WorldWideScience

Sample records for array implosion obtained

  1. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  2. Radiative properties of high wire number tungsten arrays with implosion times up to 250 ns

    Science.gov (United States)

    Deeney, C.; Coverdale, C. A.; Douglas, M. R.; Struve, K. W.; Spielman, R. B.; Stygar, W. A.; Peterson, D. L.; Roderick, N. F.; Haines, M. G.; Beg, F. N.; Ruiz-Camacho, J.

    1999-09-01

    High wire number, 25-mm-diameter tungsten wire arrays have been imploded on the 8-MA Saturn generator [R. B. Spielman et al., AIP Conference Proceeding 195, 3 (American Institute of Physics, Woodbury, NY 1989)], operating in a long-pulse mode. By varying the mass of the arrays from 710 to 6140 μg/cm, implosion times of 130-250 ns have been obtained with implosion velocities of 50-25 cm/μs, respectively. These Z-pinch implosions produced plasmas with millimeter diameters that radiated 600-800 kJ of x-rays, with powers of 20-49 TW; the corresponding pulsewidths were 19-7.5 ns, with risetimes ranging from 6.5 to 4.0 ns. These powers and pulsewidths are similar to those achieved with 50-ns implosion times on Saturn. Two-dimensional, radiation-magnetohydrodynamic calculations indicate that the imploding shells in these long implosion time experiments are comparable in width to those in the short-pulse cases. This can be due to lower initial perturbations. A heuristic wire array model suggests that the reduced perturbations, in the long-pulse cases, may be due to the individual wire merger occurring well before the acceleration of the shell. The experiments and modeling suggest that 150-200 ns implosion time Z-pinches could be employed for high-power, x-ray source applications.

  3. Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator

    Institute of Scientific and Technical Information of China (English)

    Huang Xian-Bin; Chen Guang-Hua; Zhang Zheng-Wei; Ouyang Kai; Li Jun; Zhang Zhao-Hui; Zhou Rong-Guo; Wang Gui-Lin; Yang Li-Bing; Li Jing; Zhou Shao-Tong; Ren Xiao-Dong; Zhang Si-Qun; Dan Jia-Kun; Cai Hong-Chun; Duan Shu-Chao

    2012-01-01

    We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 M A and a rising time~90 ns.The arrays are made up of(8-32)x5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy~13 kJ and the energy conversion efficiency~9%(24x5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)x 107 cm/s.

  4. Implosion dynamics and x-ray generation in small-diameter wire-array Z pinches.

    Science.gov (United States)

    Ivanov, V V; Sotnikov, V I; Kindel, J M; Hakel, P; Mancini, R C; Astanovitskiy, A L; Haboub, A; Altemara, S D; Shevelko, A P; Kazakov, E D; Sasorov, P V

    2009-05-01

    It is known from experiments that the radiated x-ray energy appears to exceed the calculated implosion kinetic energy and Spitzer resistive heating [C. Deeney, Phys. Rev. A 44, 6762 (1991)] but possible mechanisms of the enhanced x-ray production are still being discussed. Enhanced plasma heating in small-diameter wire arrays with decreased calculated kinetic energy was investigated, and a review of experiments with cylindrical arrays of 1-16 mm in diameter on the 1 MA Zebra generator is presented in this paper. The implosion and x-ray generation in cylindrical wire arrays with different diameters were compared to find a transition from a regime where thermalization of the kinetic energy is the prevailing heating mechanism to regimes with other dominant mechanisms of plasma heating. Loads of 3-8 mm in diameter generate the highest x-ray power at the Zebra generator. The x-ray power falls in 1-2 mm loads which can be linked to the lower efficiency of plasma heating with the lack of kinetic energy. The electron temperature and density of the pinches also depend on the array diameter. In small-diameter arrays, 1-3 mm in diameter, ablating plasma accumulates in the inner volume much faster than in loads of 12-16 mm in diameter. Correlated bubblelike implosions were observed with multiframe shadowgraphy. Investigation of energy balance provides evidence for mechanisms of nonkinetic plasma heating in Z pinches. Formation and evolution of bright spots in Z pinches were studied with a time-gated pinhole camera. A comparison of x-ray images with shadowgrams shows that implosion bubbles can initiate bright spots in the pinch. Features of the implosions in small-diameter wire arrays are discussed to identify mechanisms of energy dissipation.

  5. The Physics of Long-Pulse Wire Array Z-Pinch Implosions

    Energy Technology Data Exchange (ETDEWEB)

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; SPIELMAN,RICK B.; COVERDALE,CHRISTINE A.; RODERICK,N.F.; PETERSON,D.L.

    1999-12-14

    Recent improvements in z-pinch wire array load design at Sandia National Laboratories have led to a substantial increase in pinch performance as measured by radiated powers of up to 280 TW in 4 ns and 1.8 MJ of total radiated energy. Next generation, higher current machines will allow for larger mass arrays and comparable or higher velocity implosions to be reached, possibly extending these result.dis the current is pushed above 20 MA, conventional machine design based on a 100 ns implosion time results in higher voltages, hence higher cost and power flow risk. Another approach, which shifts the risk to the load configuration, is to increase the implosion time to minimize the voltage. This approach is being investigated in a series of experimental campaigns on the Saturn and Z machines. In this paper, both experimental and two dimensional computational modeling of the fist long implosion Z experiments will be presented. The experimental data shows broader pulses, lower powers, and larger pinch diameters compared to the corresponding short pulse data. By employing a nested array configuration, the pinch diameter was reduced by 50% with a corresponding increase in power of > 30%. Numerical simulations suggest load velocity is the dominating mechanism behind these results.

  6. Inner-shell radiation from wire array implosions on the Zebra generator

    Energy Technology Data Exchange (ETDEWEB)

    Ouart, N. D.; Giuliani, J. L.; Dasgupta, A. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Weller, M. E.; Shlyaptseva, V.; Osborne, G. C.; Stafford, A.; Keim, S. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States); Clark, R. W. [Berkeley Research Associates, Beltsville, Maryland 20705 (United States)

    2014-03-15

    Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell Kα and Kβ transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport is used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the Kα radiation, but it is found to be insufficient.

  7. X-ray observations of tungsten wire array Z-pinch implosions on QiangGuang-1 facility

    Institute of Scientific and Technical Information of China (English)

    Zhang Fa-Qiang; Ning Jia-Min; Wang Zhen; Xue Fei-Biao; Li Lin-Bo; Qin Yi; Ying Chun-Tong; Liu Guang-Jun; Li Zheng-Hong; Xu Ze-Ping; Xu Rong-Kun; Yang Jian-Lun; Guo Cun; Xia Guang-Xin; Chen Jin-Chuan; Song Feng-Jun

    2006-01-01

    Z-pinch experiments with two arrays consisting, respectively, of 32 4-μm- and 6-μm-diameter tungsten wires have been carried out on QiangGuang-1 facility with a current rising up to 1.5 MA in 80 ns. At early time of implosion,x-ray framing images show that the initial emission comes from the central part of arrays, and double clear emission rings, drifting to the anode and the cathode at 5×106 cm/s and 2.4×107 cm/s respectively, are often produced near the electrodes. Later, in a 4-μm-diameter tungsten wire array, filamentation caused by ohmic heating is prominent,and more than ten filaments have been observed. A radial inward shift of arrays starts at about 30 ns earlier than the occurrence of the x-ray peak power for both kinds of arrays, and the shrinkage rate of emission region is as high as 1.7×107 cm/s in a 4-μm-diameter tungsten wire array, which is two times higher than that in a 6-μm one. Emission from precursor plasmas is observed in implosion of 6-μm-diameter tungsten wire arrays, but not in implosion of a 4-μm-diameter tungsten wire array. Whereas, in a 4-μm-diameter tungsten wire array, the soft x-ray emission shows the growth of m=1 instability in the plasma column, which is caused by current. The reasons for the discrepancy between implosions of 4-μm- and 6-μm-diameter tungsten wire arrays are explained.

  8. Physics of Multi-Planar and Compact Cylindrical Wire Arrays Implosions on University-Scale Z-pinch Generators

    Science.gov (United States)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Ouart, N. D.; Yilmaz, M. F.; Wilcox, P. G.; Osborne, G. C.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Greenly, J. B.; McBride, R. D.; Knapp, P. F.; Blessener, I. C.; Bell, K. S.; Chalenski, D. A.; Hammer, D. A.; Kusse, B. R.

    2009-01-01

    The presented research focuses on investigation of Z-pinch plasma formation, implosion, and radiation characteristics as a function of the load configuration. The single planar and multi-planar wire arrays as well as compact cylindrical wire arrays were studied on the 1.3 MA UNR Zebra and 1 MA Cornell COBRA generators. The largest yields and powers were found for W and Mo double planar and compact wire arrays. A possibility of radiation pulse shaping was demonstrated. Two types of bright spots were observed in plasmas. A comparison of Mo double planar and compact wire array data indicates the possibility that the same heating mechanism operates during the final implosion and stagnation stages.

  9. Symplectic and hyperkahler implosion

    OpenAIRE

    Dancer, Andrew; Doran, Brent; Kirwan, Frances; Swann, Andrew

    2014-01-01

    We review the quiver descriptions of symplectic and hyperk\\"ahler implosion in the case of SU(n) actions. We give quiver descriptions of symplectic implosion for other classical groups, and discuss some of the issues involved in obtaining a similar description for hyperk\\"ahler implosion.

  10. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    Science.gov (United States)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Medovshchikov, S. F.; Oleinik, G. M.; Rupasov, A. A.; Frolov, I. N.

    2016-12-01

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode- anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.

  11. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O. [University of Nevada Reno, Reno, Nevada 89557 (United States); Papp, D. [University of Nevada Reno, Reno, Nevada 89557 (United States); ELI-ALPS, ELI-Hu Nkft., H-6720 Szeged (Hungary)

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  12. Implosions and hypertoric geometry

    DEFF Research Database (Denmark)

    Dancer, A.; Kirwan, F.; Swann, A.

    2013-01-01

    The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

  13. Diagnostics for Z-pinch implosion experiments on PTS

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X. D., E-mail: amosrxd@163.com; Huang, X. B., E-mail: amosrxd@163.com; Zhou, S. T., E-mail: amosrxd@163.com; Zhang, S. Q., E-mail: amosrxd@163.com; Dan, J. K., E-mail: amosrxd@163.com; Li, J., E-mail: amosrxd@163.com; Cai, H. C., E-mail: amosrxd@163.com; Wang, K. L., E-mail: amosrxd@163.com; Ouyang, K., E-mail: amosrxd@163.com; Xu, Q., E-mail: amosrxd@163.com; Duan, S. C., E-mail: amosrxd@163.com; Chen, G. H., E-mail: amosrxd@163.com; Wang, M., E-mail: amosrxd@163.com; Feng, S. P., E-mail: amosrxd@163.com; Yang, L. B., E-mail: amosrxd@163.com; Xie, W. P., E-mail: amosrxd@163.com; Deng, J. J., E-mail: amosrxd@163.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-12-15

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  14. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Dan’ko, S. A. [National Research Centre Kurchatov Institute (Russian Federation); Mitrofanov, K. N., E-mail: mitrofan@triniti.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Krauz, V. I.; Myalton, V. V.; Zhuzhunashvili, A. I.; Vinogradov, V. P.; Kharrasov, A. M.; Anan’ev, S. S.; Vinogradova, Yu. V.; Kalinin, Yu. G. [National Research Centre Kurchatov Institute (Russian Federation)

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measured soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.

  15. Experimental study of implosion dynamics of multi-material nested wire-arrays on S-300 pulsed power generator

    NARCIS (Netherlands)

    Chernenko, AS; Smirnov, VP; Kingsep, AS; Kalinin, YG; Bakshaev, YL; Bartov, AV; Blinov, PI; Danko, SA; Dubas, LG; Korelskii, AV; Korolev, VD; Mizhiritsky, [No Value; Shaskov, AY; Ustroev, GI; Li, ZH; Hua, XS; Feng, SP; Guo, C; Jiang, SL; Ning, C; Peng, XJ; Song, FJ; Xu, RK; Xu, ZP; Yan, CL; Yang, JL; Yang, LB; Cai, HC

    2004-01-01

    On "S-300" generator (700 W, 4 MA, 70 ns) at the Kurchatov Institute, the experimental studies with multi-material wire array units are carried on aimed at creating the powerful X-ray source. The development of new diagnostic methods would definitely contribute to attain new data, which could help i

  16. Spectroscopy of a plasma formed in the vicinity of implosion of the shock wave generated by underwater electrical explosion of spherical wire array

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, O.; Efimov, S.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel); Bernshtam, V. [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2015-05-15

    The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple method of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.

  17. Method to obtain standard pseudosections from pseudo pole-dipole arrays

    Science.gov (United States)

    Bellmunt, Fabián; Marcuello, Alex

    2011-11-01

    This study deals with electrical resistivity tomography data and it is addressed at obtaining, from linear combinations of data, other datasets not directly measured. The method presented here allows performing the fieldwork systematically, without deciding the type of the more suitable common electrode array (e.g. Wenner, Wenner-Schlumberger, dipole-dipole or multiple-gradient) until or even after the interpretation time. The electrode configuration used by this method is denoted as pseudo pole-dipole array, because it is based on the standard pole-dipole one, but avoiding the disadvantage of locating the remote electrode far away from the profile (to "infinity"). The pseudo pole-dipole datasets can be acquired with common equipment using standard pole-dipole recording sequences. Once the desired datasets have been calculated, they can be inverted using standard interpretation software. The procedure used allows a data quality control to be introduced that is similar to the one based on normal and reciprocal measurements. To assess the method we considered noise-contaminated model responses as well as field data. It has been applied to build dipole-dipole and Wenner-Schlumberger datasets. Results show the suitability of both, the proposed method and the quality control.

  18. Isochoric implosions for fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D S; Tabak, M

    2006-06-05

    Fast Ignition (FI) exploits the ignition of a dense, uniform fuel assembly by an external energy source to achieve high gain. In conventional ICF implosions, however, the fuel assembles as a dense shell surrounding a low density, high-pressure hotspot. Such configurations are far from optimal for FI. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942).] may be employed to implode a dense, quasi-uniform fuel assembly with minimal energy wastage in forming a hotspot. A scheme for realizing these specialized implosions in a practical ICF target is also described.

  19. 2D Implosion Simulations with a Kinetic Particle Code

    CERN Document Server

    Sagert, Irina; Strother, Terrance T

    2016-01-01

    We perform two-dimensional (2D) implosion simulations using a Monte Carlo kinetic particle code. The paper is motivated by the importance of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions. These cannot be fully captured by hydrodynamic simulations while kinetic methods, as the one presented in this study, are able to describe continuum and rarefied regimes within one approach. In the past, our code has been verified via traditional shock wave and fluid instability simulations. In the present work, we focus on setups that are closer to applications in ICF. We perform simple 2D disk implosion simulations using one particle species. The obtained results are compared to simulations using the hydrodynamics code RAGE. In a first study, the implosions are powered by energy deposition in the outer layers of the disk. We test the impact of the particle mean-free-path and find that while the width of the implosion shock broadens, its location as a function of time remains very similar. ...

  20. Isochoric Implosions for Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D S; Tabak, M

    2007-04-04

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hot spot ignition counterpart [e.g., S. Atzeni, Phys. Plasmas 6, 3316 (1999); M. Tabak et al., Fusion Sci. & Technology 49, 254 (2006)]. These gain models, however, all assume nearly uniform-density fuel assemblies. In contrast, conventional ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hot spot. Hence, to realize fully the advantages of FI, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hot spots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters and at the scales and energies of interest in ICF. A direct-drive implosion scheme is presented which meets all of these requirements and reaches a nearly isochoric assembled density of 300 g=cm{sup 3} and areal density of 2.4 g=cm{sup 2} using 485 kJ of laser energy.

  1. Obtaining Relevant Genes by Analysis of Expression Arrays with a Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Alfonso GONZÁLEZ

    2015-05-01

    Full Text Available Triple negative breast cancer (TNBC is an aggressive form of breast cancer. Despite treatment with chemotherapy, relapses are frequent and response to these treatments is not the same in younger women as in older women. Therefore, the identification of genes that provoke this disease is required, as well as the identification of therapeutic targets.There are currently different hybridization techniques, such as expression ar-rays, which measure the signal expression of both the genomic and tran-scriptomic levels of thousands of genes of a given sample. Probesets of Gene 1.0 ST GeneChip arrays provide the ultimate genome transcript coverage, providing a measurement of the expression level of the sample.This paper proposes a multi-agent system to manage information of expres-sion arrays, with the goal of providing an intuitive system that is also extensible to analyze and interpret the results.The roles of agent integrate different types of techniques, from statistical and data mining techniques that select a set of genes, to search techniques that find pathways in which such genes participate, and information extraction techniques that apply a CBR system to check if these genes are involved in the disease.

  2. On the validity of tidal turbine array configurations obtained from steady-state adjoint optimisation

    CERN Document Server

    Jacobs, Christian T; Kramer, Stephan C; Funke, Simon W

    2016-01-01

    Extracting the optimal amount of power from an array of tidal turbines requires an intricate understanding of tidal dynamics and the effects of turbine placement on the local and regional scale flow. Numerical models have contributed significantly towards this understanding, and more recently, adjoint-based modelling has been employed to optimise the positioning of the turbines in an array in an automated way and improve on simple, regular man-made configurations. Adjoint-based optimisation of high-resolution and ideally 3D transient models is generally a very computationally expensive problem. As a result, existing work on the adjoint optimisation of tidal turbine placement has been mostly limited to steady-state simulations in which very high, non-physical values of the background viscosity are required to ensure that a steady-state solution exists. However, such compromises may affect the reliability of the modelled turbines, their wakes and interactions, and thus bring into question the validity of the co...

  3. First astronomical images obtained with an array of multiplexed superconducting bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Staguhn, J.G. [NASA/GSFC, Greenbelt, MD 20771 (United States) and SSAI, 10210 Greenbelt Road, Lanham, MD 20706 (United States)]. E-mail: johannes.staguhn@gsfc.nasa.gov; Benford, D.J. [NASA/GSFC, Greenbelt, MD 20771 (United States); Moseley, S.H. [NASA/GSFC, Greenbelt, MD 20771 (United States); Allen, C.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Kennedy, C.R. [NASA/GSFC, Greenbelt, MD 20771 (United States); Notre Dame University, Notre Dame, IN 46556 (United States); Lefranc, S. [Institut d' Astrophysique Spatiale, Orsay (France); Maher, S.F. [NASA/GSFC, Greenbelt, MD 20771 (United States); SSAI, 10210 Greenbelt Road, Lanham, MD 20706 (United States); Pajot, F. [Institut d' Astrophysique Spatiale, Orsay (France); Rioux, C. [Institut d' Astrophysique Spatiale, Orsay (France); Shafer, R.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Voellmer, G.M. [NASA/GSFC, Greenbelt, MD 20771 (United States)

    2006-04-15

    We present multicolor images of Jupiter observed in the 350{mu}m band with the first deployed astronomical instrument to use multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that made these images in July 2004 at the Caltech Submillimeter Observatory (CSO). FIBREs detectors are superconducting bilayer transition edge sensor (TES) bolometers read out by a SQUID multiplexer. An order-sorted Fabry-Perot provides illumination of a 16-element linear bolometer array, resulting in five orders at a spectral resolution R of 1200 covering a band of 17 of the observed wavelength. The optics permit these orders to be scanned to cover the entirety of either the 350 or 450{mu}m bands.

  4. Buoyancy instability of homologous implosions

    CERN Document Server

    Johnson, Bryan M

    2015-01-01

    I consider the hydrodynamic stability of imploding gases as a model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes under a homologous flow, a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)^(|N0| ti)$, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(pi |N0| ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular...

  5. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    Science.gov (United States)

    Dittrich, T. R.; Hurricane, O. A.; Berzak-Hopkins, L. F.; Callahan, D. A.; Casey, D. T.; Clark, D.; Dewald, E. L.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Kozioziemski, B. J.; Kritcher, A. L.; Ma, T.; Nikroo, A.; Pak, A. E.; Parham, T. G.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Salmonson, J. D.; Springer, P. T.; Weber, C. R.; Zimmerman, G. B.; Kline, J. L.

    2016-05-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO2) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented.

  6. Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility

    Science.gov (United States)

    Radha, P. B.; Goncharov, V. N.; Hohenberger, M.; Sangster, T. C.; Betti, R.; Craxton, R. S.; Edgell, D. H.; Epstein, R.; Froula, D. H.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Hu, S. X.; Seka, W.; Shvydky, A.; Skupsky, S.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Ma, T.; Pape, S. Le; MacKinnon, A. J.

    2016-10-01

    Direct-drive-implosion experiments from both OMEGA and the National Ignition Facility (NIF) are critical to gain confidence in ignition predictions on the NIF. Adequate performance of hydrodynamically scaled 1.8-MJ ignition designs must be obtained on OMEGA at 26 kJ. Implosions on the NIF must be used to identify and mitigate the effect of laser-plasma interactions (LPI's) on hydrodynamic parameters at the NIF scale. Results from spherically driven OMEGA cryogenic implosion experiments are described. Mitigation of nonuniformity sources and cross-beam energy transfer (CBET) is important for improving target performance on OMEGA. Initial polar-driven implosion experiments on the NIF have provided valuable measurements of trajectory and symmetry. Simulations that include the effect of CBET more closely reproduce the observed velocity.

  7. Implosion Source Development and Diego Garcia Reflections

    Energy Technology Data Exchange (ETDEWEB)

    Harben, P E; Boro, C

    2001-06-01

    Calibration of hydroacoustic stations for nuclear explosion monitoring is important for increasing monitoring capability and confidence from newly installed stations and from existing stations. Past work at Ascension Island has shown that ship-towed airguns can be effectively used for local calibrations such as sensor location, amplitude and phase response, and T-phase coupling in the case of T-phase stations. At regional and ocean-basin distances from a station, the calibration focus is on acoustic travel time, transmission loss, bathymetric shadowing, diffraction, and reflection as recorded at a particular station. Such station calibrations will lead to an overall network calibration that seeks to maximize detection, location, and discrimination capability of events with acoustic signatures. Active-source calibration of hydroacoustic stations at regional and ocean-basin scales has not been attempted to date, but we have made significant headway addressing how such calibrations could be accomplished. We have developed an imploding sphere source that can be used instead of explosives on research and commercial vessels without restriction. The imploding sphere has been modeled using the Lawrence Livermore National Laboratory hydrodynamic code CALE and shown to agree with field data. The need for boosted energy in the monitoring band (2-100 Hz) has led us to develop a 5-sphere implosion device that was tested in the Pacific Ocean earlier this year. Boosting the energy in the monitoring band can be accomplished by a combination of increasing the implosion volume (i.e. the 5-sphere device) and imploding at shallower depths. Although active source calibrations will be necessary at particular locations and for particular objectives, the newly installed Diego Garcia station in the Indian Ocean has shown that earthquakes can be used to help understand regional blockages and the locations responsible for observed hydroacoustic reflections. We have analyzed several events

  8. Bounce-free Spherical Hydrodynamic Implosion

    CERN Document Server

    Kagan, Grigory; Hsu, Scott C; Awe, Thomas J

    2011-01-01

    In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.

  9. Multi-channel laser Doppler velocimetry using a two-dimensional optical fiber array for obtaining instantaneous velocity distribution characteristics

    Science.gov (United States)

    Kyoden, Tomoaki; Yasue, Youichi; Ishida, Hiroki; Akiguchi, Shunsuke; Andoh, Tsugunobu; Takada, Yogo; Teranishi, Tsunenobu; Hachiga, Tadashi

    2015-01-01

    A laser Doppler velocimeter (LDV) has been developed that is capable of performing two-dimensional (2D) cross-sectional measurements. It employs two horizontal laser light sheets that intersect at an angle of 13.3°. Since the intersection region is thin, it can be used to approximately determine the 2D flow field. An 8 × 8 array of optical fibers is used to simultaneously measure Doppler frequencies at 64 points. Experiments were conducted to assess the performance of the LDV, and it was found to be capable of obtaining spatial and temporal velocity information at multiple points in a flow field. The technique is fast, noninvasive, and accurate over long sampling periods. Furthermore, its applicability to an actual flow field was confirmed by measuring the temporal velocity distribution of a pulsatile flow in a rectangular flow channel with an obstruction. The proposed device is thus a useful, compact optical instrument for conducting simultaneous 2D cross-sectional multipoint measurements.

  10. Underwater implosions of large format photo-multiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Milind; Dolph, Jeffrey [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Ling, Jiajie, E-mail: jjling@bnl.gov [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Russo, Thomas; Sharma, Rahul; Sexton, Kenneth; Simos, Nikolaos; Stewart, James; Tanaka, Hidekazu [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Arnold, Douglas; Tabor, Philip; Turner, Stephen [Naval Underwater Warfare Center, Newport, RI 02841 (United States)

    2012-04-01

    Large, deep, well shielded liquid detectors have become an important technology for the detection of neutrinos over a wide dynamic range from few MeV to TeV. The critical component of this technology is the large format semi-hemispherical photo-multiplier tube with diameters in the range of 25-50 cm. The survival of an assembled array of these photo-multiplier tubes under high hydrostatic pressure is the subject of this study. These are the results from an R and D program which is intended to understand the modes of failure when a photo-multiplier tube implodes under hydrostatic pressure. Our tests include detailed measurements of the shock wave which results from the implosion of a photo-multiplier tube and a comparison of the test data to modern hydrodynamic simulation codes. Using these results we can extrapolate to other tube geometries and make recommendation on deployment of the photo-multiplier tubes in deep water detectors with a focus on risk mitigation from a tube implosion shock wave causing a chain reaction loss of multiple tubes.

  11. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  12. Improving Hohlraums for High Foot Implosions

    Science.gov (United States)

    Hinkel, D. E.; Berzak Hopkins, L. F.; Ma, T.; Ralph, J. E.; Albert, F.; Benedetti, L. R.; Celliers, P. M.; Doeppner, T.; Goyon, C. S.; Izumi, N.; Jarrott, L. C.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Kyrala, G. A.; Nagel, S. R.; Pak, A. E.; Patel, P.; Rosen, M. D.; Rygg, J. R.; Schneider, M. B.; Turnbull, D. P.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2016-10-01

    Analysis of High Foot implosions show that performance has been limited by the radiation drive environment, i.e., the hohlraum. Demonstrated here is that improvements in the radiation environment result in an enhancement in implosion performance. This is accomplished by using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density. At fixed laser energy, High Foot implosions driven with this hohlraum have achieved a 1.4 x increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50%. Low mode asymmetries are still present, however, and are most likely a consequence of poor inner beam propagation through the hohlraum to the wall. Presented here are results from these High Foot implosions, as well as analyses of inner beam propagation, and additional hohlraum improvements that further ameliorate the implosion. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Comment on 'Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions'

    CERN Document Server

    Zheng, Hua

    2013-01-01

    Recent implosion experiments performed at the OMEGA laser facility reported by Casey et al.[1], displayed an anomalously low dd proton yield and a high tt neutron yield as compared to dt fusion reactions, explained as a stratification of the fuel in the implosion core. We suggest that in the com- pression stage the fuel is out of equilibrium. Ions are inward accelerated to a velocity v0 independent on the particle type. Yield ratios are simply given by the ratios of fusion cross-sections obtained at the same velocity. A 'Hubble' type model gives also a reasonable description of the data. These considerations might be relevant for implosion experiments at the National Ignition Facility as well.

  14. Reproducibility of hohlraum-driven implosion symmetry on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kyrala G.A.

    2013-11-01

    Full Text Available Indirectly driven Symcap capsules are used at the NIF to obtain information about ignition capsule implosion performance, in particular shape. Symcaps replace the cryogenic fuel layer with an equivalent ablator mass and can be similarly diagnosed. Symcaps are good symmetry surrogates to an ignition capsule after the peak of the drive, radiation-hydrodynamics simulations predict that doping of the symcaps vary the behavior of the implosion. We compare the equatorial shapes of a symcap doped with Si or Ge, as well as examine the reproducibility of the shape measurement using two symcaps with the same hohlraum and laser conditions.

  15. Ion-viscosity effects on plasma-liner formation and implosion via merging supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2016-10-01

    The PLX- α project endeavors to study plasma-liner formation and implosion by merging a spherical array of plasma jets as a candidate standoff driver for MIF. Smoothed particle hydrodynamics is used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. Ion viscosity is anticipated to be an important mechanism for momentum transport during liner formation, implosion, and stagnation. To study this, ion viscosity was incorporated into the code. To provide confidence in the numerical output and to help identify the difference between numerical and physical diffusion, a series of test cases were performed, consisting of Couette flow, Gresho vortex, and a Taylor-Green vortex. An L2-norm analysis was performed to measure the error and convergence. Simulations of conical (6 jets) and 4 π (60 jets) liners with and without ion viscosity reveal potential effects of viscosity on ram pressure, Mach-number degradation, and evolution of liner perturbations during jet merging and liner implosion.

  16. Implosion chain reaction mitigation in underwater assemblies of photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Jiajie, E-mail: jjling@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Bishai, Mary; Diwan, Milind; Dolph, Jeffrey; Kettell, Steve; Sexton, Kenneth; Sharma, Rahul; Simos, Nikolaos; Stewart, James [Brookhaven National Laboratory, Upton, NY 11973 (United States); Tanaka, Hidekazu [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 456 Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Viren, Brett [Brookhaven National Laboratory, Upton, NY 11973 (United States); Arnold, Douglas; Tabor, Philip; Turner, Stephen [Naval Undersea Warfare Center, Newport, RI 02841 (United States); Benson, Terry; Wahl, Daniel; Wendt, Christopher [University of Wisconsin-Madison, WI 53706 (United States); Hahn, Alan; Kaducak, Marc; Mantsch, Paul [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); and others

    2013-11-21

    Since the accident with a cascade failure of photomultiplier tubes (PMTs) in the Super-Kamiokande experiment in 2001, the mechanical performance of large format semi-hemispherical PMTs has become a critical issue for large water Cherenkov detectors. The subject of this study is the survival of an assembled array of PMTs under significant hydrostatic pressure and subjected to shock waves caused by the failure of a single PMT. This paper details the results of the second stage of a R and D program focused on the design and testing of different PMT assemblies to mitigate the risk of a “chain-reaction” of PMT failures. The initial results show that our PMT assembly design can effectively reduce the magnitude of the shock wave. With the testing results in this paper and the hydrodynamic simulation calculation, we can further improve the design of PMT deployment to mitigate the risk of chain reactions caused by implosion induced shock waves.

  17. Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays.

    Science.gov (United States)

    Lam, Kathy N; van Bakel, Harm; Cote, Atina G; van der Ven, Anton; Hughes, Timothy R

    2011-06-01

    C2H2 zinc fingers (C2H2-ZFs) are the most prevalent type of vertebrate DNA-binding domain, and typically appear in tandem arrays (ZFAs), with sequential C2H2-ZFs each contacting three (or more) sequential bases. C2H2-ZFs can be assembled in a modular fashion, providing one explanation for their remarkable evolutionary success. Given a set of modules with defined three-base specificities, modular assembly also presents a way to construct artificial proteins with specific DNA-binding preferences. However, a recent survey of a large number of three-finger ZFAs engineered by modular assembly reported high failure rates (∼70%), casting doubt on the generality of modular assembly. Here, we used protein-binding microarrays to analyze 28 ZFAs that failed in the aforementioned study. Most (17) preferred specific sequences, which in all but one case resembled the intended target sequence. Like natural ZFAs, the engineered ZFAs typically yielded degenerate motifs, binding dozens to hundreds of related individual sequences. Thus, the failure of these proteins in previous assays is not due to lack of sequence-specific DNA-binding activity. Our findings underscore the relevance of individual C2H2-ZF sequence specificities within tandem arrays, and support the general ability of modular assembly to produce ZFAs with sequence-specific DNA-binding activity.

  18. Implosive Therapy as a Treatment for Insomnia.

    Science.gov (United States)

    Carrera, Richard N.; Elenewski, Jeffrey J.

    1980-01-01

    The death implosion produced a decrease in insomnia beyond the strong expectancy effects that resulted from all experimental treatments. The failure to observe changes in reported fear of death was attributed to subjects' anxiety-based reluctance to acknowledge openly such fear. (Author)

  19. Preliminary Clinical Studies Using A Self Scanning Lineak Diode Array To Obtain 1024 X 1024 Digital Radiographs

    Science.gov (United States)

    Sashin, Donald; Slasky, B. Simon; Sternglass, Ernest J.; Bron, Klaus M.; Herron, John M.; Kennedy, William H.; Boyer, Joseph W.; Girdany, Bertram R.; Simpson, Raymond W.; Horton, Joseph A.

    1984-08-01

    A digital radiography system using self scanning linear diode arrays is being developed for improved diagnosis at reduced radiation dose. Our technique is based on the use of solid state sensors with 1024 diodes per inch and with very high dynamic range. The slit geometry of our method results in image improvement and dose reduction by efficiently rejecting scattered x-rays in the patient. In our present configuration the images have a field of view of six inches by six inches or 6 inches by 12 inches and are digitized to 1024 x 1024 pixels with 12 bits. This digital system differs from the conventional digital radiography in that no image intensifier TV fluoroscopy chain is required. Preliminary clinical studies have demonstrated the high detail of our system at low radiation levels. In dog studies the system has clearly visualized very small coronary arteries following aortic root injection of contrast material. Even with intravenous injections some of the coronary arteries could be seen.

  20. Effects of real viscosity on plasma liner formation and implosion from supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Hsu, Scott; PLX-Alpha Team

    2015-11-01

    The PLX- α project endeavors to study plasma liner formation and implosion by merging of a spherical array of plasma jets as a candidate standoff driver for magneto-inertial fusion (MIF). Smoothed particle hydrodynamics (SPH) is being used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. The SPH code was used to simulate test cases in which the number of plasma guns and initial conditions for the plasma were varied. Linear stabilizations were observed, but the possibility exists that this stabilization was due to the implementation of artificial viscosity in the code. A real viscosity model was added to our SPHC model using the Braginskii ion viscosity. Preliminary results for test cases that incorporate real viscosity are presented.

  1. Implosion hydrodynamics of fast ignition targetsa)

    Science.gov (United States)

    Stephens, R. B.; Hatchett, S. P.; Tabak, M.; Stoeckl, C.; Shiraga, H.; Fujioka, S.; Bonino, M.; Nikroo, A.; Petrasso, R.; Sangster, T. C.; Smith, J.; Tanaka, K. A.

    2005-05-01

    The fast ignition (FI) concept requires the generation of a compact, dense, pure fuel mass accessible to an external ignition source. The current base line FI target is a shell fitted with a reentrant cone extending to near its center. Conventional direct- or indirect-drive collapses the shell near the tip of the cone and then an ultraintense laser pulse focused to the inside cone tip generates high-energy electrons to ignite the dense fuel. A theoretical and experimental investigation was undertaken of the collapse of such targets, validating modeling, and exploring the trade-offs available, in such an asymmetric geometry, to optimize compaction of the fuel and maintain the integrity of the cone. The collapse is complex. Away from the cone, the shell collapses much as does a conventional implosion, generating a hot, low-density inner core. But because of the open side, hot plasma exhausts out toward the tip of the cone. This hot plasma is advantageous for implosion diagnostics; it can provide protons for angular dependent measurements of the shell wall, neutrons for temperature measurements, and self-emission for contamination measurements. But for FI it is a liability; the hot, low-density inner core impedes the compaction of the cold fuel, lowering the implosion/burn efficiency and the gain. Approaches to optimizing this shell design are discussed.

  2. Implosion Hydrodynamics of Fast Ignition Targets

    Science.gov (United States)

    Stephens, R. B.

    2004-11-01

    The fast ignition (FI) concept requires the generation of a compact, dense, pure fuel mass accessible to an external ignition source. The current baseline FI target is a shell fitted with a reentrant cone extending to near its center. Conventional direct or indirect drive collapses the shell near the tip of the cone and then an ultra-intense laser pulse focused to the inside cone tip generates high-energy electrons to ignite the dense fuel. We have theoretically and experimentally investigated the collapse of such targets, validating modeling and exploring the tradeoffs available, in such an asymmetric geometry, to optimize compaction of the fuel and maintain the integrity of the cone. The collapse is complex. Away from the cone, the shell collapses much as does a conventional implosion, generating a hot, low-density inner core. But because of the open side this hot plasma exhausts out toward the tip of the cone. This hot plasma is advantageous for implosion diagnostics; it can provide protons for angular dependent measurements of the shell wall, neutrons for temperature measurements, and self-emission for contamination measurements. But the hot spot must be controlled; for FI it is a liability. The hot, low-density inner core simply impedes the collapse of the cold fuel, lowering the implosion/burn efficiency and the gain while making ignition more difficult. We discuss approaches to minimizing this effect and experimental tests.

  3. Fast batch injection analysis of H{sub 2}O{sub 2} using an array of Pt-modified gold microelectrodes obtained from split electronic chips

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Bruno D.; Valerio, Jaqueline [Centro de Ciencias e Humanidades - Universidade Presbiteriana Mackenzie, Rua da Consolacao, 896, 01302-907 Sao Paulo, SP (Brazil); Angnes, Lucio [Departamento de Quimica Fundamental, Instituto de Quimica da USP, Av. Prof. Lineu Prestes, 748, 05508-000 Cidade Universitaria, Sao Paulo, SP (Brazil); Pedrotti, Jairo J., E-mail: jpedrotti@mackenzie.br [Centro de Ciencias e Humanidades - Universidade Presbiteriana Mackenzie, Rua da Consolacao, 896, 01302-907 Sao Paulo, SP (Brazil)

    2011-06-24

    Graphical abstract: Highlights: > An array of gold microelectrodes modified with Pt was used for batch injection analysis of H{sub 2}O{sub 2} in rainwater. > The microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology. > The analytical frequency of the method can attain 300 determinations per hour. > The volume-weighted mean concentration of H{sub 2}O{sub 2} in rainwater investigated (n = 25) was 14.2 {mu}mol L{sup -1}. - Abstract: A fast and robust analytical method for amperometric determination of hydrogen peroxide (H{sub 2}O{sub 2}) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H{sub 2}O{sub 2} amperometric determination in the concentration range from 0.8 {mu}mol L{sup -1} to 100 {mu}mol L{sup -1}. The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 {mu}mol L{sup -1} (3{sigma}). The anodic current peaks obtained after a series of 23 successive injections of 50 {mu}L of 25 {mu}mol L{sup -1} H{sub 2}O{sub 2} showed an RSD < 0.9%. To ensure the good selectivity to detect H{sub 2}O{sub 2}, its determination was performed in a differential mode, with selective destruction of the H{sub 2}O{sub 2} with catalase in 10 mmol L{sup -1} phosphate buffer solution. Practical application of the analytical procedure involved H{sub 2}O{sub 2} determination in rainwater of Sao Paulo City. A comparison of the results obtained by the proposed amperometric method with another one which

  4. Effect of Selenium-Enriched Agaricus bisporus (Higher Basidiomycetes) Extracts, Obtained by Pressurized Water Extraction, on the Expression of Cholesterol Homeostasis Related Genes by Low-Density Array.

