Dendek, Adam

    2015-01-01

    The LHCb is one of the four major experiments currently operating at CERN. The main reason for constructing the LHCb forward spectrometer was a precise measurement of the CP violation in heavy quarks section as well as search for a New Physics. To obtain interesting results, the LHCb is mainly focused on study of B meson decays. Unfortunately, due to the present data acquisition architecture, the LHCb experiment is statistically limited for collecting such events. This fact led the LHCb Collaboration to decide to perform far-reaching upgrade. Key part of this upgrade will be replacement of the TT detector. To perform this action, it was requited to design new tracking detector with entirely new front-end electronics. This detector will be called the Upstream Tracker (UT) and the read-out chip — SALT. This note presents an overall discussion on SALT chip. In particular, the emulation process of the SALT data preformed via the software written by the author.

  6. Readout electronic for multichannel detectors

    CERN Document Server

    Kulibaba, V I; Naumov, S V

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.

  7. High-efficiency integrated readout circuit for single photon avalanche diode arrays in fluorescence lifetime imaging

    Science.gov (United States)

    Acconcia, G.; Cominelli, A.; Rech, I.; Ghioni, M.

    2016-11-01

    In recent years, lifetime measurements by means of the Time Correlated Single Photon Counting (TCSPC) technique have led to a significant breakthrough in medical and biological fields. Unfortunately, the many advantages of TCSPC-based approaches come along with the major drawback of a relatively long acquisition time. The exploitation of multiple channels in parallel could in principle mitigate this issue, and at the same time it opens the way to a multi-parameter analysis of the optical signals, e.g., as a function of wavelength or spatial coordinates. The TCSPC multichannel solutions proposed so far, though, suffer from a tradeoff between number of channels and performance, and the overall measurement speed has not been increased according to the number of channels, thus reducing the advantages of having a multichannel system. In this paper, we present a novel readout architecture for bi-dimensional, high-density Single Photon Avalanche Diode (SPAD) arrays, specifically designed to maximize the throughput of the whole system and able to guarantee an efficient use of resources. The core of the system is a routing logic that can provide a dynamic connection between a large number of SPAD detectors and a much lower number of high-performance acquisition channels. A key feature of our smart router is its ability to guarantee high efficiency under any operating condition.

  8. High-efficiency integrated readout circuit for single photon avalanche diode arrays in fluorescence lifetime imaging.

    Science.gov (United States)

    Acconcia, G; Cominelli, A; Rech, I; Ghioni, M

    2016-11-01

    In recent years, lifetime measurements by means of the Time Correlated Single Photon Counting (TCSPC) technique have led to a significant breakthrough in medical and biological fields. Unfortunately, the many advantages of TCSPC-based approaches come along with the major drawback of a relatively long acquisition time. The exploitation of multiple channels in parallel could in principle mitigate this issue, and at the same time it opens the way to a multi-parameter analysis of the optical signals, e.g., as a function of wavelength or spatial coordinates. The TCSPC multichannel solutions proposed so far, though, suffer from a tradeoff between number of channels and performance, and the overall measurement speed has not been increased according to the number of channels, thus reducing the advantages of having a multichannel system. In this paper, we present a novel readout architecture for bi-dimensional, high-density Single Photon Avalanche Diode (SPAD) arrays, specifically designed to maximize the throughput of the whole system and able to guarantee an efficient use of resources. The core of the system is a routing logic that can provide a dynamic connection between a large number of SPAD detectors and a much lower number of high-performance acquisition channels. A key feature of our smart router is its ability to guarantee high efficiency under any operating condition.

  9. Design of the low area monotonic trim DAC in 40 nm CMOS technology for pixel readout chips

    Science.gov (United States)

    Drozd, A.; Szczygiel, R.; Maj, P.; Satlawa, T.; Grybos, P.

    2014-12-01

    The recent research in hybrid pixel detectors working in single photon counting mode focuses on nanometer or 3D technologies which allow making pixels smaller and implementing more complex solutions in each of the pixels. Usually single pixel in readout electronics for X-ray detection comprises of charge amplifier, shaper and discriminator that allow classification of events occurring at the detector as true or false hits by comparing amplitude of the signal obtained with threshold voltage, which minimizes the influence of noise effects. However, making the pixel size smaller often causes problems with pixel to pixel uniformity and additional effects like charge sharing become more visible. To improve channel-to-channel uniformity or implement an algorithm for charge sharing effect minimization, small area trimming DACs working in each pixel independently are necessary. However, meeting the requirement of small area often results in poor linearity and even non-monotonicity. In this paper we present a novel low-area thermometer coded 6-bit DAC implemented in 40 nm CMOS technology. Monte Carlo simulations were performed on the described design proving that under all conditions designed DAC is inherently monotonic. Presented DAC was implemented in the prototype readout chip with 432 pixels working in single photon counting mode, with two trimming DACs in each pixel. Each DAC occupies the area of 8 μm × 18.5 μm. Measurements and chips' tests were performed to obtain reliable statistical results.

  10. Digital readout integrated circuit (DROIC) implementing time delay and integration (TDI) for scanning type infrared focal plane arrays (IRFPAs)

    Science.gov (United States)

    Ceylan, Omer; Shafique, Atia; Burak, Abdurrahman; Caliskan, Can; Yazici, Melik; Abbasi, Shahbaz; Galioglu, Arman; Kayahan, Huseyin; Gurbuz, Yasar

    2016-11-01

    This paper presents a digital readout integrated circuit (DROIC) implementing time delay and integration (TDI) for scanning type infrared focal plane arrays (IRFPAs) with a charge handling capacity of 44.8 Me- while achieving quantization noise of 198 e- and power consumption of 14.35 mW. Conventional pulse frequency modulation (PFM) method is supported by a single slope ramp ADC technique to have a very low quantization noise together with a low power consumption. The proposed digital TDI ROIC converts the photocurrent into digital domain in two phases; in the first phase, most significant bits (MSBs) are generated by the conventional PFM technique in the charge domain, while in the second phase least significant bits (LSBs) are generated by a single slope ramp ADC in the time domain. A 90 × 8 prototype has been fabricated and verified, showing a significantly improved signal-to-noise ratio (SNR) of 51 dB for low illumination levels (280,000 collected electrons), which is attributed to the TDI implementation method and very low quantization noise due to the single slope ADC implemented for LSBs. Proposed digital TDI ROIC proves the benefit of digital readouts for scanning arrays enabling smaller pixel pitches, better SNR for the low illumination levels and lower power consumption compared to analog TDI readouts for scanning arrays.

  11. Development of Microreactor Array Chip-Based Measurement System for Massively Parallel Analysis of Enzymatic Activity

    Science.gov (United States)

    Hosoi, Yosuke; Akagi, Takanori; Ichiki, Takanori

    Microarray chip technology such as DNA chips, peptide chips and protein chips is one of the promising approaches for achieving high-throughput screening (HTS) of biomolecule function since it has great advantages in feasibility of automated information processing due to one-to-one indexing between array position and molecular function as well as massively parallel sample analysis as a benefit of down-sizing and large-scale integration. Mostly, however, the function that can be evaluated by such microarray chips is limited to affinity of target molecules. In this paper, we propose a new HTS system of enzymatic activity based on microreactor array chip technology. A prototype of the automated and massively parallel measurement system for fluorometric assay of enzymatic reactions was developed by the combination of microreactor array chips and a highly-sensitive fluorescence microscope. Design strategy of microreactor array chips and an optical measurement platform for the high-throughput enzyme assay are discussed.

  12. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface.

    Science.gov (United States)

    Chang, Hyejin; Kang, Homan; Jeong, Sinyoung; Ko, Eunbyeol; Lee, Yoon-Sik; Lee, Ho-Young; Jeong, Dae Hong

    2015-05-01

    Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.

  13. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol; Jeong, Dae Hong, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Chemistry Education, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Homan [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Yoon-Sik, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Ho-Young, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of)

    2015-05-15

    Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.

  14. A 4k-Pixel CTIA Readout for Far IR Photodetector Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of developing a low noise, two-side buttable, 64x64 readout multiplexer with the following key design features: 1- By far...

  15. Novel Single Photon Counting Readout Circuits and APD Arrays with Capability from UV to IR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the proposed Phase I SBIR project is to develop and demonstrate 256x256 segmented readout integrated circuits (ROICs) that can read, digitize and...

  16. Sub-electron read noise and millisecond full-frame readout with the near infrared eAPD array SAPHIRA

    Science.gov (United States)

    Finger, Gert; Baker, Ian; Alvarez, Domingo; Dupuy, Christophe; Ives, Derek; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Jörg; Weller, Harald J.

    2016-07-01

    In 2007 ESO started a program at SELEX (now LEONARDO) to develop noiseless near infrared HgCdTe electron avalanche photodiode arrays (eAPD)[1][2][3]. This eAPD technology is only way to overcome the limiting CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking. After several development cycles of solid state engineering techniques which can be easily applied to the chosen growth technology of metal organic vapour phase epitaxy (MOVPE), the eAPD arrays have matured and resulted in the SAPHIRA arrays. They have a format of 320x256 pixels with a pitch of 24 μm. They now offer an unmatched combination of sub-electron read noise at millisecond frame readout rates. The first generation of SAPHIRA arrays were only sensitive in H and K-band. With the removal of a wide bandgap buffer layer the arrays are now sensitive from λ=0.8 μm to 2.5 μm with high quantum efficiency over the entire wavelength range. The high temperature anneal applied during the growth process produces material with superb cosmetic quality at an APD gain of over 600. The design of the SAPHIRA ROIC has also been revised and the new ME1000 ROIC has an optimized analogue chain and more flexible readout modes. The clock for the vertical shift register is now under external control. The advantage of this is that correlated-double-sampling and uncorrelated readout in the rolling shutter mode now have a duty cycle of 100% at the maximum frame rate. Furthermore, to reduce the readout noise rows can be read several times before and after row reset. Since the APD gain is sufficiently high that one photon produces many more electrons than the square root of kTC which is the charge uncertainty after reset, signals of one photon per exposure can be easily detected without the need for double correlated sampling. First results obtained with the fringe tracker in GRAVITY and the four SAPHIRA wavefront sensors installed in the CIAO adaptive optics systems of the four 8 meter

  17. The Origami Chip-on-Sensor Concept for Low-Mass Readout of Double-Sided Silicon Detectors

    CERN Document Server

    Friedl, M; Pernicka, M

    2008-01-01

    Modern front-end amplifiers for silicon strip detectors offer fast shaping but consequently are susceptible to input capacitance which is the main contribution to the noise figure. Hence, the amplifier must be close to the sensor which is not an issue at LHC, but a major concern at material budget sensitive experiments such as Belle or the ILC detector. We present a design of a silicon detector module with double-sided readout where thinned front-end chips are aligned on one side of the sensor which allows efficient cooling using just a single, thin aluminum pipe. The connection to the other sensor side is established by thin kapton circuits wrapped around the edge – hence the nickname origami.

  18. Super-Altro 16: a Front-End System on Chip for DSP Based Readout of Gaseous Detectors

    CERN Document Server

    Aspell, P.; Franca, H.; Garcia Garcia, E.; Musa, L.

    2013-01-01

    This paper presents the architecture, design and test results of an ASIC specifically designed for the readout of gaseous detectors. The primary application is the readout of the Linear Collider Time Projection Chamber. The small area available (4mm2/channel) requires an innovative design, where sensitive analog components and massive digital functionalities are integrated on the same chip. Moreover, shut down (power pulsing) features are necessary in order to reduce the power consumption. The Super-Altro is a 16-channel demonstrator ASIC involving analog and digital signal processing. Each channel contains a low noise Pre-Amplifier and Shaping Amplifier (PASA), a pipeline ADC, and a Digital Signal Processor (DSP). The PASA is programmable in terms of gain and shaping time and can operate with both positive and negative polarities of input charge. The 10-bit ADC samples the output of the PASA at a frequency up to 40MHz before providing the digitized signal to the DSP which performs baseline subtraction, signa...

  19. A 130 nm CMOS mixed mode front end readout chip for silicon strip tracking at the future linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Pham, T.H., E-mail: pham@lpnhe.in2p3.f [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Charpy, A.; Ciobanu, C. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Comerma, A. [Universitat de Barcelona, Dept E.C.M/Dept. Electronica/ICC-Diagonal 647, planta 6, 08028 Barcelona (Spain); David, J.; Dhellot, M. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Dieguez, A.; Gascon, D. [Universitat de Barcelona, Dept E.C.M/Dept. Electronica/ICC-Diagonal 647, planta 6, 08028 Barcelona (Spain); Genat, J.F.; Savoy Navarro, A.; Sefri, R. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France)

    2010-11-01

    A 130 nm mixed (analog and digital) CMOS chip intended to read silicon strip detectors for future linear collider experiments was developed. Currently under testing, this chip has been optimized for a silicon micro-strip tracking device. It includes 88 channels of a full analog signal processing chain with the corresponding digital control and readout. Every analog channel includes (i) a low noise charge amplifier and integration with long pulse shaping, (ii) an eight by eight positions analog sampler for both storing successive events and reconstructing the full pulse shape, and (iii) a sparsifier performing analog sum of three adjacent inputs to decide whether there is signal or not. The whole system is controlled by the digital part, which allows configuring all the reference currents and voltages, drives the control signals to the analog memories, records the timing and channel information and subsequently performs the conversion to digital values of samples. The total surface of the circuit is 10x5 mm{sup 2}, with each analog channel occupying an area of 105x3500 {mu}m{sup 2}, and the remaining space of about 9000x700 {mu}m{sup 2} being filled by the analog channels on the silicon.

  20. Development and Characterisation of a Radiation Hard Readout Chip for the LHCb Outer Tracker Detector

    CERN Document Server

    Stange, Uwe

    2005-01-01

    The reconstruction of charged particle tracks in the Outer Tracker detector of the LHCb experiment requires to measure the drift times of the straw tubes. A Time to Digital Converter (TDC) chip has been developed for this task. The chip integrates into the LHCb data acquisition schema and ful ls the requirements of the detector. The OTIS chip is manufactured in a commercial 0.25 µm CMOS process. A 32-channel TDC core drives the drift time measurement (25 ns measurement range, 390 ps nominal resolution) without introducing dead times. The resulting drift times are bu ered until a trigger decision arrives after the xed latency of 4 µs. In case of a trigger accept signal, the digital control core processes and transmits the corresponding data to the following data acquisition stage. Drift time measurement and data processing are independent from the detector occupancy. The digital control core of the OTIS chip has been developed within this doctoral thesis. It has been integrated into the TDC chip together wit...

  1. The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips

    CERN Document Server

    Marconi, S; Placidi, Pisana; Christiansen, Jorgen; Hemperek, Tomasz

    2014-01-01

    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger late...

  2. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Piotr; Grybos, P.; Szczgiel, R.; Kmon, P.; Drozd, A.; Deptuch, G.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 m. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largest charge deposition. The chip architecture and preliminary measurements are reported.

  3. The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX)

    CERN Document Server

    MacDermid, Kevin; Ade, Peter; Aubin, Francois; Baccigalupi, Carlo; Bandura, Kevin; Bao, Chaoyun; Borrill, Julian; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, Will; Hanany, Shaul; Helson, Kyle; Hillbrand, Seth; Hilton, Gene; Hubmayr, Hannes; Irwin, Kent; Johnson, Bradley; Jaffe, Andrew; Jones, Terry; Kisner, Ted; Klein, Jeff; Korotkov, Andrei; Lee, Adrian; Levinson, Lorne; Limon, Michele; Miller, Amber; Milligan, Michael; Pascale, Enzo; Raach, Kate; Reichborn-Kjennerud, Britt; Reintsema, Carl; Sagiv, Ilan; Smecher, Graeme; Stompor, Radek; Tristram, Matthieu; Tucker, Greg; Westbrook, Ben; Zilic, Kyle

    2014-01-01

    EBEX is a balloon-borne telescope designed to measure the polarization of the cosmic microwave background radiation. During its eleven day science flight in the Austral Summer of 2012, it operated 955 spider-web transition edge sensor (TES) bolometers separated into bands at 150, 250 and 410 GHz. This is the first time that an array of TES bolometers has been used on a balloon platform to conduct science observations. Polarization sensitivity was provided by a wire grid and continuously rotating half-wave plate. The balloon implementation of the bolometer array and readout electronics presented unique development requirements. Here we present an outline of the readout system, the remote tuning of the bolometers and Superconducting QUantum Interference Device (SQUID) amplifiers, and preliminary current noise of the bolometer array and readout system.

  4. The PASTA chip - A free-running readout ASIC for silicon strip sensors in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, Andre; Stockmanns, Tobias; Ritman, James [Institut fuer Kernphysik, Forschungszentrum Juelich, Juelich (Germany); Rivetti, Angelo [INFN Sezione di Torino, Torino (Italy); Collaboration: PANDA-Collaboration

    2014-07-01

    The PANDA experiment is a multi purpose detector, investigating hadron physics in the charm quark mass regime. It is one of the main experiments at the future FAIR accelerator facility, using pp annihilations from a 1.5-15 GeV/c anti-proton beam. Because of the broad physics spectrum and the similarity of event and background signals, PANDA does not rely on a hardware-level trigger decision. The innermost of PANDA's sub-systems is the Micro Vertex Detector (MVD), consisting of silicon pixel and strip sensors. The latter will be read out by a specialized, free-running readout front-end called PANDA Strip ASIC (PASTA). It has to face a high event rate of up to 40 kHz/ch in an radiation-intense environment. To fulfill the MVD's requirements, it has to give accurate timing information to incoming events (<10 ns) and determine the collected charge with an 8-bit precision. The design has to meet cooling and placing restrictions, leading to a very low power consumption (<4 mW/ch) and limited dimensions. Therefore, a simple, time-based readout approach is chosen. In this talk, the conceptual design of the front-end is presented.

  5. TOT01, a time-over-threshold based readout chip in 180nm CMOS technology for silicon strip detectors

    Science.gov (United States)

    Kasinski, K.; Szczygiel, R.; Gryboś, P.

    2011-01-01

    This work is focused on the development of the TOT01 prototype front-end ASIC for the readout of long silicon strip detectors in the STS (Silicon Tracking System) of the CBM experiment at FAIR - GSI. The deposited charge measurement is based on the Time-over-Threshold method which allows integration of a low-power ADC into each channel. The TOT01 chip comprises 30 identical channels and 1 test channel which is supplied with additional test pads. The major blocks of each channel are the CSA (charge sensitive amplifier) with two switchable constant-current discharge circuits and additional test features. The architecture of the CSA core is based on the folded cascode. The input p-channel MOSFET device, biased at a drain current 500 μA, was optimized for 30 pF detector capacitance while keeping in mind the area constraints — W/L = 1800 μm / 0.180 μm. The main advantage of this solution is high gain (GBW = 1.2 GHz) and low power consumption at the same time. The amplifier is followed by the discriminator circuit. The discriminator allows for a global (multi-channel) differential threshold setting and independent compensation for the CSA output DC-level deviations in each channel by means of a 6-bit digital to analog converter (DAC). The output pulse of this processing chain is fed through a 31:1 multiplexer structure to the output of the chip for further processing. The TOT01 chip has been fabricated in the UMC 0.18 μm CMOS process (Europractice mini@sic). It has 78 pads, measures approximately 1.5x3.2 mm2 and dissipates 33 mW. The channels have 50 μm pitch and each consumes 1.05 mW of power. The chip has been successfully tested. Charge sensitivity parameters, noise performance and first X-ray acquisitions are presented.

  6. Tests of gases in a mini-TPC with pixel chip readout

    Energy Technology Data Exchange (ETDEWEB)

    Vahsen, S. [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Oliver-Mallory, K.; Lopez-Thibodeaux, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kadyk, J., E-mail: jakadyk@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Garcia-Sciveres, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2014-02-21

    Gases for potential use as targets for directional dark matter detection were tested in a prototype detector using two sequential Gas Electron Multipliers, or GEMs. The sensitive volume consists of a mini-TPC of 12 cm length and 7.5 cm diameter. An FEI3 pixel chip, developed for the ATLAS experiment, was used to produce spatial measurements with high resolution. An Fe55 source produced photoelectrons by X-ray conversions in the sensitive volume, and images of these were recorded by the chip. Spatial resolution plots are shown for the gases, which include the practical electron range of the photoelectrons and the effects of diffusion in the mini-TPC. Avalanche gain and gain resolution measurements were made for the four gases tested, at atmospheric and sub-atmospheric pressures: Ar(70)/CO{sub 2}(30), CF{sub 4}, He(80)/CF{sub 4}(20) and He(80)/isobutane(20)

  7. Study of Charge Diffusion in a Silicon Detector Using an Energy Sensitive Pixel Readout Chip

    CERN Document Server

    Schioppa, E. J.; van Beuzekom, M.; Visser, J.; Koffeman, E.; Heijne, E.; Engel, K. J.; Uher, J.

    2015-01-01

    A 300 μm thick thin p-on-n silicon sensor was connected to an energy sensitive pixel readout ASIC and exposed to a beam of highly energetic charged particles. By exploiting the spectral information and the fine segmentation of the detector, we were able to measure the evolution of the transverse profile of the charge carriers cloud in the sensor as a function of the drift distance from the point of generation. The result does not rely on model assumptions or electric field calculations. The data are also used to validate numerical simulations and to predict the detector spectral response to an X-ray fluorescence spectrum for applications in X-ray imaging.

  8. Study of the VMM1 read-out chip in a neutron irradiation environment

    Science.gov (United States)

    Alexopoulos, T.; Fanourakis, G.; Geralis, T.; Kokkoris, M.; Kourkoumeli-Charalampidi, A.; Papageorgiou, K.; Tsipolitis, G.

    2016-05-01

    Within 2015, the LHC operated close to the design energy of √s = 13-14 TeV delivering instantaneous luminosities up to Script L = 5 × 1033 cm-2s-1. The ATLAS Phase-I upgrade in 2018/19 will introduce the MicroMEGAS detectors in the area of the small wheel at the end caps. Accompanying new electronics are designed and built such as the VMM front end ASIC, which provides energy, timing and triggering information and allows fast data read-out. The first VMM version (VMM1) has been widely produced and tested in various test beams, whilst the second version (VMM2) is currently being tested. This paper focuses on the VMM1 single event upset studies and more specifically on the response of the configuration registers under harsh radiation environments. Similar conditions are expected at Run III with Script L = 2 × 1034 cm-2s-1 and a mean of 55 interactions per bunch crossing. Two VMM1s were exposed in a neutron irradiation environment using the TANDEM Van Der Graaff accelerator at NSCR Demokritos, Athens, Greece. The results showed a rate of SEU occurrences at a measured cross section of (4.1±0.8)×10-14 cm2/bit for each VMM. Consequently, when extrapolating this value to the luminosity expected in Run III, the occurrence is roughly 6 SEUs/min in all the read-out system comprising 40,000 VMMs installed during the Phase-I upgrade.

  9. The GLUEchip: A custom VLSI chip for detectors readout and associative memories circuits

    Energy Technology Data Exchange (ETDEWEB)

    Amendolia, S.R. (Univ. of Sassari and INFN, Pisa (Italy)); Galeotti, S.; Morsani, F.; Passuello, D.; Ristori, L. (Univ. and Scuola Normale Superiore, Pisa (Italy). INFN); Sciacca, G. (Univ. and LNS, Catania (Italy)); Turini, N. (Univ. and INFN, Bologna (Italy))

    1993-08-01

    An associative memory full-custom VLSI chip for pattern recognition has been designed and tested in the past years. It's the AMchip, that contains 128 patterns of 60 bits each. To expand the pattern capacity of an Associative Memory bank, the custom VLSI GLUEchip has been developed. The GLUEchip allows the interconnection of up to 16 AMchips or up to 16 GLUEchips: the resulting tree-like structure works like a single AMchip with an output pipelined structure and a pattern capacity increased by a factor 16 for each GLUEchip used.

  10. Array of virtual Frisch-grid CZT detectors with common cathode readout and pulse-height correction

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Egarievwe, E.U.; Fochuk, P.M.; Fuerstnau, M.; Gul, R.; Hossain, A.; Jones, F.; Kim, K.; Kopach, O.V.; Taggart, R.; Yang, G.; Ye, Z.; Xu, L.; and James, R.B.

    2010-08-01

    We present our new results from testing 15-mm-long virtual Frisch-grid CdZnTe detectors with a common-cathode readout for correcting pulse-height distortions. The array employs parallelepiped-shaped CdZnTe (CZT) detectors of a large geometrical aspect ratio, with two planar contacts on the top and bottom surfaces (anode and cathode) and an additional shielding electrode on the crystal's sides to create the virtual Frisch-grid effect. We optimized the geometry of the device and improved its spectral response. We found that reducing to 5 mm the length of the shielding electrode placed next to the anode had no adverse effects on the device's performance. At the same time, this allowed corrections for electron loss by reading the cathode signals to obtain depth information.

  11. Image quality improvement by the structured light illumination method in an optical readout cantilever array infrared imaging system.

    Science.gov (United States)

    Feng, Yun; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Yu, Xiaomei; Kong, Lingqin; Ma, Wei; Liu, Xiaohua

    2015-04-01

    The structured light illumination method is applied in an optical readout uncooled infrared imaging system to improve the IR image quality. The unavoidable nonuniform distribution of the initial bending angles of the bimaterial cantilever pixels in the focal plane array (FPA) can be well compensated by this method. An ordinary projector is used to generate structured lights of different intensity distribution. The projected light is divided into patches of rectangular regions, and the brightness of each region can be set automatically according to the deflection angles of the FPA and the light intensity focused on the imaging plane. By this method, the FPA image on the CCD plane can be much more uniform and the image quality of the IR target improved significantly. A comparative experiment is designed to verify the effectiveness. The theoretical analysis and experimental results show that the proposed structured light illumination method outperforms the conventional one, especially when it is difficult to perfect the FPA fabrication.

  12. Calibration scheme for large Kinetic Inductance Detector Arrays based on Readout Frequency Response

    CERN Document Server

    Bisigello, L; Murugesan, V; Baselmans, J J A; Baryshev, A M

    2016-01-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal ap...

  13. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.; Spear, P.; Altomare, F.; Berkley, A. J.; Bunyk, P.; Harris, R.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Lanting, T.; Oh, T.; Perminov, I.; Tolkacheva, E.; Yao, J. [D-Wave Systems, Inc., Burnaby, British Columbia V5G 4M9 (Canada); Bumble, B.; Day, P. K.; Eom, B. H. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); and others

    2016-01-07

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.

  14. A programmable energy efficient readout chip for a multiparameter highly integrated implantable biosensor system

    Science.gov (United States)

    Nawito, M.; Richter, H.; Stett, A.; Burghartz, J. N.

    2015-11-01

    In this work an Application Specific Integrated Circuit (ASIC) for an implantable electrochemical biosensor system (SMART implant, Stett et al., 2014) is presented. The ASIC drives the measurement electrodes and performs amperometric measurements for determining the oxygen concentration, potentiometric measurements for evaluating the pH-level as well as temperature measurements. A 10-bit pipeline analog to digital (ADC) is used to digitize the acquired analog samples and is implemented as a single stage to reduce power consumption and chip area. For pH measurements, an offset subtraction technique is employed to raise the resolution to 12-bits. Charge integration is utilized for oxygen and temperature measurements with the capability to cover current ranges between 30 nA and 1 μA. In order to achieve good performance over a wide range of supply and process variations, internal reference voltages are generated from a programmable band-gap regulated circuit and biasing currents are supplied from a wide-range bootstrap current reference. To accommodate the limited available electrical power, all components are designed for low power operation. Also a sequential operation approach is applied, in which essential circuit building blocks are time multiplexed between different measurement types. All measurement sequences and parameters are programmable and can be adjusted for different tissues and media. The chip communicates with external unites through a full duplex two-wire Serial Peripheral Interface (SPI), which receives operational instructions and at the same time outputs the internally stored measurement data. The circuit has been fabricated in a standard 0.5-μm CMOS process and operates on a supply as low as 2.7 V. Measurement results show good performance and agree with circuit simulation. It consumes a maximum of 500 μA DC current and is clocked between 500 kHz and 4 MHz according to the measurement parameters. Measurement results of the on-chip ADC show a

  15. Digital PCR using micropatterned superporous absorbent array chips.

    Science.gov (United States)

    Wang, Yazhen; Southard, Kristopher M; Zeng, Yong

    2016-06-21

    Digital PCR (dPCR) is an emerging technology for genetic analysis and clinical diagnostics. To facilitate the widespread application of dPCR, here we developed a new micropatterned superporous absorbent array chip (μSAAC) which consists of an array of microwells packed with highly porous agarose microbeads. The packed beads construct a hierarchically porous microgel which confers superior water adsorption capacity to enable spontaneous filling of PDMS microwells for fluid compartmentalization without the need of sophisticated microfluidic equipment and operation expertise. Using large λ-DNA as the model template, we validated the μSAAC for stochastic partitioning and quantitative digital detection of DNA molecules. Furthermore, as a proof-of-concept, we conducted dPCR detection and single-molecule sequencing of a mutation prevalent in blood cancer, the chromosomal translocation t(14;18), demonstrating the feasibility of the μSAAC for analysis of disease-associated mutations. These experiments were carried out using the standard molecular biology techniques and instruments. Because of its low cost, ease of fabrication, and equipment-free liquid partitioning, the μSAAC is readily adaptable to general lab settings, which could significantly facilitate the widespread application of dPCR technology in basic research and clinical practice.

  16. PARISROC, a Photomultiplier Array Integrated Read Out Chip

    CERN Document Server

    Di Lorenzo, S Conforti; Dulucq, F; De La Taille, C; Martin-Chassard, G; Berni, M El; Wei, W

    2010-01-01

    PARISROC is a complete read out chip, in AMS SiGe 0.35 !m technology, for photomultipliers array. It allows triggerless acquisition for next generation neutrino experiments and it belongs to an R&D program funded by the French national agency for research (ANR) called PMm2: ?Innovative electronics for photodetectors array used in High Energy Physics and Astroparticles? (ref.ANR-06-BLAN-0186). The ASIC (Application Specific Integrated Circuit) integrates 16 independent and auto triggered channels with variable gain and provides charge and time measurement by a Wilkinson ADC (Analog to Digital Converter) and a 24-bit Counter. The charge measurement should be performed from 1 up to 300 photo- electrons (p.e.) with a good linearity. The time measurement allowed to a coarse time with a 24-bit counter at 10 MHz and a fine time on a 100ns ramp to achieve a resolution of 1 ns. The ASIC sends out only the relevant data through network cables to the central data storage. This paper describes the front-end electroni...

  17. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    CERN Document Server

    Whittaker, J D; Volkmann, M H; Spear, P; Altomare, F; Berkley, A J; Bumble, B; Bunyk, P; Day, P K; Eom, B H; Harris, R; Hilton, J P; Hoskinson, E; Johnson, M W; Kleinsasser, A; Ladizinsky, E; Lanting, T; Oh, T; Perminov, I; Tolkacheva, E; Yao, J

    2015-01-01

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1,000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of band-width utilization. Here we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally we discuss the integration of these detectors in a m...

  18. A 32x32 Direct Hybrid Germanium Photoconductor Array with CTIA Readout Multiplexer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal introduces an innovative concept aimed to develop, for the first time, a 1k pixel far infrared focal-plane array with the following key design...

  19. Low-power Broadband Digitizer for Millimeter-Wave Sensor Array Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multiplexing in frequency domain using a bank of high-Q micro-resonators is an emerging method of reading out large arrays of transition-edge sensors and...

  20. A 32x32 Direct Hybrid Germanium Photoconductor Array with CTIA Readout Multiplexer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of developing a two-dimensional far infrared photoconductor array with the following key design features: 1- A...

  1. Visible Blind SiC Array with Low Noise Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To date, we have (i) designed and fabricated both common cathode and common anode SiC detector arrays; (ii) designed and fabricated the detector packaging (FPA), and...

  2. Embedded Adaptive Optics for Ubiquitous Lab-on-a-Chip Readout on Intact Cell Phones

    Directory of Open Access Journals (Sweden)

    Pakorn Preechaburana

    2012-06-01

    Full Text Available The evaluation of disposable lab-on-a-chip (LOC devices on cell phones is an attractive alternative to migrate the analytical strength of LOC solutions to decentralized sensing applications. Imaging the micrometric detection areas of LOCs in contact with intact phone cameras is central to provide such capability. This work demonstrates a disposable and morphing liquid lens concept that can be integrated in LOC devices and refocuses micrometric features in the range necessary for LOC evaluation using diverse cell phone cameras. During natural evaporation, the lens focus varies adapting to different type of cameras. Standard software in the phone commands a time-lapse acquisition for best focal selection that is sufficient to capture and resolve, under ambient illumination, 50 μm features in regions larger than 500 × 500 μm2. In this way, the present concept introduces a generic solution compatible with the use of diverse and unmodified cell phone cameras to evaluate disposable LOC devices.

  3. Pixelized M-pi-n CdTe detector coupled to Medipix2 readout chip

    CERN Document Server

    Kalliopuska, J; Penttila, R; Andersson, H; Nenonen, S; Gadda, A; Pohjonen, H; Vanttajac, I; Laaksoc, P; Likonen, J

    2011-01-01

    We have realized a simple method for patterning an M-pi-n CdTe diode with a deeply diffused pn-junction, such as indium anode on CdTe. The method relies on removing the semiconductor material on the anode-side of the diode until the physical junction has been reached. The pixelization of the p-type CdTe diode with an indium anode has been demonstrated by patterning perpendicular trenches with a high precision diamond blade and pulsed laser. Pixelization or microstrip pattering can be done on both sides of the diode, also on the cathode-side to realize double sided detector configuration. The article compares the patterning quality of the diamond blade process, pulsed pico-second and femto-second lasers processes. Leakage currents and inter-strip resistance have been measured and are used as the basis of the comparison. Secondary ion mass spectrometry (SIMS) characterization has been done for a diode to define the pn-junction depth and to see the effect of the thermal loads of the flip-chip bonding process. Th...

  4. TARGET: toward a solution for the readout electronics of the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Albert, A M; Funk, S; Kawashima, T; Kraus, M; Okumura, A; Sapozhnikov, L; Tajima, H; Varner, G S; Wu, T; Zink, A

    2015-01-01

    TARGET is an application specific integrated circuit (ASIC) designed to read out signals recorded by the photosensors in cameras of very-high-energy gamma-ray telescopes exploiting the imaging of Cherenkov radiation from atmospheric showers. TARGET capabilities include sampling at a high rate (typically 1 GSample/s), digitization, and triggering on the sum of four adjacent pixels. The small size, large number of channels read out per ASIC (16), low cost per channel, and deep buffer for trigger latency (~16 $\\mu$s at 1 GSample/s) make TARGET ideally suited for the readout in systems with a large number of telescopes instrumented with compact photosensors like multi-anode or silicon photomultipliers combined with dual-mirror optics. The possible advantages of such systems are better sensitivity, a larger field of view, and improved angular resolution. The two latest generations of TARGET ASICs, TARGET 5 and TARGET 7, are soon to be used for the first time in two prototypes of small-sized and medium-sized dual-m...

  5. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    NARCIS (Netherlands)

    Hijmering, R.A.

    2009-01-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Opti

  6. Simultaneous detection of lactate and glucose by integrated printed circuit board based array sensing chip

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuelian [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China); School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zang, Jianfeng [Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 (United States); Liu, Yingshuai; Lu, Zhisong [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China); Li, Qing, E-mail: Qli@swu.edu.cn [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Chang Ming, E-mail: ecmli@swu.edu.cn [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2013-04-10

    Highlights: ► An integrated printed circuit board (PCB) based array sensing chip was developed. ► Simultaneous detection of lactate and glucose in serum has been demonstrated. ► The array electronic biochip has high signal to noise ratio and high sensitivity. ► Additional electrodes were designed on the chip to correct interferences. -- Abstract: An integrated printed circuit board (PCB) based array sensing chip was developed to simultaneously detect lactate and glucose in mouse serum. The novelty of the chip relies on a concept demonstration of inexpensive high-throughput electronic biochip, a chip design for high signal to noise ratio and high sensitivity by construction of positively charged chitosan/redox polymer Polyvinylimidazole-Os (PVI-Os)/carbon nanotube (CNT) composite sensing platform, in which the positively charged chitosan/PVI-Os is mediator and electrostatically immobilizes the negatively charged enzyme, while CNTs function as an essential cross-linker to network PVI-Os and chitosan due to its negative charged nature. Additional electrodes on the chip with the same sensing layer but without enzymes were prepared to correct the interferences for high specificity. Low detection limits of 0.6 μM and 5 μM were achieved for lactate and glucose, respectively. This work could be extended to inexpensive array sensing chips with high sensitivity, good specificity and high reproducibility for various sensor applications.

  7. Indium bump array fabrication on small CMOS circuit for flip-chip bonding

    Institute of Scientific and Technical Information of China (English)

    Huang Yuyang; Zhang Yuxiang; Yin Zhizhen; Cui Guoxin; Liu H C; Bian Lifeng; Yang Hui; Zhang Yaohui

    2011-01-01

    We demonstrate a novel method for indium bump fabrication on a small CMOS circuit chip that is to be flip-chip bonded with a GaAs/AlGaAs multiple quantum well spatial light modulator.A chip holder with a via hole is used to coat the photoresist for indium bump lift-off.The 1000 μm-wide photoresist edge bead around the circuit chip can be reduced to less than 500μm,which ensures the integrity of the indium bump array.64 × 64 indium arrays with 20 μm-high,30 μm-diameter bumps are successfully formed on a 5 × 6.5 mm2 CMOS chip.

  8. Development of a novel pixel-level signal processing chain for fast readout 3D integrated CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.; Torheim, O.; Hu-Guo, C. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Degerli, Y. [CEA Saclay, IRFU/SEDI, 91191 Gif-sur-Yvette Cedex (France); Hu, Y., E-mail: yann.hu@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2013-03-11

    In order to resolve the inherent readout speed limitation of traditional 2D CMOS pixel sensors, operated in rolling shutter readout, a parallel readout architecture has been developed by taking advantage of 3D integration technologies. Since the rows of the pixel array are zero-suppressed simultaneously instead of sequentially, a frame readout time of a few microseconds is expected for coping with high hit rates foreseen in future collider experiments. In order to demonstrate the pixel readout functionality of such a pixel sensor, a 2D proof-of-concept chip including a novel pixel-level signal processing chain was designed and fabricated in a 0.13μm CMOS technology. The functionalities of this chip have been verified through experimental characterization.

