WorldWideScience

Sample records for array photonic crystals

  1. Phase-locking regimes of photonic crystal nanocavity laser arrays

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    We model and analyze the dynamical properties of coupled photonic crystal nanocavity lasers. The model includes Purcell enhancement of the spontaneous emission and intercavity coupling. The coupling strength between neighboring cavities is an essential parameter, and by performing finite-differen......We model and analyze the dynamical properties of coupled photonic crystal nanocavity lasers. The model includes Purcell enhancement of the spontaneous emission and intercavity coupling. The coupling strength between neighboring cavities is an essential parameter, and by performing finite...

  2. Performance investigation of side-coupled interlaced symmetric-shaft-shape photonic crystal sensor arrays

    Science.gov (United States)

    Fu, Zhongyuan; Zhou, Jian; Huang, Lijun; Sun, Fujun; Tian, Huiping

    2016-12-01

    We design symmetric-shaft-shape photonic crystal sensor arrays (SSPhCSAs) which can be used in refractive index sensing, and the performance of the structure is investigated. The structure consists of four symmetric-shaft-shape photonic crystal (SSPhC) cavities side-coupled to a W1 photonic crystal (PhC) waveguide. Each cavity has slightly different cavity spacing with different resonant frequency. By using two dimensional finite-difference time-domain (2D-FDTD) method, the simulation result obtained indicates the performance of the sensor arrays. The sensitivities of the four sensor units are 178, 252, 328 and 398 nm/RIU, respectively, with the detection limit of 10-3. The crosstalk lower than 20 dB is obtained.

  3. Experimental simulation of next-nearest-neighbor Heisenberg chain with photonic crystal waveguide array

    CERN Document Server

    Qi, F; Ma, Q Y; Qi, A Y; Xu, P; Zhu, S N; Zheng, W H

    2016-01-01

    Next-nearest-neighbor Heisenberg chain plays important roles in solid state physics, such as predicting exotic electric properties of two-dimensional materials or magnetic properties of organic compounds. Direct experimental studies of the many-body electron systems or spin systems associating to these materials are challenging tasks, while optical simulation provides an effective and economical way for immediate observation. Comparing with bulk optics, integrated optics are more of fascinating for steady, large scale and long-time evolution simulations. Photonic crystal is an artificial microstructure material with multiple methods to tune the propagation properties, which are essential for various simulation tasks. Here we report for the first time an experimental simulation of next-nearest-neighbor Heisenberg chain with an integrated optical chip of photonic crystal waveguide array. The use of photonic crystal enhances evanescent field thus allows coupling between next-nearest-neighbor waveguides in such a...

  4. The effect of array periodicity on the filtering characteristics of metal/dielectric photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Xiao Gongli; Yang Hongyan

    2011-01-01

    We present a both theoretical and experimental investigation into the effect of array periodicity on the filtering characteristics of metal/dielectric photonic crystals (MDPhCs) with hexagonal arrays of subwavelength holes in gold/silicon dioxide films, varying the array periodicity from 6 to 8μm every 1 μm while the ratio of hole radius to array periodicity is kept constant (1/4). The results indicate that the reflectance spectrum is highly dependent on the array periodicity. When the array periodicity increases, the reflectance spectrum exhibits a large redshift regularly. The finite difference time domain (FDTD) simulations agree well with the experimental results.By analyzing the relationship between the position of the reflectance minimum and the array periodicity, we find that the filtering characteristics of MDPhCs have an almost linear relationship with the array periodicity under the conditions of keeping the same ratio of hole radius to array periodicity (1/4). This finding provides an effective way to control the filtering characteristics of MDPhCs, which have potential applications in optical filters, plasmonic thermal emitters and so on.

  5. Near-unity absorption in a graphene-embedded defective photonic crystals array

    Science.gov (United States)

    Bian, Li-an; Liu, Peiguo; Han, Zhenzhong; Li, Gaosheng; Mao, Jian; Lu, Zhonghao

    2017-04-01

    Near-unity absorption is achieved theoretically at the terahertz frequencies by the graphene-based absorber under the condition of approaching critical coupling. The designed structure is composed of a defective photonic crystal array equal to the multilayer subwavelength grating, which possesses simultaneously the properties of photonic crystal and subwavelength grating so that both FP resonance and Fano resonance are excited. To simulate the structure accurately, rigorous coupled-wave analysis is employed. It is found that the dip can be introduced into the high absorption spectrum by the coupling of two resonances, which is realized by tuning the chemical potential of graphene, the geometry and equivalent thickness of grating as well as the angle of incident wave. The unusual absorption spectra are believed to be useful in the detection and modulation of terahertz waves.

  6. Photonic crystals

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  7. Photonic crystals principles and applications

    CERN Document Server

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  8. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron;

    2015-01-01

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown...... that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can...... perform measurements at arbitrary number of wavelengths, and requires only a minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications. © 2015 AIP Publishing LLC....

  9. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities

    Science.gov (United States)

    Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem

    2017-03-01

    We theoretically investigate a high sensitive photonic crystal integrated biosensor array structure which is potentially used for label-free multiplexed sensing. The proposed device consists of an array of three sandwiched H0 cavities patterned above silicon on insulator (SOI) substrate; each cavity has been designed for different cavity spacing and different resonant wavelength. Results obtained by performing finite-difference time-domain (FDTD) simulations, indicate that the response of each detection unit shifts independently in terms of refractive index variations. The optimized design makes possible the combination of sensing as a function of location, as well as a function of time in the same platform. A refractive index sensitivity of 520nm/RIU and a quality factor over 104 are both achieved with an accompanied crosstalk of less than -26 dB. In addition, the device presents an improved detection limit (DL) of 1.24.10-6 RIU and a wide measurement range. These features make the designed device a promising element for performing label-free multiplexed detection in monolithic substrate for medical diagnostics and environmental monitoring.

  10. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities

    Directory of Open Access Journals (Sweden)

    Arafa Safia

    2017-01-01

    Full Text Available We theoretically investigate a high sensitive photonic crystal integrated biosensor array structure which is potentially used for label-free multiplexed sensing. The proposed device consists of an array of three sandwiched H0 cavities patterned above silicon on insulator (SOI substrate; each cavity has been designed for different cavity spacing and different resonant wavelength. Results obtained by performing finite-difference time-domain (FDTD simulations, indicate that the response of each detection unit shifts independently in terms of refractive index variations. The optimized design makes possible the combination of sensing as a function of location, as well as a function of time in the same platform. A refractive index sensitivity of 520nm/RIU and a quality factor over 104 are both achieved with an accompanied crosstalk of less than -26 dB. In addition, the device presents an improved detection limit (DL of 1.24.10-6 RIU and a wide measurement range. These features make the designed device a promising element for performing label-free multiplexed detection in monolithic substrate for medical diagnostics and environmental monitoring.

  11. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    Energy Technology Data Exchange (ETDEWEB)

    Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Whitney, William S. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Physics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  12. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal.

    Science.gov (United States)

    Lu, Wei; Asher, Sanford A; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-10-05

    We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH=7.0, 30mM). The limit of detection (LOD) of the sensor was 1.03μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84nm diffraction red shift when the TNT concentration increased to 20mM. The sensor response time was 3min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol, 2-nitroaniline, 3-aminophenol and 3-nitroaniline. The sensor showed high stability with little response change after three years storage. This sensor technology might be useful for the visual determination of TNT.

  13. High sensitive immunoassay for multiplex mycotoxin detection with photonic crystal microsphere suspension array.

    Science.gov (United States)

    Deng, Guozhe; Xu, Kun; Sun, Yue; Chen, Yu; Zheng, Tiesong; Li, Jianlin

    2013-03-05

    A novel, sensitive, and high throughput competitive immunoassay for multiplex mycotoxins was established by immobilizing the artificial antigens (Ags) of mycotoxins on the surfaces of three kinds of silica photonic crystal microsphere (SPCM) suspension arrays. The SPCMs were encoded by their reflectance peak positions. Aflatoxin B1 (AFB1), fumonisin B1 (FB1), and citrinin (CIT) spiked in the cereals were extracted, and the fluorescein isothiocyanate (FITC) labeled antibodies (Abs) of these mycotoxins were added into the centrifuge tube which contained the SPCMs of the modified artificial antigens (Ags). The fluorescence signal was collected by an array fluorescent scanner. The limit of detection (LOD) was as low as 0.5, 1, and 0.8 pg/mL for AFB1, FB1, and CIT, respectively. The new method provided a wide linear detection range from 0.001 to 10, 0.001 to 10, and 0.001 to 1 ng/mL for AFB1, FB1, and CIT, respectively. The mean recovery rates are in range of 74.7 ± 4.0% to 127.9 ± 4.4% for the three mycotoxins in corn, peanuts, and wheat. The developed method for mycotoxins was used to assay the AFB1, FB1, and CIT level in 10 naturally contaminated cereal samples, and the results of detection were in agreement with that of a classic enzyme-linked immunosorbent assay (ELISA) method. This method saves a large amount of reagents (10 μL volume) and detection time (<3 h) for multiplex mycotoxin assay.

  14. Electrically pumped all photonic crystal 2nd order DFB lasers arrays emitting at 2.3 μm

    Science.gov (United States)

    Adelin, B.; Gauthier-Lafaye, O.; Dubreuil, P.; Lecestre, A.; Rouillard, Y.; Bahriz, M.; Boissier, G.; Vicet, A.; Monmayrant, A.

    2017-03-01

    Single-mode, widely tunable laser diodes in the mid-infrared range are highly interesting for demanding spectroscopic applications involving multi-species discrimination. We report on an alternative approach using single frequency laser arrays. Single-mode laser arrays were fabricated using all-photonic-crystal electrically pumped distributed feedback cavities on GaSb. The fabricated lasers exhibit thresholds in the 3.2 kA/cm2 range in a continuous wave regime at room temperature. The maximum output power reaches 1 mW and single mode operation with a side-mode suppression ratio of 30 dB is demonstrated. These lasers were used to perform tunable diode laser absorption spectroscopy of several gases in standard gas cells. Continuous spectral coverage of a 40 nm band using 10 lasers seems an achievable goal using laser arrays with PhC lattice constant variations of 1 nm from laser to laser.

  15. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  16. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  17. An Array of One-Dimensional Porous Silicon Photonic Crystal Reflector Islands for a Far-Infrared Image Detector

    Institute of Scientific and Technical Information of China (English)

    MIAO Feng-Juan; ZHANG Jie; XU Shao-Hui; WANG Lian-Wei; CHU Jun-Hao; CAO Zhi-Shen; ZHAN Peng; WANG Zhen-Lin

    2009-01-01

    @@ With the aid of photolithography, an array of one-dimensional porous silicon photonic crystal reflector islands for a far infrared image detector ranging from 10μm to 14μm is successfully fabricated. Silicon nitride formed by low pressure chemical vapor deposition (LPCVD) was used as the masking layer for the island array formation. After etching, the microstructures were examined by a scanning electron microscope and the optical properties were studied by Fourier transform infrared spectroscopy, the result indicates that the multilayer structure could be obtained in the perpendicular direction via periodically alternative etching current in each pre-patteru. At the same time, the island array has a well-proportioned lateral etching effect, which is very useful for the thermal isolation in lateral orientation of the application in devices. It is concluded that regardless of the absorption of the deposition layer on the substrate, the localized photonic crystalline islands have higher reflectivity. The designed islands structure not only prevents the cracking of the porous silicon layers but is also useful for the application in the cold part for the sensor devices and the interconnection of each pixel.

  18. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  19. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Hokyung; Kim; Jinchae; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  20. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron;

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  1. Function Photonic Crystals

    CERN Document Server

    Wu, Xiang-Yao; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai; Li, Jing-Wu

    2010-01-01

    In the paper, we present a new kind of function photonic crystals, which refractive index is a function of space position. Unlike conventional PCs, which structure grow from two materials, A and B, with different dielectric constants $\\epsilon_{A}$ and $\\epsilon_{B}$. By Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we study the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals. By choosing various refractive index distribution function $n(z)$, we can obtain more width or more narrow band gap structure than conventional photonic crystals.

  2. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  3. Fabrication and characterization of novel composite membranes composed of photonic crystals and TiO2 nanotube array films

    Science.gov (United States)

    Tang, Junjie; Zhu, Huili; Wang, Aijun; Chen, Sheng-Li; Yuan, Yao

    2016-05-01

    Novel composite membranes composed of photonic crystals (PCs) and TiO2 nanotube array (TNA) films have been fabricated by combining the room temperature floating self-assembly (RTFSA) method, recently developed by our research group, and the liquid-phase deposition technique. By applying this combined procedure, polystyrene (PS) opal PC/TNA and TiO2 inverse opal PC/TNA composite membranes were prepared. Scanning electron microscopy and ultraviolet/visible spectroscopy analyses showed that the membrane samples possessed very high crystalline quality. Notably, the ordered packing of the PS microspheres from the top to the bottom of the opal PC film was not affected by the surface roughness of the porous TNA substrate. This is attributed to the self-assembly mechanism of the colloidal particles, which produces a three-dimensional ordered structure in the RTFSA method. Herein, the crystallization of the colloidal particles occurred at the surface of the colloidal suspension, and the crystal growth proceeded downward from the surface of the suspension to the substrate.

  4. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon-substrate photonic crystal protein arrays.

    Science.gov (United States)

    Jones, Sarah I; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T; Vodkin, Lila

    2015-03-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts.

  5. Photonics with multiwall carbon nanotube arrays.

    Science.gov (United States)

    Lidorikis, Elefterios; Ferrari, Andrea C

    2009-05-26

    We investigate the photonic properties of two-dimensional nanotube arrays for photon energies up to 40 eV and unveil the physics of two distinct applications: deep-UV photonic crystals and total visible absorbers. We find three main regimes: for small intertube spacing of 20-30 nm, we obtain strong Bragg scattering and photonic band gaps in the deep-UV range of 25 approximately 35 eV. For intermediate spacing of 40-100 nm, the photonic bands anticross with the graphite plasmon bands resulting into a complex photonic structure, and a generally reduced Bragg scattering. For large spacing >150 nm, the Bragg gap moves into the visible and decreases due to absorption. This leads to nanotube arrays behaving as total optical absorbers. Our results can guide the design of photonic applications in the visible and deep UV ranges.

  6. Photonic crystal microcapsules for label-free multiplex detection.

    Science.gov (United States)

    Ye, Baofen; Ding, Haibo; Cheng, Yao; Gu, Hongcheng; Zhao, Yuanjin; Xie, Zhuoying; Gu, Zhongze

    2014-05-28

    A novel suspension array, which possesses the joint advantages of photonic crystal encoded technology, bioresponsive hydrogels, and photonic crystal sensors with capability of full multiplexing label-free detection is developed.

  7. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  8. Photonic Crystal Microchip Laser

    Science.gov (United States)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  9. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Science.gov (United States)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  10. Photonic crystals as metamaterials

    Science.gov (United States)

    Foteinopoulou, S.

    2012-10-01

    The visionary work of Veselago had inspired intensive research efforts over the last decade, towards the realization of man-made structures with unprecedented electromagnetic (EM) properties. These structures, known as metamaterials, are typically periodic metallic-based resonant structures demonstrating effective constitutive parameters beyond the possibilities of natural material. For example they can exhibit optical magnetism or simultaneously negative effective permeability and permittivity which implies the existence of a negative refractive index. However, also periodic dielectric and polar material, known as photonic crystals, can exhibit EM capabilities beyond natural materials. This paper reviews the conditions and manifestations of metamaterial capabilities of photonic crystal systems.

  11. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  12. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  13. Spherical colloidal photonic crystals.

    Science.gov (United States)

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  14. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  15. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  16. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  17. Silicon on-chip side-coupled high-Q micro-cavities for the multiplexing of high sensitivity photonic crystal integrated sensors array

    Science.gov (United States)

    Yang, Daquan; Wang, Chunhong; Yuan, Wei; Wang, Bo; Yang, Yujie; Ji, Yuefeng

    2016-09-01

    A novel two-dimensional (2D) silicon (Si) photonic crystal (PC) α-H0-slot micro-cavity with high Q-factor and high sensitivity (S) is presented. Based on the proposed α-H0-Slot micro-cavities, an optimal design of photonic crystal integrated sensors array (PC-ISA) on monolithic silicon on insulator (SOI) is displayed. By using finite-difference time-domain (FDTD) method, the simulation results demonstrate that both large S of 200 nm/RIU (RIU=refractive index unit) and high Q-factor >104 at telecom wavelength range can be achieved simultaneously. And the sensor figure of merit (FOM)>7000 is featured, an order of magnitude improvement over previous 2D PC sensors array. In addition, for the proposed 2D PC-ISA device, each sensor unit is shown to independently shift its resonance wavelength in response to the changes in refractive index (RI) and does not perturb the others. Thus, it is potentially an ideal platform for realizing ultra-compact lab-on-a-chip applications with dense arrays of functionalized spots for multiplexed sensing, and also can be used as an opto-fluidic architecture for performing highly parallel detection of biochemical interactions in aqueous environments.

  18. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  19. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  20. Natural photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, Jean Pol, E-mail: jean-pol.vigneron@fundp.ac.be [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium); Simonis, Priscilla [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2012-10-15

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  1. Negative refraction in photonic crystals

    OpenAIRE

    Baba, T.; Matsumoto, T.; Asatsuma, T.

    2008-01-01

    Photonic crystals are multidimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the crystals. The refraction angle from positive to negative, perfectly or only partially obeying Snell’s law, can be tailored based on photonic band theory. Negative refraction enables novel prism, collimation, and lens effects. Because photonic crystals usually consist of two transparent media, these effects occur at...

  2. Photonic crystal fibers in biophotonics

    Science.gov (United States)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.

  3. Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer-photonic crystal encoded suspension array.

    Science.gov (United States)

    Yue, Sun; Jie, Xu; Wei, Li; Bin, Cao; Dou Dou, Wang; Yi, Yang; QingXia, Lin; JianLin, Li; TieSong, Zheng

    2014-12-02

    A simple, new aptamer-photonic crystal encoded suspension array was designed to simultaneously quantify and qualify ochratoxin A(OTA) and fumonisin B1(FB1) in cereal samples. The aptamers of OTA and FB1 were immobilized on the surfaces of photonic crystals by chemical bonding. When the target mycotoxins appear in a sample, the fluorescence-labeled complementary DNA of the aptamer dissociates from their double DNA hybrid and results in an obvious decrease in fluorescence intensity of the microsphere. The difference value of fluorescent intensities for each kind of silica photonic crystal microsphere (SPCM) quantitatively conveys the concentration of mycotoxin, and the structure colors or reflectance peak positions of the SPCMs confirm the kind of mycotoxin detected. The reaction conditions including the immobilization method for aptamers, hybridization, and incubation conditions have been optimized. This developed method displayed a wide linear detection range (0.01-1 ng/mL for OTA and 0.001-1 ng/mL for FB1) and a low limit of detection (0.25 pg/mL for OTA and 0.16 pg/mL for FB1). The recovery rates in the spiked cereal samples ranged from 81.80% to 116.38% for OTA and 76.58%-114.79% for FB1. The positive detection results in the naturally contaminated cereal samples were in agreement with those of classic enzyme-linked immunosorbent assay (ELISA). This simple suspension array scheme displays a great application potential for the high throughput screen assay of mycotoxins.

  4. Photonic crystals in epitaxial semiconductors

    CERN Document Server

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  5. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  6. Tailoring the photon hopping by nearest and next-nearest-neighbour interaction in photonic arrays

    CERN Document Server

    Caselli, Niccolò; La China, Federico; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H; Pagliano, Francesco; Fiore, Andrea; Intonti, Francesca; Gurioli, Massimo

    2015-01-01

    Arrays of photonic cavities are relevant structures for developing large-scale photonic integrated circuits and for investigating basic quantum electrodynamics phenomena, due to the photon hopping between interacting nanoresonators. Here, we investigate, by means of scanning near-field spectroscopy, numerical calculations and an analytical model, the role of different neighboring interactions that give rise to delocalized supermodes in different photonic crystal array configurations. The systems under investigation consist of three nominally identical two-dimensional photonic crystal nanocavities on membrane aligned along the two symmetry axes of the triangular photonic crystal lattice. We find that the nearest and next-nearest-neighbour coupling terms can be of the same relevance. In this case, a non-intuitive picture describes the resonant modes, and the photon hopping between adjacent nano-resonators is strongly affected. Our findings prove that exotic configurations and even post-fabrication engineering o...

  7. Hydrogen sensor based on metallic photonic crystal slabs.

    Science.gov (United States)

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  8. Radiating dipoles in photonic crystals

    OpenAIRE

    Busch, Kurt; Vats, Nipun; John, Sajeev; Sanders, Barry C.

    2000-01-01

    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra ar...

  9. Photonic crystal enhanced cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  10. Design of Tunable Anisotropic Photonic Crystal Filter as Photonic Switch

    OpenAIRE

    Majid Seifan; Alireza Malekijavan; Alireza Monajati Kashani

    2014-01-01

    By creating point defects and line defects in photonic crystals, we reach the new sort of photonic crystals. Which allow us to design photonic crystals filters. In this type of photonic crystals the ability to tune up central frequency of filter is important to attention. In this paper, we use foregoing points for designing photonic crystal filters. The main function of this type of filters is coupling between shield of point defect modes and directional line defect modes. By using liquid cry...

  11. Photonic crystal negative refractive optics.

    Science.gov (United States)

    Baba, Toshihiko; Abe, Hiroshi; Asatsuma, Tomohiko; Matsumoto, Takashi

    2010-03-01

    Photonic crystals (PCs) are multi-dimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the PC. The refraction angle from positive to negative, perfectly or only partially obeying Snell's law, can be tailored using photonic band theory. The negative refraction enables novel prism, collimation, and lens effects. Because PCs usually consist of two transparent media, these effects occur at absorption-free frequencies, affording significant design flexibility for free-space optics. The PC slab, a high-index membrane with a two-dimensional airhole array, must be carefully designed to avoid reflection and diffraction losses. Light focusing based on negative refraction forms a parallel image of a light source, facilitating optical couplers and condenser lenses for wavelength demultiplexing. A compact wavelength demultiplexer can be designed by combining the prism and lens effects. The collimation effect is obtainable not only inside but also outside of the PC by optimizing negative refractive condition.

  12. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  13. Manufacturing method of photonic crystal

    Science.gov (United States)

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  14. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...... modes in contiguous fibre segments curved at different radii. Overall microbend loss is expressed as a statistical mean of mismatch losses. Extending a well proven, established formula for macrobending losses in stop index fibres, we provide an estimate of macrobend losses in an air-guiding photonic...

  15. Polarization-selective resonant photonic crystal photodetector

    Science.gov (United States)

    Yang, Jin-Kyu; Seo, Min-Kyo; Hwang, In-Kag; Kim, Sung-Bock; Lee, Yong-Hee

    2008-11-01

    Resonance-assisted photonic crystal (PhC) slab photodetectors are demonstrated by utilizing six 7-nm-thick InGaAsP quantum wells. In order to encourage efficient photon coupling into the slab from the vertical direction, a coupled-dipole-cavity-array PhC structure is employed. Inheriting the characteristics of the dipole mode, this resonant detector is highly polarization selective and shows a 22-nm-wide spectral width. The maximum responsivity of 0.28A/W, which is >20 times larger than that of the identical detector without the pattern, is observed near 1.56μm.

  16. Radiating dipoles in photonic crystals

    Science.gov (United States)

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  17. From optical MEMS to photonic crystal

    Science.gov (United States)

    Lee, Sukhan; Kim, Jideog; Lee, Hong-Seok; Moon, Il-Kwon; Won, JongHwa; Ku, Janam; Choi, Hyung; Shin, Hyungjae

    2002-10-01

    This paper presents the emergence of photonic crystals as significant optomechatronics components, following optical MEMS. It is predicted that, in the coming years, optical MEMS and photonic crystals may go through dynamic interactions leading to synergy as well as competition. First, we present the Structured Defect Photonic Crystal (SDPCTM) devised by the authors for providing the freedom of designing photonic bandgap structures, such that the application of photonic crystals be greatly extended. Then, we present the applications of optical MEMS and photonic crystals to displays and telecommunications. It is shown that many of the applications that optical MEMS can contribute to telecommunications and displays may be implemented by photonic crystals.

  18. Controlled coupling of photonic crystal cavities using photochromic tuning

    CERN Document Server

    Cai, Tao; Solomon, Glenn S; Waks, Edo

    2013-01-01

    We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.

  19. Photonic band gap of 2D complex lattice photonic crystal

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-ying; YUAN Li-bo

    2009-01-01

    It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ratio of up to 45.6%.

  20. Erbium doped tellurite photonic crystal optical fiber

    Science.gov (United States)

    Osorio, Sergio P.; Fernandez, Enver; Rodriguez, Eugenio; Cesar, Carlos L.; Barbosa, Luiz C.

    2005-04-01

    In this work we present the fabrication of tellurite glass photonic crystal fiber doped with a very large erbium concentration. Tellurite glasses are important hosts for rare earth ions due to its very high solubility, which allows up to 10,000 ppm Er3+ concentrations. The photonic crystal optical fibers and tellurite glasses can be, therefore, combined in an efficient way to produce doped fibers for large bandwidth optical amplifiers. The preform was made of a 10 mm external diameter tellurite tube filled with an array of non-periodic tellurite capillaries and an erbium-doped telluride rod that constitute the fiber core. The preform was drawn in a Heathway Drawing Tower, producing fibers with diameters between 120 - 140 μm. We show optical microscope photography of the fiber"s transverse section. The ASE spectra obtained with a spectra analyzer show a red shift as the length of the optical fiber increases.

  1. Multiband Photonic Phased-Array Antenna

    Science.gov (United States)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  2. [Photonic crystals for analytical chemistry].

    Science.gov (United States)

    Chen, Yi; Li, Jincheng

    2009-09-01

    Photonic crystals, originally created to control the transmission of light, have found their increasing value in the field of analytical chemistry and are probable to become a hot research area soon. This review is hence composed, focusing on their analytical chemistry-oriented applications, including especially their use in chromatography, capillary- and chip-based electrophoresis.

  3. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  4. One-dimensional photonic crystals

    NARCIS (Netherlands)

    Shen, Huaizhong; Wang, Zhanhua; Wu, Yuxin; Yang, Bai

    2016-01-01

    A one-dimensional photonic crystal (1DPC), which is a periodic nanostructure with a refractive index distribution along one direction, has been widely studied by scientists. In this review, materials and methods for 1DPC fabrication are summarized. Applications are listed, with a special emphasis

  5. Imprinted photonic crystal chemical sensors

    NARCIS (Netherlands)

    Boersma, A.; Burghoorn, M.M.A.; Saalmink, M.

    2011-01-01

    In this paper we present the use of Photonic Crystals as chemical sensors. These 2D nanostructured sensors were prepared by nano-imprint lithography during which a nanostructure is transferred from a nickel template into a responsive polymer, that is be specifically tuned to interact with the chemic

  6. Optical Properties of Photonic Crystals

    CERN Document Server

    Sakoda, Kazuaki

    2005-01-01

    This is the first comprehensive textbook on the optical properties of photonic crystals. It deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. A general theory of linear and nonlinear optical response is developed in a clear and detailed fashion using the Green's function method. The symmetry of the eigenmodes is treated systematically using group theory to show how it affects the optical properties of photonic crystals. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are also treated in detail and made understandable. Numerical methods are also emphasized. Thus this book provides both an introduction for graduate and undergraduate students and also key information for researchers in this field. This second edition has been updated and includes a new chapter on superfluorescence.

  7. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei;

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends on the L...

  8. Tunable Photonic Band Gaps In Photonic Crystal Fibers Filled With a Cholesteric Liquid Crystal

    Institute of Scientific and Technical Information of China (English)

    Thomas; Tanggaard; Larsen; David; Sparre; Hermann; Anders; Bjarklev

    2003-01-01

    A photonic crystal fiber has been filled with a cholesteric liquid crystal. A temperature sensitive photonic band gap effect was observed, which was especially pronounced around the liquid crystal phase transition temperature.

  9. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  10. Photonic Crystals Physics and Practical Modeling

    CERN Document Server

    Sukhoivanov, Igor A

    2009-01-01

    The great interest in photonic crystals and their applications in the past decade requires a thorough training of students and professionals who can practically apply the knowledge of physics of photonic crystals together with skills of independent calculation of basic characteristics of photonic crystals and modelling of various photonic crystal elements for application in all-optical communication systems. This book combines basic backgrounds in fiber and integrated optics with detailed analysis of mathematical models for 1D, 2D and 3D photonic crystals and microstructured fibers, as well as with descriptions of real algorithms and codes for practical realization of the models.