    Science.gov (United States)

    Gil-Ramírez, Alicia; Soler-Rivas, Cristina; Rodriguez-Casado, Arantxa; Ruiz-Rodríguez, Alejandro; Reglero, Guillermo; Marín, Francisco Ramón

    2015-01-01

    Culinary-medicinal mushrooms are able to lower blood cholesterol levels in animal models by different mechanisms. They might impair the endogenous cholesterol synthesis and exogenous cholesterol absorption during digestion. Mushroom extracts, obtained using pressurized water extractions (PWE) from Agaricus bisporus basidiomes, supplemented or not supplemented with selenium, were applied to HepG2 cell cultures to study the expression of 19 genes related to cholesterol homeostasis by low-density arrays (LDA). Only the PWE fractions obtained at 25°C showed 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitory activity. Besides the enzymatic inhibition, PWE extracts may downregulate some of the key genes involved in the cholesterol homeostasis, such as the squalene synthase gene (FDFT1), since its mRNA expression falls by one third of its initial value. In summary, A. bisporus extracts may also modulate biological cholesterol levels by molecular mechanisms further than the enzymatic way previously reported.

  5. Explosion, implosion, and moments of passage times for continuous-time Markov chains: a semimartingale approach

    CERN Document Server

    Menshikov, Mikhail

    2012-01-01

    We establish general theorems quantifying the notion of recurrence --- through an estimation of the moments of passage times --- for irreducible continuous-time Markov chains on countably infinite state spaces. Sharp conditions of occurrence of the phenomenon of explosion are also obtained. A new phenomenon of implosion is introduced and sharp conditions for its occurrence are proven. The general results are illustrated by treating models having a difficult behaviour even in discrete time.

  6. Comparison of the bedrock depth from array measurements of Rayleigh waves associated with microtremor and seismic profile obtained the Seismic Reflection Data, Eskisehir Basin, Turkey

    Science.gov (United States)

    Tün, Muammer; Karabulut, Savaş; Özel, Oğuz

    2015-04-01

    Ground motion estimation for future earthquakes is one of the most challenging problems in seismology and earthquake engineering. The bedrock depth has a considerable seismic risk for the urban area of Eskişehir. In this study, multiple station microtremor measurement methods which are more practical, non-distructive, fast and economical compared to seismic reflection method were implemented. These method using microtremor recordings have become a very useful data for microzonation studies because of their simple acquisition and analysis. Extensive ambient noise measurements were performed in the basin of Eskisehir from June 2010 to spring 2012. We use data recorded by a broadband seismometer and digitizer CMG-6TD, Guralp seismometer. Some of the measurement locations, the CMG-6TD sensor was located into 30 cm-deep holes in the ground to avoid strongly wind-generated, long-period noise. Dominant frequency (f), bed-rock depth (h) and shear-wave velocity (Vs) were determined from Spatial Autocorrelation (SPAC) methods. With the SPAC Method, it is possible to constrain the velocity structure underlying the site using microtremor array measurements. The results obtained were compared to the 96-channel seismic reflection data with explosive energy source. Several seismic reflection surveys with P-Gun seismic source have been performed on the same place with array measurements. We used two types of seismic sources: 36 cartridge Gun. Shot interval was 10 meters, group interval (one geophone per group, 48 geophones in total) was 10 meters, near offset was 10 meters, far offset was 480 meters, CDP interval was 5 meters. We adapted the 'Off-End Spread' technique while using the Gun. Reflection images within the sedimentary section correlate well with the velocity structure obtained from SPAC.

  7. Code Verification of Magnetized Cylindrical Liner Implosions

    Science.gov (United States)

    Hess, Mark; Weis, Matthew; Martin, Matthew; Sefkow, Adam; Nakhleh, Charles; Lau, Y. Y.

    2012-10-01

    We investigate the physics of magnetized cylindrical liner implosions with existing MHD codes to verify code accuracy, as well as to understand parametric behavior on figures-of-merit, e.g. radial liner velocity, for designing experiments. In our problem, we assume that there exists a 1-D metallic cylindrical liner with an initial axial magnetic seed field imposed in the system. The liner radially implodes due to a specified drive current while the effects of liner pressure and magnetic seed field compression oppose the implosion. This problem is of importance for future magnetized liner fusion experiments, e.g. MagLIF [1].[4pt]Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. [4pt] [1] S.A. Slutz et al, Phys. Plasmas 17, 056303 (2010).

  8. Modelling the effect of 3He in direct drive capsule implosions

    Science.gov (United States)

    Garbett, W. J.; Horsfield, C. J.; Herrmann, H. W.; Langenbrunner, J. R.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Rubery, M. S.; Drew, D.; Mack, J. M.; Young, C. S.; Kyrala, G. A.; Frenje, J.; Glebov, V. Yu

    2010-08-01

    D3He fuels are often used in ICF implosion experiments, either as a surrogate for DT to restrict the output neutron yield, or to produce protons for use in diagnosis of core conditions. Recent experiments have suggested that capsules filled with D3He do not behave as expected, but that both proton and neutron yields are anomalously degraded relative to the pure D2 case. We have performed direct drive implosion experiments using the Omega laser to examine the effect of 3He on DT-filled glass capsules. The use of DT fuel allows reaction history measurements to be obtained using the Gas Cherenkov diagnostic (GCD). It was hoped that the detailed information provided by GCD measurements would complement existing measurements to constrain modelling. We present recent modelling and analysis of the experiments using radiation-hydrocode simulations, and explore some of the hypotheses proposed to explain the results.

  9. Measurements of the Effect of Adiabat on Shell Decompression in Direct-Drive Implosions on OMEGA

    Science.gov (United States)

    Michel, D. T.; Hu, S. X.; Radha, P. B.; Davis, A. K.; Craxton, R. S.; Glebov, V. Yu.; Goncharov, V. N.; Igumenshchev, I. V.; Stoeckl, C.; Froula, D. H.

    2016-10-01

    Measurements of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. The maximum in-flight shell thickness was obtained using a novel technique where the outer and inner surfaces of the shell were simultaneously measured using self-emission images of the imploding target. When reducing the shell's adiabat from α = 6 to α = 4.5 , the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1.8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two-dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint. Additional information on the evolution of the density profile was obtained using x-ray radiography. The backlighter was created with six of the 60 OMEGA laser beams, with the pointings and energies of other beams adjusted to maintain a uniform implosion. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Planar wire array performance scaling at multi-MA levels on the Saturn generator.

    Energy Technology Data Exchange (ETDEWEB)

    Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, Michael; Vesey, Roger Alan; Waisman, Eduardo M.; Esaulov, Andrey A. (University of Nevada, Reno, NV); Ampleford, David J.; Kantsyrev, Victor Leonidovich (University of Nevada, Reno, NV); Cuneo, Michael Edward; Rudakov, L. I. (Icarus Research Inc., Bethesda, MD); Coverdale, Christine Anne; Jones, Brent Manley; Safronova, Alla S. (University of Nevada, Reno, NV)

    2007-10-01

    A series of twelve shots were performed on the Saturn generator in order to conduct an initial evaluation of the planar wire array z-pinch concept at multi-MA current levels. Planar wire arrays, in which all wires lie in a single plane, could offer advantages over standard cylindrical wire arrays for driving hohlraums for inertial confinement fusion studies as the surface area of the electrodes in the load region (which serve as hohlraum walls) may be substantially reduced. In these experiments, mass and array width scans were performed using tungsten wires. A maximum total radiated x-ray power of 10 {+-} 2 TW was observed with 20 mm wide arrays imploding in {approx}100 ns at a load current of {approx}3 MA, limited by the high inductance. Decreased power in the 4-6 TW range was observed at the smallest width studied (8 mm). 10 kJ of Al K-shell x-rays were obtained in one Al planar array fielded. This report will discuss the zero-dimensional calculations used to design the loads, the results of the experiments, and potential future research to determine if planar wire arrays will continue to scale favorably at current levels typical of the Z machine. Implosion dynamics will be discussed, including x-ray self-emission imaging used to infer the velocity of the implosion front and the potential role of trailing mass. Resistive heating has been previously cited as the cause for enhanced yields observed in excess of jxB-coupled energy. The analysis presented in this report suggests that jxB-coupled energy may explain as much as the energy in the first x-ray pulse but not the total yield, which is similar to our present understanding of cylindrical wire array behavior.

  11. An application of wavelet moments to the similarity analysis of three-dimensional fingerprint spectra obtained by high-performance liquid chromatography coupled with diode array detector.

    Science.gov (United States)

    Zhai, Hong Lin; Li, Bao Qiong; Tian, Yue Li; Li, Pei Zhen; Zhang, Xiao Yun

    2014-02-15

    More and more the three-dimensional (3D) fingerprint spectra, which can be obtained by high performance liquid chromatography coupled with diode array detector (HPLC-DAD), are applied to the analysis of drugs and foods. A novel approach to the similarity analysis of traditional Chinese medicines (TCMs) was proposed based on the digital image processing using 3D HPLC-DAD fingerprint spectra. As the one of shape features of digital grayscale image, wavelet moments were employed to extract the shape features from the grayscale images of 3D fingerprint spectra of different Coptis chinensis samples, and used to the similarity analysis of these samples. Compared with the results obtained by traditional features including principal components and spectrum data under single-wavelength, our results represented the more reliable assessment. This work indicates that the better features of fingerprint spectra are more important than similarity evaluation methods. Wavelet moments, which possess multi-resolution specialty and the invariance property in image processing, are more effective than traditional spectral features for the description of the systemic characterisation of mixture sample.

  12. Crossed-beam energy transfer in direct-drive implosions

    Energy Technology Data Exchange (ETDEWEB)

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  13. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.

    Science.gov (United States)

    Buogo, Silvano; Cannelli, Giovanni B

    2002-06-01

    The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse.

  14. Progress towards a one-dimensional layered DT implosion using HDC capsules at the NIF

    Science.gov (United States)

    Divol, Laurent

    2016-10-01

    Using a 0.8x scale HDC capsule (D=1.6 mm) in a full scale DU hohlraum (D=5.75 mm) filled with relatively low He gas (0.3mg/cc), we have been able to achieve a high (C=26) convergence layered DT implosion that is diagnosed within 10 percent of round at all measured times. An adiabat-2.5, 3-shock, 1MJ-7ns laser pulse was used to achieved velocities >350 km/s, neutron yield 3e15 with a down scattered ratio 0.03. This platform shows minimal laser plasma interaction (no measurable hot electrons, > 97 % coupling, no cross beam energy transfer required). A direct control of the laser cone fraction vs. time was used to obtain 3-shock-breakout symmetry (keyhole target), in flight symmetry (radiography at convergence 2-4) and symmetric hot spot/rebound shock at convergence 12 (gas-filled capsule) and 26 (layered DT). Further repointing of laser cones demonstrated control of higher modes (P4). 4 layered DT implosions allowed to compare the effect of W-dopant, symmetry and velocity on performance. We will show using experimental results and simulations that the W-doped HDC implosion behaves as expected and reaches 40% of Yield Over Clean (YOC), with the fill-tube perturbation being a possible cause of the reduced yield. The undoped HDC capsule has a YOC < 0.3, showing more sensitivity to X-ray preheat than expected. The path towards an equivalent scale 1 implosion capable of large alpha-heating will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    Science.gov (United States)

    Nischk, Michał; Mazierski, Paweł; Wei, Zhishun; Siuzdak, Katarzyna; Kouame, Natalie Amoin; Kowalska, Ewa; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-11-01

    TiO2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals' precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Agcore-Cushell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  16. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO{sub 2} nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Nischk, Michał [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza 11/12 St., 80-233 Gdansk (Poland); Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland); Mazierski, Paweł [Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland); Wei, Zhishun [Institute for Catalysis, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdansk (Poland); Kouame, Natalie Amoin [Laboratoire de Chimie Physique, CNRS—UMR 8000,Université Paris-Sud, Université Paris-Saclay, Bâtiment 349, 91405 Orsay (France); Kowalska, Ewa [Institute for Catalysis, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Remita, Hynd [Laboratoire de Chimie Physique, CNRS—UMR 8000,Université Paris-Sud, Université Paris-Saclay, Bâtiment 349, 91405 Orsay (France); Zaleska-Medynska, Adriana, E-mail: adriana.zaleska@ug.edu.pl [Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland)

    2016-11-30

    Highlights: • TiO{sub 2} nanotubes were modified with Cu, AgCu, Bi nanoparticles via gamma radiolysis. • Excessive amount of deposited metal decreased photocatalytic activity. • AgCu-modified samples were more active than Cu-modified (with the same Cu content). • AgCu nanoparticles exist in a core{sub (Ag)}-shell{sub (Cu)} form. • Examined photocatalysts were resistant towards photocorrosion processes. - Abstract: TiO{sub 2} nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals’ precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Ag{sub core}-Cu{sub shell} form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  17. Radiation driven implosion and triggered star formation

    CERN Document Server

    Bisbas, Thomas G; Whitworth, Anthony P; Hubber, David A; Walch, Stefanie

    2011-01-01

    We present simulations of initially stable isothermal clouds exposed to ionising radiation from a discrete external source, and identify the conditions that lead to radiatively driven implosion and star formation. We use the Smoothed Particle Hydrodynamics code SEREN and an HEALPix-based photo-ionisation algorithm to simulate the propagation of the ionising radiation and the resulting dynamical evolution of the cloud. We find that the incident ionising flux, $\\Phi_{_{\\rm LyC}}$, is the critical parameter determining the cloud evolution. At moderate fluxes, a large fraction of the cloud mass is converted into stars. As the flux is increased, the fraction of the cloud mass that is converted into stars and the mean masses of the individual stars both decrease. Very high fluxes simply disperse the cloud. Newly-formed stars tend to be concentrated along the central axis of the cloud (i.e. the axis pointing in the direction of the incident flux). For given cloud parameters, the time, $t_{_\\star}$, at which star for...

  18. Uniformity of fuel target implosion in Heavy Ion Fusion

    CERN Document Server

    Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y

    2015-01-01

    In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

  19. Progress of LMJ-relevant implosions experiments on OMEGA

    Directory of Open Access Journals (Sweden)

    Casner A.

    2013-11-01

    Full Text Available In preparation of the first ignition attempts on the Laser Mégajoule (LMJ, an experimental program is being pursued on OMEGA to investigate LMJ-relevant hohlraums. First, radiation temperature levels close to 300 eV were recently achieved in reduced-scale hohlraums with modest backscatter losses. Regarding the baseline target design for fusion experiments on LMJ, an extensive experimental database has also been collected for scaled implosions experiments in both empty and gas-filled rugby-shaped hohlraums. We acquired a full picture of hohlraum energetics and implosion dynamics. Not only did the rugby hohlraums show significantly higher x-ray drive energy over the cylindrical hohlraums, but symmetry control by power balance was demonstrated, as well as high-performance D2 implosions enabling the use of a complete suite of neutrons diagnostics. Charged particle diagnostics provide complementary insights into the physics of these x-ray driven implosions. An overview of these results demonstrates our ability to control the key parameters driving the implosion, lending more confidence in extrapolations to ignition-scale targets.

  20. Indirectly driven, high-convergence implosions (HEP1)

    Energy Technology Data Exchange (ETDEWEB)

    Hatchett, S.P.; Cable, M.D.; Caird, J.A. [and others

    1996-06-01

    High-gain inertial confinement fusion will most readily be achieved with hot-spot ignition, in which a relatively small mass of gaseous fuel at the center of the target is heated to 5-10 keV, igniting a larger surrounding mass of approximately isobaric fuel at higher density but lower temperature. Existing lasers are too low in energy to achieve thermonuclear gain, but hydrodynamically equivalent implosions using these lasers can demonstrate that the important, scalable parameters of ignition capsules are scientifically and technologically achievable. The experiments described in this article used gas-filled glass shells driven by x rays produced in a surrounding cavity, or hohlraum. These implosions achieved convergence ratios (initial capsule radius/ final fuel radius) high enough to fall in the range required for ignition-scale capsules, and they produced an imploded configuration (high-density glass with hot gas fill) that is equivalent to the hot-spot configuration of an ignition-scale capsule. Other recent laser-driven implosions have achieved high shell density but at lower convergences and without a well defined hot spot. Still other experiments have used very-low-density gas fill to reach high convergence with unshaped drive, but that approach results in a relatively low shell density. Moreover, even at the highest convergence ratios the implosions described here had neutron yields averaging 8% of that calculated for an idealized, clean, spherically symmetric implosion - much higher than previous high-convergence experiments.

  1. Asymmetry influence on indirect-drive Iskra-5 implosions

    Energy Technology Data Exchange (ETDEWEB)

    Mkhitarian, L.S.; Bel' kov, S.A.; Bassarab, A.V.; Bondarenko, S.V.; Eremenko, Y.N.; Vinokurov, O.A.; Gaidash, V.A.; Zhidkov, N.V.; Isgorodin, V.M.; Kirillov, G.A.; Kochemasov, G.G.; Litvin, D.N.; Martinenko, S.P.; Murugov, V.M.; Petrov, S.I.; Pinegin, A.V.; Suslov, N.A. [Russian Federal Nuclear Center, VNIIEF, Sarov (Russian Federation)

    2000-07-01

    A high and stable symmetry of X-ray drive inside a spherical hohlraum (with the ratio of hohlraum and capsule diameters about 7) allowed us to investigate the influence of a controlled large scale asymmetry of a capsule with DT-fuel on target implosion performance. By varying the thickness of asymmetric coating of the target shell we could change the neutron yield, time separation between X-ray and neutron pulses and other parameters of implosion. By varying thickness of the symmetric part of shell we could change the regime of implosion: from the exploding pusher regime to the ablative one. In new types of experiments we changed the X-ray drive asymmetry by shifting the capsule with DT out from the hohlraum (box) center towards the additional seventh hole in the box wall. (authors)

  2. First beryllium capsule implosions on the National Ignition Facility

    Science.gov (United States)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.; Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  3. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    Science.gov (United States)

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  4. Fuel gain exceeding unity in an inertially confined fusion implosion.

    Science.gov (United States)

    Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R

    2014-02-20

    Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

  5. Dynamically stable implosions in a large simulation dataset

    Science.gov (United States)

    Peterson, J. Luc; Field, John; Humbird, Kelli; Brandon, Scott; Langer, Steve; Nora, Ryan; Spears, Brian

    2016-10-01

    Asymmetric implosion drive can severely impact the performance of inertial confinement fusion capsules. In particular the time-varying radiation environment produced in near-vacuum hohlraum experiments at the National Ignition Facility is thought to limit the conversion efficiency of shell kinetic energy into hotspot internal energy. To investigate the role of dynamic asymmetries in implosion behavior we have created a large database of 2D capsule implosions of varying drive amplitude, drive asymmetry and capsule gas fill that spans 13 dimensions and consists of over 60,000 individual simulations. A novel in-transit analysis scheme allowed for the real-time processing of petabytes of raw data into hundreds of terabytes of physical metrics and synthetic images, and supervised learning algorithms identified regions of parameter space that robustly produce high yield. We will discuss the first results from this dataset and explore the dynamics of implosions that produce significant yield under asymmetric drives. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697262.

  6. Arcade Implosion Caused by a Filament Eruption in a Flare

    CERN Document Server

    Wang, Juntao; Fletcher, L; Thalmann, J K; Hudson, H S; Hannah, I G

    2016-01-01

    Coronal implosions - the convergence motion of plasmas and entrained magnetic field in the corona due to a reduction in magnetic pressure - can help to locate and track sites of magnetic energy release or redistribution during solar flares and eruptions. We report here on the analysis of a well-observed implosion in the form of an arcade contraction associated with a filament eruption, during the C3.5 flare SOL2013-06-19T07:29. A sequence of events including magnetic flux-rope instability and distortion, followed by filament eruption and arcade implosion, lead us to conclude that the implosion arises from the transfer of magnetic energy from beneath the arcade as part of the global magnetic instability, rather than due to local magnetic energy dissipation in the flare. The observed net contraction of the imploding loops, which is found also in nonlinear force-free field extrapolations, reflects a permanent reduction of magnetic energy underneath the arcade. This event shows that, in addition to resulting in e...

  7. Diagnosing implosion velocity and ablator dynamics at NIF (u)

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Anna [Los Alamos National Laboratory; Grim, Gary [Los Alamos National Laboratory; Jungnam, Jerry [Los Alamos National Laboratory; Bradley, Paul [Los Alamos National Laboratory; Rundberg, Bob [Los Alamos National Laboratory; Wilhelmy, Jerry [Los Alamos National Laboratory; Wilson, Doug [Los Alamos National Laboratory

    2009-07-09

    An enhanced understanding of the unique physics probed in a burning NIP capsule is important for both nuclear weapons physics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. The current set of diagnostics for the NIF experiments includes reaction history (a time resolved measure of the d + t burn), neutron time-of-flight and spectrometry and spatial imaging of the neutron production and scattering. Although valuable, this abbreviated set of diagnostics cannot determine key dynamical properties of the implosion, such as implosion velocity (v{sub impl}) and ablator thickness. To surpass the present limits of {approx} 10{sup 15} d+t reactions, it will be necessary to increase significantly the implosion energy delivered to the DT fuel by finely tuning the balance between the remaining (imploding) ablator mass and velocity. If too much mass remains, the implosion velocity will be too slow, and the subsecpwnt PdV work will not be sufficient to overcome cooling via conduction and radiation. If too little mass remains, hydrodynamic instabilities will occur, resulting in unpredictable and degraded performance. Detailed calculations suggest the ablator must reach an implosion velocity of 3-4 x 10{sup 7} cm/sec and an areal density of {rho}{Delta}R {approx}200 mg/cm{sup 2} in order to achieve ignition. The authors present a new scheme to measure these important quantities using neutron reactions on the ablator material. During the burn, the ablator is moving relative to the 14.1 MeV d+t neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The 'point-design' capsule at the NIF will be based on a {sup 9}Be ablator, and the {sup 9}Be(n,p){sup 9}Li reaction has an energy threshold of 14.2 MeV, making it

  8. Cryogneic-Target Performance and Implosion Physics Studies on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V.A.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Hu, S.X.; Knauer, J.P.; Marshall, F.J.; McCrory, R.L.; McKenty, P.W.; Meyerhofer, D.D.; Radha, R.B.; Regan, S.P.; Sangster, T.C.; Seka, W.; Short, R.W.; Shvarts, D.; Skupsky, S.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.; Frenje, J.A.; Li, C.K.; Petrasso, R.D.; Seguin, F.H.

    2009-03-06

    Recent progress in direct-drive cryogenic implosions on the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is reviewed. Ignition-relevant areal densities of ~200 mg/cm^2 in cryogenic D2 implosions with peak laser-drive intensities of ~5 x 10^14 W/cm^2 were previously reported [T. C. Sangster et al., Phys. Rev. Lett. 100, 185006 (2008)]. The laser intensity is increased to ~10^15 W/cm^2 to demonstrate ignition-relevant implosion velocities of 3–4 x 10^7 cm/ s, providing an understanding of the relevant target physics. Planar-target acceleration experiments show the importance of the nonlocal electron-thermal-transport effects for modeling the laser drive. Nonlocal and hot-electron preheat is observed to stabilize the Rayleigh–Taylor growth at a peak drive intensity of ~10^15 W/cm^2. The shell preheat caused by hot electrons generated by two-plasmon-decay instability was reduced by using Si-doped ablators. The measured compressibility of planar plastic targets driven with high-compression shaped pulses agrees well with one-dimensional simulations at these intensities. Shock mistiming has contributed to compression degradation of recent cryogenic implosions driven with continuous pulses. Multiple-picket (shock-wave) target designs make it possible for a more robust tuning of the shock-wave arrival times. Cryogenic implosions driven with double-picket pulses demonstrate somewhat improved compression performance at a peak drive intensity of ~10^15 W/cm^2.

  9. Design of indirectly driven, high-compression Inertial Confinement Fusion implosions with improved hydrodynamic stability using a 4-shock adiabat-shaped drive

    Energy Technology Data Exchange (ETDEWEB)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-12-15

    Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.

  10. Design of indirectly driven, high-compression Inertial Confinement Fusion implosions with improved hydrodynamic stability using a 4-shock adiabat-shaped drive

    Science.gov (United States)

    Milovich, J. L.; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R.

    2015-12-01

    Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm2, but with significantly lower total neutron yields (between 1.5 × 1014 and 5.5 × 1014) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the "high-foot" experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3-10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm2. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.

  11. X-ray spectroscopic signatures of ion species separation in ICF implosions on OMEGA

    Science.gov (United States)

    Hakel, Peter; Hsu, Scott; Herrmann, Hans; Kim, Yong Ho; Schmitt, Mark; Kagan, Grigory; McEvoy, Aaron; Colgan, James; Fontes, Christopher; Kilcrease, David; Sherrill, Manolo; Rauenzahn, Rick

    2015-11-01

    This work aims to provide a direct measurement of the species separation through experimental inference of the ion density profiles, and comparisons of the data with simulations that explicitly model multi-ion-species diffusion. We also describe the development of a new code capable of modeling x-ray spectral emission from ICF capsules that accounts for the effects of spatial gradients in species distributions throughout the target. This new code named FESTR also allows the inclusion of NLTE, opacity, and Stark broadening effects on x-ray spectral line emissions. We show preliminary results from an OMEGA campaign to obtain direct measurements of ion species separation via advanced analysis of x-ray spectroscopy and spectrally resolved imaging data. These were symmetric direct-drive implosions of CH capsules with deuterium and trace argon gas fills. The implosions were designed to be in a collisional, diffusive regime and to take advantage of interspecies diffusion between the D and Ar driven by temperature gradients in the hot spot. X-ray spectral line emissions and narrowband images from He-like and H-like Ar ions are used to infer the spatial separation of Ar from D.

  12. Backlighting Direct-Drive Cryogenic DT Implosions on OMEGA

    Science.gov (United States)

    Stoeckl, C.

    2016-10-01

    X-ray backlighting has been frequently used to measure the in-flight characteristics of an imploding shell in both direct- and indirect-drive inertial confinement fusion implosions. These measurements provide unique insight into the early time and stagnation stages of an implosion and guide the modeling efforts to improve the target designs. Backlighting a layered DT implosion on OMEGA is a particular challenge because the opacity of the DT shell is low, the shell velocity is high, the size and wall thickness of the shell is small, and the self-emission from the hot core at the onset of burn is exceedingly bright. A framing-camera-based crystal imaging system with a Si Heα backlighter at 1.865keV driven by 10-ps short pulses from OMEGA EP was developed to meet these radiography challenges. A fast target inserter was developed to accurately place the Si backlighter foil at a distance of 5 mm to the implosion target following the removal of the cryogenic shroud and an ultra-stable triggering system was implemented to reliably trigger the framing camera coincident with the arrival of the OMEGA EP pulse. This talk will report on a series of implosions in which the DT shell is imaged for a range of convergence ratios and in-flight aspect ratios. The images acquired have been analyzed for low-mode shape variations, the DT shell thickness, the level of ablator mixing into the DT fuel (even 0.1% of carbon mix can be reliably inferred), the areal density of the DT shell, and the impact of the support stalk. The measured implosion performance will be compared with hydrodynamic simulations that include imprint (up to mode 200), cross-beam energy transfer, nonlocal thermal transport, and initial low-mode perturbations such as power imbalance and target misalignment. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Capsule implosions driven by dynamic hohlraum x-rays

    Science.gov (United States)

    Bailey, James

    2005-10-01

    Dynamic hohlraum experiments at the Z facility already implode capsules with up to 80 kJ absorbed x-ray energy. However, many challenging issues remain for ICF. The present experiments use diagnostic capsules to address two of these issues: symmetry measurement and control and building understanding of the capsule/hohlraum implosion system. A suite of x-ray spectrometers record time and space resolved spectra emitted by Ar tracer atoms in the implosion core, simultaneously from up to three different quasi-orthogonal directions. Comparing the results with simulation predictions provide severe tests of understanding. These data also can used to produce a tomographic reconstruction of the time resolved core temperature and density profiles. X-ray and neutron diagnostics are used to examine how the implosion conditions change as the capsule design changes. The capsule design changes include variations in CH wall thickness and diameter, Ge-doped CH shells, and SiO2 shells. In addition, a new campaign investigating Be capsule implosions is beginning. Be capsules may offer superior performance for dynamic hohlraum research and it may be possible to investigate NIF-relevant Be implosion issues such as the fill tube effects, sensitivity to columnar growth associated with sputtered Be capsule fabrication, and the effect of Cu dopants on implosion conditions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Dept. of Energy under contract No. DE-AC04-94AL85000. * In collaboration with G.A. Rochau, G.A. Chandler, S.A. Slutz, P.W. Lake, G. Cooper, G.S. Dunham, R.J. Leeper, R. Lemke, T.A. Mehlhorn, T.J. Nash, D.S. Nielsen, K. Peterson, C.L. Ruiz, D.B. Sinars, J. Torres, W. Varnum, Sandia; R.C. Mancini, T.J. Buris-Mog, UNR; I. Golovkin, J.J. MacFarlane, PRISM; A. Nikro, D. Steinman, J.D. Kilkenny, H. Xu, General Atomics; M. Bump, T.C. Moore, K-tech; D.G. Schroen, Schafer

  14. Plasma Viscosity with Mass Transport in Spherical ICF Implosion Simulations

    CERN Document Server

    Vold, Erik L; Ortega, Mario I; Moll, Ryan; Fenn, Daniel; Molvig, Kim

    2015-01-01

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrange hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduc...

  15. Arcade Implosion Caused by a Filament Eruption in a Flare

    Science.gov (United States)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.; Thalmann, J. K.; Hudson, H. S.; Hannah, I. G.

    2016-12-01

    Coronal implosions—the convergence motion of plasmas and entrained magnetic field in the corona due to a reduction in magnetic pressure—can help to locate and track sites of magnetic energy release or redistribution during solar flares and eruptions. We report here on the analysis of a well-observed implosion in the form of an arcade contraction associated with a filament eruption, during the C3.5 flare SOL2013-06-19T07:29. A sequence of events including the magnetic flux-rope instability and distortion, followed by a filament eruption and arcade implosion, lead us to conclude that the implosion arises from the transfer of magnetic energy from beneath the arcade as part of the global magnetic instability, rather than due to local magnetic energy dissipation in the flare. The observed net contraction of the imploding loops, which is found also in nonlinear force-free field extrapolations, reflects a permanent reduction of magnetic energy underneath the arcade. This event shows that, in addition to resulting in the expansion or eruption of an overlying field, flux-rope instability can also simultaneously implode an unopened field due to magnetic energy transfer. It demonstrates the “partial opening of the field” scenario, which is one of the ways in 3D to produce a magnetic eruption without violating the Aly-Sturrock hypothesis. In the framework of this observation, we also propose a unification of three main concepts for active region magnetic evolution, namely the metastable eruption model, the implosion conjecture, and the standard “CSHKP” flare model.

  16. A New Theory of Mix in Omega Capsule Implosions

    Science.gov (United States)

    Knoll, Dana; Chacon, Luis; Rauenzahn, Rick; Simakov, Andrei; Taitano, William; Welser-Sherrill, Leslie

    2014-10-01

    We put forth a new mix model that relies on the development of a charge-separation electrostatic double-layer at the fuel-pusher interface early in the implosion of an Omega plastic ablator capsule. The model predicts a sizable pusher mix (several atom %) into the fuel. The expected magnitude of the double-layer field is consistent with recent radial electric field measurements in Omega plastic ablator implosions. Our theory relies on two distinct physics mechanisms. First, and prior to shock breakout, the formation of a double layer at the fuel-pusher interface due to fast preheat-driven ionization. The double-layer electric field structure accelerates pusher ions fairly deep into the fuel. Second, after the double-layer mix has occurred, the inward-directed fuel velocity and temperature gradients behind the converging shock transports these pusher ions inward. We first discuss the foundations of this new mix theory. Next, we discuss our interpretation of the radial electric field measurements on Omega implosions. Then we discuss the second mechanism that is responsible for transporting the pusher material, already mixed via the double-layer deep into the fuel, on the shock convergence time scale. Finally we make a connection to recent mix motivated experimental data on. This work conducted under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under Contract DE-AC52-06NA25396.

  17. Spiral wobbling beam illumination uniformity in HIF fuel target implosion

    Directory of Open Access Journals (Sweden)

    Kawata S.

    2013-11-01

    Full Text Available A few % wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF throughout the heavy ion beam (HIB driver pulse by a newly introduced spiraling beam axis motion in the first two rotations. The wobbling HIB illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may produce a time-dependent implosion acceleration, which reduces the Rayleigh-Taylor (R-T growth [Laser Part. Beams 11, 757 (1993, Nuclear Inst. Methods in Phys. Res. A 606, 152 (2009, Phys. Plasmas 19, 024503 (2012] and the implosion nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100 MHz ∼ 1 GHz [Phys. Rev. Lett. 104, 254801 (2010]. Three-dimensional HIBs illumination computations present that the few % wobbling HIBs illumination nonuniformity oscillates with the same wobbling HIBs frequency.

  18. Kr X-ray spectroscopy to diagnose NIF ICF implosions

    Science.gov (United States)

    Dasgupta, A.; Ouart, N.; Giuliani, J. L.; Clark, R. W.; Schneider, M. B.; Scott, H. A.; Chen, H.; Ma, T.; Apruzese, J. P.

    2016-10-01

    X ray spectroscopy is used on the NIF to diagnose the plasma conditions in the ignition target in indirect drive ICF implosions. High-energy emission spectra from mid to high atomic number elements can provide estimates of electron temperature near stagnation of an ICF implosion. A platform is being developed at NIF where small traces of krypton are used as a dopant to the fuel gas for spectroscopic diagnostics using krypton line emissions. The fraction of krypton dopant was varied in the experiments and was selected so as not to perturb the implosion. Simulations of the krypton spectra using a 1 in 104 atomic fraction of krypton in direct-drive exploding pusher with a range of electron temperatures and densities show discrepancies when different atomic models are used. We use our non-LTE atomic model with a detailed fine-structure level atomic structure and collisional-radiative rates to investigate the krypton spectra at the same conditions. Synthetic spectra are generated with a detailed multi-frequency radiation transport scheme from the emission regions of interest to analyze the experimental data and compare and contrast with the existing simulations at LLNL. Work supported by DOE/NNSA and under the auspices of DOE by LLNL under Contract # DE-AC52-07NA27344.

  19. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches

    Science.gov (United States)

    Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.; Ciardi, A.

    2004-12-01

    Resistive magneto-hydrodynamic (MHD) simulations are used to evaluate the influence of three-dimensional inhomogeneities on x-ray power production in wire array Z-pinches. In particular, we concentrate on simulations of wire array Z-pinch experiments on the MAGPIE generator at Imperial College. An initial temperature perturbation is used to stimulate variations in wire core ablation rates that result in a highly non-uniform final implosion. Results indicate that x-ray power production is governed by the symmetry of the implosion surface and by the rate at which current can transfer to the axis through a three-dimensional debris field that trails behind the main implosion. The peak power is ultimately limited by the growth of MHD instabilities in the stagnated pinch. The individual contributions of the implosion kinetic energy, compression of the stagnated pinch, ohmic heating and MHD instabilities to the radiation yield are quantified. The onset of m = 1 instabilities is found to provide an efficient mechanism for dissipation of the magnetic energy surrounding the stagnated pinch. The formation of a helical plasma column not only allows the magnetic field to do work in driving an expansion of the helix but also enhances the ohmic heating by elongating the path of the current through the pinch. The effect of these energy sources combined is to increase the radiation yield to typically 3½ times the kinetic energy of the implosion. Simulations of arrays with different wire numbers, wire material and with nested arrays are used to examine the mechanisms that influence the peak soft x-ray power. In the simulations, peak power can be increased by: increasing the number of wires (which improves the implosion symmetry), by increasing the atomic number of the material (which increases the compressibility of the plasma) and by using a nested inner array (which brings the mass and the current to the axis more efficiently than a single array).

  20. In-flight observations of low-mode ρR asymmetries in NIF implosions

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rygg, J. R.; Kritcher, A.; Hicks, D. G.; Friedrich, S.; Bionta, R.; Meezan, N. B.; Atherton, J.; Barrios, M.; Bell, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D{sup 3}He gas-filled implosions at the National Ignition Facility produce energetic protons via D+{sup 3}He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3–5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which are interpreted as ℓ=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.

  1. Control of fuel target implosion non-uniformity in heavy ion inertial fusion

    CERN Document Server

    Iinuma, T; Kondo, S; Kubo, T; Kato, H; Suzuki, T; Kawata, S; Ogoyski, A I

    2016-01-01

    In inertial fusion, one of scientific issues is to reduce an implosion non-uniformity of a spherical fuel target. The implosion non-uniformity is caused by several factors, including the driver beam illumination non-uniformity, the Rayleigh-Taylor instability (RTI) growth, etc. In this paper we propose a new control method to reduce the implosion non-uniformity; the oscillating implosion acceleration dg(t) is created by pulsating and dephasing heavy ion beams (HIBs) in heavy ion inertial fusion (HIF). The dg(t) would reduce the RTI growth effectively. The original concept of the non- uniformity control in inertial fusion was proposed in (Kawata, et al., 1993). In this paper it was found that the pulsating and dephasing HIBs illumination provide successfully the controlled dg(t) and that dg(t) induced by the pulsating HIBs reduces well the implosion non-uniformity. Consequently the pulsating HIBs improve a pellet gain remarkably in HIF.

  2. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: limo@nint.ac.cn; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Sheng, L.; Wang, L. P.; Zhao, C.; Yuan, Y.; Zhang, X. J.; Zhang, M.; Peng, B. D.; Zhang, J. H.; Zhang, S. G.; Qiu, M. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and the x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.