  9. Implementation of an Optical Readout System for High-Sensitivity Terahertz Microelectromechanical Sensor Array

    Science.gov (United States)

    2014-09-01

    applications, it has been reported that Golay cell micro arrays based on a graphene membrane have been developed with a responsivity of 400 nm/K [26...vol. 37, pp. 1886‒1888, Jun. 2012. [8] F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2 /Al...49. [26] E. Ledwosinska, A. Guermoune, M. Siaj, and T. Szkopek, “Fabrication and characterization of suspended graphene membranes for miniature

  10. The Retinal Readout System: a status report A Status Report

    CERN Document Server

    Litke, A M

    1999-01-01

    The 'Retinal Readout System' is being developed to study the language the eye uses to send information about the visual world to the brain. Its architecture is based on that of silicon microstrip detectors. An array of 512 microscopic electrodes picks up the signals generated by the output neurons of live retinal tissue in response to a dynamic image focused on the input neurons. These signals are amplified, filtered and multiplexed by a set of eight custom-designed VLSI readout chips, and digitized and recorded by a data acquisition system. This report describes the goals, design, and status of the system. (author)

  11. RTIA readout circuit for infrared focal plane array using active resistor%有源电阻RTIA红外焦平面读出电路

    Institute of Scientific and Technical Information of China (English)

    胡滨; 李威; 李平; 阙滨城

    2012-01-01

    提出了一种基于有源电阻的电阻反馈跨导放大器(RTIA)红外焦平面读出电路,该电路采用工作在亚阈区的MOS管实现1011Ω以上的有源大电阻,不仅能与热释电红外探测器的高阻抗良好匹配,而且配合两管共源放大器可针对热释电微弱信号进行高增益电流放大.同时,简单的三管单元结构能够方便地置于像元之下,相比于采用特殊高阻材料实现的RTIA,不附加材料和工艺.经上华0.5 μmCMOS工艺流片验证,在5V电源电压下,该电路增益40 dB,输出摆幅3V,在高低温测试下表现出了良好的增益带宽稳定性,适用于PZT和BST等热释电大阵列探测器.%A Resistive Trans-impedance Amplifier (RTIA) readout circuit for Uncooled Focal Plane Array (UFPA) using active resistor was proposed in this paper. By using a sub-threshold MOSFET as a 1011 Ω and above feedback resistor, a high gain current amplifier could be realized by common source structure which consisted of two transistors. The simple three transistors could be easily integrated under pixel and it had good impedance matching with pyroelectric infrared detector. Compared with traditional RTIAs which use special high-resistance materials as feedback resistor, the novel RTIA was low cost because no additional materials and processes were needed. The circuit was successfully manufactured by 0.5 μm standard CMOS process of CSMC foundry. 40 dB gain and 3 V output swing were realized by this design and the gain and bandwidth of the chip kept stable during high and low temperature tests. So it can be used for large arrays pyroelectric detectors such as Lead Zirconate Titanate (PZT) and Barium Strontium Titanate (BST), etc.

  12. High density array fabrication and readout method for a fiber optic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA)

    1997-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  13. High density array fabrication and readout method for a fiber optic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Pinkel, D.; Gray, J.

    1997-11-25

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its ``sensor end`` biological ``binding partners`` (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor. 9 figs.

  14. High density array fabrication and readout method for a fiber optic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA); Albertson, Donna G. (Lafayette, CA)

    2002-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  15. High density array fabrication and readout method for a fiber optic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA); Albertson, Donna G. (Lafayette, CA)

    2000-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  16. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    Science.gov (United States)

    Hijmering, Richard A.

    2009-12-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Optical Ground Station on Tenerife. To overcome the limited field of view which can be achieved with single STJ arrays, DROIDS (Distributed Read Out Imaging Devices) are being developed which produce next to energy and timing also produce positional information with each detector element. These DROIDS consist of a superconducting absorber strip with proximized STJs on either end. The STJs are a Ta/Al/AlOx/Al/Ta 100/30/1/30/100nm sandwich of which the bottom electrode Ta layer is one with the 100nm thick absorber layer. The ratio of the two signals from the STJs provides information on the absorption position and the sum signal is a measure for the energy of the absorbed photon. In this thesis we present different important processes which are involved with the detection of optical photons using DROIDs. This includes the spatial and spectral resolution, confinement of the quasiparticles in the proximized STJs to enhance tunnelling and quasiparticle creation resulting from absorption of a photon in the proximized STJ. We have combined our findings in the development of a 2D theoretical model which describes the diffusion of quasiparticles and imperfect confinement via exchange of quasiparticles between the absorber and STJ. Finally we will present some of the first results obtained with an array of 60 360x33.5 μm2 DROIDs in 3x20 format.

  17. An Infrared Readout Circuit with On-chip Compensation%一种具有片上补偿功能的红外读出电路

    Institute of Scientific and Technical Information of China (English)

    阙隆成; 吕坚; 魏林海; 周云; 蒋亚东

    2015-01-01

    针对非制冷红外探测器系统,提出了一种恒流偏置的红外读出电路(ROIC),该电路具有衬底温度补偿功能,且可实现片上偏移非均匀性补偿。基于微测辐射热计等效电阻受目标温度、衬底温度等影响的等效模型,每个读出通道采用两个盲电阻以消除衬底温度的影响,同时使用DAC逐点调节参考电压,以完成片上偏移非均匀性补偿。该ROIC 应用到阵列大小为320×240的非制冷微测辐射热计焦平面上,已在CSMC 05MIXDDST02的0.5m CMOS标准工艺下成功流试验片。电路测试结果表明:对于常温目标,当衬底温度变化60 K时,输出电压变化小于500 mV;经偏移非均匀性补偿后,阵列的固定图像噪声为11.8 mV。该ROIC适用于应用于复杂温度环境的高均匀性非制冷红外探测器。%This paper describes a constant current-biased readout circuit with substrate temperature compensation and non-uniformity compensation for the uncooled micro-bolometer detector. The influence of temperature for the equivalent resistance of micro-bolometer is evaluated. Then an effective way for substrate temperature compensation is proposed, which utilizes two blind micro-bolometers in each readout circuit channel. On the other hand, the non-uniformity compensation is also achieved by a 5bits on-chip DAC. A 320×240 uncooled micro-bolometer focal plane array(FPA)based on the proposed circuit was implemented on silicon by 0.5m CMOS technology. The measurement data show that the maximum difference of a normal temperature object over 60K substrate of which temperature change is only 500mV and the fixed pattern noise(FPN)is less than 11.8mV. Thus it is ideally suited for high performance production applications.

  18. Gossipo-3 A prototype of a Front-End Pixel Chip for Read-Out of Micro-Pattern Gas Detectors

    CERN Document Server

    Brezina, Christpoh; van der Graaf, Haryy; Gromov, Vladimir; Kluit, Ruud; Kruth, Andre; Zappon, Francesco

    2009-01-01

    In a joint effort of Nikhef (Amsterdam) and the University of Bonn, the Gossipo-3 integrated circuit (IC) has been developed. This circuit is a prototype of a chip dedicated for read-out of various types of position sensitive Micro-Pattern Gas detectors (MPGD). The Gossipo-3 is defined as a set of building blocks to be used in a future highly granulated (60 μm) chip. The pixel circuit can operate in two modes. In Time mode every readout pixel measures the hit arrival time and the charge deposit. For this purpose it has been equipped with a high resolution TDC (1.7 ns) covering dynamic range up to 102 μs. Charge collected by the pixel will be measured using Time-over- Threshold method in the range from 400 e- to 28000 e- with accuracy of 200 e- (standard deviation). In Counting mode every pixel operates as a 24-bit counter, counting the number of incoming hits. The circuit is also optimized to operate at low power consumption (100 mW/cm2) that is required to avoid the need for massive power transport and coo...

  19. Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays

    Science.gov (United States)

    Liu, Haixiao; Sun, Weiqiang; Xiang, An; Shi, Tuanwei; Chen, Qing; Xu, Shengyong

    2012-08-01

    In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices.

  20. A polymer lab-on-a-chip for genetic analysis using the arrayed primer extension on microarray chips.

    Science.gov (United States)

    Marasso, Simone L; Mombello, Domenico; Cocuzza, Matteo; Casalena, Davide; Ferrante, Ivan; Nesca, Alessandro; Poiklik, Piret; Rekker, Kadri; Aaspollu, Anu; Ferrero, Sergio; Pirri, Candido F

    2014-10-01

    In this work a polymer lab-on-a-chip (LOC), fabricated through MEMS technology, was employed to execute a genetic protocol for the Single Nucleotide Polymorphisms (SNPs) detection. The LOC was made in Poly (methyl methacrylate) (PMMA) and has two levels: the lower one for the insertion and mixing of the reagents, the upper one for the interfacing with the DNA microarray chip. The hereditary hearing loss was chosen as case of study, since the demand for testing such a particular disorder is high and genetics behind the condition is quite clear. The Arrayed Primer EXtension (APEX) genetic protocol was implemented on the LOC to analyze the SNPs. A low density (for detection of up to 10 mutations) and a high density microarray chips (for detection of 245 mutations in 12 genes), containing the primers for the extension, were employed to carry out the APEX reaction on the LOC. Both the microarray chips provide a signal to noise ratio and efficiency comparable with a detection obtained in a conventional protocol in standard conditions. Moreover, significant reduction of the employed PCR volume (from 30 μL to 10 μL) was obtained using the low density chip.

  1. A 64x64 Low Noise Cryogenic Readout Multiplexer for Far IR Focal-Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of developing a low noise, two-side buttable, 64x64 readout multiplexer with the following key design features: 1- By far...

  2. Design and implementation of a nanosecond time-stamping readout system-on-chip for photo-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Anvar, Shebli; Château, Frédéric; Le Provost, Hervé; Louis, Frédéric [CEA/Irfu/SEDI Gif-sur-Yvette (France); Manolopoulos, Konstantinos [Physics Department, University of Athens (Greece); Moudden, Yassir, E-mail: yassir.moudden@cea.fr [CEA/Irfu/SEDI Gif-sur-Yvette (France); Vallage, Bertrand [CEA/Irfu/SPP Gif-sur-Yvette (France); Zonca, Eric [CEA/Irfu/SEDI Gif-sur-Yvette (France)

    2014-01-21

    A readout system suitable for a large number of synchronized photo-detection units has been designed. Each unit embeds a specifically designed fully integrated communicating system based on Xilinx FPGA SoC technology. It runs the VxWorks real-time OS and a custom data acquisition software designed within the Ice middleware framework, resulting in a highly flexible, controllable and scalable distributed application. Clock distribution and delay calibration over customized fixed latency gigabit Ethernet links enable synchronous time-stamping of events with nanosecond precision. The implementation of this readout system on several data-collecting units as well as its performances are described.

  3. Microtrap arrays on magnetic film atom chips for quantum information science.

    NARCIS (Netherlands)

    Leung, Y.F.V.; Tauschinsky, A.; van Druten, N.J.; Spreeuw, R.J.C.

    2011-01-01

    We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ~5 μm period, so that qubits can be individ

  4. One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.

    Science.gov (United States)

    Lee, Kang-Ho; Lee, Jeong-Oen; Sohn, Mi-Jin; Lee, Byunghun; Choi, Suk-Hwan; Kim, Sang Kyu; Yoon, Jun-Bo; Cho, Gyu-Hyeong

    2010-12-15

    This paper describes a label-free and fully electronic detection method of DNA hybridization, which is achieved through the use of a 16×8 microarray sensor in conjunction with a new type of impedance spectroscopy constructed with standard complementary metal-oxide-semiconductor (CMOS) technology. The impedance-based method is based on changes in the reactive capacitance and the charge-transfer resistance after hybridization with complementary DNA targets. In previously published label-free techniques, the measured capacitance presented unstable capacitive properties due to the parallel resistance that is not infinite and can cause a leakage by discharging the charge on the capacitor. This paper presents an impedance extraction method that uses excitation by triangular wave voltage, which enables a reliable measurement of both C and R producing a highly sensitive sensor with a stable operation independent of external variables. The system was fabricated in an industrial 0.35-μm 4-metal 2-poly CMOS process, integrating working electrodes and readout electronics into one chip. The integrated readout, which uses a parasitic insensitive integrator, achieves an enlarged detection range and improved noise performance. The maximum average relative variations of C and R are 31.5% and 68.6%, respectively, after hybridization with a 1 μM target DNA. The proposed sensor allows quantitative evaluation of the molecule densities on the chip with distinguishable variation in the impedance. This fully electronic microsystem has great potential for use with bioanalytical tools and point-of-care diagnosis.

  5. Gene chip array for differentiation of mycobacterial species and detection of drug resistance

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-chun; LIU Xiao-qing; XIE Xiu-li; XU Ying-chun; ZHAO Zhi-xian

    2012-01-01

    Background Gene chip array can differentiate isolated mycobacterial strains using vadous mycobacterium specific probes simultaneously.Gene chip array can evaluate drug resistance to isoniazid and rifampin of tuberculosis strains by detecting drug resistance related gene mutation.This technique has great potential for clinical application.We performed a retrospective study to investigate the capability of gene chip array in the rapid differentiation of species and detection of drug resistance in mycobacterium,and to evaluate its clinical efficacy.Methods We selected 39 patients (54 clinical mycobacterium isolates),used gene chip array to identify the species of these isolates and detect drug resistance to isoniazid and rifampin in Mycobacterium tuberculosis isolates.Meanwhile,these patients' clinical data were analyzed retrospectively.Results Among these 39 patients whose mycopacterium culture were positive,32 patients' isolates were identified as Mycobacterium tubercu/osis, all of them were clinical infection. Seven patients' isolates were identified as non-tuberculosis mycobacterium.Analyzed with their clinical data,only two patients were considered as clinical infection,both of them were diagnosed as hematogenous disseminated Mycobacterium introcellulare infection.The other five patients' isolates were of no clinical significance; their clinical samples were all respiratory specimens.Clinical manifestations of tuberculosis and non-tuberculous mycobacterial infections were similar.Isoniazid resistance was detected in two tuberculosis patients,while rifampin resistance was detected in one tuberculosis patient; there was another patient whose Mycobacterium tuberculosis isolate was resistant to both isoniazid and rifampin (belongs to multidrug resistance tuberculosis).The fact that this patient did not respond to routine anti-tuberculosis chemotherapy also confirmed this result.Conclusions Gene chip array may be a simple,rapid,and reliable method for the

  6. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-04-19

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  7. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    Science.gov (United States)

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  8. Characteristics of Off-Chip Millimeter-Wave Radiation from Serial Josephson Junction Arrays

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng; FAN Bin; ZHAO Xin-Jie; YUE Hong-Wei; HE Ming; JI Lu; YAN Shao-Lin; FANG Lan; Klushin A. M.

    2011-01-01

    @@ We investigate the self-emissions from serial high-temperature superconductor bicrystal Josephson junction ar- rays embedded in a quasi-optical resonator.A bicrystal substrate is used as a dielectric resonator antenna, which increases the coupling strength between the junction array and the electromagnetic (EM) wave.Both three-dimension (3D) electromagnetic simulations and experiments are performed.Strong ofT-chip radiations axe measured from the junction array at 78 GHz and 78 K.The proposed method and the experimental results are important for millimeter wave applications in junction arrays.

  9. Efficient, tunable flip-chip-integrated III-V/Si hybrid external-cavity laser array.

    Science.gov (United States)

    Lin, Shiyun; Zheng, Xuezhe; Yao, Jin; Djordjevic, Stevan S; Cunningham, John E; Lee, Jin-Hyoung; Shubin, Ivan; Luo, Ying; Bovington, Jock; Lee, Daniel Y; Thacker, Hiren D; Raj, Kannan; Krishnamoorthy, Ashok V

    2016-09-19

    We demonstrate a surface-normal coupled tunable hybrid silicon laser array for the first time using passively-aligned, high-accuracy flip chip bonding. A 2x6 III-V reflective semiconductor optical amplifier (RSOA) array with integrated total internal reflection mirrors is bonded to a CMOS SOI chip with grating couplers and silicon ring reflectors to form a tunable hybrid external-cavity laser array. Waveguide-coupled wall plug efficiency (wcWPE) of 2% and output power of 3 mW has been achieved for all 12 lasers. We further improved the performance by reducing the thickness of metal/dielectric stacks and achieved 10mW output power and 5% wcWPE with the same integration techniques. This non-invasive, one-step back end of the line (BEOL) integration approach provides a promising solution to high density laser sources for future large-scale photonic integrated circuits.

  10. Development and Test of a High Performance Multi Channel Readout System on a Chip with Application in PET/MR

    OpenAIRE

    2014-01-01

    The availability of new, compact, magnetic field tolerant sensors suitable for PET has opened the opportunity to build highly integrated PET scanners that can be included in commercial MR scanners. This combination has long been expected to have big advantages over existing systems combining PET and CT. This thesis describes my work towards building a highly integrated readout ASIC for application in PET/MR within the framework of the HYPERImage and SUBLIMA projects. It also gives a brief ...

  11. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    NARCIS (Netherlands)

    Campbell, M.; Heijne, E.H.M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Fornaini, A.; Graaf, van der H.; Kluit, P.; Timmermans, J.; Visschers, J.L.; Schmitz, J.

    2005-01-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50 mm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficien

  12. Test beam results of the first CMS double-sided strip module prototypes using the CBC2 read-out chip

    Science.gov (United States)

    Harb, Ali; Mussgiller, Andreas; Hauk, Johannes

    2017-02-01

    The CMS Binary Chip (CBC) is a prototype version of the front-end read-out ASIC to be used in the silicon strip modules of the CMS outer tracking detector during the high luminosity phase of the LHC. The CBC is produced in 130 nm CMOS technology and bump-bonded to the hybrid of a double layer silicon strip module, the so-called 2S-pT module. It has 254 input channels and is designed to provide on-board trigger information to the first level trigger system of CMS, with the capability of cluster-width discrimination and high-pT track identification. In November 2013 the first 2S-pT module prototypes equipped with the CBC chips were put to test at the DESY-II test beam facility. Data were collected exploiting a beam of positrons with an energy ranging from 2 to 4 GeV. In this paper the test setup and the results are presented.

  13. Test beam results of the first CMS double-sided strip module prototypes using the CBC2 read-out chip

    Energy Technology Data Exchange (ETDEWEB)

    Harb, Ali; Hauk, Johannes; Mussgiller, Andreas [DESY-Hamburg (Germany)

    2015-07-01

    The CMS Binary Chip 2 (CBC2) is a prototype version of the front-end readout ASIC to be used in the silicon stripmodules of the CMS outer tracker during the high-luminosity phase of the LHC. The CBC2 is produced in a 130 nm CMOS technology and bump-bonded to the hybrid of the double layer silicon strip modules, the so-called 2S modules. It has 254 input channels and is designed to provide an on-board trigger with the capability of cluster-width discrimination and high-momentum track identification. In November 2013 the first 2S module prototypes equipped with CBC2 were put under test at the DESY-II test beam facility. Data was collected exploiting a beam of positrons with an energy range of 2 to 4 GeV. The test setup, the event reconstruction, and the analysis results such as beam properties, alignment, clusters properties, and per-chip efficiency are presented.

  14. Simultaneous detection of lactate and glucose by integrated printed circuit board based array sensing chip.

    Science.gov (United States)

    Li, Xuelian; Zang, Jianfeng; Liu, Yingshuai; Lu, Zhisong; Li, Qing; Li, Chang Ming

    2013-04-10

    An integrated printed circuit board (PCB) based array sensing chip was developed to simultaneously detect lactate and glucose in mouse serum. The novelty of the chip relies on a concept demonstration of inexpensive high-throughput electronic biochip, a chip design for high signal to noise ratio and high sensitivity by construction of positively charged chitosan/redox polymer Polyvinylimidazole-Os (PVI-Os)/carbon nanotube (CNT) composite sensing platform, in which the positively charged chitosan/PVI-Os is mediator and electrostatically immobilizes the negatively charged enzyme, while CNTs function as an essential cross-linker to network PVI-Os and chitosan due to its negative charged nature. Additional electrodes on the chip with the same sensing layer but without enzymes were prepared to correct the interferences for high specificity. Low detection limits of 0.6 μM and 5 μM were achieved for lactate and glucose, respectively. This work could be extended to inexpensive array sensing chips with high sensitivity, good specificity and high reproducibility for various sensor applications.

  15. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip.

    Science.gov (United States)

    Torisawa, Yu-suke; Takagi, Airi; Nashimoto, Yuji; Yasukawa, Tomoyuki; Shiku, Hitoshi; Matsue, Tomokazu

    2007-01-01

    We describe a novel multicellular spheroid culture system that facilitates the easy preparation and culture of a spheroid microarray for the long-term monitoring of cellular activity. A spheroid culture device with an array of pyramid-like microholes was constructed in a silicon chip that was equipped with elastomeric microchannels. A cell suspension was introduced via the microfluidic channel into the microstructure that comprised silicon microholes and elastomeric microwells. A single spheroid can be formed and localized precisely within each microstructure. Since the culture medium could be replaced via the microchannels, a long-term culture (of approximately 2 weeks) is available on the chip. Measurement of albumin production in the hepatoma cell line (HepG2) showed that the liver-specific functions were maintained for 2 weeks. Based on the cellular respiratory activity, the cellular viability of the spheroid array on the chip was evaluated using scanning electrochemical microscopy. Responses to four different chemical stimulations were simultaneously detected on the same chip, thus demonstrating that each channel could be evaluated independently under various stimulation conditions. Our spheroid culture system facilitated the understanding of spheroid formation, culture, and viability assay on a single chip, thus functioning as a useful drug-screening device for cancer and liver cells.

  16. Sample processing for DNA chip array-based analysis of enterohemorrhagic Escherichia coli (EHEC

    Directory of Open Access Journals (Sweden)

    Enfors Sven-Olof

    2008-10-01

    Full Text Available Abstract Background Exploitation of DNA-based analyses of microbial pathogens, and especially simultaneous typing of several virulence-related genes in bacteria is becoming an important objective of public health these days. Results A procedure for sample processing for a confirmative analysis of enterohemorrhagic Escherichia coli (EHEC on a single colony with DNA chip array was developed and is reported here. The protocol includes application of fragmented genomic DNA from ultrasonicated colonies. The sample processing comprises first 2.5 min of ultrasonic treatment, DNA extraction (2×, and afterwards additional 5 min ultrasonication. Thus, the total sample preparation time for a confirmative analysis of EHEC is nearly 10 min. Additionally, bioinformatic revisions were performed in order to design PCR primers and array probes specific to most conservative regions of the EHEC-associated genes. Six strains with distinct pathogenic properties were selected for this study. At last, the EHEC chip array for a parallel and simultaneous detection of genes etpC-stx1-stx2-eae was designed and examined. This should permit to sense all currently accessible variants of the selected sequences in EHEC types and subtypes. Conclusion In order to implement the DNA chip array-based analysis for direct EHEC detection the sample processing was established in course of this work. However, this sample preparation mode may also be applied to other types of EHEC DNA-based sensing systems.

  17. Fluoroscopic x-ray demonstrator using a CdTe polycrystalline layer coupled to a CMOS readout chip

    Science.gov (United States)

    Arques, M.; Renet, S.; Brambilla, A.; Feuillet, G.; Gasse, A.; Billon-Pierron, N.; Jolliot, M.; Mathieu, L.; Rohr, P.

    2010-04-01

    Dynamic X-ray imagers require large surface, fast and highly sensitive X-ray absorbers and dedicated readout electronics. Monocrystalline photoconductors offer the sensitivity, speed, and MTF performances. Polycristalline photoconductors offer the large surface at a moderate cost. The challenge for them is to maintain the first performances at a compatible level with the medical applications requirements. This work has been focused on polycristalline CdTe grown by Close Space Sublimation (CSS) technique. This technique offers the possibility to grow large layers with a high material evaporation yield. This paper presents the results obtained with an image demonstrator using 350μm thick CdTe_css layers coupled to a CMOS readout circuit with Indium bumping. The present demonstrator has 200 x 200 pixels, with a pixel pitch of 75μm ×75μm. A total image surface of 15mm × 15mm has then been obtained. The ASIC works in an integration mode, i.e. each pixel accumulates the charges coming from the CdTe layer on a capacitor, converting them to a voltage. Single images as well as video sequences have been obtained. X-ray performance at 16 frames per second rate is measured. In particular a readout noise of 0.5 X ray, an MTF of 50% at 4 lp/mm and a DQE of 20% at 4lp/mm and 600 nGy are obtained. Although present demonstrator surface is moderate, it demonstrates that high performance can be expected from this assembly concept and its interest for medical applications.

  18. Offset correction system for 128-channel self-triggering readout chip with in-channel 5-bit energy measurement functionality

    Energy Technology Data Exchange (ETDEWEB)

    Otfinowski, P., E-mail: potfin@agh.edu.pl; Grybos, P.; Szczygiel, R.; Kasinski, K.

    2015-04-21

    We report on a novel, two-stage 8-bit trimming solution dedicated for multichannel systems with reduced trim DAC area occupancy. The presented design was used for comparator offset correction in a 128-channel particle tracking, self-triggering readout system and manufactured in 180 nm CMOS process. The 8-bit trim DAC has a range of ±165 mV, current consumption of 3.2 µA and occupies an area of 37 µm×17 µm in each channel, which corresponds to a 6-bit conventional current steering DAC with similar linearity.

  19. On-chip interrogation of a silicon-on-insulator microring resonator-based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

    Science.gov (United States)

    Yebo, Nebiyu A.; Bogaerts, Wim; Hens, Zeger; Baets, Roel

    2012-01-01

    Silicon -on -insulator (SOI) optical microring resonators fabricated with the standard CMOS fabrication technology have recently gained considerable attention for energy efficient, compact and low cost biomedical and environmental sensing applications. High sensitivity to the surrounding refractive index variations, high compactness, direct wavelength multiplexing capabilities, simplicity, and the promise for mass fabrication are among the interesting features supported by SOI microring resonators. On the other hand, despite the strong case for microring resonators for sensing, there exist some issues which need to be addressed in order to ensure the feasibility of such sensors. One major limitation currently is the cost of optical sources and /or spectrum analyzers required to drive and interrogate these sensors. Either expensive light sources or spectrum analyzers are usually used with sensors built around microring resonators. An attractive approach to address this problem is the use of on-chip spectrometers along with cheap broadband light sources. We experimentally demonstrate on-chip interrogation of an SOI microring resonator based gas sensor with a compact Arrayed Waveguide Grating (AWG) spectrometer. We have designed and fabricated a 200GHz AWG with strongly overlapping output channels, and used it to interrogate the wavelength shift from a ring resonator based ethanol vapor sensor on the same chip. Ethanol vapor concentrations in 100-1000ppm range are readily detected by monitoring the intensity ratio between two adjacent AWG channels to which the microring resonance overlaps. Such an integrated sensor-interrogator approach is presented as an alternative to the current costly and off-chip read-out systems used for ring resonator based sensors.

  20. Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays.

    Science.gov (United States)

    Wang, Kevin I-Kai; Salcic, Zoran; Yeh, Johnny; Akagi, Jin; Zhu, Feng; Hall, Chris J; Crosier, Kathryn E; Crosier, Philip S; Wlodkowic, Donald

    2013-10-15

    Lab-on-a-Chip (LOC) biomicrofluidic technologies are rapidly emerging bioanalytical tools that can miniaturize and revolutionize in situ research on embryos of small vertebrate model organisms such as zebrafish (Danio rerio) and clawed African frog (Xenopus laevis). Despite considerable progress being made in fabrication techniques of chip-based devices, they usually still require excessive and manual actuation and data acquisition that significantly reduce throughput and introduce operator-related analytical bias. This work describes the development of a proof-of-concept embedded platform that integrates an innovative LOC zebrafish embryo array technology with an electronic interface to provide higher levels of laboratory automation for in situ biotests. The integrated platform was designed to perform automatic immobilization, culture and treatment of developing zebrafish embryos during fish embryo toxicity (FET) biotests. The system was equipped with a stepper motor driven stage, solenoid-actuated pinch valves, miniaturized peristaltic pumps as well as Peltier heating module. Furthermore, a Field Programmable Gate Array (FPGA) was used to implement an embedded hardware/software solution and interface to enable real-time control over embryo loading and immobilization; accurate microfluidic flow control; temperature stabilization and also automatic time-resolved image acquisition of developing zebrafish embryos. This work presents evidence that integration of embedded electronic interfaces with microfluidic chip-based technologies can bring the Lab-on-a-Chip a step closer to fully automated analytical systems.

  1. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals

    Science.gov (United States)

    Yan, Hai; Tang, Naimei; Jairo, Grace A.; Chakravarty, Swapnajit; Blake, Diane A.; Chen, Ray T.

    2016-03-01

    Heavy metal ions released into the environment from industrial processes lead to various health hazards. We propose an on-chip label-free detection approach that allows high-sensitivity and high-throughput detection of heavy metals. The sensing device consists of 2-dimensional photonic crystal microcavities that are combined by multimode interferometer to form a sensor array. We experimentally demonstrate the detection of cadmium-chelate conjugate with concentration as low as 5 parts-per-billion (ppb).

  2. Sample processing for DNA chip array-based analysis of enterohemorrhagic Escherichia coli (EHEC)

    OpenAIRE

    Enfors Sven-Olof; Wegrzyn Grzegorz; Basselet Pascal; Gabig-Ciminska Magdalena

    2008-01-01

    Abstract Background Exploitation of DNA-based analyses of microbial pathogens, and especially simultaneous typing of several virulence-related genes in bacteria is becoming an important objective of public health these days. Results A procedure for sample processing for a confirmative analysis of enterohemorrhagic Escherichia coli (EHEC) on a single colony with DNA chip array was developed and is reported here. The protocol includes application of fragmented genomic DNA from ultrasonicated co...

  3. A Design of ABC95 Array Computer Multi-function Interconnection Chips

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have enough I/O band and flexible communications between Pes. The authors designed the interconnecting network chips of ABC95 and realized a form of multi-function interconnection. The multi-function interconnecting network supports conflict-free access from processors to memory matrix and the MESH network of enhanced processors to processor communications. The design scheme has been proved feasible by experiment.

  4. Capacitive micropressure sensors with underneath readout circuit using a standard CMOS process

    Science.gov (United States)

    Chang, Shihchen; Dai, Chingliang; Chiou, Jinghung; Chang, Peizen

    2001-08-01

    A capacitive micropressure sensor with readout circuits on a single chip is fabricated using commercial 0.35micrometers CMOS process technology and post-processing. The main break through feature of the chip is the positioning of its readout circuits under the pressure sensor, allowing the chip to be smaller. Post-processing included anisotropic dry etching and wet etching to remove the sacrificial layer, and the use of PECVD nitride to seal the etching holes of the pressure sensor. The sacrificial layer was the metal 3 layer of the standard 0.35 micrometers CMOS process. In addition, the readout circuit is divided into analog and digital parts, with the digital part being an alternate coupled RS flip- flop with four inverters that sharpened the output wave. Moreover, the analog part is employed switched capacitor methodology. The pressure sensor contained an 8 X 8 sensing cells array, and the total area of the pressure sensor chip is 2mmx2 mm. In addition to illustrating the design and fabrication of the capacitive pressure sensor, this investigation demonstrates the simulation and testing results of the readout circuit.

  5. Time resolution of a photomultiplier readout system for space application

    CERN Document Server

    Commichau, Sebastian Caspar; Capell, M; Commichau, Volker; Flügge, G; Hangarter, K; Lebedev, A; Mnich, J; Röser, U; Viertel, G M; Von Gunten, H P

    2004-01-01

    The performance of a readout system for the synchrotron radiation detector (SRD) is studied. The detector is proposed as part of the Alpha Magnetic Spectrometer experiment, an experiment to fly on the International Space Station (ISS) beginning of 2005. The SRD is designed to detect the synchrotron radiation from electrons and positrons (TeV energy range) produced in the earth's magnetic field. For the planned array of scintillators and photomultipliers a readout system is chosen, which is compact, space qualified and has a low- power consumption. The low-power chip APV, originally designed for the CMS experiment at LHC (CERN), is foreseen for the readout. To overcome the diffuse background from photons and charged particles the SRD readout must have a time resolution better than 10 ns. The intrinsic time resolution (sigma from Gauss fit) of the APV25-S0 was found to be 0.46 +or- 0.01 and 0.68 +or-0.02 ns for the APVM. whereas the time resolution of the photomultiplier-APV readout system was measured to be 2....

  6. The FE-I4 pixel readout system-on-chip resubmission for the insertable B-Layer project

    CERN Document Server

    Zivkovic, V; Garcia-Sciveres, M; Mekkaoui, A; Barbero, M; Darbo, G; Gnani, D; Hemperek, T; Menouni, M; Fougeron, D; Gensolen, F; Jensen, F; Caminada, L; Gromov, V; Kluit, R; Fleury, J; Krüger, H; Backhaus, M; Fang, X; Gonella, L; Rozanove, A; Arutinov, D

    2012-01-01

    The FE-I4 is a new pixel readout integrated circuit designed to meet the requirements of ATLAS experiment upgrades. The first samples of the FE-I4 engineering run (called FE-I4A) delivered promising results in terms of the requested performances. The FE-I4 team envisaged a number of modifications and fine-tuning before the actual exploitation, planned within the Insertable B-Layer (IBL) of ATLAS. As the IBL schedule was pushed significantly forward, a quick and efficient plan had to be devised for the FE-I4 redesign. This article will present the main objectives of the resubmission, together with the major changes that were a driving factor for this redesign. In addition, the top-level verification and test efforts of the FE-I4 will also be addressed.

  7. PS-module prototypes with MPA-light readout chip for the CMS Tracker Phase 2 Upgrade

    Science.gov (United States)

    Grossmann, J.

    2017-02-01

    During the HL-LHC era an instantaneous luminosity of 5×1034 cm‑2s‑1 will be reached and possibly 3000 fb‑1 integrated luminosity will be delivered. This results in the requirement for a major upgrade of the CMS Outer Tracker detector. This contribution briefly reviews the module types and the front end readout electronics foreseen in the preparation program known as phase 2 upgrade. R&D towards the construction of full module prototypes for the Pixel-Strip (PS) module is ongoing. The module combines a macro-pixel sensor and a strip sensor and has pT -discrimination capability at module level. The current experience from module construction with a demonstrator assembly and initial laboratory testing with an alternative module concept for the PS-module is shown. A possible calibration method is introduced.

  8. PS-Module prototypes with MPA-light readout chip for the CMS Tracker Phase 2 Upgrade

    CERN Document Server

    Grossmann, Johannes

    2016-01-01

    During the HL-LHC era an instantaneous luminosity of $5\\times10^{34}\\,\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ will be reached and possibly $3000\\mskip3mu\\mathrm{fb} ^{-1}$ integrated luminosity will be delivered. This results in the requirement for a major upgrade of the CMS Outer Tracker detector. This contribution briefly reviews the module types and the front end readout electronics foreseen in the preparation program known as phase 2 upgrade. R\\&D towards the construction of full module prototypes for the Pixel-Strip (PS) module is ongoing. The module combines a macro-pixel sensor and a strip sensor and has $p_{\\mathrm{T}}\\,$-discrimination capability at module level. The current experience from module construction with a demonstrator assembly and initial laboratory testing with an alternative module concept for the PS-module is shown. A possible calibration method is introduced.

  9. Design of Low Power CMOS Read-Out with TDI Function for Infrared Linear Photodiode Array Detectors

    Science.gov (United States)

    Vizcaino, Paul; Ramirez-Angulo, Jaime; Patel, Umesh D.

    2007-01-01

    A new low voltage CMOS infrared readout circuit using the buffer-direct injection method is presented. It uses a single supply voltage of 1.8 volts and a bias current of 1uA. The time-delay integration technique is used to increase the signal to noise ratio. A current memory circuit with faulty diode detection is used to remove dark current for background compensation and to disable a photodiode in a cell if detected as faulty. Simulations are shown that verify the circuit that is currently in fabrication in 0.5ym CMOS technology.

  10. DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array

    CERN Document Server

    Rajda, P; Bilnik, W.; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Rameez, M.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Schioppa, E. jr; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Więcek, M.; Zagdański, A.; Żychowski, P.

    2016-01-01

    The SST-1M is one of three prototype small-sized telescope designs proposed for the Cherenkov Telescope Array, and is built by a consortium of Polish and Swiss institutions. The SST-1M will operate with DigiCam - an innovative, compact camera with fully digital read-out and trigger electronics. A high level of integration will be achieved by massively deploying state-of-the-art multi-gigabit transmission channels, beginning from the ADC flash converters, through the internal data and trigger signals transmission over backplanes and cables, to the camera's server link. Such an approach makes it possible to design the camera to fit the size and weight requirements of the SST-1M exactly, and provide low power consumption, high reliability and long lifetime. The structure of the digital electronics will be presented, along with main physical building blocks and the internal architecture of FPGA functional subsystems.

  11. Front-End Electronics for the Array Readout of a Microwave Kinetic Inductance Detector Towards Observation of Cosmic Microwave Background Polarization

    Science.gov (United States)

    Ishitsuka, H.; Ikeno, M.; Oguri, S.; Tajima, O.; Tomita, N.; Uchida, T.

    2016-07-01

    Precise measurements of polarization patterns in cosmic microwave background (CMB) provide deep knowledge about the begin of the Universe. The GroundBIRD experiment aims to measure the CMB polarization by using microwave kinetic inductance detector (MKID) arrays. The MKID is suited to multiplexing. One of our requirements is a MUX factor (the number of readout channels for a single wire pair) of at least 100. If we make frequency combs of the MKIDs with 2-MHz spacing, a bandwidth of 200 MHz satisfies 100 MUX. The analog electronics must consist of an analog-to-digital converter (ADC), digital-to-analog converter (DAC), and local oscillator. We developed our own analog electronics board " RHEA." Two outputs/inputs of DAC/ADC with a 200-MHz clock provide an effective bandwidth of 200 MHz. The RHEA allows us to measure both the amplitude and phase responses of each MKID simultaneously. These data are continuously sampled at a high rate (e.g., 1 kSPS) and with no dead time. We achieved 12 and 14 bits resolution for ADC and DAC, respectively. This corresponds to achieve that our electronics achieved low noise: 1/1000 compared with the detector noise. We also achieved low power consumption compared with that of other electronics development for other experiments. Another important feature is that the board is completely separated from the digital part. Each user can choose their preferred field-programmable array. With the combination of the Kintex-7 evaluation kit from Xilinx, we demonstrated readout of MKID response.

  12. Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips

    Science.gov (United States)

    Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.

    2016-12-01

    Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.

  13. VLSI design of an RSA encryption/decryption chip using systolic array based architecture

    Science.gov (United States)

    Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi

    2016-09-01

    This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.

  14. Rapid, single-molecule assays in nano/micro-fluidic chips with arrays of closely spaced parallel channels fabricated by femtosecond laser machining.