  11. FABRICATION OF PHOTONIC CRYSTAL WITH SUPERLATTICES

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng; Chen Haihua; Zhang Jizhong; Wei Hongmei; Gu Zhongze

    2006-01-01

    A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.

  12. Photonic crystal self-collimation sensor.

    Science.gov (United States)

    Wang, Yufei; Wang, Hailing; Xue, Qikun; Zheng, Wanhua

    2012-05-21

    A novel refractive index sensor based on the two dimensional photonic crystal folded Michelson interferometer employing the self-collimation effect is proposed and its performances are theoretically investigated. Two sensing areas are included in the sensor. Simulation results indicate the branch area is suitable for the small index variety range and fine detection, whereas the reflector area prone to the large index change range and coarse detection. Because of no defect waveguides and no crosstalk of signal, the sensor is desirable to perform monolithic integrated, low-cost, label-free real-time parallel sensing. In addition, a flexible design of self-collimation sensors array is demonstrated.

  13. Optical Magnetometer Incorporating Photonic Crystals

    Science.gov (United States)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  14. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the lin......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap.......A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage...

  15. Photon Polarization in Photonic Crystal Fibers under Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2007-01-01

    Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.

  16. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  17. A new varied-time photonic crystals

    OpenAIRE

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...

  18. Biased liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard;

    2008-01-01

    We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure....

  19. Photonic Crystals: Physics and Technology

    CERN Document Server

    Sibilia, Concita; Marciniak, Marian; Szoplik, Tomasz

    2008-01-01

    The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example telecommunication with novel optical fibers, lasers, nonlinear multi-functionality, display devices , opto-electronics, sensors. The book contain contributions from authors who gave their lecture at the Cost P11 Training School. Training School was held at the Warsaw University (2007) and National Institute of Telecommunications (May 23), Warsaw. It was attended by 23 students. The focus of the School was on the work of...

  20. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  1. Polarization properties and disorder effects in H{sub 3} photonic crystal cavities incorporating site-controlled, high-symmetry quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Surrente, Alessandro; Felici, Marco; Gallo, Pascal; Dwir, Benjamin; Rudra, Alok; Kapon, Eli, E-mail: eli.kapon@epfl.ch [Laboratory of Physics of Nanostructures, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Biasiol, Giorgio [Istituto Officina dei Materiali CNR, Laboratorio TASC, I-34149 Trieste (Italy)

    2015-07-20

    We report on the effects of optical disorder on breaking the symmetry of the cavity modes of H{sub 3} photonic crystal cavities incorporating site-controlled pyramidal quantum dots (QDs) as the internal light source. The high in-plane symmetry of the polarization states of the pyramidal QDs simplifies the analysis of the polarization states of the H{sub 3} cavities. It is shown that the optical disorder induced by fabrication imperfections lifts the degeneracy of the two quadrupole cavity modes and tilts the elongation axes of the cavity mode patterns with respect to the ideal, hexagonal symmetry case. These results are useful for designing QD-cavity structures for polarization-entangled photon sources and few-QD lasers.

  2. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  3. Photonic crystal fibers for food quality analysis

    Science.gov (United States)

    Malinin, A. V.; Zanishevskaja, A. A.; Tuchin, V. V.; Skibina, Yu. S.; Silokhin, I. Y.

    2012-06-01

    The aspects of application of the hollow core photonic crystal waveguides for spectroscopic analysis of liquid medium were considered. The possibility of using these structures for analysis of a fruit juice was evaluated. The principles of processing of photonic crystal waveguide transmission spectra, which is sensitive to quality of juice, its composition, and main component concentration, were revealed.

  4. Optical experiments on 3D photonic crystals

    NARCIS (Netherlands)

    Koenderink, F.; Vos, W.

    2003-01-01

    Photonic crystals are optical materials that have an intricate structure with length scales of the order of the wavelength of light. The flow of photons is controlled in a manner analogous to how electrons propagate through semiconductor crystals, i.e., by Bragg diffraction and the formation of band

  5. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre is demo...

  6. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy...

  7. Photonic crystal fiber based antibody detection

    OpenAIRE

    Duval, A.; Lhoutellier, M; Jensen, J. B.; Hoiby, P E; Missier, V; Pedersen, L. H.; Hansen, Theis Peter; Bjarklev, Anders Overgaard; Bang, Ole

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy and the use of a transversal illumination setup.

  8. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core reg...

  9. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  10. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim;

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  11. Photonic Crystal Fiber Based Entangled Photon Sources

    Science.gov (United States)

    2014-03-01

    new entanglement source is to make sure the source can provide an efficient and scalable quantum information processor . They are usually generated...multiple scattering on the telecom wavelength photon-pair. Our findings show that quantum correlation of polarization-entangled photon-pairs is...Fiber, Quantum communication, Keyed Communication in Quantum Noise (KCQ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18

  12. Surface states in photonic crystals

    Directory of Open Access Journals (Sweden)

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  13. Photonic crystals with topological defects

    Science.gov (United States)

    Liew, Seng Fatt; Knitter, Sebastian; Xiong, Wen; Cao, Hui

    2015-02-01

    We introduce topological defects to a square lattice of elliptical cylinders. Despite the broken translational symmetry, the long-range positional order of the cylinders leads to a residual photonic band gap in the local density of optical states. However, the band-edge modes are strongly modified by the spatial variation of the ellipse orientation. The Γ -X band-edge mode splits into four regions of high intensity and the output flux becomes asymmetric due to the formation of crystalline domains with different orientation. The Γ -M band-edge mode has the energy flux circulating around the topological defect center, creating an optical vortex. By removing the elliptical cylinders at the center, we create localized defect states, which are dominated by either clockwise or counterclockwise circulating waves. The flow direction can be switched by changing the ellipse orientation. The deterministic aperiodic variation of the unit cell orientation adds another dimension to the control of light in photonic crystals, enabling the creation of a diversified field pattern and energy flow landscape.

  14. Polarization-independent waveguiding with annular photonic crystals.

    Science.gov (United States)

    Cicek, Ahmet; Ulug, Bulent

    2009-09-28

    A linear waveguide in an annular photonic crystal composed of a square array of annular dielectric rods in air is demonstrated to guide transverse electric and transverse magnetic modes simultaneously. Overlapping of the guided bands in the full band gap of the photonic crystal is shown to be achieved through an appropriate set of geometric parameters. Results of Finite-Difference Time-Domain simulations to demonstrate polarization-independent waveguiding with low loss and wavelength-order confinement are presented. Transmission through a 90 degrees bend is also demonstrated.

  15. Stroing single-photons in microcavities arrays

    Science.gov (United States)

    Mirza, Imran M.; Enk, S. J. Van; Kimble, H. J.

    2014-03-01

    Coupling light to arrays of microcavities is one of the most promising avenues to store/delay classical light pulses [F. Krauss, Nat. Phot. 2, 448-450 (2008)]. However, from the perspective of benefiting quantum communication protocols, the same ideas in principle can be extended down to the single-photon (quantum) level as well. Particularly, for the purposes of entanglement purification and quantum repeaters a reliable storage of single photons is needed. We consider in our work [I. M. Mirza, S. Van Enk, H. Kimble JOSA B, 30,10 (2013)] cavities that are coupled through an optical fiber which is assumed to be forming a Markovian bath. For this study two powerful open quantum system techniques, Input-Output theory for cascaded quantum systems and the Quantum Trajectory approach are used in combination. For the confirmation of photon delays the Time-Dependent Spectrum of such a single photon is obtained. Interestingly this leads to a hole-burning effect showing that only certain frequency components in the single photon wavepackets are stored inside the cavities and hence are delayed in time. Since on-demand production of single photons is not an easy task we include in our description the actual generation of the single photon by assuming a single emitter in one the resonators.

  16. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2006-12-01

    The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported, how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric rods in 2D photonic crystals.

  17. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen;

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  18. Photonic crystal slab quantum well infrared photodetector

    Science.gov (United States)

    Kalchmair, S.; Detz, H.; Cole, G. D.; Andrews, A. M.; Klang, P.; Nobile, M.; Gansch, R.; Ostermaier, C.; Schrenk, W.; Strasser, G.

    2011-01-01

    In this letter we present a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS). With the PCS it is possible to enhance the absorption efficiency by increasing photon lifetime in the detector active region. To understand the optical properties of the device we simulate the PCS photonic band structure, which differs significantly from a real two-dimensional photonic crystal. By fabricating a PCS-QWIP with 100x less quantum well doping, compared to a standard QWIP, we are able to see strong absorption enhancement and sharp resonance peaks up to temperatures of 170 K.

  19. Quantum Cascade Photonic Crystal lasers

    Science.gov (United States)

    Capasso, Federico

    2004-03-01

    QC lasers have emerged in recent years as the dominant laser technology for the mid-to far infrared spectrum in light of their room temperature operation, their tunability, ultrahigh speed operation and broad range of applications to chemical sensing, spectroscopy etc. (Ref. 1-3). After briefly reviewing the latter, I will describe a new class of mid-infrared QC lasers, Quantum Cascade Photonic Crystal Surface Emitting Lasers (QCPCSELS), that combine electronic and photonic band structure engineering to achieve vertical emission from the surface (Ref. 4). Devices operating on bandedge mode and on defect modes will be discussed. Exciting potential uses of these new devices exist in nonlinear optics, microfluidics as well as novel sensors. Finally a bird's eye view of other exciting areas of QC laser research will be given including broadband QCLs and new nonlinear optical sources based on multiwavelength QCLs. 1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Physics Today 55, 34 (May 2002) 2. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho and H. C. Liu, IEEE Journal of Selected Topics in Quantum Electronics, 6, 931 (2000). 3. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, IEEE J. Quantum Electron. 38, 511 (2002) 4. R. Colombelli, K. Srivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, Science 302, 1374 (2003)

  20. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;

    2012-01-01

    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth......We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...

  1. Novel photonic crystal cavities and related structures.

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  2. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    Science.gov (United States)

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  3. Tunable photonic Bloch oscillations in electrically modulated photonic crystals

    CERN Document Server

    Wang, Gang; Yu, Kin Wah

    2008-01-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump AC or DC electric field, terahertz PBOs can appear and cover a terahertz band in electromagnetic spectrum.

  4. Main Factors for Affecting Photonic Bandgap of Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing

    2007-01-01

    The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.

  5. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  6. Photonics crystal fiber Raman sensors

    Science.gov (United States)

    Yang, Xuan; Bond, Tiziana C.; Zhang, Jin Z.; Li, Yat; Gu, Claire

    2012-11-01

    Hollow core photonic crystal fiber (HCPCF) employs a guiding mechanism fundamentally different from that in conventional index guiding fibers. In an HCPCF, periodic air channels in a glass matrix act as reflectors to confine light in an empty core. As a result, the interaction between light and glass can be very small. Therefore, HCPCF has been used in applications that require extremely low non-linearity, high breakdown threshold, and zero dispersion. However, their applications in optical sensing, especially in chemical and biological sensing, have only been extensively explored recently. Besides their well-recognized optical properties the hollow cores of the fibers can be easily filled with liquid or gas, providing an ideal sampling mechanism in sensors. Recently, we have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or surface enhanced Raman scattering (SERS) applications. This is because the confinement of both light and sample inside the hollow core enables direct interaction between the propagating wave and the analyte. In this paper, we report our recent work on using HCPCF as a platform for Raman or SERS in the detection of low concentration greenhouse gas (ambient CO2), biomedically significant molecules (e.g., glucose), and bacteria. We have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or SERS applications.

  7. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Beravat, R.; Wong, G. K. L.

    2017-01-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771

  8. A novel photonic crystal fibre switch

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Hermann, D.S.; Broeng, Jes

    2003-01-01

    A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB.......A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB....

  9. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas;

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  10. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara;

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  11. Coupled external cavity photonic crystal enhanced fluorescence.

    Science.gov (United States)

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-05-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ∼10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ∼10(5) × improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays.

  12. Photonic crystal fibers, devices, and applications

    Institute of Scientific and Technical Information of China (English)

    Wei JIN; Jian JU; Hoi Lut HO; Yeuk Lai HOO; Ailing ZHANG

    2013-01-01

    This paper reviews different types of air-silica photonic crystal fibers (PCFs), discusses their novel properties, and reports recent advances in PCF components and sensors as well as techniques for splicing PCFs to standard telecomm fibers.

  13. Photonic-crystal fibre: Mapping the structure

    DEFF Research Database (Denmark)

    Markos, Christos

    2015-01-01

    The demonstration of real-time and non-destructive Doppler-assisted tomography of the internal structure of photonic-crystal fibres could aid the fabrication of high-quality fibres with enhanced performance....

  14. Veselago lens by photonic hyper-crystals

    CERN Document Server

    Huang, Zun

    2014-01-01

    An imaging system functioning as a Veselago lens has been proposed based on the novel concept of photonic "hyper-crystal" -- an artificial optical medium synthesizing the properties of hyperbolic materials and photonic crystals. This Veselago lens shows a nearly constant negative refractive index and substantially reduced image aberrations. It can find potential applications in photolithography and hot-spots detection of silicon-based integrated circuits.

  15. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  16. Photonic crystal fiber modelling and applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Libori, Stig E. Barkou;

    2001-01-01

    Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented.......Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented....

  17. Photonic crystal fibres and effective index approaches

    DEFF Research Database (Denmark)

    Riishede, Jesper; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard;

    2001-01-01

    Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres.......Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres....

  18. Photonic crystal fibers: fundamentals to emerging applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard

    2005-01-01

    A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers.......A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers....

  19. Photonic crystal laser sources for chemical detection

    OpenAIRE

    Lončar, Marko; Scherer, Axel; Qiu, Yueming

    2003-01-01

    We have realized photonic crystal lasers that permit the introduction of analyte within the peak of the optical field of the lasing mode. We have explored the design compromises for developing such sensitive low-threshold spectroscopy sources, and demonstrate the operation of photonic crystal lasers in different ambient organic solutions. We show that nanocavity lasers can be used to perform spectroscopic tests on femtoliter volumes of analyte, and propose to use these lasers for high-resolut...

  20. Photonic Crystals Mathematical Analysis and Numerical Approximation

    CERN Document Server

    Dörfler, Willy; Plum, Michael; Schneider, Guido; Wieners, Christian

    2011-01-01

    This book concentrates on the mathematics of photonic crystals, which form an important class of physical structures investigated in nanotechnology. Photonic crystals are materials which are composed of two or more different dielectrics or metals, and which exhibit a spatially periodic structure, typically at the length scale of hundred nanometers. In the mathematical analysis and the numerical simulation of the partial differential equations describing nanostructures, several mathematical difficulties arise, e. g., the appropriate treatment of nonlinearities, simultaneous occurrence of contin

  1. Metallic photonic crystals for thermophotovoltaic applications

    Science.gov (United States)

    Walsh, Timothy A.

    Since the idea of a photonic bandgap was proposed over two decades ago, photonic crystals have been the subject of significant interest due to their novel optical properties which enable new and varied applications. In this research, the photonic bandgap effect is exploited to tailor the thermal radiation spectrum to a narrow range of wavelengths determined by the lattice symmetry and dimensions of the photonic crystal structure. This sharp emission peak can be matched to the electronic bandgap energy of a p-n junction photovoltaic cell for high efficiency thermophotovoltaic energy conversion. This thesis explores aspects of photonic crystal design, materials considerations, and manufacture for thermophotovoltaic applications. Photonic crystal structures come in many forms, exhibiting various types of 1D, 2D, and 3D lattice symmetry. In this work, the "woodpile" 3D photonic crystal is studied. One advantage of the woodpile lattice is that it can be readily fabricated on a large scale using common integrated circuit manufacturing techniques. Additionally this structure lends itself to efficient and accurate modeling with the use of a plane-wave expansion based transfer matrix method to calculate the scattering properties and band structure of the photonic crystal. This method is used to explore the geometric design parameters of the woodpile structure. Optimal geometric proportions for the structure are found which yield the highest narrowband absorption peak possible. By Kirchoffs law of thermal emission, this strong and sharp absorptance will yield high power and narrowband thermal radiation. The photonic crystal thermal emission spectrum is then evaluated in a TPV system model to evaluate the electrical power density and system efficiency achievable. The results produced by the photonic crystal emitter are compared with the results assuming a blackbody thermal radiation spectrum. The blackbody represents a universal standard against which any selective emitter

  2. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei;

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...

  3. Photonic crystal biosensors towards on-chip integration.

    Science.gov (United States)

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip.

  4. Electrially tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber

    DEFF Research Database (Denmark)

    Haakestad, Magnus W.; Alkeskjold, Thomas Tanggaard; Nielsen, Martin Dybendal;

    2005-01-01

    Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range.......Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range....

  5. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara;

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present importan...

  6. Biased liquid crystal infiltrated photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Scolari, Lara

    2009-01-01

    partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell’s equations using a vector...

  7. Broadband wave manipulation in surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen

    2016-01-01

    The ability to perfectly guide surface electromagnetic waves around ultra-sharp corners without back-scattering and radiation is in great demand for various photonic and plasmonic applications. This is fundamentally difficult to realize because of the dramatic momentum mismatch and wave nature of radiation at the sharp corners. Here we experimentally demonstrate that a simple photonic structure, a periodic square array of metallic cylinders standing on a metal surface, can behaves as a surface-wave photonic crystal with complete photonic band gap to overcome this bottleneck simply. A line-defect waveguide can support and guide surface waves around ultra-sharp corners without perceptible radiation and reflection, achieving almost perfect transmission efficiency in a broad frequency range. We also demonstrate an ideal T-shaped splitter to split input surface waves equally into two arms and a square radiation-suppressed plasmonic open resonator with high quality factors by simply inducing line-defects in this fu...

  8. Photonic crystal-encoded suspension array and its application in screening malignant tumors%光子晶体编码液相芯片技术与肿瘤筛查

    Institute of Scientific and Technical Information of China (English)

    杨子学; 陈宝安; 顾忠泽

    2014-01-01

    肿瘤筛查中通常采用多种肿瘤标志物的联合检测以提高诊断率。因此,为了提高筛查效率,亟需一种多元分析技术应用于肿瘤筛查。液相芯片技术是由基因微阵列生物芯片技术演变而来的多元分析技术。它由编码微球、探针分子、目标分子和报告分子四部分组成,可用于目标物的定量分析。微球编码技术是液相芯片技术的研究热点,本文中涉及的光子晶体编码是光学编码策略的一种,具有良好的稳定性和解码性能。长期研究表明,光子晶体编码液相芯片在肿瘤筛查、诊断中应用前景广阔。本文综述了光子晶体编码液相芯片技术的基本原理、技术特点及在肿瘤筛查中的应用现状。%Multiple tumor makers are needed to improve the diagnostic rate of the simultaneously detection of malignant tumors through screening. Therefore, multiplex detection technology is urgently required to improve the screening efficiency. Suspension arrays are multiplex detection method based on gene microarrays. It consists of encoded microbeads, probes, targets, and report molecules are applied to analyze targets quantitatively. The microbead encoding strategy is a hotspot in suspension array research. The photonic crystal encoding mentioned in this review is a type of optical encoding that is very stable and easily decoded. Photonic suspension arrays have broad prospects in the screening and diagnosis of malignant tumors through long-term studies. This review summarizes the basic principle, classification, and characteristics of photonic suspension arrays and their application in the screening of malignant tumors.

  9. Liquid crystal devices for photonics applications

    Science.gov (United States)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  10. Design of photonic crystal splitters/combiners

    Science.gov (United States)

    Kim, Sangin; Park, Ikmo; Lim, Hanjo

    2004-10-01

    Photonic band gap (PBG) structures or photonic crystals have attracted a lot of interest since one of their promising applications is to build compact photonic integrated circuits (PIC). One of key components in PICs is a 1 x 2 optical power splitter or a 2 x 1 combiner. Design of 1 x 2 optical power splitters based on photonic crystal has been investigated by several research groups, but no attention has been paid to the design of 2 x 1 optical combiners. In conventional dielectric waveguide based circuits, optical combiners are obtained just by operating the splitters in the opposite direction and the isolation between two input ports in the combiners is naturally achieved. In photonic crystal based circuits, however, we have found that reciprocal operation of the splitters as combiners will not provide proper isolation between the input ports of the combiners. In this work, microwave-circuit concept has been adopted to obtain isolation between two input ports of the combiner and compact optical power splitters/combiners of good performance have been designed using 2-D photonic crystal. Numerical analysis of the designed splitters/combiners has been performed with the finite-difference time-domain method. The designed splitters/combiners show good isolation between input ports in combiner operation with small return losses.

  11. A composite hydrogels-based photonic crystal multi-sensor

    Science.gov (United States)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  12. Photonic crystal with left-handed components

    CERN Document Server

    Markos, Peter

    2015-01-01

    We show that the periodic array of left-handed cylinders possesses a rich spectrum of guided modes when the negative permeability of cylinders equals exactly to minus value of permeability of embedding media. These resonances strongly influences propagation of electromagnetic waves through photonic structures made from left-handed materials. A series of Fano resonances excited by incident wave destroys the band frequency spectrum of square array of left-handed cylinders and increases considerably the absorption of transmitted waves.

  13. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... and a finite-difference-time-domain (FDTD) method. Design parameters, i.e. dielectric constants, rod diameter and waveguide width, where these waveguides are single-moded and multi-moded will be given. We will also show our recent results regarding the energy-flow (the Poynting vector) in these waveguides...

  14. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  15. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  16. Optical properties of photonic crystals

    CERN Document Server

    Sakoda, Kazuaki

    2001-01-01

    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  17. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo;

    Most work on planar photonic crystals has been performed on structures based on semiconducting crystals such as Si and III-V compounds. Due to the high index contrast between the host material and the air holes (e.g., Si has n = 3.5), these structures exhibit a large photonic band gap. However......ON glasses with different indices between 1.46 and 1.77 and we are currently fabricating photonic crystals in SiON on a silica buffer layer on Si. Simulations show that a complete band gap can indeed be created for TE-polarised light in the SiON structures, making them promising candidates for new photonic......, at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  18. High Power Photonic Crystal Fibre Raman Laser

    Institute of Scientific and Technical Information of China (English)

    YAN Pei-Guang; RUAN Shuang-Chen; YU Yong-Qin; GUO Chun-Yu; GUO Yuan; LIU Cheng-Xiang

    2006-01-01

    A cw Raman laser based on a 100-m photonic crystal fibre is demonstrated with up to 3.8 W output power at the incident pump power of 12 W, corresponding to an optical-to-optical efficiency of about 31.6%. The second order Stokes light, which is firstly reported in a cw photonic crystal fibre Raman laser, is obtained at 1183nm with an output power of 1.6 W and a slope efficiency of about 45.7%.

  19. Plasmonic-photonic crystal coupled nanolaser

    CERN Document Server

    Zhang, Taiping; Jamois, Cecile; Chevalier, Celine; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. In that purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using fully top down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices.

  20. Photonic Integrated Circuits for Phased-Array Beamforming

    NARCIS (Netherlands)

    Vliet, F.E. van; Stulemeijer, J.; Benoist, K.W.; Maat, D.H.P.; Smit, M.K.; Dijk, R. van

    1999-01-01

    Photonic integration is very promising to bring down volume and weight of phased-array beamforming networks. In addition, photonics allows for increased functionality for wide bandwidth systems. In this paper we demonstrate the feasibiÌity of phase and amplitude control of a 16-elernent phased-array

  1. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  2. Self-assembled tunable photonic hyper-crystals

    CERN Document Server

    Smolyaninova, Vera N; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2013-01-01

    We demonstrate a novel artificial optical material, a photonic hyper-crystal, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  3. The Gain Properties of 1-D Active Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The terminology 'ID frequency'(w ID) is proposed after analyzing the 1D active photonic crystal based on the transfer matrix method. The relationship between wID and the structure parameters of the photonic crystal is investigated.

  4. All-polymer photonic crystal slab sensor

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph

    2015-01-01

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured...

  5. Supercontinuum noise in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Moselund, Peter Morten;

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light. Picosecond SCG is initiated by modulation instability...

  6. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  7. Lambda shifted photonic crystal cavity laser

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara;

    2010-01-01

    We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of 1...

  8. Fused combiners for photonic crystal bers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny

    The work presented in this Ph.D. thesis focuses on the fabrication of fused combiners for high-power fiber lasers and amplifiers. The main focus of the Ph.D. project was to further develop the fused pump combiners for airclad photonic crystal bers (PCFs), and implement a signal feed...

  9. Fabrication and Analysis of Photonic Crystals

    Science.gov (United States)

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  10. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra;

    2009-01-01

    We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally demon...

  11. Photonic crystal nanostructures for optical biosensing applications

    DEFF Research Database (Denmark)

    Dorfner, D.; Zabel, T.; Hürlimann, T.;

    2009-01-01

    We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine s...

  12. Near-field probing of photonic crystals

    NARCIS (Netherlands)

    Flück, E.; Hammer, M.; Vos, W.L.; Hulst, van N.F.; Kuipers, L.

    2004-01-01

    Photonic crystals form an exciting new class of optical materials that can greatly affect optical propagation and light emission. As the relevant length scale is smaller than the wavelength of light, sub-wavelength detection forms an important ingredient to obtain full insight in the physical proper

  13. Photonic crystal sensors based on porous silicon.

    Science.gov (United States)

    Pacholski, Claudia

    2013-04-09

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  14. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  15. Chaotic behaviour of photonic crystals resonators

    KAUST Repository

    Di Falco, A.

    2015-02-08

    We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Silicon photonic crystals and spontaneous emission

    NARCIS (Netherlands)

    Dood, Michiel Jacob Andries de

    2002-01-01

    Photonic crystals, i.e. materials that have a periodic variation in refractive index, form an interesting new class of materials that can be used to modify spontaneous emission and manipulate optical modes in ways that were impossible so far. This thesis is divided in three parts. Part I discusses

  17. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  18. All-polymer photonic crystal slab sensor

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph;

    2015-01-01

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured i...

  19. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...

  20. Photonic crystal fibres - a variety of applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Riishede, Jesper

    2002-01-01

    Summary form only given. In 1987, it was suggested that the electronic bandgaps in semiconductors could have an optical analogy-the so-called photonic bandgaps (PBGs), which could be found in periodic dielectric structures. This suggestion initiated research activities that the past few years have...... lead to a new class of optical fibers, in which the cladding structure consists of a periodic system of air holes in a matrix of dielectric material-typically silica. These fibers have been given several names ranging from holey fibers, microstructured fibers, photonic crystal fibers, to photonic...... bandgap fibers. These fibers have today reached a level of maturity where they may be used as building blocks for a variety of new applications. Today's research is focusing increasingly on applications of the fibres, thus redirecting earlier focus on crystal fibers themselves and their unique guiding...

  1. Photonics and lasing in liquid crystals

    Directory of Open Access Journals (Sweden)

    Alison D. Ford

    2006-07-01

    Full Text Available Lasers were invented some 40 years ago and are now used in a plethora of applications. Stable liquid crystals were discovered at about the same time, and are now the basis of a large display industry. Both technologies involve photonics, the former in the creation and use of light and the latter in the control and manipulation of light. However, it is only recently that these two mature technologies have been combined to form liquid-crystal lasers, heralding a new era for these photonic materials and the potential for novel applications. We summarize the characteristics of liquid crystals that lead to laser devices, the wide diversity of possible laser systems, and the properties of the light produced.

  2. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei;

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  3. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper;

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  4. Modal formulation for diffraction by absorbing photonic crystal slabs

    CERN Document Server

    Dossou, Kokou B; Asatryan, Ara A; Sturmberg, Björn C P; Byrne, Michael A; Poulton, Christopher G; McPhedran, Ross C; de Sterke, C Martijn

    2016-01-01

    A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semi-analytic approach allows efficient and accurate calculation of the absorption of an array with a complex unit cell. This approach gives direct physical insight into the absorption mechanism in such structures, which can be used to enhance the absorption. The verification and validation of this approach is applied to a silicon nanowire array and the efficiency and accuracy of the method is demonstrated. The method is ideally suited to studying the manner in which spectral properties (e.g., absorption) vary with the thickness of the array, and we demonstrate this with efficient calculations which can identify an optimal geometry.

  5. Breakdown of Bose-Einstein Distribution in Photonic Crystals

    Science.gov (United States)

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-01

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  6. Photonic crystal slab quantum cascade detector

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Peter, E-mail: peter.reininger@tuwien.ac.at; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, Vienna 1040 (Austria)

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  7. Geometric properties of optimal photonic crystals

    DEFF Research Database (Denmark)

    Sigmund, Ole; Hougaard, Kristian G.