  3. Fuel Target Implosion in Ion beam Inertial Confinement Fusion

    CERN Document Server

    Kawata, Shigeo

    2015-01-01

    The numerical results for the fuel target implosion are presented in order to clarify the target physics in ion beam inertial fusion. The numerical analyses are performed for a direct-driven ion beam target. In the paper the following issues are studied: the beam obliquely incidence on the target surface, the plasma effect on the beam-stopping power, the beam particle energy, the beam time duration, the target radius, the beam input energy and the non-uniformity effect on the fuel target performance. In this paper the beam ions are protons.

  4. ARES Modeling of High-foot Implosions (NNSA Milestone #5466)

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-11

    ARES “capsule only” simulations demonstrated results of applying an ASC code to a suite of high-foot ICF implosion experiments. While a capability to apply an asymmetric FDS drive to the capsule-only model using add-on Python routines exists, it was not exercised here. The ARES simulation results resemble the results from HYDRA simulations documented in A. Kritcher, et al., Phys. Plasmas, 23, 052709 (2016); namely, 1D simulation and data are in reasonable agreement for the lowest velocity experiments, but diverge from each other at higher velocities.

  5. Understanding the stagnation and burn of implosions on NIF

    Science.gov (United States)

    Kilkenny, J. D.; Caggiano, J. A.; Hatarik, R.; Knauer, J. P.; Sayre, D. B.; Spears, B. K.; Weber, S. V.; Yeamans, C. B.; Cerjan, C. J.; Divol, L.; Eckart, M. J.; Glebov, V. Yu; Herrmann, H. W.; Le Pape, S.; Munro, D. H.; Grim, G. P.; Jones, O. S.; Berzak-Hopkins, L.; Gatu-Johnson, M.; Mackinnon, A. J.; Meezan, N. B.; Casey, D. T.; Frenje, J. A.; Mcnaney, J. M.; Petrasso, R.; Rinderknecht, H.; Stoeffl, W.; Zylstra, A. B.

    2016-03-01

    An improved the set of nuclear diagnostics on NIF measures the properties of the stagnation plasma of implosions, including the drift velocity, areal density (ρr) anisotropy and carbon ρr of the compressed core. Two types of deuterium-tritium (DT) gas filled targets are imploded by shaped x-ray pulses, producing stagnated and burning DT cores of radial convergence (Cr) ∼ 5 or ∼20. Comparison with two-dimensional modeling with inner and outer surface mix shows good agreement with nuclear measurements.

  6. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    Science.gov (United States)

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  7. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    Science.gov (United States)

    Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua

    2014-12-01

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array

  8. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn; Wu, Jiming, E-mail: ding-ning@iapcm.ac.cn; Huang, Jun, E-mail: ding-ning@iapcm.ac.cn; Yin, Li, E-mail: ding-ning@iapcm.ac.cn; Sun, Shunkai, E-mail: ding-ning@iapcm.ac.cn; Xue, Chuang, E-mail: ding-ning@iapcm.ac.cn; Dai, Zihuan, E-mail: ding-ning@iapcm.ac.cn; Ning, Cheng, E-mail: ding-ning@iapcm.ac.cn; Shu, Xiaojian, E-mail: ding-ning@iapcm.ac.cn; Wang, Jianguo, E-mail: ding-ning@iapcm.ac.cn; Li, Hua, E-mail: ding-ning@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array

  9. 1D study of radiation-dominated implosion of a cylindrical tungsten plasma column

    CERN Document Server

    Basko, M M; Murakami, M; Novikov, V G; Grushin, A S

    2011-01-01

    Spectral properties of the x-ray pulses, generated by perfectly uniform cylindrical implosions of tungsten plasma with parameters typical of wire array z-pinches, are investigated under the simplifying assumption that the final stage of the kinetic-to-radiant energy conversion is not affected by the magnetic field. The x-ray emission is shown to be generated within a narrow (sub-micron) radiation-dominated stagnation shock front with a "supercritical" amplitude. The structure of the stagnation shock is investigated by using two independent radiation-hydrodynamics codes, and by constructing an approximate analytical model. The x-ray spectra are calculated for two values of the plasma column mass, 0.3 mg/cm and 6 mg/cm, with a newly developed two-dimensional radiation-hydrodynamics code RALEF-2D. The hard component of the spectrum (with a blackbody-fit temperature of 0.5-0.6 keV for the 6-mg/cm mass) originates from a narrow peak of the electron temperature inside the stagnation shock. The softer main component...

  10. Diagnosing Implosion Velocity and Ablator Dynamics at NIF

    Science.gov (United States)

    Grim, Gary; Hayes, Anna; Jungman, Jerry; Wilson, Doug; Wilhelmy, Jerry; Bradley, Paul; Rundberg, Bob; Cerjan, Charlie

    2009-10-01

    An enhanced understanding of the environment in a burning NIF capsule is of interest to both astrophysics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. During the burn,the NIF capsule ablator is moving relative to the 14.1 MeV dt neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The ``point-design'' capsule at the NIF will be based on a ^9Be ablator, and the ^9Be(n,p)^9Li reaction has an energy threshold of 14.2 MeV, making it the ideal probe. As discussed in detail below, differences in the ablator velocity lead to significant differences in the rate of ^9Li production. We present techniques for measuring this ^9Li implosion velocity diagnostic at the NIF. The same experimental techniques, measuring neutron reactions on the ablator material, will allow us to determine other important dynamical quantities, such as the areal density and approximate thickness of the ablator at peak burn.

  11. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    Science.gov (United States)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  12. Analysis of NIF experiments with the minimal energy implosion model

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, B., E-mail: bcheng@lanl.gov; Kwan, T. J. T.; Wang, Y. M.; Merrill, F. E.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cerjan, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-08-15

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-induced instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments.

  13. Extraction of the spatial distribution of electron temperature and density in Magnetized Liner Inertial Fusion implosion plasmas

    Science.gov (United States)

    Carpenter, Kyle; Mancini, Roberto

    2016-10-01

    We are testing polychromatic tomography to extract the spatial distribution of electron temperatures and densities in the cylindrical implosion plasmas created during MagLIF. Motivation for this technique stems from its successful application to spherical implosion core plasmas on Omega through the analysis of spatially resolved spectra (SRS) collected via pinhole imaging. In MagLIF, collections of SRS can be extracted from the images created by the slit imaging CRITR spectrometers. These spectra can be complemented with pinhole monochromatic images and spectra recorded with a spherical crystal spectrometer. One axially resolved and one radially resolved CRITR are field during MagLIF and information extracted from one of these SRS would be spatially integrated over a plane of finite thickness given by the spatial resolution of the instrument. In our method, we couple a model that creates synthetic sets of spectra, like those obtained from an experiment, with a Pareto genetic algorithm which searches in parameter space for the spatial distribution which best simultaneously and self-consistently fits the set of SRS/ Solutions obtained are used as the initial solution for a Levenberg-Marquadt minimization algorithm to provide a final ``fine-tuned'' solution. We are testing this method by creating synthetic ``experimental'' data and using the technique to search for the spatial distribution. The results of these feasibility studies will be discussed. The work is supported by a contract from Sandia National Laboratories.

  14. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, R. W., E-mail: rwlemke@sandia.gov; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Robertson, G. R.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Robinson, A. C.; Mattsson, T. R. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1189 (United States); Tomlinson, K.; Blue, B. E. [General Atomics, San Diego, California 92121 (United States); Knudson, M. D. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1189 (United States); Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164 (United States)

    2016-01-07

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.

  15. Capsule Ablator Inflight Performance Measurements Via Streaked Radiography Of ICF Implosions On The NIF*

    Science.gov (United States)

    Dewald, E. L.; Tommasini, R.; Mackinnon, A.; MacPhee, A.; Meezan, N.; Olson, R.; Hicks, D.; LePape, S.; Izumi, N.; Fournier, K.; Barrios, M. A.; Ross, S.; Pak, A.; Döppner, T.; Kalantar, D.; Opachich, K.; Rygg, R.; Bradley, D.; Bell, P.; Hamza, A.; Dzenitis, B.; Landen, O. L.; MacGowan, B.; LaFortune, K.; Widmayer, C.; Van Wonterghem, B.; Kilkenny, J.; Edwards, M. J.; Atherton, J.; Moses, E. I.

    2016-03-01

    Streaked 1-dimensional (slit imaging) radiography of 1.1 mm radius capsules in ignition hohlraums was recently introduced on the National Ignition Facility (NIF) and gives an inflight continuous record of capsule ablator implosion velocities, shell thickness and remaining mass in the last 3-5 ns before peak implosion time. The high quality data delivers good accuracy in implosion metrics that meets our requirements for ignition and agrees with recently introduced 2-dimensional pinhole radiography. Calculations match measured trajectory across various capsule designs and laser drives when the peak laser power is reduced by 20%. Furthermore, calculations matching measured trajectories give also good agreement in ablator shell thickness and remaining mass.

  16. Evaluation of the Biofire FilmArray BioThreat-E Test (v2.5) for Rapid Identification of Ebola Virus Disease in Heat-Treated Blood Samples Obtained in Sierra Leone and the United Kingdom.

    Science.gov (United States)

    Weller, Simon A; Bailey, Daniel; Matthews, Steven; Lumley, Sarah; Sweed, Angela; Ready, Derren; Eltringham, Gary; Richards, Jade; Vipond, Richard; Lukaszewski, Roman; Payne, Phillippa M; Aarons, Emma; Simpson, Andrew J; Hutley, Emma J; Brooks, Tim

    2016-01-01

    Rapid Ebola virus (EBOV) detection is crucial for appropriate patient management and care. The performance of the FilmArray BioThreat-E test (v2.5) using whole-blood samples was evaluated in Sierra Leone and the United Kingdom and was compared with results generated by a real-time Ebola Zaire PCR reference method. Samples were tested in diagnostic laboratories upon availability, included successive samples from individual patients, and were heat treated to facilitate EBOV inactivation prior to PCR. The BioThreat-E test had a sensitivity of 84% (confidence interval [CI], 64% to 95%) and a specificity of 89% (CI, 73% to 97%) in Sierra Leone (n = 60; 44 patients) and a sensitivity of 75% (CI, 19% to 99%) and a specificity of 100% (CI, 97% to 100%) in the United Kingdom (n = 108; 70 patients) compared to the reference real-time PCR. Statistical analysis (Fisher's exact test) indicated there was no significant difference between the methods at the 99% confidence level in either country. In 9 discrepant results (5 real-time PCR positives and BioThreat-E test negatives and 4 real-time PCR negatives and BioThreat-E test positives), the majority (n = 8) were obtained from samples with an observed or probable low viral load. The FilmArray BioThreat-E test (v2.5) therefore provides an attractive option for laboratories (either in austere field settings or in countries with an advanced technological infrastructure) which do not routinely offer an EBOV diagnostic capability.

  17. Towards an integrated model of the NIC layered implosions

    Science.gov (United States)

    Jones, O.; Callahan, D.; Cerjan, C.; Clark, D.; Edwards, M. J.; Glenzer, S.; Marinak, M.; Meezan, N.; Milovich, J.; Olson, R.; Patel, M.; Robey, H.; Sepke, S.; Spears, B.; Springer, P.; Weber, S.; Wilson, D.

    2013-11-01

    A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.

  18. Quantifying uncertainty in NIF implosion performance across target scales

    Science.gov (United States)

    Spears, Brian; Baker, K.; Brandon, S.; Buchoff, M.; Callahan, D.; Casey, D.; Field, J.; Gaffney, J.; Hammer, J.; Humbird, K.; Hurricane, O.; Kruse, M.; Munro, D.; Nora, R.; Peterson, L.; Springer, P.; Thomas, C.

    2016-10-01

    Ignition experiments at NIF are being performed at a variety of target scales. Smaller targets require less energy and can be fielded more frequently. Successful small target designs can be scaled up to take advantage of the full NIF laser energy and power. In this talk, we will consider a rigorous framework for scaling from smaller to larger targets. The framework uses both simulation and experimental results to build a statistical prediction of target performance as scale is increased. Our emphasis is on quantifying uncertainty in scaling predictions with the goal of identifying the dominant contributors to that uncertainty. We take as a particular example the Big Foot platform that produces a round, 0.8 scale implosion with the potential to scale to full NIF size (1.0 scale). This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Effects of seed magnetic fields on magnetohydrodynamic implosion structure and dynamics

    KAUST Repository

    Mostert, W.

    2014-12-01

    The effects of various seed magnetic fields on the dynamics of cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Here, we present a fundamental investigation of this problem utilizing cylindrical and spherical Riemann problems under three seed field configurations to initialize the implosions. The resulting flows are simulated numerically, revealing rich flow structures, including multiple families of magnetohydrodynamic shocks and rarefactions that interact non-linearly. We fully characterize these flow structures, examine their axi- and spherisymmetry-breaking behaviour, and provide data on asymmetry evolution for different field strengths and driving pressures for each seed field configuration. We find that out of the configurations investigated, a seed field for which the implosion centre is a saddle point in at least one plane exhibits the least degree of asymmetry during implosion.

  20. Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA

    Science.gov (United States)

    Goncharov, V. N.; Regan, S. P.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Myatt, J. F.; Radha, P. B.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Gatu-Johnson, M.

    2016-05-01

    Achieving ignition in a direct-drive cryogenic implosion at the National Ignition Facility (NIF) requires reaching central stagnation pressures in excess of 100 Gbar, which is a factor of 3 to 4 less than what is required for indirect-drive designs. The OMEGA Laser System is used to study the physics of cryogenic implosions that are hydrodynamically equivalent to the spherical ignition designs of the NIF. Current cryogenic implosions on OMEGA have reached 56 Gbar, and implosions with shell convergence CR 3.5 proceed close to 1-D predictions. Demonstrating hydrodynamic equivalence on OMEGA will require reducing coupling losses caused by cross-beam energy transfer (CBET), minimizing long- wavelength nonuniformity seeded by power imbalance and target offset, and removing target debris occumulated during cryogenic target production.

  1. Sensitivity of Inferred Electron Temperature from X-ray Emission of NIF Cryogenic DT Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Klem, Michael [Univ. of Dallas, Irving, TX (United States)

    2015-05-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred. Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.

  2. Performance of indirectly driven capsule implosions on NIF using adiabat-shaping

    Science.gov (United States)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatarik, R.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kerbel, G. D.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; Marinak, M. M.; MacGowan, B. J.; MacPhee, A. G.; Pak, A.; Patel, M.; Patel, P. K.; Perkins, L. J.; Sayre, D. B.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.; Giraldez, E.; Hoover, D.; Nikroo, A.; Hohenberger, M.; Gatu Johnson, M.

    2016-05-01

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease in laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.

  3. Examining the radiation drive asymmetries present in implosion experiments at the National Ignition Facility

    Science.gov (United States)

    Pak, Arthur

    2016-10-01

    Understanding the origin, interplay, and mitigation of time dependent radiation drive asymmetries is critical to improving the performance of indirectly driven implosion experiments. Recent work has successfully modeled many aspects of the observed symmetry in implosions using the so-called high foot radiation drive by applying a semi-empirical fit to the low mode time dependent flux asymmetries that the capsule experiences. In these experiments, laser plasma interactions, including cross beam energy transfer, inverse Bremsstrahlung absorption, and stimulated Raman and Brillouin scattering, make controlling the symmetry of the radiation flux that drives the implosion challenging. More recently, control of implosion symmetry without the use of cross beam energy transfer, in hohlraums with lower gas fill densities using both plastic and high density carbon ablators, have been explored. The aim of these experiments was to reduce the amount of highly non-linear laser plasma interactions and develop implosions in which the radiation flux symmetry could be more easily understood and controlled. This work describes the experimental reemission, shock timing, radiography, and x-ray self emission measurements that inform our understanding of time dependent radiation drive asymmetries. This data indicates that in the high foot series of implosion experiments, the drive asymmetry initialized during the first shock of the implosion was enhanced by the asymmetry that develops during the peak of the radiation drive. In contrast, in lower gas filled hohlraum experiments, a reduction in the magnitude of time dependent radiation asymmetries has been observed. Incorporating additional data and modeling, this work seeks to further our understanding of the physical mechanisms that currently limit symmetry control in implosion experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA

  4. Control of Be capsule low mode implosions symmetry at the National Ignition Facility

    Science.gov (United States)

    Kyrala, G. A.; Kline, J. L.; Yi, S.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Batha, S.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; MacPhee, A. G.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Khan, S. F.; Ma, T.; Izumi, N.; Nagel, S.; Rygg, J. R.

    2016-05-01

    We present results of the beryllium experimental campaign on the implosion symmetry properties of beryllium capsules at the National Ignition Facility (NIF) [1]. These indirect drive experiments measure both the inflight and core self-emission implosion symmetry. The inflight symmetry of the ablator before stagnation is measured using a backlight imaging technique. A copper backlighter was used to measure the transmissions (or backlit absorption) of the copper doped beryllium shells. Images of the x-ray emission from the core around bang time provide a measure of the symmetry near peak compression. Both pieces of information about the 2D symmetry are used to infer the drive and velocity uniformity enabling us to predictably adjust the properties of the incident laser, mainly the time dependent ratio of the inner beam cone power to the outer laser beam powers, to achieve proper symmetry of the implosion. Results from these experiments show inner beam propagation is not degraded compared to similar implosions with CH ablators. Variations in the shape compared with implosions using CH ablators also provides information about the cross beam energy transfer used to adjust the equatorial shape and thus infer information about the differences in plasma conditions near the laser entrance holes. Experimental results of the implosion shape for beryllium capsules will be presented along with comparisons relative to CH ablators.

  5. Maximizing 1D “like” implosion performance for inertial confinement fusion science

    Energy Technology Data Exchange (ETDEWEB)

    Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    While the march towards achieving indirectly driven inertial confinement fusion at the NIF has made great progress, the experiments show that multi-dimensional effects still dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seed by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of ICF implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. To this end, LANL has adopted three main approaches to develop a 1D implosion platform where 1D means high yield over 1D clean calculations. Taking advantage of the properties of beryllium capsules, a high adiabat, low convergence platform is being developed. The higher drive efficiency for beryllium enables larger case-to-capsule ratios to improve symmetry at the expense of drive. Smaller capsules with a high adiabat drive are expected to reduce the convergence and thus increase predictability. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the initial mass in the hot spot can be controlled via the target fielding temperature which changes the liquid vapor pressure. Varying the initial hot spot mass via the vapor pressure controls the implosion convergence and minimizes the need to vaporize the dense fuel layer during the implosion to achieve ignition relevant hot spot densities. The last method is double shell targets. Unlike hot spot ignition, double shells ignite volumetrically. The inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. Radiation trapping and the longer confinement times relax the conditions required to ignite the fuel. Key challenges for double shell targets are coupling the momentum of the outer shell to

  6. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium tritium implosions on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. N. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Sangster, T. C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Betti, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Boehly, T. R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Bonino, M. J. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Collins, T. J. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Craxton, R. S. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Delettrez, J. A. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Edgell, D. H. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Epstein, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Follett, R. K. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Forrest, C. J. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Froula, D. H. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Yu. Glebov, V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Harding, D. R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Henchen, R. J. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Hu, S. X. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Igumenshchev, I. V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Janezic, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Kelly, J. H. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Kessler, T. J. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Kosc, T. Z. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Loucks, S. J. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Marozas, J. A. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Marshall, F. J. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Maximov, A. V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; McCrory, R. L. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; McKenty, P. W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Meyerhofer, D. D. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Michel, D. T. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Myatt, J. F. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Nora, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Radha, P. B. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Regan, S. P. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Seka, W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Shmayda, W. T. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Short, R.W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Shvydky, A. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Skupsky, S. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Yaakobi, B. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Frenje, J. A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu-Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-01

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≅ 4, an implosion velocity of 3.8 × 10⁷ cm/s, and a laser intensity of ~10¹⁵ W/cm². These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  7. Performance of Indirectly-Driven Capsule Implosions on NIF Using Adiabat-Shaping

    Science.gov (United States)

    Robey, Harry

    2015-11-01

    Indirectly-driven capsule implosions are being conducted on the National Ignition Facility (NIF). Early experiments conducted during the National Ignition Campaign (NIC) were driven by a laser pulse with a relatively low-power initial foot (``low-foot''), which was designed to keep the deuterium-tritium (DT) fuel on a low adiabat to achieve a high fuel areal density (ρR). These implosions were successful in achieving high ρR, but fell significantly short of the predicted neutron yield. A leading candidate to explain this degraded performance was ablation front instability growth, which can lead to the mixing of ablator material with the DT fuel layer and in extreme cases into the central DT hot spot. A subsequent campaign employing a modified laser pulse with increased power in the foot (``high-foot'') was designed to reduce the adverse effects of ablation front instability growth. These implosions have been very successful, increasing neutron yields by more than an order of magnitude, but at the expense of reduced fuel compression. To bridge these two regimes, a series of implosions have been designed to simultaneously achieve both high stability and high ρR. These implosions employ adiabat-shaping, where the driving laser pulse is high in the initial picket similar to the high-foot to retain the favorable stability properties at the ablation front. The remainder of the foot is similar to that of the low-foot, driving a lower velocity shock into the DT fuel to keep the adiabat low and compression high. This talk will present results and analysis of these implosions and will discuss implications for improved implosion performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.

  9. Metal Liner Implosions for Cylindrical Convergent Isentropic Compression of Deuterium and its Application to MAGLIF

    Science.gov (United States)

    Weinwurm, Marcus; Appelbe, Brian; Skidmore, Jonathan; Bland, Simon; Chittenden, Jeremy

    2012-10-01

    Isentropic Compression Experiments on pulsed power machines in the field of High Energy Density Physics have gained interest in recent years. We describe a method of isentropically compressing cryogenic Deuterium inside a metal liner. Pulse shaping was performed by solving Kidder's homogeneous isentropic compression for cylindrical geometry and extending it to an arbitrary Equation of State. The obtained pulse shape enables us to simulate a cylindrically convergent ramp wave, which quasi-isentropically compresses the Deuterium fill to densities much higher than achievable by using a standard pulse. The effect of Rayleigh-Taylor instabilities upon the peak density achieved is evaluated using the resistive magneto-hydrodynamics code Gorgon for a maximum current of 25 MA. Therefore, isentropic liner implosions are a promising technique for recreating the conditions present in the interiors of gas giants. We applied this technique to the High-Gain Magnetized Liner Inertial Fusion (MAGLIF) scheme [1]. There a metal liner is filled with DT gas surrounded by a layer of DT ice. We show how the current pulse can be shaped in order to isentropically compress the DT ice layer. By doing so, we keep the fuel at low temperature. This maximises the compression of the DT ice layer, and increases rho-r at stagnation. Burn wave propagation in the isentropically compressed fuel is compared to propagation in fuel compressed by a standard current pulse. [4pt] [1] S.A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)

  10. Hot spot model of MagLIF implosions: Nernst term effect on magnetic flux losses

    Science.gov (United States)

    Garcia Rubio, Fernando; Sanz Recio, Javier; Betti, Riccardo

    2016-10-01

    An analytical model of a collisional plasma being compressed by a cylindrical liner is proposed and solved in a magnetized liner inertial fusion-like context. The implosion is assumed to be isobaric, and the magnetic diffusion is confined to a thin layer near the liner. Both unmagnetized and magnetized plasma cases are considered. The model reduces to a system of two partial differential equations for temperature and magnetic field. Special attention is given to the effect of the Nernst term on the evolution of the magnetic field. Scaling laws for temperature, magnetic field, hot spot mass increase and magnetic field losses are obtained. The temperature and magnetic field spatial profiles tend to a self-similar state. It is found that when the Nernst term is taken into account, the magnetic field is advected towards the liner, and the magnetic flux losses are independent of the magnetic Lewis number. Research supported by the Spanish Ministerio de Economía y Competitividad, Project No. ENE2014-54960R. Acknowledgements to the Laboratory of Laser Energetics (Rochester) for its hospitality.

  11. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  12. Improved ICF implosion performance through precision engineering features

    Science.gov (United States)

    Weber, Christopher

    2016-10-01

    The thin membrane that holds the capsule in-place in the hohlraum is recognized as one of the most significant contributors to reduced performance in indirect drive inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF). This membrane, known as the ``tent'', seeds a perturbation that is amplified by Rayleigh-Taylor and can rupture the capsule. The ICF program is undertaking a major effort to develop a less damaging capsule support mechanism. Possible alternatives include micron-scale rods spanning the hohlraum width and supporting either the capsule or stiffening the fill-tube, a larger fill-tube to both fill and support the capsule, or a low-density foam layer that protects the capsule from the tent impact. In addition to the challenges presented by nano and microscale engineering, it is difficult to model and experimentally verify improvement from these changes. The 3D nature of the proposed replacements and the radiation shadows they cast on the capsule prohibit direct simulation. Therefore a combination of reduced models and experimental verification are used to set requirements and down-select the options. Ultimately the improved capsule support will be used to repeat a DT-layered implosion and demonstrate improved performance. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  13. Higher velocity, high-foot implosions on the National Ignition Facility laser

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H.-S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); and others

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1 × 10{sup 15} neutrons, the total yield ∼ v{sup 9.4}. This increase is considerably faster than the expected dependence for implosions without alpha heating (∼v{sup 5.9}) and is additional evidence that these experiments have significant alpha heating.

  14. 3D full circumference modelling of wire array Z-pinches

    Science.gov (United States)

    Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Jennings, C. A.; Ciardi, A.

    2003-10-01

    Resistive magneto-hydrodynamic simulations are used to evaluate the influence of 3D inhomogeneities on X-ray power production in wire array Z-pinches. An initial temperature perturbation is used to stimulate variations in core ablation rates which result in a highly non-uniform final implosion. Results indicate that X-ray power production is governed by the rate at which current can transfer to the axis through a 3D debris field which trails behind the main implosion. Three dominant sources of power input to the pinch, and hence X-ray production, are identified. The first is the implosion of a large fraction of the array mass at moderate velocity. The second is the later implosion of a smaller mass fraction at higher velocity which carries the majority of current. Finally the contribution of Ohmic heating to the power input becomes significant. The peak power is ultimately limited by the onset of MHD instabilities in the stagnated pinch. Mechanisms for the influence of wire number, material and nesting on X-ray power production are presented. This research was sponsored by the NNSA under DOE Cooperative Agreement DE-F03-02NA00057.

  15. Mitigation Effect of Finite Larmor Radius on Rayleigh-Taylor Instability in Z-Pinch Implosions

    Institute of Scientific and Technical Information of China (English)

    邱孝明; 黄林; 简广德

    2002-01-01

    Based on the framework of magnetohydrodynamic theory, a simple model is proposed to study the mitigation effect of finite Larmor radius on the Rayleigh-Taylor instability in Z-pinch implosions. In this model, taking account of Ti ≥ Te in Z-pinch implosions we believe that the magnetohydrodynamic plasma responds to a perturbation (~ exp [i (k. x - ωt)]) at frequency (ω + ik2⊥ρ2iΩi) instead of frequency ω, where k2⊥ρ2i is due to the finite Larmor radius effects expressed from the generalkinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include the finite Larmor radius effects. The calculations indicate that, in the wavenumber region of interest, the finite Larmor radius effects can mitigate the Rayleigh-Taylor instability in Z-pinch implosions.

  16. Demonstration of the improved rocket efficiency in direct-drive implosions using different ablator materials.

    Science.gov (United States)

    Michel, D T; Goncharov, V N; Igumenshchev, I V; Epstein, R; Froula, D H

    2013-12-13

    The success of direct-drive implosions depends critically on the ability to create high ablation pressures (∼100  Mbar) and accelerating the imploding shell to ignition-relevant velocities (>3.7×10(7 ) cm/s) using direct laser illumination. This Letter reports on an experimental study of the conversion of absorbed laser energy into kinetic energy of the shell (rocket efficiency) where different ablators were used to vary the ratio of the atomic number to the atomic mass. The implosion velocity of Be shells is increased by 20% compared to C and CH shells in direct-drive implosions when a constant initial target mass is maintained. These measurements are consistent with the predicted increase in the rocket efficiency of 28% for Be and 5% for C compared to a CH ablator.

  17. Time history and performances of direct-drive implosion on the Omega facility

    Science.gov (United States)

    Laffite, Stephane; Bourgade, Jean-Luc; Caillaud, Tony; Girard, Frederic; Landoas, Olivier; Lemaire, Sebastien; Masse, Laurent; Masson-Laborde, Paul-Edouard; Philippe, Frank; Reverdin, Charles; Tassin, Veronique; Legay, Guillaume; Delettrez, Jacques; Glebov, Vladimir; Marshall, Frederic; Michel, Tomline; Seka, Wolf; Joshi, Tirtha; Mancini, Roberto; Frenje, Johan

    2015-11-01

    We present direct-drive experiments which were carried out on the Omega facility. Three different pulse shapes were tested in order to vary the implosion stability of the same target. The direct-drive configuration on the Omega facility allows the accurate time-resolved measurements of the scattered light. We show that, providing the laser coupling is well controlled, the implosion time history, assessed by the ``bang-time'' and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. On the contrary, we show that the pulse shape affects the implosion stability, assesses by the comparison of the target performances, between prediction and measure. For the 1-ns square pulse, the measured neutron number is about 80% of the prediction. For the 2-step 2-ns pulse, this ratio falls down to about 20%.

  18. Time history prediction of direct-drive implosions on the Omega facility

    Science.gov (United States)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.; Delettrez, J. A.; Frenje, J. A.; Girard, F.; Glebov, V. Yu.; Joshi, T.; Landoas, O.; Legay, G.; Lemaire, S.; Mancini, R. C.; Marshall, F. J.; Masse, L.; Masson-Laborde, P. E.; Michel, D. T.; Philippe, F.; Reverdin, C.; Seka, W.; Tassin, V.

    2016-01-01

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolved measurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the "bang-time" and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. In contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measured neutron number is about 80% of the prediction. For the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.

  19. First liquid-layer implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Zylstra, Alex; Olson, R.; Leeper, R.; Kline, J.; Yi, S. A.; Peterson, R.; Bradley, P.; Haines, B.; Yin, L.; Wilson, D.; Herrmann, H.; Shah, R.; Biener, J.; Braun, T.; Kozioziemski, B.; Berzak Hopkins, L.; Hamza, A.; Nikroo, A.; Meezan, N.; Biener, M.; Sater, J.; Walters, C.

    2016-10-01

    Replacing the standard ice layer in an ignition design with a liquid layer allows fielding the target with a higher central vapor pressure, leading to reduced implosion convergence ratio (CR). At lower CR, the implosions are expected to be more robust to instabilities and asymmetries than standard ignition designs. The first liquid-layer implosions on the National Ignition Facility (NIF) have been performed by wicking the liquid fuel into a supporting foam. A 3-shot series has been conducted at CR=14-16 using a HDC ablator driven by a 3-shock pulse in a near-vacuum Au hohlraum; data and inferred quantities, such as pressure, show good agreement with expectations.

  20. Modeling of low convergence liquid layer wetted foam implosions at the National Ignition Facility

    Science.gov (United States)

    Yi, S. A.; Olson, R. E.; Yin, L.; Wilson, D. C.; Herrmann, H. W.; Zylstra, A. B.; Haines, B. M.; Peterson, R. R.; Bradley, P. A.; Shah, R. C.; Kline, J. L.; Leeper, R. J.; Batha, S. H.; Milovich, J. L.; Berzak Hopkins, L. F.; Ho, D. D.; Meezan, N. B.

    2016-10-01

    A new platform has been developed that allows for lower convergence ratio implosions (CR 15) than is possible with traditional DT ice layered capsules (CR 30). We present HYDRA simulation models of the first low convergence DT implosions on NIF utilizing the wetted foam platform. When tuned to match the observed bangtime and hotspot symmetry, our rad-hydro models agree well with many experimental observables. In particular, the inferred hotspot density and pressure are consistent with simulations, and our modeled burn widths are in better relative agreement with the data than in high convergence implosions. The observed neutron yields are approximately 60-70% of postshot calculations. These results indicate that at a reduced convergence ratio CR 15 the hotspot formation process is well modeled by our simulations. This work was performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  1. Impact of flows on ion temperatures inferred from neutron spectra produced in NIF DT implosions

    Science.gov (United States)

    Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Knauer, J. P.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Doeppner, T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hinkel, D. E.; Hurricane, O. A.; Kritcher, A.; Le Pape, S.; Ma, T.; Munro, D. H.; Patel, P.; Ralph, J. E.; Sayre, D. B.; Spears, B. K.; Yeamans, C. B.; Kilkenny, J. D.

    2015-11-01

    Neutron spectrometers on the NIF provide accurate, directional information of the DT and DD neutron spectra from layered DT implosions. Traditionally, ion temperatures (Tion) , essential for assessing conditions in the hotspot of the implosions, are inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn also impacts broadening and may lead to artificially inflated ``Tion'' values. We examine NIF neutron spectra to assess the impact of flows on measured Tion. Measured DT Ti on is consistently higher than measured DD Tion, which suggests that significant energy is lost to radial or turbulent kinetic fuel motion at peak burn. However, explaining the full observed Tion difference with fuel motion, as calculated from a Ballabio and Murphy analysis, leads to a thermal Tion too low to explain observed yields. These results have improved our understanding of hotspot formation and the concept of ``stagnation'' in layered NIF implosions. This work was supported in part by DOE, LLNL and LLE.

  2. Performance of layered DT implosions with adiabat-shaped drives on NIF

    Science.gov (United States)

    Smalyuk, V. A.; Robey, H. F.; Milovich, J.; Bachmann, B.; Baker, K.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; MacGowan, B. J.; Macphee, A. G.

    2015-11-01

    Layered DT implosions with adiabat-shaped drives were performed to study the physics of performance degradation due to instability growth and convergence. Both 3-shock and 4-shock adiabat-shaped designs were developed and demonstrated significantly reduced ablation-front instability growth. These new drives with DT fuel adiabat ~ 2.1 and ~ 1.6 respectively, were used in layered DT implosions showing significant improvements in performance compared to implosions during the National Ignition Campaign. Comparison of measured and simulated data will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. The Preparation of Microzonation Map of the Gulf of Buyukcekmece using results obtain by Vertical Electrical Sounding Measurements with Multi-Channel Analysis of Surface Wave and Microtremor Array Method

    Science.gov (United States)

    Tezel, Okan; Karabulut, Savas; Imre, Nazire; Caglak, Faruk; Yeziz, Hatice; Ozcep, Ferhat

    2013-04-01

    Istanbul is a megacity with 17 million inhabitants. After the 17 August 1999 earthquake, many researchers have focused on the mitigation of earthquake hazards in the Sea of Marmara and its vicinity. If we want to lessen the effects of such an earthquake, we have to learn about three different types of problems which are properties of the earthquake's source, whether of site effect or properties of engineering structures. When İstanbul Metropolitian Municipilaty obtained a World Bank Credit 5 years ago, they had a microzonation report for only a limited area which finished at Har amidere in the western site of Istanbul. Because they will not have any new project, the western side of Haramidere hasn't been studied by any scientist. For this reason, we focused on the Gulf of Buyukcekmece which is located on the western part of Haramidere and suffered in the 1999 earthquake. There are five geological units in the study area such as Bakirkoy formation, Gurpinar formation, Çukurçeşme formation, Güngören formation and Alluvial deposit. We conducted some measurements which are multi-channel analysis of surface wave (MASW), microtremor array method (MAM) and vertical electrical sounding(VES). The aim of using VES data is to determine bedrock depth, learn whether there is a new fault and learn the electrical properties of each layer of bedrock. The MASW method is so attactive, cheap and fast. According to seismic refraction, it has some advantages that are determining the deeper part of sub-surface, lower velocity layers and velocity contrast. Especially, we use natural sources; MAM methods are more useful method in the city. For all of these purposes, we collected MASW and MAM measurements at 80 sites and VES measurements at 20 sites. As primary results for VES measurements, we determined the bedrock depth by evaluating the VES measurements for the central, eastern and western part of Buyukcekmece Gulf. Bedrock depth is 308 meters in the central and eastern part of

  4. Dynamical Process of Liner Implosion in the Electromagnetic Flux Compression for Ultra-high Magnetic Fields

    CERN Document Server

    Nakamura, Daisuke; Matsuda, Yasuhiro H; Takeyama, Shojiro

    2013-01-01

    The spatial distribution of magnetic fields that are generated by the electromagnetic flux compression technique is investigated, with emphasis on the dynamical processes of an imploding liner. By comparing with the results of computer simulations, we found that the non-uniform implosion of a liner is important in order to explain the magnetic field's distribution during the liner's implosion. In addition, our results suggest that the initial inwards compressing spool-like motion of the liner subsequently turns out to be outwards stretching barrel-like motion along the magnetic field axis.

  5. Implosion lessons from national security, high reliability spacecraft, electronics, and the forces which changed them

    CERN Document Server

    Temple, L Parker

    2012-01-01

    Implosion is a focused study of the history and uses of high-reliability, solid-state electronics, military standards, and space systems that support our national security and defense. This book is unique in combining the interdependent evolution of and interrelationships among military standards, solid-state electronics, and very high-reliability space systems. Starting with a brief description of the physics that enabled the development of the first transistor, Implosion covers the need for standardizing military electronics, which began during World War II and continu

  6. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    CERN Document Server

    Le, Ari; Schmitt, M J; Herrmann, H W; Batha, S H

    2016-01-01

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  7. Multiresolution Analysis Techniques to Isolate, Detect and Characterize Morphologically Diverse Features of Structured ICF Capsule Implosions

    CERN Document Server

    Afeyan, Bedros; Jones, Peter; Starck, Jean Luc; Herrmann, Mark

    2012-01-01

    In order to capture just how nonuniform and degraded the symmetry may become of an imploding inertial confinement fusion capsule one may resort to the analysis of high energy X ray point projection backlighting generated radiographs. Here we show new results for such images by using methods of modern harmonic analysis which involve different families of wavelets, curvelets and WaSP (wavelet square partition) functions from geometric measure theory. Three different methods of isolating morphologically diverse features are suggested together with statistical means of quantifying their content for the purposes of comparing the same implosion at different times, to simulations and to different implosion images.

  8. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    Science.gov (United States)

    Le, A.; Kwan, T. J. T.; Schmitt, M. J.; Herrmann, H. W.; Batha, S. H.