    Science.gov (United States)

    Canfield, Brian K; King, Jason K; Robinson, William N; Hofmeister, William H; Davis, Lloyd M

    2014-08-20

    Cost-effective pharmaceutical drug discovery depends on increasing assay throughput while reducing reagent needs. To this end, we are developing an ultrasensitive, fluorescence-based platform that incorporates a nano/micro-fluidic chip with an array of closely spaced channels for parallelized optical readout of single-molecule assays. Here we describe the use of direct femtosecond laser machining to fabricate several hundred closely spaced channels on the surfaces of fused silica substrates. The channels are sealed by bonding to a microscope cover slip spin-coated with a thin film of poly(dimethylsiloxane). Single-molecule detection experiments are conducted using a custom-built, wide-field microscope. The array of channels is epi-illuminated by a line-generating red diode laser, resulting in a line focus just a few microns thick across a 500 micron field of view. A dilute aqueous solution of fluorescently labeled biomolecules is loaded into the device and fluorescence is detected with an electron-multiplying CCD camera, allowing acquisition rates up to 7 kHz for each microchannel. Matched digital filtering based on experimental parameters is used to perform an initial, rapid assessment of detected fluorescence. More detailed analysis is obtained through fluorescence correlation spectroscopy. Simulated fluorescence data is shown to agree well with experimental values.

  15. Nanocavity crossbar arrays for parallel electrochemical sensing on a chip

    Directory of Open Access Journals (Sweden)

    Enno Kätelhön

    2014-07-01

    Full Text Available We introduce a novel device for the mapping of redox-active compounds at high spatial resolution based on a crossbar electrode architecture. The sensor array is formed by two sets of 16 parallel band electrodes that are arranged perpendicular to each other on the wafer surface. At each intersection, the crossing bars are separated by a ca. 65 nm high nanocavity, which is stabilized by the surrounding passivation layer. During operation, perpendicular bar electrodes are biased to potentials above and below the redox potential of species under investigation, thus, enabling repeated subsequent reactions at the two electrodes. By this means, a redox cycling current is formed across the gap that can be measured externally. As the nanocavity devices feature a very high current amplification in redox cycling mode, individual sensing spots can be addressed in parallel, enabling high-throughput electrochemical imaging. This paper introduces the design of the device, discusses the fabrication process and demonstrates its capabilities in sequential and parallel data acquisition mode by using a hexacyanoferrate probe.

  16. Microlens-array-enabled on-chip optical trapping and sorting.

    Science.gov (United States)

    Zhao, Xing; Sun, Yuyang; Bu, Jing; Zhu, Siwei; Yuan, X-C

    2011-01-20

    An on-chip optical trapping and sorting system composed of a microchamber and a microlens array (MLA) is demonstrated. The MLA focuses the incident light into multiple confocal spots to trap the particles within the microchamber. The SiO(2)/ZrO(2) solgel material is introduced in the fabrication of MLA for its unique optical and chemical characters. Moreover, in order to prove the effectiveness of the system, experimental demonstration of multibeam trapping and locked-in transport of micropolymer particles in the microchamber is implemented. The system may easily be integrated as microfluidic devices, offering a simple and efficient solution for optical trapping and sorting of biological particles in lab-on-a-chip technologies.

  17. Raman-Spectroscopy Based Cell Identification on a Microhole Array Chip

    Directory of Open Access Journals (Sweden)

    Ute Neugebauer

    2014-04-01

    Full Text Available Circulating tumor cells (CTCs from blood of cancer patients are valuable prognostic markers and enable monitoring responses to therapy. The extremely low number of CTCs makes their isolation and characterization a major technological challenge. For label-free cell identification a novel combination of Raman spectroscopy with a microhole array platform is described that is expected to support high-throughput and multiplex analyses. Raman spectra were registered from regularly arranged cells on the chip with low background noise from the silicon nitride chip membrane. A classification model was trained to distinguish leukocytes from myeloblasts (OCI-AML3 and breast cancer cells (MCF-7 and BT-20. The model was validated by Raman spectra of a mixed cell population. The high spectral quality, low destructivity and high classification accuracy suggests that this approach is promising for Raman activated cell sorting.

  18. HAT: Hypergeometric Analysis of Tiling-arrays with application to promoter-GeneChip data

    Directory of Open Access Journals (Sweden)

    Wouters Bas J

    2010-05-01

    Full Text Available Abstract Background Tiling-arrays are applicable to multiple types of biological research questions. Due to its advantages (high sensitivity, resolution, unbiased, the technology is often employed in genome-wide investigations. A major challenge in the analysis of tiling-array data is to define regions-of-interest, i.e., contiguous probes with increased signal intensity (as a result of hybridization of labeled DNA in a region. Currently, no standard criteria are available to define these regions-of-interest as there is no single probe intensity cut-off level, different regions-of-interest can contain various numbers of probes, and can vary in genomic width. Furthermore, the chromosomal distance between neighboring probes can vary across the genome among different arrays. Results We have developed Hypergeometric Analysis of Tiling-arrays (HAT, and first evaluated its performance for tiling-array datasets from a Chromatin Immunoprecipitation study on chip (ChIP-on-chip for the identification of genome-wide DNA binding profiles of transcription factor Cebpa (used for method comparison. Using this assay, we can refine the detection of regions-of-interest by illustrating that regions detected by HAT are more highly enriched for expected motifs in comparison with an alternative detection method (MAT. Subsequently, data from a retroviral insertional mutagenesis screen were used to examine the performance of HAT among different applications of tiling-array datasets. In both studies, detected regions-of-interest have been validated with (qPCR. Conclusions We demonstrate that HAT has increased specificity for analysis of tiling-array data in comparison with the alternative method, and that it accurately detects regions-of-interest in two different applications of tiling-arrays. HAT has several advantages over previous methods: i as there is no single cut-off level for probe-intensity, HAT can detect regions-of-interest at various thresholds, ii it can

  19. Microtrap arrays on magnetic film atom chips for quantum information science

    CERN Document Server

    Leung, V Y F; van Druten, N J; Spreeuw, R J C

    2011-01-01

    We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ~5 {\\mu}m period, so that qubits can be individually addressed and interactions can be mediated by Rydberg excitations. The second strategy aims for direct quantum simulators using sub-optical lattices of ~100 nm period. These would allow the realization of condensed matter inspired quantum many-body systems, such as Hubbard models in new parameter regimes. The two approaches raise quite different issues, some of which are identified and discussed.

  20. A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout

    Science.gov (United States)

    Lee, Seung-Jae; Lee, Chaeyeong; Kang, Jihoon; Chung, Yong Hyun

    2017-01-01

    We developed a depth of interaction (DOI) positron emission tomography (PET) detector using depth-dependent reflector patterns in a discrete crystal array. Due to the different reflector patterns at depth, light distribution was changed relative to depth. As a preliminary experiment, we measured DOI detector module crystal identification performance. The crystal consisted of a 9×9 array of 2 mmx2 mmx20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals. The crystal array was optically coupled to a 64-channel position-sensitive photomultiplier tube with a 2 mmx2 mm anode size and an 18.1 mmx18.1 mm effective area. We obtained the flood image with an Anger-type calculation. DOI layers and 9×9 pixels were well distinguished in the obtained images. Preclinical PET scanners based on this detector design offer the prospect of high and uniform spatial resolution.

  1. Compact, Low-power and Precision Timing Photodetector Readout

    Energy Technology Data Exchange (ETDEWEB)

    Varner, Gary S.; Ruckman, Larry L.; /Hawaii U.; Schwiening, Jochen; Vavra, Jaroslav; /SLAC

    2011-06-14

    Photodetector readout for next generation high event rate particle identification and single-photon detection requires a digitizer capable of integrated recording of dense arrays of sensor elements with high analog bandwidth (precision timing) and large record depth, in a cost-effective, compact and low-power way. Simply stated, one cannot do better than having a high-fidelity 'oscilloscope on a chip' for every sensor channel. A firs version of the Buffered Large Analog Bandwidth (BLAB1) ASIC has been designed based upon the lessons learned from the development of the Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (LABRADOR) ASIC. While this LABRADOR ASIC has been very successful and forms the readout basis of a generation of new, large-scale radio neutrino detectors, its limited sampling depth is a major drawback. To address this shortcoming, a prototype intended for photodetector readout has been designed and fabricated with 64k deep sampling at multi-GSa/s operation. An evaluation system has been constructed for instrumentation of Time-Of-Propagation (TOP) and focusing DIRC prototypes and test results will be reported.

  2. Investigation of Laplace barriers for arrayed electrowetting lab-on-a-chip.

    Science.gov (United States)

    Schultz, A; Papautsky, I; Heikenfeld, J

    2014-05-13

    Partial-post Laplace barriers have been postulated as a means to allow electrowetting transport and geometrical reshaping of fluids, followed by the preservation of fluid geometry after the electrowetting voltage is removed. Reported here is the first investigation of Laplace barriers with the arrayed electrodes and splitting/merging transport functions for an electrowetting lab-on-a-chip. Laplace barriers optimized for 500 × 500 μm(2) electrodes and 78 μm channel height are shown to provide geometrical control of fluid shape down to radii of curvature of ~70 μm. The Laplace barriers increase the splitting volume error, but with proper electrical control, the average error in the split volume is reduced to 5%. Improved programmable fluid storage in droplets or reservoirs and continuous channel flow are also shown. This work confirms the potential benefits of Laplace barriers for lab-on-a-chip and also reveals the unique challenges and operation requirements for Laplace barriers in lab-on-a-chip applications.

  3. 3D-FBK pixel sensors with CMS readout: First test results

    Energy Technology Data Exchange (ETDEWEB)

    Obertino, M., E-mail: margherita.obertino@cern.ch [Università del Piemonte Orientale, Novara, and INFN, Torino (Italy); Solano, A. [Università di Torino and INFN, Torino (Italy); Vilela Pereira, A. [INFN, Torino (Italy); Alagoz, E. [Physics Department, Purdue University, West Lafayette, IN (United States); Andresen, J. [Colorado University, Colorado (United States); Arndt, K.; Bolla, G.; Bortoletto, D. [Physics Department, Purdue University, West Lafayette, IN (United States); Boscardin, M. [Centro per i Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Povo di Trento (Italy); Brosius, R. [SUNY, Buffalo (United States); Bubna, M. [Physics Department, Purdue University, West Lafayette, IN (United States); Dalla Betta, G.-F. [INFN Padova (Gruppo Collegato di Trento) and Università di Trento, Povo di Trento (Italy); Jensen, F. [Colorado University, Colorado (United States); Krzywda, A. [Physics Department, Purdue University, West Lafayette, IN (United States); Kumar, A. [SUNY, Buffalo (United States); Kwan, S. [Università di Milano Bicocca and INFN, Milano (Italy); Lei, C.M. [Colorado University, Colorado (United States); Menasce, D.; Moroni, L. [INFN Milano Bicocca, Milano (Italy); Ngadiuba, J. [Università di Milano Bicocca and INFN, Milano (Italy); and others

    2013-08-01

    Silicon 3D detectors consist of an array of columnar electrodes of both doping types which penetrate entirely in the detector bulk, perpendicularly to the surface. They are emerging as one of the most promising technologies for innermost layers of tracking devices for the foreseen upgrades of the LHC. Until recently, properties of 3D sensors have been investigated mostly with ATLAS readout electronics. 3D pixel sensors compatible with the CMS readout were first fabricated at SINTEF (Oslo, Norway), and more recently at FBK (Trento, Italy) and CNM (Barcelona, Spain). Several sensors with different electrode configurations, bump-bonded with the CMS pixel PSI46 readout chip, were characterized in laboratory and tested at Fermilab with a proton beam of 120 GeV/c. Preliminary results of the data analysis are presented.

  4. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids

    Science.gov (United States)

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  5. HuMiChip: Development of a Functional Gene Array for the Study of Human Microbiomes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Q.; Deng, Ye; Lin, Lu; Hemme, Chris L.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Microbiomes play very important roles in terms of nutrition, health and disease by interacting with their hosts. Based on sequence data currently available in public domains, we have developed a functional gene array to monitor both organismal and functional gene profiles of normal microbiota in human and mouse hosts, and such an array is called human and mouse microbiota array, HMM-Chip. First, seed sequences were identified from KEGG databases, and used to construct a seed database (seedDB) containing 136 gene families in 19 metabolic pathways closely related to human and mouse microbiomes. Second, a mother database (motherDB) was constructed with 81 genomes of bacterial strains with 54 from gut and 27 from oral environments, and 16 metagenomes, and used for selection of genes and probe design. Gene prediction was performed by Glimmer3 for bacterial genomes, and by the Metagene program for metagenomes. In total, 228,240 and 801,599 genes were identified for bacterial genomes and metagenomes, respectively. Then the motherDB was searched against the seedDB using the HMMer program, and gene sequences in the motherDB that were highly homologous with seed sequences in the seedDB were used for probe design by the CommOligo software. Different degrees of specific probes, including gene-specific, inclusive and exclusive group-specific probes were selected. All candidate probes were checked against the motherDB and NCBI databases for specificity. Finally, 7,763 probes covering 91.2percent (12,601 out of 13,814) HMMer confirmed sequences from 75 bacterial genomes and 16 metagenomes were selected. This developed HMM-Chip is able to detect the diversity and abundance of functional genes, the gene expression of microbial communities, and potentially, the interactions of microorganisms and their hosts.

  6. Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Fienberg, A. T.; Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Fatemi, R.; Ferrari, C.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Kaspar, J.; Kiburg, B.; Li, L.; Mastroianni, S.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Venanzoni, G.; Van Wechel, T. D.; Wall, K. B.; Winter, P.; Yai, K.

    2015-05-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0 -- 4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes versus energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 1e-4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution sigma/E of (3.4 +- 0.1) % per sqrt(E/GeV), while those wrapped in a black, absorptive wrapping had (4.6 +- 0.3) % per sqrt(E/GeV). The white-wrapped crystals---having nearly twice the total light collection---display a generally wider and impact-position-dependent pulse shape owing to the dynamics of the light propagation, in comparison to the black-wrapped crystals, which have a narrower pulse shape that is insensitive to impact position.

  7. Studies of an array of PbF$_2$ Cherenkov crystals with large-area SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Fienberg, A.T.; et al.

    2015-05-21

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0 -- 4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes versus energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 1e-4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution sigma/E of (3.4 +- 0.1) % per sqrt(E/GeV), while those wrapped in a black, absorptive wrapping had (4.6 +- 0.3) % per sqrt(E/GeV). The white-wrapped crystals---having nearly twice the total light collection---display a generally wider and impact-position-dependent pulse shape owing to the dynamics of the light propagation, in comparison to the black-wrapped crystals, which have a narrower pulse shape that is insensitive to impact position.

  8. Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout

    CERN Document Server

    Fienberg, A T; Anastasi, A; Bjorkquist, R; Cauz, D; Fatemi, R; Ferrari, C; Fioretti, A; Frankenthal, A; Gabbanini, C; Gibbons, L K; Giovanetti, K; Goadhouse, S D; Gohn, W P; Gorringe, T P; Hertzog, D W; Iacovacci, M; Kammel, P; Kaspar, J; Kiburg, B; Li, L; Mastroianni, S; Pauletta, G; Peterson, D A; Pocanic, D; Smith, M W; Sweigart, D A; Tishchenko, V; Venanzoni, G; Van Wechel, T D; Wall, K B; Winter, P; Yai, K

    2014-01-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0 -- 4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes versus energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 1e-4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution sigma/E of (3.4 +- 0.1) % per sqrt(E/GeV), while those wrapped in a black, absorptive wrapping had (4.6 +- 0.3) % per sqrt(E/GeV). The white-wrapped crystals---having nearly twice the total light collection---display a generally wider and impact-posit...

  9. Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements.

    Science.gov (United States)

    Shen, C H; Gau, C

    2004-07-30

    The design and fabrication for a thermal chip with an array of temperature sensors and heaters for study of micro-jet impingement cooling heat transfer process are presented. This thermal chip can minimize the heat loss from the system to the ambient and provide a uniform heat flux along the wall, thus local heat transfer processes along the wall can be measured and obtained. The fabrication procedure presented can reach a chip yield of 100%, and every one of the sensors and heaters on the chip is in good condition. In addition, micro-jet impingement cooling experiments are performed to obtain the micro-scale local heat transfer Nusselt number along the wall. Flow visualization for the micro-impinging jet is also made. The experimental results indicate that both the micro-scale impinging jet flow structure and the heat transfer process along the wall is significantly different from the case of large-scale jet impingement cooling process.

  10. Stress response of Caenorhabditis elegans induced by space crowding in a micro-column array chip.

    Science.gov (United States)

    Wang, Xixian; Tang, Lichun; Xia, Yuyang; Hu, Liang; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2013-04-01

    Crowding stress has been reported to play an important role in affecting physiological behaviour. To study this process, a reliable analytical method under confined space is essential. In this work, we demonstrated a microfluidic approach for investigating physiological responses of C. elegans to confined spaces. The PDMS microfluidic chip consisting of arrays of micro-columns enabled us to mimic different crowding conditions by changing the intervals among micro-columns. C. elegans were transferred into this micro-column array and the subcellular distribution of DAF-16, which is a well-known transcription factor regulating different stress responses, was monitored for analysing the physiological responses to the confined spaces. We found that the worms exhibited a gradual increase in DAF-16 nuclear localization in the micro-column array with intervals from 200 μm to 40 μm. Moreover, the results showed that the absence of food and crowding stress could cooperate to promote increased DAF-16 nuclear localization. Finally, loss-of-function mutations in mec-4 and mec-10, which are amiloride-sensitive Na(+) channel genes expressed in all six gentle touch neurons, accelerated the velocity of DAF-16 nuclear localization, induced by confined space, revealing that mec-4/mec-10 were not required for this stress response. Thus, this device will provide a versatile, reliable and controllable platform for crowding stress studies.

  11. Programmable retinal dynamics in a CMOS mixed-signal array processor chip

    Science.gov (United States)

    Carmona, Ricardo A.; Jimenez-Garrido, Francisco J.; Dominguez-Castro, Rafael; Espejo, Servando; Rodriguez-Vazquez, Angel

    2003-04-01

    The retina is responsible of the treatment of visual information at early stages. Visual stimuli generate patterns of activity that are transmitted through its layered structure up to the ganglion cells that interface it to the optical nerve. In this trip of micrometers, information is sustained by continuous signals that interact in excitatory and inhibitory ways. This low-level processing compresses the relevant information of the images to a manageable size. The behavior of the more external layers of the biological retina has been successfully modelled within the Cellular Neural Network framework. Interactions between cells are realized on a local basic. Each cell interacts with its nearest neighbors and every cell in the same layer follows the same interconnection pattern. Intra- and inter-layer interactions are continuous in magnitude and time. The evolution of the network can be described by a set of coupled nonlinear differential equations. A mixed-signal VLSI implementation of focal-plane low-level image processing based upon this biological model constitutes a feasible and cost effective alternative to conventional digital processing in real-time applications. A CMOS Programmable Array Processor prototype chip has been designed and fabricated in a standard technology. It has been successfully tested, validating the proposed design techniques. The integrated system consists of a network of 2 coupled layers, containing 32×32 elementary processors, running at different time constants. Involved image processing algorithms can be programmed on this chip by tuning the appropriate interconnection weights, internally coded as analog but programmed via a digital interface. Propagative, active wave phenomena and retina-lake effects can be observed in this chip. Low-level image processing tasks for early vision applications can be developed based on these high-order dynamics.

  12. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    Science.gov (United States)

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.

  13. Flexible multi-electrode array with integrated bendable CMOS-chip for implantable systems.

    Science.gov (United States)

    Winkin, N; Mokwa, W

    2012-01-01

    Micro-electrodes and micro-electrode arrays (MEAs) for stimulating neurons or recording action potentials are widely used in medical applications or biological research. For medical implants in many applications like brain implants or retinal implants there is a need for flexible MEAs with a large area and a large number of stimulation electrodes. In this work a flexible MEA with an embedded flexible silicon dummy CMOS-chip facing these challenges has been designed, manufactured and characterized. This approach offers the possibility by connecting and addressing several of these MEAs via a bus system, to increase the number and the density of electrodes significantly. This paper describes the design and fabrication process. Results on the mechanical and electrical behavior will be given and possible improvements for medical applications by this novel approach will be discussed.

  14. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seok; Niazi, Javed H. [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Gu, Man Bock [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)], E-mail: mbgu@korea.ac.kr

    2009-02-23

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates.

  15. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, A.T.; Sensabaugh, G.F.; Mathies, R.A. [Univ. of California, Berkeley, CA (United States)

    1997-06-01

    Capillary array electrophoresis (CAE) chips have been designed and fabricated with the capacity to rapidly (<160 s) analyze 12 different samples in parallel. Detection of all lanes with 0.3 s temporal resolution was achieved using a laser-excited confocal-fluorescence scanner. The operation and capabilities of these CAE microdevices were first determined by performing electrophoretic separations of pBR322 MspI DNA samples. Genotyping of HLA-H, a candidate gene for the diagnosis of hereditary hemochromatosis, was then performed to demonstrate the rapid analysis of biologically relevant samples. Two-color multiplex fluorescence detection of HLA-H genotypes was accomplished by prelabeling the standard pBR322 MspI DNA ladder with a red emitting bisintercalation dye (butyl TOTIN) and on-column labeling of the HLA-H DNA with thiazole orange. This work establishes the feasibility of using CAE chips for high-speed, high-throughput genotyping. 44 refs., 7 figs.

  16. Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory

    CERN Document Server

    van der Kuur, J; Akamatsu, H; van Leeuwen, B J; Hartog, R den; Haas, D; Kiviranta, M; Jackson, B J

    2016-01-01

    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within...

  17. Portable, Easy-to-Operate, and Antifouling Microcapsule Array Chips Fabricated by 3D Ice Printing for Visual Target Detection.

    Science.gov (United States)

    Zhang, Hong-Ze; Zhang, Fang-Ting; Zhang, Xiao-Hui; Huang, Dong; Zhou, Ying-Lin; Li, Zhi-Hong; Zhang, Xin-Xiang

    2015-06-16

    Herein, we proposed a portable, easy-to-operate, and antifouling microcapsule array chip for target detection. This prepackaged chip was fabricated by innovative and cost-effective 3D ice printing integrating with photopolymerization sealing which could eliminate complicated preparation of wet chemistry and effectively resist outside contaminants. Only a small volume of sample (2 μL for each microcapsule) was consumed to fulfill the assay. All the reagents required for the analysis were stored in ice form within the microcapsule before use, which guaranteed the long-term stability of microcapsule array chips. Nitrite and glucose were chosen as models for proof of concept to achieve an instant quantitative detection by naked eyes without the need of external sophisticated instruments. The simplicity, low cost, and small sample consumption endowed ice-printing microcapsule array chips with potential commercial value in the fields of on-site environmental monitoring, medical diagnostics, and rapid high-throughput point-of-care quantitative assay.

  18. ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; O CONNOR,P.; KANDASAMY,A.; GROSHOLZ,J.

    2002-07-08

    A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 {micro}m CMOS and tested. Design concepts and experimental results are discussed.

  19. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  20. Multiplexed optical operation of distributed nanoelectromechanical systems arrays.

    Science.gov (United States)

    Sampathkumar, A; Ekinci, K L; Murray, T W

    2011-03-09

    We report a versatile all optical technique to excite and read-out a distributed nanoelectromechanical systems (NEMS) array. The NEMS array is driven by a distributed, intensity modulated optical pump through the photothermal effect. The ensuing vibrational response of the array is multiplexed onto a single probe beam in the form of a high frequency phase modulation. The phase modulation is optically down converted to a low frequency intensity modulation using an adaptive full-field interferometer, and subsequently detected using a CCD array. Rapid and single step mechanical characterization of ∼44 nominally identical high-frequency resonators is demonstrated. The technique may enable sensitivity improvements over single NEMS resonators by averaging signals coming from a multitude of devices in the array. In addition, the diffraction limited spatial resolution may allow for position-dependent read-out of NEMS sensor chips for sensing multiple analytes or spatially inhomogeneous forces.

  1. Fabrication of functionalized double-lamellar multifunctional envelope-type nanodevices using a microfluidic chip with a chaotic mixer array.

    Directory of Open Access Journals (Sweden)

    Katsuma Kitazoe

    Full Text Available Multifunctional envelope-type nanodevices (MENDs are very promising non-viral gene delivery vectors because they are biocompatible and enable programmed packaging of various functional elements into an individual nanostructured liposome. Conventionally MENDs have been fabricated by complicated, labor-intensive, time-consuming bulk batch methods. To avoid these problems in MEND fabrication, we adopted a microfluidic chip with a chaotic mixer array on the floor of its reaction channel. The array was composed of 69 cycles of the staggered chaotic mixer with bas-relief structures. Although the reaction channel had very large Péclet numbers (>10(5 favorable for laminar flows, its chaotic mixer array led to very small mixing lengths (<1.5 cm and that allowed homogeneous mixing of MEND precursors in a short time. Using the microfluidic chip, we fabricated a double-lamellar MEND (D-MEND composed of a condensed plasmid DNA core and a lipid bilayer membrane envelope as well as the D-MEND modified with trans-membrane peptide octaarginine. Our lab-on-a-chip approach was much simpler, faster, and more convenient for fabricating the MENDs, as compared with the conventional bulk batch approaches. Further, the physical properties of the on-chip-fabricated MENDs were comparable to or better than those of the bulk batch-fabricated MENDs. Our fabrication strategy using microfluidic chips with short mixing length reaction channels may provide practical ways for constructing more elegant liposome-based non-viral vectors that can effectively penetrate all membranes in cells and lead to high gene transfection efficiency.

  2. Thermopile detector radiation hard readout

    Science.gov (United States)

    Gaalema, Stephen; Van Duyne, Stephen; Gates, James L.; Foote, Marc C.

    2010-08-01

    The NASA Jupiter Europa Orbiter (JEO) conceptual payload contains a thermal instrument with six different spectral bands ranging from 8μm to 100μm. The thermal instrument is based on multiple linear arrays of thermopile detectors that are intrinsically radiation hard; however, the thermopile CMOS readout needs to be hardened to tolerate the radiation sources of the JEO mission. Black Forest Engineering is developing a thermopile readout to tolerate the JEO mission radiation sources. The thermal instrument and ROIC process/design techniques are described to meet the JEO mission requirements.

  3. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip.

    Science.gov (United States)

    Li, Bowei; Jiang, Lei; Xie, Hua; Gao, Yan; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.

  4. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    Science.gov (United States)

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  5. Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays.

    Science.gov (United States)

    Washburn, Adam L; Shia, Winnie W; Lenkeit, Kimberly A; Lee, So-Hyun; Bailey, Ryan C

    2016-09-21

    The analysis of disease-specific biomarker panels holds promise for the early detection of a range of diseases, including cancer. Blood-based biomarkers, in particular, are attractive targets for minimally-invasive disease diagnosis. Specifically, a panel of organ-specific biomarkers could find utility as a general disease surveillance tool enabling earlier detection or prognostic monitoring. Using arrays of chip-integrated silicon photonic sensors, we describe the simultaneous detection of eight cancer biomarkers in serum in a relatively rapid (1 hour) and fully automated antibody-based sandwich assay. Biomarkers were chosen for their applicability to a range of organ-specific cancers, including disease of the pancreas, liver, ovary, breast, lung, colorectum, and prostate. Importantly, we demonstrate that selected patient samples reveal biomarker "fingerprints" that may be useful for a personalized cancer diagnosis. More generally, we show that the silicon photonic technology is capable of measuring multiplexed panels of protein biomarkers that may have broad utility in clinical diagnostics.

  6. A data readout approach for physics experiments

    Institute of Scientific and Technical Information of China (English)

    HUANG Xi-Ru; CAO Ping; GAO Li-Wei; ZHENG Jia-Jun

    2015-01-01

    With increasing physical event rates and the number of electronic channels,traditional readout schemes meet the challenge of improving readout speed caused by the limited bandwidth of the crate backplane.In this paper,a high-speed data readout method based on the Ethernet is presented to make each readout module capable of transmitting data to the DAQ.Features of exPlicitly parallel data transmitting and distributed network architecture give the readout system the advantage of adapting varying requirements of particle physics experiments.Furthermore,to guarantee the readout performance and flexibility,a standalone embedded CPU system is utilized for network protocol stack processing.To receive the customized data format and protocol from front-end electronics,a field programmable gate array (FPGA) is used for logic reconfiguration.To optimize the interface and to improve the data throughput between CPU and FPGA,a sophisticated method based on SRAM is presented in this paper.For the purpose of evaluating this high-speed readout method,a simplified readout module is designed and implemented.Test results show that this module can support up to 70 Mbps data throughput from the readout module to DAQ.

  7. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.

    Science.gov (United States)

    Suzuki, Ikuro; Fukuda, Mao; Shirakawa, Keiichi; Jiko, Hideyasu; Gotoh, Masao

    2013-11-15

    Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases.

  8. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi

    2016-01-01

    directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR......Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection...... technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR...

  9. A vertically integrated pixel readout device for the Vertex Detector at the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz; Christian, David; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2008-12-01

    3D-Integrated Circuit technology enables higher densities of electronic circuitry per unit area without the use of nanoscale processes. It is advantageous for mixed mode design with precise analog circuitry because processes with conservative feature sizes typically present lower process dispersions and tolerate higher power supply voltages, resulting in larger separation of a signal from the noise floor. Heterogeneous wafers (different foundries or different process families) may be combined with some 3D integration methods, leading to the optimization of each tier in the 3D stack. Tracking and vertexing in future High-Energy Physics (HEP) experiments involves construction of detectors composed of up to a few billions of channels. Readout electronics must record the position and time of each measurement with the highest achievable precision. This paper reviews a prototype of the first 3D readout chip for HEP, designed for a vertex detector at the International Linear Collider. The prototype features 20 x 20 {micro}m{sup 2} pixels, laid out in an array of 64 x 64 elements and was fabricated in a 3-tier 0.18 {micro}m Fully Depleted SOI CMOS process at MIT-Lincoln Laboratory. The tests showed correct functional operation of the structure. The chip performs a zero-suppressed readout. Successive submissions are planned in a commercial 3D bulk 0.13 {micro}m CMOS process to overcome some of the disadvantages of an FDSOI process.

  10. A prototype scalable readout system for micro-pattern gas detectors

    Science.gov (United States)

    Zheng, Qi-Bin; Liu, Shu-Bin; Tian, Jing; Li, Cheng; Feng, Chang-Qing; An, Qi

    2016-08-01

    A scalable readout system (SRS) is designed to provide a general solution for different micro-pattern gas detectors in various applications. The system mainly consists of three kinds of modules: the ASIC card, the adapter card and the front-end card (FEC). The ASIC cards, mounted with particular ASIC chips, are designed for receiving detector signals. The adapter card is in charge of digitizing the output signals from several ASIC cards. The FEC, edged-mounted with the adapter, has field-programmable gate array (FPGA)-based reconfigurable logic and I/O interfaces, allowing users to choose different ASIC cards and adapters for different experiments, which expands the system to various applications. The FEC transfers data through Gigabit Ethernet protocol realized by a TCP processor (SiTCP) IP core in FPGA. By assembling a flexible number of FECs in parallel through Gigabit Ethernet, the readout system can be tailored to specific sizes to adapt to the experiment scales and readout requirements. In this paper, two kinds of multi-channel ASIC chip, VA140 and AGET, are applied to verify the scalability of this SRS architecture. Based on this VA140 or AGET SRS, one FEC covers 8 ASIC (VA140) cards handling 512 detector channels, or 4 ASIC (AGET) cards handling 256 detector channels, respectively. More FECs can be assembled in crates to handle thousands of detector channels. Supported by National Natural Science Foundation of China (11222552)

  11. A Prototype Scalable Readout System for Micro-pattern Gas Detectors

    CERN Document Server

    Zheng, Qi-Bin; Tian, Jing; Li, Cheng; Feng, Chang-Qing; An, Qi

    2016-01-01

    A scalable readout system (SRS) is designed to provide a general solution for different micro-pattern gas detectors. The system mainly consists of three kinds of modules: the ASIC card, the Adapter card and the Front-End Card (FEC). The ASIC cards, mounted with particular ASIC chips, are designed for receiving detector signals. The Adapter card is in charge of digitizing the output signals from several ASIC cards. The FEC, edged-mounted with the Adapter, has a FPGA-based reconfigurable logic and I/O interfaces, allowing users to choose various ASIC cards and Adapters for different types of detectors. The FEC transfers data through Gigabit Ethernet protocol realized by a TCP processor (SiTCP) IP core in field-programmable gate arrays (FPGA). The readout system can be tailored to specific sizes to adapt to the experiment scales and readout requirements. In this paper, two kinds of multi-channel ASIC chips, VA140 and AGET, are applied to verify the concept of this SRS architecture. Based on this VA140 or AGET SR...

  12. Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology

    Science.gov (United States)

    Kwak, Minsuk; Kim, Dong-Joo; Lee, Mi-Ri; Wu, Yu; Han, Lin; Lee, Sang-Kwon; Fan, Rong

    2014-05-01

    Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective

  13. TARGET: A multi-channel digitizer chip for very-high-energy gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Bechtol, K.; Funk, S.; /Stanford U., HEPL /KIPAC, Menlo Park; Okumura, A.; /JAXA, Sagamihara /Stanford U., HEPL /KIPAC, Menlo Park; Ruckman, L.; /Hawaii U.; Simons, A.; Tajima, H.; Vandenbroucke, J.; /Stanford U., HEPL /KIPAC, Menlo Park; Varner, G.; /Hawaii U.

    2011-08-11

    The next-generation very-high-energy (VHE) gamma-ray observatory, the Cherenkov Telescope Array, will feature dozens of imaging atmospheric Cherenkov telescopes (IACTs), each with thousands of pixels of photosensors. To be affordable and reliable, reading out such a mega-channel array requires event recording technology that is highly integrated and modular, with a low cost per channel. We present the design and performance of a chip targeted to this application: the TeV Array Readout with GSa/s sampling and Event Trigger (TARGET). This application-specific integrated circuit (ASIC) has 16 parallel input channels, a 4096-sample buffer for each channel, adjustable input termination, self-trigger functionality, and tight window-selected readout. We report the performance of TARGET in terms of sampling frequency, power consumption, dynamic range, current-mode gain, analog bandwidth, and cross talk. The large number of channels per chip allows a low cost per channel ($10 to $20 including front-end and back-end electronics but not including photosensors) to be achieved with a TARGET-based IACT readout system. In addition to basic performance parameters of the TARGET chip itself, we present a camera module prototype as well as a second-generation chip (TARGET 2), both of which have been produced.

  14. \\title{Test beam results of the first CMS\\\\double-sided strip module prototypes\\\\using the CBC2 read-out chip}

    CERN Document Server

    Harb, Ali; Hauk, Johannes

    2016-01-01

    In November 2013 the first 2S-$p_{T}$ module prototypes equipped with the CBC chips were put to test at the DESY-II test beam facility. Data were collected exploiting a beam of positrons with an energy ranging from 2~to 4 GeV. In this paper the test setup and the results are presented.

  15. Alibava : A portable readout system for silicon microstrip sensors

    CERN Document Server

    Marco-Hernández, Ricardo; Casse, G; García, C; Greenall, A; Lacasta, C; Lozano, M; Martí i García, S; Martínez, R; Miñano, M; Pellegrini, G; Smith, N A; Ullán, M

    2007-01-01

    A portable readout system for silicon microstrip sensors is currently being developed. This system uses a front-end readout chip, which was developed for the LHC experiments. The system will be used to investigate the main properties of this type of sensors and their future applications. The system is divided in two parts: a daughter board and a mother board. The first one is a small board which contains two readout chips and has fan-ins and sensor support to interface the sensors. The last one is intended to process the analogue data that comes from the readout chips and from external trigger signals, to control the whole system and to communicate with a PC via USB. The core of this board is a FPGA that controls the readout chips, a 10 bit ADC, an integrated TDC and an USB controller. This board also contains the analogue electronics to process the data that comes from the readout chips. There is also provision for an external trigger input (e.g. scintillator trigger) and a 'synchronised' trigger output for ...

  16. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well sui...

  17. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded or a different locus (trans-encoded. They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense

  18. A fast integrated readout system for a cathode pad photon detector

    Science.gov (United States)

    French, M.; Lovell, M.; Chesi, E.; Racz, A.; Seguinot, J.; Ypsilantis, T.; Arnold, R.; Guyonnet, J. L.; Egger, J.; Gabathuler, K.

    1994-04-01

    A fast integrated electronic chain is presented to read out the cathode pad array of a multiwire photon detector for a fast RICH counter. Two VLSI circuits have been designed and produced. An analog eight channel, low noise, fast, bipolar, current preamplifier and discriminator chip serves as front-end electronics. It has an rms equivalent noise current of 10 nA (2000 e -), 50 MHz bandwidth with 10 mW of power consumption per channel. Two analogue chips are coupled to a digital 16 channels CMOS readout chip, operating at 20 MHz, that provides a pipelined delay of 1.3 μs and zero suppression with a power consumption of about 6 mW per channel. Readout of a 4000 pad sector requires 3-4 μs depending on the number of hit pads. The full RICH counter is made up of many of such sectors (the prototype has three fully equipped sectors), read out in parallel [1,2]. The minimum time to separate successive hits on the same pad is about 70 ns. The time skew of the full chain is about 15 ns.

  19. Readout of the upgraded ALICE-ITS

    Science.gov (United States)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  20. A Robust and Low-Complexity Gas Recognition Technique for On-Chip Tin-Oxide Gas Sensor Array

    Directory of Open Access Journals (Sweden)

    Farid Flitti

    2008-01-01

    Full Text Available Gas recognition is a new emerging research area with many civil, military, and industrial applications. The success of any gas recognition system depends on its computational complexity and its robustness. In this work, we propose a new low-complexity recognition method which is tested and successfully validated for tin-oxide gas sensor array chip. The recognition system is based on a vector angle similarity measure between the query gas and the representatives of the different gas classes. The latter are obtained using a clustering algorithm based on the same measure within the training data set. Experimented results on our in-house gas sensors array show more than 98% of correct recognition. The robustness of the proposed method is tested by recognizing gas measurements with simulated drift. Less than 1% of performance degradation is noted at the worst case scenario which represents a significant improvement when compared to the current state-of-the-art.

  1. Integrated Circuit Readout for the Silicon Sensor Test Station

    CERN Document Server

    Atkin, E; Silaev, A; Fedenko, A; Karmanov, D; Merkin, M; Voronin, A

    2009-01-01

    Various chips for the silicon sensors measurements are described. These chips are based on 0.35 um and 0.18um CMOS technology. Several analog chips together with self-trigger /derandomizer one allow to measure silicon sensors designed for different purposes. Tracking systems, calorimeters, particle charge measurement system and other application sensors can be investigated by the integrated circuit readout with laser or radioactive sources. Also electrical parameters of silicon sensors can be studied by such test setup.