    2008-01-01

    Photonic crystals can be designed to control and confine light. Since the introduction of the concept by Yablonovitch and John two decades ago, there has been a quest for the optimal structure, i.e., the periodic arrangement of dielectric and air that maximizes the photonic band gap. Based...... on numerical optimization studies, we have discovered some surprisingly simple geometric properties of optimal planar band gap structures. We conjecture that optimal structures for gaps between bands n and n+1 correspond to n elliptic rods with centers defined by the generators of an optimal centroidal Voronoi...

  8. Intrinsic Localized Modes in Optical Photonic Lattices and Arrays

    Science.gov (United States)

    Christodoulides, Demetrios

    Discretizing light behavior requires optical elements that can confine optical energy at distinct sites. One possible scenario in implementing such arrangements is to store energy within low loss high Q-microcavities and then allow photon exchange between such components in time. This scheme requires high-contrast dielectric elements that became available with the advent of photonic crystal technologies. Another possible avenue where such light discretization can be directly observed and studied is that based on evanescently coupled waveguide arrays. As indicated in several studies, discrete systems open up whole new directions in terms of modifying light transport properties. One such example is that of discrete solitons. By nature, discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one- and two-dimensional nonlinear waveguide arrays. In recent years such photonic lattices have been implemented or induced in a variety of material systems, including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness can lead to new families of optical solitons that have no counterpart whatsoever in continuous systems. Interestingly, these results paved the way for observations in other physical systems obeying similar evolution equations like Bose-Einstein condensates. New developments in laser writing ultrashort femtosecond laser pulses, now allow the realization of all-optical switching networks in fully 3D environments using nonlinear discrete optics. Using this approach all-optical routing can be achieved using blocking operations. The spatio-temporal evolution of optical pulses in both normally and anomalously dispersive arrays can lead to novel schemes for mode

  9. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre;

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  10. Simulation and measurement of slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Jacobsen, Rune Shim; Fage-Pedersen, Jacob;

    Planar photonic crystals offer a fascinating means of manipulation of light in integrated,optical circuits. Such waveguides can be realized, as in the present investigations, byfabricating arrays of holes with sub-micrometer distance in the top layer of a silicon-oninsulatorwafer. The waveguides...... can be tailored such that the propagating mode achievesextreme dispersion as well as a low group velocity, allowing for realization of ultracompact, functional devices. Here, we present numerical modeling and measurements ofthe time-of-flight propagation of optical pulses. Near the cut...

  11. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  12. Limits of slow light in photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, N. Asger

    2008-01-01

    in the group velocity acquiring a finite value above zero at the band-gap edges while attaining uperluminal values within the band gap. Simple scalings of the minimum and maximum group velocities with the imaginary part of the dielectric function or, equivalently, the linewidth of the broadened states......While ideal photonic crystals would support modes with a vanishing group velocity, state-of-the-art structures have still only provided a slow down by roughly two orders of magnitude. We find that the induced density of states caused by lifetime broadening of the electromagnetic modes results...... are presented. The results obtained are entirely general and may be applied to any effect which results in a broadening of the electromagnetic states, such as loss, disorder, and finite-size effects. This significantly limits the reduction in group velocity attainable via photonic crystals....

  13. Light Localization in Slot Photonic Crystal Waveguide

    Institute of Scientific and Technical Information of China (English)

    WU Jun; PENG Chao; LI Yan-Ping; WANG Zi-Yu

    2009-01-01

    A single-mode photonic crystal waveguide with a linear tapered slot is presented, which can localize light spatially by changing the slot width. Its effective bandwidth is 52nm, from 150Onto to 1552nm. Along the tapered structure, the slot width is reduced, and the corresponding band curve shifts. The group velocity of light becomes zero at the band edge. Therefore, different frequency components of the guided light are slowed down and finally localized at correspondingly different widths inside a tapered slot photonic crystal waveguide. Furthermore, this structure can confine light wave in a narrow slot waveguide, which may effectively enhance the interaction between light and the low-index wave-guiding materials filled in the slot.

  14. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped...... with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular...... lattice is described by two orthogonal unit vectors of length a and b, defining the P and X directions. The frequency of the laser can be tuned via the lattice constant a (187 nm - 215 nm) while pump light is resonantly coupled into the laser from an angle () depending on the lattice constant b (355 nm...

  15. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....

  16. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  17. Photonic Crystal Microcavities for Quantum Information Science

    Science.gov (United States)

    Hagemeier, Jenna Nicole

    Quantum information science and technology is a broad and fascinating field, encompassing diverse research areas such as materials science, atomic physics, superconductors, solid-state physics, and photonics. A goal of this field is to demonstrate the basic functions of information initialization, manipulation, and read-out in systems that take advantage of quantum physics to greatly enhance computing performance capabilities. In a hybrid quantum information network, different systems are used to perform different functions, to best exploit the advantageous properties of each system. For example, matter quantum bits (qubits) can be used for local data storage and manipulation while photonic qubits can be used for long-distance communication between storage points of the network. Our research focuses on the following two solid-state realizations of a matter qubit for the purpose of building such a hybrid quantum network: the electronic spin of a self-assembled indium arsenide quantum dot and the electronic spin of a nitrogen-vacancy defect center in diamond. Light--matter interactions are necessary to transfer the information from the matter qubit to the photonic qubit, and this interaction can be enhanced by embedding the spin system in an optical cavity. We focus on photonic crystal microcavities for this purpose, and we study interactions between the optical cavity modes and incorporated spin systems. To improve the performance of this spin--photon interface, it is important to maximize the coupling strength between the spin and photonic systems and to increase the read-out efficiency of information stored in the cavity. In this thesis, we present our work to deterministically couple a nitrogen-vacancy center in diamond to a photonic crystal microcavity in gallium phosphide. This is achieved by nanopositioning a pre-selected diamond nanocrystal in the intensity maximum of the optical cavity mode. We also present an optimized design of a photonic crystal

  18. Slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Moulin, G.; Jacobsen, Rune Shim; Lavrinenko, Andrei;

    report on the first experiments where a direct measure of the group velocity is performed; this is done by measuring the time delay of modulated light propagating through a photonic crystal waveguide. The structure is fabricated in silicon-on-insulator (SOI). A group index (c/vg) of up to almost 200 has...... been measured. Such a high group index makes the light-matter interaction extremely efficient, opening for new opportunities in micrometer-sized integrated lightwave circuits....

  19. Photonic crystal fibres in the market

    DEFF Research Database (Denmark)

    Broeng, Jes; Laurila, Marko; Noordegraaf, Danny;

    2011-01-01

    Photonic crystal fibres (PCFs) emerged as a research topic in the mid 1990'ies [1]. Today, 15 years later, these fibres are increasing deployed in various commercial markets. Here, we will address three of these markets; medical imaging, materials processing and sensors. We will describe how...... the PCFs provide radical improvements and illustrate the strong diversity in the evolution of PCFs to serve these different markets....

  20. Field renormalization in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Colman, Pierre

    2015-01-01

    A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... Schro¨dinger equation is an occasion for physics-oriented considerations and unveils the potential of photonic crystal waveguides for the study of new nonlinear propagation phenomena....

  1. Atom-Light Interactions in Photonic Crystals

    CERN Document Server

    Goban, A; Yu, S -P; Hood, J D; Muniz, J A; Lee, J H; Martin, M J; McClung, A C; Choi, K S; Chang, D E; Painter, O; Kimble, H J

    2013-01-01

    The integration of nanophotonics and atomic physics has been a long-sought goal that would open new frontiers for optical physics. Here, we report the development of the first integrated optical circuit with a photonic crystal capable of both localizing and interfacing atoms with guided photons in the device. By aligning the optical bands of a photonic crystal waveguide (PCW) with selected atomic transitions, our platform provides new opportunities for novel quantum transport and many-body phenomena by way of photon-mediated atomic interactions along the PCW. From reflection spectra measured with average atom number N = 1.1$\\pm$0.4, we infer that atoms are localized within the PCW by Casimir-Polder and optical dipole forces. The fraction of single-atom radiative decay into the PCW is $\\Gamma_{\\rm 1D}/\\Gamma'$ = 0.32$\\pm$0.08, where $\\Gamma_{1D}$ is the rate of emission into the guided mode and $\\Gamma'$ is the decay rate into all other channels. $\\Gamma_{\\rm 1D}/\\Gamma'$ is quoted without enhancement due to a...

  2. Phase Noise in Photonic Phased-Array Antenna Systems

    Science.gov (United States)

    Logan, Ronald T., Jr.; Maleki, Lute

    1998-01-01

    The total noise of a phased-array antenna system employing a photonic feed network is analyzed using a model for the individual component noise including both additive and multiplicative equivalent noise generators.

  3. Broadening of Omnidirectional Photonic Band Gap in Graphene Based one Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Neetika Arora

    2015-09-01

    Full Text Available A simple design of one dimensional gradual stacked photonic crystal has been proposed. This structure exhibits a periodic array of alternate layers of Graphene and Silica. These are the materials of low and high refractive indices respectively. Here the structure considered has three stacks .Each stack has five alternate layers of Graphene and silica. The transfer matrix method has been used for numerical computation. In this paper, such a structure has wider reflection bands in comparison to a conventional dielectric PC structure and structure with Sio2 and Si layers for a constant gradual constant ϒ at different incident angle.

  4. Degeneracy and Split of Defect States in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    黄晓琴; 崔一平

    2003-01-01

    One-dimensional photonic crystals with two or more structural defects are studied. We observed an interesting characteristic of transmission band structure of photonic crystals with defects using the transmission-matrixmethod simulation. The transmission states in the wide photonic band gap caused by defects revealdegeneracy and split in certain conditions. Every split state is contributed by coupling of all defects in a photonic crystal.Using the tight-binding method, we obtain an approximate analytic expression for the split frequency of photonic crystals with two structural defects.

  5. Fabrication of Metarodielectric Photonic Crystals for Microwave Control

    Energy Technology Data Exchange (ETDEWEB)

    Takinami, Yohei; Kirihara, Soshu, E-mail: y-takinami@jwri.osaka-u.ac.jp [Smart Processing Reserch Center, Joining and Welding Reserch Institute, Osaka University (Japan)

    2011-05-15

    Photonic crystals have inspired a great deal of interests as key platforms for effective control of electromagnetic wave. They can suppress incident waves at a certain frequency by Bragg diffraction and exhibit photonic band gap. Photonic band gap structures can be applied for effective and compact wave control equipments. In this investigation, metal photonic crystals were fabricated by stereolithography and heat treatment process. Furthermore, metal-dielectric crystal was created through impregnation process of dielectric media. This concept of metal-dielectric photonic crystal is expected to contribute for not only the downsizing of electromagnetic wave devices, but also thermal flow control.

  6. Properties of photonic bandgap in one-dimensional multicomponent photonic crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; WANG Qi

    2006-01-01

    Properties of photonic band gap and light propagation in one-dimensional multicomponent photonic crystal have been studied with the optical transfer matrix method.We mainly analyze the relation of photonic band-gap property with the arrangement of components,the refractive index and the geometrical thickness.In this study,the methods to change the width and the location of the existing photonic band-gaps in multicomponent photonic crystal are proposed.

  7. Modal liquid crystal array of optical elements.

    Science.gov (United States)

    Algorri, J F; Love, G D; Urruchi, V

    2013-10-21

    In this study, a novel liquid crystal array based on modal control principle is proposed and demonstrated. The advanced device comprises a six striped electrode structure that forms a configurable 2D matrix of optical elements. A simulation program based on the Frank-Oseen equations and modal control theory has been developed to predict the device electrooptic response, that is, voltage distribution, interference pattern and unwrapped phase. A low-power electronics circuit, that generates complex waveforms, has been built for driving the device. A combined variation of the waveform amplitude and phase has provided a high tuning versatility to the device. Thus, the simulations have demonstrated the generation of a liquid crystal prism array with tunable slope. The proposed device has also been configured as an axicon array. Test measurements have allowed us to demonstrate that electrooptic responses, simulated and empirical, are fairly in agreement.

  8. Distributed optical fibre devices based on liquid crystal infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Broeng, Jes; Hermann, D.S.

    2004-01-01

    We describe a new class of hybrid photonic crystal fibers, which are liquid crystal infiltrated fibers. Using these fibers, we demonstrate 'distributed' tunable filter and switching functionalities operating by the photonic bandgap effect....

  9. Lead-Tungstate Crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    2003-01-01

    The photon spectrometer (PHOS) is designed to measure the temperature of collisions by detecting photons emerging from them. It will be made of lead tungstate crystals like these. When high-energy photons strike lead tungstate, they make it glow, or scintillate, and this glow can be measured. Lead tungstate is extremely dense (denser than iron), stopping most photons that reach it.

  10. Analysis of thin-film photonic crystal microstructures

    CERN Document Server

    Pottage, J M

    2003-01-01

    Optical-scale microstructures containing thin-film photonic crystals (TFPCs) are modelled by transfer/scattering matrix methods, based on Fourier-series expansion of the optical Bloch eigenmodes. The majority of the TFPCs considered consist of 2D arrays of holes arranged in a triangular lattice, etched into high-index Al sub x Ga sub 1 sub - sub x As and placed on a low-index oxidised substrate. These TFPCs can be easily fabricated by standard electron-beam lithography techniques. Unlike most photonic crystal devices that have been proposed, our 'intra-pass-band' TFPCs would work by exploiting the somewhat surprising properties of propagating optical Bloch waves rather than directly relying on photonic bandgaps. By numerical modelling, it is demonstrated that 2D-patterned TFPCs can support highly dispersive high-Q quasi-guided and truly-guided resonant modes, and the unusual properties of these modes are explained in terms of their Bloch-wave compositions. Modal dispersion diagrams of TFPCs, showing the loci ...

  11. Fractional decay of quantum dots in real photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, A. Femius; Lodahl, Peter;

    2008-01-01

    We show that fractional decay may be observable in experiments using quantum dots and photonic crystals with parameters that are currently achievable. We focus on the case of inverse opal photonic crystals and locate the position in the crystal where the effect is most pronounced. Furthermore, we...

  12. Photonic crystals at visible, x-ray, and terahertz frequencies

    Science.gov (United States)

    Prasad, Tushar

    Photonic crystals are artificial structures with a periodically varying refractive index. This property allows photonic crystals to control the propagation of photons, making them desirable components for novel photonic devices. Photonic crystals are also termed as "semiconductors of light", since they control the flow of electromagnetic radiation similar to the way electrons are excited in a semiconductor crystal. The scale of periodicity in the refractive index determines the frequency (or wavelength) of the electromagnetic waves that can be manipulated. This thesis presents a detailed analysis of photonic crystals at visible, x-ray, and terahertz frequencies. Self-assembly and spin-coating methods are used to fabricate colloidal photonic crystals at visible frequencies. Their dispersion characteristics are examined through theoretical as well as experimental studies. Based on their peculiar dispersion property called the superprism effect, a sensor that can detect small quantities of chemical substances is designed. A photonic crystal that can manipulate x-rays is fabricated by using crystals of a non-toxic plant virus as templates. Calculations show that these metallized three-dimensional crystals can find utility in x-ray optical systems. Terahertz photonic crystal slabs are fabricated by standard lithographic and etching techniques. In-plane superprism effect and out-of-plane guided resonances are studied by terahertz time-domain spectroscopy, and verified by numerical simulations.

  13. Chalcogenide glass hollow core photonic crystal fibers

    Science.gov (United States)

    Désévédavy, Frédéric; Renversez, Gilles; Troles, Johann; Houizot, Patrick; Brilland, Laurent; Vasilief, Ion; Coulombier, Quentin; Traynor, Nicholas; Smektala, Frédéric; Adam, Jean-Luc

    2010-09-01

    We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from TeAsSe (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.

  14. Characterizing configurable transmission modes in plasma photonic crystals using scanning field mapping

    Science.gov (United States)

    Wang, Benjamin; Cappelli, Mark

    2016-10-01

    A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. A structured array of discharge plasma tubes are arranged in a square crystal lattice with the individual plasma dielectric constant tuned through variation in the plasma density. Microwave field-mapping is used to characterize the transmitted electromagnetic fields of the tunable device operating in waveguiding and bending modes. These modes are obtained by introducing appropriate line defects in the photonic crystal structure by controlling the activity of individual plasma tubes. Comparisons are made of the measured fields to those simulated using commercially-available software.

  15. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  16. Topology optimization and fabrication of photonic crystal structures

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Harpøth, Anders; Frandsen, Lars Hagedorn;

    2004-01-01

    Topology optimization is used to design a planar photonic crystal waveguide component resulting in significantly enhanced functionality. Exceptional transmission through a photonic crystal waveguide Z-bend is obtained using this inverse design strategy. The design has been realized in a silicon......-on-insulator based photonic crystal waveguide. A large low loss bandwidth of more than 200 nm for the TE polarization is experimentally confirmed....

  17. Reciprocity theorem and perturbation theory for photonic crystal waveguides.

    Science.gov (United States)

    Michaelis, D; Peschel, U; Wächter, C; Bräuer, A

    2003-12-01

    Starting from Maxwell's equations we derive a reciprocity theorem for photonic crystal waveguides. A set of strongly coupled discrete equations results, which can be applied to the simulation of perturbed photonic crystal waveguides. As an example we analytically study the influence of the dispersion of a two level system on the band structure of a photonic crystal waveguide. In particular, the formation of polariton gaps is discussed.

  18. Unidirectional and Wavelength Selective Photonic Sphere-Array Nanoantennas

    CERN Document Server

    Liu, Yang G; Sha, Wei E I; Chew, Weng Cho

    2015-01-01

    We design a photonic sphere-array nanoantenna (NA) exhibiting both strong directionality and wavelength selectivity. Although the geometric configuration of the photonic NA resembles a plasmonic Yagi-Uda NA, it has different working principles, and most importantly, reduces the inherent metallic loss from plasmonic elements. For any selected optical wavelength, a sharp Fano-resonance by the reflector is tunable to overlap spectrally with a wider dipole resonance by the sphere-chain director leading to the high directionality. The work provides design principles for directional and selective photonic NAs, which is particularly useful for photon detection and spontaneous emission manipulation.

  19. Reversed Doppler effect in photonic crystals.

    Science.gov (United States)

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  20. High Polarization Single Mode Photonic Crystal Microlaser

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; XING Ming-Xin; ZHOU Wen-Jun; LIU An-Jin; ZHENG Wan-Hua

    2009-01-01

    Generally,dipole mode is a doubly degenerate mode.Theoretical calculations have indicated that the single dipole mode of two-dimensional photonic crystal single point defect cavity shows high polarization property.We present a structure with elongated lattice,which only supports a single y-dipole mode.With this structure we can eliminate the degeneracy,control the lasing action of the cavity and demonstrate the high polarization property of the single dipole mode.In our experiment,the polarization extinction ratio of the y-dipole mode is as high as 51:1.

  1. Tuning quantum correlations with intracavity photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maria M. de; Gomila, Damia; Zambrini, Roberta [IFISC, Institute for Cross-Disciplinary Physics and Complex Systems (CSIC-UIB), Campus UIB, E-07122 Palma de Mallorca (Spain); Garcia-March, Miguel Angel [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States)

    2011-09-15

    We show how to tune quantum noise in nonlinear systems by means of periodic spatial modulation. We prove that the introduction of an intracavity photonic crystal in a multimode optical parametric oscillator inhibits and enhances light quantum fluctuations. Furthermore, it leads to a significant noise reduction in field quadratures, robustness of squeezing in a wider angular range, and spatial entanglement. These results have potential benefits for quantum imaging, metrology, and quantum information applications and suggest a control mechanism of fluctuations by spatial modulation of interest also in other nonlinear systems.

  2. Anomalous bending effect in photonic crystal fibers.

    Science.gov (United States)

    Tu, Haohua; Jiang, Zhi; Marks, Daniel L; Boppart, Stephen A

    2008-04-14

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

  3. Supercontinuum Generation in a Photonic Crystal Fibre

    Institute of Scientific and Technical Information of China (English)

    YAN Pei-Guang; RUAN Shuang-Chen; LIN Hao-Jia; DU Chen-Lin; YU Yong-Qin; LU Ke-Cheng; YAO Jian-Quan

    2004-01-01

    @@ Nearly 1000-nm broad continuum from 390nm to 1370nm is generated in a 2-m long photonic crystal fibre. The maximum total power of supercontinuum is measured to be 60mW with the pumping power of 800mW output from a 200-fs Ti:sapphire laser. The evolution of the pumping light into supercontinuum is experimentally studied in detail. It is found that the mechanism for supercontinuum generation has direct relations with Raman effect and soliton effect, and the four-wave mixing plays an important role in the last phase of the supercontinuum generation.

  4. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... probability. The Q-factor distributions of Anderson localized modes have been measured in PhC waveguides with articial induced disorder with embedded emitters. The largest Q-factors are found in the sample with the smallest amount of disorder. From a comparison with the waveguide model the localization length...

  5. Soliton blueshift in tapered photonic crystal fibers.

    Science.gov (United States)

    Stark, S P; Podlipensky, A; Russell, P St J

    2011-02-25

    We show that solitons undergo a strong blueshift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards a shorter wavelength. This is accompanied by strong emission of radiation into the UV and IR spectral regions. The experimental results are confirmed by numerical simulation.

  6. Supercontinuum generation in photonic crystal fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    2007-01-01

    characterization, spectroscopy, optical communications, and optical coherence tomography (OCT). This thesis presents a study of SCG in photonic crystal fibre (PCF) using numerical modelling. The nonlinear physical mechanisms relevant for the thesis are reviewed. It is investigated how the SC spectrum can be shaped...... a narrow linewidth pump and a PCF with small anomalous dispersion at the pump wavelength. It is also demonstrated how the time window of the calculations affects the simulation results. Energy transfer during soliton collisions is found to play an important role, and was overlooked in recent work on CW...

  7. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A.

    Science.gov (United States)

    Zhang, Jian-Tao; Cai, Zhongyu; Kwak, Daniel H; Liu, Xinyu; Asher, Sanford A

    2014-09-16

    We fabricated a two-dimensional (2-D) photonic crystal lectin sensing material that utilizes light diffraction from a 2-D colloidal array attached to the surface of a hydrogel that contains mannose carbohydrate groups. Lectin-carbohydrate interactions create hydrogel cross-links that shrink the hydrogel volume and decrease the 2-D particle spacing. This mannose containing 2-D photonic crystal sensor detects Concanavalin A (Con A) through shifts in the 2-D diffraction wavelength. Con A concentrations can be determined by measuring the diffracted wavelength or visually determined from the change in the sensor diffraction color. The concentrations are easily monitored by measuring the 2-D array Debye ring diameter. Our observed detection limit for Con A is 0.02 mg/mL (0.7 μM). The 2-D photonic crystal sensors are completely reversible and can monitor Con A solution concentration changes.

  8. Photonic crystal waveguides by direct writing of e-beam on self-assembled photonic crystals

    Indian Academy of Sciences (India)

    Sunita Kedia; R Vijaya

    2011-04-01

    Direct electron beam lithography technique is used for writing a variety of waveguide structures on thin films of polymethyl methacrylate (PMMA) and self-assembled three-dimensionally ordered photonic crystals made up of PMMA colloidal spheres. The waveguide structures fabricated on both these type of samples are characterized by scanning electron microscope and optical microscope images.

  9. Superlens Biosensor with Photonic Crystals in Negative Refraction

    Directory of Open Access Journals (Sweden)

    Zohreh Dorrani

    2012-05-01

    Full Text Available We have presented the study on one structure fabricated with photonic crystals for use as biosensors with superlensing property in dimensions of nano and micro with negative refractive index. In a special frequency, this type of photonic crystal acts as Left-Handed Metamaterial (LHM. It is shown that by a suitable choice of design parameters, such as, dimensions of bars, it is possible to reach sensing property by this structure in two-dimensional triangular photonic crystals. The structure investigated in three size and results shows the slab of photonic crystals prosperous process that, with sensing applications can has imaging applications.

  10. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...

  11. Fabrication of High Quality Three-Dimensional Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-Yong; LIU Yuan-Hao; CHENG Bing-Ying; ZHANG Dao-Zhong; MENG Qing-Bo

    2004-01-01

    High quality colloidal photonic crystals made from polystyrene spheres with diameter 240nm are fabricated by the vertical deposition method. The scanning electron microscopy (SEM) and the transmittance spectrum are used to characterize the properties of the photonic crystal. The SEM images show that there are few lattice defects. The transmittance of the photonic crystal is above 75% in the pass band at 700nm and is lower than 5% at the centre of the band gap, respectively. It is found that proper concentration is a very important factor to fabricate the photonic crystal when the diameter of the spheres is lower than 300nm.

  12. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei;

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  13. Photonic crystal enhanced fluorescence for early breast cancer biomarker detection.

    Science.gov (United States)

    Cunningham, Brian T; Zangar, Richard C

    2012-08-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features.

  14. Porous photonic crystal external cavity laser biosensor

    Science.gov (United States)

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-01

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  15. Photonic Crystal Laser-Driven Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  16. Gallium nitride based logpile photonic crystals.

    Science.gov (United States)

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  17. Focused ion beam milling of photonic crystals in silicon on insulator

    NARCIS (Netherlands)

    Hu, Wenbin; Hopman, Wico; Ridder, de René

    2009-01-01

    A photonic crystal slab, consisting of an array of circular sub-micron diameter holes in Silicon on Insulator (SOI), has been fabricated using focused ion beam (FIB) milling. This application requires the sidewalls of the holes to be very smooth and as nearly perpendicular to the slab as possible. T

  18. Photonic crystals: features and applications (physics research and technology)

    CERN Document Server

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  19. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides

    CERN Document Server

    Matsuda, Nobuyuki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya; 10.1364/OE.21.008596

    2013-01-01

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  20. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    Science.gov (United States)

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  1. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei;

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical per...

  2. Reconfigurable Cellular Photonic Crystal Arrays (RCPA)

    Science.gov (United States)

    2013-03-01

    resonators. We have experimentally tested the performance of the proposed device by fabricating a coupled- racetrack resonator on a SOI platform. Figure III...polarizations is present). An SEM image of the reconfigurable cell is shown in Figure 15(c). As can be seen in this image, the cell consists of a racetrack ...complete range of coupling ratios from 1 down to 0. The racetrack resonator, with a wavelength-domain FSR of ~ 4.2 nm, enables us to operate on a

  3. Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Chan, Leo L; Cunningham, Brian T

    2007-04-20

    A 2D photonic crystal surface with a different period in each lateral direction is demonstrated to detect biomolecules using two distinct sensing modalities. The sensing mechanisms both rely on the generation of a resonant reflection peak at one of two specific wavelengths, depending on the polarization of light that is incident on the photonic crystal. One polarization results in a resonant reflection peak in the visible spectrum to coincide with the excitation wavelength of a fluorophore, while the orthogonal polarization results in a resonant reflection peak at an infrared wavelength which is used for label-free detection of adsorbed biomolecules. The photonic crystal resonance for fluorescence excitation causes enhanced near fields at the structure surface, resulting in increased signal from fluorophores within 100 nm of the device surface. Label-free detection is performed by illuminating the photonic crystal with white light and monitoring shifts in the peak reflected wavelength of the infrared resonance with a high-resolution imaging detection instrument. Rigorous coupled-wave analysis was used to determine optimal dimensions for the photonic crystal structure, and devices were fabricated using a polymer-based nanoreplica molding approach. Fluorescence-based and label-free detection were demonstrated using arrays of spots of dye-conjugated streptavidin. Quantification of the fluorescent signal showed that the fluorescence output from protein spots on the photonic crystal was increased by up to a factor of 35, and deposited spots were also imaged in the label-free detection mode.

  4. Single-Photon Momentum Displacement in Resonator Array with Optomechanics

    Science.gov (United States)

    Tian, T.; Li, Q.; Zhou, Lan; Song, L. J.

    2016-10-01

    We present the single-photon scattering in a resonator array system with optomechanical by solving the Lippmann-Schwinger equation iteratively. Up to the first order of the radiation pressure interaction, the single-photon transport is formulated as a three-channel scattering process. We calculate the scattering currents in different channels and obtain the transmission spectrum which shows a momentum displacement effect.

  5. A BaF2 crystal array for high energy -ray measurements

    Indian Academy of Sciences (India)

    A Ray; S R Banerjee; P Das

    2001-07-01

    We shall discuss about the scientific motivation and construction of a 7 × 7 BaF2 crystal array at Variable Energy Cyclotron Centre, Calcutta. This detector would be used to measure high energy -ray photons from GDR decay and proton–neutron bremsstrahlung reactions at the present 88'' cyclotron and upcoming superconducting cyclotron at VECC, Calcutta. This detector can also be used to measure photons from quark–gluon plasma at the relativistic heavy ion collider (RHIC) in USA.