    2016-10-01

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  9. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    Science.gov (United States)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  10. The application of proton spectrometers at the SG-III facility for ICF implosion areal density diagnostics

    Institute of Scientific and Technical Information of China (English)

    Xing Zhang; Jianhua Zheng; Ji Yan; Zhenghua Yang; Ming Su; Yudong Pu; Pin Yang; Xufei Xie; Li Chen; Ming Chen; Tianxuan Huang; Shao’en Jiang; Shenye Liu; Jiamin Yang

    2015-01-01

    Charged particle diagnostics is one of the required techniques for implosion areal density diagnostics at the SG-III facility.Several proton spectrometers are under development, and some preliminary areal density diagnostics have been carried out. The response of the key detector, CR39, to charged particles was investigated in detail. A new track profile simulation code based on a semi-empirical model was developed. The energy response of the CR39 detector was calibrated with the accelerator protons and alphas from a241 Am source. A proton spectrometer based on the filtered CR39 detector was developed, and D–D primary proton measurements were implemented. A step range filter spectrometer was developed,and preliminary areal density diagnostics was carried out. A wedged range filter spectrometer array made of Si with a higher resolution was designed and developed at the SG-III facility. A particle response simulation code by the Monte Carlo method and a spectra unfolding code were developed. The capability was evaluated in detail by simulations.

  11. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  12. Measuring the stagnation phase of NIF implosions: reproducibility and intentional asymmetry

    Science.gov (United States)

    Spears, Brian; Benedetti, R.; Callahan, D.; Casey, D.; Eder, D.; Gaffney, J.; Ma, T.; Munro, D.; Knauer, J.; Kilkenny, J.

    2015-11-01

    We report here data from a 5-shot sequence of cryogenic DT layered implosions designed to measure NIF implosion stagnation, the reproducibility of stagnation, and the response of the stagnation phase to intentional perturbation. We emphasize new analysis of the neutron spectral moments. These features provide an experimental measurement of hot spot thermal (temperature) and fluid (residual flow) processes. They also provide strong constraints for code validation. In implosions that were intentionally perturbed by laser drive and DT layer asymmetry, the experimental measurements show clear signs of the damaged stagnation. These signatures also match well our expectations from simulation, reproducing the variation of apparent temperature with line of sight and the down scattered neutron ratio, among others. The suite of implosions provides a demonstration of our ability to measure stagnated flow performance and highlights the several precision diagnostic signatures that are correctly captured by radhydro codes. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Assessment of transient effects on the x-ray spectroscopy of implosion cores at OMEGA

    Science.gov (United States)

    Florido, R.; Mancini, R. C.

    2015-11-01

    An assessment of transient effects on the atomic kinetics of argon tracers in inertial confinement fusion implosion cores is carried out. The focus is on typical electron temperature and density conditions achieved in high- and low-adiabat, and shock-ignition implosion experiments performed at the OMEGA laser facility (Laboratory for Laser Energetics, USA). The results show that no significant time-dependent effects are present through the deceleration and burning phases of the implosion, and thus justify the use of steady-state atomic kinetics models in the spectroscopic analysis of sets of time-resolved x-ray spectra recorded with streaked or gated spectrometers. Modeling calculations suggest an onset for time-dependent effects to become important at electron densities ≲1022 cm-3. A physical interpretation of these results is given based on the atomic kinetics timescales extracted from the eigenvalue spectrum of the collisional-radiative rate matrix. This study is also relevant for past implosion experiments performed at the GEKKO XII laser (Institute of Laser Engineering, Japan), as well as those currently being performed at the National Ignition Facility (Lawrence Livermore National Laboratory, USA).

  14. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; Zylstra, A. B.; Yi, S. A.; Biener, J.; Braun, T.; Kozioziemski, B. J.; Sater, J. D.; Bradley, P. A.; Peterson, R. R.; Haines, B. M.; Yin, L.; Berzak Hopkins, L. F.; Meezan, N. B.; Walters, C.; Biener, M. M.; Kong, C.; Crippen, J. W.; Kyrala, G. A.; Shah, R. C.; Herrmann, H. W.; Wilson, D. C.; Hamza, A. V.; Nikroo, A.; Batha, S. H.

    2016-12-01

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D2 and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12 NIF utilized high convergence (CR >30 ) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  15. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2014-05-15

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 10{sup 7} cm/s, and a laser intensity of ∼10{sup 15} W/cm{sup 2}. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  16. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J.

    2016-05-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  17. Simulation of Wire-Array Z Pinches with ALEGRA

    Science.gov (United States)

    Chantrenne, Sophie; Bliss, David; Cochrane, Kyle; Coverdale, Christine; Deeney, Chris; Hall, Clint; Haill, Thomas; Jones, Brent; Lepell, Paul; Oliver, Bryan; Sinars, Daniel

    2006-10-01

    Wire-array z pinches provide the x-ray radiation drive for Inertial Confinement Fusion Experiments at Sandia National Laboratories. A physical understanding of the physics of wire-array z pinches is important in providing a future radiation source capable of driving high-yield fusion capsules. Modeling of wire-array implosions on the Z machine were performed using the 2-D radiation MHD code Alegra. These new calculations use more accurate initial conditions that are more representative of the experimental data, allowing us to model the implosion through stagnation, to avoid radiation collapse, and to generate a radiation pulse that compares well with data. Code predictions will be compared with tungsten & aluminum wire-array data from Z. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04- 94AL85000. a Ktech Corporation, 1300 Eubank Blvd. S.E., Albuquerque, NM 87123-3336

  18. An Investigation Into Bayesian Networks for Modeling National Ignition Facility Capsule Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Mitrani, J

    2008-08-18

    Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and it contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.

  19. A technique for extending by ∼10{sup 3} the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Sio, H., E-mail: hsio@mit.edu; Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    2014-11-15

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D{sup 3}He-, D{sub 2}-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10{sup 2} for obtaining the spectral shape, and by 10{sup 3} for mean energy (ρR) measurement, corresponding to proton fluences of 10{sup 8} and 10{sup 9} cm{sup −2}, respectively. Using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ∼10{sup 8} and ∼10{sup 12}, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±∼10 mg/cm{sup 2}.

  20. Using secondary nuclear products for inferring the fuel areal density, convergence, and electron temperatures of deuterium filled implosions on the NIF

    Science.gov (United States)

    Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Kabadi, N. V.; Sutcliffe, G.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Rinderknecht, H. G.; Sayre, D. B.; Yeamans, C. B.; Khan, S. F.; Kyrala, G. A.; Lepape, S.; Berzak-Hopkins, L.; Meezan, N.; Bionta, R.; Ma, T.

    2016-10-01

    In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T born from the primary DD reaction branches can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence, and an electron temperature (Te) simultaneously. This technique has been used on a myriad of deuterium filled implosion experiments on the NIF using the nuclear time of flight (NTOF) diagnostics to measure the secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the secondary D3He protons. Additionally, a comparative study is conducted between the nuclear inferred convergence and x-ray inferred convergence obtained on these experiments. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  1. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF.

    Science.gov (United States)

    Ma, T; Izumi, N; Tommasini, R; Bradley, D K; Bell, P; Cerjan, C J; Dixit, S; Döppner, T; Jones, O; Kline, J L; Kyrala, G; Landen, O L; LePape, S; Mackinnon, A J; Park, H-S; Patel, P K; Prasad, R R; Ralph, J; Regan, S P; Smalyuk, V A; Springer, P T; Suter, L; Town, R P J; Weber, S V; Glenzer, S H

    2012-10-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  2. On the importance of minimizing ``coast-time'' in x-ray driven inertial confinement fusion implosions

    Science.gov (United States)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doeppner, T.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kritcher, A.; Landen, O.; Le Pape, S.; Ma, T.; Macphee, A.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J.; Salmonson, J. D.; Springer, P. T.

    2016-10-01

    By the time an ICF implosion has converged a factor of 20, its surface area has shrunk 400x, making it an inefficient x-ray energy absorber. So traditionally, ICF implosions are designed to have the laser drive shut off at a time, toff, well before bang-time, tBT, for a coast-time of tcoast =tBT -toff . Contrary to expectations, high-foot implosions on NIF show a strong dependence of many key ICF quantities on reduced coast-time (by extending the duration of laser peak power at constant power), most notably stagnation pressure. Herein we show that the ablation pressure, pabl, which drives high-foot implosions, is essentially triangular in temporal shape, and that reducing tcoast boosts pabl by 2x. Analytic theory demonstrates that reducing coast-time can lead to a 15% higher implosion velocity, which together with the increased ablation pressure, can boost the stagnation pressure by 2x as compared to a coasting version of the same implosion. Four dimensionless parameters are identified. We find that reducing coast-time to as little as 500 ps still provides some benefit. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Drive Asymmetry and the Origin of Turbulence in an ICF Implosion

    CERN Document Server

    Thomas, V A; 10.1103/PhysRevLett.109.075004

    2012-01-01

    2D and 3D numerical simulations with the adaptive mesh refinement Eulerian radiation-hydrocode RAGE at unprecedented spatial resolution are used to investigate the connection between drive asymmetry and the generation of turbulence in the DT fuel in a simplified inertial-confinement fusion (ICF) implosion. Long-wavelength deviations from spherical symmetry in the pressure drive lead to the generation of coherent vortical structures in the DT gas and it is the three-dimensional instability of these structures that in turn leads to turbulence and mix. The simulations sug-gest that this mechanism may be an additional important source of mix in ICF implosions. Applications to target ignition at the National Ignition Facility are briefly discussed.

  4. Hohlraum-driven ignition-like double-shell implosions on the Omega laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P; Robey, H F; Park, H S; Tipton, R E; Turner, R E; Milovich, J L; Bono, M; Hibbard, R; Louis, H; Wallace, R

    2004-10-01

    High-convergence ignition-like double-shell implosion experiments have been performed on the Omega laser facility [T.R. Boehly et al., Opt. Commun. 133, 495 (1997)] using cylindrical gold hohlraums with 40 drive beams. Repeatable, dominant primary (2.45 MeV) neutron production from the mix-susceptible compressional phase of a double-shell implosion, using fall-line design optimization and exacting fabrication standards, is experimentally inferred from time-resolved core x-ray imaging. Effective control of fuel-pusher mix during final compression is essential for achieving noncryogenic ignition with double-shell targets on the National Ignition Facility [Paisner et al., Laser Focus World 30, 75 (1994)].

  5. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    Science.gov (United States)

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  6. Investigation of low-mode asymmetries in Omega direct-drive implosion

    Science.gov (United States)

    Laffite, Stephane; Blancard, C.; Bourgade, J. L.; Caillaud, T.; Cosse, P.; Faussurier, G.; Girard, F.; Landoas, O.; Lemaire, S.; Masson-Laborde, P. E.; Philippe, F.; Reverdin, C.; Tassin, V.; Legay, G.; Masse, L.; Delettrez, J.; Glebov, V.; Marshall, F.; Michel, T.; Seka, W.; Frenje, J.; Mancini, R.; Josgi, T.

    2016-10-01

    We have investigated the evolution and the effect of low-mode asymmetries in direct-drive implosions. The experiments were carried out on the Omega facility. Two different pulse shapes, 1ns square pulse and 2-step pulse, were tested in order to vary the implosion stability of the same target whose the parameters, dimensions and composition, remained the same. For some of these shots, an artificially P4-mode asymmetry was imposed by lowering the energy of half the beams. For spectroscopy and x-ray imaging purpose, Ar tracer was added to the D2 fuel. A Ti tracer was also added to the CH ablator. Analysis of the spectra shows no mix between the fuel and the Ti layer. The core asymmetries, measured by x-ray and neutron imaging, clearly exhibit a P4 deformation. The correlation between asymmetries and pulse shape is investigated.

  7. Analysis of Ar line spectra from indirectly-driven implosion experiments on SGII facility

    Institute of Scientific and Technical Information of China (English)

    Pu Yu-Dong; Zhang Ji-Yan; Yang Jia-Min; Huang Tian-Xuan; Ding Yong-Kun

    2011-01-01

    This paper reports on the indirectly-driven implosion experiments on SGII laser facility in which Ar emission spectrum from Ar-doped D-filled plastic capsule is recorded with the crystal spectrometer. Spectral features of Ar Heβ line and its associated satellites are analysed to extract the electron temperature and density of the implosion core. Non local thermal equilibrium (NLTE) collisional-radiative atomic kinetics and Strark broadening line shape are included in the present calculation. By comparing the calculated spectrum with the measured one, the core electron temperature and density are inferred to be 700 eV and 2.5 × 1023 cm-3 respectively. With these inferred values of electron temperature and density, neutron yield can be estimated to agree with the measured value in magnitude despite of the very simple model used for the estimation.

  8. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2015-05-15

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the “adiabat shaping” mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  9. Measurement of inflight shell areal density perturbations in NIF capsule implosions near peak velocity

    Science.gov (United States)

    Hammel, B. A.; Pickworth, L.; Smalyuk, V.; Macphee, A.; Scott, H. A.; Robey, H.; Barrios, M.; Regan, S. P.

    2015-11-01

    Quantitative measurements of shell-RhoR perturbations in capsules near peak implosion velocity (PV) are challenging. An external backlighter samples both sides of the shell, unless a re-entrant cone is used (potentially perturbing implosion). Emission from the hot core, after shock-stagnation and prior to PV, has been used as a self-backlighter, providing a means to sample one side of the capsule. Adding high-Z gas (~ 1% Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at photon energies ~ 8 keV over nominal fills. From images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer, we infer the growth at PV of imposed perturbations (100 nm amplitude, mode 40). Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. Measurements of Reduced Hydrodynamic Instability Growth in Adiabat Shaped Implosions at the NIF

    Science.gov (United States)

    Casey, Daniel; Macphee, Andrew; Milovich, Jose; Smalyuk, Vladimir; Clark, Dan; Robey, Harry; Peterson, Luc; Baker, Kevin; Weber, Chris

    2015-11-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Radiographic measurements of ablation front perturbation growth were performed using adiabat-shaped drives which are shown to have lower ablation front growth than the low foot drive. This is partly due to faster Richtmyer-Meshkov (RM) oscillations during the shock transit phase of the implosion moving the node in the growth factor spectrum to lower mode numbers reducing the peak growth amplitude. This is demonstrated experimentally by a reversal of the perturbation phase at higher mode numbers (120-160). These results show that the ablation front growth and fuel adiabat can be controlled somewhat-independently and are providing insight into new, more stable, ignition designs. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  11. Using absolute x-ray spectral measurements to infer stagnation conditions in ICF implosions

    Science.gov (United States)

    Patel, Pravesh; Benedetti, L. R.; Cerjan, C.; Clark, D. S.; Hurricane, O. A.; Izumi, N.; Jarrott, L. C.; Khan, S.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Landen, O.; Spears, B. K.; Springer, P. T.

    2016-10-01

    Measurements of the continuum x-ray spectrum emitted from the hot-spot of an ICF implosion can be used to infer a number thermodynamic properties at stagnation including temperature, pressure, and hot-spot mix. In deuterium-tritium (DT) layered implosion experiments on the National Ignition Facility (NIF) we field a number of x-ray diagnostics that provide spatial, temporal, and spectrally-resolved measurements of the radiated x-ray emission. We report on analysis of these measurements using a 1-D hot-spot model to infer thermodynamic properties at stagnation. We compare these to similar properties that can be derived from DT fusion neutron measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. A compressible Lagrangian framework for the simulation of underwater implosion problems

    OpenAIRE

    Kamran, Kazem; Oñate Ibáñez de Navarra, Eugenio; Idelsohn Barg, Sergio Rodolfo; Rossi, Riccardo

    2013-01-01

    The development of efficient algorithms to understand implosion dynamics presents a number of challenges. The foremost challenge is to efficiently represent the coupled compressible fluid dynamics of internal air and surrounding water. Secondly, the method must allow one to accurately detect or follow the interface between the phases. Finally, it must be capable of resolving any shock waves which may be created in air or water during the final stage of the collapse. We present a fully Lagrang...

  13. Diagnosis of pusher-fuel mix in indirectly driven Nova implosions (HEP3)

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, T.R.; Hammel, B.A.; Keane, C.J. [and others

    1996-06-01

    A key issue for inertial confinement fusion (ICF) is the hydrodynamic stability of the imploding capsule. Imperfections on the capsule surface can grow into large perturbations that degrade capsule performance. Understanding this process is crucial if the authors are to successfully predict requirements for future high-gain ICF capsules. Experiments on the Nova laser at Lawrence Livermore National Laboratory have directly measured perturbation growth on planar foils, and three experimental groups have investigated backlit perturbation growth using imploding spheres. In addition to these efforts, which concentrate on indirectly driven implosions, is work investigating the hydrodynamic stability of directly driven ICF capsules. In these direct-drive experiments the laser light shines directly on the capsules, causing the implosion and providing the seed for perturbation growth. This article reports measurement, via emission from spectroscopic tracers, of the full process of perturbation growth leading to pusher-fuel mix in spherical implosions, and shows perturbation growth dependence on initial perturbation amplitude and wavelength. In contrast to the cited direct-drive work, the authors have in this experiment separated the drive from the perturbation seed.

  14. Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums

    Science.gov (United States)

    Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto

    2016-10-01

    In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.

  15. Time history prediction of direct-drive implosions on the Omega facility

    Energy Technology Data Exchange (ETDEWEB)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.; Girard, F.; Landoas, O.; Lemaire, S.; Masse, L.; Masson-Laborde, P. E.; Philippe, F.; Reverdin, C.; Tassin, V. [CEA, DAM, DIF, F-91297 Arpajon (France); Delettrez, J. A.; Glebov, V. Yu.; Marshall, F. J.; Michel, D. T.; Seka, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Joshi, T.; Mancini, R. C. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Legay, G. [CEA, CVA, 21120 Is-sur-Tille (France)

    2016-01-15

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolved measurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. In contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measured neutron number is about 80% of the prediction. For the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.

  16. Implosion of coronal loops during the impulsive phase of a solar flare

    CERN Document Server

    Simões, P J A; Hudson, H S; Russell, A J B

    2013-01-01

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray (HXR) and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the Coronal Mass Ejection (CME) and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare ...

  17. A radiation driven implosion model for the enhanced luminosity of protostars near HII regions

    CERN Document Server

    Motoyama, K; Shang, H

    2007-01-01

    Context. Molecular clouds near the H II regions tend to harbor more luminous protostars. Aims. Our aim in this paper is to investigate whether or not radiation-driven implosion mechanism enhances luminosity of protostars near regions of high-ionizing fluxes. Methods. We performed numerical simulations to model collapse of cores exposed to UV radiation from O stars. We investigated dependence of mass loss rates on the initial density profiles of cores and variation of UV fluxes. We derived simple analytic estimates of accretion rates and final masses of protostars. Results. Radiation-driven implosion mechanism can increase accretion rates of protostars by 1-2 orders of magnitude. On the other hand, mass loss due to photo-evaporation is not large enough to have a significant impact on the luminosity. The increase of accretion rate makes luminosity 1-2 orders higher than those of protostars that form without external triggering. Conclusions. Radiation-driven implosion can help explain the observed higher luminos...

  18. Analysis of the turbulent flow field in a spherically convergent implosion problem

    Science.gov (United States)

    Boureima, Ismael; Ramaprabhu, Praveen; Attal, Nitesh

    2016-11-01

    We describe results from 3D, numerical simulations of a spherically convergent, implosion problem. The problem definition follows, and involves a time-dependent pressure drive that sustains the implosion of an interface in a slow-fast configuration. The simulations are performed within a spherical wedge, where the interface is initialized with multimode perturbations leading to turbulent flow. The initial stages of the implosion are dominated by the Richtymer-Meshkov (RM) instability, while the late stages involve a stagnation phase interspersed with reshocks during which both RM and Rayleigh-Taylor (RT) instabilities are observed. The simulations were performed with the FLASH code, with a mesh resolution corresponding to 512x512 zones in the (θ, ϕ) directions, and proportional gridding in the r-direction. We report on several quantities that could provide insights in to the evaluation of turbulence models including the turbulent kinetic energy, anisotropy tensor, density self-correlation, and atomic mixing among others. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  19. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    Science.gov (United States)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; Robey, H. F.; Kritcher, A. L.; Milovich, J. L.; Salmonson, J. D.

    2016-07-01

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or "shimmed," so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.

  20. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    Science.gov (United States)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ˜16 m to a streak camera in a well-shielded location. An ˜200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ˜40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  1. Data driven models of the performance and repeatability of NIF high foot implosions

    Science.gov (United States)

    Gaffney, Jim; Casey, Dan; Callahan, Debbie; Hartouni, Ed; Ma, Tammy; Spears, Brian

    2015-11-01

    Recent high foot (HF) inertial confinement fusion (ICF) experiments performed at the national ignition facility (NIF) have consisted of enough laser shots that a data-driven analysis of capsule performance is feasible. In this work we use 20-30 individual implosions of similar design, spanning laser drive energies from 1.2 to 1.8 MJ, to quantify our current understanding of the behavior of HF ICF implosions. We develop a probabilistic model for the projected performance of a given implosion and use it to quantify uncertainties in predicted performance including shot-shot variations and observation uncertainties. We investigate the statistical significance of the observed performance differences between different laser pulse shapes, ablator materials, and capsule designs. Finally, using a cross-validation technique, we demonstrate that 5-10 repeated shots of a similar design are required before real trends in the data can be distinguished from shot-shot variations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-674957.

  2. Simulated impact of self-generated magnetic fields in the hot-spot of NIF implosions

    Science.gov (United States)

    Partha, M. A.; Haan, S. W.; Koning, J.; Marinak, M. M.; Weber, C. R.; Clark, D. S.

    2016-10-01

    Deviations from sphericity in an imploded hot-spot result in magnetic fields generated by the Biermann battery effect. The magnetic field can reduce thermal conductivity, affect α transport, change instability growth, and cause magnetic pressure. Previous estimates of these effects have indicated that they are not of great consequence, but have suggested that they could plausibly affect NIF observables such as yield and ion temperature by 5-25%. Using the MHD capability in the Hydra code, we evaluated the impact of these processes in a post-shot model for a typical NIF implosion. Various implosion asymmetries were implemented, with the goal of surveying plausible implosion configurations to find the geometry in which the MHD effects were the most significant. Magnetic fields are estimated to approach 104 Tesla, and to affect conductivity locally by more than 50%, but global impact on observables is small in most cases. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  3. Compression versus first shock strength in indirect-drive NIF implosions

    Science.gov (United States)

    Landen, Otto; Celliers, Peter; Robey, Harry; Berzak Hopkins, Laura; Haan, Steve; Lindl, John

    2016-10-01

    NIF indirect-drive cryogenic DT implosions have used a variety of multi-shock pulse shapes to implode capsules with in-flight fuel adiabats ranging from 1.5 to 4. At a given design adiabat, the stagnated convergence ratio and fuel areal density inferred from the neutron image size and the ratio of downscattered to primary neutron yield shows variability that can be ascribed to shot-to-shot differences in shock timing, ablator dopant level and duration of coast phase. However, the locus of maxima in convergence and fuel areal density is shown to depend principally on the first shock strength that is measured by separate shock timing shots. No clear secondary dependence on hot electron preheat levels that vary by orders of magnitude between designs is observed. The scalings, which include all NIF indirect-drive implosions shot to date, are fitted using an analytic 1D implosion model. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  4. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    Science.gov (United States)

    Clark, Daniel; Weber, Christopher; Smalyuk, Vladimir; Robey, Harry; Kritcher, Andrea; Milovich, Jose; Salmonson, Jay

    2016-10-01

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or ``shimmed,'' so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    Science.gov (United States)

    Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  6. Electronic Switch Arrays for Managing Microbattery Arrays

    Science.gov (United States)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  7. Quantifying low-mode shell asymmetry as a means to predict ICF implosion performance on the NIF

    Science.gov (United States)

    Nora, Ryan; Spears, Brian; Tommasini, Riccardo; Peterson, J. Luc; Field, John; Springer, Paul; Gaffney, Jim; Hammer, Jim; Kritcher, Annie

    2015-11-01

    Low mode fuel and ablator asymmetries are a significant degradation mechanism in NIF indirect drive ICF implosions. These asymmetries are forced by radiation drive asymmetry stemming from asymmetric hohlraum wall illumination. We develop an ensemble of two, three, and four-shock high-density-carbon ablator simulations with varying drive asymmetries and convergence ratios. We use this ensemble to relate the shell properties prior to its peak implosion velocity to the overall implosion performance and extend this technique to analyze NIF in-flight radiograph (convergent ablator) experimental data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Z箍缩内爆产生的电磁脉冲辐射%Electromagnetic pulse emission produced by Z pinch implosions

    Institute of Scientific and Technical Information of China (English)

    但加坤; 计策; 何安; 夏明鹤; 丰树平; 王勐; 谢卫平; 任晓东; 黄显宾; 张思群; 周少彤; 段书超; 欧阳凯; 蔡红春; 卫兵

    2013-01-01

    讨论了Z箍缩内爆产生的低频电磁脉冲的辐射特性.Z箍缩驱动金属丝阵或固体套筒高速内爆,部分磁能通过与负载的运动耦合而向外辐射.理论结果表明,电磁脉冲辐射功率由电流和内爆轨迹共同决定.在中国工程物理研究院流体物理研究所的初级实验平台上开展了负载电流为7 MA,10%-90%上升时间65 ns的丝阵Z箍缩实验,根据实验测得的电流和内爆轨迹得到了电磁脉冲的辐射功率和频谱.电磁脉冲峰值功率约为1 GW,能量约为0.5 J,能量转换效率约为10-7;峰值频率位于20-70 MHz,具有较宽的辐射频谱.电磁脉冲辐射参数远小于软X射线辐射参数(峰值功率为50 TW,能量为0.5 MJ).在弱相对论条件下,电磁脉冲辐射功率近似地正比于电流的6次方,随电流急剧增大.软X射线辐射是丝阵Z箍缩过程中的主要能量转换形式,本文的研究结论表明,在更高的驱动电流下,电磁脉冲辐射将提供另一种重要的能量转换途径,势必会对诊断设备造成严重影响;此外,这类强电磁脉冲在其他领域也具有潜在的应用价值.%In this paper, we represent the radiation characteristics of electromagnetic pulse generated by Z pinch implosion. Magnetic energy which couples with motions of metallic wire arrays or solid liners driven by Z pinch can radiate away. Theoretical results indicate that the radiation power of electromagnetic pulse is determined by both load current and implosion trace. Experiments are carried on primary test stand facility at Institute of Fluid Physics where a current rising to 7 MA in (10%-90%) 65 ns is used to drive a wire array Z pinch. The measured load current and implosion trace show that the Z pinch can deliver about 1 GW, 10 ns full width, 20-70 MHz central frequency, broadband electromagnetic pulse with an energy conversion efficiency of 10-7 . Parameters of electromagnetic pulse are much smaller than those of X-ray with a power of 50 TW

  9. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions.

    Science.gov (United States)

    Zylstra, A B; Frenje, J A; Séguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M Gatu; Casey, D T; Sinenian, N; Manuel, M J-E; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G W; Dewald, E; Döppner, T; Edwards, M J; Glenzer, S; Hicks, D G; Landen, O L; London, R; Mackinnon, A; Meezan, N; Prasad, R R; Ralph, J; Richardson, M; Rygg, J R; Sepke, S; Weber, S; Zacharias, R; Moses, E; Kilkenny, J; Nikroo, A; Sangster, T C; Glebov, V; Stoeckl, C; Olson, R; Leeper, R J; Kline, J; Kyrala, G; Wilson, D

    2012-10-01

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  10. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    Science.gov (United States)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-07-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting "tent." Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  11. Harmonic analysis of irradiation asymmetry for cylindrical implosions driven by high-frequency rotating ion beams

    CERN Document Server

    Bret, Antoine; Tahir, Naeem

    2012-01-01

    Cylindrical implosions driven by intense heavy ions beams should be instrumental in a near future to study High Energy Density Matter. By rotating the beam by means of a high frequency wobbler, it should be possible to deposit energy in the outer layers of a cylinder, compressing the material deposited in its core. The beam temporal profile should however generate an inevitable irradiation asymmetry likely to feed the Rayleigh-Taylor instability (RTI) during the implosion phase. In this paper, we compute the Fourier components of the target irradiation in order to make the junction with previous works on RTI performed in this setting. Implementing a 1D and 2D beam models, we find these components can be expressed exactly in terms of the Fourier transform of the temporal beam profile. If $T$ is the beam duration and $\\Omega$ its rotation frequency, "magic products" $\\Omega T$ can be identified which cancel the first harmonic of the deposited density, resulting in an improved irradiation symmetry.

  12. Hohlraum-Driven Ignition-Like Double-Shell Implosion Experiments on Omega: Analysis and Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P; Robey, H F; Park, H-S; Tipton, R E; Turner, R E; Milovich, J; Rowley, D; Hibbard, R; Louis, H; Wallace, R; Garbett, W; Dunne, A M; Varnum, W S; Watt, R G; Wilson, D C

    2003-08-22

    An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significant fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.

  13. New tuning method of the low-mode asymmetry for ignition capsule implosions

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng; Zou, Shiyang; Song, Peng; Ye, Wenhua; Zheng, Wudi; Gu, Peijun [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-12-15

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry; while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries.

  14. Controlling Rayleigh-Taylor instabilities in solid liner implosions with rotating magnetic fields

    Science.gov (United States)

    Schmit, P. F.; McBride, R. D.; Robertson, G. K.; Velikovich, A. L.

    2016-10-01

    We report calculations demonstrating that a remarkable reduction in the growth of the magneto-Rayleigh-Taylor instability (MRTI) in initially solid, cylindrical metal shells can be achieved by applying a magnetic drive with a tilted, dynamic polarization, forming a solid-liner dynamic screw pinch (SLDSP). Using a self-consistent analytic framework, we demonstrate that MRTI growth factors of the most detrimental modes may be reduced by up to two orders of magnitude relative to conventional z-pinch implosions. One key application of this technique is to enable increasingly stable, higher performance liner implosions to achieve fusion. We weigh the potentially dramatic benefits of the SLDSP against the practical tradeoffs required to achieve the desired drive field history and identify promising target designs for future experimental and computational investigations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Evaluation of the Effects of Long-Wavelength Perturbations in OMEGA 80-Gbar Cryogenic Implosions

    Science.gov (United States)

    McKenty, P. W.; Cao, D.; Collins, T. J. B.; Shvydky, A.; Anderson, K. S.

    2016-10-01

    The Laboratory for Laser Energetics, as part of the National Laser Direct Drive Program, has identified the goal of producing 100-Gbar neutron-averaged, hot-spot pressures (P*) by the year 2020. An intermediate goal of 80 Gbar is currently being pursued. This work first analyzes the behavior of P* as a function of the target convergence ratio. From this a critical converge ratio can be defined at which point the implosion achieves the P* = 80-Gbar goal. Further capsule convergence then maps out a target region in design space that details the acceptable degradation from 1-D performance an implosion could suffer while still achieving the 80-Gbar goal. Two-dimensional simulation results will be presented, indicating the maximum-allowed levels for long-wavelength perturbations (offset, power imbalance, and inner-surface ice roughness) while still completing this goal. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DENA0001944.

  16. Three-Dimensional Modeling of Polarization Effects on Cross-Beam Energy Transfer in OMEGA Implosions

    Science.gov (United States)

    Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J.; Froula, D. H.

    2016-10-01

    Beamlet spot images are used to diagnose cross-beam energy transfer (CBET) during OMEGA direct-drive implosions. The spots are, in essence, the end point of beamlets of light originating from different regions of each beam profile and following paths determined by refraction. The intensity of each spot varies because of absorption and CBET along that path. When each beam is linearly polarized, the image is asymmetric in terms of spot intensities. A 3-D CBET postprocessor for hydrodynamics codes is used to model the intensity, wavelength, and polarization of light from each beam. Rotation of polarization caused by CBET is tracked. The model is benchmarked using a 3-D wave-based solver for simplified CBET geometries. For linearly polarized beams in OMEGA implosions, the model predicts that polarization effects will result in asymmetric polarization and unabsorbed light profiles that are different for each beam. An asymmetric beamlet spot image similar to that recorded is predicted by the CBET model for linearly polarized beams. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Numerical Modeling of Plasma-Liner Formation and Implosion for the PLX- α Project

    Science.gov (United States)

    Cassibry, Jason; Samulyak, Roman; Schillo, Kevin; Shih, Wen; Hsu, Scott

    2016-10-01

    Numerical simulations of the propagation, merging, and implosion of supersonic plasma jets have been performed using the FronTier and smooth particle hydrodynamics (SPH) codes in support of the PLX- α project. The physics includes radiation, heat conduction using Braginskii thermal conductivities, ion viscosity, and tabular equations of state using LTE and non-LTE models. A parametric analysis provides scaling of peak ram pressure and Mach number vs. number of jets, initial density, initial jet velocity, and species including nitrogen, neon, argon, krypton, and xenon. Conical simulations of 6 and 7 jets support near-term experiments, which facilitate diagnostic access for assessing the quality of the liner during merge. Solid angle averaged and standard deviation of ram pressure and Mach number reveal the variation in these properties during formation and implosion. Spherical harmonic mode-number analysis of spherical slices of ram pressure at various radii and times provide a quantitative means to assess the evolution of liner non-uniformity. Supported by the ARPA-E ALPHA program.

  18. Understanding Laser-Imprint Effects on Plastic-Target Implosions on OMEGA with New Physics Models

    Science.gov (United States)

    Hu, S. X.; Michel, D. T.; Davis, A. K.; Betti, R.; Radha, P. B.; Campbell, E. M.; Froula, D. H.; Stoeckl, C.

    2016-10-01

    Using the state-of-the-art physics models (nonlocal thermal transport, cross-beam energy transfer, and first-principles equation of state) recently implemented in our two-dimensional hydrocode DRACO, we have performed a systematic study of laser-imprint effects on plastic-target implosions on OMEGA by both simulations and experiments. Through varying the laser picket intensity, the imploding shells were set at different adiabats ranging from α = 2 to α = 6 . As the shell adiabat α decreases, we observed: (1) the measured shell thickness at the hot spot emission becomes larger than the uniform prediction; (2) the hot-spot core emits and neutron burn starts earlier than the corresponding 1-D prediction; and (3) the measured neutron yields are significantly reduced from their 1-D designs. Most of these experimental observations are well reproduced by our DRACO simulations with laser imprints. These studies clearly identify that laser imprint is the major cause for target performance degradation of OMEGA implosions of α Administration under Award Number DE-NA0001944.

  19. Cryogenic Implosion Performance Using High-Purity Deuterium-Tritium Fuel

    Science.gov (United States)

    Sangster, T. C.; Goncharov, V. N.; Radha, P. B.; Earley, R.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McKenty, P. W.; Shmayda, W. T.; Shoup, M. J., III; Michel, D. T.; Stoeckl, C.; Seka, W.; Frenje, J. A.; Gatu Johnson, M.

    2014-10-01

    Demonstrating hydrodynamic equivalence between symmetric implosions on OMEGA and National Ignition Facility ignition designs will require a number of facility enhancements that include dynamic bandwidth reduction, a set of higher-order super-Gaussian phase plates, high-spatial-resolution gated-core imaging, high-bandwidth neutron burnwidth measurements, improved power balance, and contaminant-free deuterium-tritium (DT) fuel. The historic DT fuel supply was contaminated with ~6 atm% of 1H, leading to significant fractionation of the fuel during the layering process (the triple points of H:D and H:T are significantly colder than DD, DT, and TT). The fractionation leads to a drop in the potential yield because the D and T number densities are lower in the void than they would be with a pure-DT mixture). An isotope separation system has been developed to remove the 1H from the DT fuel supply. This talk will discuss the first results with the purified fuel, conclusions from recent implosions to test cross-beam energy transfer mitigation, and the status of the remaining facility enhancements. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Impact of Inner Surface Perturbations on the Stability of Cylindrical Liner Implosion

    Science.gov (United States)

    Weis, Matthew; Peterson, Kyle; Hess, Mark; Lau, Y. Y.; Zhang, Peng; Gilgenbach, Ronald

    2015-11-01

    This paper studies the effects of initial perturbations on the inner liner surface (ILS) of an imploding cylindrical liner. In MagLIF, nonuniform preheat of the fuel could provide an additional source of spatial nonuniformity on the ILS. A blast wave generated by the laser preheat might trigger the Richtmyer-Meshkov instability (RM) on the ILS which then serves as another seed to the Rayleigh-Taylor instability (RT) during the stagnation (deceleration) phase of the implosion. Another scenario is that the shock initiated from the outer liner surface, during current rise, propagates inward and is reflected at the ILS. This reflected shock would carry the initial ILS perturbations which then serve as an additional seed for the magneto-RT (MRT) during the acceleration phase of the implosion. These potentially dangerous interactions are analyzed using the 2D HYDRA code. The effects of axial magnetic fields, of the initial surface roughness spectrum, and of gas fill or water fill (to examine deceleration phase RT) are studied. M. R. Weis was supported by the Sandia National Laboratories. This work was also supported by DoE Grant DE-SC0012328.

  1. Surrogate models for identifying robust, high yield regions of parameter space for ICF implosion simulations

    Science.gov (United States)

    Humbird, Kelli; Peterson, J. Luc; Brandon, Scott; Field, John; Nora, Ryan; Spears, Brian

    2016-10-01

    Next-generation supercomputer architecture and in-transit data analysis have been used to create a large collection of 2-D ICF capsule implosion simulations. The database includes metrics for approximately 60,000 implosions, with x-ray images and detailed physics parameters available for over 20,000 simulations. To map and explore this large database, surrogate models for numerous quantities of interest are built using supervised machine learning algorithms. Response surfaces constructed using the predictive capabilities of the surrogates allow for continuous exploration of parameter space without requiring additional simulations. High performing regions of the input space are identified to guide the design of future experiments. In particular, a model for the yield built using a random forest regression algorithm has a cross validation score of 94.3% and is consistently conservative for high yield predictions. The model is used to search for robust volumes of parameter space where high yields are expected, even given variations in other input parameters. Surrogates for additional quantities of interest relevant to ignition are used to further characterize the high yield regions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697277.

  2. X-ray drive of beryllium capsule implosions at the National Ignition Facility

    Science.gov (United States)

    Wilson, D. C.; Yi, S. A.; Simakov, A. N.; Kline, J. L.; Kyrala, G. A.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Olson, R. E.; Strozzi, D. J.; Celliers, P. M.; Schneider, M. B.; MacPhee, A. G.; Zylstra, A. B.; Callahan, D. A.; Hurricane, O. A.; Milovich, J. L.; Hinkel, D. E.; Rygg, J. R.; Rinderknecht, H. G.; Sio, H.; Perry, T. S.; Batha, S.