  2. Cooperative Suction by Vertical Capillary Array Pump for Controlling Flow Profiles of Microfluidic Sensor Chips

    Directory of Open Access Journals (Sweden)

    Emi Tamechika

    2012-10-01

    Full Text Available A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  3. The readout system of the MAGIC-II Cherenkov Telescope

    CERN Document Server

    Tescaro, D; Barcelo, M; Bitossi, M; Cortina, J; Fras, M; Hadasch, D; Illa, J M; Martínez, M; Mazin, D; Paoletti, R; Pegna, R

    2009-01-01

    In this contribution we describe the hardware, firmware and software components of the readout system of the MAGIC-II Cherenkov telescope on the Canary island La Palma. The PMT analog signals are transmitted by means of optical fibers from the MAGIC-II camera to the 80 m away counting house where they are routed to the new high bandwidth and fully programmable receiver boards (MONSTER), which convert back the signals from optical to electrical ones. Then the signals are split, one half provide the input signals for the level ONE trigger system while the other half is sent to the digitizing units. The fast Cherenkov pulses are sampled by low-power Domino Ring Sampler chips (DRS2) and temporarily stored in an array of 1024 capacitors. Signals are sampled at the ultra-fast speed of 2 GSample/s, which allows a very precise measurement of the signal arrival times in all pixels. They are then digitized with 12-bit resolution by an external ADC readout at 40 MHz speed. The Domino samplers are integrated in the newly...

  4. ChIP-on-chip analysis methods for Affymetrix tiling arrays.

    Science.gov (United States)

    Yoder, Sean J

    2015-01-01

    Although the ChIP-sequencing has gained significant attraction recently, ChIP analysis using microarrays is still an attractive option due to the low cost, ease of analysis, and access to legacy and public data sets. The analysis of ChIP-Chip data entails a multistep approach that requires several different applications to progress from the initial stages of raw data analysis to the identification and characterization of ChIP binding sites. There are multiple approaches to data analysis and there are several applications available for each stage of the analysis pipeline. Each application must be evaluated for its suitability for the particular experiment as well as the investigator's background with computational tools. This chapter is a review of the commonly available applications for Affymetrix ChIP-Chip data analysis, as well as the general workflow of a ChIP-Chip analysis approach. The purpose of the chapter is to allow the researcher to better select the appropriate applications and provide them with the direction necessary to proceed with a ChIP-Chip analysis.

  5. PIPE-chipSAD: a pipeline for the analysis of high density arrays of bacterial transcriptomes

    Directory of Open Access Journals (Sweden)

    Silvia Bottini

    2016-12-01

    Full Text Available PIPE-chipSAD is a pipeline for bacterial transcriptome studies based on high-density microarray experiments. The main algorithm chipSAD, integrates the analysis of the hybridization signal with the genomic position of probes and identifies portions of the genome transcribing for mRNAs. The pipeline includes a procedure, align-chipSAD, to build a multiple alignment of transcripts originating in the same locus in multiple experiments and provides a method to compare mRNA expression across different conditions. Finally, the pipeline includes anno-chipSAD a method to annotate the detected transcripts in comparison to the genome annotation. Overall, our pipeline allows transcriptional profile analysis of both coding and non-coding portions of the chromosome in a single framework. Importantly, due to its versatile characteristics, it will be of wide applicability to analyse, not only microarray signals, but also data from other high throughput technologies such as RNA-sequencing.The current PIPE-chipSAD implementation is written in Python programming language and is freely available at https://github.com/silviamicroarray/chipSAD.

  6. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    Science.gov (United States)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples.

  7. Advanced power analysis methodology targeted to the optimization of a digital pixel readout chip design and its critical serial powering system

    Science.gov (United States)

    Marconi, S.; Orfanelli, S.; Karagounis, M.; Hemperek, T.; Christiansen, J.; Placidi, P.

    2017-02-01

    A dedicated power analysis methodology, based on modern digital design tools and integrated with the VEPIX53 simulation framework developed within RD53 collaboration, is being used to guide vital choices for the design and optimization of the next generation ATLAS and CMS pixel chips and their critical serial powering circuit (shunt-LDO). Power consumption is studied at different stages of the design flow under different operating conditions. Significant effort is put into extensive investigations of dynamic power variations in relation with the decoupling seen by the powering network. Shunt-LDO simulations are also reported to prove the reliability at the system level.

  8. Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Clarence E. (Knoxville, TN); Baylor, Larry R. (Farragut, TN); Voelkl, Edgar (Oak Ridge, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Whealton, John H. (Oak Ridge, TN); Whitson, John C. (Clinton, TN); Wilgen, John B. (Oak Ridge, TN)

    2002-12-24

    Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  9. A Compute Environment of ABC95 Array Computer Based on Multi-FPGA Chip

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    ABC95 array computer is a multi-function network's computer based on FPGA technology, The multi-function network supports processors conflict-free access data from memory and supports processors access data from processors based on enhanced MESH network.ABC95 instruction's system includes control instructions, scalar instructions, vectors instructions.Mostly net-work instructions are introduced.A programming environment of ABC95 array computer assemble language is designed.A programming environment of ABC95 array computer for VC++ is advanced.It includes load function of ABC95 array computer program and data, store function, run function and so on.Specially, The data type of ABC95 array computer conflict-free access is defined.The results show that these technologies can develop programmer of ABC95 array computer effectively.

  10. Triggered mesa-top single photon emitter arrays and on-chip integration with dielectric nanoantenna-waveguide systems

    CERN Document Server

    Zhang, Jiefei; Lu, Siyuan; Madhukar, Anupam

    2016-01-01

    Nanophotonic quantum information processing systems require spatially ordered, spectrally uniform single photon sources (SPSs), integrated on-chip with co-designed light manipulating elements providing emission rate enhancement, emitted photon guidance, and lossless propagation. Towards this objective, we introduce and report on systems comprising an SPS array with each SPS surrounded by a dielectric building block (DBB) based multifunctional light manipulation unit (LMU). For the SPS array, we report triggered single photon emission at 77K from GaAs(001)/InGaAs single quantum dots (SQDs) grown selectively on top of nanomesas using the approach of substrate-encoded size-reducing epitaxy (SESRE). Systematic temperature and power dependent photoluminescence (PL), PL excitation, time-resolved PL, and emission statistics studies reveal high spectral uniformity and single photon emission at 77.4K with $g^{(2)}$(0) of 0.24 $\\pm$ 0.07. The SESRE based SPS arrays, following growth of a planarizing overlayer, are read...

  11. A high dynamic range readout unit for a calorimeter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-Long; WU Jian; CHANG Jin; LI Bing; FENG Chang-Qing; LI Xian-Li; WANG Xiao-Lian; XU Zi-Zong; GUO Jian-Hua; CAI Ming-Sheng; HU Yi-Ming

    2012-01-01

    A high dynamic range readout system,consisting of a multi-dynode readout PMT and a VA32 chip,is presented.An LED system is set up to calibrate the relative gains between the dynodes,and the ADC counts per MIPs from dynode 7 are determined under cosmic-ray calibration.A dynamic range from 0.5 MIPs to 1 × 105 MIPs is achieved.

  12. From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology

    Directory of Open Access Journals (Sweden)

    Christophe ePy

    2011-10-01

    Full Text Available All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions – including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor-intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, resulting in questionable models of true physiological function, and are unsuitable for studies involving neuronal communication. Multi-electrode arrays (MEA, in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, the approach to the chemical patterning for cell placement, and present physiological data from cultured neuronal cells.

  13. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    Science.gov (United States)

    Li, Zheng; Chen, Wei

    2014-11-01

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  14. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng, E-mail: lizheng@xtu.edu.cn [School of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Chen, Wei [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-11-21

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  15. Characterization of the FE-I4B pixel readout chip production run for the ATLAS Insertable B-layer upgrade

    CERN Document Server

    Backhaus, M

    2013-01-01

    The Insertable B-layer (IBL) is a fourth pixel layer that will be added inside the existing ATLAS pixel detector during the long LHC shutdown of 2013 and 2014. The new four layer pixel system will ensure excellent tracking, vertexing and b-tagging performance in the high luminosity pile-up conditions projected for the next LHC run. The peak luminosity is expected to reach 3• 10^34 cm^−2 s ^−1with an integrated luminosity over the IBL lifetime of 300 fb^−1 corresponding to a design lifetime fluence of 5 • 10^15 n_eqcm^−2 and ionizing dose of 250 Mrad including safety factors. The production front-end electronics FE-I4B for the IBL has been fabricated at the end of 2011 and has been extensively characterized on diced ICs as well as at the wafer level. The production tests at the wafer level were performed during 2012. Selected results of the diced IC characterization are presented, including measurements of the on-chip voltage regulators. The IBL powering scheme, which was chosen based on these resu...

  16. A low power cryogenic 512 × 512-pixel infrared readout integrated circuit with modified MOS device model

    Science.gov (United States)

    Zhao, Hongliang; Liu, Xinghui; Xu, Chao

    2013-11-01

    A low power cryogenic readout integrated circuit (ROIC) for 512 × 512-pixel infrared focal plane array (IRFPA) image system, is presented. In order to improve the precision of the circuit simulation at cryogenic temperatures, a modified MOS device model is proposed. The model is based on BSIM3 model, and uses correction parameters to describe carrier freeze-out effect at low temperatures to improve the fitting accuracy for low temperature MOS device simulation. A capacitive trans-impedance amplifier (CTIA) with inherent correlated double sampling (CDS) configuration is employed to realize a high performance readout interfacing circuit in a pixel area of 30 × 30 μm2. Optimized column readout timing and structure are applied to reduce the power consumption. The experimental chip fabricated by a standard 0.35 μm 2P4M CMOS process shows more than 10 MHz readout rate with less than 70 mW power consumption under 3.3 V supply voltage at 77-150 K operated temperatures. And it occupies an area of 18 × 17 mm2.

  17. Nanosecond monolithic CMOS readout cell

    Science.gov (United States)

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  18. Integrated chemiresistor array for small sensor platforms

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES,ROBERT C.; CASALNUOVO,STEPHEN A.; WESSENDORF,KURT O.; SAVIGNON,DANIEL J.; HIETALA,SUSAN LESLIE; PATEL,SANJAY V.

    2000-04-13

    Chemiresistors are fabricated from materials that change their electrical resistance when exposed to certain chemical species. Composites of soluble polymers with metallic particles have shown remarkable sensitivity to many volatile organic chemicals, depending on the ability of the analyte molecules to swell the polymer matrix. These sensors can be made extremely small (< 100 square microns), operate at ambient temperatures, and require almost no power to read-out. However, the chemiresistor itself is only a part of a more complex sensor system that delivers chemical information to a user who can act on the information. The authors present the design, fabrication and performance of a chemiresistor array chip with four different chemiresistor materials, heaters and a temperature sensor. They also show the design and fabrication of an integrated chemiresistor array, where the electronics to read-out the chemiresistors is on the same chip with the electrodes for the chemiresistors. The circuit was designed to perform several functions to make the sensor data more useful. This low-power, integrated chemiresistor array is small enough to be deployed on a Sandia-developed microrobot platform.

  19. Enhanced light extraction efficiency of chip-on board light-emitting diodes through micro-lens array fabricated by ion wind

    Science.gov (United States)

    Chu, Jingcao; Lei, Xiang; Wu, Jiading; Peng, Yang; Liu, Sheng; Yang, Qian; Zheng, Huai

    2017-03-01

    Low light extraction efficiency (LEE) is a key challenge of chip-on board (COB) packaging light-emitting diodes (LEDs). In this paper, a facile preparation of micro-lens array was proposed based on the ion wind patterning. The geometries and sizes of the micro-lens arrays were controlled through adjusting the voltage parameter of the ion wind generation. Consequently, the micro-lens array with the diameter of 180 μm and the gap distance of 15 μm has been fabricated. Benefitting from this micro-lens array, the LEE of COB packaging LEDs was enhanced by 9%. This facile fabrication of micro-lens array would be a promising method to improve the LEE of COB packaging LEDs.

  20. Design and realisation of integrated circuits for the readout of pixel sensors in high-energy physics and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peric, I.

    2004-08-01

    Radiation tolerant pixel-readout chip for the ATLAS pixel detector has been designed, implemented in a deep-submicron CMOS technology and successfully tested. The chip contains readout-channels with complex analog and digital circuits. Chip for steering of the DEPFET active-pixel matrix has been implemented in a high-voltage CMOS technology. The chip contains channels which generate fast sequences of high-voltage signals. Detector containing this chip has been successfully tested. Pixel-readout test chip for an X-ray imaging pixel sensor has been designed, implemented in a CMOS technology and tested. Pixel-readout channels are able to simultaneously count the signals generated by passage of individual photons and to sum the total charge generated during exposure time. (orig.)

  1. 一种新型微梁阵列传感器设计及实现%Design and Realization of New Optical Sequential Readout for Micro-cantilever Array

    Institute of Scientific and Technical Information of China (English)

    薛长国; 张广平; 张青川; 伍小平

    2011-01-01

    As an emerging hotspot of MEMS technology and NEMS sensor over past decades, the research of instrument style of micro-cantilever sensor was developed from single cantilever to onedimensional or two-dimensional arrays. A new optical sequential readout for micro-cantilever array is presented in this paper, based on a commercialized micro-cantilever array with 250μm spacing. Using high precision two-dimensional optical displacement table to adjust the laser position and locate two laser beams on the adjacent micro-cantilever array tips as parallel beams on micro-distance, the bend of two micro-cantilevers was detected by PSD. Thus the system sensor function was realized. This optical path is easy put up in experiment verification and two signals from two micro-cantilevers can be better separated. When an antibody was immobilized on the surface of a micro-cantilever, the system can detect the antigen in solution. This method provided a simple way to design micro-cantilever array based on optical lever in the future.%微悬臂梁传感技术是微纳传感技术研究的热点,仪器装置的研究也从单悬臂梁向微梁阵列的方向发展.本文针对间距为250μm的商品化微梁阵列,提出了一种实现对其弯曲变形的读出系统光路.利用高精度位移平台调节激光器空间位置,使光束实现微距离上平行,并分别照射在阵列梁的相邻微梁上.用位置敏感探测器对两个微悬臂梁尖端反射的激光信号进行检测,实现系统传感功能.实验验证该光路设计简单易行,针对这一方案实现了两个微梁的信号分离.在微梁上修饰对应的抗体,系统就可以对其抗原行检测.该方案对微梁多阵列传感器研制开发提出了一个新的思路.

  2. High-flux ptychographic imaging using the new 55 µm-pixel detector ‘Lambda’ based on the Medipix3 readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, R. N., E-mail: rwilke@gwdg.de; Wallentin, J.; Osterhoff, M. [University of Göttingen, Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Pennicard, D.; Zozulya, A.; Sprung, M. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Salditt, T. [University of Göttingen, Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2014-11-01

    The Large Area Medipix-Based Detector Array (Lambda) has been used in a ptychographic imaging experiment on solar-cell nanowires. By using a semi-transparent central stop, the high flux density provided by nano-focusing Kirkpatrick–Baez mirrors can be fully exploited for high-resolution phase reconstructions. Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector ‘Lambda’ has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick–Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by the semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 10{sup 5} photons nm{sup −2} s{sup −1} or a flux of ∼10{sup 10} photons s{sup −1} on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3–4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield.

  3. Optical Manipulation of Single Magnetic Beads in a Microwell Array on a Digital Microfluidic Chip.

    Science.gov (United States)

    Decrop, Deborah; Brans, Toon; Gijsenbergh, Pieter; Lu, Jiadi; Spasic, Dragana; Kokalj, Tadej; Beunis, Filip; Goos, Peter; Puers, Robert; Lammertyn, Jeroen

    2016-09-01

    The detection of single molecules in magnetic microbead microwell array formats revolutionized the development of digital bioassays. However, retrieval of individual magnetic beads from these arrays has not been realized until now despite having great potential for studying captured targets at the individual level. In this paper, optical tweezers were implemented on a digital microfluidic platform for accurate manipulation of single magnetic beads seeded in a microwell array. Successful optical trapping of magnetic beads was found to be dependent on Brownian motion of the beads, suggesting a 99% chance of trapping a vibrating bead. A tailor-made experimental design was used to screen the effect of bead type, ionic buffer strength, surfactant type, and concentration on the Brownian activity of beads in microwells. With the optimal conditions, the manipulation of magnetic beads was demonstrated by their trapping, retrieving, transporting, and repositioning to a desired microwell on the array. The presented platform combines the strengths of digital microfluidics, digital bioassays, and optical tweezers, resulting in a powerful dynamic microwell array system for single molecule and single cell studies.

  4. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  5. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs.

  6. ExonMiner: Web service for analysis of GeneChip Exon array data

    Science.gov (United States)

    Numata, Kazuyuki; Yoshida, Ryo; Nagasaki, Masao; Saito, Ayumu; Imoto, Seiya; Miyano, Satoru

    2008-01-01

    Background Some splicing isoform-specific transcriptional regulations are related to disease. Therefore, detection of disease specific splice variations is the first step for finding disease specific transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level expression profiles that are suitable to find differentially expressed exons in genome-wide scale. However, exon array produces massive datasets that are more than we can handle and analyze on personal computer. Results We have developed ExonMiner that is the first all-in-one web service for analysis of exon array data to detect transcripts that have significantly different splicing patterns in two cells, e.g. normal and cancer cells. ExonMiner can perform the following analyses: (1) data normalization, (2) statistical analysis based on two-way ANOVA, (3) finding transcripts with significantly different splice patterns, (4) efficient visualization based on heatmaps and barplots, and (5) meta-analysis to detect exon level biomarkers. We implemented ExonMiner on a supercomputer system in order to perform genome-wide analysis for more than 300,000 transcripts in exon array data, which has the potential to reveal the aberrant splice variations in cancer cells as exon level biomarkers. Conclusion ExonMiner is well suited for analysis of exon array data and does not require any installation of software except for internet browsers. What all users need to do is to access the ExonMiner URL . Users can analyze full dataset of exon array data within hours by high-level statistical analysis with sound theoretical basis that finds aberrant splice variants as biomarkers. PMID:19036125

  7. ExonMiner: Web service for analysis of GeneChip Exon array data

    Directory of Open Access Journals (Sweden)

    Imoto Seiya

    2008-11-01

    Full Text Available Abstract Background Some splicing isoform-specific transcriptional regulations are related to disease. Therefore, detection of disease specific splice variations is the first step for finding disease specific transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level expression profiles that are suitable to find differentially expressed exons in genome-wide scale. However, exon array produces massive datasets that are more than we can handle and analyze on personal computer. Results We have developed ExonMiner that is the first all-in-one web service for analysis of exon array data to detect transcripts that have significantly different splicing patterns in two cells, e.g. normal and cancer cells. ExonMiner can perform the following analyses: (1 data normalization, (2 statistical analysis based on two-way ANOVA, (3 finding transcripts with significantly different splice patterns, (4 efficient visualization based on heatmaps and barplots, and (5 meta-analysis to detect exon level biomarkers. We implemented ExonMiner on a supercomputer system in order to perform genome-wide analysis for more than 300,000 transcripts in exon array data, which has the potential to reveal the aberrant splice variations in cancer cells as exon level biomarkers. Conclusion ExonMiner is well suited for analysis of exon array data and does not require any installation of software except for internet browsers. What all users need to do is to access the ExonMiner URL http://ae.hgc.jp/exonminer. Users can analyze full dataset of exon array data within hours by high-level statistical analysis with sound theoretical basis that finds aberrant splice variants as biomarkers.

  8. On-chip optical isolation via unidirectional Bloch oscillations in a waveguide array.

    Science.gov (United States)

    Kumar, Pradeep; Levy, Miguel

    2012-09-15

    We propose to use the unidirectionality of the optical Bloch oscillation phenomenon achievable in a magneto-optic asymmetric waveguide array to achieve optical isolation. At the 1.55 μm telecommunication wavelength, our isolator design exhibits an isolation ratio of 36 dB between forward- and backward-propagating waves. The proposed design consists of a waveguide array made in a silicon-on-insulator substrate with a magnetic garnet cover layer. A key role is played by the transverse-magnetic mode nonreciprocal phase shift effect.

  9. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao

    Science.gov (United States)

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-01-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. PMID:26070980

  10. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    Science.gov (United States)

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-08-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity.

  11. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP)

    NARCIS (Netherlands)

    Kaufmann, K.; Muiño, J.M.; Østerås, M.; Farinelli, L.; Krajewski, P.; Angenent, G.C.

    2010-01-01

    Chromatin immunoprecipitation (ChIP) is a powerful technique to study interactions between transcription factors (TFs) and DNA in vivo. For genome-wide de novo discovery of TF-binding sites, the DNA that is obtained in ChIP experiments needs to be processed for sequence identification. The sequences

  12. Microplasma Channels and Large Arrays: Applications to Photomedicine, Microlasers, and Reactors on a Chip

    Science.gov (United States)

    2009-10-01

    npn plasma bipolar junction transistor in a simple external circuit.doping level of the base. Thus, the sheath electric field reinforces the built-in...PBJT) has been discovered. A hybrid plasma/semiconductor device in which a microplasma replaces the collector in an otherwise conventional npn ... transistor , the PBJT is capable of switching and modulating a plasma with a base-emitter voltage of < 1V. 2. Large arrays of microcavity plasma devices

  13. Fabrication of polymer lenses and microlens array for lab-on-a-chip devices

    Science.gov (United States)

    Olivieri, Federico; Todino, Michele; Coppola, Sara; Vespini, Veronica; Pagliarulo, Vito; Grilli, Simonetta; Ferraro, Pietro

    2016-08-01

    Microlenses and microlens arrays are assuming an increasingly important role in optical devices and communication systems. In response to their extended use in different fields of technology, a great emphasis is being placed on research into simple manufacturing approaches for these micro-optical components as well as on the characterization of their performance. This paper provides an overview of the recent emerging technologies for the fabrication of polymer microlenses by electrical, mechanical, chemical, and pyro-electrical methods. Attention is mainly focused on polymer molding and self-assembling for microlens arrays, while ink-jet printing is proposed for on-demand printing of lenses with high resolution. Among all the emerging techniques proposed, the pyro-electrodynamic approach has recently achieved great interest as an easy multiscale approach for the fabrication of polymer microlens arrays through a flexible process driven by electrohydrodynamic pressure. As each processing method has distinct advantages and limitations, the most significant characteristic parameters and the measurements of these parameters are discussed for each method.

  14. ALIBAVA A portable readout system for silicon microstrip sensors

    CERN Document Server

    Marco-Hernández, R; Casse, G; García, C; Greenall, A; Lacasta, C; Lozano, M; Martí i García, S; Martínez, R; Miñano, M; Pellegrini, G; Smith, N A; Ullán, M

    2007-01-01

    A portable readout system for micro-strip silicon sensors has been developed. The system uses an analogue pipelined readout chip, which was developed for the LHC experiments. The system will be used to characterise the properties of both non-irradiated and irradiated micro-strip sensors. Heavily irradiated sensors will be operated at the Super LHC (SLHC). The system hardware has two main parts: a daughter board and a mother board. The daughter board contains two readout chips, analogue data buffering, power supply regulation and chip-to-sensor fan-in structures. The mother board is intended to process the analogue data that comes from the readout chips and from external trigger signals, to control the whole system and to communicate with a PC via USB. There is provision for an external trigger input (e.g. scintillator trigger) and a synchronised trigger output for pulsing an external excitation source (e.g. laser system). A prototype of the system will be presented.

  15. A micromachined surface stress sensor with electronic readout

    NARCIS (Netherlands)

    Carlen, E.T.; Weinberg, M.S.; Zapata, A.M.; Borenstein, J.T.

    2008-01-01

    A micromachined surface stress sensor has been fabricated and integrated off chip with a low-noise, differential capacitance, electronic readout circuit. The differential capacitance signal is modulated with a high frequency carrier signal, and the output signal is synchronously demodulated and filt

  16. Performance of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon Pixel readout for Cherenkov ring detection

    CERN Document Server

    Alemi, M; Bibby, J H; Campbell, M; Duane, A; Easo, S; Gys, Thierry; Halley, A W; Piedigrossi, D; Puertolas, D; Rosso, E; Simmons, B; Snoeys, W; Websdale, David M; Wotton, S A; Wyllie, Ken H

    1999-01-01

    We report on the first test beam performance of a hybrid photon detector prototype, using binary readout electronics, intended for use in the ring imaging Cherenkov detectors of the LHCb experiment at the CERN Large Hadron Collider. The photon detector is based on a cross-focussed image intensifier tube geometry. The anode consists of a silicon pixel array bump-bonded to a binary readout chip with matching pixel electronics. The detector has been installed in a quarter-scale prototype vessel of the LHCb ring imaging Cherenkov system. Focussed ring images produced by 120 GeV/c negative pions traversing an air radiator have been recorded. The observed light yield and Cherenkov angle resolution are discussed.

  17. Performance of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout for Cherenkov ring detection

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Easo, S.; Gys, T.; Halley, A.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Simmons, B.; Snoeys, W.; Websdale, D.; Wotton, S.; Wyllie, K

    1999-08-01

    We report on the first test beam performance of a hybrid photon detector prototype, using binary readout electronics, intended for use in the ring imaging Cherenkov detectors of the LHCb experiment at the CERN Large Hadron Collider. The photon detector is based on a cross-focussed image intensifier tube geometry. The anode consists of a silicon pixel array bump-bonded to a binary readout chip with matching pixel electronics. The detector has been installed in a quarter-scale prototype vessel of the LHCb ring imaging Cherenkov system. Focussed ring images produced by 120 GeV/c negative pions traversing an air radiator have been recorded. The observed light yield and Cherenkov angle resolution are discussed.

  18. Microwave multiplex readout for superconducting sensors

    Science.gov (United States)

    Ferri, E.; Becker, D.; Bennett, D.; Faverzani, M.; Fowler, J.; Gard, J.; Giachero, A.; Hays-Wehle, J.; Hilton, G.; Maino, M.; Mates, J.; Puiu, A.; Nucciotti, A.; Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2016-07-01

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the 163Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of 163Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  19. Characterization of Silicon Detector Readout Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M. [Purdue U.

    2015-07-22

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.

  20. A linear monolithic 4-6 on silicon IR detector array

    Science.gov (United States)

    Vandamme, J.; Vermeiren, J.; Zogg, H.; Masek, J.; Fabbricotti, M.

    1992-12-01

    A linear array of monolithically grown PbTe and PbSnSe detectors on (111)-Si for MWIR and TIR imaging applications was designed and processed. The array consists of a staggered row of 2 by 128 detectors on a 100 micrometers pitch. The readout circuitry, integrated on the Si substrate consists of a COS multiplexer with a direct injection input stage, a charge reduction stage and charge to voltage conversion stage for each individual detector. This XDI (MultipeXed Direct Injection) circuit also allows for on-chip nonuniformity compensation with a switched capacitor network.

  1. Implementation of the Timepix ASIC in the Scalable Readout System

    Science.gov (United States)

    Lupberger, M.; Desch, K.; Kaminski, J.

    2016-09-01

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  2. Implementation of the Timepix ASIC in the Scalable Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Lupberger, M., E-mail: lupberger@physik.uni-bonn.de; Desch, K.; Kaminski, J.

    2016-09-11

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  3. Study and optimization of the spatial resolution for detectors with binary readout

    CERN Document Server

    Yonamine, Ryo; De Lentdecker, Gilles

    2016-01-01

    Using simulations and analytical approaches, we have studied single hit resolutions obtained with a binary readout, which is often proposed for high granularity detectors to reduce the generated data volume. Our simulations considering several parameters (e.g. strip pitch) show that the detector geometry and an electronics parameter of the binary readout chips could be optimized for binary readout to offer an equivalent spatial resolution to the one with an analogue readout. To understand the behavior as a function of simulation parameters, we developed analytical models that reproduce simulation results with a few parameters. The models can be used to optimize detector designs and operation conditions with regard to the spatial resolution.

  4. Preliminary Assessment of Microwave Readout Multiplexing Factor

    Energy Technology Data Exchange (ETDEWEB)

    Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.

  5. Chip-based molecularly imprinted monolithic capillary array columns coated GO/SiO2 for selective extraction and sensitive determination of rhodamine B in chili powder.

    Science.gov (United States)

    Zhai, Haiyun; Huang, Lu; Chen, Zuanguang; Su, Zihao; Yuan, Kaisong; Liang, Guohuan; Pan, Yufang

    2017-01-01

    A novel solid-phase extraction chip embedded with array columns of molecularly imprinted polymer-coated silanized graphene oxide (GO/SiO2-MISPE) was established to detect trace rhodamine B (RB) in chili powder. GO/SiO2-MISPE monolithic columns for RB detection were prepared by optimizing the supporting substrate, template, and polymerizing monomer under mild water bath conditions. Adsorption capacity and specificity, which are critical properties for the application of the GO/SiO2-MISPE monolithic column, were investigated. GO/SiO2-MIP was examined by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy. The recovery and the intraday and interday relative standard deviations for RB ranged from 83.7% to 88.4% and 2.5% to 4.0% and the enrichment factors were higher than 110-fold. The chip-based array columns effectively eliminated impurities in chili powder, indicating that the chip-based GO/SiO2-MISPE method was reliable for RB detection in food samples using high-performance liquid chromatography. Accordingly, this method has direct applications for monitoring potentially harmful dyes in processed food.

  6. Single-chip MEMS 5 × 5 and 20 × 20 double-pole single-throw switch arrays for automating telecommunication networks

    Science.gov (United States)

    Braun, S.; Oberhammer, J.; Stemme, G.

    2008-01-01

    This paper reports on microelectromechanical (MEMS) switch arrays with 5 × 5 and 20 × 20 double-pole single-throw (DPST) switches embedded and packaged on a single chip, which are intended for automating main distribution frames in copper-wire telecommunication networks. Whenever a customer requests a change in his telecommunication services, the copper-wire network has to be reconfigured which is currently done manually by a costly physical re-routing of the connections in the main distribution frames. To reduce the costs, new methods for automating the network reconfiguration are sought after by the network providers. The presented devices comprise 5 × 5 or 20 × 20 double switches, which allow us to interconnect any of the 5 or 20 input lines to any of the 5 or 20 output lines. The switches are based on an electrostatic S-shaped film actuator with the switch contact on a flexible membrane, moving between a top and a bottom electrode. The devices are fabricated in two parts which are designed to be assembled using selective adhesive wafer bonding, resulting in a wafer-scale package of the switch array. The on-chip routing network consists of thick metal lines for low resistance and is embedded in bencocyclobutene (BCB) polymer layers. The packaged 5 × 5 switch arrays have a size of 6.7 × 6.4 mm2 and the 20 × 20 arrays are 14 × 10 mm2 large. The switch actuation voltages for closing/opening the switches averaged over an array were measured to be 21.2 V/15.3 V for the 5 × 5 array and 93.2 V/37.3 V for the 20 × 20 array, respectively. The total signal line resistances vary depending on the switch position within the array between 0.13 Ω and 0.56 Ω for the 5 × 5 array and between 0.08 Ω to 2.33 Ω for the 20 × 20 array, respectively. The average resistance of the switch contacts was determined to be 0.22 Ω with a standard deviation of 0.05 Ω.

  7. Design and Realisation of Integrated Circuits for the Readout of Pixel Sensors in High Energy Physics and Biomedical Imaging

    CERN Document Server

    Peric, Ivan

    2004-01-01

    Several application specific microchips (ASICs) for the readout of pixel detectors have been designed, tested and described in this thesis. The first chapter gives the detailed description of the pixel-readout chip for the ATLAS pixel detector (FEI). The chip is now in operation as the innermost electronic component of the ATLAS detector. The chip for steering of DEPFET matrix (SWITCHER) is described in the second chapter. The chip is implemented in a high-voltage CMOS technology, it generates fast high voltage signals. Finally, a novel pixel readout chip for a hybrid x-ray pixel detector based on direct conversion is introduced. The chip (CIX) has joint photon counting and integrating capability.

  8. Design & fabrication of cantilever array biosensors

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2009-09-01

    Full Text Available Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes of samples. Currently available fabrication technology will allow the integration of electronic readout and sample introduction into a single unit, decreasing the device size, detection time, and cost. Biosensing technologies based on microfabricated cantilever arrays involving multiple cantilevers, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors.

  9. On-chip assessment of the protein-release profile from 3D hydrogel arrays.

    Science.gov (United States)

    Oliveira, Mariana B; Mano, João F

    2013-02-19

    As the formation of healthy tissue and the treatment of several diseases are often dependent on an effective and prolonged action of bioactive agents, the delivery of molecules for therapeutic or induction purposes in a tissue is a common procedure. The correct administration of those agents is often dependent on tailored delivery mechanisms from hydrogel or polymeric matrixes. To the best of our knowledge, methods for the high-throughput monitoring of bioactive agent delivery are nonexistent. The methods for the in vitro monitoring of molecule release are expensive and laborious. As a simple alternative to these methods, we propose the imprinting of superhydrophobic biomimetic surfaces with ring-shaped transparent spots with concentric superhydrophobic millimetric regions to be used as bioactive agent release study platforms. We designed an array where polymeric precursors mixed with a growth-factor model protein labeled with a fluorescent tag could be dispensed in the concentric highly repellent regions and cross-linked afterward, generating a polymeric protein-loaded sphere. The ring-shaped region was then filled with a physiological-like fluid that covered the polymeric sphere. The acquisition of sequential images of each spot over time using microscopy methods allowed one to easily monitor the protein release by image-based fluorescence quantification. As the platform is easily adaptable and amenable for future automation in order to mimic standardized organ dynamics, we concluded that the device shows applicability for rapid and efficient in vitro bioactive agent release studies.

  10. CMOS microelectrode array for the monitoring of electrogenic cells.

    Science.gov (United States)

    Heer, F; Franks, W; Blau, A; Taschini, S; Ziegler, C; Hierlemann, A; Baltes, H

    2004-09-15

    Signal degradation and an array size dictated by the number of available interconnects are the two main limitations inherent to standalone microelectrode arrays (MEAs). A new biochip consisting of an array of microelectrodes with fully-integrated analog and digital circuitry realized in an industrial CMOS process addresses these issues. The device is capable of on-chip signal filtering for improved signal-to-noise ratio (SNR), on-chip analog and digital conversion, and multiplexing, thereby facilitating simultaneous stimulation and recording of electrogenic cell activity. The designed electrode pitch of 250 microm significantly limits the space available for circuitry: a repeated unit of circuitry associated with each electrode comprises a stimulation buffer and a bandpass filter for readout. The bandpass filter has corner frequencies of 100 Hz and 50 kHz, and a gain of 1000. Stimulation voltages are generated from an 8-bit digital signal and converted to an analog signal at a frequency of 120 kHz. Functionality of the read-out circuitry is demonstrated by the measurement of cardiomyocyte activity. The microelectrode is realized in a shifted design for flexibility and biocompatibility. Several microelectrode materials (platinum, platinum black and titanium nitride) have been electrically characterized. An equivalent circuit model, where each parameter represents a macroscopic physical quantity contributing to the interface impedance, has been successfully fitted to experimental results.

  11. A 4-Channel Waveform Sampling ASIC in 0.13 μm CMOS for front-end Readout of Large-Area Micro-Channel Plate Detectors

    Science.gov (United States)

    Oberla, E.; Grabas, H.; Bogdan, M.; Frisch, H.; Genat, J. F.; Nishimura, K.; Varner, G.; Wong, A.

    We describe here the development of PSEC-3, a custom integrated circuit designed in the IBM-8RF 0.13 μm CMOS process and intended for fast, low-power waveform sampling. As part of the Large-Area Picosecond Photo-Detector (LAPPD) collaboration, this chip has been designed as a prototype application-specific integrated circuit (ASIC) for the front-end transmission line readout of large-area micro-channel plate photomultiplier tubes (MCP-PMTs). With 4 channels, PSEC-3 has a buffer depth of 256 samples on each channel, a chip-parallel ramp-compare ADC, and a serial data readout that includes the capability for region-of-interest windowing to reduce dead time. Chip calibrations and performance results, including achieved sampling rates of 2.5-17 GSa/s, are reported. Some design issues are identified, in particular the dependence of analog bandwidth on location in the sampling array. The causes have been found and addressed in a subsequent PSEC-4 submission.

  12. A 2.5 mW 370 mV/pF high linearity stray-immune symmetrical readout circuit for capacitive sensors

    Institute of Scientific and Technical Information of China (English)

    Zhou Kaimin; Wang Ziqiang; Zhang Chun; Wang Zhihua

    2012-01-01

    A stray-insensitive symmetrical capacitance-to-voltage converter for capacitive sensors is presented.By introducing a reference branch,a symmetrical readout circuit is realized.The linear input range is increased,and the systematic offsets of two input op-amps are cancelled.The common-mode noise and even-order distortion are also rejected.A chopper stabilization technique is adopted to further reduce the offset and flicker noise of the op-amps,and a Verilog-A-based varaetor is used to model the real variable sensing capacitor.Simulation results show that the output voltage of this proposed readout circuit responds correctly,while the under-test capacitance changes with a frequency of 1 kHz.A metal-insulator-metal capacitor array is designed on chip for measurement,and the measurement results show that this circuit achieves sensitivity of 370 mV/pF,linearity error below 1% and power consumption as low as 2.5 mW.This symmetrical readout circuit can respond to an FPGA controlled sensing capacitor array changed every 1 ms.

  13. A 2.5 mW 370 mV/pF high linearity stray-immune symmetrical readout circuit for capacitive sensors

    Science.gov (United States)

    Kaimin, Zhou; Ziqiang, Wang; Chun, Zhang; Zhihua, Wang

    2012-06-01

    A stray-insensitive symmetrical capacitance-to-voltage converter for capacitive sensors is presented. By introducing a reference branch, a symmetrical readout circuit is realized. The linear input range is increased, and the systematic offsets of two input op-amps are cancelled. The common-mode noise and even-order distortion are also rejected. A chopper stabilization technique is adopted to further reduce the offset and flicker noise of the op-amps, and a Verilog-A-based varactor is used to model the real variable sensing capacitor. Simulation results show that the output voltage of this proposed readout circuit responds correctly, while the under-test capacitance changes with a frequency of 1 kHz. A metal-insulator-metal capacitor array is designed on chip for measurement, and the measurement results show that this circuit achieves sensitivity of 370 mV/pF, linearity error below 1% and power consumption as low as 2.5 mW. This symmetrical readout circuit can respond to an FPGA controlled sensing capacitor array changed every 1 ms.