  6. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  7. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri

  8. High-speed photodetectors in a photonic crystal platform

    DEFF Research Database (Denmark)

    Ottaviano, Luisa; Semenova, Elizaveta; Schubert, Martin;

    2012-01-01

    We demonstrate a fast photodetector (f3dB > 40GHz) integrated into a high-index contrast photonic crystal platform. Device design, fabrication and characterization are presented.......We demonstrate a fast photodetector (f3dB > 40GHz) integrated into a high-index contrast photonic crystal platform. Device design, fabrication and characterization are presented....

  9. [Recent advancement of photonic-crystal-based analytical chemistry].

    Science.gov (United States)

    Chen, Yun; Guo, Zhenpeng; Wang, Jinyi; Chen, Yi

    2014-04-01

    Photonic crystals are a type of novel materials with ordered structure, nanopores/channels and optical band gap. They have hence important applications in physics, chemistry, biological science and engineering fields. This review summarizes the recent advancement of photonic crystals in analytical chemistry applications, with focus on sensing and separating fields happening in the nearest 5 years.

  10. Coherent Cherenkov radiation and laser oscillation in a photonic crystal

    CERN Document Server

    Denis, T; Lee, J H H; van der Meer, R; Strooisma, A; van der Slot, P J M; Vos, W L; Boller, K J

    2016-01-01

    We demonstrate that photonic crystals can be used to generate powerful and highly coherent laser radiation when injecting a beam of free electrons. Using theoretical investigations we present the startup dynamics and coherence properties of such laser, in which gain is provided by matching the optical phase velocity in the photonic crystal to the velocity of the electron beam.

  11. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  12. Silicon photonic crystal nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Dorfner, Dominic; Hürlimann, T.; Zabel, T.;

    2008-01-01

    The authors present the fabrication and optical investigation of Silicon on Insulator photonic crystal drop-filters for use as refractive index sensors. Two types of defect nanocavities (L3 and H1-r) are embedded between two W1 photonic crystal waveguides to evanescently route light at the cavity...

  13. A photonic crystal fiber with zero dispersion at 1064 nm

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas

    2002-01-01

    We report on the dispersion properties of a single mode, large core photonic crystal fiber. Using white light interferometry the fiber is found to have zero dispersion at 1064 nm......We report on the dispersion properties of a single mode, large core photonic crystal fiber. Using white light interferometry the fiber is found to have zero dispersion at 1064 nm...

  14. Experimental Characterization of Photonic Band Crystals for Tera Hertz Devices

    Science.gov (United States)

    2004-01-01

    SUBTITLE 5. FUNDING NUMBERS Experimental Characterization of Photonic Band Crystals for Tera F49620-01-1-0484 Hertz Devices 6. AUTHOR(S) Dennis W...01-1-0484 REPORT TITLE: Experimental Characterization of Photonic Band Crystals for Tera Hertz Devices SUBMITTED FOR PUBLICATION TO (applicable only

  15. Polarization maintaining large-mode area photonic crystal fibre

    DEFF Research Database (Denmark)

    Folkenberg, Jacob Riis; Nielsen, Martin Dybendal; Mortensen, N.A.

    2004-01-01

    We report on a polarization maintaining large mode area photonic crystal fiber. Unlike, previous work on polarization maintaining photonic crystal fibers, birefringence is introduced using stress applying parts. This has allowed us to realize fibers, which are both single mode at any wavelength a...

  16. Light scattering by photonic crystals with a dirac spectrum

    NARCIS (Netherlands)

    Sepkhanov, Ruslan

    2009-01-01

    In this thesis we consider several effects of a Dirac spectrum in photonic crystals on the scattering and propagation of light. We calculate the effect of a Dirac point (a conical singularity in the band structure) on the transmission of radiation through a photonic crystal. We find that the transmi

  17. Microbending in photonic crystal fibres - an ultimate loss limit?

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Hansen, Theis Peter; Hougaard, Kristian G.;

    2001-01-01

    Microbending losses are for the first time estimated in index-guiding photonic crystal fibres, and comparisons with standard step-index fibres are made. The results indicate that typical photonic crystal fibres are significantly less sensitive (one order of magnitude smaller loss) towards...

  18. Fabrication and measurements on coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Nielsen, Henri Thyrrestrup; Frandsen, Lars Hagedorn;

    Quasi-three dimensional photonic crystals can be realized by fabricating thin membranes of high index material hanging in air patterned with sub-micron holes to create a photonic band gap for optical confinement in plane and total internal reflection for out of plane confinement. Introducing...... defects into the photonic crystal gives rise to defect states in the form of small confined modes. By embedding an active gain medium like quantum dots into the membrane makes it possible to realize lasers with ultra-small mode volumes and low thresholds. Unfortunately single cavity photonic crystal...

  19. Controlling Anderson localization in disordered photonic crystal waveguides

    CERN Document Server

    Garcia, P D; Stobbe, S; Lodahl, P

    2010-01-01

    We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the photonic crystal waveguide. In such structures, the localization length shows a 10-fold variation between the fast- and the slow-light regime and, in the latter case, it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of the localization length demonstrates the close relation between Anderson localization and the photon density of states in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson localization for efficient light confinement.

  20. Photonic-crystal slab for terahertz-wave technology platform

    Science.gov (United States)

    Fujita, Masayuki

    2016-03-01

    Photonic crystals manipulate photons in a manner analogous to solid-state crystals, and are composed of a dielectric material with a periodic refractive index distribution. In particular, two-dimensional photonic-crystal slabs with high index contrasts (semiconductor/air) are promising for practical applications, owing to the strong optical confinement in simple, thin planar structures. This paper presents the recent progress on a silicon photonic-crystal slab as a technology platform in the terahertz-wave region, which is located between the radio and light wave regions (0.1-10 THz). Extremely low-loss (edge effect are demonstrated. Terahertz photonic-crystal slabs hold the potential for developing ultralow-loss, compact terahertz components and integrated devices used in applications including wireless communication, spectroscopic sensing, and imaging.

  1. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist...... of a periodic microstructure, resulting in a fibre with very different properties compared to conventional optical fibres. The properties of photonic crystals fibres are described, with focus on the advantages this technology provides compared to conventional fibres, within the area of optical amplification....... The thesis also presents the basic properties of optical amplification, and describes the numerical model developed to model the behaviour of lasers and amplifiers based on photonic crystal fibres. The developed numerical tools are then used to investigate specific applications of photonic crystal fibres...

  2. Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection

    OpenAIRE

    Cunningham, Brian T.; Zangar, Richard C.

    2012-01-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to ine...

  3. Density of states governs light scattering in photonic crystals

    CERN Document Server

    García, P D; Froufe-Pérez, Luis S; López, C

    2008-01-01

    We describe a smooth transition from (fully ordered) photonic crystal to (fully disordered) photonic glass that enables us to make an accurate measurement of the scattering mean free path in nanostructured media and, in turn, establishes the dominant role of the density of states. We have found one order of magnitude chromatic variation in the scattering mean free path in photonic crystals for just $\\sim 3%$ shift around the band-gap ($\\sim 27$ nm in wavelength).

  4. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Jesus Eduardo Lugo; Rafael Doti; Jocelyn Faubert

    2011-01-01

    BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity d...

  5. A polariton condensate in a photonic crystal potential landscape

    Science.gov (United States)

    Winkler, Karol; Fischer, Julian; Schade, Anne; Amthor, Matthias; Dall, Robert; Geßler, Jonas; Emmerling, Monika; Ostrovskaya, Elena A.; Kamp, Martin; Schneider, Christian; Höfling, Sven

    2015-02-01

    The possibility of investigating macroscopic coherent quantum states in polariton condensates and of engineering polariton landscapes in semiconductors has triggered interest in using polaritonic systems to simulate complex many-body phenomena. However, advanced experiments require superior trapping techniques that allow for the engineering of periodic and arbitrary potentials with strong on-site localization, clean condensate formation, and nearest-neighbor coupling. Here we establish a technology that meets these demands and enables strong, potentially tunable trapping without affecting the favorable polariton characteristics. The traps are based on a locally elongated microcavity which can be formed by standard lithography. We observe polariton condensation with non-resonant pumping in single traps and photonic crystal square lattice arrays. In the latter structures, we observe pronounced energy bands, complete band gaps, and spontaneous condensation at the M-point of the Brillouin zone.

  6. Functionalized photonic crystal for the sensing of Sarin agents.

    Science.gov (United States)

    Yan, Chunxiao; Qi, Fenglian; Li, Shuguang; Xu, Jiayu; Liu, Chao; Meng, Zihui; Qiu, Lili; Xue, Min; Lu, Wei; Yan, Zequn

    2016-10-01

    The indiscriminate use of nerve agents by terrorist groups has attracted attention of the scientific communities toward the development of novel sensor technique for these deadly chemicals. A photonic crystal (PhC) hydrogel immobilized with butyrylcholinesterase (BuChE) was firstly prepared for the sensing of Sarin agents. Periodic polystyrene colloidal (240nm) array was embedded inside an acrylamide hydrogel, and then BuChE was immobilized inside the hydrogel matrix via condensation with 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3h)-one (DEPBT). It indicated that a total of 3.7 units of BuChE were immobilized onto the PhC hydrogel. The functionalized hydrogel recognized the Sarin agent and then shrunk, thus the diffraction of PhC hydrogel blue shifted significantly, and a limit of detection (LOD) of 10(-15)molL(-1) was achieved.

  7. Optical wave propagation in photonic crystal metamaterials

    Science.gov (United States)

    Khan, Kaisar; Mnaymneh, Khaled; Awad, Hazem; Hasan, Imad; Hall, Trevor

    2014-09-01

    Metamaterials that provide negative refraction can be implemented in photonic crystals (PhCs) through careful design of the devices. Theoretically, we demonstrate that the dispersion can be altered to achieve negative refraction. This can be done through engineering the geometry of the device as well as selecting appropriate materials. The PhC also demonstrates slow light that facilitate sensing chemicals or biological agents. Using metallic materials such as gold nano-particle enables PhCs to guide optical waves in desired pathways. Also using magnetic materials such as highly doped n-GaAs, we can tune the band gap by changing magnetic field. The simulated results are consistent with some of the previously reported experimental results and give us guidance for future experiments.

  8. Polarization squeezing with photonic crystal fibers

    DEFF Research Database (Denmark)

    Milanovic, J.; Huck, Alexander; Heersink, J.;

    2007-01-01

    We report on the generation of polarization squeezing by employing intense, ultrashort light pulses in a single pass method in photonic crystal fibers. We investigated the squeezing behavior near the zero-dispersion wavelength and in the anomalous dispersion regime by using two distinct fibers. W...... purer state; this ratio indeed lies an order of magnitude below those squeezing experiments that exploit traditional fibers [1]. We attribute this increased state of purity to increased effective nonlinearity and to the reduction of scattering on acoustic modes in the fiber....... observed a maximal squeezing at 810 nm of -3.3 +/- 0.3 dB with an excess noise of +16.8 +/- 0.3 dB in the anomalous regime. Correcting for linear and interference losses between the polarization modes, this corresponds to -6 +/- 1 dB. The ratio of squeezing to excess noise indicates the creation of a much...

  9. Polarization modulation instability in photonic crystal fibers.

    Science.gov (United States)

    Kruhlak, R J; Wong, G K; Chen, J S; Murdoch, S G; Leonhardt, R; Harvey, J D; Joly, N Y; Knight, J C

    2006-05-15

    Polarization modulation instability (PMI) in birefringent photonic crystal fibers has been observed in the normal dispersion regime with a frequency shift of 64 THz between the generated frequencies and the pump frequency. The generated sidebands are orthogonally polarized to the pump. From the observed PMI frequency shift and the measured dispersion, we determined the phase birefringence to be 5.3 x 10(-5) at a pump wavelength of 647.1 nm. This birefringence was used to estimate the PMI gain as a function of pump wavelength. Four-wave mixing experiments in both the normal and the anomalous dispersion regimes generated PMI frequency shifts that show good agreement with the predicted values over a 70 THz range. These results could lead to amplifiers and oscillators based on PMI.

  10. Enhanced photoacoustic detection using photonic crystal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Liu, Kaiyang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); McClelland, John [Ames Laboratory-USDOE, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (United States); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  11. Topology optimised planar photonic crystal building blocks

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Hede, K. K.; Borel, Peter Ingo

    A photonic crystal waveguide (PhCW) 1x4 splitter has been constructed from PhCW 60° bends1 and Y-splitters2 that have been designed individually by utilising topology optimisation3. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1) and exhibits a broadband splitting...... for the TE-polarisation with an average excess loss of 1.55±0.54 dB for a 110 nm bandwidth. The 1x4 splitter demonstrates that individual topology-optimised parts can be used as building blocks to realise high-performance nanophotonic circuits. 1L. H. Frandsen et al., Opt. Express 12, 5916-5921 (2004) 2P. I...

  12. Stable planar mesoscopic photonic crystal cavities

    CERN Document Server

    Magno, Giovanni; Grande, Marco; Lozes-Dupuy, Françoise; Gauthier-Lafaye, Olivier; Calò, Giovanna; Petruzzelli, Vincenzo

    2014-01-01

    Mesoscopic self-collimation in mesoscopic photonic crystals with high reflectivity is exploited to realize a novel high-Q factor cavity by means of mesoscopic PhC planar mirrors. These mirrors efficiently confine a mode inside a planar Fabry-Perot-like cavity, due to a beam focusing effect that stabilises the cavity even for small beam sizes, resembling the focusing behaviour of curved mirrors. Moreover, they show an improved reflectivity with respect to their standard distributed Bragg reflector counterparts that allows higher compactness. A Q factor higher than 10^4 has been achieved for an optimized 5-period-long mirror cavity. The optimization of the Q factor and the performances in terms of energy storage, field enhancement and confinement are detailed.

  13. Tuning light focusing with liquid crystal infiltrated graded index photonic crystals

    Science.gov (United States)

    Rezaei, B.; Giden, I. H.; Kurt, H.

    2017-01-01

    We perform numerical analyses of tunable graded index photonic crystals based on liquid crystals. Light manipulation with such a photonic medium is explored and a new approach for active tuning of the focal distance is proposed. The graded index photonic crystal is realized using the symmetry reduced unit element in two-dimensional photonic crystals without modifying the dielectric filling fraction or cell size dimensions. By applying an external static electric field to liquid crystals, their refractive indices and thus, the effective refractive index of the whole graded index photonic crystal will be changed. Setting the lattice constant to a=400 nm yields a tuning of 680 nm for focal point position. This property can be used for designing an electro-optic graded index photonic crystal-based flat lens with a tunable focal point. Future optical systems may have benefit from such tunable graded index lenses.

  14. Photonic Crystal Waveguides in Terahertz Regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huaiwu, E-mail: hwzhang@uestc.edu.cn [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2011-02-01

    Using the finite difference time domain method, the electromagnetic field distribution of THz waves in photonic crystals (PCs) T-splitters and Y-splitters had been simulated. The simulation results show that those different T-splitters and Y-splitters can divide the power in an input wave guide equally between two output waveguides. By the improved T-splitter with a rod in the junction, we achieved the 84% amplitude- frequency characteristics consistency of pass-band from 1.12 THz to 1.22 THz, and surpass the 76% consistency of common T-splitter. The improved Y-splitter with a rod in the junction and without rod in the corners has widest -3db bandwidth 0.224 THz, and the amplitude reaches 1655.727. The improved Y-splitter has better performance than other Y-splitters. Introducing the photonic band gap structure with L-type defect composed of three defects. Three high-Q resonant frequencies appeared simultaneously in some monitor coordinates. The wavelength-add-drop properties of L-type defects may be used in multi-carrier communication and multi-frequency-monitoring for the THz regime. Also, a carefully designed PCs can be used as high Q narrowband filter in THz band. These results provide a useful guide and a theoretical basis for the developments of THz functional components.

  15. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  16. Optical limiter based on two-dimensional nonlinear photonic crystals

    Science.gov (United States)

    Belabbas, Amirouche; Lazoul, Mohamed

    2016-04-01

    The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.

  17. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-02-09

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  18. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Science.gov (United States)

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  19. Topological modes in one-dimensional solids and photonic crystals

    Science.gov (United States)

    Atherton, Timothy J.; Butler, Celia A. M.; Taylor, Melita C.; Hooper, Ian R.; Hibbins, Alastair P.; Sambles, J. Roy; Mathur, Harsh

    2016-03-01

    It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.

  20. An integrated single photon detector array using porous anodic alumina

    NARCIS (Netherlands)

    Melai, J.; Salm, C.; Schmitz, J.; Smits, S.M.; Visschers, J.L.

    2006-01-01

    The aim of the work is fabrication of a photon detector array made using IC compatible wafer-scale post-processing stepts. Plans will be presented to outline these fabrication steps. The detector comprises an integrated Micro-Channel-Plate and an imaging chip like Medipix2. The aim of the work is fa

  1. Photonic crystal fiber with novel dispersion properties

    Institute of Scientific and Technical Information of China (English)

    Shuqin LOU; Shujie LOU; Tieying GUO; Liwen WANG; Weiguo CHEN; Honglei LI; Shuisheng JIAN

    2009-01-01

    Our recent research on designing microstruc-tured fiber with novel dispersion properties is reported in this paper. Two kinds ofphotonic crystal fibers (PCFs) are introduced first. One is the highly nonlinear PCF with broadband nearly zero flatten dispersion. With introducing the germanium-doped (Ge-doped) core into highly non-linear PCF and optimizing the diameters of the first two inner rings of air holes, a new structure of highly non-linear PCF was designed with the nonlinear coefficient up to 47 W-1·km-1 at the wavelength 1.55 μm and nearly zero flattened dispersion of ±0.5 ps/(km·nm) in telecom-munication window (1460-1625nm). Another is the highly negative PCF with a ring of fluorin-doped (F-doped) rods to form its outer ring core while pure silica rods to form its inner core. The peak dispersion - 1064 ps/(km·nm) in 8 nm full width at half maximum (FWHM) wavelength range and -365ps/(km·nm) in 20nm (FWHM) wavelength range can be reached by adjusting the structure parameters. Then, our recent research on the fabrication of PCFs is reported. Effects of draw parameters such as drawing temperature, feed speed, and furnace temperature on the geometry of the final photonic crystal fiber are investigated.

  2. Liquid crystal-based hydrophone arrays

    Science.gov (United States)

    Brodzeli, Zourab; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir G.; Guo, Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.; Ladouceur, Francois

    2012-09-01

    We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

  3. Transmission measurement of the photonic band gap of GaN photonic crystal slabs

    NARCIS (Netherlands)

    Caro, J.; Roeling, E.M.; Rong, B.; Nguyen, H.M.; Van der Drift, E.W.J.M.; Rogge, S.; Karouta, F.; Van der Heijden, R.W.; Salemink, H.W.M.

    2008-01-01

    A high-contrast-ratio (30 dB) photonic band gap in the near-infrared transmission of hole-type GaN two-dimensional photonic crystals (PhCs) is reported. These crystals are deeply etched in a 650 nm thick GaN layer grown on sapphire. A comparison of the measured spectrum with finite difference time d

  4. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  5. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng;

    Graphene is a perspective material platform for the infrared (from far-IR to near-IR) optoelectronics due to possibility of extremely confined surface plasmons polaritons excitation at long wavelengths, and large (for atomically thin layer) optical absorbance of 2.3% in the short wavelengths rang...... characterization. Measured data are well correlated with the numerical analysis. Combined graphene – silicon photonic crystal membranes can find applications for infrared absorbers, modulators, filters, sensors and photodetectors........ Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...... four different interaction schemes. We refer to them as metamaterial, plasmonic, photonic and diffraction grating regimes based on the principle character of light interactions with the graphene deposited on the Si photonic crystal membrane. The optimal configurations for resonant excitation of modes...

  6. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng;

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending...... on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators......, filters, sensors, and photodetectors utilizing silicon photonic platforms....

  7. Photonic and plasmonic guiding modes in graphene-silicon photonic crystals

    CERN Document Server

    Gu, Tingyi; Hao, Yufeng; Li, Yilei; Hone, James; Wong, Chee Wei; Lavrinenko, Andrei; Low, Tony; Heinz, Tony F

    2015-01-01

    We report systematic studies of plasmonic and photonic guiding modes in large-area chemical-vapor-deposition-grown graphene on nanostructured silicon substrates. Light interaction in graphene with substrate photonic crystals can be classified into four distinct regimes depending on the photonic crystal lattice constant and the various modal wavelengths (i.e. plasmonic, photonic and free-space). By optimizing the design of the substrate, these resonant modes can magnify the graphene absorption in infrared wavelength, for efficient modulators, filters, sensors and photodetectors on silicon photonic platforms.

  8. Microassembly of semiconductor three-dimensional photonic crystals.

    Science.gov (United States)

    Aoki, Kanna; Miyazaki, Hideki T; Hirayama, Hideki; Inoshita, Kyoji; Baba, Toshihiko; Sakoda, Kazuaki; Shinya, Norio; Aoyagi, Yoshinobu

    2003-02-01

    Electronic devices and their highly integrated components formed from semiconductor crystals contain complex three-dimensional (3D) arrangements of elements and wiring. Photonic crystals, being analogous to semiconductor crystals, are expected to require a 3D structure to form successful optoelectronic devices. Here, we report a novel fabrication technology for a semiconductor 3D photonic crystal by uniting integrated circuit processing technology with micromanipulation. Four- to twenty-layered (five periods) crystals, including one with a controlled defect, for infrared wavelengths of 3-4.5 microm, were integrated at predetermined positions on a chip (structural error crystals for such short wavelengths have not been reported before. This technology offers great potential for the production of optical wavelength photonic crystal devices.

  9. Coupling light in photonic crystal waveguides: A review

    Science.gov (United States)

    Dutta, Hemant Sankar; Goyal, Amit Kumar; Srivastava, Varun; Pal, Suchandan

    2016-07-01

    Submicron scale structures with high index contrast are key to compact structures for realizing photonic integrated structures. Ultra-compact optical devices in silicon-on-insulator (SOI) substrates serve compatibility with semiconductor fabrication technology leading to reduction of cost and mass production. Photonic crystal structures possess immense potential for realizing various compact optical devices. However, coupling light to photonic crystal waveguide structures is crucial in order to achieve strong transmission and wider bandwidth of signal. Widening of bandwidth will increase potential for various applications and high transmission will make easy signal detection at the output. In this paper, the techniques reported so far for coupling light in photonic crystal waveguides have been reviewed and analyzed so that a comprehensive guide for an efficient coupling to photonic crystal waveguides can be made possible.

  10. High extinction ratio bandgap of photonic crystals in LNOI wafer

    Science.gov (United States)

    Zhang, Shao-Mei; Cai, Lu-Tong; Jiang, Yun-Peng; Jiao, Yang

    2017-02-01

    A high-extinction-ratio bandgap of air-bridge photonic crystal slab, in the near infrared, is reported. These structures were patterned in single-crystalline LiNbO3 film bonded to SiO2/LiNbO3 substrate by focused ion beam. To improve the vertical confinement of light, the SiO2 layer was removed by 3.6% HF acid. Compared with photonic crystals sandwiched between SiO2 and air, the structures suspending in air own a robust photonic bandgap and high transmission efficiency at valence band region. The measured results are in good agreement with numerically computed transmission spectra by finite-difference time-domain method. The air-bridge photonic crystal waveguides were formed by removing one line holes. We reveal experimentally the guiding characteristics and calculate the theoretical results for photonic crystal waveguides in LiNbO3 film.

  11. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2008-12-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein tumor necrosis factor-alpha (TNFalpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least 5-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/mL to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide--a decrease from 18 to 6 pg/mL. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  12. Photonic crystal alloys: a new twist in controlling photonic band structure properties.

    Science.gov (United States)

    Kim, Hee Jin; Kim, Dong-Uk; Roh, Young-Geun; Yu, Jaejun; Jeon, Heonsu; Park, Q-Han

    2008-04-28

    We identified new photonic structures and phenomenon that are analogous to alloy crystals and the associated electronic bandgap engineering. From a set of diamond-lattice microwave photonic crystals of randomly mixed silica and alumina spheres but with a well defined mixing composition, we observed that both bandedges of the L-point bandgap monotonically shifted with very little bowing as the composition was varied. The observed results were in excellent agreement with the virtual crystal approximation theory originally developed for electronic properties of alloy crystals. This result signifies the similarity and correspondence between photonics and electronics.

  13. Self-collimation in photonic crystals with anisotropic constituents

    Institute of Scientific and Technical Information of China (English)

    J. W. Haus; M. Siraj; P. Prasad; P. Markowicz

    2007-01-01

    @@ In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and the degree of collimation of the beam inside the crystal. The optical properties of a photobleached 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) crystal are used in our model to demonstrate the efficacy of the self-collimation features.

  14. Design and Fabrication of Photonic Crystal Materials and Components

    DEFF Research Database (Denmark)

    Harpøth, Anders

    2005-01-01

    in the deposited silicon films and to open for a potential use with photonic crystals. In relation to photonic crystal structures, different properties have been investigated by using modelling tools such as the plane wave expansion method and the Finite-Difference Time-Domain method. Furthermore different......The work described in this thesis covers the issues of producing materials for use as base material for fabricating photonic crystals and the design, fabrication and characterization of photonic crystal components. One of the aims is to investigate the possibilities of fabricating a silicon...... is in principle rather straightforward and benefits from being much cheaper compared to acquiring commercially available SOI substrates. Different issues as deposition temperature, surface roughness, crystallization, and silicon waveguide geometries have been investigated in order to reduce the optical loss...

  15. Photon-Counting Arrays for Time-Resolved Imaging

    Directory of Open Access Journals (Sweden)

    I. Michel Antolovic

    2016-06-01

    Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.

  16. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Science.gov (United States)

    Privitera, Simona; Tudisco, Salvatore; Lanzanò, Luca; Musumeci, Francesco; Pluchino, Alessandro; Scordino, Agata; Campisi, Angelo; Cosentino, Luigi; Finocchiaro, Paolo; Condorelli, Giovanni; Mazzillo, Massimo; Lombardo, Salvo; Sciacca, Emilio

    2008-01-01

    Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs). Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated. PMID:27873777

  17. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Directory of Open Access Journals (Sweden)

    Emilio Sciacca

    2008-08-01

    Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  18. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    CERN Document Server

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  19. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-Ying; SHI Jin-Hui; YUAN Li-Bo

    2008-01-01

    A polarizing beam splitter(PBS)and a non-polarizing beam splitter(NPBS)based on a photonic crystal(PC)directional coupler are demonstrated.The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap.The photonic band structure and the band gap map are calculated using the plane wave expansion(PWE)method.The splitting properties of the splitter are investigated numerically using the finite difference time domain(FDTD)method.

  20. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.

    Science.gov (United States)

    Tolmachev, V; Perova, T; Moore, R

    2005-10-17

    A method of photonic band gap extension using mixing of periodic structures with two or more consecutively placed photonic crystals with different lattice constants is proposed. For the design of the structures with maximal photonic band gap extension the gap map imposition method is utilised. Optimal structures have been established and the gap map of photonic band gaps has been calculated at normal incidence of light for both small and large optical contrast and at oblique incidence of light for small optical contrast.

  1. Theory of Passively Mode-Locked Photonic Crystal Semiconductor Lasers

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We report the first theoretical investigation of passive mode-locking in photonic crystal mode-locked lasers. Related work has investigated coupled-resonator-optical-waveguide structures in the regime of active mode-locking [Opt. Express 13, 4539-4553 (2005)]. An extensive numerical investigation...... of the influence of key parameters of the active sections and the photonic crystal cavity on the laser performance is presented. The results show the possibility of generating stable and high quality pulses in a large parameter region. For optimized dispersion properties of the photonic crystal waveguide cavity......, the pulses have sub picosecond widths and are nearly transform limited....

  2. Photonic crystal fiber long-period gratings for biochemical sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Jensen, Jesper Bo; Dufva, Hans Martin

    2006-01-01

    We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long......-period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has...

  3. Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms.

    Science.gov (United States)

    Momeni, Babak; Huang, Jiandong; Soltani, Mohammad; Askari, Murtaza; Mohammadi, Saeed; Rakhshandehroo, Mohammad; Adibi, Ali

    2006-03-20

    Here, we demonstrate a compact photonic crystal wavelength demultiplexing device based on a diffraction compensation scheme with two orders of magnitude performance improvement over the conventional superprism structures reported to date. We show that the main problems of the conventional superprism-based wavelength demultiplexing devices can be overcome by combining the superprism effect with two other main properties of photonic crystals, i.e., negative diffraction and negative refraction. Here, a 4-channel optical demultiplexer with a channel spacing of 8 nm and cross-talk level of better than -6.5 dB is experimentally demonstrated using a 4500 microm(2) photonic crystal region.