    2016-05-01

    National Ignition Facility experiments with beryllium capsules have followed a path begun with “high-foot” plastic capsule implosions. Three shock timing keyhole targets, one symmetry capsule, a streaked backlit capsule, and a 2D backlit capsule were fielded before the DT layered shot. After backscatter subtraction, laser drive degradation is needed to match observed X-ray drives. VISAR measurements determined drive degradation for the picket, trough, and second pulse. Time dependence of the total Dante flux reflects degradation of the of the third laser pulse. The same drive degradation that matches Dante data for three beryllium shots matches Dante and bangtimes for plastic shots N130501 and N130812. In the picket of both Be and CH hohlraums, calculations over-estimate the x-ray flux > 1.8 keV by ∼100X, while calculating the total flux correctly. In beryllium calculations these X-rays cause an early expansion of the beryllium/fuel interface at ∼3 km/s. VISAR measurements gave only ∼0.3 km/s. The X-ray drive on the Be DT capsule was further degraded by an unplanned decrease of 9% in the total picket flux. This small change caused the fuel adiabat to rise from 1.8 to 2.3. The first NIF beryllium DT implosion achieved 29% of calculated yield, compared to CH capsules with 68% and 21%.

  3. Solid liner implosions on Z for producing multi-megabar, shockless compressionsa)

    Science.gov (United States)

    Martin, M. R.; Lemke, R. W.; McBride, R. D.; Davis, J. P.; Dolan, D. H.; Knudson, M. D.; Cochrane, K. R.; Sinars, D. B.; Smith, I. C.; Savage, M.; Stygar, W. A.; Killebrew, K.; Flicker, D. G.; Herrmann, M. C.

    2012-05-01

    Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50kms-1. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries.

  4. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Rosenberg, M. J.; Zylstra, A. B.; Lahmann, B.; Séguin, F. H.; Frenje, J. A.; Li, C. K.; Gatu Johnson, M.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Berzak Hopkins, L. F.; Caggiano, J. A.; Divol, L.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Le Pape, S.; Mackinnon, A. J.; McNaney, J. M.; Meezan, N. B.; Moran, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-08-15

    In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D({sup 3}He,p){sup 4}He and D(T,n){sup 4}He occur, as the primary fusion products {sup 3}He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (∼5–100 mg/cm{sup 2}), the secondary D-{sup 3}He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and applied to three classes of implosions on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions, and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 times and 0.33 times the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.

  5. The Submillimeter Array

    CERN Document Server

    Ho, P T P; Lo, K Y; Ho, Paul T.P.; Moran, James M.; Lo, Kwok Yung

    2004-01-01

    The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m telescopes comprise the array, which will cover the frequency range of 180-900 GHz. All eight telescopes have been deployed and are operational. First scientific results utilizing the three receiver bands at 230, 345, and 690 GHz have been obtained and are presented in the accompanying papers.

  6. Selecting Sums in Arrays

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jørgensen, Allan Grønlund

    2008-01-01

    In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k larges...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....

  7. Stabilization of Thin-Shell Implosions Using a High-Foot Adiabat-Shaped Drive on the National Ignition Facility

    Science.gov (United States)

    Lafon, Marion; Gauthier, Pascal; Masse, Laurent

    2016-10-01

    The High Foot (HF) campaign on the National Ignition Facility (NIF) has improved the neutron yield by an order of magnitude as compared to the implosions reported during the National Ignition Campaign (NIC) while dramatically lowering the ablation-front instability growth. However, this yield increase came at the expense of reduced fuel compression due to higher fuel adiabat. Thinner shell adiabat-shaped HF implosions have been designed to combine the ablation front stability benefits of the current HF pulses with the demonstrated high fuel compressibility of the NIC implosions and increased implosion velocity. This is accomplished by using a hybrid adiabat-shaping technique which both lowers the laser power between the first and second pulses to enhance the ablative stabilization at early times and precisely tailors the rise-to-peak drive to prevent undesired shocks from propagating in the fuel and depositing additional entropy. Ablation front growth factor spectra are generated from two-dimensional simulations with the FCI2 radiation hydrodynamics code. Linear analysis of the instability growth demonstrates that adiabat-shaped pulses provide a path to control and reduce ablation front instability growth while placing the fuel on a lower adiabat to achieve the alpha-heating-dominated regime. Adiabat-shaped pulses without picket are also investigated as a potential way to enhance the stability of the holhraum walls at early times.

  8. TANGO Array.. 2. Simulations

    Science.gov (United States)

    Bauleo, P.; Bonifazi, C.; Filevich, A.

    2004-01-01

    The angular and energy resolutions of the TANGO Array were obtained using extensive Monte Carlo simulations performed with a double purpose: (1) to determine the appropriate parameters for the array fitting to the desired range of sensitivity (the knee energy region), and (2) to construct a reliable shower database required for reference in the analysis of experimental data. The AIRES code, with the SIBYLL hadronic collision package, was used to simulate Extended Air Showers produced by primary cosmic rays (assuming protons and iron nuclei), with energies ranging from 10 14 to 10 18 eV. These data were fed into a realistic code which simulates the response of the detectors (water Cherenkov detectors), including the electronics, pickup noise, and the signal attenuation in the connecting cables. The trigger stage was considered in the simulations in order to estimate the trigger efficiency of the array and to verify the accuracy of the reconstruction codes. This paper delineates the simulations performed to obtain the expected behavior of the array, and describes the simulated data. The results of these simulations suggest that we can expect an error in the energy of the primary cosmic-ray of ˜60% of the estimated value and that the error in the measurement of the direction of arrival can be estimated as ˜4°. The present simulations also indicate that unambiguous assignments of the primary energy cannot be obtained because of the uncertainty in the nature of the primary cosmic ray.

  9. TANGO Array. 2. Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauleo, P. E-mail: pablo.bauleo@colostate.edu; Bonifazi, C.; Filevich, A

    2004-01-11

    The angular and energy resolutions of the TANGO Array were obtained using extensive Monte Carlo simulations performed with a double purpose: (1) to determine the appropriate parameters for the array fitting to the desired range of sensitivity (the knee energy region), and (2) to construct a reliable shower database required for reference in the analysis of experimental data. The AIRES code, with the SIBYLL hadronic collision package, was used to simulate Extended Air Showers produced by primary cosmic rays (assuming protons and iron nuclei), with energies ranging from 10{sup 14} to 10{sup 18} eV. These data were fed into a realistic code which simulates the response of the detectors (water Cherenkov detectors), including the electronics, pickup noise, and the signal attenuation in the connecting cables. The trigger stage was considered in the simulations in order to estimate the trigger efficiency of the array and to verify the accuracy of the reconstruction codes. This paper delineates the simulations performed to obtain the expected behavior of the array, and describes the simulated data. The results of these simulations suggest that we can expect an error in the energy of the primary cosmic-ray of {approx}60% of the estimated value and that the error in the measurement of the direction of arrival can be estimated as {approx}4 deg. . The present simulations also indicate that unambiguous assignments of the primary energy cannot be obtained because of the uncertainty in the nature of the primary cosmic ray.

  10. Obtaining of inulin acetate

    OpenAIRE

    Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar

    2014-01-01

    In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.

  11. Simulations of astronomical imaging phased arrays.

    Science.gov (United States)

    Saklatvala, George; Withington, Stafford; Hobson, Michael P

    2008-04-01

    We describe a theoretical procedure for analyzing astronomical phased arrays with overlapping beams and apply the procedure to simulate a simple example. We demonstrate the effect of overlapping beams on the number of degrees of freedom of the array and on the ability of the array to recover a source. We show that the best images are obtained using overlapping beams, contrary to common practice, and show how the dynamic range of a phased array directly affects the image quality.

  12. Defect Characterization Using Two-Dimensional Arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2011-06-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. In this paper a quantitative comparison of 2D arrays with different element layouts is performed. A technique for extracting the scattering matrix of a defect from the raw 2D array data is also presented. The method is tested on experimental data for characterization of various volumetric defects.

  13. Celui qui implose dans le vacuum de la difficulté de survivre dans le vacuum

    Directory of Open Access Journals (Sweden)

    Gaston Tremblay

    2004-03-01

    Full Text Available Le vacuum dont nous parlons découle directement de l’implosion du Canada français, c’est-à-dire du mouvement de repli qui, à la fin des années soixante, amène les Canadiens-Français à délimiter pour la première fois leurs frontières nationales. C’est en quelque sorte une conversion au réel, aussi bien pour les Québécois qui tentent alors de prendre possession de leur territoire, que pour les Franco-Ontariens qui doivent faire le deuil de leurs institutions nationales.

  14. Change in Inertial Confinement Fusion Implosions upon Using an Ab Initio Multiphase DT Equation of State

    Science.gov (United States)

    Caillabet, L.; Canaud, B.; Salin, G.; Mazevet, S.; Loubeyre, P.

    2011-09-01

    Improving the description of the equation of state (EOS) of deuterium-tritium (DT) has recently been shown to change significantly the gain of an inertial confinement fusion target [S. X. Hu , Phys. Rev. Lett. 104, 235003 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.235003]. Here we use an advanced multiphase EOS, based on ab initio calculations, to perform a full optimization of the laser pulse shape with hydrodynamic simulations starting from 19 K in DT ice. The thermonuclear gain is shown to be a robust estimate over possible uncertainties of the EOS. Two different target designs are discussed, for shock ignition and self-ignition. In the first case, the areal density and thermonuclear energy can be recovered by slightly increasing the laser energy. In the second case, a lower in-flight adiabat is needed, leading to a significant delay (3 ns) in the shock timing of the implosion.

  15. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callahan, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dewald, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dittrich, T. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berzak Hopkins, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Le Pape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Remington, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robey, H. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salmonson, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Springer, P. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Celliers, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerjan, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Church, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dixit, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dylla-Spears, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edgell, D. [Univ. of Rochester, NY (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Field, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fittinghoff, D. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Grim, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guler, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herrmann, H. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Knauer, J. [Univ. of Rochester, NY (United States); Kohut, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kozioziemski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kritcher, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kyrala, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacGowan, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mackinnon, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meezan, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Merrill, F. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moody, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosen, M. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sater, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sayre, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaughnessy, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spears, B. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Town, R.P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Volegov, P. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilde, C. H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yeamans, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-04-06

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Earlier results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  16. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D.  T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woods, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smalyuk, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hurricane, O.  A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glebov, V.  Y. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Theobald, W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Wallace, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States); Schoff, M. [General Atomics, San Diego, CA (United States); Shuldberg, C. [General Atomics, San Diego, CA (United States); Wu, K. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J.  A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Landen, O.  L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Remington, B.  A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-19

    The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ~2 × 10⁹ at a convergence ratio of R₀/R ~ 10 and little impact due to the growth of hydrodynamic instabilities and mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated.

  17. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions.

    Science.gov (United States)

    Casey, D T; Woods, D T; Smalyuk, V A; Hurricane, O A; Glebov, V Y; Stoeckl, C; Theobald, W; Wallace, R; Nikroo, A; Schoff, M; Shuldberg, C; Wu, K J; Frenje, J A; Landen, O L; Remington, B A; Glendinning, G

    2015-05-22

    The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ∼2×10^{9} at a convergence ratio of R_{0}/R∼10 and little impact due to the growth of hydrodynamic instabilities and mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated.

  18. Hot spot formation and stagnation properties in simulations of direct-drive NIF implosions

    Science.gov (United States)

    Schmitt, Andrew J.; Obenschain, Stephen P.

    2016-05-01

    We investigate different proposed methods of increasing the hot spot energy and radius in inertial confinement fusion implosions. In particular, shock mistiming (preferentially heating the inner edge of the target's fuel) and increasing the initial vapor gas density are investigated as possible control mechanisms. We find that only the latter is effective in substantially increasing the hot spot energy and dimensions while achieving ignition. In all cases an increase in the hot spot energy is accompanied by a decrease in the hot spot energy density (pressure) and both the yield and the gain of the target drop substantially. 2D simulations of increased vapor density targets predict an increase in the robustness of the target with respect to surface perturbations but are accompanied by significant yield degradation.

  19. Generation of extreme state of water by spherical wire array underwater electrical explosion

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, O.; Gilburd, L.; Efimov, S.; Bazalitski, G.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 3200 (Israel)

    2012-10-15

    The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of {<=}6 kJ and discharge current of {<=}500 kA with a rise-time of {approx}300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parameters of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 {+-} 0.2) Multiplication-Sign 10{sup 12} Pa, 8 {+-} 0.5 eV, and 7 {+-} 0.5, respectively.

  20. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-08-15

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  1. Understanding the effects of laser imprint on plastic-target implosions on OMEGA

    Science.gov (United States)

    Hu, S. X.; Michel, D. T.; Davis, A. K.; Betti, R.; Radha, P. B.; Campbell, E. M.; Froula, D. H.; Stoeckl, C.

    2016-10-01

    Understanding the effects of laser imprint on target performance is critical to the success of direct-drive inertial confinement fusion. Directly measuring the disruption caused by laser imprints to the imploding shell and hot-spot formation, in comparison with multidimensional radiation-hydrodynamic simulations, can provide a clear picture of how laser nonuniformities cause target performance to degrade. With the recently developed x-ray self-emission imaging technique and the state-of-the-art physics models recently implemented in the two-dimensional hydrocode DRACO, a systematic study of laser-imprint effects on warm target implosions on OMEGA has been performed using both experimental results and simulations. By varying the laser-picket intensity, the imploding shells were set at different adiabats (from α = 2 to α = 6). As the shell adiabats decreased, it was observed that (1) the measured shell thickness at the time the hot spot lit up became larger than the uniform one-dimensional (1-D) predictions; (2) the hot-spot core emitted earlier than the corresponding 1-D predictions; (3) the measured neutron yield first increased then decreased as the shell adiabat α was reduced; and (4) the hot-spot size reduced as α decreased for cases where SSD (smoothing by spectral dispersion) was on but became larger for low-α shots in cases where SSD was off. Most of these experimental observations are well reproduced by DRACO simulations with laser imprints including modes up to λmax = 200. These studies identify the importance of laser imprint as the major source of degrading target performance for OMEGA implosions of adiabat α ≤ 3. Mitigating laser imprints is required to improve low-α target performance.

  2. Precision Shock Timing Measurements to set the Fuel Adiabat in Ignition Implosions

    Science.gov (United States)

    Celliers, Peter

    2011-10-01

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements both in the target design and in the physics packages in the radiation-hydrodynamic codes used to design and model these targets. We can set an accurately tuned pulse shape within a series of approximately 5 shots. The results and interpretation of these tuning experiments will be described. In collaboration with: T.R. Boehly, H.F. Robey, J.L. Kline, D.R. Farley, S. Le Pape, J.D. Moody, R.E. Olson, D.H. Munro, J.L. Milovich, P.A. Sterne, O.S. Jones, D.A. Callahan, A. Nikroo, J.J. Kroll, J.B. Horner, A.V. Hamza, S.D. Bhandarkar, J.H. Eggert, R.F. Smith, D.G. Hicks, H.-S Park, B.K. Young, W.W. Hsing, G.W. Collins, O.L. Landen and the NIC team. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Solid Liner Implosions on Z for Producing Multi-Megabar, Shockless Compressions

    Science.gov (United States)

    Martin, Matthew

    2011-10-01

    Recent experiments with cylindrical liners on the Z-machine have utilized unshaped current drives where the early time drive pressure launches a shock into the initially solid liner. We explore the use of current pulse shaping techniques, originally developed for dynamic materials experiments on the Z-machine, to perform controlled cylindrical liner implosions. By driving the liner with a current pulse shape that prevents shock formation we avoid shock heating and melting the liner material and the corresponding decrease in electrical conductivity. This results in an imploding liner with a significant amount of its material in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner are expected to exceed 10 Mbar and have implosion velocities greater than 50 km/s. The solid liner experiments are diagnosed with multi-frame monochromatic X-ray backlighting which is used to infer the material density and pressure. These developments have lead to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries. This work was performed in collaboration with R.W. Lemke, R.D. McBride, M.D. Knudson, D.H. Dolan, and J P. Davis. Sandia is a multi-program laboratory operated by Sandia Corp, a Lockheed-Martin company, for the US Dept of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. A technique for extending by ~103 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGAa)

    Energy Technology Data Exchange (ETDEWEB)

    Sio, H. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA; Séguin, F. H. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA; Frenje, J. A. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA; Gatu Johnson, M. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA; Zylstra, A. B. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA; Rinderknecht, H. G. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA; Rosenberg, M. J. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA; Li, C. K. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA; Petrasso, R. D. [Massachusetts Institute of Technology Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA

    2014-11-01

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D3He-, D2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 102 for obtaining the spectral shape, and by 103 for mean energy (ρR) measurement, corresponding to proton fluences of 108 and 109 cm-2, respectively. Finally, using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ~108 and ~1012, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±~10 mg/cm2.

  5. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF.

    Science.gov (United States)

    Ma, T; Chen, H; Patel, P K; Schneider, M B; Barrios, M A; Casey, D T; Chung, H-K; Hammel, B A; Berzak Hopkins, L F; Jarrott, L C; Khan, S F; Lahmann, B; Nora, R; Rosenberg, M J; Pak, A; Regan, S P; Scott, H A; Sio, H; Spears, B K; Weber, C R

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  6. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    Science.gov (United States)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Chung, H.-K.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Lahmann, B.; Nora, R.; Rosenberg, M. J.; Pak, A.; Regan, S. P.; Scott, H. A.; Sio, H.; Spears, B. K.; Weber, C. R.

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  7. Bolometric Arrays for Millimeter Wavelengths

    Science.gov (United States)

    Castillo, E.; Serrano, A.; Torres-Jácome, A.

    2009-11-01

    During last years, semiconductor bolometers using thin films have been developed at INAOE, specifically boron-doped hydrogenated amorphous silicon films. The characteristics shown by these devices made them attractive to be used in astronomical instrumentation, mainly in two-dimentional arrays. These detector arrays used at the Large Millimeter Telescope will make possible to obtain astronomical images in millimeter and sub-millimeter wavelengths. With this in mind, we are developing a method to produce, with enough reliability, bolometer arrays at INAOE. Until now, silicon nitride diaphragm arrays, useful as radiation absorbers, have succesfully been obtained. Sizes going from one to four millimeter by element in a consistent way; however we have not tested thermometers and metallic contact deposition yet. At the same time, we are working on two possible configurations for the readout electronics; one of them using commercial components while the other will be an integrated circuit specifically designed for this application. Both versions will work below 77K.

  8. Global Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  9. Neutron Yield and Ion Temperature from DD and DT Fusion in National Ignition Facility High-Foot Implosions

    Science.gov (United States)

    Knauer, J. P.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Doeppner, T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hinkel, D. E.; Hurricane, O. A.; Kritcher, A.; Le Pape, S.; Ma, T.; Munro, D. H.; Patel, P. K.; Ralph, J. E.; Sayre, D. B.; Spears, B. K.; Yeamans, C. B.; Kilkenny, J. D.

    2015-11-01

    Simultaneous measures of neutrons emitted from DT fusion implosions are postulated to provide insight into the fuel conditions during neutron emission. Neutron spectral diagnostics of National Ignition Facility ``high-foot'' implosions measure both the DT and DD fusion neutron spectra. Equivalent ion temperature is measured from the width of the DT and DD neutron emission and the respective yields from the peak areas. This work has focused on reasons for differing inferred temperatures from the DT and DD spectra and the yield ratio. Spatial and temporal averages of the DT and DD reactivities as corrections to the homogeneous and static temperature distributions are shown. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions

    Science.gov (United States)

    Davis, A. K.; Michel, D. T.; Craxton, R. S.; Epstein, R.; Hohenberger, M.; Mo, T.; Froula, D. H.

    2016-11-01

    As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.

  11. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    Science.gov (United States)

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  12. The Number of Human Population, a Statistical and Economical Synthesis of Alternative Evolution towards Demographical Explosion or Implosion

    Directory of Open Access Journals (Sweden)

    Gheorghe Savoiu

    2006-10-01

    Full Text Available The number of the human population had reunited both in its quantitative side, and, especially, in the qualitative one, the most significant aspects of the various and detailed human evolution and dynamic. This demographic and synthetic indicator allowed a detailed and original process of population segmentation in the field of the contemporary analysis. Referring to a new process of demographic evolution and defining the population’s decline, demographers like Ehrlich and Longman have used the concept of demographic explosion but with the opposite demographic implosion too. World population through the accomplishment of the United Nations Population Revision or UNO prognosis seems to be forever somewhere between the limits of explosion and implosion.

  13. Progress report on new results of the study of multi-planar and compact cylindrical wire arrays at 0.8-1.3 MA current at UNR Zebra generator

    Science.gov (United States)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Presura, R.; Williamson, K. M.; Shrestha, I.; Ouart, N. D.; Yilmaz, M. F.; Wilcox, P. G.; Osborne, G. C.; Weller, M. E.; Shlyaptseva, V.; Rudakov, L. I.

    2008-11-01

    The studies that include the measurements of radiation yields, time-gated spectra and images, streak camera and laser probing images, spectral modeling, and magnetostatic and MHD simulations focus on Z-pinch plasma implosion and radiation features (including bright spots properties). The experiments with small size (3-10 mm) single-, double-, triple-, cross- planar, and compact cylindrical wire arrays from various materials at nominal as well as enhanced currents up to 1.3 MA were performed on the Zebra generator. The largest x-ray yields and powers were ranged for W and Mo. Observed multi-step precursor formation in multi-planar arrays may open new paths for radiation pulses shaping. Implosion and spectroscopic features specific for enhanced currents are discussed.

  14. Measurements of Sensitivity of Implosion-Phase Mixing to Low-Mode Symmetry at the National Ignition Facility

    Science.gov (United States)

    MacLaren, S. A.; Sayre, D. B.; Khan, S. F.; Ma, T.; Tipton, R. E.; Pino, J. E.; Salmonson, J. D.; Ralph, J. E.; Rygg, J. R.; Casey, D. T.; Kyrala, G. A.

    2016-10-01

    The 2-Shock platform at the National Ignition Facility (NIF) is a non-igniting indirect-drive target designed to produce a near 1D-like implosion for hydro-code validation. This is accomplished with a sub-scale (675 µm radius) capsule in a nominal (2.875 mm radius) near-vacuum hohlraum, providing a case-to-capsule ratio 63% larger that that of a standard ignition target. Additionally, the low aspect ratio (3.9) of the capsule shell combined with the temperature of the foot pulse essentially eliminates ablation front instability growth. The result is a platform that is well suited to the study of mixing at the gas-ablator interface without these complicating factors. A layer of CD plastic on the inner 3.2 µm of the CH capsule shell filled with a mixture of hydrogen and tritium allows us to infer the mixture of ablator material into the gas through the ratio of DT to TT neutron production. In 2015, we used the 2-Shock platform to measure the sensitivity of ablator-gas mixing to inner surface roughness and implosion convergence ratio. This year we developed the capability to deliberately adjust the low-mode in-flight symmetry of the implosion in both the prolate and oblate directions. We present the initial results of mix measurements from deliberately low-mode asymmetric implosions aimed at determining the relationship between this type of asymmetry and mix. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  15. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

    2011-12-16

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  16. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited).

    Science.gov (United States)

    Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J

    2010-10-01

    Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.

  17. TANGO ARRAY II: Simulations

    Science.gov (United States)

    Bauleo, P.; Bonifazi, C.; Filevich, A.

    The angular and energy resolution of the TANGO Array has been obtained using Monte Carlo simulations. The AIRES code, with the SYBILL hadronic collision package, was used to simulate Extended Air Showers produced by primary cosmic rays (protons and iron nuclei), with energies ranging from 1014 eV to 1018 eV. These data were fed into a realistic code which simulates the response of the detector stations (water ˇCerenkov detectors), including the electronics, pick up noise, and the signal attenuation in the connecting cabling. The trigger stage is taken into account in order to produce estimates of the trigger efficiency of the array and to check the accuracy of the reconstruction codes. This paper describes the simulations performed to obtain the expected behavior of the array, and presents the simulated data. These simulations indicate that the accuracy of the cosmic ray primary energy determination is expected to be ˜ 60 % and the precision in the measurement of the direction of arrival can be estimated as ˜ 4 degrees.

  18. Beam combining of quantum cascade laser arrays.

    Science.gov (United States)

    Lee, Benjamin G; Kansky, Jan; Goyal, Anish K; Pflügl, Christian; Diehl, Laurent; Belkin, Mikhail A; Sanchez, Antonio; Capasso, Federico A

    2009-08-31

    Wavelength beam combining was used to co-propagate beams from 28 elements in an array of distributed-feedback quantum cascade lasers (DFB-QCLs). The beam-quality product of the array, defined as the product of near-field spot size and far-field divergence for the entire array, was improved by a factor of 21 by using wavelength beam combining. To demonstrate the applicability of wavelength beam combined DFB-QCL arrays for remote sensing, we obtained the absorption spectrum of isopropanol at a distance of 6 m from the laser array.

  19. High-foot Implosion Workshop (March 22-24, 2016) Report

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-06

    From March 22-24, 2016 at Workshop was held at Lawrence Livermore National Laboratory bringing together international experts in inertial confinement fusion research for the purpose of discussing the results from the ‘high-foot implosion campaign.’ The Workshop topics covered a retrospective of the first two years of experiments, a discussion of our best present understanding of what the data and our models imply, a discussion about remaining mysteries that are not understood at this time, and a discussion of our strategy moving forward. The material herein contains information from published and unpublished sources and is distributed solely for the purposes of this Workshop. Key assessments and conclusions resulting from the Workshop are: “The high foot campaign is extremely well documented and the interested reader is urged to go directly to the peer-reviewed journal literature for details.” – D. Haynes (LANL) “Overall progress in understanding of fuel and hot-spot properties near peak burn is excellent.” – V. Goncharov (LLE) “I would say that given the constraints of using the same hohlraum and similar capsule designs to the National Ignition Campaign, the High Foot Campaign achieved as much as could be expected. Indeed the demonstration of significant alpha particle heating remains a landmark achievement.” – J. Chittenden (Imperial College) “One of the principal points of discussion at the meeting was the importance of the roll over in inferred pressure that occurs with reducing coast time for different ablator thicknesses and the idea of repeating shot N140819 to confirm this. I would be very interested to see a return to the High Foot platform as a way to exercise the improved radiographic capabilities such as the curved crystal imaging system and as a way to examine the hypothesis of ‘burn truncation by aneurism.’ ” – J. Chittenden (Imperial College) “It is clear from the quality of the data presented during this workshop

  20. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  1. Larger sized wire arrays on 1.5 MA Z-pinch generator

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, A. S., E-mail: alla@unr.edu; Kantsyrev, V. L., E-mail: alla@unr.edu; Weller, M. E., E-mail: alla@unr.edu; Shlyaptseva, V. V., E-mail: alla@unr.edu; Shrestha, I. K., E-mail: alla@unr.edu; Esaulov, A. A., E-mail: alla@unr.edu; Stafford, A., E-mail: alla@unr.edu [Physics Department, University of Nevada, Reno, NV 89557 (United States); Chuvatin, A. S. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau, 91128 (France); Coverdale, C. A.; Jones, B. [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2014-12-15

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes from mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)

  2. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platform at the National Ignition Facility

    Science.gov (United States)

    Rosenberg, M. J.; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; LePape, S.; Ma, T.; Mackinnon, A. J.; Rygg, J. R.; Amendt, P. A.; Bellei, C.; Benedetti, L. R.; Berzak Hopkins, L.; Bionta, R. M.; Casey, D. T.; Divol, L.; Edwards, M. J.; Glenn, S.; Glenzer, S. H.; Hicks, D. G.; Kimbrough, J. R.; Landen, O. L.; Lindl, J. D.; MacPhee, A.; McNaney, J. M.; Meezan, N. B.; Moody, J. D.; Moran, M. J.; Park, H.-S.; Pino, J.; Remington, B. A.; Robey, H.; Rosen, M. D.; Wilks, S. C.; Zacharias, R. A.; McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Edgell, D.; Marshall, F. J.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Hoffman, N. M.; Kyrala, G. A.; Leeper, R. J.; Olson, R. E.; Kilkenny, J. D.; Nikroo, A.

    2016-03-01

    A thin-glass-shell, D3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE / E ∼ 4 %) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D2 fill), the DD-proton spectrum has been obtained as well, illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. These results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.

  3. Self characterization of a coded aperture array for neutron source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Volegov, P. L., E-mail: volegov@lanl.gov; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N. [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  4. Shock formation in Ne, Ar, Kr, and Xe on DD gas puff implosions

    Science.gov (United States)

    Narkis, J.; Rahman, H. U.; Wessel, F. J.; Ney, P.; Beg, F.

    2016-10-01

    1- and 2-D simulations of a 1-cm radius, gas-puff implosion of Ne, Ar, Kr, and Xe liners onto a DD target are conducted using the discharge parameters for the Univ. Nevada, Reno, Zebra (1 MA, 125 ns) voltage driver and the resistive MHD code MACH2. During the run-in phase, initial†shock heating preheats the DD plasma, with subsequent stable, adiabatic compression heating the target to high energy density. The dynamics of the former in both the liner and target are investigated. It is shown that magnetic field transport to the liner/target interface does not occur prior to the run-in phase in Ne and Ar liners, yet does occur in Kr and Xe liners, and that magnetic field transport to the interface is a requirement for shock initiation, thus demonstrating the necessity for using a high-Z material in the Staged Z-pinch. Shock reflection off the axis and subsequent collision with the interface results in partial transmission into the liner, which manifests as current reversal, and consequently an enhanced Bθ gradient. 2-D simulations show that magneto-Rayleigh-Taylor instability growth decreases with increasing Z, with shock formation providing sufficient isolation to reproduce the current reversal and enhanced Bθ gradient observed in 1-D simulations. Advanced Research Projects Agency - Energy, DE-AR0000569.

  5. Self-generated magnetic fields in direct-drive implosion experiments

    Science.gov (United States)

    Igumenshchev, I. V.; Zylstra, A. B.; Li, C. K.; Nilson, P. M.; Goncharov, V. N.; Petrasso, R. D.

    2014-06-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ˜10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ˜1015 W/cm2. Proton radiographs show multiple ring-like structures produced by electric fields ˜107 V/cm and fine structures from surface defects, indicating self-generated fields up to ˜3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇Te × ∇ne source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  6. Control of symmetry in Be implosions using a large Case to Capsule ratio

    Science.gov (United States)

    Kyrala, George; Kline, J.; Yi, A.; Loomis, E.; Simakov, A.; Wilson, D.; Ralph, J.; Rygg, R.; Strozzi, D.; Ak, G.

    2016-10-01

    (1) Tuning implosion symmetry in indirectly driven spherical capsules has been usually achieved by modifying the inner to outer beam powers inside a hohlraum. This has been done either by changing the wavelength difference between the beams in a gas filled hohlraum leading to cross beam energy transfer between the beams (CBET) , or by varying the inner to outer beam power ratio directly in low-density filled cylindrical hohlraums that permit much lower CBET. Symmetry had shown a large sensitivity to the power ratio of the inner to the outer beam power, partly due to the interaction of the inner beams with the ablated capsule material. To reduce the effect of the capsule ablation on the propagation of the inner laser beams, a larger ratio of the hohraum inner radius to the capsule outer radius has been investigated. This presentation will focus on the results of a series of experiments that monitored the symmetry of the imploding capsule shell as well as the later x-ray emission from the imploded core. We will compare to predictions and post shot calculations.

  7. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sherrill, Leslie Welser [Los Alamos National Laboratory; Haynes, Donald A [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Sherrill, Manolo E [Los Alamos National Laboratory; Mancini, Roberto C [UNR; Tommasini, Riccardo [LLNL; Golovkin, Igor E [PRISM COMP. SCIENCES; Haan, Steven W [LLNL

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  8. Two Dimensional Simulations of Plastic-Shell, Direct-Drive Implosions on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Radha, P B; Goncharov, V N; Collins, T B; Delettrez, J A; Elbaz, Y; Glebov, V Y; Keck, R L; Keller, D E; Knauer, J P; Marozas, J A; Marshall, F J; McKenty, P W; Meyerhofer, D D; Regan, S P; Sangster, T C; Shvarts, D; Skupsky, S; Srebro, Y; Town, R J; Stoeckl, C

    2004-09-27

    Multidimensional hydrodynamic properties of high-adiabat direct-drive plastic-shell implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] are investigated using the multidimensional hydrodynamic code, DRACO. Multimode simulations including the effects of nonuniform illumination and target roughness indicate that shell stability during the acceleration phase plays a critical role in determining target performance. For thick shells that remain integral during the acceleration phase, target yields are significantly reduced by the combination of the long-wavelength ({ell} < 10) modes due to surface roughness and beam imbalance and the intermediate modes (20 {le} {ell} {le} 50) due to single-beam nonuniformities. The neutron-production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The yield degradation in the thin shells is mainly due to shell breakup at short wavelengths ({lambda} {approx} {Delta}, where {Delta} is the in-flight shell thickness). The neutron-rate curves for the thinner shells have significantly lower amplitudes and a fall-off that is less steep than 1-D rates. DRACO simulation results are consistent with experimental observations.

  9. Visualizing density perturbations in the capsule shell in NIF implosions near peak velocity

    Science.gov (United States)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Macphee, A.; Scott, H. A.; Robey, H. F.; Field, J.; Barrios, M.; Regan, S. P.

    2016-10-01

    Engineering features on the capsule (surface roughness, support structures, etc.) can introduce outer surface perturbations that are ultimately detrimental to the performance of the capsule. Recent experiments have assessed minimal support structures and alternate pulse shapes using a re-entrant cone and back lighter that is perturbing to the implosion below radii of 500 μ m. Emission from the hot core, after shock-stagnation and prior to peak velocity (PV), has been used as a self-backlighter, providing a means to sample one side of the capsule at smaller radii. Adding high-Z gas ( 1 % Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at hv 8 keV over nominal fills. High-resolution imaging diagnostics with photon energy selectivity form 2D images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer. We can infer from these images the growth at PV of outer surface perturbations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697620.

  10. Modeling of the merging, liner formation, implosion of hypervelocity plasma jets for the PLX- α project

    Science.gov (United States)

    Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris

    2015-11-01

    A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.

  11. Simulations of Plasma-Liner Formation and Implosion for the PLX- α Project

    Science.gov (United States)

    Samulyak, Roman; Cassibry, Jason; Schillo, Kevin; Shih, Wen; Yates, Kevin; Hsu, Scott; PLX-Alpha Collaboration

    2016-10-01

    Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier and SPH codes enhanced with radiation, physical diffusion, and plasma-EOS models. These simulations support the Plasma Liner Experiment-ALPHA (PLX- α) project (see S. Hsu's talk in this session). Simulations predict properties of plasma liners, in particular 4 π-averaged liner density, ram pressure, and Mach number, the degree of non-uniformity, strength of primary and secondary shock waves, and scalings with the number of plasma jets, initial jet parameters, and other input data. In addition to direct analysis of liner states, simulations also provide synthetic data for direct comparison to experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Code verification and comparisons as well as predictions for the first series of PLX- α experiments with 6 and 7 jets will be presented. Verified against experimental data, both codes will be used for predictive simulations of plasma liners for PLX- α experiments and potential scaled-up future experiments. Supported by the ARPA-E ALPHA program.

  12. Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers

    Directory of Open Access Journals (Sweden)

    Shiraga H.

    2013-11-01

    Full Text Available The FIREX-1 project, the goal of which is to demonstrate fuel heating up to 5 keV by fast ignition scheme, has been carried out since 2003 including construction and tuning of LFEX laser and integrated experiments. Implosion and heating experiment of Fast Ignition targets have been performed since 2009 with Gekko-XII and LFEX lasers. A deuterated polystyrene shell target was imploded with the 0.53- μm Gekko-XII, and the 1.053- μm beam of the LFEX laser was injected through a gold cone attached to the shell to generate hot electrons to heat the imploded fuel plasma. Pulse contrast ratio of the LFEX beam was significantly improved. Also a variety of plasma diagnostic instruments were developed to be compatible with harsh environment of intense hard x-rays (γ rays and electromagnetic pulses due to the intense LFEX beam on the target. Large background signals around the DD neutron signal in time-of-flight record of neutron detector were found to consist of neutrons via (γ,n reactions and scattered gamma rays. Enhanced neutron yield was confirmed by carefully eliminating such backgrounds. Neutron enhancement up to 3.5 × 107 was observed. Heating efficiency was estimated to be 10–20% assuming a uniform temperature rise model.

  13. Mitigation of Two-Plasmon Decay in Direct-Drive Implosions Using Multilayer Targets

    Science.gov (United States)

    Froula, D. H.; Goncharov, V. N.; Follett, R. K.; Henchen, R. J.; Yaakobi, B.; Edgell, D. H.; Solodov, A. A.; Myatt, J. F.; Shaw, J. G.; Stoeckl, C.; Bonino, M. J.; Sangster, T. C.

    2015-11-01

    Mitigation of cross-beam energy transfer in direct-drive implosions may increase the hot-electron preheat above acceptable levels for ignition. To study preheat mitigation concepts on OMEGA, a thin layer (0.6 μm) of Si in the target ablator is being considered to increase the electron temperature at the quarter-critical surface. A beryllium inner layer (6 μm thick) is used to increase the hydrodynamic efficiency and an outer layer of CH-doped Si (4 μm thick) reduces the laser imprint. Spatially resolved Thomson-scattering measurements show a 15% increase in the electron temperature at the quarter-critical surface and the time-resolved hot electrons are reduced by a factor of 8 compared with a standard CH target. The shell trajectory in the multilayer targets is significantly faster than the CH target, resulting in a factor-of-3 increase in the neutron yield. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Turbulent mix or ion diffusion? Hypothesis testing in ICF capsule implosions

    Science.gov (United States)

    Hoffman, N. M.; Zimmerman, G. B.; Vander Wiel, S. A.; Herrmann, H. W.; Kim, Y. H.

    2016-10-01

    Turbulent mixing at a contact surface combines materials that are initially separated across the contact. While the mixing layer may contain the initially separate materials (each assumed to be composed of a number of distinct ion species) in a range of concentrations, from zero to 100%, the concentration of individual ion species within each material, relative to one another, is not altered by turbulent mixing alone. Ion diffusion likewise causes mixing at a contact, but does alter the relative concentration of ion species within each material, since the relative diffusivity of ions, in a fixed background plasma, varies as A 1 / 2/Z2. Recent hydrodynamically equivalent capsule implosions allow a test of the influence of these processes on observed capsule behavior. We use numerical simulations and hypothesis-testing methods to show quantitatively that turbulent mixing with ion diffusion is a better explanation of observed behavior than turbulent mixing alone (subject to the assumptions inherent in the computational models of these processes.) Research supported by US DOE under contract DE-AC52-06NA25396.