  14. Demonstration of a scalable frequency-domain readout of metallic magnetic calorimeters by means of a microwave SQUID multiplexer

    Directory of Open Access Journals (Sweden)

    Sebastian Kempf

    2017-01-01

    Full Text Available We report on the first demonstration of a scalable GHz frequency-domain readout of metallic magnetic calorimeters (MMCs using a 64 pixel detector array that is read out by an integrated, on-chip microwave SQUID multiplexer. The detector array is optimized for detecting soft X-ray photons and the multiplexer is designed to provide a signal rise time τrise<400ns and an intrinsic energy sensitivity ϵ<30h. This results in an expected energy resolution ΔEFWHM<10eV. We measured a signal rise time τrise as low as 90ns and an energy resolution ΔEFWHM as low as 50eV for 5.9keV photons. The rise time is about an order of magnitude faster compared to other multiplexed low-temperature microcalorimeters and close to the intrinsic value set by the coupling between electron and spins. The energy resolution is degraded with respect to our design value due to a rather low intrinsic quality factor of the microwave resonators that is caused by the quality of the Josephson junction of the associated rf-SQUID as well as an elevated chip temperature as compared to the heat bath. Though the achieved energy resolution is not yet compatible with state-of-the-art single-channel MMCs, this demonstration of a scalable readout approach for MMCs in combination with the full understanding of the device performance showing ways how to improve represents an important milestone for the development of future large-scale MMC detector arrays.

  15. A Readout System for the LHCb Outer Tracker

    CERN Document Server

    Wiedner, D; Apeldorn , G; Bachmann, S; Bagaturi , I; Bauer, T; Berkien, A; Blouw, J; Bos, E; Deisenroth, M; Dubitzki, R; Eisele, F; Guz , Y; Haas, T; Hommels, B; Ketel, T; Knopf , J; Merk , M; Nardulli , J; Nedos, M; Pellegrino, A; Rausch, A; Rusnyak, R; Schwemmer, R; Simoni, E; Sluijk , T; Spaan, B; Spelt , J; Stange, U; van Tilburg, J; Trunk , U; Tuning , N; Uwer, U; Vankow , P; Warda, K

    2006-01-01

    The LHCb Outer Tracker is composed of 55 000 straw drift tubes. The requirements for the OT electronics are the precise (1 ns) drift time measurement at 6 % occupancy and 1 MHz readout. Charge signals from the straw detector are amplified, shaped and discriminated by ATLAS ASDBLR chips. Drift-times are determined and stored in the OTIS TDC and put out to a GOL serializer at L0 accept. Optical fibres carry the data 90 m to the TELL1 acquisition board. The full readout chain performed well in an e- test beam.

  16. 4 pi direction sensitive gamma imager with RENA-3 readout ASIC

    Science.gov (United States)

    Du, Yanfeng; Li, Wen; Yanoff, Brian; Gordon, Jeffrey; Castleberry, Donald

    2007-09-01

    A 4π direction-sensitive gamma imager is presented, using a 1 cm 3 3D CZT detector from Yinnel Tech and the RENA-3 readout ASIC from NOVA R&D. The measured readout system electronic noise is around 4-5 keV FWHM for all anode channels. The measured timing resolution between two channels within a single ASIC is around 10 ns and the resolution is 30 ns between two separate ASIC chips. After 3D material non-uniformity and charge trapping corrections, the measured single-pixel-event energy resolution is around 1% for Cs-137 at 662 keV using a 1 cm 3 CZT detector from Yinnel Tech with an 8 x 8 anode pixel array at 1.15 mm pitch. The energy resolution for two pixel events is 2.9%. A 10 uCi Cs-137 point source was moved around the detector to test the image reconstruction algorithms and demonstrate the source direction detection capability. Accurate source locations were reconstructed with around 200 two-pixel events within a total energy window +/-10 keV around the 662 keV full energy peak. The angular resolution FWHM at four of the five positions tested was between 0.05-0.07 steradians.

  17. XAMPS Detectors Readout ASIC for LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Dragone, A; /SLAC; Pratte, J.F.; Rehak, P.; /Brookhaven; Carini, G.A.; /BNL, NSLS; Herbst, R.; /SLAC; O' Connor, P.; /Brookhaven; Siddons, D.P.; /BNL, NSLS

    2008-12-18

    An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a good position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.

  18. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  19. Recurrence Quantification Analysis of Spontaneous Electrophysiological Activity during Development: Characterization of In Vitro Neuronal Networks Cultured on Multi Electrode Array Chips

    Directory of Open Access Journals (Sweden)

    Antonio Novellino

    2010-01-01

    Full Text Available The combination of a nonlinear time series analysis technique, Recurrence Quantification Analysis (RQA based on Recurrence Plots (RPs, and traditional statistical analysis for neuronal electrophysiology is proposed in this paper as an innovative paradigm for studying the variation of spontaneous electrophysiological activity of in vitro Neuronal Networks (NNs coupled to Multielectrode Array (MEA chips. Recurrence, determinism, entropy, distance of activity patterns, and correlation in correspondence to spike and burst parameters (e.g., mean spiking rate, mean bursting rate, burst duration, spike in burst, etc. have been computed to characterize and assess the daily changes of the neuronal electrophysiology during neuronal network development and maturation. The results show the similarities/differences between several channels and time periods as well as the evolution of the spontaneous activity in the MEA chip. RPs could be used for graphically exploring possible neuronal dynamic breaking/changing points, whereas RQA parameters are suited for locating them. The combination of RQA with traditional approaches improves the identification, description, and prediction of electrophysiological changes and it will be used to allow intercomparison between results obtained from different MEA chips. Results suggest the proposed processing paradigm as a valuable tool to analyze neuronal activity for screening purposes (e.g., toxicology, neurodevelopmental toxicology.

  20. Dual-readout Calorimetry

    CERN Document Server

    Akchurin, N; Cardini, A.; Cascella, M.; Cei, F.; De Pedis, D.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; Genova, P.; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Moggi, A.; Pinci, D.; Policicchio, A.; Saraiva, J.G.; Sill, A.; Venturelli, T.; Wigmans, R.

    2013-01-01

    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to un- derstand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\\sigma}/E $\\approx$ 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.

  1. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  2. A low power readout circuit approach for uncooled resistive microbolometer FPAs

    Science.gov (United States)

    Tepegoz, Murat; Toprak, Alperen; Akin, Tayfun

    2008-04-01

    This paper presents a new, low power readout circuit approach for uncooled resistive microbolometer FPAs. The readout circuits of the microbolometer detectors contain parallel readout channels whose outputs are driven and multiplexed on large bus capacitances in order to form the output of the readout circuit. High number of opamps used in the readout channel array and large output capacitances that these opamps should drive necessitates the use of high output current capacity structures, which results in large power dissipation. This paper proposes two new methods in order to decrease the power dissipation of the readout circuits for uncooled thermal FPAs. The first method is called the readout channel group concept, where the readout channel array is separated into groups in order to decrease the load capacitance seen by the readout channel output. The second method utilizes a special opamp architecture where the output current driving capacity can be digitally controlled. This method enables efficient use of power by activating the high output current driving capacity only during the output multiplexing. The simulations show that using these methods results in a power dissipation reduction of 80% and 91% for the readout channels optimized for a single output 384x288 FPA operating at 25 fps and for a two-output 640x480 FPA operating at 30 fps, respectively.

  3. Dual-readout Calorimetry

    OpenAIRE

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Cascella, M.; Cei, F.; Pedis, D.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; P. Genova; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.(INFN Sezione di Pavia, Pavia, Italy)

    2013-01-01

    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to understand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in n...

  4. Noise and mismatch optimization for capacitive MEMS readout

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chong; Wu Qisong; Yin Tao; Yang Haigang, E-mail: yanghg@mail.ie.ac.c [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2009-11-15

    This paper presents a high precision CMOS readout circuit for a capacitive MEMS gyroscope. A continuous time topology is employed as well as the chopper noise cancelling technique. A detailed analysis of the noise and mismatch of the capacitive readout circuit is given. The analysis and measurement results have shown that thermal noise dominates in the proposed circuit, and several approaches should be used for both noise and mismatch optimization. The circuit chip operates under a single 5 V supply, and has a measured capacitance resolution of 0.2 aF/sq rootHz. With such a readout circuit, the gyroscope can accurately measure the angular rate with a sensitivity of 15.3 mV/{sup 0}/s. (semiconductor integrated circuits)

  5. Noise and mismatch optimization for capacitive MEMS readout

    Institute of Scientific and Technical Information of China (English)

    Zhang Chong; Wu Qisong; Yin Tao; Yang Haigang

    2009-01-01

    This paper presents a high precision CMOS readout circuit for a capacitive MEMS gyroscope. A continuous time topology is employed as well as the chopper noise cancelling technique. A detailed analysis of the noise and mismatch of the capacitive readout circuit is given. The analysis and measurement results have shown that thermal noise dominates in the proposed circuit, and several approaches should be used for both noise and mismatch optimization. The circuit chip operates under a single 5 V supply, and has a measured capacitance resolution of 0.2 aF/√Hz. With such a readout circuit, the gyroscope can accurately measure the angular rate with a sensitivity of 15.3 mV/°/s.

  6. Improvement of Event Synchronization in the ATLAS Pixel Readout Development

    Science.gov (United States)

    Adams, Logan; Atlas Collaboration

    2017-01-01

    As the LHC continues in Run2, the B-Layer still uses the Atlas-SiROD Pixel readout system initially developed for Run 1. The higher luminosity occurring during Run 2 results in higher occupancy causing increased desynchronization errors in the Pixel Readout. In order to ensure lasting operation of the B-Layer until it is replaced after Run 3, changes were made to the firmware and software to add debug capabilities to identify when the errors are crossing certain thresholds and change the internal control logic accordingly. These features also allow for better debugging of the Event Counter Reset addition to the firmware. This talk will focus on the features implemented and measurements to demonstrate the positive impact on the Pixel DAQ system. A Pixel front-end chip emulator which can be used for readout system development beyond Run 3 will also be discussed. Presenter is Logan Adams, University of Washington.

  7. Feasibility of a Frequency-Multiplexed TES Read-Out Using Superconducting Tunnel Junctions

    NARCIS (Netherlands)

    de Lange, G.

    2014-01-01

    We describe a feasibility study of a frequency multiplexed read-out scheme for large number transition edge sensor arrays. The read-out makes use of frequency up- and down-conversion and RF-to-DC conversion with superconducting-isolator-superconducting tunnel junctions operating at GHz frequencies,

  8. The Drift Chamber Electronics and Readout for the NA48 Experiment

    CERN Document Server

    Augustin, I; Holder, M; Kreutz, A; Otto, W; Roschangar, M; Schöfer, B; Schwarze, I; Ziolkowski, M

    1998-01-01

    A drift chamber readout system for about 8000 channels with continuous sensitivity, i.e. concurrent data recording and readout, is described. Drift times are measured in bins of 1.56 ns with respect to a continuously running 40 MHz clock. The clock interval of 25 ns is divided into 16 bins by means of a 16 element delay chain. The length of this chain is linked to the clock interval by a phase locked loop. An ASIC chip was developed to perform time measurements and data storage for 16 channels. In an asynchronous readout of this chip, data are tranferred to intermediate buffers, for use in a first level trigger and eventual final readout. The design of the electronics is described and results from data taking runs are presented.

  9. Application specific integrated circuit (ASIC) readout technologies for future ion beam analytical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J. E-mail: harry_j.whitlow@nuclear.lu.se

    2000-03-01

    New possibilities for ion beam analysis (IBA) are afforded by recent developments in detector technology which facilitate the parallel collection of data from a large number of channels. Application specific integrated circuit (ASIC) technologies, which have been widely employed for multi-channel readout systems in nuclear and particle physics, are more net-cost effective (160/channel for 1000 channels) and a more rational solution for readout of a large number of channels than afforded by conventional electronics. Based on results from existing and on-going chip designs, the possibilities and issues of ASIC readout technology are considered from the IBA viewpoint. Consideration is given to readout chip architecture and how the stringent resolution, linearity and stability requirements for IBA may be met. In addition the implications of the restrictions imposed by ASIC technology are discussed.

  10. SLIM5 beam test results for thin striplet detector and fast readout beam telescope

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, Lorenzo, E-mail: lorenzo.vitale@ts.infn.i [Universita degli Studi di Trieste and INFN-Trieste (Italy); Bruschi, M.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Gabrielli, A.; Giorgi, F.; Pellegrini, G.; Sbarra, C.; Semprini, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A. [Universita degli Studi di Bologna and INFN-Bologna (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Calderini, G.; Ceccanti, M. [Universita degli Studi di Pisa and INFN-Pisa (Italy)

    2010-05-21

    In September 2008 the SLIM5 collaboration submitted a low material budget silicon demonstrator to test with 12 GeV/c protons, at the PS-T9 test-beam at CERN. Two different detectors were placed as DUTs inside a high-resolution and fast-readout beam telescope. The first DUT was a high resistivity double sided silicon detector, with short strips ('striplets') and with reduced thickness, at 45{sup 0} angle to the detector's edge, readout by the data-driven FSSR2 chip. The other one was a 4k-Pixel Matrix of Deep N Well MAPS, developed in a 130 nm CMOS Technology, providing digital sparsified readout. In the following, I present the striplets and also the beam telescope characteristics, with some details about the frontend readout (based on the FSSR2 chip) and some preliminary results of the data-analysis.

  11. Characterization of Ni/SnPb-TiW/Pt Flip Chip Interconnections in Silicon Pixel Detector Modules

    CERN Document Server

    Karadzhinova, Aneliya; Härkönen, Jaakko; Luukka, Panja-riina; Mäenpää, Teppo; Tuominen, Eija; Haeggstrom, Edward; Kalliopuska, Juha; Vahanen, Sami; Kassamakov, Ivan

    2014-01-01

    In contemporary high energy physics experiments, silicon detectors are essential for recording the trajectory of new particles generated by multiple simultaneous collisions. Modern particle tracking systems may feature 100 million channels, or pixels, which need to be individually connected to read-out chains. Silicon pixel detectors are typically connected to readout chips by flip-chip bonding using solder bumps. High-quality electro-mechanical flip-chip interconnects minimizes the number of dead read-out channels in the particle tracking system. Furthermore, the detector modules must endure handling during installation and withstand heat generation and cooling during operation. Silicon pixel detector modules were constructed by flip-chip bonding 16 readout chips to a single sensor. Eutectic SnPb solder bumps were deposited on the readout chips and the sensor chips were coated with TiW/Pt thin film UBM (under bump metallization). The modules were assembled at Advacam Ltd, Finland. We studied the uniformity o...

  12. Amperometric electrochemical microsystem for a miniaturized protein biosensor array.

    Science.gov (United States)

    Chao Yang; Yue Huang; Hassler, B L; Worden, R M; Mason, A J

    2009-06-01

    Protein-based bioelectrochemical interfaces offer great potential for rapid detection, continuous use, and miniaturized sensor arrays. This paper introduces a microsystem platform that enables multiple bioelectrochemical interfaces to be interrogated simultaneously by an onchip amperometric readout system. A post-complementary metal-oxide semiconductor (CMOS) fabrication procedure is described that permits the formation of planar electrode arrays and self assembly of biosensor interfaces on the electrodes. The onchip, 0.5-mum CMOS readout electronics include a compact potentiostat that supports a very broad range of input currents-6 pA to 10 muA-to accommodate diverse biosensor interfaces. The 2.3 times 2.2-mm chip operates from a 5-V supply at 0.6 mA. A prototype electrochemical sensor platform, including an onchip potentiostat and miniaturized biosensor array, was characterized by using cyclic voltammetry. The linear relationship between the oxidization peak values and the concentrations of target analytes in the solution verifies functionality of the system and demonstrates the potential for future implementations of this platform in high sensitivity, low cost, and onchip protein-based sensor arrays.

  13. NIKEL_AMC: Readout electronics for the NIKA2 experiment

    CERN Document Server

    Bourrion, O; Bouly, J L; Bouvier, J; Bosson, G; Calvo, M; Catalano, A; Goupy, J; Li, C; Macías-Pérez, J F; Monfardini, A; Tourres, D; Ponchant, N; Vescovi, C

    2016-01-01

    The New Iram Kid Arrays-2 (NIKA2) instrument, dedicated to mm-wave astronomy, uses microwave kinetic inductance detectors (KID) as sensors. The three arrays installed in the camera feature a total of 3300 KID. To instrument these detectors, a specifically designed electronics, composed of 20 readout boards and hosted in three microTCA crates, has been developed. The implemented solution and the achieved performances are presented in this paper.

  14. A 400 KHz line rate 2048-pixel stitched SWIR linear array

    Science.gov (United States)

    Anchlia, Ankur; Vinella, Rosa M.; Gielen, Daphne; Wouters, Kristof; Vervenne, Vincent; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; De Gaspari, Danny; Das, Jo; Merken, Patrick

    2016-05-01

    Xenics has developed a family of stitched SWIR long linear arrays that operate up to 400 KHz of line rate. These arrays serve medical and industrial applications that require high line rates as well as space applications that require long linear arrays. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long array to run at a high line rates irrespective of the array length, which limits the line rate in a traditional linear array. The ROIC is flip-chipped with InGaAs detector arrays. The FPA has a pixel pitch of 12.5μm and has two pixel flavors: square (12.5μm) and rectangular (250μm). The frontend circuit is based on Capacitive Trans-impedance Amplifier (CTIA) to attain stable detector bias, and good linearity and signal integrity, especially at high speeds. The CTIA has an input auto-zero mechanism that allows to have low detector bias (<20mV). An on-chip Correlated Double Sample (CDS) facilitates removal of CTIA KTC and 1/f noise, and other offsets, achieving low noise performance. There are five gain modes in the FPA giving the full well range from 85Ke- to 40Me-. The measured input referred noise is 35e-rms in the highest gain mode. The FPA operates in Integrate While Read mode and, at a master clock rate of 60MHz and a minimum integration time of 1.4μs, achieves the highest line rate of 400 KHz. In this paper, design details and measurements results are presented in order to demonstrate the array performance.

  15. Silicon on-chip side-coupled high-Q micro-cavities for the multiplexing of high sensitivity photonic crystal integrated sensors array

    Science.gov (United States)

    Yang, Daquan; Wang, Chunhong; Yuan, Wei; Wang, Bo; Yang, Yujie; Ji, Yuefeng

    2016-09-01

    A novel two-dimensional (2D) silicon (Si) photonic crystal (PC) α-H0-slot micro-cavity with high Q-factor and high sensitivity (S) is presented. Based on the proposed α-H0-Slot micro-cavities, an optimal design of photonic crystal integrated sensors array (PC-ISA) on monolithic silicon on insulator (SOI) is displayed. By using finite-difference time-domain (FDTD) method, the simulation results demonstrate that both large S of 200 nm/RIU (RIU=refractive index unit) and high Q-factor >104 at telecom wavelength range can be achieved simultaneously. And the sensor figure of merit (FOM)>7000 is featured, an order of magnitude improvement over previous 2D PC sensors array. In addition, for the proposed 2D PC-ISA device, each sensor unit is shown to independently shift its resonance wavelength in response to the changes in refractive index (RI) and does not perturb the others. Thus, it is potentially an ideal platform for realizing ultra-compact lab-on-a-chip applications with dense arrays of functionalized spots for multiplexed sensing, and also can be used as an opto-fluidic architecture for performing highly parallel detection of biochemical interactions in aqueous environments.

  16. Flow-orthogonal bead oscillation in a microfluidic chip with a magnetic anisotropic flux-guide array

    DEFF Research Database (Denmark)

    Van Pelt, Stijn; Derks, Roy; Matteucci, Marco

    2011-01-01

    A new concept for the manipulation of superparamagnetic beads inside a microfluidic chip is presented in this paper. The concept allows for bead actuation orthogonal to the flow direction inside a microchannel. Basic manipulation functionalities were studied by means of finite element simulations...

  17. Self-assembling protein arrays on DNA chips by auto-labeling fusion proteins with a single DNA address

    NARCIS (Netherlands)

    Jongsma, M.A.; Litjens, R.H.G.M.

    2006-01-01

    The high-throughput deposition of recombinant proteins on chips, beads or biosensor devices would be greatly facilitated by the implementation of self-assembly concepts. DNA-directed immobilization via conjugation of proteins to an oligonucleotide would be preeminently suited for this purpose. Here,

  18. Leakage analysis of crossbar memristor arrays

    KAUST Repository

    Zidan, Mohammed A.

    2014-07-01

    Crossbar memristor arrays provide a promising high density alternative for the current memory and storage technologies. These arrays suffer from parasitic current components that significantly increase the power consumption, and could ruin the readout operation. In this work we study the trade-off between the crossbar array density and the power consumption required for its readout. Our analysis is based on simulating full memristor arrays on a SPICE platform.

  19. A novel rabbit immunospot array assay on a chip allows for the rapid generation of rabbit monoclonal antibodies with high affinity.

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Ozawa

    Full Text Available Antigen-specific rabbit monoclonal antibodies (RaMoAbs are useful due to their high specificity and high affinity, and the establishment of a comprehensive and rapid RaMoAb generation system has been highly anticipated. Here, we present a novel system using immunospot array assay on a chip (ISAAC technology in which we detect and retrieve antigen-specific antibody-secreting cells from the peripheral blood lymphocytes of antigen-immunized rabbits and produce antigen-specific RaMoAbs with 10(-12 M affinity within a time period of only 7 days. We have used this system to efficiently generate RaMoAbs that are specific to a phosphorylated signal-transducing molecule. Our system provides a new method for the comprehensive and rapid production of RaMoAbs, which may contribute to laboratory research and clinical applications.

  20. Genome-wide loss of heterozygosity and copy number alteration in esophageal squamous cell carcinoma using the Affymetrix GeneChip Mapping 10 K array

    Directory of Open Access Journals (Sweden)

    Goldstein Alisa M

    2006-11-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC is a common malignancy worldwide. Comprehensive genomic characterization of ESCC will further our understanding of the carcinogenesis process in this disease. Results Genome-wide detection of chromosomal changes was performed using the Affymetrix GeneChip 10 K single nucleotide polymorphism (SNP array, including loss of heterozygosity (LOH and copy number alterations (CNA, for 26 pairs of matched germ-line and micro-dissected tumor DNA samples. LOH regions were identified by two methods – using Affymetrix's genotype call software and using Affymetrix's copy number alteration tool (CNAT software – and both approaches yielded similar results. Non-random LOH regions were found on 10 chromosomal arms (in decreasing order of frequency: 17p, 9p, 9q, 13q, 17q, 4q, 4p, 3p, 15q, and 5q, including 20 novel LOH regions (10 kb to 4.26 Mb. Fifteen CNA-loss regions (200 kb to 4.3 Mb and 36 CNA-gain regions (200 kb to 9.3 Mb were also identified. Conclusion These studies demonstrate that the Affymetrix 10 K SNP chip is a valid platform to integrate analyses of LOH and CNA. The comprehensive knowledge gained from this analysis will enable improved strategies to prevent, diagnose, and treat ESCC.

  1. Characterization of CdTe sensors with Schottky contacts coupled to charge-integrating pixel array detectors for X-ray science

    Science.gov (United States)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Ruff, J. P. C.; Gruner, S. M.

    2016-12-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128 × 128 pixel array with (150 μm)2 pixels.

  2. Readout electronics development for the ATLAS silicon tracker

    Energy Technology Data Exchange (ETDEWEB)

    Borer, K. [Bern Univ. (Switzerland); Beringer, J. [Bern Univ. (Switzerland); Anghinolfi, F. [CERN, CH-1211 Geneva 23 (Switzerland); Aspell, P. [CERN, CH-1211 Geneva 23 (Switzerland); Chilingarov, A. [CERN, CH-1211 Geneva 23 (Switzerland)]|[Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Jarron, P. [CERN, CH-1211 Geneva 23 (Switzerland); Heijne, E.H.M. [CERN, CH-1211 Geneva 23 (Switzerland); Santiard, J.C. [CERN, CH-1211 Geneva 23 (Switzerland); Verweij, H. [CERN, CH-1211 Geneva 23 (Switzerland); Goessling, C. [Institut fur Physik, Univ. Dortmund, D-4600 Dortmund (Germany); Lisowski, B. [Institut fur Physik, Univ. Dortmund, D-4600 Dortmund (Germany); Reichold, A. [Institut fur Physik, Univ. Dortmund, D-4600 Dortmund (Germany); Bonino, R. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Clark, A.G. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Kambara, H. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); La Marra, D. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Leger, A. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Wu, X. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Richeux, J.P. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Taylor, G.N. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Fedotov, M. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Kuper, E. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Velikzhanin, Yu. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Campbell, D. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Murray, P. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Seller, P. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    1995-06-01

    We present the status of the development of the readout electronics for the large area silicon tracker of the ATLAS experiment at the LHC, carried out by the CERN RD2 project. Our basic readout concept is to integrate a fast amplifier, analog memory, sparse data scan circuit and analog-to-digital convertor (ADC) on a single VLSI chip. This architecture will provide full analog information of charged particle hits associated unambiguously to one LHC beam crossing, which is expected to be at a frequency of 40 MHz. The expected low occupancy of the ATLAS inner silicon detectors allows us to use a low speed (5 MHz) on-chip ADC with a multiplexing scheme. The functionality of the fast amplifier and analog memory have been demonstrated with various prototype chips. Most recently we have successfully tested improved versions of the amplifier and the analog memory. A piecewise linear ADC has been fabricated and performed satisfactorily up to 5 MHz. A new chip including amplifier, analog memory, memory controller, ADC, and data buffer has been designed and submitted for fabrication and will be tested on a prototype of the ATLAS silicon tracker module with realistic electrical and mechanical constraints. (orig.).

  3. Fast batch injection analysis of H{sub 2}O{sub 2} using an array of Pt-modified gold microelectrodes obtained from split electronic chips

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Bruno D.; Valerio, Jaqueline [Centro de Ciencias e Humanidades - Universidade Presbiteriana Mackenzie, Rua da Consolacao, 896, 01302-907 Sao Paulo, SP (Brazil); Angnes, Lucio [Departamento de Quimica Fundamental, Instituto de Quimica da USP, Av. Prof. Lineu Prestes, 748, 05508-000 Cidade Universitaria, Sao Paulo, SP (Brazil); Pedrotti, Jairo J., E-mail: jpedrotti@mackenzie.br [Centro de Ciencias e Humanidades - Universidade Presbiteriana Mackenzie, Rua da Consolacao, 896, 01302-907 Sao Paulo, SP (Brazil)

    2011-06-24

    Graphical abstract: Highlights: > An array of gold microelectrodes modified with Pt was used for batch injection analysis of H{sub 2}O{sub 2} in rainwater. > The microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology. > The analytical frequency of the method can attain 300 determinations per hour. > The volume-weighted mean concentration of H{sub 2}O{sub 2} in rainwater investigated (n = 25) was 14.2 {mu}mol L{sup -1}. - Abstract: A fast and robust analytical method for amperometric determination of hydrogen peroxide (H{sub 2}O{sub 2}) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H{sub 2}O{sub 2} amperometric determination in the concentration range from 0.8 {mu}mol L{sup -1} to 100 {mu}mol L{sup -1}. The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 {mu}mol L{sup -1} (3{sigma}). The anodic current peaks obtained after a series of 23 successive injections of 50 {mu}L of 25 {mu}mol L{sup -1} H{sub 2}O{sub 2} showed an RSD < 0.9%. To ensure the good selectivity to detect H{sub 2}O{sub 2}, its determination was performed in a differential mode, with selective destruction of the H{sub 2}O{sub 2} with catalase in 10 mmol L{sup -1} phosphate buffer solution. Practical application of the analytical procedure involved H{sub 2}O{sub 2} determination in rainwater of Sao Paulo City. A comparison of the results obtained by the proposed amperometric method with another one which

  4. Camera Development for the Cherenkov Telescope Array

    Science.gov (United States)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  5. Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    CERN Document Server

    Sekiya, H; Kubo, H; Miuchi, K; Nagayoshi, T; Nishimura, H; Okada, Y; Orito, R; Takada, A; Takeda, A; Tanimori, T; Ueno, K

    2006-01-01

    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of $6\\times6\\times20{\\rm mm}^3$ which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to readout every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6mm) was clearly resolved by flood field irradiation of $^{137}$Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors.

  6. Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    de La Taille, C

    2008-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  7. The Investigation on the TOT Readout Electronics Which is Based on the NINO Chip%基于NINO芯片的TOT读出电子学系统的研究

    Institute of Scientific and Technical Information of China (English)

    秦熙; 刘树彬; 安琪

    2012-01-01

    介绍了CERN设计的一款基于过阈时间法(Time - Over - Threshold)的ASIC芯片-NINO,并列出了一些基于NINO芯片设计的测试板的测试结果,用于评估该芯片在BES Ⅲ端盖TOF升级及在中子管位置灵敏探测器中的位置测量中应用的可能性.NINO芯片8通道高度集成,对实验电路板的设计和测试表明,其噪声抖动低(前沿噪声抖动约5.1 ps),可以满足TOT方法中高精度时间测量的要求.%The test result of the NINO chip which is based on the time over threshold (TOT) technique is described. The test is carried out to evaluate the possibility of applying the chip in the upgrade of BES III TOF and in the position measurement of Neutrino Position Sensitive Proportional Detector. The NINO chip is 8 channel integrated and of low noise ( 5.1 ps front edge jitter) which can serve high precision time measurement satisfactorily.

  8. Chip, Chip, Hooray!

    Science.gov (United States)

    Kelly, Susan

    2001-01-01

    Presents a science laboratory using different brands of potato chips in which students test their oiliness, size, thickness, saltiness, quality, and cost, then analyze the results to determine the best chip. Gives a brief history of potato chips. (YDS)

  9. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging

    Science.gov (United States)

    Lu, Y.; Tang, H.; Wang, Q.; Fung, S.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-05-01

    This paper presents an 8 × 24 element, 100 μm-pitch, 20 MHz ultrasound imager based on a piezoelectric micromachined ultrasonic transducer (PMUT) array having integrated acoustic waveguides. The 70 μm diameter, 220 μm long waveguides function both to direct acoustic waves and to confine acoustic energy, and also to provide mechanical protection for the PMUT array used for surface-imaging applications such as an ultrasonic fingerprint sensor. The imager consists of a PMUT array bonded with a CMOS ASIC using wafer-level conductive eutectic bonding. This construction allows each PMUT in the array to have a dedicated front-end receive amplifier, which together with on-chip analog multiplexing enables individual pixel read-out with high signal-to-noise ratio through minimized parasitic capacitance between the PMUT and the front-end amplifier. Finite element method simulations demonstrate that the waveguides preserve the pressure amplitude of acoustic pulses over distances of 600 μm. Moreover, the waveguide design demonstrated here enables pixel-by-pixel readout of the ultrasound image due to improved directivity of the PMUT by directing acoustic waves and creating a pressure field with greater spatial uniformity at the end of the waveguide. Pulse-echo imaging experiments conducted using a one-dimensional steel grating demonstrate the array's ability to form a two-dimensional image of a target.

  10. Timing and Readout Contorl in the LHCb Upgraded Readout System

    CERN Document Server

    Alessio, Federico

    2016-01-01

    In 2019, the LHCb experiment at CERN will undergo a major upgrade where its detectors electronics and entire readout system will be changed to read-out events at the full LHC rate of 40 MHz. In this paper, the new timing, trigger and readout control system for such upgrade is reviewed. Particular attention is given to the distribution of the clock, timing and synchronization information across the entire readout system using generic FTTH technology like Passive Optical Networks. Moreover the system will be responsible to generically control the Front-End electronics by transmitting configuration data and receiving monitoring data, offloading the software control system from the heavy task of manipulating complex protocols of thousands of Front-End electronics devices. The way in which this was implemented is here reviewed with a description of results from first implementations of the system, including usages in test-benches, implementation of techniques for timing distribution and latency control."

  11. SPIDR, a general-purpose readout system for pixel ASICs

    Science.gov (United States)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit

  12. Development of solar-blind AlGaN 128x128 Ultraviolet Focal Plane Arrays

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper reports the development of solar-blind aluminum gallium nitride (AlGaN) 128×128 UV Focal Plane Arrays (FPAs). The back-illuminated hybrid FPA archi- tecture consists of an 128x128 back-illuminated AlGaN PIN detector array that is bump-mounted to a matching 128x128 silicon CMOS readout integrated circuit (ROIC) chip. The 128×128 p-i-n photodiode arrays with cuton and cutoff wave-lengths of 233 and 258 nm, with a sharp reduction in response to UVB (280―320 nm) light. Several examples of solar-blind images are provided. This solar-blind band FPA has much better application prospect.

  13. Development of solar-blind AIGaN 128×128 Ultraviolet Focal Plane Arrays

    Institute of Scientific and Technical Information of China (English)

    YUAN YongGang; ZHANG Yan; CHU KaiHui; LI XiangYang; ZHAO DeGang; YANG Hui

    2008-01-01

    This paper reports the development of solar-blind aluminum gallium nitride (AlGaN) 128×128 UV Focal Plane Arrays (FPAs). The back-illuminated hybrid FPA archi-tecture consists of an 128×128 back-illuminated AIGaN PIN detector array that is bump-mounted to a matching 128×128 silicon CMOS readout integrated circuit (ROIC) chip. The 128×128 p-i-n photodiode arrays with cuton and cutoff wave-lengths of 233 and 258 nm, with a sharp reduction in response to UVB (280-320 nm) light. Several examples of solar-blind images are provided. This solar-blind band FPA has much better application prospect.

  14. Low Noise Readout Circuit for Biosensor SoC

    Institute of Scientific and Technical Information of China (English)

    PAN Yin-song; KONG Mou-fu; LI Xiang-quan; WANG Li

    2008-01-01

    Presented is a low noise interface circuit that is tuned to the needs of self-assembly monolayers biosensor SoC. The correlated double sampling(CDS) unit of the readout circuit can reduce 1/f noise, KTC noise and fixed noise of micro arrays effectively. The circuit is simulated in a 0.6 μm/level 7 standard CMOS process, and the simulated results show the output voltage has a good linearity with the transducing current of the micro arrays. This is a novel circuit including four amplifiers sharing a common half-circuit and the noise reducing CDS unit. It could be widely used for micro array biosensors.

  15. Design of a 10-bit segmented current-steering digital-to-analog converter in CMOS 65 nm technology for the bias of new generation readout chips in high radiation environment

    Science.gov (United States)

    De Robertis, G.; Loddo, F.; Mattiazzo, S.; Pacher, L.; Pantano, D.; Tamma, C.

    2016-01-01

    A new pixel front end chip for HL-LHC experiments in CMOS 65nm technology is under development by the CERN RD53 collaboration together with the Chipix65 INFN project. This work describes the design of a 10-bit segmented current-steering Digital-to-Analog Converter (DAC) to provide a programmable bias current to the analog blocks of the circuit. The main requirements are monotonicity, good linearity, limited area consumption and radiation hardness up to 10 MGy. The DAC was prototyped and electrically tested, while irradiation tests will be performed in Autumn 2015.

  16. Status on the development of front-end and readout electronics for large silicon trackers

    Indian Academy of Sciences (India)

    J David; M Dhellot; J-F Genat; F Kapusta; H Lebbolo; T-H Pham; F Rossel; A Savoy-Navarro; E Deumens; P Mallisse; D Fougeron; R Hermel; Y Karyotakis; S Vilalte

    2007-12-01

    Final results on a CMOS 0.18 m front-end chip for silicon strips readout are summarized and preliminary results on time measurement are discussed. The status of the next version in 0.13 m is briefly presented.

  17. Fast readout of the COMPASS RICH CsI-MWPC chambers

    CERN Document Server

    Abbon, P; Deschampbs, H; Kunne, F; Gerasimov, S; Ketzer, B; Konorov, I; Kravtchuk, N; Magnon, A; Neyret, D; Panebianco, S; Paul, S; Rebourgeard, P; Tessaroto, F

    2006-01-01

    A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with “slow” signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ∼3 μs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5–6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficien...

  18. Fast readout of the COMPASS RICH CsI-MWPC photon chambers

    Science.gov (United States)

    Abbon, P.; Delagnes, E.; Deschamps, H.; Kunne, F.; Gerasimov, S.; Ketzer, B.; Konorov, I.; Kravtchuk, N.; Magnon, A.; Neyret, D.; Panebianco, S.; Paul, S.; Rebourgeard, P.; Tessaroto, F.

    2006-11-01

    A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with "slow" signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ˜3 μs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5-6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficient data taking at higher trigger rate.

  19. Multiplexed optical operation of nanoelectromechanical systems (NEMS) arrays for sensing and signal-processing applications

    Science.gov (United States)

    Sampathkumar, Ashwin

    2014-06-01

    NEMS are rapidly being developed for a variety of sensing applications as well as for exploring interesting regimes in fundamental physics. In most of these endeavors, operation of a NEMS device involves actuating the device harmonically around its fundamental resonance and detecting subsequent motion while the device interacts with its environment. Even though a single NEMS resonator is exceptionally sensitive, a typical application, such as sensing or signal processing, requires the detection of signals from many resonators distributed over the surface of a chip. Therefore, one of the key technological challenges in the field of NEMS is development of multiplexed measurement techniques to detect the motion of a large number of NEMS resonators simultaneously. In this work, we address the important and difficult problem of interfacing with a large number of NEMS devices and facilitating the use of such arrays in, for example, sensing and signal processing applications. We report a versatile, all-optical technique to excite and read-out a distributed NEMS array. The NEMS array is driven by a distributed, intensity-modulated, optical pump through the photothermal effect. The ensuing vibrational response of the array is multiplexed onto a single, probe beam as a high-frequency phase modulation. The phase modulation is optically down converted to a low-frequency, intensity modulation using an adaptive full -field interferometer, and subsequently is detected using a charge-coupled device (CCD) array. Rapid and single-step mechanical characterization of approximately 60 nominally identical, high-frequency resonators is demonstrated. The technique may enable sensitivity improvements over single NEMS resonators by averaging signals coming from a multitude of devices in the array. In addition, the diffraction-limited spatial resolution may allow for position-dependent read-out of NEMS sensor chips for sensing multiple analytes or spatially inhomogeneous forces.

  20. UW VLSI chip tester

    Science.gov (United States)

    McKenzie, Neil

    1989-12-01

    We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.

  1. Readout circuit design of the retina-like CMOS image sensor

    Science.gov (United States)

    Cao, Fengmei; Song, Shengyu; Bai, Tingzhu; Cao, Nan

    2015-02-01

    Readout circuit is designed for a special retina-like CMOS image sensor. To realize the pixels timing drive and readout of the sensor, the Altera's Cyclone II FPGA is used as a control chip. The voltage of the sensor is supported by a voltage chip initialized by SPI with AVR MCU system. The analog image signal outputted by the sensor is converted to digital image data by 12-bits A/D converter ADS807 and the digital data is memorized in the SRAM. Using the Camera-link image grabber, the data stored in SRAM is transformed to image shown on PC. Experimental results show the circuit works well on retina-like CMOS timing drive and image readout and images can be displayed properly on the PC.