  4. Two-dimensionally confined topological edge states in photonic crystals

    Science.gov (United States)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  5. Two-Dimensionally Confined Topological Edge States in Photonic Crystals

    CERN Document Server

    Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  6. A new approach to low loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Zhang, Min; Groothoff, Nathaniel;

    /Λ to 0.388 a low loss transmission band is created below the traditional photonic crystal guiding band. Furthermore this low loss band has sharply defined cutoffs transmission edges for devices with a length of 50 μm or longer. Finite difference time domain and plane wave expansion simulations confirm......Photonic crystal waveguides allow ultra-compact realization of integrated optical components because they have high group index. However, they also induce significant losses in effect reducing the scope of their applications. We find that by increasing the photonic crystal hole to pitch ratio r...

  7. Tunable defect mode realized by graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui; Chen, Wan, E-mail: dhtyyobdc@126.com; Lv, Bo

    2016-04-29

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band. - Highlights: • A novel PhC embedded with grapheme sheets is presented, tunable defect is realized. • The mechanism of the tunable defect is explained using the change of equivalent thickness. • The electromagnetic force of a slab is calculated, which indicates the structure can serve as a tunable force generator.

  8. Three-dimensional array foci of generalized Fibonacci photon sieves

    CERN Document Server

    Zhang, Junyong; Zhu, Jianqiang; Lin, Zunqi

    2015-01-01

    We present a new kind of photon sieves on the basis of the generalized Fibonacci sequences. The required numbers and locations of axial foci can be designed by generalized Fibonacci photon sieves (GFiPS). Furthermore, the three-dimensional array foci can be controllable and adjustable by the optical path difference scaling factor (OPDSF) when the amplitude modulation is replaced with the phase modulation. Multi-focal technologies can be applied to nano-imaging, THZ, laser communications, direct laser writing, optical tweezers or atom trapping, etc.

  9. Gold Nanoparticles in Photonic Crystals Applications: A Review

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-01-01

    Full Text Available This review concerns the recently emerged class of composite colloidal photonic crystals (PCs, in which gold nanoparticles (AuNPs are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  10. Large Mode Area Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal

    2004-01-01

    . As a result of fabrication optimisation, a single-mode fiber with an effective area of 130 m2 and attenuation of 0.48 dB/km at the 1550 nm wavelength is reported. Based on the general consideration of the introducing chapters, 5 different examples of large-mode area PCFs are presented. The first is a large......The photonic crystal fiber (PCF) is a novel single-material optical waveguide realized by an arrangement of air-holes running along the full length of the fiber. Since the proposal of the PCF in 1996, the technology has developed into being a well-established area of research and commercialisation....... The work presented in this thesis deals with the optical properties of large-mode area PCFs for which the mode-field diameter, typically, is an order of magnitude larger than the free-space optical wavelength. Special emphasis is put on the description of relevant mechanisms of attenuation in these fibers...

  11. Solitons in one-dimensional photonic crystals

    CERN Document Server

    Mayteevarunyoo, Thawatchai

    2008-01-01

    We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structural "duty cycle", DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with loc...

  12. Detection of organophosphorus compounds using a molecularly imprinted photonic crystal.

    Science.gov (United States)

    Liu, Feng; Huang, Shuyue; Xue, Fei; Wang, Yifei; Meng, Zihui; Xue, Min

    2012-02-15

    A label free molecularly imprinted photonic crystal (MIPC) was developed to detect the degradation product of nerve agents. Mono-dispersed poly-methyl methacrylate colloidal particles with the diameter of 280 nm were used to fabricate a closely packed colloidal crystal array (CCA), and a methyl phosphonic acid (MPA) imprinted hydrogel was prepared within the CCA using 2-hydroxyethyl-methacrylate and N-isopropylacrylamide as monomers, ethyleneglycol dimethacrylate and N, N'-methylenebisacrylamide as cross-linkers, a mixture of n-octanol and acetonitrile as porogen. The diffraction intensity of the MIPC decreased significantly upon the MPA adsorption with a limit of detection (LOD) of 10(-6) molL(-1). Furthermore, the diffraction intensity decreased and blue shifted with the increase of temperature, decreased and red shifted with the increase of ionic strength. At higher pH, the diffraction intensity increased without obvious diffraction shift. The MIPC provides an indirect path to detect nerve agents (Sarin, Soman, VX and R-VX) by monitoring the MPA released from the hydrolysis of nerve agents, with LODs of 3.5 × 10(-6) molL(-1), 2.5 × 10(-5) molL(-1), 7.5 × 10(-5) molL(-1) and 7.5 × 10(-5) molL(-1) for Sarin, Soman, VX and R-VX, respectively.

  13. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa;

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  14. Linear Amplification of Optical Signal in Coupled Photonic Crystal Waveguides

    CERN Document Server

    Jandieri, Vakhtang

    2015-01-01

    We introduce a weakly coupled photonic crystal waveguide as a promising and realistic model for all-optical amplification. A symmetric pillar type coupled photonic crystal waveguide consisting of dielectric rods periodically distributed in a free space is proposed as all-optical amplifier. Using the unique features of the photonic crystals to control and guide the light, we have properly chosen the frequency at which only one mode (odd mode) becomes the propagating mode in the coupled photonic crystal waveguide, whereas another mode (even mode) is completely reflected from the guiding structure. Under this condition, the all-optical amplification is fully realized. The amplification coefficient for the continuous signal and the Gaussian pulse is calculated.

  15. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong;

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods...... in the photonic crystal waveguide is addressed to explain the spiky character of both the transmission and group index spectra. The profile of the slow-light modes is stretched out into the first and second rows of the holes closest to the waveguide channel. One of our strategies to ameliorate the design...... of photonic crystal devices is to engineer the radii of holes in these rows. A topology optimization approach is also utilized to make further improvements. The results of the numerical simulations and the optical characterization of fabricated devices such as straight waveguides with bends and couplers...

  16. Tunable nonlinear beam defocusing in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H; Neshev, Dragomir N.;

    2007-01-01

    We demonstrate a novel experimental platform for discrete nonlinear optics based on infiltrated photonic crystal fibers. We observe tunable discrete diffraction and nonlinear self-defocusing, and apply the effects to realize a compact all-optical power limiter....

  17. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    OpenAIRE

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.

  18. All-optical gates based on photonic crystal resonators

    Science.gov (United States)

    Moille, Grégory; De Rossi, Alfredo; Combrié, Sylvain

    2016-04-01

    We briefly review the technology of advanced nonlinear resonators for all-optical gating with a specific focus on the application of high-performance signal sampling and on the properties of III-V semiconductor photonic crystals

  19. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  20. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...

  1. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  2. Photonic Links for High-Performance Arraying of Antennas

    Science.gov (United States)

    Huang, Shouhua; Tjoelker, Robert

    2009-01-01

    An architecture for arraying microwave antennas in the next generation of NASA s Deep Space Network (DSN) involves the use of all photonic links between (1) the antennas in a given array and (2) a signal processing center. In this architecture, all affected parts at each antenna pedestal [except a front-end low-noise amplifier for the radio-frequency (RF) signal coming from the antenna and an optical transceiver to handle monitor and control (M/C) signals] would be passive optical parts

  3. Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal

    CERN Document Server

    Woldering, Léon A; Vos, Willem L

    2014-01-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamond-like crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centred on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell bandstructure calculations with up to $5 \\times 5 \\times 5$ unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centred on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 $\\lambda^{3}$ (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that o...

  4. Higher-order photon correlations in pulsed photonic crystal nanolasers

    CERN Document Server

    Elvira, David; Verma, V; Braive, Remy; Beaudoin, Gregoire; Robert-Philip, Isabelle; Sagnes, Isabelle; Baek, Burm; Nam, Sae Woo; Dauler, Eric A; Abram, Izo; Stevens, Martin J; Beveratos, Alexios

    2011-01-01

    We report on the higher-order photon correlations of a high-$\\beta$ nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g$^{(n)}(\\vec{0})$ with $n$=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of dipoles and photons involved in the lasing process.

  5. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage.......Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage....

  6. Improving nanocavity switching using Fano resonances in photonic crystal structures

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Elesin, Yuriy;

    2013-01-01

    We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances.......We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances....

  7. Rigorous modeling of cladding modes in photonic crystal fibers

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside.......We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside....

  8. Broadband tunable hybrid photonic crystal-nanowire light emitter

    CERN Document Server

    Wilhelm, Christophe E; Xiong, Qihua; Soci, Cesare; Lehoucq, Gaëlle; Dolfi, Daniel; De Rossi, Alfredo; Combrié, Sylvain

    2015-01-01

    We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a Q-factor as large as 5000. By varying the structural parameters of the photonic crystal, the peak wavelength is tuned, thereby covering the entire emission spectral range of the active material. A very large spectral range could be covered by heterogeneous integration of different active materials.

  9. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  10. Distributed Feedback Effects in Active Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields.......We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields....

  11. Photonic Crystal Fibres - the State-of-the-Art

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Hansen, K. P.; Hansen, Theis Peter;

    2002-01-01

    Photonic crystal fibres having microstructured air-silica cross sections offer new optical properties compared to conventional fibres. These include novel guiding mechanisms, unique spectral properties and nonlinear possibilities. Recent results within the field are reviewed.......Photonic crystal fibres having microstructured air-silica cross sections offer new optical properties compared to conventional fibres. These include novel guiding mechanisms, unique spectral properties and nonlinear possibilities. Recent results within the field are reviewed....

  12. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  13. Enhancement of polymer dye lasers by multifunctional photonic crystal lattice

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Xiao, Sanshui; Mortensen, Asger

    2009-01-01

    The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser.......The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser....

  14. Scattering Forces within a Left-Handed Photonic Crystal.

    Science.gov (United States)

    Ang, Angeleene S; Sukhov, Sergey V; Dogariu, Aristide; Shalin, Alexander S

    2017-01-23

    Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even though the direction of force might not follow the flow of energy, the positive radiation pressure is maintained inside photonic crystals.

  15. New design of 2-D photonic crystal waveguide couplers

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhi-rong; ZHANG Li-hua; YANG Hong-qin; JIANG Yun-kun

    2006-01-01

    @@ Based on couple wave equation and finite-difference time-domain (FDTD) algorithm,the strong couple characteristic of 2-D photonic crystal couplers is calculated.Theoretical analysis and numerical simulated results indicate that the energy in a 2-D photonic crystal coupler can not be totally transferred between two wave-guides.Compared with the result of weak coupling theory,our result is more accurate.

  16. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano

    2011-01-01

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  17. Weyl Points and Line Nodes in Gyroid Photonic Crystals

    Science.gov (United States)

    2013-04-01

    characterization of millimetre-scale replicas of the gyroid photonic crystal found in the butterfly parides sesostris. Interface Focus 2, 645–650...Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl Acad. Sci. USA 107...948–954 (2003). 43. Turner, M., Schröder-Turk, G. & Gu, M. Fabrication and characterization of three-dimensional biomimetic chiral composites. Opt

  18. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;

    2010-01-01

    of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is shorter than...... the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....

  19. Comprehensive FDTD modelling of photonic crystal waveguide components

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Borel, Peter Ingo; Frandsen, Lars Hagedorn;

    2004-01-01

    Planar photonic crystal waveguide structures have been modelled using the finite-difference-time-domain method and perfectly matched layers have been employed as boundary conditions. Comprehensive numerical calculations have been performed and compared to experimentally obtained transmission...... spectra for various photonic crystal waveguides. It is found that within the experimental fabrication tolerances the calculations correctly predict the measured transmission levels and other major transmission features....

  20. Properties of directional couplers using photonic crystal waveguides

    DEFF Research Database (Denmark)

    Thorhauge, Morten; Borel, Peter Ingo; Frandsen, Lars Hagedorn;

    2003-01-01

    Coupled photonic crystal waveguides have been designed and modelled with a 3D finite-difference-time-domain method, and fabricated in silicon-on-insulator material. Good agreement between modelled and measured results has been found.......Coupled photonic crystal waveguides have been designed and modelled with a 3D finite-difference-time-domain method, and fabricated in silicon-on-insulator material. Good agreement between modelled and measured results has been found....

  1. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  2. Modification of Absorption of a Bulk Material by Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    席永刚; 王昕; 胡新华; 刘晓晗; 资剑

    2002-01-01

    We show theoretically that it is possible to modify absorption of a bulk absorbing material by inserting another non-absorbing dielectric slab periodically to form one-dimensional photonic crystals. It is found that, for fre- quencies within photonic bandgaps, absorption is always suppressed. For frequencies located at photonic bands, absorption can be suppressed or enhanced, which depends on the relative values of the real refractive index of the absorbing and non-absorbing dielectric layers.

  3. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  4. Design of a three-dimensional photonic band gap cavity in a diamondlike inverse woodpile photonic crystal

    Science.gov (United States)

    Woldering, Léon A.; Mosk, Allard P.; Vos, Willem L.

    2014-09-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamondlike crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centered on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell band structure calculations with up to 5×5×5 unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centered on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 λ3 (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that only donorlike resonances appear for smaller defect radius, whereas no acceptorlike resonances appear for greater defect radius. From a 3D plot of the distribution of the electric-field energy density we conclude that peaks of energy are found in sharp edges situated at the point defect, similar to how electrons collect at such features. This is different from what is observed for cavities in noninverted woodpile structures. Since inverse woodpile crystals can be fabricated from silicon by CMOS-compatible means, we project that single cavities and even cavity arrays can be realized, for wavelength ranges compatible with telecommunication windows in the near infrared.

  5. Tuneable photonic device including an array of metamaterial resonators

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Wanke, Michael; Benz, Alexander

    2017-03-14

    A photonic apparatus includes a metamaterial resonator array overlying and electromagnetically coupled to a vertically stacked plurality of quantum wells defined in a semiconductor body. An arrangement of electrical contact layers is provided for facilitating the application of a bias voltage across the quantum well stack. Those portions of the semiconductor body that lie between the electrical contact layers are conformed to provide an electrically conductive path between the contact layers and through the quantum well stack.

  6. Few-quantum-dot lasing in photonic crystal nanocavities

    DEFF Research Database (Denmark)

    Liu, Jin; Ates, Serkan; Stobbe, Søren;

    2011-01-01

    Photonic crystal nanolasers have attracted great interest both for fundamental research and applications in the past decade. In photonic crystal cavities, the leakage to optical modes is strongly reduced, which increases the spontaneous emission coupling factor, β. This is a crucial parameter for...... advanced semiconductor models of photonic crystal nanolasers is still missing [2]. The goal of this work is to get a deep understanding of the quantum dots based nanocavity lasers by comparing experiments to theory.......Photonic crystal nanolasers have attracted great interest both for fundamental research and applications in the past decade. In photonic crystal cavities, the leakage to optical modes is strongly reduced, which increases the spontaneous emission coupling factor, β. This is a crucial parameter...... for the threshold characteristics of lasers. With increasing β, the well-known step-like threshold behavior becomes smoother. Although the smooth lasing transitions of photonic crystal nanolasers were observed and fitted by traditional rate equation models [1], a systematic comparison between experiments and more...

  7. Polarisation singularities in photonic crystals for an on-chip spin-photon interface

    Science.gov (United States)

    Beggs, Daryl M.; Young, Andrew B.; Thijssen, Arthur C. T.; Oulton, Ruth

    2015-03-01

    Integrated quantum photonic chips are a leading contender for future quantum technologies, which aim to use the entanglement and superposition properties of quantum physics to speed up the manipulation of data. Quantum information may be stored and transmitted in photons, which make excellent flying qubits. Photons suffer little from decoherence, and single qubit gates performed by changing photon phase, are straightforward. Less straightforward is the ability to create two qubit gates, where one photon is used to switch another's state; inherently difficult due to the extremely small interaction cross-section between photons. The required deterministic two-qubit interactions will likely need a hybrid scheme with the ``flying'' photonic qubit interacting with a ``static'' matter qubit. Here we present the design of a photonic crystal waveguide structure that can couple electron-spin to photon path, thus providing an interface between a static and a flying qubit. We will show that the complex polarization properties inherent in the photonic crystal eigenmodes supports polarization singularities - positions in the electric field vector where one of the parameters describing the local polarization ellipse is singular - and that these singularities are ideal for a range of quantum information applications. In particular, we will show that by placing a quantum dot at one of these singularities, the electron-spin becomes correlated with the photon emission direction, creating an in-plane spin-photon interface that can transfer quantum information from static to flying qubits.

  8. Heralded single-photon source in a III-V photonic crystal.

    Science.gov (United States)

    Clark, Alex S; Husko, Chad; Collins, Matthew J; Lehoucq, Gaelle; Xavier, Stéphane; De Rossi, Alfredo; Combrié, Sylvain; Xiong, Chunle; Eggleton, Benjamin J

    2013-03-01

    In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

  9. Photon-pair generation in photonic crystal fibrebre with a 1.5GHz modelocked VECSEL

    CERN Document Server

    Morris, Oliver J; Wilcox, Keith G; Tropper, Anne C; Mosley, Peter J

    2014-01-01

    Four-wave mixing (FWM) in optical fibre is a leading technique for generating high-quality photon pairs. We report the generation of photon pairs by spontaneous FWM in photonic crystal fibre pumped by a 1.5 GHz repetition-rate vertical-external-cavity surface-emitting laser (VECSEL). The photon pairs exhibit high count rates and a coincidence-to-accidental ratio of over 80. The VECSEL's high repetition-rate, high average power, tunability, and small footprint make this an attractive source for quantum key distribution and photonic quantum-state engineering.

  10. Nonreciprocal Electromagnetic Devices in Gyromagnetic Photonic Crystals

    Science.gov (United States)

    Li, Zhi-Yuan; Liu, Rong-Juan; Gan, Lin; Fu, Jin-Xin; Lian, Jin

    2014-01-01

    Gyromagnetic photonic crystal (GPC) offers a promising way to realize robust transport of electromagnetic waves against backscattering from various disorders, perturbations and obstacles due to existence of unique topological electromagnetic states. The dc magnetic field exerting upon the GPC brings about the time-reversal symmetry breaking, splits the band degeneracy and opens band gaps where the topological chiral edge states (CESs) arise. The band gap can originate either from long-range Bragg-scattering effect or from short-range localized magnetic surface plasmon resonance (MSP). These topological edge states can be explored to construct backscattering-immune one-way waveguide and other nonreciprocal electromagnetic devices. In this paper we review our recent theoretical and experimental studies of the unique electromagnetic properties of nonreciprocal devices built in GPCs. We will discuss various basic issues like experimental instrumental setup, sample preparations, numerical simulation methods, tunable properties against magnetic field, band degeneracy breaking and band gap opening and creation of topological CESs. We will investigate the unidirectional transport properties of one-way waveguide under the influence of waveguide geometries, interface morphologies, intruding obstacles, impedance mismatch, lattice disorders, and material dissipation loss. We will discuss the unique coupling properties between one-wave waveguide and resonant cavities and their application as novel one-way bandstop filter and one-way channel-drop filter. We will also compare the CESs created in the Bragg-scattering band gap and the MSP band gap under the influence of lattice disorders. These results can be helpful for designing and exploring novel nonreciprocal electromagnetic devices for optical integration and information processing.

  11. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  12. Milling of polymeric photonic crystals by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pialat, E. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Trigaud, T. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Bernical, V. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Moliton, J.P. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France)]. E-mail: jpmlt@unilim.fr

    2005-12-15

    The achievement of low cost photonic crystals in organic materials is not a trivial challenge even by top-down processes. Firstly the required conditions for the opening of a 2D Photonic Band Gap (PBG) in polymers by implementation of adapted software are shortly presented. The Focused Ion Beam (FIB) technique appears as a suitable process to carry out the patterning of the required sub-micronic dimensions. Then, the optimum experimental procedures leading to the fabrication of 2D photonic crystals in PMMA and CR39 are mainly exposed and discussed.

  13. Two-dimensional photonic crystals based on anodic porous TiO2 with ideally ordered hole arrangement

    Science.gov (United States)

    Kondo, Toshiaki; Hirano, Shota; Yanagishita, Takashi; Truong Nguyen, Nhat; Schmuki, Patrick; Masuda, Hideki

    2016-10-01

    Ideally ordered TiO2 hole arrays with high aspect ratios were prepared by the anodization of pretextured Ti. The obtained TiO2 acted as two-dimensional photonic crystals in which a photonic band gap is formed in all directions of light propagation in the lattice. The process allows the easy and low-cost fabrication of TiO2 photonic crystals and can be used for the preparation of functional optical devices, which require the precise control of light propagation.

  14. Numerical integral methods to study plasmonic modes in a photonic crystal waveguide with circular inclusions that involve a metamaterial

    Science.gov (United States)

    Mendoza-Suárez, A.; Pérez-Aguilar, H.

    2016-09-01

    We present several numerical integral methods for the study of a photonic crystal waveguide, formed by two parallel conducting plates and an array of circular inclusions involving a conducting material and a metamaterial. Band structures and reflectance were calculated, for infinite and finite photonic crystal waveguides, respectively. The numerical results obtained show that the numerical methods applied provide good accuracy and efficiency. An interesting detail that resulted from this study was the appearance of a propagating mode in a band gap due to defects in the middle of the photonic crystal waveguide. This is equivalent to dope a semiconductor to introduce allowed energy states within a band gap. Our main interest in this work is to model photonic crystal waveguides that involve left-handed materials (LHMs). For the specific LHM considered, a surface plasmon mode on the vacuum-LHM interface was found.

  15. Dressed Photons Induced Resistance Oscillation and Zero Resistance in Arrayed Simple Harmonic Oscillators with No Impurity

    OpenAIRE

    Chih-Chun Chang; Guang-Yin Chen; Lee Lin

    2016-01-01

    We investigate a system of an array of N simple harmonic oscillators (SHO) interacting with photons through QED interaction. As the energy of photon is around the spacing between SHO energy levels, energy gaps appear in the dispersion relation of the interacted (dressed) photons. This is quite different from the dispersion relation of free photons. Due to interactions between dressed photonic field and arrayed SHO, the photoresistance of this system shows oscillations and also drops to zero a...

  16. Hybrid genetic optimization for design of photonic crystal emitters

    Science.gov (United States)

    Rammohan, R. R.; Farfan, B. G.; Su, M. F.; El-Kady, I.; Reda Taha, M. M.

    2010-09-01

    A unique hybrid-optimization technique is proposed, based on genetic algorithms (GA) and gradient descent (GD) methods, for the smart design of photonic crystal (PhC) emitters. The photonic simulation is described and the granularity of photonic crystal dimensions is considered. An innovative sliding-window method for performing local heuristic search is demonstrated. Finally, the application of the proposed method on two case studies for the design of a multi-pixel photonic crystal emitter and the design of thermal emitter in thermal photovoltaic is demonstrated. Discussion in the report includes the ability of the optimal PhC structures designed using the proposed method, to produce unprecedented high emission efficiencies of 54.5% in a significantly long wavelength region and 84.9% at significantly short wavelength region.

  17. The research and progress of micro-fabrication technologies of two-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    XU XingSheng; ZHANG DaoZhong

    2007-01-01

    The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials,which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper,we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.

  18. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    photonic crystal fibers. The novel fiber has a central low-index core region and a cladding consisting of a silica background material with air holes situated within a honeycomb lattice structure. We show the existence of photonic bandgaps for the silica–air cladding structure and demonstrate how light can...... be guided at the central low-index core region for a well-defined frequency that falls inside the photonic bandgap region of the cladding structure....

  19. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials

    CERN Document Server

    Markos, Peter

    2010-01-01

    This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects,

  20. Beam Steering at Higher Photonic Bands and Design of a Directional Cloak Formed by Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Venkatachalam Subramanian

    2013-02-01

    Full Text Available Beam steering due to anomalous dispersion at higher photonic bands in dielectric photonic crystal is reported in this work. Based on this concept, directional cloak is designed that conceals a larger dimensional scattering object against the normal incident, linearly polarizedelectromagnetic waves.

  1. Experimental investigation of hollow-core photonic crystal fibers with five photonic band-gaps

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-hui; HOU Lan-tian; WEI Dong-bin; WANG Hai-yun; ZHOU Gui-yao

    2008-01-01

    The hollow-core photonic crystal fibers (HC-PCFs) with integrity structure have been fabricated with an improved twice stack-and-draw technique. The transmission spectrum shows that five photonic band-gaps within 450-1100 nm have been obtained.And the green light transmission in the HC-PCFs'has been observed remarkably.

  2. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  3. Lead tungstate crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A consignment of 500 lead tungstate crystals arrived at CERN from the northern Russian town of Apatity in May. Destined for the ALICE heavy-ion experiment in preparation for the Large Hadron Collider, each crystal is an 18 cm long rod with a 2.2 cm square section, and weighs some 750 g. A total of 17 000 crystals will make up the experiment's photon spectrometer.

  4. Research on interferometric photonic crystal fiber hydrophone

    Science.gov (United States)

    Luo, Hong; Zhang, Zhen-hui; Wang, Fu-yin; Xiong, Shui-dong

    2013-08-01

    Current research on photonic crystal fiber (PCF) for acoustic sensing was focused on the PCF's pressure sensitivity enhancement. However, whether the enhancement of the PCF's pressure sensitivity can be actually realized is still controversial. Practical hydrophone, utilizing PCFs, to manifest its superior sensitivity to normal single mode fibers (SMFs) for acoustic sensing, should be made. Account to this point of view, actual hydrophone was fabricated. Index guiding PCF was used, the fiber core is solid silicon dioxide (SiO2), and the cladding is SiO2 filled with lots of periodical transverse circular air hollows. The PCF, mounted on an air-backed mandrel for structural sensitivity enhancement, was used as a sensing arm of the fiber Michelson interferometer. The other arm, so called reference arm, was made of SMF. Faraday rotator mirrors (FRM) were spliced in the end of each interferometric arm account for polarization induced phase fading, which is a common scheme in fiber interferometric sensing systems. A similar hydrophone, with all the same structure except that the PCF was exchanged into SMF, was also fabrication to make the contrast. The narrowlinewidth and frequency-tunable optical fiber laser was used to achieve high accuracy optical interferometric measurement. Meanwhile, the phase generated carrier (PGC) modulation-demodulation scheme was adopted to interrogate the measurand signal. Experiment was done by using acoustic standing-wave test apparatus. Linearity characteristics of the two hydrophones were measured at frequency 100Hz, 500Hz, and 1000Hz, experimental results showed that the maximum error of the linearity was 10%, a little larger than the theoretical results. Pressure sensitivities of the PCF hydrophone and the SMF hydrophone were measured using a reference standard PZT hydrophone in the frequency range from 20 Hz to 1600 Hz, the measurement data showed that the sensitivity of the PCF hydrophone was about -162.8 dB re. rad/μPa, with a

  5. Analysis on characteristics of 1-D apodized and chirped photonic crystals containing negative refractive materials

    Institute of Scientific and Technical Information of China (English)

    TONG Kai; CUI Wei-wei; XU Xiao-hui; LI Zhi-quan

    2008-01-01

    Using transfer matrix method, the optical transmission properties of 1-D photonic crystals composed partially of negativerefraction media are analyzed. The transmission spectra of periodic photonic crystal, chirped photonic crystal and apodizedphotonic crystal are numerically simulated respectively. By contrast with optical transmission properties of ordinary photo-nic crystals made of positive refraction media, the transmission spectra of apodized photonic crystal become unregular, theBragg flat-headed area recurs but the peak of transmission does not change significantly. Futhermore, the band gap rangeof chirped photonic crystal diminishes gradually.

  6. Photonic gap vanishing in one-dimensional photonic crystals with single-negative metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: kallenmail@sina.com [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Yu; Leung, C.W.; Hu, Mingzhe; Chan, H.L.W. [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2011-06-13

    The properties of photonic band gap in one-dimensional photonic crystals composed of single-negative metamaterials are studied theoretically. Our study shows that the photonic gap will vanish at a certain incident angle when both the phase-match and impedance-match conditions are satisfied simultaneously, suggesting that the bandwidth and location of the photonic gap are strongly dependent on the incident angle and polarization. However, the photonic gap will not vanish and may become insensitive to the incident angle when the two match conditions cannot be met. Our study also shows that losses in metamaterials have little effect on the properties of the photonic gap. -- Highlights: → Photonic gap of 1D photonic crystal containing metamaterials was investigated. → The gap can be designed to be sensitive or insensitive to the incident angle. → The gap can be designed to be close at a specific incident angle. → Conditions for photonic gap vanishing were proposed. → Losses of metamaterials have little effect on the properties of the photonic gap.