  15. Three-Dimensional Simulations of the Deceleration Phase of Inertial Fusion Implosions

    Science.gov (United States)

    Woo, K. M.; Betti, R.; Bose, A.; Epstein, R.; Delettrez, J. A.; Anderson, K. S.; Yan, R.; Chang, P.-Y.; Jonathan, D.; Charissis, M.

    2015-11-01

    The three-dimensional radiation-hydrodynamics code DEC3D has been developed to model the deceleration phase of direct-drive inertial confinement fusion implosions. The code uses the approximate Riemann solver on a moving mesh to achieve high resolution near discontinuities. The domain decomposition parallelization strategy is implemented to maintain high computation efficiency for the 3-D calculation through message passing interface. The implicit thermal diffusion is solved by the parallel successive-over-relaxation iteration. Results from 3-D simulations of low-mode Rayleigh-Taylor instability are presented and compared with 2-D results. A systematic comparison of yields, pressures, temperatures, and areal densities between 2-D and 3-D is carried out to determine the additional degradation in target performance caused by the three-dimensionality of the nonuniformities. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  16. Developing a 1D ``like'' performance basecamp for beryllium capsule implosions

    Science.gov (United States)

    Kline, John; Yi, Austin; Loomis, Eric; Simakov, Andrei; Kyrala, George; Wilson, Doub; Dewald, Eddie; Ralph, Joe; Strozzi, David

    2016-10-01

    Experiments with Beryllium capsules in high density gas filled targets showed little difference in performance with respect to CH or HDC capsules. The hypothesis for the lack of performance difference is attributed to poor control of symmetry based on work by Clark et al. Going forward, the goal is to develop a target design that enables better comparisons between the performance of Be capsules and other ablators, as well as with simulations. To develop a platform in which Be capsules maximize performance with respect to 1D calculations, we have increased the case-to-capsule ratio and reduced the hohlraum drive. The stability properties of beryllium are expected to be accentuated at lower radiation temperature drives compared with other ablators. Experiments have been carried out with case-to-capasule ratio of 3.1 and 4.3. Results from these experiments are being used to develop an optimized case-to-capsule ratio to achieve controllable symmetric implosions with maximum 1D like performance. This presentation will focus on how results of the experiments are used to design the next series of optimized experiments..

  17. Impact of flows on ion temperatures inferred from neutron spectra in asymmetrically driven OMEGA DT implosions

    Science.gov (United States)

    Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Aappelbe, B.; Chittenden, J.; Walsh, C.; Knauer, J. P.; Glebov, V. Yu.; Forrest, C.; Marshall, F.; Michel, T.; Stoeckl, C.; Sangster, T. C.; Zylstra, A.

    2016-10-01

    Ion temperatures (Tion) in Inertial Confinement Fusion (ICF) experiments have traditionally been inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn, expected to arise due to asymmetries imposed by engineering features (such as stalks, fill tubes, tents, or capsule imperfections) or drive non-uniformity, also impacts broadening and may lead to artificially inflated ``Tion'' values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured Tion, as observed in OMEGA cryogenic DT implosions but not in similar experiments at the NIF. In this presentation we report on an OMEGA experiment with intentionally asymmetric drive, designed to test the ability to accurately predict and measure line-of-sight differences in apparent Tion due to low-mode asymmetry-seeded flows. The results provide insight into the complexity of hot-spot dynamics, which is a problem that must be mastered to achieve ICF ignition. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  18. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics.

    Science.gov (United States)

    Han, Sang Eon; Chen, Gang

    2010-03-10

    We investigate silicon nanohole arrays as light absorbing structures for solar photovoltaics via simulation. To obtain the same ultimate efficiency as a standard 300 microm crystalline silicon wafer, we find that nanohole arrays require twelve times less silicon by mass. Moreover, our calculations show that nanohole arrays have an efficiency superior to nanorod arrays for practical thicknesses. With well-established fabrication techniques, nanohole arrays have great potential for efficient solar photovoltaics.

  19. Mir Cooperative Solar Array

    Science.gov (United States)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  20. Coupling Between Waveguide-Fed Slot Arrays

    Science.gov (United States)

    Rengarajan, Sembiam

    2011-01-01

    Coupling between two waveguide-fed planar slot arrays has been investigated using full-wave analysis. The analysis employs the method-of-moments solution to the pertinent coupled integral equations for the aperture electric field of all slots. In order to compute coupling between two arrays, the input port of the first array is excited with a TE(sub 10) mode wave while the second one is match-terminated. After solving the moment method matrix equations, the aperture fields of all slots are obtained and thereby the TE(sub 10) mode wave received at the input port of the second array is determined. Coupling between two arrays is the ratio of the wave amplitude arriving in the second array port to the incident wave amplitude at the first array port. The coupling mechanism has been studied as a function of spacing between arrays in different directions, e.g. the electric field plane, the magnetic field plane, and the diagonal plane. Computed coupling values are presented for different array geometries. This work is novel since it provides a good understanding of coupling between waveguide-fed slot arrays as a function of spacing and orientation for different aperture distributions and array architectures. This serves as a useful tool for antenna design engineers and system engineers.

  1. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  2. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  3. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    Science.gov (United States)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; Collins, T. J. B.; Craxton, R. S.; Davis, A. K.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu Johnson, M.; Glebov, V. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Jacobs-Perkins, D.; Janezic, R.; Karasik, M.; Keck, R. L.; Kelly, J. H.; Kessler, T. J.; Knauer, J. P.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Obenschain, S. P.; Petrasso, R. D.; Radha, P. B.; Rice, B.; Rosenberg, M. J.; Schmitt, A. J.; Schmitt, M. J.; Seka, W.; Shmayda, W. T.; Shoup, M. J.; Shvydky, A.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Ulreich, J.; Wittman, M. D.; Woo, K. M.; Yaakobi, B.; Zuegel, J. D.

    2016-07-01

    A record fuel hot-spot pressure Phs=56 ±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ˜60 % of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  4. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    Science.gov (United States)

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  5. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    Science.gov (United States)

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  6. A Wave-Based Model for Cross-Beam Energy Transfer in Direct-Drive Inertial Confinement Fusion Implosions

    Science.gov (United States)

    Myatt, J. F.

    2016-10-01

    Cross-beam energy transfer (CBET) is thought to be responsible for an 30 % reduction in hydrodynamic coupling efficiency on OMEGA and up to 50% at the ignition scale for direct-drive (DD) implosions. These numbers are determined by ray-based models that have been developed and integrated within the radiation-hydrodynamics codes LILAC (1-D) and DRACO (2-D). However, ray-based modeling of CBET in an inhomogeneous plasma assumes a steady-state plasma response, does not include the effects of beam speckle, and ray caustics are treated in an ad hoc manner. Nevertheless, simulation results are in good qualitative agreement with implosion experiments on OMEGA (when combined with a model for nonlocal heat transport). The validity of the modeling for ignition-scale implosions has not yet been determined. To address the physics shortcomings, which have important implications for DD inertial confinement fusion, a new wave-based model has been constructed. It solves the time-enveloped Maxwell equations in three-dimensions, including polarization effects, plasma inhomogeneity, and open-boundary conditions with the ability to prescribe beams incident at arbitrary angles. Beams can be made realistic with respect to laser speckle, polarization smoothing, and laser bandwidth. This, coupled to a linearized low-frequency plasma response that does not assume a steady state, represents the most-complete model of CBET to date. New results will be presented and the implications for CBET modeling and mitigation will be described. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DENA0001944, in collaboration with J. G. Shaw, R. K. Follett, and D. H. Edgell (LLE).

  7. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pak, A.; Divol, L.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Casey, D. T.; Dewald, E.; Döppner, T.; Edwards, M. J.; Glenn, S.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Lindl, J.; Landen, O. L.; Le Pape, S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2013-05-15

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ∼20 μm and ∼ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ∼40 μm and a density of >500 g/cm{sup 3}. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ∼100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ∼10 μm, as the shock propagates into the lower density (∼1 g/cc), hot (∼250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ∼300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal

  8. Directivity of basic linear arrays

    DEFF Research Database (Denmark)

    Bach, Henning

    1970-01-01

    For a linear uniform array ofnelements, an expression is derived for the directivity as a function of the spacing and the phase constants. The cases of isotropic elements, collinear short dipoles, and parallel short dipoles are included. The formula obtained is discussed in some detail and contour...

  9. Difference packing arrays and systematic authentication codes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    In this paper, a type of combinatorial design (called difference packing array)is proposed and used to give a construction of systematic authentication codes. Taking advantage of this construction, some new series of systematic authentication codes are obtainable in terms of existing difference packing arrays.

  10. Si:As BIB detector arrays

    Science.gov (United States)

    Bharat, R.; Petroff, M. D.; Speer, J. J.; Stapelbroek, M. G.

    1986-01-01

    Highlights of the results obtained on arsenic-doped silicon blocked impurity band (BIB) detectors and arrays since the invention of the BIB concept a few years ago are presented. After a brief introduction and a description of the BIB concept, data will be given on single detector performance. Then different arrays that were fabricated will be described and test data presented.

  11. Spherical Horn Array for Wideband Propagation Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund

    2011-01-01

    A spherical array of horn antennas designed to obtain directional channel information and characteristics is introduced. A dual-polarized quad-ridged horn antenna with open flared boundaries and coaxial feeding for the frequency band 600 MHz–6 GHz is used as the element of the array. Matching...

  12. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    Science.gov (United States)

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A.; Hammel, B. A.; Sepke, S. M.; Leatherland, A.; Gales, S.

    2016-05-01

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. We propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method uses a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT “clean” and DT “mix” gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. An experiment to observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λii∼T2/Z2ρ at the gas/shell interface. Since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.

  13. Diagnosing the Stagnation Conditions of MagLIF Implosions Using High-Resolution Spectroscopy

    Science.gov (United States)

    Harding, Eric

    2016-10-01

    An inertial fusion concept known as Magnetized Liner Inertial Fusion (MagLIF) is currently being pursued on the Z-machine at Sandia National Laboratory. Electrical current from the Z-machine is directly coupled onto the outside surface of a beryllium tube known as a ``liner'' causing it to implode. The liner contains gaseous deuterium (D2) fuel, which is pre-magnetized, pre-heated, and then compressed by the imploding walls of the liner. Target implosions of this type have produced thermonuclear plasmas that generated 2e12 DD neutrons [M.R. Gomez et al., PRL 113, 155003 (2014)]. For the first time we have accurately measured the space-dependent, fuel conditions at the time of stagnation. In addition, the state of the compressed Be liner was determined. This was accomplished by the simultaneous use of high-resolution, x-ray spectroscopic and imaging diagnostics. These new measurements relied on the observation of K-shell spectra emitted by microscopic iron and nickel impurities that naturally occur in the Be. The measurements currently indicate that the non-uniformity of the x-ray emission from the fuel is due to variations in the fuel conditions. Ultimately, the data provides critical insight into the performance of the MagLIF target and will further enable us to enhance the target design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract No. DE-AC04-94AL85000.

  14. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic...

  15. ANTENNAS ARRAY ADJUST WITH ADAPTIVE NEURONAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. Padrón

    2004-12-01

    Full Text Available In this work an array failure correction for Linear Antenna Array (LAA is presented. This is carried out by means ofan Adaptive Artificial Neural Network (AANN that adjusts the amplitude and phase at beamforming. Theappropriated corrections are given, when one, or two, or three elements have a failure in the antenna linear array.The AANN corrects the corresponding parameters in the radiation pattern obtained due to the failure, when weknow the coefficients of the array factor (AF. This yields a reduction of side lobe level and some interferencesdisappear.

  16. A derivation of bulk-motion insensitive implosion metrics inferred from neutron and high-energy x-ray emission in a series of high yield implosions on the NIF

    Science.gov (United States)

    Springer, P. T.; Macphee, A. G.; Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Doeppner, T.; Edgell, D. H.; Edwards, M. J.; Gaffney, J.; Grim, G. P.; Haan, S.; Hammer, J. H.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Milovich, J.; Munro, D. H.; Pak, A.; Park, H. S.

    2015-11-01

    A suite of nuclear and x-ray data is used to deduce key implosion performance metrics at stagnation including the hotspot pressure, energy, and the role of alpha heating on producing the observed yield. Key to this analysis is a determination of the burn-averaged temperature of the hot plasma so that the nuclear reactivity and yield can then be used to deduce the plasma density and pressure. In this presentation we examine the systematics of both neutron and high-energy x-ray emission (22 keV x-ray monochromator) from a series of high yield implosions on the NIF. The advantage of incorporating high energy x-rays into the analysis is their insignificant attenuation and insensitivity to bulk flows, thus providing insight as to whether these effects complicate the interpretation of the nuclear data, and that a precipitous drop in their production is expected as the thermal temperature is reduced. A dynamic model for hotspot assembly is developed that incorporates thermal conduction, radiative losses, and alpha heating, which simultaneously matches both neutron and x-ray data with nearly identical nuclear and x-ray derived thermal temperatures. Work performed under the auspices of the USDoE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  17. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare

    CERN Document Server

    Dudik, Jaroslav; Janvier, Miho; Mulay, Sargam M; Karlicky, Marian; Aulanier, Guillaume; Del Zanna, Giulio; Dzifcakova, Elena; Mason, Helen E; Schmieder, Brigitte

    2016-01-01

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. The slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions towards both ends of the ribbons. Velocities of 20--40 km\\,s$^{-1}$ are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset of apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the \\textit{IRIS} slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromosph...

  18. Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries

    CERN Document Server

    Scott, R H H; Bradley, D K; Callahan, D A; Edwards, M J; Haan, S W; Jones, O S; Spears, B K; Marinak, M M; Town, R P J; Norreys, P A; Suter, L J

    2012-01-01

    The sensitivity of inertial confinement fusion implosions of the type performed on the National Ignition Facility (NIF) to low-mode flux asymmetries has been investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P4), resulting from associated low order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the DT ice layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of kinetic to internal energy of the central hot spot, thus reducing neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P4 shapes may be unquantifiable for DT layered capsules. Instead the positive P4 asymmetry aliases itself as an oblate P4 in the x-ray self emission images. Correction of this apparent P2 distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of...

  19. 10-kilowatt Photovoltaic Concentrator Array

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, R.L.; Broadbent, S.

    1978-05-01

    Martin Marietta has designed a Photovoltaic Concentrator Array (PCA) for Sandia Laboratories, Kirtland AFB, New Mexico. The PCA is based on the use of an acrylic Fresnel lens to concentrate sunlight on high intensity solar cells. The objective of the development was to obtain economical photovoltaic power generation by replacing relatively high priced solar cells with low cost lenses. Consequently, a major task of the program was to optimize the design for minimum cost per unit power output. Major design aspects considered for optimization were the concentration ratio, size and shape of the Fresnel lens, array size and shape, structure minimization, tracking and control and the practical aspects of operation and maintenance. In addition to design of the complete array, several porototype photovoltaic concentrator module subassemblies were fabricated and delivered to Sandia for evaluation. These prototypes exceed the 9.0% efficiency requirement established for this program.

  20. Coherent magnetic semiconductor nanodot arrays

    Directory of Open Access Journals (Sweden)

    Xiu Faxian

    2011-01-01

    Full Text Available Abstract In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation.

  1. Axial characterization of particle beams emitted by conical wire array Z-pinches

    Science.gov (United States)

    Munoz-Cordovez, Gonzalo; Veloso, Felipe; Valenzuela-Villaseca, Vicente; Vescovi, Milenko; Favre, Mario; Wyndham, Edmund

    2016-10-01

    The dynamics of the plasma and the emission of particle beams from tungsten conical wire arrays are experimentally studied in the Llampudken generator (400 kA in 300 ns). Particles are detected axially using biased Faraday cups and silicon substrates located at tens of centimeters above the array at different heights. Several ion pulses with kinetic energy 90 eV preceded by an electron beam are measured using time of flight (ToF), whereas the deposition of tungsten on silicon substrates is observed. In addition, ToF indicates that the emission of the beam occurs during the formation of the precursor (i.e., during the implosion of the array) observed by time-resolved laser probing and XUV imaging. The results might indicate that outflows from conical wire arrays propagate much further away than the observations made after laser and XUV images from conical arrays suggesting densities below the detection limits of these diagnostics. G. Munoz-Cordovez acknowledges financial support from CONICYT Grant for doctoral studies.

  2. Modeling of phased array transducers.

    Science.gov (United States)

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  3. Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility

    Science.gov (United States)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Casey, D. T.; Clark, D. S.; Jones, O. S.; Milovich, J. L.; Peterson, J. L.; Bachmann, B.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Bionta, R.; Bond, E.; Bradley, D. K.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Chen, K.-C.; Goyon, C.; Grim, G.; Dixit, S. N.; Eckart, M. J.; Edwards, M. J.; Farrell, M.; Fittinghoff, D. N.; Frenje, J. A.; Gatu-Johnson, M.; Gharibyan, N.; Haan, S. W.; Hamza, A. V.; Hartouni, E.; Hatarik, R.; Havre, M.; Hohenberger, M.; Hoover, D.; Hurricane, O. A.; Izumi, N.; Jancaitis, K. S.; Khan, S. F.; Knauer, J. P.; Kroll, J. J.; Kyrala, G.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; MacPhee, A. G.; Mauldin, M.; Merrill, F. E.; Moore, A. S.; Nagel, S.; Nikroo, A.; Pak, A.; Patel, P. K.; Ralph, J. E.; Sayre, D. B.; Shaughnessy, D.; Spears, B. K.; Tommasini, R.; Turnbull, D. P.; Velikovich, A. L.; Volegov, P. L.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.

    2016-10-01

    Radiation-driven, layered deuterium-tritium (DT) implosions were carried out using 3-shock and 4-shock "adiabat-shaped" drives and plastic ablators on the National Ignition Facility (NIF) [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. The purpose of these shots was to gain further understanding on the relative performance of the low-foot implosions of the National Ignition Campaign [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] versus the subsequent high-foot implosions [T. Döppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. The neutron yield performance in the experiment with the 4-shock adiabat-shaped drive was improved by factors ˜3 to ˜10, compared to five companion low-foot shots despite large low-mode asymmetries of DT fuel, while measured compression was similar to its low-foot companions. This indicated that the dominant degradation source for low-foot implosions was ablation-front instability growth, since adiabat shaping significantly stabilized this growth. For the experiment with the low-power 3-shock adiabat-shaped drive, the DT fuel compression was significantly increased, by ˜25% to ˜36%, compared to its companion high-foot implosions. The neutron yield increased by ˜20%, lower than the increase of ˜50% estimated from one-dimensional scaling, suggesting the importance of residual instabilities and asymmetries. For the experiment with the high-power, 3-shock adiabat-shaped drive, the DT fuel compression was slightly increased by ˜14% compared to its companion high-foot experiments. However, the compression was reduced compared to the lower-power 3-shock adiabat-shaped drive, correlated with the increase of hot electrons that hypothetically can be responsible for reduced compression in high-power adiabat-shaped experiments as well as in high-foot experiments. The total neutron yield in the high-power 3-shock adiabat-shaped shot N150416 was 8.5 × 1015 ± 0.2 × 1015, with the fuel areal density of 0.90 ± 0.07 g/cm2

  4. BOLOMETRIC ARRAYS FOR MILLIMETER WAVELENGTHS

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2009-01-01

    Full Text Available During last years, semiconductor bolometers using thin lms have been developed at INAOE, speci cally boron-doped hydrogenated amorphous silicon lms. The characteristics shown by these devices made them attractive to be used in astronomical instrumentation, mainly in two-dimentional arrays. These detector arrays used at the Large Millimeter Telescope will make possible to obtain astronomical images in millimeter and submillimeter wavelengths. With this in mind, we are developing a method to produce, with enough reliability, bolometer arrays at INAOE. Until now, silicon nitride diaphragm arrays, useful as radiation absorbers, have succesfully been obtained. Sizes going from one to four millimeter by element in a consistent way; however we have not tested thermometers and metallic contact deposition yet. At the same time, we are working on two possible con gurations for the readout electronics; one of them using commercial components while the other will be an integrated circuit speci cally designed for this application. Both versions will work below 77K.

  5. Shear-tensile/implosion (STI) source model: a good substitute to moment tensor in single-well monitoring of hydrofrac-induced seismicity

    Science.gov (United States)

    Sileny, J.

    2011-12-01

    Moment tensor (MT) is a general dipole source, but for practice it may be too general, its generality causing troubles during its reconstruction from noisy data in the inverse process, which may be additionally ill-conditioned due to inexact hypocenter location and/or availability of a rough velocity/attenuation model only. Then, the retrieved source may be biased, containing artifacts of a low-quality data or the inconsistent inverse problem. The crucial point for success in the retrieval of the mechanism is the station configuration. The extreme case of depleted configuration is a one well monitoring providing a single-azimuth observation only, which is a frequent case during hydrofracturing treatment of oil and gas wells. Then, the complete moment tensor cannot be retrieved from far-field data and additional constraints are necessary. To avoid the trouble, it seems reasonable to assume a simpler source model directly describing the physical phenomena anticipated in the foci of the induced events. A simple combination of a shear slip with a tensile crack or 1D implosion - the STI model - is a good alternative to the moment tensor. Its advantage is twofold: (1) being described by smaller number of parameters, it removes the under-determination of the MT from single-azimuth observation, and (2) containing simple physical mechanisms only, namely a shear slip and tensile crack (or open crack implosion), it avoids unphysical sources like the compensated linear-vector dipole (CLVD) a priori. This feature helps a lot just in cases of a poor location or velocity modeling. We have tested the STI model in a series of synthetic experiments simulating a single well and two-well monitoring, the Cotton Valley (E Texas) hydrofracture treatment being the pattern of the observation. As theoretical mechanisms, a strike-slip and dip-slip with variable off-plane slip component were considered. The synthetic data were inverted by using Green's function simulating a mislocation of the

  6. Axiom turkey genotyping array

    Science.gov (United States)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  7. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  8. The Impossible Performance of Mass Commodity. George Maciunas, Herman Fine and Robert Watts’ Implosions Inc. (ca. 1967

    Directory of Open Access Journals (Sweden)

    Estella Noriega, Iñaki

    2016-12-01

    Full Text Available In the US context Fluxus is understood as an advance of the ‘60s radicalism. The assumption that Fluxus was opposed to consumption culture, as that embodied by Pop art, is among the interpretations that renew such a view. Examining the example of Implosions Inc., a short-lived but nevertheless interesting commercial enterprise formed by Robert Watts, Herman Fine and George Maciunas in 1967, this essay focuses its attention on the complex relationship between Fluxus and commercial culture. Implosions Inc. was a project in which many Pop artists were asked to participate along with its Fluxus founders, and it was intended as another step forward in the transformation of the artist into a commodity mass-producer. In analyzing this phenomenon, this article questions assumed principles in the Neo-avantgarde theory like the distinction between art production and culture consumption. The essay, however, will try to establish another paradigm that draws the differences between Pop art and Fluxus as the kind of audiences both these tendencies tried to conform. As a conclusion, the article fleshes out some ideas on individualism that were developed by Maciunas, which shed light on the notions surrounding the idea of collectivism as developed in Fluxus.En el contexto de los EE.UU., Fluxus ha sido entendido como avanzadilla del radicalismo de la década de los 60. La asunción de que Fluxus se oponía a la cultura comercial, tal y como era representada por el pop art, es una de las líneas que renueva dicha interpretación. Mediante el análisis de Implosions Inc., una pequeña pero fundamental empresa de Fluxus que formaron en 1967 George Maciunas, Robert Watts y Herman Fine, este ensayo pretende mostrar colaboraciones entre los artistas Fluxus y Pop y que se propuso hacer del artista un productor de mercancía de masas. Al analizar este episodio, el artículo cuestiona principios de la teoría de la neovanguardia, como la distinción entre el arte de la

  9. Array Imaging of Noisy Materials

    Science.gov (United States)

    Wilcox, P. D.

    2011-06-01

    The ultimate limit on ultrasonic defect detectability is the coherent noise due to material backscatter. A model of such noise in ultrasonic array images is developed based on the single scattering assumption. The implications of the model are discussed and supported with some experimental examples. In the case of a copper specimen, it is shown that an improvement in signal to coherent noise ratio of over 30 dB can be obtained by optimization of imaging parameters.

  10. Assessment of the Effects of Azimuthal Mode Number Perturbations upon the Implosion Processes of Fluids in Cylinders

    CERN Document Server

    Lindstrom, Michael

    2016-01-01

    Fluid instabilities arise in a variety of contexts and are often unwanted results of engineering imperfections. In one particular model for a magnetized target fusion reactor, a pressure wave is propagated in a cylindrical annulus comprised of a dense fluid before impinging upon a plasma and imploding it. Part of the success of the apparatus is a function of how axially-symmetric the final pressure pulse is upon impacting the plasma. We study a simple model for the implosion of the system to study how imperfections in the pressure imparted on the outer circumference grow due to geometric focusing. Our methodology entails linearizing the compressible Euler equations for mass and momentum conservation about a cylindrically symmetric problem and analyzing the perturbed profiles at different mode numbers. The linearized system gives rise to singular shocks and through analyzing the perturbation profiles at various times, we infer that high mode numbers are dampened through the propagation. We also study the Linea...

  11. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C., E-mail: hagmann1@llnl.gov; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Herrmann, H. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-07-15

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the {sup 198}Au/{sup 196}Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  12. Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive inertial confinement fusion implosions

    Energy Technology Data Exchange (ETDEWEB)

    Temporal, M., E-mail: mauro.temporal@hotmail.com [Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex (France); Canaud, B. [CEA, DIF, F-91297 Arpajon Cedex (France); Garbett, W. J. [AWE plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Ramis, R. [ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2015-10-15

    The implosion uniformity of a directly driven spherical inertial confinement fusion capsule is considered within the context of the Laser Mégajoule configuration. Two-dimensional (2D) hydrodynamic simulations have been performed assuming irradiation with two laser beam cones located at 49° and 131° with respect to the axis of symmetry. The laser energy deposition causes an inward shock wave whose surface is tracked in time, providing the time evolution of its non-uniformity. The illumination model has been used to optimize the laser intensity profiles used as input in the 2D hydro-calculations. It is found that a single stationary laser profile does not maintain a uniform shock front over time. To overcome this drawback, it is proposed to use two laser profiles acting successively in time, in order to dynamically stabilize the non-uniformity of the shock front.

  13. On the change in Inertial Confinement Fusion Implosions upon using an ab initio multiphase DT equation of state

    CERN Document Server

    Caillabet, Laurent; Salin, Gwenaël; Mazevet, Stéphane; Loubeyre, Paul

    2011-01-01

    Improving the description of the equation of state (EoS) of deuterium-tritium (DT) has recently been shown to change significantly the gain of an Inertial Confinement Fusion (ICF) target (Hu et al., PRL 104, 235003 (2010)). We use here an advanced multi-phase equation of state (EoS), based on ab initio calculations, to perform a full optimization of the laser pulse shape with hydrodynamic simulations starting from 19 K in DT ice. The thermonuclear gain is shown to be a robust estimate over possible uncertainties of the EoS. Two different target designs are discussed, for shock ignition and self-ignition. In the first case, the areal density and thermonuclear energy can be recovered by slightly increasing the laser energy. In the second case, a lower in-flight adiabat is needed, leading to a significant delay (3ns) in the shock timing of the implosion.

  14. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Amendt, P. A.; Wilks, S. C.; Pino, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Atzeni, S. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy); Hoffman, N. M.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  15. GRIFFIN's Fast-Timing Array

    Science.gov (United States)

    Olaizola, Bruno; Griffin Collaboration

    2016-09-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is the new β-decay spectrometer facility at TRIUMF-ISAC. Consists of an array of 16 large-volume HPGe clover detectors with an unparalleled efficiency of 19% at 1.33 MeV. Its strongest advantage is the versatility of the ancillary detectors that can be coupled to the main array to tag on β particles, neutrons or precisely measure conversion electron spectra. An ancillary array of 8 LaBr3(Ce) detectors for γ-rays and a fast plastic scintillator for β-particles has been optimized for fast-timing experiments with GRIFFIN. The 51 mm x 51 mm cylindrical LaBr3(Ce) crystals are coupled to Hamamatsu R2083 photomultipliers. Timing resolutions as good as FWHM 200 ps and time-walks below +/- 30 ps have been obtained for individual crystals using analog electronics. There is also an ongoing project to develop an active BGO shield for the LaBr3(Ce) crystals. The LaBr3(Ce) array commissioning experiment to measure the 145,146Cs decay to 145,146Ba will test its capabilities over a wide range of lifetimes. Preliminary results on the lifetimes of some of the low-laying states will be presented.

  16. Array antenna diagnostics with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Meincke, Peter; Pivnenko, Sergey;

    2012-01-01

    The 3D reconstruction algorithm is applied to a slotted waveguide array measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. One slot of the array is covered by conductive tape and an error is present in the array excitation. Results show the accuracy obtainable by the 3D...... reconstruction algorithm. Considerations on the measurement sampling, the obtainable spatial resolution, and the possibility of taking full advantage of the reconstruction geometry are provided....

  17. The wire array Z-pinch: an efficient x-ray source for ICF and a new ion heating mechanism

    Science.gov (United States)

    Haines, M. G.

    2008-10-01

    The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. Firstly, the wires heat and form a surrounding vapour which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapour cores the plasma temperature and Reynolds number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation, the ion kinetic energy is thermalized and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated by soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m= 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2-3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly, progress in capsule implosions and in application to inertial fusion energy is reported.

  18. The Wire Array Z-Pinch AN Efficient X-Ray Source for Icf and a New Ion Heating Mechanism

    Science.gov (United States)

    Haines, M. G.

    2009-07-01

    The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. First, the wires heat and form a surrounding vapor which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapor cores the plasma temperature and Reynolds' number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation the ion kinetic energy is thermalised and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated as soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m = 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2 to 3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly progress in capsule implosions and in application to inertial fusion energy is reported.

  19. Preparation and characterization of haematite nanowire arrays

    CERN Document Server

    Xue, D S; Liu, Q F; Zhang, L Y

    2003-01-01

    Arrays of alpha-Fe sub 2 O sub 3 nanowires embedded in anodic alumina membranes were obtained after heat-treating beta-FeOOH nanowire arrays fabricated by electrochemical deposition. Haematite polycrystalline nanowires with maximum length of about 7 mu m and average diameter of about 120 nm were characterized by means of x-ray diffraction and transmission electron microscopy. The Morin temperature below 80 K and Neel temperature of about 350 K for the alpha-Fe sub 2 O sub 3 nanowire arrays, far lower than those of bulk material, were measured by Moessbauer spectroscopy and using a Magnetic Property Measurement System.

  20. Application of Array Measurement in Blind Identification

    Institute of Scientific and Technical Information of China (English)

    王勇; 孙连明; 刘文江

    2003-01-01

    This paper deals with blind identification and deconvolution algorithm for an arbitrary, possibly white or colored, stationary or nonstationary signal, which is observed through array sensors. By using multiple sensors with their individual outputs sampled at a rate 1/T, one can obtain cyclostationary signals. They can be considered as a single-input multiple-output model with an identical but unknown input signal. With the array measurement, an algorithm for estimating the system transfer function model and its parameters is presented.

  1. LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS

    Science.gov (United States)

    The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...array with parasitic elements, these elements are used in place of every alternate dipole, thereby eliminating the need of a twisted feed arrangement...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the

  2. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  3. Array Antenna Limitations

    CERN Document Server

    Jonsson, B L G; Hussain, N

    2013-01-01

    This letter defines a physical bound based array figure of merit that provides a tool to compare the performance of both single and multi-band array antennas with respect to return-loss, thickness of the array over the ground-plane, and scan-range. The result is based on a sum-rule result of Rozanov-type for linear polarization. For single-band antennas it extends an existing limit for a given fixed scan-angle to include the whole scan-range of the array, as well as the unit-cell structure in the bound. The letter ends with an investigation of the array figure of merit for some wideband and/or wide-scan antennas with linear polarization. We find arrays with a figure of merit >0.6 that empirically defines high-performance antennas with respect to this measure.

  4. Pacific Array (Transportable Broadband Ocean Floor Array)

    Science.gov (United States)

    Kawakatsu, Hitoshi; Ekstrom, Goran; Evans, Rob; Forsyth, Don; Gaherty, Jim; Kennett, Brian; Montagner, Jean-Paul; Utada, Hisashi

    2016-04-01

    Based on recent developments on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry1, together with advances in the seismic analysis methodology, have enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (azimuthal, and hopefully radial), with deployments of ~15 broadband ocean bottom seismometers (BBOBSs). Having ~15 BBOBSs as an array unit for a 2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure beneath Pacific ocean, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations is essential: if three countries/institutions participate this endeavor together, Pacific Array may be accomplished within five-or-so years.

  5. Integrated avalanche photodiode arrays

    Science.gov (United States)

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  6. Speech enhancement by array crosstalk resistant ANC and spectrum subtraction

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingning; OUYANG Shan

    2008-01-01

    Microphone array-based speech enhancement has great importance for speech com-munications and speech recognition. To reduce the aperture of the microphone array and to increase the effect of the speech enhancement will greatly broaden the application areas of the microphone array. An array crosstalk resistant adaptive noise cancellation method is therefore presented. And then an improved spectral subtraction algorithm is further cascaded to obtain better enhancement results. Theoretic analysis and experiments indicate that the proposed scheme needs only a very small microphone array while it simultaneously achieves a higher SNR improvement. Besides, the proposed scheme can be used in many noisy environments and is easy for real-time implementation.

  7. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility.

    Science.gov (United States)

    Gatu Johnson, M; Frenje, J A; Li, C K; Séguin, F H; Petrasso, R D; Bionta, R M; Casey, D T; Caggiano, J A; Hatarik, R; Khater, H Y; Sayre, D B; Knauer, J P; Sangster, T C; Herrmann, H W; Kilkenny, J D

    2014-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm(2) and CH-ablator ρR's of 400-680 mg/cm(2) are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  8. Focal plane array with modular pixel array components for scalability

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  9. Recent Results from Telescope Array

    CERN Document Server

    Fukushima, M

    2015-01-01

    The Telescope Array (TA) is an experiment to observe Ultra-High Energy Cosmic Rays (UHECRs). TA's recent results, the energy spectrum and anisotropy based on the 6-year surface array data, and the primary composition obtained from the shower maximum Xmax are reported. The spectrum demonstrates a clear dip and cutoff. The shape of the spectrum is well described by the energy loss of extra-galactic protons interacting with the cosmic microwave background (CMB). Above the cutoff, a medium-scale (20 degrees radius) flux enhancement was observed near the Ursa-Major. A chance probability of creating this hotspot from the isotropic flux is 4.0 sigma. The measured Xmax is consistent with the primary being proton or light nuclei for energies 10^18.2 eV - 10^19.2 eV.

  10. Analysis of VCSEL Array Module Using a Simple Microlens Array

    Institute of Scientific and Technical Information of China (English)

    Hen-Wai; Tsao; Shyh-Lin; Tsao

    2003-01-01

    A simple microlens array is designed between VCSEL array and fiber array for integration of array module. We increase the optical coupling efficiency from -32.057 dBm to -0.9054 dBm by using our designed microlens array.

  11. Analysis of VCSEL Array Module Using a Simple Microlens Array

    Institute of Scientific and Technical Information of China (English)

    Wen-Ming Cheng; Hen-Wai Tsao; Shyh-Lin Tsao

    2003-01-01

    A simple microlens array is designed between VCSEL array and fiber array for integration of array module. We increase the optical coupling efficiency from-32.057 dBm to-0.9054 dBm by using our designed microlens array.

  12. Measurements of Hard X-Ray Emission Suggest Absorption Along the Path of the Inner Beams in High Foot Implosion Experiments on the NIF

    Science.gov (United States)

    Ralph, Joseph; Pak, Arthur; Otto, Landen; Kritcher, Andrea; Ma, Tammy; Charles, Jarrott; Callahan, Debra; Hinkel, Denise; Berzak Hopkins, Laura; Moody, John; Khan, Shahab; Doeppner, Tilo; Rygg, Ryan; Hurricane, Omar

    2016-10-01

    The current high foot hohlraum design fielded on the National Ignition Facility is aimed at providing uniform x-ray drive to provide a spherical implosion by lowering the gas fill from 1.6 to 0.6 mg/cc and increasing the hohlraum width from 5.75 to 6.72 mm while maintaining the same 1.8 mm capsule diameter from previous designs. These changes are intended to improve beam propagation without the need for crossed beam energy transfer. Analysis of the measurements of hard x-ray emission from the gated x-ray detector (GXD) and the static x-ray imager (SXI) looking through the laser entrance hole indicate a significant fraction of the inner beam incident energy is absorbed in the high z blow-off region (either uranium or gold) before reaching the inner wall near the equator. Comparison of inner beam absorption in this region and its effect on the implosion symmetry measurements will be presented. Additionally, the sensitivity of this absorption feature and therefore the implosion symmetry to the pulse shape, hohlraum fill pressure and fraction of energy in beams depositing energy at the hohlraum equator will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA.

    Science.gov (United States)

    Regan, S P; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Betti, R; Bose, A; Boehly, T R; Bonino, M J; Campbell, E M; Cao, D; Collins, T J B; Craxton, R S; Davis, A K; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Frenje, J A; Froula, D H; Gatu Johnson, M; Glebov, V Yu; Harding, D R; Hohenberger, M; Hu, S X; Jacobs-Perkins, D; Janezic, R; Karasik, M; Keck, R L; Kelly, J H; Kessler, T J; Knauer, J P; Kosc, T Z; Loucks, S J; Marozas, J A; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Myatt, J F; Obenschain, S P; Petrasso, R D; Radha, P B; Rice, B; Rosenberg, M J; Schmitt, A J; Schmitt, M J; Seka, W; Shmayda, W T; Shoup, M J; Shvydky, A; Skupsky, S; Solodov, A A; Stoeckl, C; Theobald, W; Ulreich, J; Wittman, M D; Woo, K M; Yaakobi, B; Zuegel, J D

    2016-07-08

    A record fuel hot-spot pressure P_{hs}=56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  14. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  15. SAFETY FACTORS FOR XYLEM FAILURE BY IMPLOSION AND AIR-SEEDING WITHIN ROOTS, TRUNKS AND BRANCHES OF YOUNG AND OLD CONIFER TREES

    Energy Technology Data Exchange (ETDEWEB)

    Domec, Jean-Christophe [North Carolina State University; Warren, Jeffrey M. [Oak Ridge National Laboratory (ORNL); Meinzer, Rick [USDA Forest Service; Lachenbruch, Barbara [Oregon State University, Corvallis

    2009-01-01

    The cohesion-tension theory of water transport states that hydrogen bonds hold water molecules together and that they are pulled through the xylem under tension. This tension could cause transport failure in at least two ways: collapse of the conduit walls (implosion), or rupture of the water column through air-seeding. The objective of this research was to elucidate the functional significance of variations in tracheid anatomical features, earlywood to latewood ratios and wood densities with position in young and old Douglas-fir and ponderosa pine trees in terms of their consequences for the safety factors for tracheid implosion and air-seeding. For both species, wood density increased linearly with percent latewood for root, trunk and branch samples. However, the relationships between anatomy and hydraulic function in trunks differed from those in roots and branches. In roots and branches increased hydraulic efficiency was achieved at the cost of increased vulnerability to air-seeding. Mature wood of trunks had earlywood with wide tracheids that optimized water transport and had a high percentage of latewood that optimized structural support. Juvenile wood had higher resistance to air-seeding and cell wall implosion. The two safety factors followed similar axial trends from roots to terminal branches and were similar for both species studied and between juvenile and mature wood.