  2. Digital column readout architecture for the ATLAS pixel 025 mum front end IC

    CERN Document Server

    Mandelli, E; Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Marchesini, R; Meddeler, G; Peric, I

    2002-01-01

    A fast low noise, limited power, radiation-hard front-end chip was developed for reading out the Atlas Pixel Silicon Detector. As in the past prototypes, every chip is used to digitize and read out charge and time information from hits on each one of its 2880 inputs. The basic column readout architecture idea was adopted and modified to allow a safe transition to quarter micron technology. Each pixel cell, organized in a 160 multiplied by 18 matrix, can be independently enabled and configured in order to optimize the analog signal response and to prevent defective pixels from saturating the readout. The digital readout organizes hit data coming from each column, with respect to time, and output them on a low-level serial interface. A considerable effort was made to design state machines free of undefined states, where single-point defects and charge deposited by heavy ions in the silicon could have led to unpredicted forbidden states. 7 Refs.

  3. Comparative Transcriptomic Profiling of Vitis vinifera Under High Light Using a Custom-Made Array and the Affymetrix GeneChip

    Institute of Scientific and Technical Information of China (English)

    Luisa C. Carvalho; Belmiro J. Vilela; Phil M. Mullineaux; Sara Am(a)ncio

    2011-01-01

    Understanding abiotic stress responses is one of the most important issues in plant research nowadays.Abiotic stress,including excess light,can promote the onset of oxidative stress through the accumulation of reactive oxygen species.Oxidative stress also arises when in vitro propagated plants are exposed to high light upon transfer to ex vitro.To determine whether the underlying pathways activated at the transfer of in vitro grapevine to ex vitro conditions reflect the processes occurring upon light stress,we used Vitis vinifera Affymetrix GeneChip (VvGA) and a custom array of genes responsive to light stress (LSCA) detected by real-time reverse transcriptase PCR (qRT-PCR).When gene-expression profiles were compared,‘protein metabolism and modification',‘signaling',and ‘anti-oxidative' genes were more represented in LSCA,while,in VvGA,‘cell wall metabolism' and ‘secondary metabolism' were the categories in which gene expression varied more significantly.The above functional categories confirm previous studies involving other types of abiotic stresses,enhancing the common attributes of abiotic stress defense pathways.The LSCA analysis of our experimental system detected strong response of heat shock genes,particularly the protein rescuing mechanism involving the cooperation of two ATP-dependent chaperone systems,Hsp100 and Hsp70,which showed an unusually late response during the recovery period,of extreme relevance to remove non-functional,potentially harmful polypeptides arising from misfolding,denaturation,or aggregation brought about by stress.The success of LSCA also proves the feasibility of a custommade qRT-PCR approach,particularly for species for which no GeneChip is available and for researchers dealing with a specific and focused problem.

  4. Design of High Dynamic Range Digital to Analog Converters for the Calibration of the CALICE Si-W Ecal readout electronics

    CERN Document Server

    Gallin-Martel, L; Hostachy, J Y; Rarbi, F; Rossetto, O

    2009-01-01

    The ILC ECAL front-end chip will integrate many functions of the readout electronics including a DAC dedicated to calibration. We present two versions of DAC with respectively 12 and 14 bits, designed in a CMOS 0.35μm process. Both are based on segmented arrays of switched capacitors controlled by a Dynamic Element Matching (DEM) algorithm. A full differential architecture is used, and the amplifiers can be turned into a standby mode reducing the power dissipation. The 12 bit DAC features an INL lower than 0.3 LSB at 5MHz, and dissipates less than 7mW. The 14 bit DAC is an improved version of the 12 bit design.

  5. The GOTTHARD charge integrating readout detector: design and characterization

    Science.gov (United States)

    Mozzanica, A.; Bergamaschi, A.; Dinapoli, R.; Graafsma, H.; Greiffenberg, D.; Henrich, B.; Johnson, I.; Lohmann, M.; Valeria, R.; Schmitt, B.; Xintian, S.

    2012-01-01

    A charge integrating readout ASIC (Application Specific Integrated Circuit) for silicon strip sensors has been developed at PSI in collaboration with DESY. The goal of the project is to provide a charge integrating readout system able to cope with the pulsed beam of XFEL machines and at the same time to retain the high dynamic range and single photon resolution performances typical for photon counting systems. The ASIC, designed in IBM 130 nm CMOS technology, takes advantage of its three gain stages with automatic stage selection to achieve a dynamic range of 10000 12 keV photons and a noise better than 300 e.n.c.. The 4 analog outputs of the ASIC are optimized for speed, allowing frame rates higher than 1 MHz, without compromises on linearity and noise performances. This work presents the design features of the ASIC, and reports the characterization results of the chip itself.

  6. A CMOS ASIC Design for SiPM Arrays.

    Science.gov (United States)

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2011-12-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM).

  7. NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Glicenstein, J-F; Barrio, J-A; Blanch~Bigas, O; Bolmont, J; Bouyjou, F; Brun, P; Chabanne, E; Champion, C; Colonges, S; Corona, P; Delagnes, E; Delgado, C; Ginzov, C Diaz; Durand, D; Ernenwein, J-P; Fegan, S; Ferreira, O; Fesquet, M; Fiasson, A; Fontaine, G; Fouque, N; Gascon, D; Giebels, B; Henault, F; Hermel, R; Hoffmann, D; Horan, D; Houles, J; Jean, P; Jocou, L; Karkar, S; Knoedlseder, J; Kossakowski, R; Lamanna, G; LeFlour, T; Lenain, J-P; Leveque, A; Louis, F; Martinez, G; Moudden, Y; Moulin, E; Nayman, P; Nunio, F; Olive, J-F; Panazol, J-L; Pavy, S; Petrucci, P-O; Pierre, E; Prast, J; Punch, M; Ramon, P; Rateau, S; Ravel, T; Rosier-Lees, S; Sanuy, A; Shayduk, M; Sizun, P-Y; Sulanke, K-H; Tavernet, J-P; Tejedor~Alvarez, L-A; Toussenel, F; Vasileiadis, G; Voisin, V; Waegebert, V; Wischnewski, R

    2015-01-01

    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electro...

  8. RD Collaboration Proposal: Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Chistiansen, J (CERN)

    2013-01-01

    This proposal describes a new RD collaboration to develop the next genrration of hybrid pixel readout chips for use in ATLAS and CMS PHase 2 upgrades. extrapolation of hybrid pixel technology to the HL-LHC presents major challenges on several fronts. Challenges include: smaller pixels to resolve tracks in boosted jets, much higher hit rates (1-2 GHz/cm2 ), unprecedented radiation tolerance (10 MGy), much higher output bandwidth, and large IC format with low power consumption in order to instrument large areas while keeping the material budget low. This collaboration is specifically focused on design of hybrid pixel readout chips, and not on more general chip design or on other aspects of hybrid pixel technology. Participants include 7 institutes on ATLAS and 7 on CMS, plus 2 on both experiments.

  9. Analog readout modules for the ZEUS microvertex detector

    CERN Document Server

    Fusayasu, T

    1999-01-01

    Analog readout modules have been developed for a silicon microvertex detector of the electron-proton collision experiment ZEUS. Analog signals kept in the front end are read out and digitized by ADCs and processed afterwards to reduce the data volume while keeping the signal information. We have developed prototype modules with 10-bit 10 MHz ADCs and digital processors built in Field Programmable Gate Arrays. Their performance was investigated.

  10. Readout, first- and second-level triggers of the new Belle silicon vertex detector

    Science.gov (United States)

    Friedl, M.; Abe, R.; Abe, T.; Aihara, H.; Asano, Y.; Aso, T.; Bakich, A.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Dalseno, J.; Dowd, R.; Dragic, J.; Everton, C. W.; Fernholz, R.; Fujii, H.; Gao, Z. W.; Gordon, A.; Guo, Y. N.; Haba, J.; Hara, K.; Hara, T.; Harada, Y.; Haruyama, T.; Hasuko, K.; Hayashi, K.; Hazumi, M.; Heenan, E. M.; Higuchi, T.; Hirai, H.; Hitomi, N.; Igarashi, A.; Igarashi, Y.; Ikeda, H.; Ishino, H.; Itoh, K.; Iwaida, S.; Kaneko, J.; Kapusta, P.; Karawatzki, R.; Kasami, K.; Kawai, H.; Kawasaki, T.; Kibayashi, A.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Lesiak, T.; Limosani, A.; Lin, W. C.; Marlow, D.; Matsumoto, H.; Mikami, Y.; Miyake, H.; Moloney, G. R.; Mori, T.; Nakadaira, T.; Nakano, Y.; Natkaniec, Z.; Nozaki, S.; Ohkubo, R.; Ohno, F.; Okuno, S.; Onuki, Y.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Shibata, T.; Stamen, R.; Stanič, S.; Steininger, H.; Sumisawa, K.; Suzuki, J.; Tajima, H.; Tajima, O.; Takahashi, K.; Takasaki, F.; Tamura, N.; Tanaka, M.; Taylor, G. N.; Terazaki, H.; Tomura, T.; Trabelsi, K.; Trischuk, W.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ueno, K.; Uozaki, N.; Ushiroda, Y.; Vahsen, S.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamada, Y.; Yamamoto, H.; Yamashita, Y.; Yamashita, Y.; Yamauchi, M.; Yanai, H.; Yang, R.; Yasu, Y.; Yokoyama, M.; Ziegler, T.; Žontar, D.

    2004-12-01

    A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide "fast or" (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown.

  11. High-performance low-noise 128-channel readout-integrated circuit for flat-panel x-ray detector systems

    Science.gov (United States)

    Beuville, Eric J.; Belding, Mark; Costello, Adrienne N.; Hansen, Randy; Petronio, Susan M.

    2004-05-01

    A silicon mixed-signal integrated circuit is needed to extract and process x-ray induced signals from a coated flat panel thin film transistor array (TFT) in order to generate a digital x-ray image. Indigo Systems Corporation has designed, fabricated, and tested such a readout integrated circuit (ROIC), the ISC9717. This off-the-shelf, high performance, low-noise, 128-channel device is fully programmable with a multistage pipelined architecture and a 9 to 14-bit programmable A/D converter per channel, making it suitable for numerous X-ray medical imaging applications. These include high-resolution radiography in single frame mode and fluoroscopy where high frame rates are required. The ISC9717 can be used with various flat panel arrays and solid-state detectors materials: Selenium (Se), Cesium Iodide (CsI), Silicon (Si), Amorphous Silicon, Gallium Arsenide (GaAs), and Cadmium Zinc Telluride (CdZnTe). The 80-micron pitch ROIC is designed to interface (wire bonding or flip-chip) along one or two sides of the x-ray panel, where ROICs are abutted vertically, each reading out charge from pixels multiplexed onto 128 horizontal read lines. The paper will present the design and test results of the ROIC, including the mechanical and electrical interface to a TFT array, system performance requirements, output multiplexing of the digital signals to an off-board processor, and characterization test results from fabricated arrays.

  12. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems

    Science.gov (United States)

    Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.

    2016-07-01

    Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use

  13. SQUIDs for the readout of metallic magnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ferring, Anna; Wegner, Mathias; Fleischmann, Andreas; Gastaldo, Loredana; Kempf, Sebastian; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2015-07-01

    Superconducting quantum interference devices (SQUIDs) are the devices of choice to read out metallic magnetic calorimeters (MMCs). Here, the temperature change of the detector upon the absorption of an energetic particle is measured as a magnetization change of a paramagnetic temperature sensor that is situated in a weak magnetic field. Driven by the need for devices that allow for the readout of large-scale detector arrays with hundreds or even thousands of individual detectors as well as of single channel detectors with sub-eV energy resolution, we have recently started the development of low-T{sub c} current-sensing SQUIDs. In particular, we are developing cryogenic frequency-domain multiplexers based on non-hysteretic rf-SQUIDs for detector array readout as well as dc-SQUIDs for single channel detector readout. We discuss our SQUID designs and the performance of prototype SQUIDs. We particularly focus on the frequency and temperature dependence of the SQUID noise as well as the reliability of our SQUID fabrication process for Nb/Al-AlO{sub x}/Nb Josephson junctions. Additionally, we demonstrate experimentally that state-of-the-art MMCs can successfully be read out with our current devices. Finally, we discuss different strategies to improve the SQUID and detector performance aiming to reach sub-eV energy resolution for individual detectors as well as for detector arrays.

  14. Analysis techniques and performance of the Domino Ring Sampler version 4 based readout for the MAGIC telescopes

    CERN Document Server

    Sitarek, Julian; Mazin, Daniel; Paoletti, Riccardo; Tescaro, Diego

    2013-01-01

    Recently the readout of the MAGIC telescopes has been upgraded to a new system based on the Domino Ring Sampler version 4 chip. We present the analysis techniques and the signal extraction performance studies of this system. We study the behaviour of the baseline, the noise, the cross-talk, the linearity and the time resolution. We investigate also the optimal signal extraction. In addition we show some of the analysis techniques specific to the readout based on the Domino Ring Sampler version 2 chip, previously used in the MAGIC II telescope.

  15. Flip chip assembly of thinned chips for hybrid pixel detector applications

    CERN Document Server

    Fritzsch, T; Woehrmann, M; Rothermund, M; Huegging, F; Ehrmann, O; Oppermann, H; Lang, K.D

    2014-01-01

    There is a steady trend to ultra-thin microelectronic devices. Especially for future particle detector systems a reduced readout chip thickness is required to limit the loss of tracking precision due to scattering. The reduction of silicon thickness is performed at wafer level in a two-step thinning process. To minimize the risk of wafer breakage the thinned wafer needs to be handled by a carrier during the whole process chain of wafer bumping. Another key process is the flip chip assembly of thinned readout chips onto thin sensor tiles. Besides the prevention of silicon breakage the minimization of chip warpage is one additional task for a high yield and reliable flip chip process. A new technology using glass carrier wafer will be described in detail. The main advantage of this technology is the combination of a carrier support during wafer processing and the chip support during flip chip assembly. For that a glass wafer is glue-bonded onto the backside of the thinned readout chip wafer. After the bump depo...

  16. The read-out ASIC for the Space NUCLEON project

    Science.gov (United States)

    Atkin, E.; Voronin, A.; Karmanov, D.; Kudryashov, I.; Podorozhniy, D.; Shumikhin, V.

    2015-04-01

    This paper summarizes the design results for the read-out ASIC for the space NUCLEON project of the Russian Federal Space Agency ROSCOSMOS. The ASIC with a unique high dynamic range (1-40 000 mip) at low power consumption ( 50, generated by silicon detectors, having capacitances up to 100 pF. The chip structure includes 32 analog channels, each consisting of a charge sensitive amplifier (CSA) with a p-MOS input transistor (W = 8 mm, L = 0.5 μ m), a shaper (peaking time of 2 us) and a T&H circuit. The ASIC showed a 120 pC dynamic range at a SNR of 2.5 for the particles with minimal ionization energy (1 mip). The chip was fabricated by the 0.35 um CMOS process via Europractice and tested both at lab conditions and in the SPS beam at CERN.

  17. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip

    Science.gov (United States)

    Khosravi, Farhad; Trainor, Patrick J.; Lambert, Christopher; Kloecker, Goetz; Wickstrom, Eric; Rai, Shesh N.; Panchapakesan, Balaji

    2016-11-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in blood using nanotube-antibody micro-arrays. 76-element single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (anti-EpCAM), Anti-human epithelial growth factor receptor 2 (anti-Her2) and non-specific IgG antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester. Following device functionalization, blood spiked with SKBR3, MCF7 and MCF10A cells (100/1000 cells per 5 μl per device, 170 elements totaling 0.85 ml of whole blood) were adsorbed on to the nanotube device arrays. Electrical signatures were recorded from each device to screen the samples for differences in interaction (specific or non-specific) between samples and devices. A zone classification scheme enabled the classification of all 170 elements in a single map. A kernel-based statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping series to classify device electrical signals that corresponded to plain blood (control) or SKBR3 spiked blood (case) on anti-Her2 functionalized devices with ˜90% sensitivity, and 90% specificity in capture of 1000 SKBR3 breast cancer cells in blood using anti-Her2 functionalized devices. Screened devices that gave positive electrical signatures were confirmed using optical/confocal microscopy to hold spiked cancer cells. Confocal microscopic analysis of devices that were classified to hold spiked blood based on their electrical signatures confirmed the presence of cancer cells through staining for DAPI (nuclei), cytokeratin (cancer cells) and CD45 (hematologic cells) with single cell sensitivity. We report 55%-100% cancer cell capture yield depending on the active device area for blood adsorption with mean of 62% (˜12 500 captured off 20 000 spiked cells in 0.1 ml

  18. Development of a small-scale protope of the GOSSIPO-2 chip in 0.13 um CMOS technology

    CERN Document Server

    Kluit, R; Gromov, V

    2007-01-01

    The GOSSIP (Gas On Slimmed Silicon Pixel) detector is a proposed alternative for silicon based pixel detectors. The Gossip Prototype (GOSSIPO) chip is being developed to serve as a prototype read-out chip for such a gas-filled detector. Thanks to the very low capacitance at the preamplifier input, the front-end of the chip demonstrates low-noise performance in combination with a fast peaking time and low analog power dissipation. Measurement of the drift time of every primary electron in the gas volume enables 3D reconstruction of the particle tracks. For this purpose a Time-to- Digital converter must be placed in each pixel. A small-scale prototype of the GOSSIP chip has been developed in the 0.13 μm CMOS technology. The prototype includes a 16 by 16 pixel array where each pixel is equipped with a front-end circuit, threshold DAC, and a 4-bit TDC. The chip is available for testing in May 2007 and after initial tests it will be postprocessed to build a prototype detector. This paper describes the detector de...

  19. A new analogue sampling readout system for the COMPASS RICH-1 detector

    Science.gov (United States)

    Abbon, P.; Dafni, T.; Delagnes, E.; Deschamps, H.; Gerassimov, S.; Ketzer, B.; Kolosov, V.; Konorov, I.; Kravtchuk, N.; Kunne, F.; Magnon, A.; Neyret, D.; Panebianco, S.; Paul, S.; Rebourgeard, P.

    2008-05-01

    A new electronic readout for CsI-coated multiwire proportional chambers (MWPC), used as photon detectors in the COMPASS ring imaging Cherenkov (RICH) detector, is described. A prototype system comprising more than 5000 channels has been built and tested in high-intensity beam conditions. It is based on the APV25-S1 analogue sampling chip, and replaces the GASSIPLEX chip readout used previously. The APV25 chip, although originally designed for Silicon microstrip detectors, is shown to perform well even with "slow" signals from an MWPC, maintaining a signal-to-noise ratio (SNR) of 9. For every trigger the system reads out three consecutive amplitudes in time, thus allowing to extract information on both the signal amplitude and its timing. This information is used to reduce pile-up events in a high-rate environment. Prototype tests of the new readout electronics on a central RICH photocathode in nominal COMPASS beam conditions showed that the effective time window is reduced from more than 3 μs for the GASSIPLEX to less than 400 ns for the APV25 chip. This leads to a significant improvement of the signal-to-background ratio (SBR) with respect to the original readout. A gain by a factor of 5-6 was experimentally verified in the very forward region of phase space, where pile-up due to the muon beam halo is most significant. Owing to its pipelined architecture, the new readout system also considerably reduces the dead time per event, thus allowing to make use of trigger rates exceeding 50 kHz.

  20. NectarCAM, a camera for the medium sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Glicenstein, J-F

    2016-01-01

    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The expected performance of the camera are discussed. Prototypes of NectarCAM components have been built to validate the design. Preliminary results of a 19-module mini-camera are presented, as well as future plans for building and testing a full size camera.

  1. The Belle II SVD data readout system

    Science.gov (United States)

    Thalmeier, R.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Casarosa, G.; Ceccanti, M.; Cervenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doleźal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyś, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnićka, P.; Lanceri, L.; Lettenbicher, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2017-02-01

    The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing.

  2. High frame rate measurements of semiconductor pixel detector readout IC

    Science.gov (United States)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  3. High frame rate measurements of semiconductor pixel detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2012-07-11

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  4. The TDCpix readout ASIC: A 75 ps resolution timing front-end for the NA62 Gigatracker hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Kluge, A., E-mail: alexander.kluge@cern.ch; Aglieri Rinella, G.; Bonacini, S.; Jarron, P.; Kaplon, J.; Morel, M.; Noy, M.; Perktold, L.; Poltorak, K.

    2013-12-21

    The TDCpix is a novel pixel readout ASIC for the NA62 Gigatracker detector. NA62 is a new experiment being installed at the CERN Super Proton Synchrotron. Its Gigatracker detector shall provide on-beam tracking and time stamping of individual particles with a time resolution of 150 ps rms. It will consist of three tracking stations, each with one hybrid pixel sensor. The peak flow of particles crossing the detector modules reaches 1.27 MHz/mm{sup 2} for a total rate of about 0.75 GHz. Ten TDCpix chips will be bump-bonded to every silicon pixel sensor. Each chip shall perform time stamping of 100 M particle hits per second with a detection efficiency above 99% and a timing accuracy better than 200 ps rms for an overall three-station-setup time resolution of better than 150 ps. The TDCpix chip has been designed in a 130 nm CMOS technology. It will feature 45×40 square pixels of 300×300μm{sup 2} and a complex End of Column peripheral region including an array of TDCs based on DLLs, four high speed serializers, a low-jitter PLL, readout and control circuits. This contribution will describe the complete design of the final TDCpix ASIC. It will discuss design choices, the challenges faced and some of the lessons learned. Furthermore, experimental results from the testing of circuit prototypes will be presented. These demonstrate the achievement of key performance figures such as a time resolution of the processing chain of 75 ps rms with a laser sent to the center of the pixel and the capability of time stamping charged particles with an overall resolution below 200 ps rms. -- Highlights: • Feasibility demonstration of a silicon pixel detector with sub-ns time tagging capability. • Demonstrator detector assembly with a time resolution of 75 ps RMS with laser charge injection; 170 ps RMS with particle beam. • Design of trigger-less TDCpix ASIC with 1800 pixels, 720 TDC channels and 4 3.2 Gbit/s serializers.

  5. Optimal and robust design method for two-chip out-of-plane microaccelerometers.

    Science.gov (United States)

    Lee, Sangmin; Ko, Hyoungho; Choi, Byoungdoo; Cho, Dong-il Dan

    2010-01-01

    In this paper, an optimal and robust design method to implement a two-chip out-of-plane microaccelerometer system is presented. The two-chip microsystem consists of a MEMS chip for sensing the external acceleration and a CMOS chip for signal processing. An optimized design method to determine the device thickness, the sacrificial gap, and the vertical gap length of the M EMS sensing element is applied to minimize the fundamental noise level and also to achieve the robustness to the fabrication variations. In order to cancel out the offset and gain variations due to parasitic capacitances and process variations, a digitally trimmable architecture consisting of an 11 bit capacitor array is adopted in the analog front-end of the CMOS capacitive readout circuit. The out-of-plane microaccelerometer has the scale factor of 372 mV/g∼389 mV/g, the output nonlinearity of 0.43% FSO∼0.60% FSO, the input range of ±2 g and a bias instability of 122 μg∼229 μg. The signal-to-noise ratio and the noise equivalent resolution are measured to be 74.00 dB∼75.23 dB and 180 μg/rtHz∼190 μg/rtHz, respectively. The in-plane cross-axis sensitivities are measured to be 1.1%∼1.9% and 0.3%∼0.7% of the out-of-plane sensitivity, respectively. The results show that the optimal and robust design method for the MEMS sensing element and the highly trimmable capacity of the CMOS capacitive readout circuit are suitable to enhance the die-to-die uniformity of the packaged microsystem, without compromising the performance characteristics.

  6. Optimal and Robust Design Method for Two-Chip Out-of-Plane Microaccelerometers

    Directory of Open Access Journals (Sweden)

    Hyoungho Ko

    2010-11-01

    Full Text Available In this paper, an optimal and robust design method to implement a two-chip out-of-plane microaccelerometer system is presented. The two-chip microsystem consists of a MEMS chip for sensing the external acceleration and a CMOS chip for signal processing. An optimized design method to determine the device thickness, the sacrificial gap, and the vertical gap length of the M EMS sensing element is applied to minimize the fundamental noise level and also to achieve the robustness to the fabrication variations. In order to cancel out the offset and gain variations due to parasitic capacitances and process variations, a digitally trimmable architecture consisting of an 11 bit capacitor array is adopted in the analog front-end of the CMOS capacitive readout circuit. The out-of-plane microaccelerometer has the scale factor of 372 mV/g~389 mV/g, the output nonlinearity of 0.43% FSO~0.60% FSO, the input range of ±2 g and a bias instability of 122 μg~229 μg. The signal-to-noise ratio and the noise equivalent resolution are measured to be74.00 dB~75.23 dB and 180 μg/rtHz~190 μg/rtHz, respectively. The in-plane cross-axis sensitivities are measured to be 1.1%~1.9% and 0.3%~0.7% of the out-of-plane sensitivity, respectively. The results show that the optimal and robust design method for the MEMS sensing element and the highly trimmable capacity of the CMOS capacitive readout circuit are suitable to enhance the die-to-die uniformity of the packaged microsystem, without compromising the performance characteristics.

  7. SPIROC: design and performances of a dedicated very front-end electronics for an ILC Analog Hadronic CALorimeter (AHCAL) prototype with SiPM read-out

    Science.gov (United States)

    Conforti Di Lorenzo, S.; Callier, S.; Fleury, J.; Dulucq, F.; De la Taille, C.; Chassard, G. Martin; Raux, L.; Seguin-Moreau, N.

    2013-01-01

    For the future e+ e- International Linear Collider (ILC) the ASIC SPIROC (Silicon Photomultiplier Integrated Read-Out Chip) was designed to read out the Analog Hadronic Calorimeter (AHCAL) equipped with Silicon Photomultiplier (SiPM). It is an evolution of the FLC_SiPM chip designed by the OMEGA group in 2005. SPIROC2 [1] was realized in AMS SiGe 0.35 μm technology [2] and developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of read-out channels. This ASIC is a very front-end read-out chip that integrates 36 self triggered channels with variable gain to achieve charge and time measurements. The charge measurement must be performed from 1 up to 2000 photo-electrons (p.e.) corresponding to 160 fC up to 320 pC for SiPM gain 106. The time measurement is performed with a coarse 12-bit counter related to the bunch crossing clock (up to 5 MHz) and a fine time ramp based on this clock (down to 200 ns) to achieve a resolution of 1 ns. An analog memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. The analog memory content (time and charge) is digitized thanks to an internal 12-bit Wilkinson ADC. The data is then stored in a 4kbytes RAM. A complex digital part is necessary to manage all these features and to transfer the data to the DAQ. SPIROC2 is the second generation of the SPIROC ASIC family designed in 2008 by the OMEGA group. A very similar version (SPIROC2c) was submitted in February 2012 to improve the noise performance and also to integrate a new TDC (Time to Digital Converter) structure. This paper describes SPIROC2 and SPIROC2c ASICs and illustrates the main characteristics thank to a series of measurements.

  8. A microfluidic device for the automated electrical readout of low-density glass-slide microarrays.

    Science.gov (United States)

    Díaz-González, María; Salvador, J Pablo; Bonilla, Diana; Marco, M Pilar; Fernández-Sánchez, César; Baldi, Antoni

    2015-12-15

    Microarrays are a powerful platform for rapid and multiplexed analysis in a wide range of research fields. Electrical readout systems have emerged as an alternative to conventional optical methods for microarray analysis thanks to its potential advantages like low-cost, low-power and easy miniaturization of the required instrumentation. In this work an automated electrical readout system for low-cost glass-slide microarrays is described. The system enables the simultaneous conductimetric detection of up to 36 biorecognition events by incorporating an array of interdigitated electrode transducers. A polydimethylsiloxane microfluidic structure has been designed that creates microwells over the transducers and incorporates the microfluidic channels required for filling and draining them with readout and cleaning solutions, thus making the readout process fully automated. Since the capture biomolecules are not immobilized on the transducer surface this readout system is reusable, in contrast to previously reported electrochemical microarrays. A low-density microarray based on a competitive enzymatic immunoassay for atrazine detection was used to test the performance of the readout system. The electrical assay shows a detection limit of 0.22±0.03 μg L(-1) similar to that obtained with fluorescent detection and allows the direct determination of the pesticide in polluted water samples. These results proved that an electrical readout system such as the one presented in this work is a reliable and cost-effective alternative to fluorescence scanners for the analysis of low-density microarrays.

  9. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  10. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, P., E-mail: yangping0710@126.com [Central China Normal University, Wuhan (China); Aglieri, G.; Cavicchioli, C. [CERN, 1210 Geneva 23 (Switzerland); Chalmet, P.L. [MIND, Archamps (France); Chanlek, N. [Suranaree University of Technology, Nakhon Ratchasima (Thailand); Collu, A. [University of Cagliari, Cagliari (Italy); INFN (Italy); Gao, C. [Central China Normal University, Wuhan (China); Hillemanns, H.; Junique, A. [CERN, 1210 Geneva 23 (Switzerland); Kofarago, M. [CERN, 1210 Geneva 23 (Switzerland); University of Utrecht, Utrecht (Netherlands); Keil, M.; Kugathasan, T. [CERN, 1210 Geneva 23 (Switzerland); Kim, D. [Dongguk and Yonsei University, Seoul (Korea, Republic of); Kim, J. [Pusan National University, Busan (Korea, Republic of); Lattuca, A. [University of Torino, Torino (Italy); INFN (Italy); Marin Tobon, C.A. [CERN, 1210 Geneva 23 (Switzerland); Marras, D. [University of Cagliari, Cagliari (Italy); INFN (Italy); Mager, M.; Martinengo, P. [CERN, 1210 Geneva 23 (Switzerland); Mazza, G. [University of Torino, Torino (Italy); INFN (Italy); and others

    2015-06-11

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  11. Analysis techniques and performance of the Domino Ring Sampler version 4 based readout for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Sitarek, Julian, E-mail: dzuleq@gmail.com [IFAE, Edifici Cn., Campus UAB, E-08193 Bellaterra (Spain); Gaug, Markus, E-mail: Markus.Gaug@uab.cat [Física de les Radiacions, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); CERES, Universitat Autònoma de Barcelona-IEEC, 08193 Bellaterra (Spain); Mazin, Daniel, E-mail: mazin@mpp.mpg.de [Max-Planck-Institut für Physik, D-80805 München (Germany); Paoletti, Riccardo, E-mail: paoletti@pi.infn.it [Università di Siena, and INFN Pisa, I-53100 Siena (Italy); Tescaro, Diego, E-mail: diegot@ifae.es [Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2013-09-21

    Recently the readout of the MAGIC telescopes has been upgraded to a new system based on the Domino Ring Sampler version 4 chip. We present the analysis techniques and the signal extraction performance studies of this system. We study the behavior of the baseline, the noise, the cross-talk, the linearity and the time resolution. We investigate also the optimal signal extraction. In addition we show some of the analysis techniques specific to the readout based on the Domino Ring Sampler version 2 chip, previously used in the MAGIC II telescope. -- Highlights: • We perform studies of the DRS4 based readout of the MAGIC telescopes • Advanced pedestal subtraction procedure results in a stable baseline. • The noise of the system is below one photoelectron. • The calibration of the DRS4 time response gives time resolution of 0.2 ns. • Linearity is very good up to saturation at 750 phe.

  12. Readout electronics and test bench for the CMS Phase I pixel detector

    CERN Document Server

    Del Burgo, Riccardo

    2016-01-01

    The present CMS pixel detector will be replaced with an upgraded pixel system during the LHC extended technical stop in winter 2016/2017. The CMS Phase 1 pixel upgrade combines a new pixel readout chip, which minimizes detection inefficiencies, with several other design improvements to maintain the excellent tracking performance of CMS at the higher luminosity conditions foreseen for the coming years. The upgraded detector features new readout electronics which require detailed evaluation. For this purpose a test stand has been setup, including a slice of the CMS pixel DAQ system, all components of the upgraded readout chain together with a number of detector modules. The test stand allows for detailed evaluation and verification of all detector components, and is also crucial to develop tests and procedures to be used during the detector assembly and the commissioning and calibration of the detector. In this talk the system test and its functionalities will be described with a focus on the tests performed fo...

  13. Ge0.975Sn0.025 320  ×  256 imager chip for 1.6-1.9  μm infrared vision.

    Science.gov (United States)

    Chang, Chiao; Li, Hui; Ku, Chien-Te; Yang, Shih-Guo; Cheng, Hung Hsiang; Hendrickson, Joshua; Soref, Richard A; Sun, Greg

    2016-12-20

    We report the experimental fabrication and testing of a GeSn-based 320×256 image sensor focal plane array operating at -15°C in the 1.6-1.9 μm spectral range. For image readout, the 2D pixel array of Ge/GeSn/Ge p-i-n heterophotodiodes was flip-chip bonded to a customized silicon CMOS readout integrated circuit. The resulting camera chip was operated using back-side illumination. Successful imaging of a tungsten-filament light bulb was attained with observation of gray-scale "hot spot" infrared features not seen using a visible-light camera. The Ge wafer used in the present imaging array will be replaced in future tests by a germanium-on-silicon wafer offering thin-film Ge upon Si or on SiO2/Si. This is expected to increase the infrared responsivity obtained in back-side illumination, and it will allow an imager in a Si-based foundry to be manufactured. Our experiments are a significant step toward the realization of group IV near-mid-infrared imaging systems, such as those for night vision.

  14. FE-I4 pixel chip characterization with USBpix3 test system

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, Viacheslav; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2015-07-01

    The USBpix readout system is a small and light weighting test system for the ATLAS pixel readout chips. It is widely used to operate and characterize FE-I4 pixel modules in lab and test beam environments. For multi-chip modules the resources on the Multi-IO board, that is the central control unit of the readout system, are coming to their limits, which makes the simultaneous readout of more than one chip at a time challenging. Therefore an upgrade of the current USBpix system has been developed. The upgraded system is called USBpix3 - the main focus of the talk. Characterization of single chip FE-I4 modules was performed with USBpix3 prototype (digital, analog, threshold and source scans; tuning). PyBAR (Bonn ATLAS Readout in Python scripting language) was used as readout software. PyBAR consists of FEI4 DAQ and Data Analysis Libraries in Python. The presentation describes the USBpix3 system, results of FE-I4 modules characterization and preparation for the multi-chip module and multi-module readout with USBpix3.

  15. NIKEL_AMC: readout electronics for the NIKA2 experiment

    Science.gov (United States)

    Bourrion, O.; Benoit, A.; Bouly, J. L.; Bouvier, J.; Bosson, G.; Calvo, M.; Catalano, A.; Goupy, J.; Li, C.; Macías-Pérez, J. F.; Monfardini, A.; Tourres, D.; Ponchant, N.; Vescovi, C.

    2016-11-01

    The New Iram Kid Arrays-2 (NIKA2) instrument has recently been installed at the IRAM 30 m telescope. NIKA2 is a state-of-art instrument dedicated to mm-wave astronomy using microwave kinetic inductance detectors (KID) as sensors. The three arrays installed in the camera, two at 1.25 mm and one at 2.05 mm, feature a total of 3300 KIDs. To instrument these large array of detectors, a specifically designed electronics, composed of 20 readout boards and hosted in three microTCA crates, has been developed. The implemented solution and the achieved performances are presented in this paper. We find that multiplexing factors of up to 400 detectors per board can be achieved with homogeneous performance across boards in real observing conditions, and a factor of more than 3 decrease in volume with respect to previous generations.

  16. Characterization of CdTe Sensors with Schottky Contacts Coupled to Charge-Integrating Pixel Array Detectors for X-Ray Science

    CERN Document Server

    Becker, Julian; Shanks, Katherine S; Philipp, Hugh T; Weiss, Joel T; Purohit, Prafull; Chamberlain, Darol; Ruff, Jacob P C; Gruner, Sol M

    2016-01-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods $<$150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/...

  17. Detailed study of the column-based priority logic readout of Topmetal-II- CMOS pixel direct charge sensor

    CERN Document Server

    An, Mangmang; Gao, Chaosong; Han, Mikyung; Huang, Guangming; Ji, Rong; Li, Xiaoting; Mei, Yuan; Pei, Hua; Sun, Quan; Sun, Xiangming; Wang, Kai; Xiao, Le; Yang, Ping; Zhang, Wei; Zhou, Wei

    2016-01-01

    We present the detailed study of the digital readout of Topmetal-II- CMOS pixel direct charge sensor. Topmetal-II- is an integrated sensor with an array of 72X72 pixels each capable of directly collecting external charge through exposed metal electrodes in the topmost metal layer. In addition to the time-shared multiplexing readout of the analog output from Charge Sensitive Amplifiers in each pixel, hits are also generated through comparators with individually DAC settable thresholds in each pixel. The hits are read out via a column-based priority logic structure, retaining both hit location and time information. The in-array column-based priority logic is fully combinational hence there is no clock distributed in the pixel array. Sequential logic and clock are placed on the peripheral of the array. We studied the detailed working behavior and performance of this readout, and demonstrated its potential in imaging applications.

  18. A new analogue sampling readout system for the COMPASS RICH-1 detector

    CERN Document Server

    Abbon, P; Dafni, T; Delagnes, E; Deschamps, H; Gerassimov, S; Ketzer, B; Konorov, I; Kravtchuk, N; Kunne, Fabienne; Magnon, A; Neyret, D; Panebianco, S; Paul, S; Rebourgeard, P

    2008-01-01

    A new electronic readout for CsI-coated multiwire proportional chambers (MWPC), used as photon detectors in the COMPASS ring imaging Cherenkov (RICH) detector, is described. A prototype system comprising more than 5000 channels has been built and tested in high-intensity beam conditions. It is based on the APV25-S1 analogue sampling chip, and replaces the GASSIPLEX chip readout used previously. The APV25 chip, although originally designed for Silicon microstrip detectors, is shown to perform well even with “slow” signals from an MWPC, maintaining a signal-to-noise ratio (SNR) of 9. For every trigger the system reads out three consecutive amplitudes in time, thus allowing to extract information on both the signal amplitude and its timing. This information is used to reduce pile-up events in a high-rate environment. Prototype tests of the new readout electronics on a central RICH photocathode in nominal COMPASS beam conditions showed that the effective time window is reduced from more than for the GASSIPLEX...

  19. Large-array Far-infrared Microwave Kinetic Inductance Detector Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low return loss package design Improve amplifier mismatch at the package and chip interface Multi-branch MKID design to increase readout frequencies Silicon membrane...

  20. Readout scheme of the upgraded ALICE TPC

    CERN Document Server

    Appelshaeuser, Harald; Ivanov, Marian; Lippmann, Christian; Wiechula, Jens

    2016-01-01

    In this document, we present the updated readout scheme for the ALICE TPC Upgrade. Two major design changes are implemented with respect to the concept that was presented in the TPC Upgrade Technical Design Report: – The SAMPA front-end ASIC will be used in direct readout mode. – The ADC sampling frequency will be reduced from 10 to 5 MHz. The main results from simulations and a description of the new readout scheme is outlined.