  7. 3D photon impact determination in monolithic crystals based on autocorrelation filters and RTP methods

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Pablo; Gonzalez, Antonio [Institute for Instrumentation in Molecular Imaging, I3M-CSIC, Valencia (Spain); Bettiol, Marco; Fabbri, Andrea; Pani, Roberto [Department of Molecular Medicine, Sapienza University of Rome (Italy); Benlloch Baviera, José María; Talens Aguilar, Albert; Hernandez, Liczandro; Sanchez, Filomeno [Institute for Instrumentation in Molecular Imaging, I3M-CSIC, Valencia (Spain)

    2015-05-18

    In PET detectors based on monolithic scintillators, the photon impact position can be estimated from the light intensity distribution (LD) on the photodetector pixels. Typically, there is a poor estimation of the interaction positions towards the edges when linear algorithms such as Center of Gravity (CoG) are used. We present a novel method to determine the interaction coordinates in thick monolithic crystals filtering the digitized LDs from each gamma-event by means of an autocorrelation filter and the raise to power (RTP) positioning algorithm to reduce the border effects. The experimental setup was based on two detector blocks based on monolithic LYSO scintillator crystals (50x50x20 mm{sup 3}). Each crystal is coupled to a SiPMs array as 12x12 photosensors and an electronic readout that outputs information of each SiPM row and column. Between the detector blocks, a collimated array of 9x9 {sup 22}Na sources, separated 5 mm each other, was placed. The optimum power to use in the RTP positioning algorithm was determined using the third order intercept point (IP3) from plots of the measured coordinates versus known positions. After applying the autocorrelation and RTP fifth to the data, we found an improvement of the spatial resolution from 2.5 mm when CoG is used, to 1.2 mm in the crystal center region. In this work we show how to accurately resolve 3D photon impact coordinates in thick monolithic crystals using autocorrelation filters merged with RTP methods. After applying the new approach it is possible to accurately resolve impacts close to the entrance of 20 mm thick LYSO scintillators. The reached spatial resolution at any photon depth of interaction is comparable with state-of-the-art crystal array approaches with the advantage of the proposed work to also provide continuous depth of interaction information.

  8. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic disp...

  9. Photonic crystals and inhibition of spontaneous emission: an introduction

    CERN Document Server

    Angelakis, D G; Paspalakis, E; Angelakis, Dimitris G.; Knight, Peter L.; Paspalakis, Emmanuel

    2004-01-01

    In the first part of this introductory review we outline the developments in photonic band gap materials from the physics of photonic band gap formation to the fabrication and potential applications of photonic crystals. We briefly describe the analogies between electron and photon localization, present a simple model of a band structure calculation and describe some of the techniques used for fabricating photonic crystals. Also some applications in the field of photonics and optical circuitry are briefly presented. In the second part, we discuss the consequences for the interaction between an atom and the light field when the former is embedded in photonic crystals of a specific type, exhibiting a specific form of a gap in the density of states. We first briefly review the standard treatment (Weisskopf-Wigner theory) in describing the dynamics of spontaneous emission in free space from first principles, and then proceed by explaining the alterations needed to properly treat the case of a two-level atom embed...

  10. Waveguiding and bending modes in a plasma photonic crystal bandgap device

    Directory of Open Access Journals (Sweden)

    B. Wang

    2016-06-01

    Full Text Available Waveguiding and bending modes are investigated in a fully tunable plasma photonic crystal. The plasma device actively controls the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. An array of discharge plasma tubes form a square crystal lattice exhibiting a well-defined bandgap, with individual active switching of the plasma elements to allow for waveguiding and bending modes to be generated dynamically. We show, through simulations and experiments, the existence of transverse electric (TE mode waveguiding and bending modes.

  11. Photonic band structure of ZnO photonic crystal slab laser

    CERN Document Server

    Yamilov, A; Cao, H

    2005-01-01

    We recently reported on the first realization of ultraviolet photonic crystal laser based on zinc oxide [Appl. Phys. Lett. {\\bf 85}, 3657 (2004)]. Here we present the details of structural design and its optimization. We develop a computational super-cell technique, that allows a straightforward calculation of the photonic band structure of ZnO photonic crystal slab on sapphire substrate. We find that despite of small index contrast between the substrate and the photonic layer, the low order eigenmodes have predominantly transverse-electric (TE) or transverse-magnetic (TM) polarization. Because emission from ZnO thin film shows strong TE preference, we are able to limit our consideration to TE bands, spectrum of which can possess a complete photonic band gap with an appropriate choice of structure parameters. We demonstrate that the geometry of the system may be optimized so that a sizable band gap is achieved.

  12. Quantum theory of exciton-photon coupling in photonic crystal slabs with embedded quantum wells

    CERN Document Server

    Gerace, D

    2007-01-01

    A theoretical description of radiation-matter coupling for semiconductor-based photonic crystal slabs is presented, in which quantum wells are embedded within the waveguide core layer. A full quantum theory is developed, by quantizing both the electromagnetic field with a spatial modulation of the refractive index and the exciton center of mass field in a periodic piecewise constant potential. The second-quantized hamiltonian of the interacting system is diagonalized with a generalized Hopfield method, thus yielding the complex dispersion of mixed exciton-photon modes including losses. The occurrence of both weak and strong coupling regimes is studied, and it is concluded that the new eigenstates of the system are described by quasi-particles called photonic crystal polaritons, which can occur in two situations: (i) below the light line, when a resonance between exciton and non-radiative photon levels occurs (guided polaritons), (ii) above the light line, provided the exciton-photon coupling is larger than th...

  13. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide.

    Science.gov (United States)

    Xiong, C; Monat, Christelle; Clark, Alex S; Grillet, Christian; Marshall, Graham D; Steel, M J; Li, Juntao; O'Faolain, Liam; Krauss, Thomas F; Rarity, John G; Eggleton, Benjamin J

    2011-09-01

    We report the generation of correlated photon pairs in the telecom C-band at room temperature from a dispersion-engineered silicon photonic crystal waveguide. The spontaneous four-wave mixing process producing the photon pairs is enhanced by slow-light propagation enabling an active device length of less than 100 μm. With a coincidence to accidental ratio of 12.8 at a pair generation rate of 0.006 per pulse, this ultracompact photon pair source paves the way toward scalable quantum information processing realized on-chip.

  14. Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2008-01-01

    In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to estimate the design parameters for maximizing the complete photonic band gap. Further, it has been shown that complete photonic band gap size changes with the variation in the orientation angle of the constituent dielectric rods.

  15. Signature of a three-dimensional photonic band gap observed on silicon inverse woodpile photonic crystals

    CERN Document Server

    Huisman, Simon R; Woldering, Léon A; Leistikow, Merel D; Mosk, Allard P; Vos, Willem L

    2010-01-01

    We have studied the reflectivity of CMOS-compatible three-dimensional silicon inverse woodpile photonic crystals at near-infrared frequencies. Polarization-resolved reflectivity spectra were obtained from two orthogonal crystal surfaces corresponding to 1.88 pi sr solid angle. The spectra reveal broad peaks with high reflectivity up to 67 % that are independent of the spatial position on the crystals. The spectrally overlapping reflectivity peaks for all directions and polarizations form the signature of a broad photonic band gap with a relative bandwidth up to 16 %. This signature is supported with stopgaps in plane wave bandstructure calculations and with the frequency region of the expected band gap.

  16. Plasmonic hole arrays for combined photon and electron management

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-11-01

    Material architectures that balance optical transparency and electrical conductivity are highly sought after for thin-film device applications. However, these are competing properties, since the electronic structure that gives rise to conductivity typically also leads to optical opacity. Nanostructured metal films that exhibit extraordinary optical transmission, while at the same time being electrically continuous, offer considerable flexibility in the design of their transparency and resistivity. Here, we present design guidelines for metal films perforated with arrays of nanometer-scale holes, discussing the consequences of the choice of nanostructure dimensions, of the type of metal, and of the underlying substrate on their electrical, optical, and interfacial properties. We experimentally demonstrate that such films can be designed to have broad-band optical transparency while being an order of magnitude more conductive than indium tin oxide. Prototypical photovoltaic devices constructed with perforated metal contacts convert ˜18% of the incident photons, compared to devices having contacts without the hole array.

  17. Photonic crystal enhancement of auger-suppressed infrared photodetectors

    Science.gov (United States)

    Djurić, Zoran; Jakšić, Zoran; Ehrfeld, Wolfgang; Schmidt, Andreas; Matić, Milan; Popović, Mirjana

    2001-04-01

    We examine theoretically and experimentally the possibilities to reach room-temperature background-limited operation of narrow-bandgap compound semiconductor photodetectors in (3-14) micrometer infrared wavelength range. To this purpose we consider the combination of non-equilibrium Auger suppression with photonic crystal enhancement (PCE). This means that Auger generation-recombination processes are suppressed utilizing exclusion, extraction or magnetoconcentration effects or their combination. The residual radiative recombination is removed by immersing the detector active area into a photonic crystal and using the benefits of re-absorption (photon recycling) to effectively increase the radiative lifetime. In this manner the total generation-recombination noise is strongly quenched in sufficiently defect-free device materials. It is concluded that the operation of thus enhanced photonic detectors could even approach signal fluctuation limit.

  18. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    CERN Document Server

    Vos, W L

    2015-01-01

    This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.

  19. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  20. Dispersion Properties in Total Internal Reflective Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    WEN Hua; HAO Dong-shan

    2004-01-01

    The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber have been studied by using the models of the equivalent twin waveguide soliton coupling,effective refractive index, effective normalized frequency and dispersion management solitons. It is shown that the dispersion in the cladding waveguide of the total internal reflective photonic crystal fiber is a positive dispersion,and the dispersion of its core waveguide is a negative dispersion. The method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of the total internal reflective photonic crystal fiber to be close to zero and the zero dispersion point to shift to the short wavelength region.

  1. Photonic crystal fiber long-period gratings for biochemical sensing.

    Science.gov (United States)

    Rindorf, Lars; Jensen, Jesper B; Dufva, Martin; Pedersen, Lars Hagsholm; Høiby, Poul Erik; Bang, Ole

    2006-09-04

    We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long-period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has a sensitivity of approximately 1.4nm/1nm in terms of the shift in resonance wavelength in nm per nm thickness of biomolecule layer.

  2. Integrated photonic crystals and quantum well infrared photodetector

    Science.gov (United States)

    Zhou, T.; Tsui, D. C.; Choi, K. K.

    2004-03-01

    GaAs/AlGaAs based quantum well infrared photodetectors (QWIP) are becoming very reliable technologies that are widely used to detect mid-infrared light. Photonic crystals, on the other hand, are very powerful tools to manipulate light and thus are very crucial elements in future optical integration circuits. have fabricated a series of devices that incorporate QWIP and 2d photonic crystals together on a single GaAs based chip. These devices work at the 7-13 μ m range. Compared with the conventional photonic crystals designed for fiber communication, these devices have the advantage that they only require photolithography instead of e-beam lithography. The fabrication of such devices is thus far less costly and time-consuming.

  3. Equilateral pentagon polarization maintaining photonic crystal fibre with low nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Yang Han-Rui; Li Xu-You; Hong Wei; Hao Jin-Hui

    2012-01-01

    A new pentagon polarization maintaining photonic crystal fibre with low nonlinearity is introduced. The full vector finite element method was used to investigate the distribution and the effective area of modal field,the nonlinear properties,the effective indices of two orthogonal polarization modes and the birefringence of the new PM-PCF effectively.It is found that the birefringence of the new polarization maintaining photonic crystal fibre can easily achieve the order of 10-4,and it can obtain higher birefringence,larger effectively mode-field area and lower nonlinearity than traditional hexagonal polarization maintaining photonic crystal fibre with the same hole pitch,same hole diameter,and same ring number.It is important for sensing and communication applications,especially has potential application for fibre optical gyroscope.

  4. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Science.gov (United States)

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.

  5. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, M.E.; Baughman, R.H.; Zakhidov, A.A. [The University of Texas at Dallas, NanoTech Institute, Richardson, TX (United States); Murthy, N.S. [University of Vermont, Department of Physics, Burlington, VT (United States); Udod, I. [Teva Pharmaceuticals USA, Fairfield, NJ (United States); Khayrullin, I.I. [eMagin Corporation, Hopewell Junction, NY (United States)

    2007-03-15

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO{sub 2} sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO{sub 2} lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time. (orig.)

  6. Co-molding of nanoscale photonic crystals and microfluidic channel

    Science.gov (United States)

    Snyder, Chloe E.; Kadiyala, Anand; Srungarapu, Maurya; Liu, Yuxin; Dawson, Jeremy M.

    2014-03-01

    Photonic crystals are nanofabricated structures that enhance light as it is passed through the constructed design. These structures are normally fabricated out of silicon but have shown to be an improvement if fabricated from a more cost effective material. Photonic crystals have uses within biosensing as they may be used to analyze DNA and other analytes. Microfluidic channels are used to transport different analytes and other samples from one end to another. Microfluidics are used in biosensing as a means of transport and are typically fabricated from biocompatible polymers. Integrated together, the photonic crystals and microfluidic channels would be able to achieve better sensing capabilities and cost effective methods for large scale production. Results will be shown from the co-molding.

  7. Group-index limitations in slow-light photonic crystals

    DEFF Research Database (Denmark)

    Grgic, Jure; Pedersen, Jesper Goor; Xiao, Sanshui;

    2010-01-01

    In photonic crystals the speed of light can be significantly reduced due to band-structure effects associated with the spatially periodic dielectric function, rather than originating from strong material dispersion. In the ideal and loss-less structures it is possible even to completely stop...... the light near frequency band edges associated with symmetry points in the Brillouin zone. Unfortunately, despite the impressive progress in fabrication of photonic crystals, real structures differ from the ideal structures in several ways including structural disorder, material absorption, out of plane......-valued dielectric function. Perturbation theory predicts that the group index scales as 1/ϵ″ which we find to be in complete agreement with the full solutions for various examples. As a consequence, the group index remains finite in real photonic crystals, with its value depending on the damping parameter...

  8. Diamond-Structured Photonic Crystals with Graded Air Spheres Radii

    Directory of Open Access Journals (Sweden)

    Dichen Li

    2012-05-01

    Full Text Available A diamond-structured photonic crystal (PC with graded air spheres radii was fabricated successfully by stereolithography (SL and gel-casting process. The graded radii in photonic crystal were formed by uniting different radii in photonic crystals with a uniform radius together along the Г‑Х direction. The stop band was observed between 26.1 GHz and 34.3 GHz by reflection and transmission measurements in the direction. The result agreed well with the simulation attained by the Finite Integration Technique (FIT. The stop band width was 8.2 GHz and the resulting gap/midgap ratio was 27.2%, which became respectively 141.4% and 161.9% of the perfect PC. The results indicate that the stop band width of the diamond-structured PC can be expanded by graded air spheres radii along the Г‑Х direction, which is beneficial to develop a multi bandpass filter.

  9. Local tuning of photonic crystal cavities using chalcogenide glasses

    CERN Document Server

    Faraon, Andrei; Bulla, Douglas; Luther-Davies, Barry; Eggleton, Benjamin J; Stoltz, Nick; Petroff, Pierre; Vuckovic, Jelena

    2007-01-01

    We demonstrate a method to locally change the refractive index in planar optical devices by photodarkening of a thin chalcogenide glass layer deposited on top of the device. The method is used to tune the resonance of GaAs-based photonic crystal cavities by up to 3 nm at 940 nm, with only 5% deterioration in cavity quality factor. The method has broad applications for postproduction tuning of photonic devices.

  10. Phase sensitive amplification in silicon photonic crystal waveguides

    CERN Document Server

    Yanbing,; Husko, Chad; Schroder, Jochen; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Eggleton, Benjamin J

    2013-01-01

    We experimentally demonstrate phase sensitive amplification (PSA) in a silicon photonic crystal waveguide based on pump-degenerate four-wave mixing. An 11 dB phase extinction ratio is obtained in a record compact 196 {\\mu}m nanophotonic device due to broadband slow-light, in spite of the presence of two-photon absorption and free-carriers. Numerical calculations show good agreement with the experimental results.

  11. Phase-sensitive amplification in silicon photonic crystal waveguides.

    Science.gov (United States)

    Zhang, Yanbing; Husko, Chad; Schröder, Jochen; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Eggleton, Benjamin J

    2014-01-15

    We experimentally demonstrate phase-sensitive amplification in a silicon photonic crystal waveguide based on pump-degenerate four-wave mixing. An 11 dB phase-extinction ratio is obtained in a record compact 196 μm nanophotonic device due to broadband slow light, in spite of the presence of two-photon absorption and free carriers. Numerical calculations show good agreement with the experimental results.

  12. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy.

    Science.gov (United States)

    Chen, Weili; Long, Kenneth D; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A; Cunningham, Brian T

    2014-11-21

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives.

  13. Controlling light with high-Q silicon photonic crystal nanocavities: Photon confinement, nonlinearity and coherence

    Science.gov (United States)

    Yang, Xiaodong

    The strong light localization and long photon lifetimes in two-dimensional silicon photonic crystal nanocavities with high quality factor (Q ) and subwavelength modal volume (V) significantly enhance the light-matter interactions, presenting many opportunities to explore new functionalities in silicon nanophotonic integrated circuits for on-chip all-optical information processing, optical computation and optical communications. This thesis will focus on the design, nanofabrication, and experimental characterization of both passive and active silicon nanophotonic devices based on two-dimensional high-Q silicon photonic crystal nanocavities. Three topics of controlling light with these high-Q nanocavities will be presented, including (1) photon confinement mechanism and cavity resonance tuning, (2) enhancement of optical nonlinearities, and (3) all-optical analogue to coherent interferences. The first topic is photon confinement in two-dimensional high- Q silicon photonic crystal nanocavities. In Chapter 2, the role of Q/V as the figure of merit for the enhanced light-matter interaction in optical microcavities and nanocavities is explained and different types of high-Q optical microcavities and nanocavities are reviewed with an emphasis on two-dimensional photonic crystal nanocavities. Then the nanofabrication process and the Q characterization are illustrated for the two-dimensional silicon photonic crystal nanocavities. In Chapter 3, the post-fabrication digital resonance tuning of high-Q silicon photonic crystal nanocavities using atomic layer deposition is proposed and demonstrated, with wide tuning range and precise control of cavity resonances while preserving high quality factors. The second topic is the enhancement of optical nonlinearities in two-dimensional high-Q silicon photonic crystal nanocavities, including stimulated Raman scattering and thermo-optical nonlinearities. In Chapter 4, the enhanced stimulated Raman scattering for low threshold Raman

  14. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong-Hyeon, E-mail: seygene@kaist.ac.kr; Lee, Chang-Min; Lim, Hee-Jin [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Schlereth, Thomas W.; Kamp, Martin [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Lee, Yong-Hee [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  15. Spectral properties of photon pairs generated by spontaneous four wave mixing in inhomogeneous photonic crystal fibers

    CERN Document Server

    Cui, Liang; Zhao, Ningbo

    2012-01-01

    The photonic crystal fiber (PCF) is one of the excellent media for generating photon pairs via spontaneous four wave mixing. Here we study how the inhomogeneity of PCFs affect the spectral properties of photon pairs from both the theoretical and experimental aspects. The theoretical model shows that the photon pairs born in different place of the inhomogeneous PCF are coherently superposed, and a modulation in the broadened spectrum of phase matching function will appear, which prevents the realization of spectral factorable photon pairs. In particular, the inhomogeneity induced modulation can be examined by measuring the spectrum of individual signal or idler field when the asymmetric group velocity matching is approximately fulfilled. Our experiments are performed by tailoring the spectrum of pulsed pump to satisfy the specified phase matching condition. The observed spectra of individual signal photons, which are produced from different segments of the 1.9 m inhomogeneous PCF, agree with the theoretical pr...

  16. Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide.

    Science.gov (United States)

    He, Jiakun; Clark, Alex S; Collins, Matthew J; Li, Juntao; Krauss, Thomas F; Eggleton, Benjamin J; Xiong, Chunle

    2014-06-15

    We demonstrate degenerate, correlated photon-pair generation via slow-light-enhanced spontaneous four-wave mixing in a 96 μm long silicon photonic crystal waveguide. Our device represents a more than 50 times smaller footprint than silicon nanowires. We have achieved a coincidence-to-accidental ratio as high as 47 at a photon generation rate of 0.001 pairs per pulse and 14 at a photon generation rate of 0.023 pairs per pulse, which are both higher than the useful level of 10. This demonstration provides a path to generate indistinguishable photons in an ultracompact platform for future quantum photonic technologies.

  17. Photonic Bandgap Properties of Atom-lattice Photonic Crystals in Polymer

    Institute of Scientific and Technical Information of China (English)

    REN Lin; WANG Dian; SUN Gui-ting; NIU Li-gang; YANG Han; SONG Jun-feng

    2011-01-01

    The present paper covers the various photonic crystals(PhCs) structures mimicking real atom-lattice structures in electronic crystals by using the femtosecond laser-induced two-photon photopolymerization of SU-8 resin. The bandgap properties were investigated by varying the crystal orientations in <111>, <110> and <100> of diamond-lattice PhCs. lhe photonic stop gaps were present at λ=3.88 μm in <111> direction, λ=4.01 μtm in <110> direction and λ=5.30 μm in <100> direction, respectively. In addition, defects were introduced in graphite-lattice PhCs and the strong localization of photons in this structure with defects at λ=5 μm was achieved. All the above work shows the powerful capability of femtosecond laser fabrication in manufacturing various complicated threedimensional photonic crystals and of controlling photons by inducing defects in the PhCs samples.

  18. Diamond Opal-Replica Photonic Crystals and Graphitic Metallic Photonic Band Gap Structures: Fabrication and Properties

    Science.gov (United States)

    Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Khayrullin, I. I.; Ralchenko, V. G.

    1998-03-01

    We demonstrate a new method for the formation of photonic bandgap crystals that operate at optical wavelengths. This method involves the templating of a self-assempled SiO2 lattice with diamond, graphite, or amorphous forms of carbon, followed by the removal of the original SiO2 lattice matrix by chemical means. Such carbon opal replicas are the "air type" of photonic crystal (where air replaces silica spheres) that are most favourable for photonic bandgap formation. Surprisingly, the structure of the original opal lattice having a typical cubic lattice dimension of 250 nm) is reliably replicated down to the nanometer scale using either a diamond, graphite, or amorphous carbon templated material. The optical properties of these photonic bandgap crystals are reported and compared with both theory and experimental results on other types of opal-derived lattices that we have investigated. The graphitic reverse opal is the first example of a network type metallic photonic crystal for the optical domain, for which a large photonic bandgap have been predicted.

  19. Graphene fish-scale array as controllable reflecting photonic structure

    CERN Document Server

    Dmitriev, Victor; Prosvirnin, Sergey L

    2015-01-01

    We report resonant features of novel controllable reflectarray which consists of meander-like graphene strips placed on a metal-backed dielectric substrate. The structure manifests two kinds of resonances appeared as sharp deeps of reflectivity. The first one exists because the strips of periodic cells of the structure have resonant sizes for induced surface plasmon-polaritons. The second kind of resonances is defined by excitation of TM eigenwaves of the whole structure as a plane photonic crystal. The latter resonances do not depend on whether the strips of the unit cells have resonant sizes or not.

  20. Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    XUE Peng

    2011-01-01

    A hybrid entangling gate is proposed by using the coherent interaction between dipolar molecules and a photonic crystal microcavity, which is effected by virtual electric dipole transitions. Noise is included in the present model and high feasibility of the scheme with current experimental conditions is shown.%@@ A hybrid entangling gate is proposed by using the coherent interaction between dipolar molecules and a photonic crystal microcavity,which is effected by virtual electric dipole transitions.Noise is included in the present model and high feasibility of the scheme with current experimental conditions is shown.

  1. Inhibited coupling hollow-core photonic crystal fiber

    Science.gov (United States)

    Benabid, F.; Gérôme, F.; Vincetti, L.; Debord, B.; Alharbi, M.; Bradley, T.

    2014-02-01

    We review the recent progress on the enhanced inhibited coupling in kagome hollow-core photonic crystal fiber by introducing negative curvature in the fiber-core shape. We show that increasing the hypocycloid contour curvature leads to a dramatic decrease in transmission loss and optical overlap with the silica surround and to a single modedness. Fabricated hypocycloid-core hollow-core photonic crystal fibers with a transmission loss in the range of 20-40 dB/km and for a spectral range of 700 nm-2000 nm have now become typical.

  2. Absolute band gaps in two-dimensional graphite photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)

    2003-01-01

    The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.

  3. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis.......We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  4. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    See, Gloria G. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Xu, Lu; Nuzzo, Ralph G. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Sutanto, Erick; Alleyne, Andrew G. [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 154 Mechanical Engineering Building, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801 (United States)

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  5. Scalable photonic crystal chips for high sensitivity protein detection.

    Science.gov (United States)

    Liang, Feng; Clarke, Nigel; Patel, Parth; Loncar, Marko; Quan, Qimin

    2013-12-30

    Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

  6. Nonreciprocal Coupling in Asymmetric Dual-Core Photonic Crystal Fibres

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; YANG Chang-Xi

    2004-01-01

    @@ The photonic crystal fibre with asymmetric dual cores is shown to attain strongly nonreciprocal coupling of the lightwave propagating along the fibre, for the first time to our knowledge. It is found that the coupling properties can be quite different when the incident position is changed. This kind of fibre could have potential for unidirectional coupler applications in fibre-optic local and metropolitan area networks. We also examine the polarization and wavelength dependence of the coupling nonreciprocity in the asymmetric dual-core photonic crystal fibres.

  7. Photonic crystal hydrogel sensor for detection of nerve agent

    Science.gov (United States)

    Xu, Jiayu; Yan, Chunxiao; Liu, Chao; Zhou, Chaohua; Hu, Xiaochun; Qi, Fenglian

    2017-01-01

    Nowadays the photonic crystal hydrogel materials have shown great promise in the detection of different chemical analytes, including creatinine, glucose, metal ions and so on. In this paper, we developed a novel three-dimensional photonic crystal hydrogel, which was hydrolyzed by sodium hydroxide (NaOH) and immobilized with butyrylcholinesterase (BuChE) by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride(EDC). They are demonstrated to be excellent in response to sarin and a limit of detection(LOD) of 1×10‑9 mg mL‑1 was achieved.

  8. Mapping individual electromagnetic field components inside a photonic crystal

    CERN Document Server

    Denis, T; Lee, J H H; van der Slot, P J M; Vos, W L; Boller, K -J

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.

  9. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  10. Active Photonic Crystal Switches: Modeling, Design and Experimental Characterization

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Yu, Yi; Kristensen, Philip Trøst;

    2013-01-01

    In this paper, we present recent progress in modeling, design, fabrication and experimental characterization of InP photonic crystal all-optical switches. Novel designs with increased flexibility and performance are presented, and their operation using high speed data signals is analyzed numerica......In this paper, we present recent progress in modeling, design, fabrication and experimental characterization of InP photonic crystal all-optical switches. Novel designs with increased flexibility and performance are presented, and their operation using high speed data signals is analyzed...

  11. Absorption and emission properties of photonic crystals and metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Lili [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  12. Design and Fabrication of SOI-based photonic crystal components

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    We present examples of ultra-compact photonic crystal components realized in silicon-on-insulator material. We have fabricated several different types of photonic crystal waveguide components displaying high transmission features. This includes 60° and 120° bends, different types of couplers......, and splitters. Recently, we have designed and fabricated components with more than 200 nm bandwidths. Design strategies to enhance the performance include systematic variation of design parameters using finite-difference time-domain simulations and inverse design methods such as topology optimization....

  13. Reconfigurable photonic crystal using self-initiated gas breakdown

    Science.gov (United States)

    Gregório, José; Parsons, Stephen; Hopwood, Jeffrey

    2017-02-01

    We present a resonant photonic crystal for which transmission is time-modulated by a self-initiated gaseous plasma. A resonant cavity in the photonic crystal is used to amplify an incoming microwave field to intensities where gas breakdown is possible. The presence of the plasma in the resonant cavity alters the transmission spectrum of the device. We investigate both transient and steady-state operation with computational simulations using a time-domain model that couples Maxwell’s equations and plasma fluid equations. The predicted plasma ignition and stability are then experimentally verified.

  14. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  15. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  16. Compound liquid crystal microlens array with convergent and divergent functions.

    Science.gov (United States)

    Kang, Shengwu; Zhang, Xinyu

    2016-04-20

    Based on the common liquid crystal microlens, a new compound structure for a liquid crystal (LC) microlens array is proposed. The structure consists of two sub LC microlens arrays with properties of light divergence and convergence. The structure has two LC layers: one to form the positive sub lens, one for the negative. The patterned electrode and plane electrode are used in both sub microlens arrays. When two sub microlens arrays are electrically controlled separately, they can diverge or converge the incident light, respectively. As two sub microlens arrays are both applied on the voltage, the focal length of the compound LC microlens becomes larger than that of the LC microlens with a single LC layer. Another feature of a compound LC microlens array is that it can make the target contour become visible under intense light. The mechanisms are described in detail, and the experimental data are given.