  16. Experimental Investigation of Cross-Beam Energy Transfer Mitigation via Wavelength Detuning in Directly Driven Implosions at the National Ignition Facility

    Science.gov (United States)

    Hohenberger, M.; Marozas, J. A.; McKenty, P. W.; Rosenberg, M. J.; Radha, P. B.; Cao, D.; Knauer, J. P.; Regan, S. P.

    2016-10-01

    Cross-beam energy transfer (CBET) affects directly driven, inertial confinement fusion implosions by reducing the absorbed light and the coupling of driver energy to the target. A mitigation strategy is to detune the laser wavelength of interacting beams (Δλ ≠ 0 ) to reduce the CBET interaction volume. In polar-direct-drive (PDD) experiments at the National Ignition Facility (NIF) the CBET-imposed energy losses occur predominantly in the equatorial region. The NIF does not support a hemispheric wavelength detuning but does have Δλ capabilities between inner and outer quads. Using a north-south asymmetric beam pointing, it is therefore possible to introduce a hemispheric wavelength difference of up to Δλ = 4.6 Å in the UV. We report on experiments to test this CBET mitigation scheme in PDD experiments on the NIF. Using this asymmetric beam pointing, we have completed experiments with both Δλ = 0 and 4.6 Å. The effect of CBET on the driver-target coupling is diagnosed via implosion velocities, implosion shape, and scattered-light spectra and by comparing experimental data to 2-D DRACO simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Solar array deployment mechanism

    Science.gov (United States)

    Calassa, Mark C.; Kackley, Russell

    1995-05-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  18. Array for detecting microbes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Gary L.; DeSantis, Todd D.

    2014-07-08

    The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.

  19. Advanced Rainbow Solar Photovoltaic Arrays

    Science.gov (United States)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  20. Photovoltaic array loss mechanisms

    Science.gov (United States)

    Gonzalez, Charles

    1986-10-01

    Loss mechanisms which come into play when solar cell modules are mounted in arrays are identified. Losses can occur either from a reduction in the array electrical performance or with nonoptimal extraction of power from the array. Electrical performance degradation is caused by electrical mismatch, transmission losses from cell surface soiling and steep angle of reflectance, and electrical losses from field wiring resistance and the voltage drop across blocking diodes. The second type of loss, concerned with the operating points of the array, can involve nonoptimal load impedance and limiting the operating envelope of the array to specific ranges of voltage and current. Each of the loss mechanisms are discussed and average energy losses expected from soiling, steep reflectance angles and circuit losses are calculated.

  1. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  2. Probe suppression in conformal phased array

    CERN Document Server

    Singh, Hema; Neethu, P S

    2017-01-01

    This book considers a cylindrical phased array with microstrip patch antenna elements and half-wavelength dipole antenna elements. The effect of platform and mutual coupling effect is included in the analysis. The non-planar geometry is tackled by using Euler's transformation towards the calculation of array manifold. Results are presented for both conducting and dielectric cylinder. The optimal weights obtained are used to generate adapted pattern according to a given signal scenario. It is shown that array along with adaptive algorithm is able to cater to an arbitrary signal environment even when the platform effect and mutual coupling is taken into account. This book provides a step-by-step approach for analyzing the probe suppression in non-planar geometry. Its detailed illustrations and analysis will be a useful text for graduate and research students, scientists and engineers working in the area of phased arrays, low-observables and stealth technology.

  3. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  4. Design of an electronic charged particle spectrometer to measure ({rho}R), yield, and implosion symmetry on the OMEGA Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D.G.; Li, C.K.; Petrasso, R.D.; Wenzel, K.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Knauer, J.P. [Rochester Univ., NY (United States). Lab. for Laser Energetics

    1994-11-01

    The preliminary design for a state-of-the-art diagnostic that will measure a broad energy spectrum of charged particles generated in the OMEGA Upgrade facility is investigated. Using a set of photodiodes ({approximately}10) and a 0.8 Tesla permanent magnet, the diagnostic will uniquely determine particle energies and identities from 0.2 MeV up to the maximum charged particle energies (10.6 MeV tritons, 12.5 MeV deuterons and 17.4 MeV protons). With its high density picture elements, each photodiode has 10{sup 6} single-hit detectors, giving the spectrometer a dynamic range of 1 {minus} 10{sup 5} particles/shot. For example, in the case of a DT yield of 10{sup 9} neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Furthermore, the measurement of knock-on D and T spectra will allow {rho}R`s up to 0.15 g/cm{sup 2} to be measured (for a 1 keV plasma), or 0.3 g/cm{sup 2}2 if hydrogen doping is used. In addition, the yield and slowing down of secondary protons may be used to determine {rho}R up to 0.3 g/cm{sup 2}. Significantly, this diagnostic will also directly measure the DD fusion yield and energy degradation of nascent 3 MeV protons. By using two such compact spectrometers to measure the yield and spectra on widely separated ports around the OMEGA Upgrade target chamber, the implosion and bum symmetry can be determined. Furthermore, the ion temperature, and, in principle, even the electron temperature can be measured. The diagnostic and its development will be fully tested at several critical steps, utilizing 0.2-16 MeV protons (and several other charged particles and neutrons) from our absolutely calibrated Cockcroft-Walton facility.

  5. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  6. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  7. P systems with array objects and array rewriting rules

    Institute of Scientific and Technical Information of China (English)

    K.G. Subramanian; R. Saravanan; M. Geethalakshmi; P. Helen Chandra; M. Margenstern

    2007-01-01

    Array P systems were introduced by Pǎun Gh. which is linking the two areas of membrane computing and picture grammars. Puzzle grammars were introduced by us for generating connected picture arrays in the two-dimensional plane, motivated by the problem of tiling the plane. On the other hand, incorporating into arrays the developmental type of generation used in the well-known biologically motivated L systems, Siromoney and Siromoney proposed a very general rectangular array generating model, called extended controlled tabled L array system (ECTLAS). In this paper we introduce two variations of the array P system, called BPG array P system and parallel array P system. The former has in the regions array objects and basic puzzle grammar rules (BPG), which are a specific kind of puzzle grammar rules. In the latter, the regions have rectangular array objects and tables of context-free rules. We examine these two types of P systems for their array generative power.

  8. Strategies for Ultrasound Imaging Using Two-Dimensional Arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2010-02-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. This has clear benefits as real defects and engineering structures are three-dimensional. This paper describes different approaches to optimize 2D array design. Results are shown that illustrate the application of the proposed techniques to modeling and experimental data.

  9. Direction finding using sparse array composed of multiple identical subarrays

    OpenAIRE

    Vasylyshyn, V. I.; Garkusha, O. A.

    2005-01-01

    This article addresses the problem of determining the Directions-of-Arrival (DOA’s) of narrow-band emitter signals impinging on a sparse sensor array. We assume that array incorporates several identical widely separated subarrays. A new TLS-ESPRIT-based DOA estimator is obtained for this class of sparse sensor arrays. The generalization of the TLS-ESPRIT that includes structure (row) weighting method is discussed. Simulation results are included to show the performance of proposed estimator.

  10. Hydrodynamic Mixing of Ablator Material into the Compressed Fuel and Hot Spot of Direct-Drive DT Cryogenic Implosions

    Science.gov (United States)

    Regan, S. P.; Goncharov, V. N.; Epstein, R.; Betti, R.; Bonino, M. J.; Cao, D.; Collins, T. J. B.; Campbell, E. M.; Forrest, C. J.; Glebov, V. Yu.; Harding, D. R.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Sangster, T. C.; Stoeckl, C.; Luo, R. W.; Schoff, M. E.; Farrell, M.

    2016-10-01

    Hydrodynamic mixing of ablator material into the compressed fuel and hot spot of direct-drive DT cryogenic implosions is diagnosed using time-integrated, spatially resolved xray spectroscopy. The laser drive ablates most of the 8- μm-thick CH ablator, which is doped with trace amounts of Ge ( 0.5 at.) and surrounds the cryogenic DT layer. A small fraction of the ablator material is mixed into the compressed shell and the hot spot by the ablation-front Rayleigh-Taylor hydrodynamic instability seeded by laser imprint, the target mounting stalk, and surface debris. The amount of mix mass inferred from spectroscopic analysis of the Ge K-shell emission will be presented. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. The Effect of Cross-Beam Energy Transfer on Two-Plasmon Decay in Direct-Drive Implosions

    Science.gov (United States)

    Froula, D. H.; Follett, R. K.; Henchen, R. J.; Davis, A. K.; Goncharov, V. N.; Edgell, D. H.; Solodov, A. A.; Michel, D. T.; Myatt, J. F.; Shaw, J. G.; Stoeckl, C.

    2016-10-01

    Mitigation of cross-beam energy transfer (CBET) in direct-drive implosions was shown to increase the hot electrons generated by two-plasmon decay. Reducing the diameter of the laser spots by 30% significantly reduces CBET and the laser absorption was measured to increase from 75% to nearly 90%. The reduced CBET leads to higher intensity at the quarter-critical density surface, increasing the hot-electron production by a factor of 7 . Adding a thin layer (0.6 to 1.1 μm) of Si to the target ablator reduced the hot-electron fraction by a factor of 2 . Spatially resolved Thomson-scattering measurements show an 15 % increase in the electron temperature and an increase in the Si fraction at the quarter-critical surface when the Si layer is added. Three-dimensional laser-plasma interaction simulations of hot-electron production using the code LPSE show that in addition to the reduced gain (smaller ILn Te), the observed reduction in hot electrons results from increased electron-ion collision frequencies and reduced Landau damping of ion-acoustic waves. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Measurement of the hot spot electron temperature in NIF ICF implosions using Krypton x-ray emission spectroscopy

    Science.gov (United States)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M.; Barrios, M.; Berzak Hopkins, L.; Casey, D.; Chung, H.-K.; Hammel, B.; Jarrott, C.; Nora, R.; Pak, A.; Scott, H.; Spears, B.; Weber, C.

    2015-11-01

    The inference of ion temperature from neutron spectral measurements in indirect-drive ICF implosions is known to be sensitive to non-thermal velocity distributions in the fuel. The electron temperature (Te) inferred from dopant line ratios should not be sensitive to these bulk motions and hence may be a better measure of the thermal temperature of the hot spot. Here we describe a series of experiments to be conducted on the NIF where a small concentration of a mid-Z dopant (Krypton) is added to the fuel gas. The x-ray spectra is measured and the electron temperature is inferred from Kr line ratios. We also quantify the level of radiative cooling in the hot spot due to this mid-Z dopant. These experiments represent the first direct measurement of hot spot Te using spectroscopy, and we will describe the considerations for applying x-ray spectroscopy in such dense and non-uniform hot spots. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  14. Truncated States Obtained by Iteration

    Institute of Scientific and Technical Information of China (English)

    W.B.Cardoso; N.G.de Almeida

    2008-01-01

    We introduce the concept of truncated states obtained via iterative processes(TSI)and study its statistical features,making an analogy with dynamical systems theory(DST).As a specific example,we have studied TSI for the doubring and the logistic functions,which are standard functions in studying chaos.TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.

  15. Drugs obtained by biotechnology processing

    OpenAIRE

    Hugo de Almeida; Maria Helena Amaral; Paulo Lobão

    2011-01-01

    In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV) as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA tec...

  16. Mesh Currents and Josephson Junction Arrays

    OpenAIRE

    1995-01-01

    A simple but accurate mesh current analysis is performed on a XY model and on a SIMF model to derive the equations for a Josephson junction array. The equations obtained here turn out to be different from other equations already existing in the literature. Moreover, it is shown that the two models come from an unique hidden structure

  17. Simulation of Z-Pinch Processes of Nested Tungsten Wire-Array on Angara-5-1 Facility

    Institute of Scientific and Technical Information of China (English)

    NING Cheng; DING Ning; LIU Quan; YANG Zhen-Hua; FAN Wen-Bin; ZHANG Yang

    2006-01-01

    @@ Based on the hydrodynamic shell-on-shell collision model, the Z-pinch processes of nested tungsten wire-array in Sino-Russian joint experiments on Angara-5-1 facility are simulated by means of our one-dimensional threetemperature radiation magneto-hydrodynamic code. The results show the evolutions of x-ray radiation burst,implosion trajectories of interfaces, current transfer in inner and outer wire-array plasmas, and the temporal and spatial changes of magnetic field and current density in the process. About 20% of the total driven current is transferred into the inner wire-array plasma by convection and diffusion of magnetic field when the two shells are pinched closest. Compared to the measured x-ray power, the simulated full width at half maximum and time at the strongest radiation agree approximately with the measured values. It is also demonstrated in our simulation that the radiation of nested wire-array Z-pinch is enhanced. The effects of fluctuations of driven current on yields of x-ray are also investigated.

  18. CNPC makes major breakthrough in array lateral logging technology

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On October 12, 2011, the array lateral logging tool independently developed by CNPC Well Logging Company was successfully put to use at two production wells at Changqing Oilfield, obtaining high quality logging information. CNPC becomes the second company after Schlumberger in the world to master the array lateral logging technology, which can effectively identify layers as thin as 0.3 meter.

  19. Arrays of magnetic nanoparticles capped with alkylamines

    Indian Academy of Sciences (India)

    P John Thomas; P Saravanan; G U Kulkarni; C N R Rao

    2002-02-01

    Magnetic metal and metal oxide nanoparticles capped with alkylamines have been synthesized and characterized by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray analysis and magnetization measurements. Core-shell Pd–Ni particles with composition, Pd561Ni3000, (diameter ∼ 3.3 nm) are superparamagnetic at 5 K and organize themselves into two-dimensional crystalline arrays. Similar arrays are obtained with Pd561Ni3000Pd1500 nanoparticles containing an additional Pd shell. Magnetic spinel particles of -Fe2O3, Fe3O4 and CoFe2O4 of average diameters in the 4–6 nm range coated with octylamine are all supermagnetic at room temperature and yield close-packed disordered arrays. Relatively regular arrays are formed by dodecylamine-capped Fe3O4 nanoparticles (∼ 8.6 nm diameter) while well-ordered hexagonal arrays were obtained with octylamine-covered Co3O4 nanoparticles (∼ 4.2 nm diameter).

  20. A passive synthetic aperture phase correction algorithm for the asymmetric twin-line array sonar

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A passive synthetic aperture based on phase correction algorithm for solving the port-starboard discrimination problem in the non-aligned towed twin-line array sonar, is described. This method creates a virtual array through applying the estimated phase correction into one array of twin-line arrays. Because the synthetic virtual array is aligned with the other array in twin-line arrays, the right port-starboard discriminated results can be obtained by array processing based on the new synthetic twin-line array. The effect of proposed method has been shown by simulated and sea-trials results in towed twin-line array sonar. With low extra computational loads, the proposed method is easy to apply to the practice.

  1. Surface optical Bloch oscillations in semi-infinite waveguide arrays.

    Science.gov (United States)

    Chremmos, I D; Efremidis, N K

    2012-06-01

    We predict that surface optical Bloch oscillations can exist in semi-infinite waveguide arrays with a linear index variation, if the array parameters close to the boundary are appropriately perturbed. The perturbation is such that the surface states obtain the Wannier-Stark ladder eigenvalues of the unperturbed infinite array. The number of waveguides, whose parameters need to be controlled, decreases with increasing ratio of index gradient over coupling. The configuration can find applications as a "matched" termination of waveguide arrays to eliminate the distortion of Bloch oscillations due to reflection on the boundaries.

  2. A Real-time Modeling of Photovoltaic Array

    Institute of Scientific and Technical Information of China (English)

    王魏; 李柠; 李少远

    2012-01-01

    This paper mainly aims at the modeling problem of the photovoltaic (PV) array with a 30 kW PV grid-connected generation system. An iterative method for the time-varying parameters is proposed to model a plant of PV array. The relationship of PV cell and PV array is obtained and the solution for PV array model is unique. The PV grid-connected generation system is used to demonstrate the effectiveness of the proposed method by comparing the calculated values with the actual output of the system.

  3. Optimized Optomechanical Micro-Cantilever Array for Uncooled Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    DONG Feng-Liang; ZHANG Qing-Chuan; CHEN Da-Peng; MIAO Zheng-Yu; XIONG Zhi-Ming; GUO Zhe-Ying; LI Chao-Bo; JIAO Bin-Bin; WU Xiao-Ping

    2007-01-01

    We present a new substrate-free bimaterial cantilever array made of SiNx and Au for an uncooled microoptomechanical infrared imaging device.Each cantilever element has an optimized deformation magnification structure.A 160×160 array with a 120μm×120μm pitch is fabricared and an optical readout is used to collectively measure deflections of all microcantilevers in the array.Tharmal images of room-temperature objects with higher spatial resolution have been obtained and the noise-equivalent temperature difference of the fabricated focal plane arrays is giyen statistically and is measured to be about 270mK.

  4. Coupled-oscillator based active-array antennas

    CERN Document Server

    Pogorzelski, Ronald J

    2012-01-01

    Describing an innovative approach to phased-array control in antenna design This book explores in detail phased-array antennas that use coupled-oscillator arrays, an arrangement featuring a remarkably simple beam steering control system and a major reduction in complexity compared with traditional methods of phased-array control. It brings together in one convenient, self-contained volume the many salient research results obtained over the past ten to fifteen years in laboratories around the world, including the California Institute of Technology's Jet Propulsion Laboratory.

  5. A novel particle Time Of Flight (pTOF) diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Rinderknecht, H G; Johnson, M G; Zylstra, A B; Sinenian, N; Rosenbergh, M J; Frenje, J A; Waugh, C J; Li, C K; Seguin, F H; Petrasso, R; Rygg, J R; Kline, J; Doeppner, T; Park, H S; Landen, O; Lepape, S; Meezan, N; Kilkenny, J; Glebov, V Y; Sangster, T; Stoeckl, C; Olson, R

    2012-05-02

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a Wedge Range-Filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted {rho}R measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT-Exploding Pusher and D{sup 3}He implosions using DD or DT neutrons with an accuracy better than {+-}70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions using D{sup 3}He protons and DD-neutrons, respectively.

  6. Truncated states obtained by iteration

    CERN Document Server

    Cardoso, W B

    2007-01-01

    Quantum states of the electromagnetic field are of considerable importance, finding potential application in various areas of physics, as diverse as solid state physics, quantum communication and cosmology. In this paper we introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST. A general method to engineer TSI in the running-wave domain is employed, which includes the errors due to the nonidealities of detectors and photocounts.

  7. Evaporating metal nanocrystal arrays

    Science.gov (United States)

    Zhang, Xue; Joy, James C.; Zhao, Chenwei; Kim, Jin Ho; Fernandes, Gustavo; Xu, J. M.; Valles, James M., Jr.

    2017-03-01

    Anodic aluminum oxide (AAO) substrates with a self-ordered triangular array of nanopores provide the means to fabricate multiple forms of nano materials, such as nanowires and nanoparticles. This study focuses on nanostructures that emerge in thin films of metals thermally evaporated onto the surface of AAO. Previous work showed that films of different evaporated metals assume dramatically different structures, e.g. an ordered triangular array of nearly monodisperse nanoparticles forms for lead (Pb) while a polycrystalline nanohoneycomb structure forms for silver (Ag). Here, we present investigations of the effects of substrate temperature and deposition angle that reveal the processes controlling the nano particle array formation. Our findings indicate that arrays form provided the grain nucleation density exceeds the pore density and the atomic mobility is high enough to promote grain coalescence. They introduce a method for producing films with anisotropic grain array structure. The results provide insight into the influence of substrate nano-morphology on thin film growth energetics and kinetics that can be harnessed for creating films with other novel nano-structures.

  8. Fabrication of Polypyrrole Nanowire and Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2005-04-01

    Full Text Available Large area highly uniform and ordered polypyrrole nanowire and nanotubearrays were fabricated by chemical oxidation polymerization with the help of a porousanodic aluminium oxide (AAO template. Under 0.2 moL/L pyrrole (H2O and 0.2 moL/LFeCl3 (H2O pattern, polypyrrole nanowire arrays were obtained after 2.0 hourspolymerization reaction in a two-compartment reaction cell. When the reaction wasstopped after 15 minutes, polypyrrole nanotube arrays have been formed. The diameter,length and density of compositive nanowires and nanotubes could be controlled byparameters of AAO template.

  9. Optimal ultrasonic array focusing in attenuative media.

    Science.gov (United States)

    Ganguli, A; Gao, R X; Liang, K; Jundt, J

    2011-12-01

    This paper presents a parametric study on the efficiency of ultrasound focusing in an attenuative medium, using phased arrays. Specifically, an analytical model of ultrasound wave focusing in a homogeneous, isotropic and attenuative fluid with point sources is presented. Calculations based on the model have shown that in an attenuative medium, an optimum frequency exists for the best focusing performance for a particular size of aperture and focal distance. The effect of different f numbers on the focusing performance in the attenuative medium is further investigated. The information obtained from the analytical model provides insights into the design and installation of a phased transducer array for energy efficient wave focusing.

  10. Graphene array antenna for 5G applications

    Science.gov (United States)

    Sa'don, Siti Nor Hafizah; Kamarudin, Muhammad Ramlee; Ahmad, Fauzan; Jusoh, Muzammil; Majid, Huda A.

    2017-02-01

    Fifth generation (5G) needs to provide better coverage than the previous generation. However, high frequency and millimeter wave experience penetration loss, propagation loss and even more loss in energy for long distance. Hence, a graphene array antenna is proposed for high gain to cover a long distance communications since array antenna enables in providing more directive beams. The investigation is conducted on three types of substrates with gain achieved is more than 7 dBi. The gain obtained is good since it is comparable with other studies. In addition, these antennas consume small numbers of elements to achieve high gain.

  11. Astronomical Image Processing with Array Detectors

    CERN Document Server

    Houde, Martin

    2007-01-01

    We address the question of astronomical image processing from data obtained with array detectors. We define and analyze the cases of evenly, regularly, and irregularly sampled maps for idealized (i.e., infinite) and realistic (i.e., finite) detectors. We concentrate on the effect of interpolation on the maps, and the choice of the kernel used to accomplish this task. We show how the normalization intrinsic to the interpolation process must be carefully accounted for when dealing with irregularly sampled grids. We also analyze the effect of missing or dead pixels in the array, and their consequences for the Nyquist sampling criterion.

  12. The transient scattering mechanism of dipole array with reflector

    Institute of Scientific and Technical Information of China (English)

    Zhang Xue-Qin; Wang Jun-Hong; Li Zeng-Rui

    2008-01-01

    The transient backscattering mechanisms of a dipole array with reflector have been investigated from different aspects:time-domain,frequency-domain,and combined time-frequency domain,using 4×8 dipole arrays with reflector as an example.The data of scattering from the arrays under the incidence of Gaussian pulses are obtained by finite differential time domain method.The influences of the array structural parameters,incident wave parameters,and incident angles on the waveforms,spectrum,and time-frequency representations of the backseattered fields of the arrays are analysed and conclusions are drawn.From these characteristics and conclusions,it is possible to deduce the array structure inversely from the backscattered field.

  13. Observation of Interspecies Ion Separation in Inertial-Confinement-Fusion Implosions via Imaging X-ray spectroscopy

    Science.gov (United States)

    Joshi, Tirtha Raj

    2016-10-01

    Interspecies ion separation has been proposed as a yield-degradation mechanism in inertial-confinement-fusion (ICF) experiments. We present direct experimental evidence of interspecies ion separation in direct-drive ICF experiments performed at the OMEGA laser facility. These experiments were designed based on the fact that interspecies ion thermo-diffusion would be strongest for species with large mass and charge difference. The targets were spherical plastic shells filled with D2 and Ar (1% by atom). Ar K-shell spectral features were observed primarily between the time of first-shock convergence and slightly before neutron bang time, using a time- and space-integrated spectrometer, streaked crystal spectrometer, and two gated multi-monochromatic X-ray imagers fielded along quasi-orthogonal lines-of-sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal deviation from the initial 1%-Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree gently with calculated profiles associated with the incoming and rebounding first shock. This work was done in collaboration with P. Hakel, S. C. Hsu, E. L. Vold, M. J. Schmitt, N. M. Hoffman, R. M. Rauenzahn, G. Kagan, X.-Z. Tang, Y. Kim, and H. W. Herrmann of LANL, and R. C. Mancini of UNR. LA-UR-16-24804. Supported by the LANL ICF and ASC Programs under US-DoE contract no. DE-AC52-06NA25396.

  14. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    Science.gov (United States)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  15. Wireless Josephson Junction Arrays

    Science.gov (United States)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  16. Photovoltaic array performance model.

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  17. Drugs obtained by biotechnology processing

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2011-06-01

    Full Text Available In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA technique and the hybridoma technique. The expiry of the patents of the first drugs of biotechnological origin and the consequent emergence of biosimilar products, have posed various questions to health authorities worldwide regarding the definition, framework, and requirements for authorization to market such products.Nos últimos anos, tem aumentado exponencialmente o número de fármacos de origem biotecnológica ao dispor das mais diversas patologias, entre elas destacam-se, os diferentes tipos de cancêr, as doenças infecciosas (ex. vírus AIDS/HIV, as doenças autoimunes, as doenças cardiovasculares, a Diabetes Mellitus, as doenças neurológicas, as doenças respiratórias, entre outras. A indústria farmacêutica tem recorrido a diferentes tecnologias para a obtenção de novos e promissores princípios ativos, como são exemplo a fermentação, a técnica de DNA Recombinante, a técnica de hidridoma, entre outras. A queda das patentes dos primeiros fármacos de origem biotecnológica e o consequente aparecimento dos produtos biossimilares têm colocado diferentes questões às autoridades de saúde mundiais, sobre a definição, enquadramento e exigências para a autorização de entrada no mercado deste tipo de produtos.

  18. Versatile microfluidic droplets array for bioanalysis.

    Science.gov (United States)

    Hu, Shan-Wen; Xu, Bi-Yi; Ye, Wei-Ke; Xia, Xing-Hua; Chen, Hong-Yuan; Xu, Jing-Juan

    2015-01-14

    We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods.

  19. Experimental study on imploding characteristics of wire-array Z pinches on Qiangguang-1 facility

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Xu Rong-Kun; Yang Jian-Lun; Hua Xin-Sheng; Li Lin-Bo; Xu Ze-Ping; Ning Jia-Min; Song Feng-Jun

    2007-01-01

    To investigate the imploding characteristics of cylindrical wire array,experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility.The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system.Other diagnostic equipments including the x-ray power meter(XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images.Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion.Experimental results indicated that the better axial imploding synchrony,the faster the increase of X-ray power for an array consisting of 32 tungsten wires of 5μm diameter than for the others,and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5.A 'zipper-like' effect of x-ray radiation extending from the cathode Was also observed.

  20. Mixed and Uniform Double Planar Wire Arrays on University of Michigan's Linear Transformer Driver

    Science.gov (United States)

    Safronova, A. S.; Kantsyrev, V. L.; Shrestha, I. K.; Shlyaptseva, V. V.; Schmidt-Petersen, M. T.; Butcher, C. J.; Petkov, E. E.; Stafford, A.; Cooper, M. C.; Steiner, A. M.; Yager-Elorriaga, D. A.; Jordan, N. M.; Gilgenbach, R. M.

    2016-10-01

    Uniform Double Planar Wire Arrays (DPWA), which consist of two parallel planes of wires of the same material, have previously demonstrated high radiation efficiency, compact size, and usefulness for various applications in experiments on a University-scale high impedance Z-pinch generator. We have already reported on the outcome of the first experiments with uniform Al DPWAs on the University of Michigan's low-impedance Linear Transformer Driver (LTD) MAIZE generator. Here we present the most recent results on the experiments with both uniform (Al wires) and mixed (one plane from Al and another plane from stainless steel or copper wires) DPWAs produced using a diagnostic set similar to the first campaign, including: filtered X-ray diodes, X-ray spectrographs and pinhole cameras, but with a new four frame shadowgraphy system with 2-ns, 532 nm frequency doubled Nd:YAG laser that was further upgraded to a twelve frame shadowgraphy system. Application of different wire planes and much longer period of time observed by the shadowgraphy led to the new results about wire array implosions on the LTD device. Research supported by NNSA under DOE Grant DE-NA0003047.

  1. TRMM Solar Array Panels

    Science.gov (United States)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  2. The Murchison Widefield Array

    NARCIS (Netherlands)

    Mitchell, Daniel A.; Greenhill, Lincoln J.; Ord, Stephen M.; Bernardi, Gianni

    2010-01-01

    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imagin

  3. Array processors in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  4. Bandwidth Reconfigurable Metamaterial Arrays

    Directory of Open Access Journals (Sweden)

    Nathanael J. Smith

    2014-01-01

    Full Text Available Metamaterial structures provide innovative ways to manipulate electromagnetic wave responses to realize new applications. This paper presents a conformal wideband metamaterial array that achieves as much as 10 : 1 continuous bandwidth. This was done by using interelement coupling to concurrently achieve significant wave slow-down and cancel the inductance stemming from the ground plane. The corresponding equivalent circuit of the resulting array is the same as that of classic metamaterial structures. In this paper, we present a wideband Marchand-type balun with validation measurements demonstrating the metamaterial (MTM array’s bandwidth from 280 MHz to 2800 MHz. Bandwidth reconfiguration of this class of array is then demonstrated achieving a variety of band-pass or band-rejection responses within its original bandwidth. In contrast with previous bandwidth and frequency response reconfigurations, our approach does not change the aperture’s or ground plane’s geometry, nor does it introduce external filtering structures. Instead, the new responses are realized by making simple circuit changes into the balanced feed integrated with the wideband MTM array. A variety of circuit changes can be employed using MEMS switches or variable lumped loads within the feed and 5 example band-pass and band-rejection responses are presented. These demonstrate the potential of the MTM array’s reconfiguration to address a variety of responses.

  5. Microelectronic Stimulator Array

    Science.gov (United States)

    2000-08-09

    retinal prosthesis test device. Figure 3b shows an enlarged view of a nano-channel glass (NCG) electrode array. Figure 4 shows a conceptual layout (floor...against a visual cortex. 10 This involves invasive brain surgery through the cranium . From a surgical point of view, the intra ocular approach is

  6. A SQUID series array dc current sensor

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J; Drung, D [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)], E-mail: joern.beyer@ptb.de, E-mail: dietmar.drung@ptb.de

    2008-09-15

    Superconducting quantum interference device (SQUID) sensors are used to sense changes in various physical quantities, which can be transformed into changes in the magnetic flux threading the SQUID loop. We have developed a novel SQUID array dc current sensor. The device is based on a series array of identical dc SQUIDs. An input signal current to be measured is coupled tightly but non-uniformly to the SQUID array elements. The input signal coupling to the individual array elements is chosen such that a single-valued, non-periodic overall voltage response is obtained. Flux offsets in the individual SQUIDs which would compromise the sensor voltage response are avoided or can be compensated. We present simulations and experimental results on the SQUID Array for Dc (SQUAD) current sensor current sensor performance. A dc current resolution of <1 nA in a measurement bandwidth of 0-25 Hz is achieved for an input inductance of L{sub In}<3 nH.

  7. Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)

    Science.gov (United States)

    Tommasini, R.; Field, J. E.; Hammel, B. A.; Landen, O. L.; Haan, S. W.; Aracne-Ruddle, C.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Doeppner, T.; Edwards, M. J.; Hurricane, O. A.; Izumi, N.; Jones, O. A.; Ma, T.; Meezan, N. B.; Nagel, S. R.; Rygg, J. R.; Segraves, K. S.; Stadermann, M.; Strauser, R. J.; Town, R. P. J.

    2015-05-01

    Areal density non-uniformities seeded by time-dependent drive variations and target imperfections in Inertial Confinement Fusion (ICF) targets can grow in time as the capsule implodes, with growth rates that are amplified by instabilities. Here, we report on the first measurements of the perturbations on the density and areal density profiles induced by the membranes used to hold the capsule within the hohlraum in indirect drive ICF targets. The measurements are based on the reconstruction of the ablator density profiles from 2D radiographs obtained using pinhole imaging coupled to area backlighting, as close as 150 ps to peak compression. Our study shows a clear correlation between the modulations imposed on the areal density and measured neutron yield, and a 3× reduction in the areal density perturbations comparing a high-adiabat vs. low-adiabat pulse shape.

  8. Numerical simulations of annular wire-array z-pinches in (x,y), (r,{theta}), and (r,z) geometries

    Energy Technology Data Exchange (ETDEWEB)

    Marder, B.M.; Sanford, T.W.L.; Allshouse, G.O.

    1997-12-01

    The Total Immersion PIC (TIP) code has been used in several two-dimensional geometries to understand better the measured dynamics of annular, aluminum wire-array z-pinches. The areas investigated include the formation of the plasma sheath from current-induced individual wire explosions, the effects of wire number and symmetry on the implosion dynamics, and the dependence of the Rayleigh-Taylor instability growth on initial sheath thickness. A qualitative change in the dynamics with increasing wire number was observed, corresponding to a transition between a z-pinch composed of non-merging, self-pinching individual wires, and one characterized by the rapid formation and subsequent implosion of a continuous plasma sheath. A sharp increase in radiated power with increasing wire number has been observed experimentally near this calculated transition. Although two-dimensional codes have correctly simulated observed power pulse durations, there are indications that three dimensional effects are important in understanding the actual mechanism by which these pulse lengths are produced.

  9. First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions

    Science.gov (United States)

    Forrest, C. J.; Radha, P. B.; Knauer, J. P.; Glebov, V. Yu.; Goncharov, V. N.; Regan, S. P.; Rosenberg, M. J.; Sangster, T. C.; Shmayda, W. T.; Stoeckl, C.; Gatu Johnson, M.

    2017-03-01

    The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997), 10.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012), 10.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

  10. Observation of asymmetric implosions in indirect-drive ICF associated with changes in laser beam-hohlraum coupling and relevance to mix experiments.

    Science.gov (United States)

    Turner, R. E.; Amendt, P. A.; Landen, O. L.; Wallace, R. J.; Thorp, K.; Pien, G.

    2004-11-01

    Indirect drive ICF experiments were performed on the Omega laser at LLE, both with and without distributed polarization rotators (DPR) in the laser beams. The hohlraums were irradiated with a three-cone beam geometry, experimentally adjusted to produce high-yield implosions with no DPRs installed. X-ray images of the cores of these implosions showed a small but tolerable P2 asymmetry. Similar experiments with DPRs installed produced lower yields, and x-ray images of the imploded cores showed substantially increased P2 asymmetries, suggesting that the shallow-angle cone of beams, which transits through the longest length of plasma and along the shallowest density gradients, had substantially increased absorption compared to the no-DPR case. We will show high magnification (nearly 100x) x-ray images of the cores, along with fusion neutron data. For capsules driven with good symmetry, we show the neutron yield results from capsules whose surfaces have been deliberately roughened by a measured amount, in order to compare to mix models in simulations.

  11. Guided wave phased array beamforming and imaging in composite plates.

    Science.gov (United States)

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  12. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  13. Demonstration of 55 +/- 7-Gbar Hot-Spot Pressure in Direct-Drive Layered DT Cryogenic Implosions on OMEGA

    Science.gov (United States)

    Regan, S. P.

    2015-11-01

    Direct-drive ignition target designs for the National Ignition Facility (NIF) require hot-spot pressures in excess of 100 Gbar. Only one-third of the required pressure was inferred in earlier experimental campaigns conducted on the 60-beam, 30-kJ, 351-nm OMEGA laser with direct-drive implosions of layered DT cryogenic targets. Laser and target improvements were implemented on OMEGA to increase the stagnation pressure, including a set of phase plates to increase the laser irradiation uniformity on target and a purified fuel with isotope composition reaching a 50:50 DT ratio. Diagnostic improvements were made for a neutron burnwidth measurement with a 40-ps impulse response and a 16-channel Kirkpatrick-Baez microscope to measure gated (30-ps) x-ray images of the core near peak compression with 6- μm resolution. The inferred volume-averaged, peak pressure in the current campaign almost doubled to 55 +/- 7 Gbar with a neutron yield approaching 5 ×1013 . Further target performance improvements to reach hydrodynamic equivalence to ignition on OMEGA require mitigation of cross-beam energy transfer (CBET), which reduces the laser coupling. A proposed technique to reduce CBET by driving the spherical target with overlapping laser beams having individual focal spots smaller than the outside diameter of the target was investigated. The diameter of the target was discretely varied from 800 to 1000 μm, while the laser focal spot size was kept constant at 820 μm. The larger targets driven with up to 30 kJ of laser energy used dynamic bandwidth reduction, where the smoothing by spectral dispersion (SSD) is only applied to the pickets. The smaller targets driven with 26 kJ of laser energy had SSD on the entire pulse. This talk will summarize the results of this CBET mitigation campaign and describe a path forward to achieve ignition hydro-equivalence on OMEGA. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under

  14. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  15. Studying areal density evolution in D-3He implosions at the National Ignition Facility using pTOF-measured shock- and compression-bang times and WRF-measured shock and compression ρR

    Science.gov (United States)

    Kabadi, N.; Sio, H.; Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Rinderknecht, H. G.; Berzak-Hopkins, L.; Meezan, N.; Casey, D. T.; Baker, K.; Khan, S.; Thomas, C. A.; Spears, B. K.; Barbosa, F.; Bionta, R. M.; Zylstra, A.; Kilkenny, J. D.; Sangster, T. C.