  1. CMOS-Based Biosensor Arrays

    CERN Document Server

    Thewes, R; Schienle, M; Hofmann, F; Frey, A; Brederlow, R; Augustyniak, M; Jenkner, M; Eversmann, B; Schindler-Bauer, P; Atzesberger, M; Holzapfl, B; Beer, G; Haneder, T; Hanke, H -C

    2011-01-01

    CMOS-based sensor array chips provide new and attractive features as compared to today's standard tools for medical, diagnostic, and biotechnical applications. Examples for molecule- and cell-based approaches and related circuit design issues are discussed.

  2. The fast readout system for the MAPMTs of COMPASS RICH-1

    CERN Document Server

    Abbon, P; Angerer, H; Birsa, R; Bordalo, P; Bradamante, Franco; Bressan, A; Chiosso, M; Ciliberti, P; Colantoni, M L; Dafni, T; Dalla Torre, S; Delagnes, E; Denisov, O; Deschamps, H; Díaz, V; Dibiase, N; Duic, V; Eyrich, W; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; Von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Kolosov, V N; Königsmann, K C; Konorov, I; Kramer, Daniel; Kunne, F; Lehmann, A; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nähle, O; Nerling, F; Neyret, D; Panzieri, D; Paul, S; Pesaro, G; Pizzolotto, C; Polak, J; Rebourgeard, P; Robinet, F; Rocco, E; Schiavon, P; Schill, C; Schoenmeier, P; Schröder, W; Silva, L; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Svec, M; Takekawa, S; Tessarotto, F; Teufel, A; Wollny, H

    2008-01-01

    A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates up to 100 kHz with negligible dead-time. The system is designed in a very compact setup and mounted directly in front of the multi-anode photomultipliers. The data are digitized on the frontend boards and transferred via optical links to the readout system. The read-out electronics system is described in detail together with its measured performances.

  3. A microsensor array for biochemical sensing

    NARCIS (Netherlands)

    Van Steenkiste, Filip; Baert, Kris; Debruyker, Dirk; Spiering, Vincent; Schoot, van der Bart; Arquint, Philippe; Born, Reinhard; Schumann, Klaus

    1997-01-01

    A microsensor array to measure chemical properties of biological liquids is presented. A hybrid integration technique is used to mount four sensor chips on a micro flow channel: a pressure, temperature, pH, combined pO2 and pCO2 sensor chip. This results in a microsensor array which is developed to

  4. Improved Signal Chains for Readout of CMOS Imagers

    Science.gov (United States)

    Pain, Bedabrata; Hancock, Bruce; Cunningham, Thomas

    2009-01-01

    An improved generic design has been devised for implementing signal chains involved in readout from complementary metal oxide/semiconductor (CMOS) image sensors and for other readout integrated circuits (ICs) that perform equivalent functions. The design applies to any such IC in which output signal charges from the pixels in a given row are transferred simultaneously into sampling capacitors at the bottoms of the columns, then voltages representing individual pixel charges are read out in sequence by sequentially turning on column-selecting field-effect transistors (FETs) in synchronism with source-follower- or operational-amplifier-based amplifier circuits. The improved design affords the best features of prior source-follower-and operational- amplifier-based designs while overcoming the major limitations of those designs. The limitations can be summarized as follows: a) For a source-follower-based signal chain, the ohmic voltage drop associated with DC bias current flowing through the column-selection FET causes unacceptable voltage offset, nonlinearity, and reduced small-signal gain. b) For an operational-amplifier-based signal chain, the required bias current and the output noise increase superlinearly with size of the pixel array because of a corresponding increase in the effective capacitance of the row bus used to couple the sampled column charges to the operational amplifier. The effect of the bus capacitance is to simultaneously slow down the readout circuit and increase noise through the Miller effect.

  5. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    Science.gov (United States)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  6. Electronic Switch Arrays for Managing Microbattery Arrays

    Science.gov (United States)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  7. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    Science.gov (United States)

    Popov, V.

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  8. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers

    Science.gov (United States)

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-01

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  9. Design considerations for arrays of MMCs for X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Enss, C. E-mail: Christian_Enss@Brown.edu; Fleischmann, A.; Bandler, S.R.; Stevenson, T.R.; Seidel, G.M

    2004-03-11

    There are a number of substantially different ways of fabricating arrays of metallic magnetic calorimeters (MMCs). We discuss different designs and readout schemes and comment on the requirements, advantages and disadvantages of specific MMC arrays. In particular, we address the problems of thermal and inductive cross-talk, thermalization times, heat dissipation, layout and suitable SQUID readout techniques.

  10. Multi-channel detector readout method and integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  11. Multi-channel detector readout method and integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  12. Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit.

    Science.gov (United States)

    Hofherr, Matthias; Wetzstein, Olaf; Engert, Sonja; Ortlepp, Thomas; Berg, Benjamin; Ilin, Konstantin; Henrich, Dagmar; Stolz, Ronny; Toepfer, Hannes; Meyer, Hans-Georg; Siegel, Michael

    2012-12-17

    We propose an efficient multiplexing technique for superconducting nanowire single-photon detectors based on an orthogonal detector bias switching method enabling the extraction of the average count rate of a set of detectors by one readout line. We implemented a system prototype where the SNSPDs are connected to an integrated cryogenic readout and a pulse merger system based on rapid single flux quantum (RSFQ) electronics. We discuss the general scalability of this concept, analyze the environmental requirements which define the resolvability and the accuracy and demonstrate the feasibility of this approach with experimental results for a SNSPD array with four pixels.

  13. Low background signal readout electronics for the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, I.; Buuck, M.; Cuesta, C.; Detwiler, J. A.; Gruszko, J.; Leon, J.; Robertson, R. G. H. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); Abgrall, N.; Bradley, A. W.; Chan, Y-D.; Mertens, S.; Poon, A. W. P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I. J.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F. T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Baldenegro-Barrera, C. X.; Bertrand, F. E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2015-08-17

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0νββ) in {sup 76}Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of < 3 count/ROI-tonne-year, which is expected to scale down to < 1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.

  14. Massively Parallel Atomic Force Microscope with Digital Holographic Readout

    Energy Technology Data Exchange (ETDEWEB)

    Sache, L [Laboratory of Robotic Systems, Ecole Polytechnique Federale de Lausanne, EPFLSRO1, Station 9, CH-1015 Lausanne (Switzerland); Kawakatsu, H [Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Emery, Y [Lyncee Tec SA, PSE-A, CH-1015 Lausanne (Switzerland); Bleuler, H [Laboratory of Robotic Systems, Ecole Polytechnique Federale de Lausanne, EPFLSRO1, Station 9, CH-1015 Lausanne (Switzerland)

    2007-03-15

    Massively Parallel Scanning Probe Microscopy is an obvious path for data storage (E Grochowski, R F Hoyt, Future Trends in Hard disc Drives, IEEE Trans. Magn. 1996, 32, 1850- 1854; J L Griffin, S W Schlosser, G R Ganger and D F Nagle, Modeling and Performance of MEMS-Based Storage Devices, Proc. ACM SIGMETRICS, 2000). Current experimental systems still lay far behind Hard Disc Drive (HDD) or Digital Video Disk (DVD), be it in access speed, data throughput, storage density or cost per bit. This paper presents an entirely new approach with the promise to break several of these barriers. The key idea is readout of a Scanning Probes Microscope (SPM) array by Digital Holographic Microscopy (DHM). This technology directly gives phase information at each pixel of a CCD array. This means that no contact line to each individual SPM probes is needed. The data is directly available in parallel form. Moreover, the optical setup needs in principle no expensive components, optical (or, to a large extent, mechanical) imperfections being compensated in the signal processing, i.e. in electronics. This gives the system the potential for a low cost device with fast Terabit readout capability.

  15. Low Background Signal Readout Electronics for the Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, Ian [University of Washington; Rielage, Keith Robert [Los Alamos National Laboratory; Elliott, Steven Ray [Los Alamos National Laboratory; Xu, Wenqin [Los Alamos National Laboratory; Goett, John Jerome III [Los Alamos National Laboratory

    2015-06-11

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0νββ) in 76Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed. The DEMONSTRATOR has a background goal of < 3 counts/ROI-tonne-year, which is expected to scale down to < 1 count/ROI-tonne-year for a one tonne experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This paper discusses the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.

  16. Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR

    CERN Document Server

    Guinn, I; Arnquist, I J; Avignone, F T; Baldenegro-Barrera, C X; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Cuesta, C; Detwiler, J A; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2015-01-01

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0nbb) in 76Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of <3 counts/ROI-tonne-year, which is expected to scale down to <1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.

  17. First implementation of the MEPHISTO binary readout architecture for strip detectors

    Science.gov (United States)

    Fischer, P.

    2001-04-01

    Today's front-end readout chips for multi-channel silicon strip detectors use pipeline-like structures for temporary storage of hit information until arrival of a trigger signal. This approach leads to large-area chips when long trigger latencies are necessary. The MEPHISTO architecture uses a different concept. Hit strips are identified in real time and only the relevant binary hit information is stored in FIFOs. For the typical occupancies in LHC detectors of ≈1 hit per clock cycle this architecture requires less than half the chip area of a typical binary pipeline. This reduces the system cost considerably. At a lower data rate, operation with very long trigger latencies or even without any trigger is possible due to the real-time data sparsification. The Mephisto II architecture is presented and the expected performance is discussed.

  18. First implementation of the MEPHISTO binary readout architecture for strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P. E-mail: fischerp@physik.uni-bonn.de

    2001-04-01

    Today's front-end readout chips for multi-channel silicon strip detectors use pipeline-like structures for temporary storage of hit information until arrival of a trigger signal. This approach leads to large-area chips when long trigger latencies are necessary. The MEPHISTO architecture uses a different concept. Hit strips are identified in real time and only the relevant binary hit information is stored in FIFOs. For the typical occupancies in LHC detectors of {approx}1 hit per clock cycle this architecture requires less than half the chip area of a typical binary pipeline. This reduces the system cost considerably. At a lower data rate, operation with very long trigger latencies or even without any trigger is possible due to the real-time data sparsification. The Mephisto II architecture is presented and the expected performance is discussed.

  19. First implementation of the MEPHISTO binary readout architecture for strip detectors

    CERN Document Server

    Fischer, P

    2001-01-01

    Today's front-end readout chips for multi-channel silicon strip detectors use pipeline-like structures for temporary storage of hit information until arrival of a trigger signal. This approach leads to large-area chips when long trigger latencies are necessary. The MEPHISTO architecture uses a different concept. Hit strips are identified in real time and only the relevant binary hit information is stored in FIFOs. For the typical occupancies in LHC detectors of approximately=1 hit per dock cycle this architecture requires less than half the chip area of a typical binary pipeline. This reduces the system cost considerably. At a lower data rate, operation with very long trigger latencies or even without any trigger is possible due to the real-time data sparsification. The Mephisto II architecture is presented and the expected performance is discussed. (6 refs).

  20. Lab-on-chip system combining a microfluidic-ELISA with an array of amorphous silicon photosensors for the detection of celiac disease epitopes

    Directory of Open Access Journals (Sweden)

    Francesca Costantini

    2015-12-01

    The correct operation of the developed lab-on-chip has been demonstrated using rabbit serum in the microfluidic ELISA. In particular, optimizing the dilution factors of both sera and Ig-HRP samples in the flowing solutions, the specific and non-specific antibodies against GPs can be successfully distinguished, showing the suitability of the presented device to effectively screen celiac disease epitopes.

  1. An analog CMOS chip set for neural networks with arbitrary topologies

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten

    1993-01-01

    An analog CMOS chip set for implementations of artificial neural networks (ANNs) has been fabricated and tested. The chip set consists of two cascadable chips: a neuron chip and a synapse chip. Neurons on the neuron chips can be interconnected at random via synapses on the synapse chips thus...... implementing an ANN with arbitrary topology. The neuron test chip contains an array of 4 neurons with well defined hyperbolic tangent activation functions which is implemented by using parasitic lateral bipolar transistors. The synapse test chip is a cascadable 4×4 matrix-vector multiplier with variable, 10-b...

  2. Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, H. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan)]. E-mail: sekiya@cr.scphys.kyoto-u.ac.jp; Hattori, K. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Kubo, H. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Miuchi, K. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Nagayoshi, T. [Advanced Research Institute for Science and Engineering, Waseda University, 17 Kikui-cho, Shinjuku, Tokyo 162-0044 (Japan); Nishimura, H. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Okada, Y. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Orito, R. [Department of Physics, Graduate School of Science and Technology, Kobe University, 1-1 Rokkoudai, Nada, Kobe 657-8501 (Japan); Takada, A. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Takeda, A. [Kamioka Observatory, ICRR, University of Tokyo, 456 Higasi-mozumi, Hida-shi, Gifu 506-1205 (Japan); Tanimori, T. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Ueno, K. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan)

    2006-07-01

    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of 6x6x20mm{sup 3} which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to read out every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6mm) was clearly resolved by flood field irradiation of {sup 137}Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors.

  3. Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    Science.gov (United States)

    Sekiya, H.; Hattori, K.; Kubo, H.; Miuchi, K.; Nagayoshi, T.; Nishimura, H.; Okada, Y.; Orito, R.; Takada, A.; Takeda, A.; Tanimori, T.; Ueno, K.

    2006-07-01

    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of 6×6×20 mm3 which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to read out every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6 mm) was clearly resolved by flood field irradiation of 137Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors.

  4. MEMS Terahertz Focal Plane Array With Optical Readout

    Science.gov (United States)

    2016-06-01

    V. CONCLUSION ......................................................................................... 49 APPENDIX A. MATLAB CODE FOR THZ TO IR...EXPERIMENTAL RESULTS ................................................................................................ 51 APPENDIX B. MATLAB CODE FOR...THZ TO IR SIMULATION RESULTS ...... 55 APPENDIX C. MATLAB CODE FOR LENS SETUP .......................................... 61 APPENDIX D. ACHROMAT

  5. Radiation Mitigation Methods for Advanced Readout Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in the development of advanced instruments and instrument components for planetary science missions. Specifically, an area of importance in...

  6. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications

    OpenAIRE

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-01-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to dig...

  7. Design and characterization of TES bolometers and SQUID readout electronics for a balloon-borne application

    CERN Document Server

    Hubmayr, Johannes; Bissonnette, Eric; Dobbs, Matt; Hanany, Shaul; Lee, Adrian T; MacDermid, Kevin; Meng, Xiaofan; Sagiv, Ilan; Smecher, Graeme

    2009-01-01

    We present measurements of the electrical and thermal properties of new arrays of bolometeric detectors that were fabricated as part of a program to develop bolometers optimized for the low photon background of the EBEX balloon-borne experiment. An array consists of 140 spider-web transition edge sensor bolometers microfabricated on a 4" diameter silicon wafer. The designed average thermal conductance of bolometers on a proto-type array is 32 pW/K, and measurements are in good agreement with this value. The measurements are taken with newly developed, digital frequency domain multiplexer SQUID readout electronics.

  8. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Multimedia

    Tomasek, L; Loddo, F; Liberali, V; Rizzi, A; Re, V; Minuti, M; Pangaud, P; Barbero, M B; Le dortz, O; Pacher, L; Kluit, R; Hinchliffe, I; Giubilato, P; Faccio, F; Pernegger, H; Krueger, H; Gensolen, F D; Prydderch, M L; Bilei, G M; Da rocha rolo, M D; Fanucci, L; Grillo, A A; Bellazzini, R; Manghisoni, M; Michelis, S; Huegging, F G; Kishishita, T; Marchiori, G; Christian, D C; Kaestli, H C; Meier, B; Key-charriere, M; Andreazza, A; Traversi, G; De canio, F; Linssen, L; Dannheim, D; Conti, E; Hemperek, T; Menouni, M; Fougeron, D; Genat, J; Bomben, M; Marzocca, C; Demaria, N; Mazza, G; Monteil, E; Van bakel, N A; Palla, F; Grippo, M T; Magazzu, G; Ratti, L; Abbaneo, D; Crescioli, F; Deptuch, G W; Neue, G; De robertis, G; Passeri, D; Placidi, P; Gromov, V; Morsani, F; Bisello, D; Paccagnella, A; Christiansen, J; Dho, E; Wermes, N; Rymaszewski, P; Rozanov, A; Wang, A; Lipton, R J; Havranek, M; Neviani, A; Karagounis, M; Godiot, S; Calderini, G; Seidel, S C; Horisberger, R P; Garcia-sciveres, M A; Stabile, A; Shojaii, S R; Beccherle, R; Bacchetta, N

    The present hybrid pixel detectors in operation at the LHC represent a major achievement. They deployed a new technology on an unprecedented scale and their success firmly established pixel tracking as indispensable for future HEP experiments. However, extrapolation of hybrid pixel technology to the HL-LHC presents major challenges on several fronts. We propose a new RD collaboration specifically focused on the development of pixel readout Integrated Circuits (IC). The IC challenges include: smaller pixels to resolve tracks in boosted jets, much higher hit rates (1-2 GHz/cm$^{2}$), unprecedented radiation tolerance (10 MGy), much higher output bandwidth, and large IC format with low power consumption in order to instrument large areas while keeping the material budget low. We propose a collaboration to design the next generation of hybrid pixel readout chips to enable the ATLAS and CMS Phase 2 pixel upgrades. This does not imply that ATLAS and CMS must use the same exact pixel readout chip, as most of the dev...

  9. Development and Commissioning of HARDROC based Readout for INO-ICAL Experiment

    CERN Document Server

    Kumar, Ashok; Phogat, Aman; Rafik, Md; Naimuddin, Md

    2016-01-01

    The Glass Resistive Plate Chambers (RPC) detectors are going to be used as an active element in the Iron calorimeter (ICAL) experiment at India-Based Neutrino Observatory (INO), which is constructed for studying atmospheric neutrinos. Though the RPC detector operational parameters are more or less in the final stage of being finalised, the readout electronics is still being developed using various technologies. The ICAL experiment will consist of about 29,000 RPC detectors of 2 m $\\times$ 2 m in size with each detector having 64 readout channels each in X and Y direction. The present study focusses on one of the possible multichannel readout system based upon SiGe 350 nm technology as an option for the INO-ICAL RPC detectors. The study includes integration and usage of 64 channels front end ASIC HARDROC chip in which 64 channels are handled independently to perform zero suppression. We will present the first testbench results using the HARDROC chip for their ultimate usage in INO-ICAL.

  10. Electronics and readout of a large area silicon detector for LHC

    Energy Technology Data Exchange (ETDEWEB)

    Borer, K.; Munday, D.J.; Parker, M.A.; Anghinolfi, F.; Aspell, P.; Campbell, M.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Scampoli, P.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Spiwoks, R.; Tsesmelis, E.; Benslama, K.; Bonino, R.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; Wu, X.; Fretwurst, E.; Lindstroem, G.; Schultz, T.; Bardos, R.A.; Gorfine, G.W.; Moorhead, G.F.; Taylor, G.N.; Tovey, S.N.; Bibby, J.H.; Hawkings, R.J.; Kundu, N.; Weidberg, A.; Campbell, D.; Murray, P.; Seller, P.; Teiger, J. (Univ. of Bern (Switzerland) Cavendish Lab., Univ. of Cambridge (United Kingdom) CERN, Geneva (Switzerland) Inst. fuer Physik, Univ. Dortmund (Germany) DPNC, Geneva Univ. (Switzerland) 1. Inst. fur Experimentalphysik, Hamburg (Germany) School of Physics, Univ. of Melbourne, Parkville, VIC (Australia) Dept. of Nuclear Physics, Oxford Univ. (United Kingdom) Rutherford Appleton Lab., Chilton, Didcot (United Kingdom) Centre d' Etudes Nucleaires de Saclay, 91 Gif

    1994-04-21

    The purpose of the RD2 project is to evaluate the feasibility of a silicon tracker and/or preshower detector for LHC. Irradiation studies with doses equivalent to those expected at LHC have been performed to determine the behavior of operational parameters such as leakage current, depletion voltage and charge collection during the life of the detector. The development of fast, dense, low power and low cost signal processing electronics is one of the major activities of the collaboration. We describe the first fully functional integrated analog memory chip with asynchronous read and write operations and level 1 trigger capture capabilities. A complete test beam system using this analog memory chip at 66 MHz has been successfully operated with RD2 prototype silicon detectors during various test runs. The flexibility of the electronics and readout have allowed us to easily interface our set-up to other data acquisition systems. Mechanical studies are in progress to design a silicon tracking detector with several million channels that may be operated at low (0-10 C) temperature, while maintaining the required geometrical precision. Prototype readout boards for such a detector are being developed and simulation studies are being performed to optimize the readout architecture. (orig.)

  11. Mimosa 32-ter Chip Characterisation

    CERN Document Server

    Behera, Arabinda

    2013-01-01

    The Inner Tracking System (ITS) is a very important part of the ALICE detector. Present ITS is made up of 6 coaxial layers of silicon detectors (2 SPD, 2 SDD and 2 SSD). This system has a lot of limitations. Its tracking efficiency and resolution is low. Its readout rate is also very slow. Its not possible to study charm and beauty baryons and mesons with this system. So the upcoming ITS Upgrade plan will try to overcome these shortcomings. A very crucial part in this plan is to replace the existing hybrid sensors by new and advanced Monolithic Active Pixel Sensors(MAPS). In MAPS the sensor and the electronics are embedded in the same chip. The MAPS will reduce the material budget, increase the readout rate and enhance the tracking efficiency and momentum resolution. In this report I will present the results for the Characterisation of MIMOSA 32-ter chip, which is a MAPS. My main aim is to calculate the Charge Collection Efficiency of different sectors of the chip and compare between them. And most importa...

  12. Merlin: a fast versatile readout system for Medipix3

    Science.gov (United States)

    Plackett, R.; Horswell, I.; Gimenez, E. N.; Marchal, J.; Omar, D.; Tartoni, N.

    2013-01-01

    This contribution reports on the development of a new high rate readout system for the Medipix3 hybrid pixel ASIC developed by the Detector Group at Diamond Light Source. It details the current functionality of the system and initial results from tests on Diamond's B16 beamline. The Merlin system is based on a National Instruments PXI/FlexRIO system running a Xilinx Virtex5 FPGA. It is capable of recording Medipix3 256 by 256 by 12 bit data frames at over 1 kHz in bursts of 1200 frames and running at over 100 Hz continuously to disk or over a TCP/IP link. It is compatible with the standard Medipix3 single chipboards developed at CERN and is capable of driving them over cable lengths of up to 10 m depending on the data rate required. In addition to a standalone graphical interface, a system of remote TCP/IP control and data transfer has been developed to allow easy integration with third party control systems and scripting languages. Two Merlin systems are being deployed on the B16 and I16 beamlines at Diamond and the system has been integrated with the EPICS/GDA control systems used. Results from trigger synchronisation, fast burst and high rate tests made on B16 in March are reported and demonstrate an encouraging reliability and timing accuracy. In addition to normal high resolution imaging applications of Medipix3, the results indicate the system could profitably be used in `pump and probe' style experiments, where a very accurate, high frame rate is especially beneficial. In addition to these two systems, Merlin is being used by the Detector Group to test the Excalibur 16 chip hybrid modules, and by the LHCb VELO Pixel Upgrade group in their forthcoming testbeams. Additionally the contribution looks forward to further developments and improvements in the system, including full rate quad chip readout capability, multi-FPGA support, long distance optical communication and further functionality enhancements built on the capabilities of the Medipix3 chips.

  13. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    Science.gov (United States)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  14. A Neuron- and a Synapse Chip for Artificial Neural Networks

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten

    1992-01-01

    A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...

  15. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    Wojciech Wierba; on behalf of the FCAL Collaboration

    2007-12-01

    The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed.

  16. BESIII ETOF upgrade readout electronics commissioning

    Science.gov (United States)

    Wang, Xiao-Zhuang; Dai, Hong-Liang; Wu, Zhi; Heng, Yue-Kun; Zhang, Jie; Cao, Ping; Ji, Xiao-Lu; Li, Cheng; Sun, Wei-Jia; Wang, Si-Yu; Wang, Yun

    2017-01-01

    It is proposed to upgrade the endcap time-of-flight (ETOF) of the Beijing Spectrometer III (BESIII) with a multi-gap resistive plate chamber (MRPC), aiming at an overall time resolution of about 80 ps. After completing the entire readout electronics system, some experiments, such as heat radiation, radiation hardness and large-current beam tests, have been carried out to confirm the reliability and stability of the readout electronics. An on-detector test of the readout electronics has also been performed with the beam at the BEPCII E3 line. The test results indicate that the readout electronics system fulfills its design requirements. Supported by Chinese Academy of Sciences (1G201331231172010)

  17. Front-end electronics and readout system for the ILD TPC

    CERN Document Server

    Hedberg, V; Lundberg, B; Mjörnmark, U; Oskarsson, A; Österman, L; De Lentdecker, G; Yang, Y; Zhang, F

    2015-01-01

    A high resolution TPC is the main option for a central tracking detector at the future International Linear Collider (ILC). It is planned that the MPGD (Micro Pattern Gas Detector) technology will be used for the readout. A Large Prototype TPC at DESY has been used to test the performance of MPGDs in an electron beam of energies up to 6 GeV. The first step in the technology development was to demonstrate that the MPGDs are able to achieve the necessary performance set by the goals of ILC. For this ’proof of principle’ phase, the ALTRO front-end electronics from the ALICE TPC was used, modified to adapt to MPGD readout. The proof of principle has been verified and at present further improvement of the MPGD technology is going on, using the same readout electronics. The next step is the ’feasibility phase’, which aims at producing front-end electronics comparable in size (few mm2) to the readout pads of the TPC. This development work is based on the succeeding SALTRO16 chip, which combines the analogue ...

  18. A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2013-03-01

    Full Text Available The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.

  19. A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS process.

    Science.gov (United States)

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-03-15

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.

  20. 5A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    Science.gov (United States)

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294

  1. Superconducting chip receivers for imaging application

    NARCIS (Netherlands)

    Shitov, SV; Koshelets, VP; Ermakov, AB; Filippenko, LV; Baryshev, AM; Luinge, W; Gao, [No Value

    1999-01-01

    Experimental details of a unique superconducting imaging array receiver are discussed. Each pixel contains an internally pumped receiver chip mounted on the back of the elliptical microwave lens. Each chip comprises a quasi-optical SIS mixer integrated with a superconducting flux-flow oscillator (FF

  2. The TDCpix Readout ASIC: A 75 ps Resolution Timing Front-End for the Gigatrackerof theNA62 Experiment

    Science.gov (United States)

    Rinella, G. Aglieri; Fiorini, M.; Jarron, P.; Kaplon, J.; Kluge, A.; Martin, E.; Morel, M.; Noy, M.; Perktold, L.; Poltorak, K.

    NA62 is an experiment under development at the CERN Super Proton Synchrotron, aiming at measuring ultra rare kaon decays. The Gigatracker (GTK) detector shall combine on-beam tracking of individual particles with a time resolution of 150 ps rms. The peak flow of particles crossing the detector modules reaches 1.27 MHz/mm2 fora total rateof about 0.75 GHz.Ahybrid siliconpixel detectoris beingdevelopedto meet these requirements. The pixel chip for the Gigatracker (TDCpix) is under design. The TDCpix chip will feature 1800 square pixels of 300×300 μm2 arranged in a matrix of 45 rows × 40 columns. Bump-bonded to a silicon pixel sensor it shall perform time stamping of particle hits with a timing accuracybetter than 200 ps rms and a detection efficiencyabove 99%. The chosen architecture provides full separation of the sensitive analog amplifiers of the pixel matrix from the noisy digital circuits of the TDCs and of the readout blocks. Discriminated hit signals from each pixel are transmitted to the end of column region. An array ofTime to Digital Converters (TDC) is implemented at the bottom of the pixel array. The TDCs are based on time tagging the events with the fine time codes generated by Delay Locked Loops (DLL) and have a nominal time bin of ˜100 ps. Time stamps and time-over-threshold are recorded for each discriminated hit and the correction of the discriminator's time-walk is performed off-detector. Data are continuously transmitted on four 2.4 Gb/s serial output links. Adescription of the on-going design of the final TDCpix is given in this paper. Design choices and some technical implementation details are presented. Aprototype ASIC including thekeycomponents of this architecture has been manufactured. The achievement of specification figures such as a time resolution of the processing chain of 75 ps rms as well as charged particle time stampingwitha resolutionbetterthan200psrmswere demonstratedexperimentally.Asummaryoftheseresultsisalso presented in

  3. Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2015-01-01

    Full Text Available The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS-microelectro -mechanical system (MEMS technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.

  4. MEMS acceleration sensor with remote optical readout for continuous power generator monitoring

    Directory of Open Access Journals (Sweden)

    Tormen Maurizio

    2015-01-01

    Full Text Available Miniaturized accelerometers with remote optical readout are required devices for the continuous monitoring of vibrations inside power generators. In turbo and hydro generators, end-winding vibrations are present during operation causing in the long term undesirable out-of-service repairs. Continuous monitoring of these vibrations is therefore mandatory. The high electromagnetic fields in the generators impose the use of devices immune to electromagnetic interferences. In this paper a MEMS based accelerometer with remote optical readout is presented. Advantages of the proposed device are the use of a differential optical signal to reject the common mode signal and noise, the reduced number of steps for the MEMS chip fabrication and for the system assembly, and the reduced package volume.

  5. Design and Characterization of an Analogue Amplifier for the Readout of Micro-Pattern Gaseous Detectors

    CERN Document Server

    Trampitsch, Gerd; Pribyl, Wolfgand; Leopold, Hans

    This doctorate deals with the development of integrated analog preamplifiers for the readout of micro pattern gaseous detectors. Because of the small detector signals the noise performance of the readout electronics is of greatest significance. The design of analog preamplifiers constitutes a trade-off between bandwidth, noise, power consumption, radiation hardness and chip area. A prototype IC consisting of 12 channels was produced in a 0.13 um CMOS technology. Each channel is comprised of a single ended preamplifier followed by a fully differential shaping amplifier that produces a 4th order semi Gaussian pulse. Channels with different peaking time, conversion gain and preamplifier architectures were implemented. Among these a novel rail to rail preamplifier architecture for low voltage operation. Part of the thesis work was the design of a printed circuit test board and the characterization of the prototype ICs. The measurements show very good correlation with the simulated values and the circuit fulfills ...

  6. TPC-like readout for thermal neutron detection using a GEM-detector

    CERN Document Server

    Flierl, Bernhard; Hertenberger, Ralf; Zeitelhack, Karl

    2015-01-01

    Spatial resolution of less than 200 um is challenging for thermal neutron detection. A novel readout scheme based on the time-projection-chamber (TPC) concept is used in a gaseous electron multiplier (GEM) detector. Thermal neutrons are captured in a single 2 um thick Boron-10 converter cathode and secondary Helium and Lithium ions are produced with a combined energy of 2.8 MeV. These ions have sufficient energy to form straight tracks of several mm length. With a time resolving 2-dimensional readout of 400 um pitch in both directions, based on APV25 chips, the ions are tracked and their respective origin in the cathode converter foil is reconstructed. Using an Ar-CO2 93:7% gas mixture, a resolution of 100 um (FWHM 235 um) has been observed with a triple GEM-detector setup at the Garching neutron source (FRMII) for neutrons of 4.7 Angstrom.

  7. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    Science.gov (United States)

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  8. A Self Triggered Amplifier/Digitizer Chip for CBM

    CERN Document Server

    Armbruster, A; Perić, I

    2009-01-01

    The development of front-end electronics for the planned CBM experiment at FAIR/GSI is in full progress. For charge readout of the various sub-detectors a new self-triggered amplification and digitization chip is being designed and tested. The mixed signal readout chip will have 32-64 channels each containing a low-power/low-noise preamplifier/shaper front-end, an 8-9 bit ADC and a digital post-processing based on a FIR/IIR-filter. The ADC has a pipeline architecture that uses a novel current-mode storage cell as a basic building block. The current prototype provides 26 different parametrized preamplifier/shaper/discriminator channels, 8 pipeline ADCs, a readout shift register matrix and a synthesized redundant signed binary (RSD) decoder.

  9. Application of gene array chip in diagnosis of cytogenetics of recurrent spontaneous abortion%基因芯片技术在复发性流产遗传学诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    沈国松; 张甦; 何平亚

    2013-01-01

    目的 探讨基因芯片单核苷酸多态性阵列(SNP-array)技术在复发性流产遗传学诊断中的应用价值.方法 选择2012年1-10月在浙江省湖州市妇幼保健院产前诊断中心就诊的、曾有自然流产≥2次、本次妊娠又发生自然流产的患者26例(RSA组),对流产物分别应用绒毛染色体核型分析技术和SNP-array技术进行分析;同时选取20例早孕期人工流产妇女作为对照组.结果 绒毛染色体核型分析获得结果19例,检测成功率为73% (19/26),发现染色体异常10例,异常检出率为10/19;SNP-array技术检测获得结果26例,检测成功率为100%,发现全基因组拷贝数异常15例,异常检出率为58% (15/26).对照组胚胎绒毛染色体核型分析获得结果16例,检测成功率为16/20,均未发现染色体核型异常;SNP-array技术检测获得结果20例,检测成功率为20/20,均未发现全基因组拷贝数异常.结论 SNP-array技术具有分辨率高、准确性好等优点,是自然流产特别是复发性流产遗传学诊断的有力工具.%Objective To investigate clinical value of single nucleotide polymorphism array (SNParray) gene chip technique in diagnosis of genetics of recurrent spontaneous abortion (RSA).Methods From January to October 2012,the 26 patients with more than twice of spontaneous abortion in Huzhou Maternal and Child Health Care Hospital were enrolled in this study(RSA group).Meanwhile 20 cases with induced abortion were taken as control group.All aborted tissues were analyzed with conventional cytogenetic karyotyping and SNP-array,respectively.Results Chorionic villus chromosomal examination was successfully done in 19 cases (73%,19/26),which 10 cases were found with chromosomal anomaly,the overall detection rate is 10/19.However,SNP-array analysis was successfully performed in all 26 cases.The overall rate of detection was 100%,and abnormalities were found in 15 cases,which reached the detection rate was 58% (15

  10. An Open Source, FPGA-based LeKID readout for BLAST-TNG: Pre-flight Results

    CERN Document Server

    Gordon, Samuel; Sinclair, Adrian; Rowe, Samuel; Bryan, Sean; Mauskopf, Philip; Austermann, Jason; Devlin, Mark; Dicker, Simon; Gao, Jiansong; Hilton, Gene C; Hubmayr, Johannes; Jones, Glenn; Klein, Jeffrey; Lourie, Nathan P; McKenney, Christopher; Nati, Federico; Soler, Juan D; Strader, Matthew; Vissers, Michael

    2016-01-01

    We present a highly frequency multiplexed readout for large-format superconducting detector arrays intended for use in the next generation of balloon-borne and space-based sub-millimeter and far-infrared missions. We will demonstrate this technology on the upcoming NASA Next Generation Balloon-borne Large Aperture Sub-millimeter Telescope (BLAST-TNG) to measure the polarized emission of Galactic dust at wavelengths of 250, 350 and 500 microns. The BLAST-TNG receiver incorporates the first arrays of Lumped Element Kinetic Inductance Detectors (LeKID) along with the first microwave multiplexing readout electronics to fly in a space-like environment and will significantly advance the TRL for these technologies. After the flight of BLAST-TNG, we will continue to improve the performance of the detectors and readout electronics for the next generation of balloon-borne instruments and for use in a future FIR Surveyor.

  11. Superconducting hot-electron nanobolometer with microwave bias and readout

    CERN Document Server

    Kuzmin, A A; Shitov, S V; Abramov, N N; Ermakov, A B; Arndt, M; Wuensch, S H; Ilin, K S; Ustinov, A V; Siegel, M

    2014-01-01

    We propose a new detection technique based on radio-frequency (RF) bias and readout of an antenna-coupled superconducting nanobolometer. This approach is suitable for Frequency-Division-Multiplexing (FDM) readout of large arrays using broadband low-noise RF amplifier. We call this new detector RFTES. This feasibility study was made on demonstrator devices which are made in all-Nb technology and operate at 4.2 K. The studied RFTES devices consist of an antenna-coupled superconducting nanobolometer made of ultrathin niobium films with transition temperature Tc = 5.2 K. The 0.65-THz antenna and nanobolometer are embedded as a load into a GHz-range coplanar niobium resonator (Tc = 8.9 K, Q = 4000). To heat the superconducting Nb nanobolometer close to the Tc, the RF power at resonator frequency f = 5.8 GHz is applied via a transmission line which is weakly coupled (-11 dB) to the loaded resonator. The THz-antenna of RFTES was placed in the focus of a sapphire immersion lens inside a He4-cryostat equipped with an ...

  12. Development and characterization of the readout system for POLARBEAR-2

    CERN Document Server

    Barron, D; Akiba, Y; Aleman, C; Arnold, K; Atlas, M; Bender, A; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, G; Gilbert, A; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Katayama, N; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Matsuda, F; Matsumura, T; Morii, H; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Peloton, J; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Sholl, M; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Suzuki, J; Takada, S; Takakura, S; Tomaru, T; Wilson, B; Yamaguchi, H; Zahn, O

    2014-01-01

    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new c...

  13. CMS pixel module readout optimization and study of the Β⁰ lifetime in the semileptonic decay mode

    CERN Document Server

    Dambach, Sarah; Langenegger, Urs; Horisberger, Roland

    2009-01-01

    After more than twenty years of development, the CERN Large Hadron Collider will start continuously operating in mid 2009. An enormous amount of high energy collisions will take place inside the CMS experiment. The innermost detector of this experiment is the barrel pixel detector, with its main goals of track and vertex reconstruction. To do this reconstruction with a high precision, the charge produced inside the silicon sensor is read out as an analog signal. In the first part of this work, the analog readout chain is optimized by setting digital-to-analog converters on the readout chip. Procedures are developed to apply this optimization on more than 10’000 readout chips for the entire detector. The optimization is verified by comparing all optimized chips and with a simulation studying the hit resolution inside the detector. In the second part of this work the lifetime measurement of the B0 meson is studied in the semileptonic decay mode using a new reconstruction method for the undetected neutrino app...

  14. LHCb: Fast Readout Control for the upgraded readout architecture of the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F

    2013-01-01

    The LHCb experiment at CERN has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity with an upgraded LHCb detector. As a consequence, the various LHCb sub-systems in the readout architecture will be upgraded to cope with higher sub-detector occupancies, higher rate, and higher readout load. The new architecture, new functionalities, and the first hardware implementation of a new LHCb Readout Control system (commonly referred to as S-TFC) for the upgraded LHCb experiment is here presented. Our attention is focused in describing solutions for the distribution of clock and timing information to control the entire upgraded readout architecture by profiting of a bidirectional optical network and powerful FPGAs, including a real-time mechanism to synchronize the entire system. Solutions and implementations are presented, together with first results on the simulation and the validation of the system.