  17. Study of performance of small gamma camera consisting of crystal pixel array and position sensitive photomultiplier tube

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; LIU Shi-Tao; LEI Xiao-Wen; YAN Tian-Xin; XU Zi-Zong; WANG Zhao-Min

    2005-01-01

    The performance of gamma camera with NaI(T1) array coupled with position sensitive photomultiplier tube (PSPMT) R2486 has been studied. The pixel size of NaI(T1) crystal is 2mm×2mm and the overall dimension of the array is 48.2mm×48.2mm×5mm. There are 484 pixels in a 22×22 matrix. Because each pixel can produce a much focused light spot and restrict the spread of photons, position resolution of the gamma camera is mainly determined by pixel size. It is shown that crystal array pixel can reduce shrinkage effect and improve intrinsic position resolution greatly via restricting the spread of photons. Experimental results demonstrate that its position resolution and linearity are much improved comparing with the gamma camera using planar crystals coupled with PSPMT.

  18. Fabrication and Characterization of On-Chip Integrated Silicon Photonic Bragg Grating and Photonic Crystal Cavity Thermometers

    CERN Document Server

    Klimov, Nikolai N; Ahmed, Zeeshan

    2015-01-01

    We report on the fabrication and characterization of photonic-based nanothermometers, a silicon photonic Bragg grating and photonic crystal cavity. When cladded with silicon dioxide layer the sensors have at least eight times better sensitivity compared to the sensitivity of conventional fiber Bragg grating sensors. We demonstrate that these photonic thermometers are a viable temperature sensing solution.

  19. A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal

    KAUST Repository

    Wu, Ying

    2014-01-01

    Accidental degeneracy in a photonic crystal consisting of a square array of elliptical dielectric cylinders leads to both a semi-Dirac point at the center of the Brillouin zone and an electromagnetic topological transition (ETT). A perturbation method is deduced to affirm the peculiar linear-parabolic dispersion near the semi-Dirac point. An effective medium theory is developed to explain the simultaneous semi-Dirac point and ETT and to show that the photonic crystal is either a zero-refractive-index material or an epsilon-near-zero material at the semi-Dirac point. Drastic changes in the wave manipulation properties at the semi-Dirac point, resulting from ETT, are described.©2014 Optical Society of America.

  20. Radiation damping in atomic photonic crystals.

    Science.gov (United States)

    Horsley, S A R; Artoni, M; La Rocca, G C

    2011-07-22

    The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be difficult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms exhibiting ultranarrow photonic band gaps. The amplification effect for optically trapped 87Rb is shown to be as much as 3 orders of magnitude greater than for conventional photonic-band-gap materials. For a specific pulsed regime, damping remains observable without destroying the system and significant for material velocities of a few ms(-1).

  1. Radiation 'damping' in atomic photonic crystals

    CERN Document Server

    Horsley, S A R; La Rocca, G C

    2010-01-01

    The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be diffcult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms (e.g. optically trapped 87Rb), which may exhibit ultra-narrow photonic band gaps. The amplification of the effect is shown to be three orders of magnitude greater than previous estimates for conventional photonic-band-gap materials, and significant for material velocities of a few ms/s.

  2. Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.

    Science.gov (United States)

    Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun

    2014-12-04

    Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device.

  3. Simultaneous Detection of Fenitrothion and Chlorpyrifos-Methyl with a Photonic Suspension Array.

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    Full Text Available A technique was developed for simultaneous detection of fenitrothion (FNT and chlorpyrifos-methyl (CLT using a photonic suspension array based on silica colloidal crystal beads (SCCBs. The SCCBs were encoded with the characteristic reflection peak originating from the stop-band of colloidal crystal. This approach avoids the bleaching, fading or potential interference seen when encoding by fluorescence. SCCBs with a nanopatterned surface had increased biomolecule binding capacity and improved stability. Under optimal conditions, the proposed suspension array allowed simultaneous detection of the selected pesticides in the ranges of 0.25 to 1024 ng/mL and 0.40 to 735.37 ng/mL, with the limits of detection (LODs of 0.25 and 0.40 ng/mL, respectively. The suspension array was specific and had no significant cross-reactivity with other chemicals. The mean recoveries in tests in which samples were spiked with target standards were 82.35% to 109.90% with a standard deviation within 9.93% for CLT and 81.64% to 108.10% with a standard deviation within 8.82% for FNT. The proposed method shows a potentially powerful capability for fast quantitative analysis of pesticide residues.

  4. Photonic crystal waveguides based on an antiresonant reflecting platform

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Frandsen, Lars Hagedorn; Fage-Pedersen, Jacob

    2005-01-01

    We apply the antiresonant reflecting layers arrangement to silicon-on-insulator based photonic crystal waveguides. Several layered structures with different combinations of materials (Si-SiO2, Si3N4-SiO2) and layer topology have been analysed. Numerical modelling using 3D Finite-Difference Time...

  5. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n......(g) for the combined system is significantly enhanced relative to slow light based on purely material or waveguide dispersion....

  6. Direct mapping of light propagation in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Arentoft, J.;

    2002-01-01

    Using near-field optical microscopy, we directly map the propagation of light in the wavelength range of 1510-1560 nm along bent photonic crystal waveguides formed by removing a single row of holes in the triangular 400-nm-period lattice and connected to access ridge waveguides, the structure being...

  7. Observation of soliton pulse compression in photonic crystal waveguides

    CERN Document Server

    Colman, P; Combrié, S; Sagnes, I; Wong, C W; De Rossi, A

    2010-01-01

    We demonstrate soliton-effect pulse compression in mm-long photonic crystal waveguides resulting from strong anomalous dispersion and self-phase modulation. Compression from 3ps to 580fs, at low pulse energies(~10pJ), is measured via autocorrelation.

  8. Topology Optimized Mode Conversion In a Photonic Crystal Waveguide

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Ding, Yunhong;

    2013-01-01

    We experimentally demonstrate an ultra-compact TE0-TE1 mode converter obtained in a photonic crystal waveguide by utilizing topology optimization and show a ~39 nm bandwidth around 1550 nm with an insertion loss lower than ~3 dB....

  9. Thermal analysis of line-defect photonic crystal lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Ottaviano, Luisa; Chen, Yaohui

    2015-01-01

    We report a systematic study of thermal effects in photonic crystal membrane lasers based on line-defect cavities. Two material platforms, InGaAsP and InP, are investigated experimentally and numerically. Lasers with quantum dot layers embedded in an InP membrane exhibit lasing at room temperatur...

  10. Site-controlled quantum dots coupled to photonic crystal waveguides

    DEFF Research Database (Denmark)

    Rigal, B.; de Lasson, Jakob Rosenkrantz; Jarlov, C.;

    2016-01-01

    We demonstrate selective optical coupling of multiple, site controlled semiconductor quantum dots (QDs) to photonic crystal waveguide structures. The impact of the exact position and emission spectrum of the QDs on the coupling efficiency is elucidated. The influence of optical disorder and end...

  11. Mode-coupling in photonic crystal fibers with multiple cores

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2000-01-01

    Summary form only given. We have fabricated a photonic crystal fiber (PCF) with multiple cores by drawing a fiber preform from stacked glass tubes. Transmission is high through each core despite many unintentional defects in the cladding indicating that the guidance is determined by the holes near...

  12. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron;

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...

  13. Active III-V Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Schubert, Martin;

    2011-01-01

    We experimentally demonstrate enhanced amplified spontaneous emission in a quantum well III-V semiconductor photonic crystal waveguide slab. The effect is described by enhanced light matter interaction with the decrease of the group velocity. These are promising results for future compact devices...... for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  14. The analogy between photonic crystal fibres and step index fibres

    DEFF Research Database (Denmark)

    Birks, T.A.; Mogilevtsev, D.; Knight, J.C.

    1999-01-01

    The propagation constant of a photonic crystal fiber (PCF) can be approximated by substituting the effective V-value and NA into a formula valid for step index fibers (SIF), provided the V-value is defined with a core radius of 0.625 $Lambda@. V$PRM and NA must still be computed. Care must be taken...

  15. Soft-glass hollow-core photonic crystal fibers

    Science.gov (United States)

    Melnikov, Leonid; Khromova, Irina; Scherbakov, Andrey; Nikishin, Nikolay

    2005-09-01

    The results of numerical modeling and experimental investigations of manufactured diamond-shaped and large area hollow core photonic crystal fibers with periodical cladding (kagome-lattice and closely packed tubes) are presented. The use of soft glasses allows to fabricate high-quality structures with moderate losses. Numerical methods, designing strategies and fabrication issues of these promising fiber structures are discussed.

  16. Percolation in photonic crystals revealed by Fano Resonance

    CERN Document Server

    Pariente, Jose Angel; Pecharomán, Carlos; Blanco, Alvaro; García-Martín, Antonio; López, Cefe

    2016-01-01

    The understanding of how the arrangement of defects in photonic crystals impacts its photonic properties is cru-cial for the design of functional materials based thereon. By preparing photonic crystals with random missing scatterers we create crystals where disorder is embodied as vacancies in an otherwise perfect lattice rather than the usual positional or size disorder. We show that the amount of defects not only determines the intensity but also the nature of the light scattering. As the amount of defects varies, light scattering undergoes a transition whereby the usual signatures of photonic gaps (Bragg peak) suffer line-shape changes (Bragg dip) that can be readily described with the Fano resonance q parameter. When the amount of vacancies reaches the percolation threshold, q undergoes a sign change signaling the transition from a crystal to a mosaic of microcrystals through a state where scattering is maximum. Beyond that point the system reenters a state of low scattering that ap-pears in the guise of ...

  17. Solar power conversion efficiency in modulated silicon nanowire photonic crystals

    Science.gov (United States)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    It is suggested that using only 1 μm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power conversion efficiency in the range of 15%-20% can be achieved. Choosing a specific modulation profile provides antireflection, light trapping, and back-reflection over broad angles in targeted spectral regions for high efficiency power conversion without solar tracking. Solving both Maxwell's equations in the 3D photonic crystal and the semiconductor drift-diffusion equations in each nanowire, we identify optimal junction and contact geometries and study the influence of the nanowire surface curvature on solar cell efficiency. We demonstrate that suitably modulated nanowires enable 20% efficiency improvement over their straight counterparts made of an equivalent amount of silicon. We also discuss the efficiency of a tandem amorphous and crystalline silicon nanowire photonic crystal solar cell. Opportunities for "hot carrier" collection and up-conversion of infrared light, enhanced by photonic crystal geometry, facilitate further improvements in power efficiency.

  18. Estimating modal instability threshold for photonic crystal rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Laurila, Marko;

    2013-01-01

    We present a semi-analytic numerical model to estimate the transverse modal instability (TMI) threshold for photonic crystal rod amplifiers. The model includes thermally induced waveguide perturbations in the fiber cross section modeled with finite element simulations, and the relative intensity...

  19. Spatial and spectral imaging of LMA photonic crystal fiber amplifiers

    DEFF Research Database (Denmark)

    Laurila, Marko; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard;

    2011-01-01

    We demonstrate modal characterization using spatial and spectral resolved (S2) imaging, on an Ytterbium-doped large-mode-area photonic crystal fiber (PCF) amplifier and compare results with conventional cut-off methods. We apply numerical simulations and step-index fiber experiments to calibrate ...

  20. Slow Light by Two-Dimensional Photonic Crystal Waveguides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao; HUANG Yan; MAO Xiao-Yu; CUI Kai-Yu; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De

    2009-01-01

    A simple and effective way to measure the group velocity of photonic crystal waveguides (PCWGs) is developed by using a fiber Mach-Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated.

  1. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...

  2. Optimization of bandwidth in 60^o photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Xing, P. F.; Borel, Peter Ingo; Frandsen, Lars Hagedorn;

    2005-01-01

    A systematic scheme utilizing 2D and 3D finite-difference time-domain calculations to design 60^o photonic crystal waveguide bends is presented. The method results in an improved transmission bandwidth from 70 to 160 nm in 2D simulations, and from 50 to 100 nm in 3D simulations. The design...

  3. Liquid Crystal Photonic bandgap Fibers: Modeling and Devices

    DEFF Research Database (Denmark)

    Weirich, Johannes

    In this PhD thesis an experimental and numerical investigation of liquid crystal infiltrated photonic bandgap fibers (LCPBGs) is presented. A simulation scheme for modeling LCPBG devices including electrical tunability is presented. New experimental techniques, boundary coating and the applicatio...

  4. Switching dynamics in InP photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel;

    2016-01-01

    In this paper, we presented switching dynamic investigations on an InP photonic-crystal (PhC) nanocavity structure using homodyne pump-probe measurements. The measurements were compared with simulations based on temporal nonlinear coupled mode theory and carrier rate equations for the dynamics...

  5. Nonlinear spatial mode imaging of hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Laurila, Marko;

    2013-01-01

    Degenerate spontaneous four wave mixing is studied for the rst time in a large mode area hybrid photonic crystal ber, where light con nement is achieved by combined index- and bandgap guiding. Four wave mixing products are generated on the edges of the bandgaps, which is veri ed by numerical...

  6. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass ...

  7. Focused ion beam milling of photonic crystals in bulk silicon

    NARCIS (Netherlands)

    Hu, Wenbin; Ridder, de René M.; Tong, Xing-Lin

    2009-01-01

    Focused ion beam (FIB) direct milling was used to fabricate photonic crystals in bulk silicon. The milling requires the sidewalls as nearly perpendicular to the slab as possible and the top profile of the holes to be smooth. The re-deposition of milled material exaggerates the hole profiles. The eff

  8. Highly Birefringent Photonic Crystal Fibers BUsing Asymmetric Core Design

    Institute of Scientific and Technical Information of China (English)

    Zhao Chun-Liu; Lu Chao; Yan Min; Wang Xiaoyan; Lou Junjun; Li Qin; Zhou Xiaoqun; Cai Qing; P.R.Chaudhuri

    2003-01-01

    We demonstrate a highly birefringent photonic crystal fiber by utilizing the asymmetric core design. Based on spectral measurements of the polarization mode interfering, we estimate that the fiber has a beat length of about 0.33 mm at 1545 nm.

  9. Birefringent Bragg Gratings in Highly-Nonlinear Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    Kevin Cook; John Canning; John Holdsworth

    2008-01-01

    Efficient writing of Bragg gratings in 12-ring highly-nonlinear photonic crystal fibers is described. Experimental and numerical investigations are performed to reveal the optimum angle for coupling UV writing light to the core. Furthermore, we show that the formation of a strongly briefringent grating is at a particular angle of orientation.

  10. Spontaneous emission of quantum dots in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;

    2010-01-01

    We report on the enhancement of the spontaneous emission rate of single semiconductor quantum dots embedded in a photonic crystal waveguide with engineered disorder. Random high-Q cavities, that are signature of Anderson localization, are measured in photoluminescence experiments and appear...

  11. Supercontinuum Generation in Uniform and Tapered Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe Visbech; Larsen, Casper;

    Supercontinuum generation (SCG) is a striking phenomenon of extreme spectral broadening involving a wealth of beautiful nonlinear physics. The study of SCG and development of today’s commercial sources really took off with the invention of the photonic crystal fiber (PCF), in which light can...

  12. Investigation of biosensor built with photonic crystal microcavity

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Wang; Naiguang Lü; Qiaofeng Tan; Guofan Jin

    2008-01-01

    The ultra-compact biosensor based on the two-dimensional (2D) photonic crystal (PhC) microcavity is investigated. The performances of the sensor are analyzed theoretically using the Fabry-Perot (F-P) cavity model and simulated using the finite-difference time-domain (FDTD) method. The simulation results go along with the theoretical analysis.

  13. Nd3+ Doped Silicate Glass Photonic Crystal Fibres

    Institute of Scientific and Technical Information of China (English)

    YANG Lu-Yun; CHEN Dan-Ping; XIA Jin-An; WANG Chen; JIANG Xiong-Wei; ZHU Cong-Shan; QIU Jian-Rong

    2005-01-01

    @@ We report on the fabrication of two kinds of large core area Nd3+ doped silicate glass photonic crystal fibres, and demonstration of the fibre waveguiding properties. The measured minimum loss of one kind ofibres is 2.5 db/m at 660nm. The fibres sustain only a single mode at least over the wavelength range from 660nm to 980nm.

  14. Ultrafast optical switching in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude an

  15. Coupling of two defect modes in photonic crystal fibers

    Institute of Scientific and Technical Information of China (English)

    Yuntuan Fang; Tinggen Shen

    2005-01-01

    The coupling characteristics of two defect modes in photonic crystal fibers are investigated theoretically by the finite-difference time-domain (FDTD) method. The transmission spectrum and eigenmodes of optical wave are found to be very sensitive to the geometrical and physical parameters of the structure, as well as to the relative position of the two defects.

  16. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-Bo; YAO Jian-Quan; ZHANG Lei; WANG Yuan; WEN Wu-Qi; JING Lei; DI Zhi-Gang

    2012-01-01

    The three-dimensional thermal properties of 18-core photonic crystal fiber lasers operated under natural convection are investigated. The temperature sensing technique based on a fiber Bragg grating sensor array is proposed to measure the longitudinal temperature distribution of a 1.6-m-long ytterbium-doped 18-core photonic crystal fiber. The results show that the temperature decreases from the pump end to the launch end exponentially. Moreover, the radial temperature distribution of the fiber end is investigated by using the full-vector finite-element method. The numerical results match well with the experimental data and the coating temperature reaches 422.7K, approaching the critical value of polymer cladding, when the pumping power is 40 W. Therefore the fiber end cooling is necessary to achieve power scaling. Compared with natural convection methods, the copper cooling scheme is found to be an effective method to reduce the fiber temperature.%The three-dimensional thermal properties of 18-core photonic crystal fiber lasers operated under natural convection are investigated.The temperature sensing technique based on a fiber Bragg grating sensor array is proposed to measure the longitudinal temperature distribution of a 1.6-m-long ytterbium-doped 18-core photonic crystal fiber.The results show that the temperature decreases from the pump end to the launch end exponentially.Moreover,the radial temperature distribution of the fiber end is investigated by using the full-vector finite-element method.The numerical results match well with the experimental data and the coating temperature reaches 422.7K,approaching the critical value of polymer cladding,when the pumping power is 40 W.Therefore the fiber end cooling is necessary to achieve power scaling.Compared with natural convection methods,the copper cooling scheme is found to be an effective method to reduce the fiber temperature.

  17. Photonic integration in k-space: Enhancing the performance of photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Kristensen, Anders; Xiao, Sanshui

    2008-01-01

    We demonstrate how two optical functionalities can be implemented in a single photonic crystal structure by carefully engineering dispersion in several different bands at several different wavelengths. We use the concept for optically pumped dye doped hybrid polymer band edge lasers and show how...... a rectangular photonic crystal lattice imprinted into the surface can provide both feedback for in-plane band edge lasing and couple pump light into the device plane, thus increasing the emitted intensity and lowering the lasing threshold by more than an order of magnitude....

  18. Fabrication and characterization of chalcogenide glass photonic crystal waveguides.

    Science.gov (United States)

    Suzuki, Keijiro; Hamachi, Yohei; Baba, Toshihiko

    2009-12-07

    We report on the fabrication of chalcogenide glass (Ag-As(2)Se(3)) photonic crystal waveguides and the first detailed characterization of the linear and nonlinear optical properties. The waveguides, fabricated by e-beam lithography and ICP etching exhibit typical transmission spectra of photonic crystal waveguides, and exhibit high optical nonlinearity. Nonlinear phase shift of 1.5pi through self-phase modulation is observed at 0.78 W input peak power in a 400 microm long device. The effective nonlinear parameter gamma(eff) estimated from this result reaches 2.6 x 10(4) W(-1)m(-1). Four-wave mixing is also observed in the waveguide, while two-photon absorption at optical communication wavelengths is sufficiently small and the corresponding figure of merit is larger than 11.

  19. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    Science.gov (United States)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  20. Photonic bands and defect modes in metallo-dielectric photonic crystal slabs

    CERN Document Server

    Zanotto, Simone; Sorba, Lucia; Tredicucci, Alessandro

    2016-01-01

    Photonic components based on structured metallic elements show great potential for device applications where field enhancement and confinement of the radiation on a subwavelength scale is required. In this paper we report a detailed study of a prototypical metallo-dielectric photonic structure, where features well known in the world of dielectric photonic crystals, like band gaps and defect modes, are exported to the metallic counterpart, with interesting applications to infrared science and technology, as for instance in quantum well infrared photodetectors, narrow-band spectral filters, and tailorable thermal emitters.

  1. Angular Distribution of Photons in Coherent Bremsstrahlung in Deformed Crystals

    CERN Document Server

    Parazian, V V

    2010-01-01

    We investigate the angular distribution of photons in the coherent bremsstrahlung process by high-energy electrons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.

  2. Improvement for the steering performance of liquid crystal phased array

    Institute of Scientific and Technical Information of China (English)

    SONG Yan; KONG Ling-jiang; CHEN Jun; ZHU Ying; YANG Jian-yu

    2009-01-01

    Optical phased array technology is introduced and the steering performances of liquid crystal phased array are discussed, several factors affecting the beam steering performances arc analyzed completely, also simple models for some typical factors are developed. Then, a new method based on iterating and modifying the output phase pattern of liquid crystal phase shifters is proposed. Using this method, the modified voltages applied on electrodes of liquid crystal phase shifters can be obtained, after applying the voltages, the influence of factors can be compensated to some extent; the steering angle accu-racy and efficiency with liquid crystal phased array can be improved. Through the simulation for the angle range from 0° to -1°, the error of steering angle can be reduced three orders of magnitude, and the efficiency can be increased almost 30% after several iterations.

  3. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris;

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  4. Theoretical analysis of a biased photonic crystal fiber infiltrated with a negative dielectric anisotropy liquid crystal

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Lægsgaard, Jesper;

    2009-01-01

    We simulate the PBG mode of a biased Photonic Crystal Fiber (PCF) infiltrated with a Liquid Crystal (LC) with negative dielectric anisotropy. We analyse the voltage induced change of the transmission spectrum, dispersion and losses and compare them to the experimental values....

  5. On-chip tunable long-period gratings in liquid crystal infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Weirich, Johannes; Alkeskjold, Thomas Tanggaard;

    2009-01-01

    An on-chip tunable long-period grating device in a liquid crystal infiltrated photonic crystal fiber is experimentally demonstrated. The depth and position of the notch are tuned electrically and thermally. The transmission axis can be electrically controlled as well as switched on and off....

  6. Highly-Ordered Ferroelectric Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    Naomi Matsuura; Suxia Yang; Ping Sun; Harry E. Ruda

    2003-01-01

    Highly-ordered, ferroelectric, Pb-doped Ba0.7Sr0.3TiO3, inverse opal thin films were fabricated using a sol-gel spin coating technique. The excellent crystal quality is evident from the SEM images and the good agreement between the theory and experiments.

  7. Photonic crystal-adaptive optical devices

    DEFF Research Database (Denmark)

    Buss, Thomas

    -doped liquid crystal gain medium for the realization of cheap and compact optically pumped, electrically tunable lasers. Finally, a transparent projection display is presented which uses sub-wavelength gratings for redirection of light guided inside a waveguide and facilitates electro-optic switching by means...

  8. Single photon imaging and timing array sensor apparatus and method

    Science.gov (United States)

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  9. Photonic crystal waveguides based on wide-gap semiconductor alloys

    Science.gov (United States)

    Martin, Aude; Combrié, Sylvain; De Rossi, Alfredo

    2017-03-01

    This review is devoted to integrated photonic platforms based on large band-gap semiconductors, alternatives to silicon photonics. The large electronic band gap of the material employed is chosen to address the specific needs of nonlinear optics, and, in particular, lower nonlinear losses and the capability of handling larger optical power densities. Moreover, these new platforms offer broader transmission spectra, extending to the visible spectral region, which is also required for other applications, particularly sensing and bio-related photonics. The focus is on nanoscale patterned waveguiding structures, which, owing to the tight confinement of light, have demonstrated a large nonlinear response. The third-order nonlinear response and the related parametric interactions will be considered here, encompassing four-wave mixing, phase-sensitive amplification, wavelength conversion, and also nonlinear pulse propagation and soliton dynamics. The comparison between different materials and waveguide design highlights specific features of photonic crystal waveguides.

  10. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei;

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate ...

  11. The study of thermal tunable coupling between a Superconducting photonic crystal waveguide and semi-circular photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oskooi, Somayeh; Barvestani, Jamal, E-mail: barvestani@tabrizu.ac.ir

    2016-08-15

    Highlights: • The light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal has been studied. • We utilized the finite difference time domain and plane wave expansion methods in the calculations. • The effect of the size of the nearest neighbor rods of waveguide on the coupling efficiency has been investigated. • The coupling efficiencies are reported versus the temperature of the superconducting waveguide. - Abstract: Through the present study, we investigated the light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal. By using the finite difference time domain method, we evaluated the coupling efficiency between the mentioned structures at the various temperatures for different waveguide sizes. Calculation demonstrated that the coupling efficiency strongly depended on the temperature of the superconductor. The peak value of the coupling efficiency was influenced by the size of the nearest neighbor rods of waveguide. The results have shown that it is possible to obtain high efficiency at the desired temperature with proper selection of physical parameters in far-infrared frequency region. This structure has great potential in the optical integration and other areas.

  12. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter is designed and fabricated by integrating two solid-core photonic crystal fibers filled with different liquid crystals in a double silicon v-groove assembly. By separately controlling the driving voltage of each liquid-crystal-filled section, both the short......-wavelength edge and the long-wavelength edge of the bandpass filter are tuned individually or simultaneously with the response time in the millisecond range....

  13. Novel photonic crystals: incorporation of nano-CdS into the natural photonic crystals within peacock feathers.

    Science.gov (United States)

    Han, Jie; Su, Huilan; Song, Fang; Gu, Jiajun; Di, Zhang; Jiang, Limin

    2009-03-01

    In this investigation, the natural 2D photonic crystals (PhCs) within peacock feathers are applied to incorporate CdS nanocrystallites. Peacock feathers are activated by ethylenediaminetetraacetic/dimethylformamide suspension to increase the reactive sites on the keratin component, on which CdS nanoparticles (nano-CdS) are in situ formed in succession and serve as the "seeds" to direct further incorporation during the following solvothermal procedure. Thus, homogeneous nano-CdS are loaded both on the feathers' surface layer and inside the 2D PhCs. The obtained nano-CdS/peacock feathers hybrids are novel photonic crystals whose photonic stop bands are markedly different from that of the natural PhCs within original peacock feathers, as observed by the reflection spectra.

  14. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.

    Science.gov (United States)

    Passoni, Luca; Criante, Luigino; Fumagalli, Francesco; Scotognella, Francesco; Lanzani, Guglielmo; Di Fonzo, Fabio

    2014-12-23

    The nanoscale modulation of material properties such as porosity and morphology is used in the natural world to mold the flow of light and to obtain structural colors. The ability to mimic these strategies while adding technological functionality has the potential to open up a broad array of applications. Porous photonic crystals are one such technological candidate, but have typically underachieved in terms of available materials, structural and optical quality, compatibility with different substrates (e.g., silicon, flexible organics), and scalability. We report here an alternative fabrication method based on the bottom-up self-assembly of elementary building blocks from the gas phase into high surface area photonic hierarchical nanostructures at room temperature. Periodic refractive index modulation is achieved by stacking layers with different nanoarchitectures. High-efficiency porous Bragg reflectors are successfully fabricated with sub-micrometer thick films on glass, silicon, and flexible substrates. High diffraction efficiency broadband mirrors (R≈1), opto-fluidic switches, and arrays of photonic crystal pixels with sizesolar cells, and photocatalysis are envisioned.

  15. Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kłos, J. W., E-mail: klos@amu.edu.pl; Krawczyk, M. [Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614 (Poland); Dadoenkova, Yu. S.; Dadoenkova, N. N. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Lyubchanskii, I. L. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Faculty of Physics and Technology, Donetsk National University, 83000 Donetsk (Ukraine)

    2014-05-07

    We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceived by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.

  16. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review.

    Science.gov (United States)

    Cunningham, B T; Zhang, M; Zhuo, Y; Kwon, L; Race, C

    2016-05-15

    Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics.

  17. Analysis of photonic crystal fiber sensor character

    Institute of Scientific and Technical Information of China (English)

    GUO Xuan; LIU Feng; BI Wei-hong

    2007-01-01

    The special character of a PCF which is used as a gas or liquid sensor is discussed. The field distribution is analyzed when the solid core PCF is injected with different medium that has different relative dielectric constant (or refractive index). And the experiential formulas of the relation between refractive index of some kinds of liquid and their concentration are given,in order to measure the concentration of the relative liquid. At the same time, the effect of propagation constant on PCF sensor character is also discussed. Furthermore, the photonic band-gap (PBG) ofPCF (PBG-PCF) is calculated at different medium relative dielectric constant, when it is injected with different medium. That is the principle basis for this kind of PCF sensors.

  18. Dressed Photons Induced Resistance Oscillation and Zero Resistance in Arrayed Simple Harmonic Oscillators with No Impurity

    Science.gov (United States)

    Chang, Chih-Chun; Chen, Guang-Yin; Lin, Lee

    2016-11-01

    We investigate a system of an array of N simple harmonic oscillators (SHO) interacting with photons through QED interaction. As the energy of photon is around the spacing between SHO energy levels, energy gaps appear in the dispersion relation of the interacted (dressed) photons. This is quite different from the dispersion relation of free photons. Due to interactions between dressed photonic field and arrayed SHO, the photoresistance of this system shows oscillations and also drops to zero as irradiated by EM field of varying frequencies.

  19. Negative refraction angular characterization in one-dimensional photonic crystals.

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Lugo

    Full Text Available BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. METHODOLOGY/PRINCIPAL FINDINGS: By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. CONCLUSIONS/SIGNIFICANCE: Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  20. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  1. Design of Two-Dimensional Photonic Crystal Edge Emitting Laser for Photonic Integrated Circuits

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-Tao; ZHENG Wan-Hua; REN Gang; CHEN Liang-Hui

    2006-01-01

    @@ An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide.

  2. Trapping a single atom with a fraction of a photon using a photonic crystal nanocavity

    NARCIS (Netherlands)

    van Oosten, D.; Kuipers, L.

    2011-01-01

    We consider the interaction between a single rubidium atom and a photonic crystal nanocavity. Because of the ultrasmall mode volume of the nanocavity, an extremely strong coupling regime can be achieved in which the atom can shift the cavity resonance by many cavity linewidths. We show that this shi

  3. Photonic Band Gap Structures with Periodically Arranged Atoms in a Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Yu; CHEN Fang; ZHOU Jian-Ying

    2005-01-01

    @@ Linear transmission, reflection and absorption spectra for a new two-dimensional photonic crystal with periodically arranged resonant atoms are examined. Numerical results show that a twin-gap structure with forbidden bands displaced from a non-doped bandgap structure can be produced as a result of atomic polarization. The absorption spectrum is also significantly altered compared to the single atom entity.

  4. Enhanced light extraction efficiency of plastic scintillator by photonic crystal prepared with a self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinliang [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi’an, 710024 (China); Zhu, Zhichao [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Chen, Liang; Ouyang, Xiaoping [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi’an, 710024 (China); Liu, Bo, E-mail: lbo@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Cheng, Chuanwei [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Hu, Jing; He, Shiyi [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi’an, 710024 (China); Wang, Zewei [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi’an, 710024 (China); College of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Gu, Mu; Chen, Hong [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-09-21

    Plastic scintillators are extensively used in various radiation measurement systems. However the total internal reflection decreases the scintillation light output, leading to a low detection efficiency especially in these weak signal detection situations. In the present investigation, we have designed a light extraction scheme based on the photonic crystal formed with a monolayer periodic array of polystyrene nanospheres by a self-assembly method. The photonic crystal coated on the surface of plastic scintillator can significantly enhance the light extraction by 120% compared with the plain reference sample under X-ray excitation, which is achieved by the principle of the coupling of evanescent field near the scintillator-air interface with the photonic crystal.

  5. A Study of Properties of the Photonic Band Gap of Unmagnetized Plasma Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LIU Song; ZHONG Shuangying; LIU Sanqiu

    2009-01-01

    In this study,the propagation of electromagnetic waves in one-dimensional plasma photonic crystals(PPCs),namely,superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material,is simulated numerically using the finite-difference time-domain(FDTD) algorithm.A perfectly matched layer (PML) absorbing technique is used in this simulation.The reflection and transmission coefficients of electromagnetic(EM)waves through PPCs are calculated.The characteristics of the photonic band gap(PBG)are discussed in terms of plasma density,dielectric constant ratios,number of periods,and introduced layer defect.These may provide some useful information for designing plasma photonic crystal devices.

  6. Development of photonic crystal based large format IR scene projection technology

    Science.gov (United States)

    Wilson, J. A.; Burckel, B.; Caulfield, J.; Cogan, S.; Massie, M.; Rapp, R.; Rose, R.; Snyder, D.

    2012-06-01

    This paper describes recent results from the Extremely High Temperature Photonic Crystal System Technology (XTEMPS) technology program. The XTEMPS program has developed a Photonic Crystal (PhC) based high efficiency IR emitter array for use in the emerging generation of wide field of view high performance scene projectors. Cyan's approach provides high dynamic range, multispectral emission from SWIR to LWIR and is uniquely capable of accurately simulating very realistic system spectral signatures. The PhC array is fabricated from refractory materials to provide high radiance and long service lifetime. Cyan is teamed with Sandia National Laboratories for design and fabrication of the emitter and with Nova sensors to utilize their advanced Read In Integrated Circuit (RIIC). PhC based emitters show improved inband output power efficiency when compared to broad band "graybody" emitters due to the absence of out-of-band emission. Less electrical power is required to achieve high operating temperature, and non-Lambertian emission pattern puts a large fraction of the emitted energy into a straight ahead beam. Both effects significantly boost effective radiance output. Cyan has demonstrated pixel designs compatible with Nova's medium format RIIC, which ensures high apparent output temperatures with modest drive currents and low operating voltages of less than five volts. Unit cell pixel structures for high radiative efficiency have been demonstrated and arrays using PhC optimized for up to four spectral bands have been successfully patterned and fabricated into high yield wafers.

  7. Photonic crystal type structure in bivalve ligament of Pinctada maxima

    Institute of Scientific and Technical Information of China (English)

    ZHANG GangSheng

    2007-01-01

    The dry ligament of Pinctada maxima normally appears black; however, it can exhibit striking blue structural colors after being wetted by water. The field-mission SEM investigation shows that the ligament is made of lamellae, which, about 35 μm thick, are made of proteins and aragonite fibers of about 78 nm in diameter. In each single lamella, the fibers are highly aligned characterized by a 2D photonic crystal type structure. According to measured reflective spectra and theoretical simulations, the dry and wet ligaments possess photonic stop band at ultraviolet and blue wavelengths, respectively, which are responsible for structural colorations of ligament.

  8. Optical Tamm States in Dielectric Photonic Crystal Heterostructure

    Institute of Scientific and Technical Information of China (English)

    GUO Ji-Yong; SUN Yong; LI Hong-Qiang; ZHANG Ye-Wen; CHEN Hong

    2008-01-01

    We investigate one-dimensional dielectric photonic crystal and optical Tamm modes formed by superposition of two band gaps and find that this kind of mode can be explained by the single negative materials tunnelling effect. A finite-size dielectric photonic band gap can mimic one kind of effective single negative material and this property sensitively depends on the frequency Iocation in stop-band regions and surface termination and so on. The effective impedance match and effective phase match give the precise position of the optical Tamm mode. Complete transparency via tunnelling is achieved by two opaque media and demonstrates the validity of our approach.

  9. A Novel Woodpile Three-Dimensional Terahertz Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LIU Huan; YAO Jian-Quan; ZHENG Fang-Hua; XU De-Gang; WANG Peng

    2007-01-01

    A novel woodpile lattice structure is proposed. Based on plane wave expansion (PWE) method, the complete photonic band gaps (PBGs) of the novel woodpile three-dimensional (3D) terahertz (THz) photonic crystal (PC) with a decreasing symmetry relative to a face-centred-tetragonal (fct) symmetry are optimized by varying some structural parameters and the highest band gap ratio can reach 27.61%. Compared to the traditional woodpile lattice, the novel woodpile lattice has a wider range of the Riling ratios to gain high quality PBGs, which provides greater convenience for the manufacturing process. The novel woodpile 3D PC will be very promising for materials of THz functional components.

  10. Photonic crystal digital alloys and their band structure properties.

    Science.gov (United States)

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  11. High-Q silicon carbide photonic-crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan Y. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  12. Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers

    CERN Document Server

    Tran, Truong X; Soeller, Christoph; Blow, Keith J; Biancalana, Fabio

    2011-01-01

    We report on the existence of a novel kind of squeezing in photonic crystal fibers which is conceptually intermediate between the four-wave mixing induced squeezing, in which all the participant waves are monochromatic waves, and the self-phase modulation induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when an arbitrary short soliton emits quasi-monochromatic resonant radiation near a zero group velocity dispersion point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the classical soliton, and a reduction of the quantum noise below the shot noise level is predicted.

  13. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stavroula Foteinopoulou

    2003-12-12

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  14. Multidimensional microstructured photonic device based on all-solid waveguide array fiber and magnetic fluid

    Science.gov (United States)

    Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Yang, Xiaoping; Yao, Jianquan

    2017-01-01

    An all-solid waveguide array fiber (WAF) is one kind of special microstructured optical fiber in which the higher-index rods are periodically distributed in a low-index silica host to form the transverse two-dimensional photonic crystal. In this paper, one kind of multidimensional microstructured optical fiber photonic device is proposed by using electric arc discharge method to fabricate periodic tapers along the fiber axis. By tuning the applied magnetic field intensity, the propagation characteristics of the all-solid WAF integrated with magnetic fluid are periodically modulated in both radial and axial directions. Experimental results show that the wavelength changes little while the transmission loss increases for an applied magnetic field intensity range from 0 to 500 Oe. The magnetic field sensitivity is 0.055 dB/Oe within the linear range from 50 to 300 Oe. Meanwhile, the all-solid WAF has very similar thermal expansion coefficient for both high- and low-refractive index glasses, and thermal drifts have a little effect on the mode profile. The results show that the temperature-induced transmission loss is <0.3 dB from 26°C to 44°C. Further tuning coherent coupling of waveguides and controlling light propagation, the all-solid WAF would be found great potential applications to develop new micro-nano photonic devices for optical communications and optical sensing applications.

  15. Multidimensional microstructured photonic device based on all-solid waveguide array fiber and magnetic fluid

    Directory of Open Access Journals (Sweden)

    Miao Yinping

    2016-11-01

    Full Text Available An all-solid waveguide array fiber (WAF is one kind of special microstructured optical fiber in which the higher-index rods are periodically distributed in a low-index silica host to form the transverse two-dimensional photonic crystal. In this paper, one kind of multidimensional microstructured optical fiber photonic device is proposed by using electric arc discharge method to fabricate periodic tapers along the fiber axis. By tuning the applied magnetic field intensity, the propagation characteristics of the all-solid WAF integrated with magnetic fluid are periodically modulated in both radial and axial directions. Experimental results show that the wavelength changes little while the transmission loss increases for an applied magnetic field intensity range from 0 to 500 Oe. The magnetic field sensitivity is 0.055 dB/Oe within the linear range from 50 to 300 Oe. Meanwhile, the all-solid WAF has very similar thermal expansion coefficient for both high- and low-refractive index glasses, and thermal drifts have a little effect on the mode profile. The results show that the temperature-induced transmission loss is <0.3 dB from 26°C to 44°C. Further tuning coherent coupling of waveguides and controlling light propagation, the all-solid WAF would be found great potential applications to develop new micro-nano photonic devices for optical communications and optical sensing applications.

  16. Magneto-optical properties of biogenic photonic crystals in algae

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaka, M., E-mail: iwasaka-m@umin.ac.jp [Chiba University, 1-33 Yayoicho, Inage-ku, 263-8522 Chiba (Japan); Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012 Saitama (Japan); Mizukawa, Y. [Chiba University, 1-33 Yayoicho, Inage-ku, 263-8522 Chiba (Japan)

    2014-05-07

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.

  17. High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber

    DEFF Research Database (Denmark)

    Li, J.; Gauza, S.; Wu, S.-T.;

    2006-01-01

    We have analyzed the physical origins of the temperature gradient of the ordinary refractive index (odn/dT) of liquid crystals. To achieve a large odn/dT , high birefringence (Delta n) and low clearing temperature play crucial roles. Based on these guidelines, we formulated two exemplary liquid...... crystal mixtures, designated as UCF-1 and UCF-2. The dn(o)/dT of UCF-1 is similar to 4x higher than that of 5CB at room temperature. By infiltrating UCF-1 into the air holes of a three-rod core photonic crystal fiber, we demonstrate a thermally tunable photonic bandgap fiber with tuning sensitivity of 27...

  18. Fabrication of Colloidal Photonic Crystals with Heterostructure by Spin-Coating Method

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-Jun; CHEN Sheng-Li; DONG Peng; CAI Xiao-Gang; ZHOU Qian; YUAN Gui-Mei; HU Chun-Tian; ZANG Dao-Zhong

    2009-01-01

    Colloidal photonic crystal heterostructures, composed of two opaline photonic crystal films of silica spheres with different diameters, are fabricated by a two-step spin-coating method. Scanning electron microscopy (SEM) and UV-vis speetrophotometer are used to characterize the heterostructures. The SEM images show good ordering of the two-layer colloidal crystals constituting the heterostructures. The transmission spectra measured from the (111) plane in the heterostructure show that the composite colloidal photonic crystals have double photonic stop bands. Furthermore, when the sizes of the silica spheres used for fabricating the composite photonic crystal are slightly different, the transmission spectrum shows that the composite photonic crystals have more extended bandgap than that of the individual photonic crystals due to partial overlapping of its two photonie stop bands.

  19. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  20. The stability of polarisation singularities in disordered photonic crystal waveguides

    CERN Document Server

    Lang, Ben; Young, Andrew B; Rarity, John G; Oulton, Ruth

    2015-01-01

    The effects of short range disorder on the polarisation characteristics of light in photonic crystal waveguides were investigated using finite difference time domain simulations with a view to investigating the stability of polarisation singularities. It was found that points of local circular polarisation (C-points) and contours of linear polarisation (L-lines) continued to appear even in the presence of high levels of disorder, and that they remained close to their positions in the ordered crystal. These results are a promising indication that devices exploiting polarisation in these structures are viable given current fabrication standards.

  1. Mesoporous multilayer thin films: environment-sensitive photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Soler Illia, Galo; Fuertes, Maria Cecilia; Angelome, Paula Cecilia [Comision Nacional de Energia Atomica, San Martin, Buenos Aires (Argentina). Centro Atomico Constituyentes. Gerencia de Quimica; Marchi, Maria Claudia [Universidad de Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. INQUIMAE; Troiani, Horacio [Comision Nacional de Energia Atomica (CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche and Instituto Balseiro; Luca, Vittorio [Australian Nuclear Science and Technology Organization, Lucas Heights (Australia). Inst. of Materials and Engineering Sciences; Miguez, Hernan [Consejo Superior de Investigaciones Cientificas, Isla de La Cartuja, Sevilla (Spain). Inst. de Ciencia de Materiales

    2008-11-15

    Photonic Crystals made up of stacked mesoporous thin films (MTF) were produced by sequential deposition. These materials present order at different length scales: atomic (local structure), mesoscopic (ordered mesopores) and submicronic (controlled thickness), which were accurately assessed by Small Angle X-ray Scattering (2D SAXS, D11A SAXS1) and X-ray Reflectometry (XRR, D10A XRD2). Each MTF building block of a complex multilayer architecture behaves like an 'optical switch' in the presence of vapours. Its electronic density (and therefore the refractive index) changes due to capillary condensation of a given solvent within the pore systems. This allows for the creation of photonic crystals that are responsive to environment, with promising applications in selective sensing or active waveguides. (author)

  2. Enhanced electrophoretic DNA separation in photonic crystal fiber.

    Science.gov (United States)

    Sun, Yi; Nguyen, Nam-Trung; Kwok, Yien Chian

    2009-07-01

    Joule heating generated by the electrical current in capillary electrophoresis leads to a temperature gradient along the separation channel and consequently affects the separation quality. We describe a method of reducing the Joule heating effect by incorporating photonic crystal fiber into a micro capillary electrophoresis chip. The photonic crystal fiber consists of a bundle of extremely narrow hollow channels, which ideally work as separation columns. Electrophoretic separation of DNA fragments was simultaneously but independently carried out in 54 narrow capillaries with a diameter of 3.7 microm each. The capillary bundle offers more efficient heat dissipation owing to the high surface-to-volume ratio. Under the same electrical field strength, notable improvement in resolution was obtained in the capillary bundle chip.

  3. Electrically pumped photonic crystal laser constructed with organic semiconductors

    Science.gov (United States)

    Cai, Yuan-yuan; Chen, Xiao; Li, Ning; Li, Chang-wei; Wang, Yi-quan

    2017-03-01

    We experimentally demonstrate the lasing action of electrically pumped octagonal quasi-crystal microcavities formed in a layer of conjugated polymer poly[2-methoxy- 5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) sandwiched between two electrodes. Lasing from a point-defect microcavity is observed at a wavelength of 606 nm with a narrow linewidth of 0.5 nm, limited by the spectrometer resolution. Due to the properties of the photonic bandgap and localization in photonic crystals, the threshold current for lasing is low at 0.8 mA. The ion injection in the luminescent polymer layer by focused ion beam (FIB) etching technology also contributes to enhancement of the carrier density as well as the mobility, resulting in an increase of MEH-PPV conductivity and a decrease of turn-on voltage.

  4. Slow light in tapered slot photonic crystal waveguide

    Institute of Scientific and Technical Information of China (English)

    WU Jun; LI YanPing; YANG ChuanChuan; PENG Chao; WANG ZiYu

    2009-01-01

    A slotted single-mode photonic crystal waveguide with a linear tapered slot is presented to realize slow light, whose dispersion curve is shifted by changing the slot width. When the slot width is reduced, the band curve shifts in the tapered structure, and the group velocity of light approach zero at the cut-off frequency. Therefore, different frequency components of the guided light are slowed down even loca-lized along the propagation direction inside a tapered slot photonic crystal waveguide. Furthermore, this structure can confine slow light-wave in a narrow slot waveguide, which may effectively enhance the interaction between slow light and the low-index wave-guiding materials filled in the slot. In addition, this tapered slot structure can be used to compensate group velocity dispersion of slow light by mod-ifying the structure, thus opening the opportunity for ultra-wide bandwidth slow light.

  5. Active Photonic crystal fibers for high power applications

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin

    . This plays an important role in high power lasers and ampliers with respect to efficiency, packaging, and thermal handling. The third part of the work has involved developing tools for characterizing the mode quality and stability of large core bers. Stable, single-mode bers with larger cores are essential......The photonic crystal ber technology provides means to realize bers optimized for high power operation, due to the large single-mode cores and the unique design exibility of the microstructure. The work presented in this thesis focuses on improving the properties of active photonic crystal bers...... for high power ber lasers and ampliers, and on adding new functionality to the fibers - all with the purpose of pushing the technology towards high powers. The first part of the work has been to investigate photo darkening, the mitigation of which is crucial in the quest for higher powers. The work has...

  6. CVD synthesis of carbon-based metallic photonic crystals

    CERN Document Server

    Zakhidov, A A; Baughman, R H; Iqbal, Z

    1999-01-01

    Three-dimensionally periodic nanostructures on the scale of hundreds of nanometers, known as photonic crystals, are attracting increasing interest because of a number of exciting predicted properties. In particular, interesting behavior should be obtainable for carbon- based structures having a dimensional scale larger than fullerenes and nanotubes, but smaller than graphitic microfibers. We show here how templating of porous opals by chemical vapor deposition (CVD) allows us to obtain novel types of graphitic nanostructures. We describe the synthesis of new cubic forms of carbon having extended covalent connectivity in three dimensions, which provide high electrical conductivity and unit cell dimensions comparable to optical wavelengths. Such materials are metallic photonic crystals that show intense Bragg diffraction. (14 refs).

  7. Photonic crystal fiber long-period gratings for biosensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Lindvold, Lars René

    2008-01-01

    The rapidly growing field of label-free biosensors demands an accurate and portable yet cheap technology. Inspired by the success of surface plasmon resonance biosensors it is investigated whether the unique light guiding properties of photonic crystal fibers (PCFs) can be made useful in this app......The rapidly growing field of label-free biosensors demands an accurate and portable yet cheap technology. Inspired by the success of surface plasmon resonance biosensors it is investigated whether the unique light guiding properties of photonic crystal fibers (PCFs) can be made useful...... is very general and can also give estimates to the attenuation constants of the lossy cladding modes as well heat transfer simulations of the rapid, intense heating and cooling during the CO2-laser inscription. As sensors PCF-LPGs are shown to detect layers of biomolecules ∼ 0.25 nm thick on average while...

  8. Chirped photonic crystals: a natural strategy for broadband reflectance

    CERN Document Server

    Cook, Caleb Q

    2016-01-01

    One-dimensional photonic crystals with slowly varying, i.e. "chirped", lattice period are responsible for broadband light reflectance in many diverse biological contexts, ranging from the shiny coatings of various beetles to the eyes of certain butterflies. We present a quantum scattering analogy for light reflection from these adiabatically chirped photonic crystals (ACPCs) and apply a WKB-type approximation to obtain a closed-form expression for the reflectance. From this expression we infer several design principles, including a differential equation for the chirp pattern required to elicit a given reflectance spectrum and the minimal number of bilayers required to exceed a desired reflectance threshold. Comparison of the number of bilayers found in ACPCs throughout nature and our predicted minimal required number also gives a quantitative measure of the optimality of chirped biological reflectors. Together these results elucidate the design principles of chirped reflectors in nature and their possible app...

  9. Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing

    DEFF Research Database (Denmark)

    Yu, Yi

    , membranization of InP/InGaAs structure and wet etching. Experimental investigation of the switching dynamics of InP photonic crystal nanocavity structures are carried out using short-pulse homodyne pump-probe techniques, both in the linear and nonlinear region where the cavity is perturbed by a relatively small......This thesis deals with the investigation of InP material based photonic crystal cavity membrane structures, both experimentally and theoretically. The work emphasizes on the understanding of the physics underlying the structures’ nonlinear properties and their applications for all-optical signal...... and large pump power. The experimental results are compared with coupled mode equations developed based on the first order perturbation theory, and carrier rate equations we established for the dynamics of the carrier density governing the cavity properties. The experimental observations show a good...

  10. Can photonic crystals be homogenized in higher bands?

    CERN Document Server

    Markel, Vadim A

    2015-01-01

    We consider the conditions under which photonic crystals (PCs) can be viewed as electromagnetically homogeneous at frequencies in the higher photonic bands and, in particular, near the higher-order $\\Gamma$-points. We show that the observation that a purely real isofrequency line of the PC is close to a mathematical circle is insufficient for establishing homogenizability. Complex dispersion points must be included into consideration even in the case of strictly non-absorbing materials. By applying a more careful analysis to the dispersion relations and complex isofrequency lines, we have found that two-dimensional PCs with $C_4$ and $C_6$ symmetries are not electromagnetically homogeneous in the higher photonic bands in spite of the fact that, at some particular frequencies, the real isofrequency lines of these PCs can be circular with high precision.

  11. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.

    Science.gov (United States)

    Suzuki, Keijiro; Baba, Toshihiko

    2010-12-06

    Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report the detailed design, fabrication process, and the linear and nonlinear characteristics of this waveguide at silica fiber communication wavelengths. We show that the waveguide exhibits negligible two-photon absorption, and also high-efficiency self-phase modulation and four-wave mixing, which are assisted by low-dispersion slow light.

  12. All-optical information processing in photonic crystals

    Science.gov (United States)

    Yanik, Mehmet Fatih

    This thesis covers coherent and incoherent all-optical information processing using photonic bandgap nanostructures and microcavities. The first 3 chapters introduce all-optical bistable switching, transistor and memory elements with sub-micron scale dimensions. A strategy for large scale integration without optical isolators is also described. In chapters 4 and 5, dynamically modulated photonic crystal structures are introduced. It is shown that light pulses can be stopped and stored all-optically without requiring any coherent or resonant light-matter interaction. In chapter 6, it is shown that light pulses can be coherently time-reversed by using only index modulations and linear optics. In chapter 7, a supercomputer implementation of an object oriented finite difference time domain simulation is described to simulate photonic nanostructures with arbitrary material & geometric features.

  13. Slow-light enhanced gain in active photonic crystal waveguides

    CERN Document Server

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mørk, Jesper

    2014-01-01

    Slow light is a fascinating physical effect, raising fundamental questions related to our understanding of light-matter interactions as well as offering new possibilities for photonic devices. From the first demonstrations of slow light propagation in ultra-cold atomic gasses, solid-state Ruby and photonic crystal structures, focus has shifted to applications, with slow light offering the ability to enhance and control light-matter interactions. The demonstration of tuneable delay lines, enhanced nonlinearities and spontaneous emission, enlarged spectral sensitivity and increased phase shifts illustrate the possibilities enabled by slow light propagation, with microwave photonics emerging as one of the promising applications. Here, we demonstrate that slow light can be used to control and increase the gain coefficient of an active semiconductor waveguide. The effect was theoretically predicted but not yet experimentally demonstrated. These results show a route towards realizing ultra-compact optical amplifier...

  14. The Second Order Guided Modes Based on Photonic Bandgap Effects in Air/Glass Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng

    2009-01-01

    We introduce a defect site in the periodic structure of a photonic bandgap fiber,to confine and guide the second order mode by photonic bandgap effects.Based on a high air-filling fraction photonic crystal cladding structure,a simplified model with an equivalent air cladding was proposed to explore and analyze the properties of this second order guided mode.

  15. Photonic Crystal Cavities in Cubic Polytype Silicon Carbide Films

    CERN Document Server

    Radulaski, Marina; Buckley, Sonia; Rundquist, Armand; Provine, J; Alassaad, Kassem; Ferro, Gabriel; Vučković, Jelena

    2013-01-01

    We present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities from cubic (3C) thin films (thickness ~ 200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1250 - 1600 nm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

  16. Applications of photonic crystal in wavelength multiplex visualization

    Science.gov (United States)

    Qian, Shi; Lei, Zhang

    2016-10-01

    The triple-channel photonic crystal filters are proposed designed. These devices have advantages of better filtering effect and high wavelength accuracy. In wavelength multiplex visualization, these filters can bring different wavelength of view entering into eyes so that stereo images are formed. we discuss the problem about minimization of the angle shift .The simulation shows that higher-index material and more high-index material in a basic period can decrease the angle shift.

  17. Supermode analysis of the 18-core photonic crystal fiber laser

    Institute of Scientific and Technical Information of China (English)

    王远; 姚建铨; 郑一博; 温午麒; 陆颖; 王鹏

    2012-01-01

    The modal of 18-core photonic crystal fiber laser is discussed and calculated.And corresponding far-field distribution of the supermodes is given by Fresnel diffraction integral.For improving beam quality,the mode selection method based on the Talbot effect is introduced.The reflection coefficients are calculated,and the result shows that an in-phase supermode can be locked better at a large propagation distance.

  18. Optimized photonic crystal fibers supporting efficient capillary electrophoresis

    Science.gov (United States)

    Calcerrada, M.; García-Ruiz, C.; Roy, P.; Gonzalez-Herraez, M.

    2013-05-01

    In this paper we present preliminary results on the use of Photonic Crystal Fibers (PCFs) in a conventional capillary electrophoresis system to separate and detect fluorescent species. PCFs show interesting advantages over conventional capillaries for this application, including larger surface-to-volume ratio and potential for higher resolution with comparable sensitivity. Our results illustrate some of these advantages, and we point out the need for stringent tolerances in the fabrication of specific PCFs for this application.

  19. Design of photonic crystal microcavities for cavity QED.

    Science.gov (United States)

    Vucković, Jelena; Loncar, Marko; Mabuchi, Hideo; Scherer, Axel

    2002-01-01

    We discuss the optimization of optical microcavity designs based on two-dimensional photonic crystals for the purpose of strong coupling between the cavity field and a single neutral atom trapped within a hole. We present numerical predictions for the quality factors and mode volumes of localized defect modes as a function of geometric parameters, and discuss some experimental challenges related to the coupling of a defect cavity to gas-phase atoms.

  20. Dispersion Based Photonic-Crystal Structures for RF Applications

    Science.gov (United States)

    2006-06-01

    dimensional FDTD simulation. In our experiment, we fabricated the device using a computer numerically controlled ( CNC ) router . A tapered planar structure is...millimeter-wave photonic crystals are fabricated in Rexolite slabs by a computer numerically controlled ( CNC ) micro-milling system. Using the millimeter...loss, and low cost. In particular, it can be fabricated using a CNC micro-milling machine. Also, its low index provides a weaker confinement in the