  15. Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval.

    Science.gov (United States)

    Kang, Edward; Choi, Yoon Young; Jun, Yesl; Chung, Bong Geun; Lee, Sang-Hoon

    2010-10-21

    We have developed a multi-layer, microfluidic array platform containing concave microwells and flat cell culture chambers to culture embryonic stem (ES) cells and regulate uniform-sized embryoid body (EB) formation. The main advantage of this platform was that EBs cultured within the concave microwells of a bottom layer were automatically replated into flat cell culture chambers of a top layer, following inversion of the multi-layer microfluidic array platform. This allowed EB formation and EB replating to be controlled simultaneously inside a single microfluidic device without pipette-based manual cell retrieval, a drawback of previous EB culture methods.

  16. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ye, Feihong; Peucheret, Christophe

    2015-01-01

    We report the design and fabrication of a compact multi-core fiber fan-in/fan-out using a grating coupler array on the SOI platform. The grating couplers are fully-etched, enabling the whole circuit to be fabricated in a single lithography and etching step. Thanks to the apodized design for the g......We report the design and fabrication of a compact multi-core fiber fan-in/fan-out using a grating coupler array on the SOI platform. The grating couplers are fully-etched, enabling the whole circuit to be fabricated in a single lithography and etching step. Thanks to the apodized design...

  17. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  18. 14-bit pipeline-SAR ADC for image sensor readout circuits

    Science.gov (United States)

    Wang, Gengyun; Peng, Can; Liu, Tianzhao; Ma, Cheng; Ding, Ning; Chang, Yuchun

    2015-03-01

    A two stage 14bit pipeline-SAR analog-to-digital converter includes a 5.5bit zero-crossing MDAC and a 9bit asynchronous SAR ADC for image sensor readout circuits built in 0.18um CMOS process is described with low power dissipation as well as small chip area. In this design, we employ comparators instead of high gain and high bandwidth amplifier, which consumes as low as 20mW of power to achieve the sampling rate of 40MSps and 14bit resolution.

  19. The SVX3D integrated circuit for dead-timeless silicon strip readout

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M. E-mail: mgs@lbl.gov; Milgrome, O.; Zimmerman, T.; Volobouev, I.; Ely, R.P.; Connolly, A.; Fish, D.; Affolder, T.; Sill, A

    1999-10-01

    The revision D of the SVX3 readout IC has been fabricated in the Honeywell radiation-hard 0.8 {mu}m bulk CMOS process, for instrumenting 712,704 silicon strips in the upgrade to the Collider Detector at Fermilab. This final revision incorporates new features and changes to the original architecture that were added to meet the goal of dead-timeless operation. This paper describes the features central to dead-timeless operation, and presents test data for un-irradiated and irradiated SVX3D chips. (author)

  20. A ten thousand frames per second readout MAPS for the EUDET beam telescope

    CERN Document Server

    Hu-Guo, C; Bertolone, G; Besson, A; Brogna, A S; Colledani, C; Claus, G; De Masi, R; Degerli, Y; Dorokhov, A; Doziere, G; Dulinski, W; Fang, X; Gelin, M; Goffea, M; Guillouxb, F; Himmi, A; Jaaskelainen, K; Koziel, M; Morel, F; Orsini, F; Santos, G; Specht, M; Sun, Q; Torheim, O; Valin, I; Voutsinas, Y; Wintera, M

    2009-01-01

    Designed and manufactured in a commercial CMOS 0.35 μm OPTO process for equipping the EUDET beam telescope, MIMOSA26 is the first reticule size pixel sensor with digital output and integrated zero suppression. It features a matrix of pixels with 576 rows and 1152 columns, covering an active area of ~224 mm2. A single point resolution of about 4 μm was obtained with a pixel pitch of 18.4 μm. Its architecture allows a fast readout frequency of ~10 k frames/s. The paper describes the chip design, test and major characterisation outcome.

  1. Design of a 12-bit 1 MS/s SAR-ADC for front-end readout of 32-channel CZT detector imaging system

    Science.gov (United States)

    Liu, Wei; Wei, Tingcun; Li, Bo; Guo, Panjie; Hu, Yongcai

    2015-06-01

    A 12-bit 1MS/s SAR-ADC for the front-end readout of a 32-channel CZT detector imaging system is presented. In order to improve the performances of the ADC, several techniques are proposed. First, a novel offset cancellation method for comparator is proposed, in which no any capacitor is introduced in the signal pathway, thus it has faster operation speed than traditional one. Second, the architecture of unit capacitor array is adopted in the charge-redistribution DAC to reduce the capacitor mismatch. Third, the radiation-hardened ability is enhanced through circuit and layout design. The prototype chip was fabricated using a TSMC 0.35 um 2P4M CMOS process. At a 3.3/5 V power supply, the proposed SAR-ADC achieves 67.64 dB SINAD at 1MS/s, consumes 10 mW power and occupies a core area of 1180×1080 um2.

  2. Design of a 12-bit 1 MS/s SAR-ADC for front-end readout of 32-channel CZT detector imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei, E-mail: liouwei930@sina.com [School of Computer Science and Technology, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Wei, Tingcun; Li, Bo; Guo, Panjie [School of Computer Science and Technology, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Hu, Yongcai [Institut Pluridisciplinaire Hubert CURIEN, Strasbourg (France)

    2015-06-21

    A 12-bit 1MS/s SAR-ADC for the front-end readout of a 32-channel CZT detector imaging system is presented. In order to improve the performances of the ADC, several techniques are proposed. First, a novel offset cancellation method for comparator is proposed, in which no any capacitor is introduced in the signal pathway, thus it has faster operation speed than traditional one. Second, the architecture of unit capacitor array is adopted in the charge-redistribution DAC to reduce the capacitor mismatch. Third, the radiation-hardened ability is enhanced through circuit and layout design. The prototype chip was fabricated using a TSMC 0.35 um 2P4M CMOS process. At a 3.3/5 V power supply, the proposed SAR-ADC achieves 67.64 dB SINAD at 1MS/s, consumes 10 mW power and occupies a core area of 1180×1080 um{sup 2}.

  3. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors

    Science.gov (United States)

    Tao, Yin; Chong, Zhang; Huanming, Wu; Qisong, Wu; Haigang, Yang

    2013-11-01

    This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper technique is adopted to cancel the low frequency noise and improve the resolution of the readout circuits. An operational trans-conductance amplifier (OTA) structure with an auxiliary common-mode-feedback-OTA is proposed in the fully differential CSA to suppress the chopper modulation induced disturbance at the OTA input terminal. An analog temperature compensation method is proposed, which adjusts the chopper signal amplitude with temperature variation to compensate the temperature drift of the CSA readout sensitivity. The chip is designed and implemented in a 0.35 μm CMOS process and is 2.1 × 2.1 mm2 in area. The measurement shows that the readout circuit achieves 0.9 aF / √Hz capacitive resolution, 97 dB dynamic range in 100 Hz signal bandwidth, and 0.8 mV/fF sensitivity with a temperature drift of 35 ppm/°C after optimized compensation.

  4. Performance of the new amplifier-shaper-discriminator chip for the ATLAS MDT chambers at the HL-LHC

    CERN Document Server

    INSPIRE-00218480

    2016-01-01

    The Phase-II Upgrade of the ATLAS Muon Detector requires new electronics for the readout of the MDT drift tubes. The first processing stage, the Amplifier-Shaper-Discriminator (ASD), determines the performance of the readout for crucial parameters like time resolution, gain uniformity, efficiency and noise rejection. An 8-channel ASD chip, using the IBM 130 nm CMOS 8RF-DM technology, has been designed, produced and tested. The area of the chip is 2.2 x 2.9 square mm size. We present results of detailed measurements as well as a comparision with simulation results of the chip behaviour at three different levels of detail.

  5. Filter-free integrated sensor array based on luminescence and absorbance measurements using ring-shaped organic photodiodes.

    Science.gov (United States)

    Abel, Tobias; Sagmeister, Martin; Lamprecht, Bernhard; Kraker, Elke; Köstler, Stefan; Ungerböck, Birgit; Mayr, Torsten

    2012-12-01

    An optical waveguiding sensor array featuring monolithically integrated organic photodiodes as integrated photo-detector, which simplifies the readout system by minimizing the required parts, is presented. The necessity of any optical filters becomes redundant due to the proposed platform geometry, which discriminates between excitation light and sensing signal. The sensor array is capable of measuring luminescence or absorption, and both sensing geometries are based on the identical substrate. It is demonstrated that background light is virtually non-existent. All sensing and waveguide layers, as well as in- and out-coupling elements are assembled by conventional screen-printing techniques. Organic photodiodes are integrated by layer-by-layer vacuum deposition onto glass or common polymer foils. The universal and simple applicability of this sensor chip is demonstrated by sensing schemes for four different analytes. Relative humidity, oxygen, and carbon dioxide are measured in gas phase using luminescence-based sensor schemes; the latter two analytes are also measured by absorbance-based sensor schemes. Furthermore, oxygen and pH in aqueous media were enabled. The consistency of calibration characteristics extending over different sensor chips is verified.

  6. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    Science.gov (United States)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  7. Imaging achievements with the Vernier readout

    CERN Document Server

    Lapington, J S; Worth, L B C; Tandy, J A

    2002-01-01

    We describe the Vernier anode, a high resolution and charge division image readout for microchannel plate detectors. It comprises a planar structure of insulated electrodes deposited on an insulating substrate. The charge cloud from an event is divided amongst all nine electrodes and the charge ratio uniquely determines the two-dimensional position coordinate of the charge centroid. We discuss the design of the anode pattern and describe the advantages offered by this readout. The cyclic variation of the electrode structure allows the image resolution to exceed the charge measurement resolution and enables the entire active area of the readout to be utilized. In addition, fixed pattern noise is greatly reduced. We present results demonstrating the position resolution and image linearity. A position resolution of 10 mu m FWHM is demonstrated and the overall imaging performance is shown to be limited by the microchannel plate pore spacing. We present measurements of the image distortions and describe techniques...

  8. The NA60 experiment readout architecture

    CERN Document Server

    Floris, M; Usai, G L; David, A; Rosinsky, P; Ohnishi, H

    2004-01-01

    The NA60 experiment was designed to identify signatures of a new state of matter, the Quark Gluon Plasma, in heavy-ion collisions at the CERN Super Proton Synchroton. The apparatus is composed of four main detectors: a muon spectrometer (MS), a zero degree calorimeter (ZDC), a silicon vertex telescope (VT), and a silicon microstrip beam tracker (BT). The readout of the whole experiment is based on a PCI architecture. The basic unit is a general purpose PCI card, interfaced to the different subdetectors via custom mezzanine cards. This allowed us to successfully implement several completely different readout protocols (from the VME like protocol of the MS to the custom protocol of the pixel telescope). The system was fully tested with proton and ion beams, and several million events were collected in 2002 and 2003. This paper presents the readout architecture of NA60, with particular emphasis on the PCI layer common to all the subdetectors. (16 refs).

  9. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Application components of ISPA tubes are shown: the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  10. MEPHISTO - a 128-channel front end chip with real time data sparsification and multi-hit capability

    Science.gov (United States)

    Fischer, P.; Comes, G.; Krüger, H.

    1999-07-01

    The MEPHISTO chip uses a novel binary architecture to achieve a high speed readout for multichannel detectors, like silicon strip detectors or MSGCs. The architecture is an alternative to existing designs with raw data pipelines as are commonly used in particle physics applications. The chip receives 128 digital input signals from an analog front end chip at a rate of up to 80 MHz. The hit pattern is sparsified in real time and only the addresses and interaction times of hits are stored temporarily in FIFOs. Multiple hits per event are possible. A trigger selects interesting events for readout. All other hits are automatically discarded. Untriggered readout at high rates is also possible. The occupied chip area depends on the average data rate which can be very small in many applications. Very compact designs with up to ten times less first level storage can therefore be realized.

  11. MEPHISTO - a 128-channel front end chip with real time data sparsification and multi-hit capability

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P. E-mail: fischerp@physik.uni-bonn.de; Comes, G.; Krueger, H

    1999-07-11

    The MEPHISTO chip uses a novel binary architecture to achieve a high speed readout for multichannel detectors, like silicon strip detectors or MSGCs. The architecture is an alternative to existing designs with raw data pipelines as are commonly used in particle physics applications. The chip receives 128 digital input signals from an analog front end chip at a rate of up to 80 MHz. The hit pattern is sparsified in real time and only the addresses and interaction times of hits are stored temporarily in FIFOs. Multiple hits per event are possible. A trigger selects interesting events for readout. All other hits are automatically discarded. Untriggered readout at high rates is also possible. The occupied chip area depends on the average data rate which can be very small in many applications. Very compact designs with up to ten times less first level storage can therefore be realized. (author)

  12. MEPHISTO - a 128-channel front end chip with real time data sparsification and multi-hit capability

    CERN Document Server

    Fischer, P; Krüger, H

    1999-01-01

    The MEPHISTO chip uses a novel binary architecture to achieve a high speed readout for multichannel detectors, like silicon strip detectors or MSGCs. The architecture is an alternative to existing designs with raw data pipelines as are commonly used in particle physics applications. The chip receives 128 digital input signals from an analog front end chip at a rate of up to 80 MHz. The hit pattern is sparsified in real time and only the addresses and interaction times of hits are stored temporarily in FIFOs. Multiple hits per event are possible. A trigger selects interesting events for readout. All other hits are automatically discarded. Untriggered readout at high rates is also possible. The occupied chip area depends on the average data rate which can be very small in many applications. Very compact designs with up to ten times less first level storage can therefore be realized. (author)

  13. OLA, A low-noise bipolar amplifier for the readout of Silicon Drift Detectors

    Science.gov (United States)

    Dabrowski, W.; Białas, W.; Bonazzola, G.; Bonvicini, V.; Ceretto, F.; Giubellino, P.; Idzik, M.; Prest, M.; Riccati, L.; Zampa, N.

    1995-11-01

    A very low noise, 32-channel preamplifier/shaper chip has been designed for the analogue readout of silicon detectors. The circuit has been optimised in view of the operation of Silicon Drift Detectors, which have very low capacitance and produce gaussian signals of σ up to ˜ 100 ns. The chip (OLA) has been designed and manufactured using the SHPi full-custom bipolar process by Tektronix. Each channel is composed by a preamplifier, a shaper and a symmetrical line driver, which allows to drive either a positive and a negative single ended output separately on 50 Ω impedance or a differential twisted pair. The intrinsic peaking time of the circuit is ˜ 60 ns, and the noise is below 250 electrons at zero input load capacitance. The power consumption is 2 mW/channel, mostly due to the output driver.

  14. Optical readout uncooled infrared imaging detector using knife-edge filter operation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Q; MIAO Z; GUO Z; DONG F; XIONG Z; WU X; CHEN D; LI C; JIAO B

    2007-01-01

    An optical readout uncooled infrared (IR) imaging detector of bimaterial cantilever array using knife-edge filter operation(KEFO) is demonstrated. The angle change of each cantilever in a focal plane array (FPA) can be simultaneously detected with a resolution of 10-5 degree. A deformation magnifying substrate-free micro-cantilever unit with multi-fold interval metallized legs is specially designed and modeled. A FPA with 160× 160 pixels is fabricated and thermal images with noise equivalent temperature difference (NETD) of 400 mK are obtained by this imaging detector.

  15. On-chip grating coupler array on the SOI platform for fan-in/fan-out of multi-core fibers with low insertion loss and crosstalk

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ye, Feihong; Peucheret, Christophe

    2014-01-01

    We design and fabricate a compact multi-core fiber fan-in/fan-out using a fully-etched grating coupler array on the SOI platform. Lowest coupling loss of 6.8 dB with 3 dB bandwidth of 48 nm and crosstalk lower than ×32 dB are demonstrated.......We design and fabricate a compact multi-core fiber fan-in/fan-out using a fully-etched grating coupler array on the SOI platform. Lowest coupling loss of 6.8 dB with 3 dB bandwidth of 48 nm and crosstalk lower than ×32 dB are demonstrated....

  16. An uncooled microbolometer focal plane array using heating based resistance nonuniformity compensation

    Science.gov (United States)

    Tepegoz, Murat; Oguz, Alp; Toprak, Alperen; Senveli, S. Ufuk; Canga, Eren; Tanrikulu, M. Yusuf; Akin, Tayfun

    2012-06-01

    This paper presents the performance evaluation of a unique method called heating based resistance nonuniformity compensation (HB-RNUC). The HB-RNUC method utilizes a configurable bias heating duration for each pixel in order to minimize the readout integrated circuit (ROIC) output voltage distribution range. The outputs of each individual pixel in a resistive type microbolometer differ from each other by a certain amount due to the resistance non-uniformity throughout the focal plane array (FPA), which is an inevitable result of the microfabrication process. This output distribution consumes a considerable portion of the available voltage headroom of the ROIC unless compensated properly. The conventional compensation method is using on-chip DACs to apply specific bias voltages to each pixel such that the output distribution is confined around a certain point. However, on-chip DACs typically occupy large silicon area, increase the output noise, and consume high power. The HB-RNUC method proposes modifying the resistances of the pixels instead of the bias voltages, and this task can be accomplished by very simple circuit blocks. The simplicity of the required blocks allows utilizing a low power, low noise, and high resolution resistance nonuniformity compensation operation. A 9-bit HB-RNUC structure has been designed, fabricated, and tested on a 384x288 microbolometer FPA ROIC on which 35μm pixel size detectors are monolithically implemented, in order to evaluate its performance. The compensation operation reduces the standard deviation of the ROIC output distribution from 470 mV to 9 mV under the same readout gain and bias settings. The analog heating channels of the HB-RNUC block dissipate around 4.1 mW electrical power in this condition, and the increase in the output noise due to these blocks is lower than 10%.

  17. Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs.

    Science.gov (United States)

    Guo, Zhen; Li, Haiwen; Zhou, Lianqun; Zhao, Dongxu; Wu, Yihui; Zhang, Zhiqiang; Zhang, Wei; Li, Chuanyu; Yao, Jia

    2015-01-27

    A novel method of fabricating large-scale horizontally aligned ZnO microrod arrays with controlled orientation and periodic distribution via combing technology is introduced. Horizontally aligned ZnO microrod arrays with uniform orientation and periodic distribution can be realized based on the conventional bottom-up method prepared vertically aligned ZnO microrod matrix via the combing method. When the combing parameters are changed, the orientation of horizontally aligned ZnO microrod arrays can be adjusted (θ = 90° or 45°) in a plane and a misalignment angle of the microrods (0.3° to 2.3°) with low-growth density can be obtained. To explore the potential applications based on the vertically and horizontally aligned ZnO microrods on p-GaN layer, piezo-phototronic devices such as heterojunction LEDs are built. Electroluminescence (EL) emission patterns can be adjusted for the vertically and horizontally aligned ZnO microrods/p-GaN heterojunction LEDs by applying forward bias. Moreover, the emission color from UV-blue to yellow-green can be tuned by investigating the piezoelectric properties of the materials. The EL emission mechanisms of the LEDs are discussed in terms of band diagrams of the heterojunctions and carrier recombination processes.

  18. Graphical user interface for a dual-module EMCCD x-ray detector array

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  19. Developments of optimum flip-chip bonding process

    Science.gov (United States)

    Jang, Dong H.; Kang, Sa Y.; Lee, Y. M.; Oh, S. Y.

    1997-08-01

    Flip-chip soldering is the critical technology for solving the current issues of electronic packaging industries that require the high I/O's. In order to increase the manufacturing ability of flip-chip technology, however, yield and reliability tissues should overcome. In this study, optimum flip-chip bonding process has been developed by using the test chips that had the electroplated solder bumps. Test chips are composed of three different types that are i) peripheral array pad chip, ii) peripheral array pad chip, and iii) area array pad chip. Each test chip has the daisy chain to consider the effect of reliability test. The electrical resistance was measured before and after reliability test. Based on these measurement, failure mode resulted from the moisture absorption was studied using scanning acoustic microscope. To achieve an optimum reflow profile of solder bump, correct temperature profile was set up with respect to the resin base flux. Different bonding forces were tested. Four underfill encapsulants were evaluated for minimum voids that caused the severe defects after reliability test. Also, the gap heights were measured with respect to applied bonding force after underfill was performed. Results from the moisture absorption and thermal cycling were discussed for flip-chip bonding on BT-resin substrates. The test vehicles using flip-chip technology have passed moisture preconditioning and temperature cycling tests.

  20. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  1. CHIPS Neutrino Detector Research and Development

    Science.gov (United States)

    Salazar, Ramon; Vahle, Patricia; Chips Collaboration

    2015-04-01

    The CHIPS R&D project is an effort to develop affordable megaton-scale neutrino detectors. The CHIPS strategy calls for submerging water Cherenkov detectors deep under water. The surrounding water acts as structural support, minimizing large initial investments in costly infrastructure, and serves as an overburden, shielding the detector from cosmic rays and eliminating the need for expensive underground construction. Additional cost savings will be achieved through photodetector development and optimization of readout geometry. In summer 2014 a small prototype of the CHIPS detector was deployed in the flooded Wentworth Mine Pit in Northern Minnesota. The detector has been recording data underwater throughout the fall and winter. In this talk, we will discuss lessons learned from the prototyping experience and the plans for submerging much larger detectors in future years.

  2. High-throughput hacking of the methylation patterns in breast cancer by in vitro transcription and thymidine-specific cleavage mass array on MALDI-TOF silico-chip.

    Science.gov (United States)

    Radpour, Ramin; Haghighi, Mahdi Montazer; Fan, Alex Xiu-Cheng; Torbati, Peyman Mohammadi; Hahn, Sinuhe; Holzgreve, Wolfgang; Zhong, Xiao Yan

    2008-11-01

    Over the last decade, the rapidly expanding interest in the involvement of DNA methylation in developmental mechanisms, human diseases, and malignancies has highlighted the need for an accurate, quantitative, and high-throughput assay. Existing methods are limited and are often too laborious for high-throughput analysis or inadequate for quantitative analysis of methylation. Recently, a MassCLEAVE assay has been developed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to analyze base-specific methylation patterns after bisulfite conversion. To find an efficient and more cost-effective high-throughput method for analyzing the methylation profile in breast cancer, we developed a method that allows for the simultaneous detection of multiple target CpG residues by using thymidine-specific cleavage mass array on matrix-assisted laser desorption/ionization time-of-flight silicon chips. We used this novel quantitative approach for the analysis of DNA methylation patterns of four tumor suppressor genes in 96 breast tissue samples from 48 patients with breast cancer. Each individual contributed a breast cancer specimen and corresponding adjacent normal tissue. We evaluated the accuracy of the approach and implemented critical improvements in experimental design.

  3. Development of readout system for FE-I4 pixel module using SiTCP

    Science.gov (United States)

    Teoh, J. J.; Hanagaki, K.; Ikegami, Y.; Takubo, Y.; Terada, S.; Unno, Y.

    2013-12-01

    The ATLAS pixel detector will be replaced in the future High Luminosity-Large Hadron Collider (HL-LHC) upgrade to preserve or improve the detector performance at high luminosity environment. To meet the tight requirements of the upgrade, a new pixel Front-End (FE) Integrated Circuit (IC) called FE-I4 has been developed. We have then devised a readout system for the new FE IC. Our system incorporates Silicon Transmission Control Protocol (SiTCP) technology (Uchida, 2008 [1]) which utilizes the standard TCP/IP and UDP communication protocols. This technology allows direct data access and transfer between a readout hardware chain and PC via a high speed Ethernet. In addition, the communication protocols are small enough to be implemented in a single Field-Programable Gate Array (FPGA). Relying on this technology, we have been able to construct a very compact, versatile and fast readout system. We have developed a firmware and software together with the readout hardware chain. We also have established basic functionalities for reading out FE-I4.

  4. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Dominik [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2014-07-01

    Modern experiments permanently improve the precision of parameters in nuclear and particle physics. Besides high-performance detectors, state-of-the-art readout electronics and recent data acquisition systems contribute substantially to the increasingly better accuracy. This talk therefore presents the readout system, which is being designed for the neutron lifetime experiment PENeLOPE, currently under construction at Technische Universitaet Muenchen. The system*s readout chain involves preamplifier, shaper, sampling ADC, and a data processing stage implemented on field programmable gate arrays (FPGAs). The FPGAs perform the task of online data analysis and formatting and are able to transfer data to a computer via a high-speed Ethernet connection. An advanced algorithm enables them to calculate the pedestal for every single channel online, and to reliably detect all signals above noise. Due to this incorporated signal detection, the triggerless system is able to process and to format pulse shapes from around 1,000 channels simultaneously, each of which is hit by 10 particles/sec. This corresponds to a data rate of 1.5 MB/sec, which is read out to a computer where the pulse shapes are available for further analysis. In the talk, performance and first tests of this readout system are presented in detail.

  5. Readout Driver Firmware Development for the ATLAS Insertable B-Layer

    CERN Document Server

    Chen, Shaw-Pin; Hsu, Shih-Chieh

    During the Large Hadron Collider shutdown from 2013 to 2014 a fourth silicon layer, called the Insertable-B Layer (IBL), was inserted inside the existing ATLAS Pixel Detector. The IBL uses the state-of-the-art FE-I4 front-end readout ASICs for enhanced detector readout efficiency during upcoming LHC runs at higher energy and luminosity. The control and data acquisition (DAQ) of the IBL requires the commissioning of new off-detector readout electronics, mainly consisting of Field-Programmable Gate Array (FPGA)-based Readout Driver (ROD) and Back-of-Crate (BOC) Cards. This thesis focuses on the architecture, implementation, simulation, and hardware test results of the new IBL ROD datapath firmware. Characterization of the IBL detector front-end and an overview of ATLAS Trigger DAQ (TDAQ) system are provided in the first chapters of the thesis. IBL ROD datapath firmware was designed and simulated in a ModelSim testbench with a realistic HDL FE-I4 model as source of data. The hardware tests using both real and em...

  6. Authenticated communication from quantum readout of PUFs

    NARCIS (Netherlands)

    Skoric, Boris; Pinkse, Pepijn W.H.; Mosk, Allard P.

    2016-01-01

    Quantum Readout of Physical Unclonable Functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: a verifier can check if received classical data was sent by the PUF holder. We call this modific

  7. Toward a reduced-wire readout system for ultrasound imaging.

    Science.gov (United States)

    Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam

    2014-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.

  8. Characterization of Medipix3 with the MARS readout and software

    CERN Document Server

    Ronaldson, J P; van Leeuwen, D; Doesburg, R M N; Ballabriga, R; Butler, A P H; Donaldson, J; Walsh, M; Nik, S J; Clyne, M N

    2011-01-01

    The Medipix3 x-ray imaging detector has been characterized using the MARS camera. This x-ray camera comprises custom built readout electronics and software libraries designed for the Medipix family of detectors. The performance of the Medipix3 and MARS camera system is being studied prior to use in real-world applications such as the recently developed MARS-CT3 spectroscopic micro-CT scanner. We present the results of characterization measurements, describe methods for optimizing performance and give examples of spectroscopic images acquired with Medipix3 and the MARS camera system. A limited number of operating modes of the Medipix3 chip have been characterized and single-pixel mode has been found to give acceptable performance in terms of energy response, image quality and stability over time. Spectroscopic performance is significantly better in charge-summing mode than single-pixel mode however image quality and stability over time are compromised. There are more modes of operation to be tested and further...

  9. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    Science.gov (United States)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  10. DIRAC v2 a DIgital Readout Asic for hadronic Calorimeter

    CERN Document Server

    Gaglione, R; Chefdeville, M; Drancourt, C; Vouters, G

    2009-01-01

    DIRAC is a 64 channel mixed-signal readout integrated circuit designed for Micro-Pattern Gaseous Detectors (MICROMEGAS, Gas Electron Multiplier) or Resistive Plate Chambers. These detectors are foreseen as the active part of a digital hadronic calorimeter for a high energy physics experiment at the International Linear Collider. Physic requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital calorimeter). The DIRAC ASIC has been especially designed for these constraints. Each channel of the DIRAC chip is made of a 4 gains charge preamplifier, a DC-servo loop, 3 switched comparators and a digital memory, thus providing additional energy information for a hit. A bulk MICROMEGAS detector with embedded DIRAC v1 ASIC has been built. The tests of this assembly, both in laboratory with X-Rays and in a beam at CERN are presented, demonstrating the feasibility of a bulk MICROMEGAS detector with embedded electronics. The second version of...

  11. Integrated Automation of High-Throughput Screening and Reverse Phase Protein Array Sample Preparation

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    multiplexing readouts, but this has a natural limitation. High-content screening via image acquisition and analysis allows multiplexing of few parameters, but is connected to substantial time consumption and complex logistics. We report on integration of Reverse Phase Protein Arrays (RPPA)-based readouts...

  12. USB 3.0 readout and time-walk correction method for Timepix3 detector

    Science.gov (United States)

    Turecek, D.; Jakubek, J.; Soukup, P.

    2016-12-01

    The hybrid particle counting pixel detectors of Medipix family are well known. In this contribution we present new USB 3.0 based interface AdvaDAQ for Timepix3 detector. The AdvaDAQ interface is designed with a maximal emphasis to the flexibility. It is successor of FitPIX interface developed in IEAP CTU in Prague. Its modular architecture supports all Medipix/Timepix chips and all their different readout modes: Medipix2, Timepix (serial and parallel), Medipix3 and Timepix3. The high bandwidth of USB 3.0 permits readout of 1700 full frames per second with Timepix or 8 channel data acquisition from Timepix3 at frequency of 320 MHz. The control and data acquisition is integrated in a multiplatform PiXet software (MS Windows, Mac OS, Linux). In the second part of the publication a new method for correction of the time-walk effect in Timepix3 is described. Moreover, a fully spectroscopic X-ray imaging with Timepix3 detector operated in the ToT mode (Time-over-Threshold) is presented. It is shown that the AdvaDAQ's readout speed is sufficient to perform spectroscopic measurement at full intensity of radiographic setups equipped with nano- or micro-focus X-ray tubes.

  13. Optimizing the TLD-100 readout system for various radiotherapy beam doses using the Taguchi methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y. [School of Medical Imaging Technology, Chung Shan Medical University, Taichung 402, Taiwan (China); Liu, K.C.; Chen, H.H. [Graduate Institute of Radiological Science, Central Taiwan University of Science and Technology, Takun, Taichung 406, Taiwan (China); Pan, L.K. [Graduate Institute of Radiological Science, Central Taiwan University of Science and Technology, Takun, Taichung 406, Taiwan (China)], E-mail: lkpan@ctust.edu.tw

    2010-03-15

    The TLD-100 readout system was optimized for various radiotherapy beam doses using the Taguchi method. The radiotherapy beam was produced by a Varian 21EX linear accelerator (LINAC) at 6 MV. The beam doses were 50, 100 and 150 cGy, and the measured data in each group were averaged from three TLD-100 chips. A total of nine combinations of four parameters were arranged, in the manner suggested by Taguchi. The four parameters were defined as initial temperature, heating rate, preheat time and maximum set temperature of the readout system during TLD reading. The loss function {eta} adopted herein was specifically defined to satisfy the requirements of both sharp linearity and good reproducibility of the TLD reading at various radiotherapy beam doses. The optimized values were: (1) 50 deg. C for initial temperature, (2) 3 deg. C/s for heating rate, (3) 5 min for the TLD preheat time and (4) 250 deg. C for the maximum temperature for TLD reading. Additionally, the parameters that dominated the TLD readout were: (1) initial temperature, (2) heating rate and (4) maximum temperature setting for TLD reading; and the minor parameter was (3) TLD preheat time before reading. The interactions among the dominant parameters were also studied: no significant cross interaction occurred between initial temperature and heating rate or between initial temperature and maximum temperature. However, a complex cross-interaction existed between optimal heating rate and maximum temperature.

  14. Electronics design of a PET detector module with APD array

    CERN Document Server

    Wang Yong

    2002-01-01

    The author summarizes the advantages of APD-array for using in PET scanner. The front-end electronics for an experimental APD detector module was built and tested. According to the characteristics of APD-array and the demands of the signal readout in PET scanner, the full electronics system of an APD detector module was designed and presented in detail

  15. A VLSI analog pipeline read-out for electrode segmented ionization chambers

    CERN Document Server

    Bonazzola, G C; Cirio, R; Donetti, M; Figus, M; Marchetto, F; Peroni, C; Pernigotti, E; Thénard, J M; Zampieri, A

    1999-01-01

    We report on the design and test of a 32-channel VLSI chip based on the analog pipeline memory concept. The charge from a strip of a ionization chamber, is stored as a function of time in a switched capacitor array. The cell reading can be done in parallel with the writing.

  16. A VLSI analog pipeline read-out for electrode segmented ionization chambers

    Science.gov (United States)

    Bonazzola, G. C.; Bouvier, S.; Cirio, R.; Donetti, M.; Figus, M.; Marchetto, F.; Peroni, C.; Pernigotti, E.; Thenard, J. M.; Zampieri, A.

    1999-05-01

    We report on the design and test of a 32-channel VLSI chip based on the analog pipeline memory concept. The charge from a strip of a ionization chamber, is stored as a function of time in a switched capacitor array. The cell reading can be done in parallel with the writing.

  17. MT3250BA: a 320×256-50µm snapshot microbolometer ROIC for high-resistance detector arrays

    Science.gov (United States)

    Eminoglu, Selim; Akin, Tayfun

    2013-06-01

    This paper reports the development of a new microbolometer readout integrated circuit (MT3250BA) designed for high-resistance detector arrays. MT3250BA is the first microbolometer readout integrated circuit (ROIC) product from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic CMOS imaging sensors and ROICs for hybrid photonic imaging sensors and microbolometers. MT3250BA has a format of 320 × 256 and a pixel pitch of 50 µm, developed with a system-on-chip architecture in mind, where all the timing and biasing for this ROIC are generated on-chip without requiring any external inputs. MT3250BA is a highly configurable ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. MT3250BA has 2 analog video outputs and 1 analog reference output for pseudo-differential operation, and the ROIC can be programmed to operate in the 1 or 2-output modes. A unique feature of MT3250BA is that it performs snapshot readout operation; therefore, the image quality will only be limited by the thermal time constant of the detector pixels, but not by the scanning speed of the ROIC, as commonly found in the conventional microbolometer ROICs performing line-by-line (rolling-line) readout operation. The signal integration is performed at the pixel level in parallel for the whole array, and signal integration time can be programmed from 0.1 µs up to 100 ms in steps of 0.1 µs. The ROIC is designed to work with high-resistance detector arrays with pixel resistance values higher than 250 kΩ. The detector bias voltage can be programmed on-chip over a 2 V range with a resolution of 1 mV. The ROIC has a measured input referred noise of 260 µV rms at 300 K. The ROIC can be used to build a microbolometer infrared sensor with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a high detector resistance value (≥ 250 K

  18. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

    Science.gov (United States)

    Grzyb, Janusz; Pfeiffer, Ullrich

    2015-10-01

    The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/ at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/ at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160-1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1-47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF

  19. Experiences in flip chip production of radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen-Pulli, Satu [VTT, MEMS- and Micropackaging, P.O. Box 1000, Tietotie 3, Espoo, FI-02044 VTT (Finland)]. E-mail: satu.savolainen-pulli@vtt.fi; Salonen, Jaakko [VTT, MEMS- and Micropackaging, P.O. Box 1000, Tietotie 3, Espoo, FI-02044 VTT (Finland); Salmi, Jorma [VTT, MEMS- and Micropackaging, P.O. Box 1000, Tietotie 3, Espoo, FI-02044 VTT (Finland); Vaehaenen, Sami [VTT, MEMS- and Micropackaging, P.O. Box 1000, Tietotie 3, Espoo, FI-02044 VTT (Finland)

    2006-09-01

    Modern imaging devices often require heterogeneous integration of different materials and technologies. Because of yield considerations, material availability, and various technological limitations, an extremely fine pitch is necessary to realize high-resolution images. Thus, there is a need for a hybridization technology that is able to join together readout amplifiers and pixel detectors at a very fine pitch. This paper describes radiation detector flip chip production at VTT. Our flip chip technology utilizes 25-{mu}m diameter tin-lead solder bumps at a 50-{mu}m pitch and is based on flux-free bonding. When preprocessed wafers are used, as is the case here, the total yield is defined only partly by the flip chip process. Wafer preprocessing done by a third-party silicon foundry and the flip chip process create different process defects. Wafer-level yield maps (based on probing) provided by the customer are used to select good readout chips for assembly. Wafer probing is often done outside of a real clean room environment, resulting in particle contamination and/or scratches on the wafers. Factors affecting the total yield of flip chip bonded detectors are discussed, and some yield numbers of the process are given. Ways to improve yield are considered, and finally guidelines for process planning and device design with respect to yield optimization are given.

  20. The Front-End Readout as an Encoder IC for Magneto-Resistive Linear Scale Sensors.

    Science.gov (United States)

    Tran, Trong-Hieu; Chao, Paul Chang-Po; Chien, Ping-Chieh

    2016-09-02

    This study proposes a front-end readout circuit as an encoder chip for magneto-resistance (MR) linear scales. A typical MR sensor consists of two major parts: one is its base structure, also called the magnetic scale, which is embedded with multiple grid MR electrodes, while another is an "MR reader" stage with magnets inside and moving on the rails of the base. As the stage is in motion, the magnetic interaction between the moving stage and the base causes the variation of the magneto-resistances of the grid electrodes. In this study, a front-end readout IC chip is successfully designed and realized to acquire temporally-varying resistances in electrical signals as the stage is in motions. The acquired signals are in fact sinusoids and co-sinusoids, which are further deciphered by the front-end readout circuit via newly-designed programmable gain amplifiers (PGAs) and analog-to-digital converters (ADCs). The PGA is particularly designed to amplify the signals up to full dynamic ranges and up to 1 MHz. A 12-bit successive approximation register (SAR) ADC for analog-to-digital conversion is designed with linearity performance of ±1 in the least significant bit (LSB) over the input range of 0.5-2.5 V from peak to peak. The chip was fabricated by the Taiwan Semiconductor Manufacturing Company (TSMC) 0.35-micron complementary metal oxide semiconductor (CMOS) technology for verification with a chip size of 6.61 mm², while the power consumption is 56 mW from a 5-V power supply. The measured integral non-linearity (INL) is -0.79-0.95 LSB while the differential non-linearity (DNL) is -0.68-0.72 LSB. The effective number of bits (ENOB) of the designed ADC is validated as 10.86 for converting the input analog signal to digital counterparts. Experimental validation was conducted. A digital decoder is orchestrated to decipher the harmonic outputs from the ADC via interpolation to the position of the moving stage. It was found that the displacement measurement error is within