    2016-10-01

    Understanding the time evolution of inertial confinement fusion (ICF) experiments is critical for making further improvements on the road to ignition. In an ICF implosion at the National Ignition Facility (NIF) shocks are launched into the ablator by a laser pulse. These shocks coalesce at the fuel-shell interface and then converge at the center of the implosion which causes significant heating and a period of nuclear burn (``shock phase''), followed by a compression phase due to the imploding shell. The particle-time-of-flight (pTOF) and the magnetic particle-time-of-flight (magPTOF) detectors were developed to measure both the shock and compression bang-times in NIF D-3He implosions. These timing measurements in combination with shock and compression areal densities (ρR) from wedge range filters (WRFs) provide a direct measurement of ρR evolution, which can be used to guide theory and heavily constrain simulations. This presentation shows a first analysis of ρR evolution from shock phase to compression phase in a variety of NIF implosions as measured by pTOF and WRFs. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  16. Atacama Compact Array Antennas

    CERN Document Server

    Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.

  17. Pulsar Timing Arrays

    OpenAIRE

    Joshi, Bhal Chandra

    2013-01-01

    In the last decade, the use of an ensemble of radio pulsars to constrain the characteristic strain caused by a stochastic gravitational wave background has advanced the cause of detection of very low frequency gravitational waves significantly. This electromagnetic means of gravitational wave detection, called Pulsar Timing Array(PTA), is reviewed in this article. The principle of operation of PTA, the current operating PTAs and their status is presented along-with a discussion of the main ch...

  18. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  19. The Cherenkov Telescope Array

    Science.gov (United States)

    Connaughton, Valerie

    2014-03-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort dedicated to the design and operation of the next-generation ground-based very high-energy gamma-ray observatory. CTA will improve by about one order of magnitude the sensitivity with respect to the current major arrays (VERITAS, H.E.S.S., and MAGIC) in the core energy range of 100 GeV to 10 TeV, and will extend the viability of the imaging atmospheric Cherenkov technique (IACT) down to tens of GeV and above 100 TeV. In order to achieve such improved performance at both a northern and southern CTA site, four 23m diameter Large Size Telescopes (LST) optimized for low energy gamma rays will be deployed close to the centre of the array. A larger number of Medium Size Telescopes (MST) will be optimized for the core IACT energy range. The southern site will include 25 12m single-mirror MSTs and a US contribution of up to 24 novel dual-mirror design Schwarzschild-Couder (SC) type MSTs with a primary mirror of 9.5m diameter, and will also include an array of Small Size Telescopes (SST) to observe the highest-energy gamma rays from galactic sources. The SSTs can be smaller and more widely separated because more energetic gamma rays produce a larger Cherenkov light pool with many photons. The SSTs achieve a large collection area by covering a wide (10 sq km) footprint on the ground. The CTA project is finishing its preparatory phase, and the pre-production phase will start this year. I will review the status and the expected performance of CTA as well as the main scientific goals for the observatory.

  20. YBCO Josephson Junction Arrays

    Science.gov (United States)

    1993-07-14

    40, 489 (1961). [8] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical recipes: the art of scientific computing (Cambridge...has recently become a commercial product. He has developed processes for depositing state-of-the art YBCO films on buffered sapphire substrates. His...technology can most improve and on what subsystems would benefit most from the pt.. .imance available from these arrays. Aqppoved f or publicO re󈧎OSI AIR

  1. Solar collector array

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  2. The TALE Infill Array

    Science.gov (United States)

    Bergman, Douglas

    2009-05-01

    The TALE Infill Array in conjunction with the TALE Tower Detector will provide hybrid coverage of the cosmic ray energy spectrum down to 3x10^16 eV. It will consist of about 100, two square meter scintillators on the surface spaced at 400 m; and 24 buried twelve square meter scintillators. The combination of surface and underground detectors will allow for the determination of the muon content of showers and thus give a handle on cosmic ray composition.

  3. Spaceborne Processor Array

    Science.gov (United States)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  4. Mixed Frequency Ultrasound Phased Array

    Institute of Scientific and Technical Information of China (English)

    香勇; 霍健; 施克仁; 陈以方

    2004-01-01

    A mixed frequency ultrasonic phased array (MPA) was developed to improve the focus, in which the element excitation frequencies are not all the same as in a normal constant frequency phased array. A theoretical model of the mixed frequency phased array based on the interference principle was used to simulate the array's sound distribution. The pressure intensity in the array focal area was enhanced and the scanning area having effective contrast resolution was enlarged. The system is especially useful for high intensity focused ultrasound (HIFU) with more powerful energy and ultrasound imaging diagnostics with improved signal to noise ratios, improved beam forming and more uniform imaging quality.

  5. Talbot Effect in Three Waveguide Arrays

    Institute of Scientific and Technical Information of China (English)

    LI Zhi; ZHOU Hai-Feng; YANG Jian-Yi; JIANG Xiao-Qing

    2008-01-01

    By taking the coupling between the non-neighbourhood waveguides into account, the coupling characteristic of three waveguide arrays is analysed. The strong coupling equation of three waveguides is dealt with Laplace transform and LU decomposition. The general field evolution equation is obtained by inversion of the Laplace transform. The results show that the self-imaging conditions (Talbot effect) do not satisfy in general. The theoretical predictions are in good agreement with the BPM simulations.

  6. Nuclear structure and Indian Clover array

    Indian Academy of Sciences (India)

    H C Jain

    2001-07-01

    A brief description of the nuclear structure studies performed with the 14-UD pelletron at TIFR has been presented. The experimental facilities developed for these studies are described. Some of the interesting results obtained for mass 70 to 80 nuclei are presented. The development of a recoil mass spectrometer and an Indian clover array for the study of high spin states in nuclei near drip lines is discussed.

  7. Discrete Dipole Approximation Aided Design Method for Nanostructure Arrays

    Institute of Scientific and Technical Information of China (English)

    ZHU Shao-Li; LUO Xian-Gang; DU Chun-Lei

    2007-01-01

    A discrete dipole approximation (DDA) aided design method is proposed to determine the parameters of nanostructure arrays. The relationship between the thickness, period and extinction efficiency of nanostructure arrays for the given shape can be calculated using the DDA. Based on the calculated curves, the main parameters of the nanostructure arrays such as thickness and period can be determined. Using this aided method, a rhombic sliver nanostructure array is designed with the determinant parameters of thickness (40 nm) and period (440 nm).We further fabricate the rhombic sliver nanostructure arrays and testify the character of the extinction spectra.The obtained extinction spectra is within the visible range and the full width at half maximum is 99nm, as is expected.

  8. 神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究%Simulation of spectrum of doped Ar in indirectly driven implosion target

    Institute of Scientific and Technical Information of China (English)

    乔秀梅; 郑无敌; 高耀明; 叶文华

    2012-01-01

    ICF内爆物理研究中,示踪元素X射线谱诊断方法是推测内爆压缩温度、 密度以及燃料混合状态的有效方法.针对其中的非平衡物理过程, 研制了非局域热动平衡(non-LTE)下一维谱线输运程序Alpha.程序以辐射流体计算给出的温度、 密度等量为输入条件,求解细致组态(DCA)模型下的原子动力学方程和辐射输运方程, 自洽给出谱线不透明度,和成像面上的X射线谱分布. 利用该程序,模拟了神光Ⅱ装置上的掺Ar靶丸内爆示踪元素X射线谱诊断实验, 研究结果表明,谱线的自吸收效应影响发射的X射线谱的强度和形状, 谱线的宽度对自吸收效应的强弱也有影响.因此,在对X射线谱的数值模拟中应该考虑自吸收效应. 另外,与LTE近似下的发射谱的比较表明, LTE近似下,等离子体电离度大~1, 发射谱的形状与non-LTE的结果不同,且LTE近似下,谱线的强度比non-LTE的谱线强度大5-10倍, 采用LTE近似是不合适的.%X-ray spectrum of tracer in ICF implosion target is usually used to infer electron temperature, density and mix of fuel. As the plasma in fuel is in non-local thermodynamic equilibrium (non-LTE), a line transfer code Alpha is developed. Taking the electron temperature and density provided by radiation hydrodynamic as input condition, atomic kinetics and radiation transfer equation are self-consistently solved with the detailed configuration atom (DCA) model. The opacity for specified frequency intervals is obtained, and X-ray spectrum in the image plane is also presented. As application of Alpha program, the spectrum of doped Ar in implosion target on SG Ⅱ laser facility is simulated. The effect of self-absorption of K α line is studied. And it is shown that self-absorption of K α line affects both the intensity and shape of the spectrum, and it should be considered in simulating X-ray spectrum of Ar. And as the spectrum of local thermodynamic

  9. Adaptive and mobile ground sensor array.

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, Michael Warren; O' Rourke, William T.; Zenner, Jennifer; Maish, Alexander B.

    2003-12-01

    The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomous deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.

  10. Performance Analysis of ICA in Sensor Array

    Science.gov (United States)

    Cai, Xin; Wang, Xiang; Huang, Zhitao; Wang, Fenghua

    2016-01-01

    As the best-known scheme in the field of Blind Source Separation (BSS), Independent Component Analysis (ICA) has been intensively used in various domains, including biomedical and acoustics applications, cooperative or non-cooperative communication, etc. While sensor arrays are involved in most of the applications, the influence on the performance of ICA of practical factors therein has not been sufficiently investigated yet. In this manuscript, the issue is researched by taking the typical antenna array as an illustrative example. Factors taken into consideration include the environment noise level, the properties of the array and that of the radiators. We analyze the analytic relationship between the noise variance, the source variance, the condition number of the mixing matrix and the optimal signal to interference-plus-noise ratio, as well as the relationship between the singularity of the mixing matrix and practical factors concerned. The situations where the mixing process turns (nearly) singular have been paid special attention to, since such circumstances are critical in applications. Results and conclusions obtained should be instructive when applying ICA algorithms on mixtures from sensor arrays. Moreover, an effective countermeasure against the cases of singular mixtures has been proposed, on the basis of previous analysis. Experiments validating the theoretical conclusions as well as the effectiveness of the proposed scheme have been included. PMID:27164100

  11. High Power Fiber Bundle Array Coupled LDA Module

    Institute of Scientific and Technical Information of China (English)

    QU Zhou; LIU Yang; ZHAO Chong-guang; WANG Ji; YIN Hong-he; WANG Li-jun

    2006-01-01

    An optical fiber bundle array coupling module with high output power is presented in this paper. The device integrated the coupling technique of the high power laser diode array (LDA) and the micro-ball lenses fiber array. This module can efficiently couple the output laser of the LDA into 19 fibers array with micro-ball lens endsurface. The difference of the couple efficiency between the flat-end fiber and micro-ball-end fiber is discussed.The micro-ball lenses fiber array made of 19 fibers have the same fiber core diameter of 200 μm, and then the endsurfaces of 19 fibers are fused to 19 micro-ball lenses. The micro-ball lenses fiber array are fixed precisely in the neighborhood on the V-grooves, and the fiber array has the same arrange period with the semiconductor laser units of LDA. This configuration of micro-ball lens fiber array can greatly reduce the divergence of the laser beam from all directions, and a very efficient laser beam homogenizer and shaper are obtained. Finally, high output power of 30.1 W of the fiber coupled LDA is achieved, and the maximal coupling efficiency is >83% with the numeral aperture (NA) of 0.16.

  12. Optical design of microlens array for CMOS image sensors

    Science.gov (United States)

    Zhang, Rongzhu; Lai, Liping

    2016-10-01

    The optical crosstalk between the pixel units can influence the image quality of CMOS image sensor. In the meantime, the duty ratio of CMOS is low because of its pixel structure. These two factors cause the low detection sensitivity of CMOS. In order to reduce the optical crosstalk and improve the fill factor of CMOS image sensor, a microlens array has been designed and integrated with CMOS. The initial parameters of the microlens array have been calculated according to the structure of a CMOS. Then the parameters have been optimized by using ZEMAX and the microlens arrays with different substrate thicknesses have been compared. The results show that in order to obtain the best imaging quality, when the effect of optical crosstalk for CMOS is the minimum, the best distance between microlens array and CMOS is about 19.3 μm. When incident light successively passes through microlens array and the distance, obtaining the minimum facula is around 0.347 um in the active area. In addition, when the incident angle of the light is 0o 22o, the microlens array has obvious inhibitory effect on the optical crosstalk. And the anti-crosstalk distance between microlens array and CMOS is 0 μm 162 μm.

  13. Compact Transducers and Arrays

    Science.gov (United States)

    2005-05-01

    Soc. Am., 104, pp.64-71 44 25.Decarpigny, J.N., J.C. Debus, B. Tocquet & D. Boucher. 1985. "In-Air Analysis Of Piezoelectric Tonpilz Transducers In A... Transducers and Arrays Final Report May 2005 Contacts: Dr. Robert E. Newnham The Pennsylvania State University, 251 MRL, University Park, PA 16802 phone...814) 865-1612 fax: (814) 865-2326 email: ....c xx.....i.i.....ht.. .u a.p.u..c.e.du. Dr. Richard J. Meyer, Jr. Systems Engineering ( Transducers ), ARL

  14. Magnetic forces between arrays of cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, D.; Tomassetti, G.; Beleggia, Marco

    2011-01-01

    Permanent magnet arrays are often employed in a broad range of applications: actuators, sensors, drug targeting and delivery systems, fabrication of self-assembled particles, just to name a few. An estimate of the magnetic forces in play between arrays is required to control devices and fabrication...... procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...

  15. Characterization of the system functions of ultrasonic linear phased array inspection systems.

    Science.gov (United States)

    Huang, Ruiju; Schmerr, Lester W

    2009-02-01

    This work characterizes the electrical and electromechanical aspects of an ultrasonic linear phased array inspection system, using a matrix of system functions that are obtained from the measured response of individual array elements in a simple reference experiment. It is shown that for the arrays tested all these system functions are essentially identical, allowing one to use a single system function to characterize the entire array, as done for an ordinary single element transducer. The variation of this single system function with the number of elements firing in the array or with changes of the delay law used is examined. It is also demonstrated that once such a single system function is obtained for an array, it can be used in a complete ultrasonic measurement model to accurately predict the array response measured from a reference reflector in an immersion setup.

  16. Radiation dominated implosion

    CERN Document Server

    Spinnangr, Susanne F; Csernai, László P

    2016-01-01

    Inertical Confinement Fusion configuration model is analized for direct ignition without an ablator. The compression of the target pellet is neglected and rapid volume ignition is achieved by a laser pulse, which is as short as the penetraton time of the light across the pellet. The reflectivity of the target is assumed to be negligible, and the absorptivity is constant so that the light pulse can reach the opposite side of the pellet. The necessary pulse length and pulse strength is calculated.

  17. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained....... Numerical examples are given in the context of a 10-ring annular array operating at a central frequency of 2.5 MHz in water....

  18. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    OpenAIRE

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained. Numerical examples are given in the context of a 10-ring annular array operating at a central frequency of 2.5 MHz in water.

  19. Long-range magnetostatic interactions in arrays of nanowires

    CERN Document Server

    Raposo, V; González, J M; Vázquez, M

    2000-01-01

    Experimental measurements and micromagnetic simulations of the hysteresis loops of arrays of cobalt nanowires are compared here. Arrays of cobalt nanowires (200 nm in diameter) were electrodeposited into the pores of alumina membranes (thickness 60 mu m). Their hysteresis loops along the axial direction of nanowires were measured using vibrating sample magnetometry. Micromagnetic simulations were performed considering dipolar interaction between nanowires leading to similar hysteresis loops as those obtained experimentally.

  20. Detecting nanohertz gravitational waves with pulsar timing arrays

    CERN Document Server

    Zhu, Xing-Jiang; Hobbs, George; Manchester, Richard N; Shannon, Ryan M

    2015-01-01

    Complementary to ground-based laser interferometers, pulsar timing array experiments are being carried out to search for nanohertz gravitational waves. Using the world's most powerful radio telescopes, three major international collaborations have collected $\\sim$10-year high precision timing data for tens of millisecond pulsars. In this paper we give an overview on pulsar timing experiments, gravitational wave detection in the nanohertz regime, and recent results obtained by various timing array projects.

  1. Improved hard x-ray (50-80 keV) imaging of hohlraum implosion experiments at the National Ignition Facility

    Science.gov (United States)

    Bachmann, B.; Chow, R.; Palmer, N. E.; Hoover, M.; Huffman, E.; Lee, J. J.; Romano, E.; Kumar, C.; Hulbert, R. D.; Albert, F.; Dewald, E. L.; Divol, L.; Hohenberger, M.; Landen, O. L.; Warrick, A.; Döppner, T.

    2016-09-01

    We recently designed, built and commissioned a new pinhole / filter assembly for the equatorial hard x-ray imager (eHXI) at the National Ignition Facility (NIF). In this paper we describe the design and metrology of the new diagnostic as well as the spectral and spatial response of the hard x-ray detector. The new eHXI assembly has improved the photon collection efficiency along with spectral and spatial resolution by making use of 1D imaging channels and various hard x-ray filters. In addition we added a Ross pair filter set for Au K-alpha emission (67-69 keV). The new eHXI design will improve our understanding of the sourcing of hot electrons, generated in laser-plasma-instabilities, along the vertical hohlraum axis. This information is an important input for simulating and eventually limiting the DT fuel preheat in ICF implosions.

  2. Oligonucleotide array outperforms SNP array on formalin-fixed paraffin-embedded clinical samples.

    Science.gov (United States)

    Nasri, Soroush; Anjomshoaa, Ahmad; Song, Sarah; Guilford, Parry; McNoe, Les; Black, Michael; Phillips, Vicky; Reeve, Anthony; Humar, Bostjan

    2010-04-01

    Compromised quality of formalin-fixed paraffin-embedded (FFPE)-derived DNA has compounded the use of archival specimens for array-based genomic studies. Recent technological advances have led to first successes in this field; however, there is currently no general agreement on the most suitable platform for the array-based analysis of FFPE DNA. In this study, FFPE and matched fresh-frozen (FF) specimens were separately analyzed with Affymetrix single nucleotide polymorphism (SNP) 6.0 and Agilent 4x44K oligonucleotide arrays to compare the genomic profiles from the two tissue sources and to assess the relative performance of the two platforms on FFPE material. Genomic DNA was extracted from matched FFPE-FF pairs of normal intestinal epithelium from four patients and were applied to the SNP and oligonucleotide platforms according to the manufacturer-recommended protocols. On the Affymetrix platform, a substantial increase in apparent copy number alterations was observed in all FFPE tissues relative to their matched FF counterparts. In contrast, FFPE and matched FF genomic profiles obtained via the Agilent platform were very similar. Both the SNP and the oligonucleotide platform performed comparably on FF material. This study demonstrates that Agilent oligonucleotide array comparative genomic hybridization generates reliable results from FFPE extracted DNA, whereas the Affymetrix SNP-based array seems less suitable for the analysis of FFPE material.

  3. Nonlinear phased array imaging

    Science.gov (United States)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  4. Microplasma generating array

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, Jeffrey A.; Wu, Chen; Hoskinson, Alan R.; Sonkusale, Sameer

    2016-10-04

    A microplasma generator includes first and second conductive resonators disposed on a first surface of a dielectric substrate. The first and second conductive resonators are arranged in line with one another with a gap defined between a first end of each resonator. A ground plane is disposed on a second surface of the dielectric substrate and a second end of each of the first and second resonators is coupled to the ground plane. A power input connector is coupled to the first resonator at a first predetermined distance from the second end chosen as a function of the impedance of the first conductive resonator. A microplasma generating array includes a number of resonators in a dielectric material substrate with one end of each resonator coupled to ground. A micro-plasma is generated at the non-grounded end of each resonator. The substrate includes a ground electrode and the microplasmas are generated between the non-grounded end of the resonator and the ground electrode. The coupling of each resonator to ground may be made through controlled switches in order to turn each resonator off or on and therefore control where and when a microplasma will be created in the array.

  5. Hydrodynamic instability growth of three-dimensional, “native-roughness” modulations in x-ray driven, spherical implosions at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Weber, S. V.; Casey, D. T.; Clark, D. S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Landen, O. L.; Robey, H. F.; Weber, C. R. [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92186 (United States)

    2015-07-15

    Hydrodynamic instability growth experiments with three-dimensional (3-D) surface-roughness modulations were performed on plastic (CH) shell spherical implosions at the National Ignition Facility (NIF) [E. M. Campbell, R. Cauble, and B. A. Remington, AIP Conf. Proc. 429, 3 (1998)]. The initial capsule outer-surface roughness was similar to the standard specifications (“native roughness”) used in a majority of implosions on NIF. The experiments included instability growth measurements of the perturbations seeded by the thin membranes (or tents) used to hold the capsules inside the hohlraums. In addition, initial modulations included two divots used as spatial fiducials to determine the convergence in the experiments and to check the accuracy of 3D simulations in calculating growth of known initial perturbations. The instability growth measurements were performed using x-ray, through-foil radiography of one side of the imploding shell, based on time-resolved pinhole imaging. Averaging over 30 similar images significantly increases the signal-to-noise ratio, making possible a comparison with 3-D simulations. At a convergence ratio of ∼3, the measured tent and divot modulations were close to those predicted by 3-D simulations (within ∼15%–20%), while measured 3-D, broadband modulations were ∼3–4 times larger than those simulated based on the growth of the known imposed initial surface modulations. In addition, some of the measured 3-D features in x-ray radiographs did not resemble those characterized on the outer capsule surface before the experiments. One of the hypotheses to explain the results is based on the increased instability amplitudes due to modulations of the oxygen content in the bulk of the capsule. As the target assembly and handling procedures involve exposure to UV light, this can increase the uptake of the oxygen into the capsule, with irregularities in the oxygen seeding hydrodynamic instabilities. These new experimental results have

  6. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  7. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  8. Preparation and magnetic properties of Fe0.3Co0.7 nanowire array

    Institute of Scientific and Technical Information of China (English)

    Qin Donghuan; Guo Yun; Li Hulin

    2006-01-01

    Fe0.3Co0.7 nanowire arrays were prepared by electrodeposition into the porous anodic aluminum oxide templates.The change of magnetic characteristic of the array with the diameter and heat treatment was investigated.It was found that the vertical magnetic anisotropy would drop lineally with the increase of the array diameter.Annealing can improve the coercively of the nanowire arrays.Coercivity as high as 3000 Oe was obtained in the sample annealing at 500℃.Magnetic properties of nanowire arrays may be developed to ultra-high-density recording on the quantum disk.

  9. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  10. Photonics with multiwall carbon nanotube arrays.

    Science.gov (United States)

    Lidorikis, Elefterios; Ferrari, Andrea C

    2009-05-26

    We investigate the photonic properties of two-dimensional nanotube arrays for photon energies up to 40 eV and unveil the physics of two distinct applications: deep-UV photonic crystals and total visible absorbers. We find three main regimes: for small intertube spacing of 20-30 nm, we obtain strong Bragg scattering and photonic band gaps in the deep-UV range of 25 approximately 35 eV. For intermediate spacing of 40-100 nm, the photonic bands anticross with the graphite plasmon bands resulting into a complex photonic structure, and a generally reduced Bragg scattering. For large spacing >150 nm, the Bragg gap moves into the visible and decreases due to absorption. This leads to nanotube arrays behaving as total optical absorbers. Our results can guide the design of photonic applications in the visible and deep UV ranges.

  11. Array biosensor: recent developments

    Science.gov (United States)

    Golden, Joel P.; Rowe-Taitt, Chris A.; Feldstein, Mark J.; Ligler, Frances S.

    1999-05-01

    A fluorescence-based immunosensor has been developed for simultaneous analyses of multiple samples for 1 to 6 different antigens. A patterned array of recognition antibodies immobilized on the surface of a planar waveguide is used to 'capture' analyte present in samples. Bound analyte is then quantified by means of fluorescent detector molecules. Upon excitation of the fluorescent label by a small diode laser, a CCD camera detects the pattern of fluorescent antigen:antibody complexes on the sensor surface. Image analysis software correlates the position of fluorescent signals with the identity of the analyte. A new design for a fluidics distribution system is shown, as well as results from assays for physiologically relevant concentrations of staphylococcal enterotoxin B (SEB), F1 antigen from Yersinia pestis, and D- dimer, a marker of sepsis and thrombotic disorders.

  12. The Submillimeter Array Polarimeter

    CERN Document Server

    Marrone, Daniel P

    2008-01-01

    We describe the Submillimeter Array (SMA) Polarimeter, a polarization converter and feed multiplexer installed on the SMA. The polarimeter uses narrow-band quarter-wave plates to generate circular polarization sensitivity from the linearly-polarized SMA feeds. The wave plates are mounted in rotation stages under computer control so that the polarization handedness of each antenna is rapidly selectable. Positioning of the wave plates is found to be highly repeatable, better than 0.2 degrees. Although only a single polarization is detected at any time, all four cross correlations of left- and right-circular polarization are efficiently sampled on each baseline through coordinated switching of the antenna polarizations in Walsh function patterns. The initial set of anti-reflection coated quartz and sapphire wave plates allows polarimetry near 345 GHz; these plates have been have been used in observations between 325 and 350 GHz. The frequency-dependent cross-polarization of each antenna, largely due to the varia...

  13. Fusion Implosion Fluid after Indirectly Driven by Laser Beam Instability%聚变内爆流体受激光间接驱动后的不稳定性表现

    Institute of Scientific and Technical Information of China (English)

    陈红利; 杨永和

    2015-01-01

    Fluid dynamics that occur multilayer target ball each interface instability related to the indirect drive inertial confinement fu-sion ignition success,that burst medium radiation related shooting in fluid mechanics local 3D application program of LARED -S through the analysis of the process.We find the system summary and feedback,and draw a conclusion that the instability of linear and weakly nonlinear results through the presentation of the results obtained,which are consistent with the nonlinear test,analysis of the construction by the corresponding numerical simulation test and the bronze drum aluminum wheel model,obtain the ICf detonation physics significance of observation ignition research significance and draw the conclusion as the nature of fluid,the fusion after the out-break in the in life,the fluid and the corresponding laser have the indirect effect of unstable drive,the emergence of a feedback insta-bility makes the fusion implosion fluid numerical increase and pressure expansion phenomenon.%多层靶球每个界面所发生的流体力学的不稳定关系到激光间接驱动惯性约束聚变的点火成功,通过对过程的分析得出爆多介质辐射相关射流体力学中的局部三维应用 LARED -S 程序。得出系统的总结和反馈,并通过结果得出不稳定性线性和弱非线性结果的表述,进而非线性试验都符合,通过相应的模拟数值试验并铜鼓铝轮模型构建分析,得出 ICf 爆点火研究意义并得出自然界流体的物理学观察意义,其结论为其聚变后内爆发生中,相应的流体和激光产生不稳定的间接影响驱动,出现一种不稳定的反馈使得聚变后内爆流体出现数值增加和压力膨胀现象。

  14. TRANSFORMATION ALGORITHM FOR IMAGES OBTAINED BY OMNIDIRECTIONAL CAMERAS

    Directory of Open Access Journals (Sweden)

    V. P. Lazarenko

    2015-01-01

    Full Text Available Omnidirectional optoelectronic systems find their application in areas where a wide viewing angle is critical. However, omnidirectional optoelectronic systems have a large distortion that makes their application more difficult. The paper compares the projection functions of traditional perspective lenses and omnidirectional wide angle fish-eye lenses with a viewing angle not less than 180°. This comparison proves that distortion models of omnidirectional cameras cannot be described as a deviation from the classic model of pinhole camera. To solve this problem, an algorithm for transforming omnidirectional images has been developed. The paper provides a brief comparison of the four calibration methods available in open source toolkits for omnidirectional optoelectronic systems. Geometrical projection model is given used for calibration of omnidirectional optical system. The algorithm consists of three basic steps. At the first step, we calculate he field of view of a virtual pinhole PTZ camera. This field of view is characterized by an array of 3D points in the object space. At the second step the array of corresponding pixels for these three-dimensional points is calculated. Then we make a calculation of the projection function that expresses the relation between a given 3D point in the object space and a corresponding pixel point. In this paper we use calibration procedure providing the projection function for calibrated instance of the camera. At the last step final image is formed pixel-by-pixel from the original omnidirectional image using calculated array of 3D points and projection function. The developed algorithm gives the possibility for obtaining an image for a part of the field of view of an omnidirectional optoelectronic system with the corrected distortion from the original omnidirectional image. The algorithm is designed for operation with the omnidirectional optoelectronic systems with both catadioptric and fish-eye lenses

  15. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    -structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...

  16. Automated Solar-Array Assembly

    Science.gov (United States)

    Soffa, A.; Bycer, M.

    1982-01-01

    Large arrays are rapidly assembled from individual solar cells by automated production line developed for NASA's Jet Propulsion Laboratory. Apparatus positions cells within array, attaches interconnection tabs, applies solder flux, and solders interconnections. Cells are placed in either straight or staggered configurations and may be connected either in series or in parallel. Are attached at rate of one every 5 seconds.

  17. Tremor as observed by the Array of Arrays in Cascadia

    Science.gov (United States)

    Ghosh, A.; Vidale, J. E.; Creager, K. C.

    2010-12-01

    We are capturing the intimate details of tremor activity in Cascadia with 8 small-aperture seismic arrays in northwestern Washington. The Array of Arrays (AoA) focuses on the tremor-active megathrust, including the area we previously imaged with a solo seismic array in 2008 [Ghosh et al., GRL, 2009, 2010]. Each array consists of 10 to 20 three-component sensors recording in continuous mode. Since it became operational in June 2009, the AoA has recorded several minor tremor episodes, and the recent episodic tremor and slip (ETS) event in August 2010. During the ETS event, each array was augmented by 10 additional single-channel, vertical-component sensors. We have already started to analyze seismic data for tremor episodes in July 2009, and March 2010. At each array, we apply a beamforming technique to stack the seismic energy at every 0.2 Hz from 2 to 15 Hz. During active tremor, the arrays show stable slowness, and azimuth over time, and up to 15 Hz energy on vertical channels, and 6 Hz on horizontals, with slowness consistent with the P and S waves respectively (Figure 1). Vidale et al. in this meeting provide a detailed description of a weeklong tremor episode in March 2010. The ETS started early second week of August about 60 km south of our arrays, and in a week or so, migrated along-strike to the north passing directly underneath the arrays. Strong tremor is still active about 50 km north of the arrays as we write this abstract. We will imminently analyze this data, and by the time of AGU, have preliminary results to present. Currently, we are developing an algorithm to focus as many arrays as possible to locate the tremor sources. With fine tremor detection capability and good azimuthal coverage, our AoA will better resolve the various confounding features of tremor spatiotemporal distribution (e.g., tremor patches, bands, streaks, rapid tremor reversals, low frequency earthquakes) that have been recently discovered in Cascadia. The AoA is poised to provide

  18. On GID—Testable Two—Dimensional Iterative Arrays

    Institute of Scientific and Technical Information of China (English)

    黄维康; F.Lombard

    1994-01-01

    A new approach is presented for easily testable two-dimensional iterative arrays.It is an improvement of GI-testability (Group Identical testability)and is referred to as GID-testability (Group Identical and Different testability).In a GID-testable two-dimensional array,the primary x and y outputs are organized into groups and every group has more than one output.This is similar to the GI-testable arrays.However,GID-testability not only ensures that identical test responses can be obtained from every output in the same group when an array is fault free,but also ensures that at least one output has different test responses (from the other outputs in a group)when a cell in the array is faulty.Therefore,all faults can be detected under the assumption of a single faulty cell model.It is proved that an arbitrary two-dimensional iterative array is GID-testable if seven x-states and seven y-states are added to the original flow table of the basic cell of the array.GID-testability simplifies the response verification of built-in-self-testing in a way similar to PI-and GI-testability[6-9].Therefore,it is suitable for BIST design.

  19. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  20. Chunking of Large Multidimensional Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  1. Nanocoax Arrays for Sensing Devices

    Science.gov (United States)

    Rizal, Binod

    We have adapted a nanocoax array architecture for high sensitivity, all-electronic, chemical and biological sensing. Arrays of nanocoaxes with various dielectric annuli were developed using polymer replicas of Si nanopillars made via soft lithography. These arrays were implemented in the development of two different kinds of chemical detectors. First, arrays of nanocoaxes constructed with different porosity dielectric annuli were employed to make capacitive detectors for gaseous molecules and to investigate the role of dielectric porosity in the sensitivity of the device. Second, arrays of nanocoaxes with partially hollowed annuli were used to fabricate three-dimensional electrochemical biosensors within which we studied the role of nanoscale gap between electrodes on device sensitivity. In addition, we have employed a molecular imprint technique to develop a non-conducting molecularly imprinted polymer thin film of thickness comparable to size of biomolecules as an "artificial antibody" architecture for the detection of biomolecules.

  2. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  3. Array gain for a cylindrical array with baffle scatter effects.

    Science.gov (United States)

    Bertilone, Derek C; Killeen, Damien S; Bao, Chaoying

    2007-11-01

    Cylindrical arrays used in sonar for passive underwater surveillance often have sensors surrounding a cylindrical metal baffle. In some operational sonars, the phones in each stave (i.e., each line of phones aligned with the cylinder axis) are hardwired together so that the array is equivalent to a baffled circular array of directional elements, where each element corresponds to a line array of omnidirectional phones steered to broadside. In this paper a model is introduced for computing the array gain of such an array at high frequencies, which incorporates baffle scatter using infinite, rigid cylinder scattering theory, and with ambient noise described by an angular spectral density function. In practice the phones are often offset from the baffle surface, and the acoustic field sampled by the staves is distorted at high frequencies due to interference between the incident and scattered fields. Examples are given to illustrate the resulting array gain degradation, using three noise distributions that are frequently used in sonar performance modeling: three-dimensional isotropic, two-dimensional isotropic, and surface dipole noise.

  4. Packaging of hard solder 500W QCW diode laser array

    Science.gov (United States)

    Li, Xiaoning; Wang, Jingwei; Hou, Dong; Nie, Zhiqiang; Liu, Xingsheng

    2016-03-01

    The package structure critically influences the major characteristics of diode laser, such as thermal behavior, output power, wavelength and smile effect. In this work, a novel micro channel cooler (MCC) for stack array laser with good heat dissipation capability and high reliability is presented. Numerical simulations of thermal management with different MCC structure are conducted and analyzed. Based on this new MCC packaging structure, a series of QCW 500W high power laser arrays with hard solder packaging technology has been fabricated. The performances of the laser arrays are characterized. A narrow spectrum of 3.12 nm and an excellent smile value are obtained. The lifetime of the laser array is more than 1.38×109 shots and still ongoing.

  5. Quantifier-Free Interpolation of a Theory of Arrays

    CERN Document Server

    Bruttomesso, Roberto; Ranise, Silvio

    2012-01-01

    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extension...

  6. Preliminary experimental study of a carbon fiber array cathode

    Science.gov (United States)

    Li, An-kun; Fan, Yu-wei

    2016-08-01

    The preliminary experimental results of a carbon fiber array cathode for the magnetically insulated transmission line oscillator (MILO) operations are reported. When the diode voltage and diode current were 480 kV and 44 kA, respectively, high-power microwaves with a peak power of about 3 GW and a pulse duration of about 60 ns were obtained in a MILO device with the carbon fiber array cathode. The preliminary experimental results show that the shot-to-shot reproducibility of the diode current and the microwave power is stable until 700 shots. No obvious damage or deterioration can be observed in the carbon fiber surface morphology after 700 shots. Moreover, the cathode performance has no observable deterioration after 700 shots. In conclusion, the maintain-free lifetime of the carbon fiber array cathode is more than 700 shots. In this way, this carbon fiber array cathode offers a potential replacement for the existing velvet cathode.

  7. Fabrication and Wettability of ZnO Nanorod Array

    Institute of Scientific and Technical Information of China (English)

    Meng Sun; Yi Du; Weichang Hao; Huaizhe Xu; Youxing Yu; Tianmin Wang

    2009-01-01

    ZnO nanorod arrays were prepared in an open system by using a simple aqueous solution method. Spindle-like, wimble-like, tower-like and hexagonal rod-like ZnO rods were obtained under different conditions. ZnO nanorod arrays with different morphology and size were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and contact angle measurement (CAM). The size of ordered zinc oxide rods can be controlled by temperature of water bath, because this temperature can influences growing speeds in different crystal directions. Some additives, such as urea and thiourea, were introduced into reaction solution to improve quality of arrays. Surface character of ZnO nanorod arrays can be changed from hydrophilic to hydrophobic, which was proved to be dependence on size of air grooves on surface.

  8. Optimum linear array of an optical aperture synthesis telescope

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Measuring out successively the degree of coherence of the source produced by any couple of the small apertures via rotating an array composed of the small aperture telescopes, and synthesizing them into the (u, v) coverage of the source, the brightness distribution of the source can be obtained by the inverse Fourier transform of the degree of coherence with much higher resolution than from a single telescope. This article discusses the arrangements of the small apertures in the linear array, and found a method to decide the quality of the arrangements. the judgment factor ? is introduced to calculate the arrangements in quantity. There are 1.5×1011 possibilities for 11 apertures. Therefore, the computer procedures are programmed to select the optimum arrangements. The effect of the simulation of the aperture synthesis is given for the linear array. The simulation method can also be used in the nonlinear arrays.

  9. The Long Wavelength Array

    Science.gov (United States)

    Taylor, G. B.

    2006-08-01

    The Long Wavelength Array (LWA) will be a new, open, user-oriented astronomical instrument operating in the poorly explored window from 20-80 MHz at arcsecond level resolution and mJy level sensitivity. Key science drivers include (1) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays, supernova remnants, and pulsars; (2) the high redshift universe, including the most distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy; (3) planetary, solar, and space science, including space weather prediction and extra-solar planet searches; and (4) the radio transient universe: including the known (e.g., SNe, GRBs) and the unknown. Because the LWA will explore one of the last and least investigated regions of the spectrum, the potential for new discoveries, including new classes of physical phenomena, is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements, e.g. for cosmic ray acceleration, transients, and galaxy clusters. Operated by the University of New Mexico on behalf of the South West Consortium (SWC) the LWA will also provide a unique training ground for the next generation of radio astronomers. Students may also put skills learned on the LWA to work in computer science, electrical engineering, and the communications industry, among others. The development of the LWA will follow a phased build, which benefits from lessons learned at each phase. Four university-based Scientific Testing and Evaluation (ST&E) teams with different areas of concentration (1. High resolution imaging and particle acceleration; 2. Wide field imaging and large scale structures; 3. Ionosphere, and 4. RFI suppression and transient detection) will provide the feedback needed to assure that science objectives are met as the build develops. Currently in its first year of construction funding, the LWA

  10. Fabrication of Pop-up Detector Arrays on Si Wafers

    Science.gov (United States)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way

  11. Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.

    Science.gov (United States)

    Ealo, Joao L; Camacho, Jorge J; Fritsch, Carlos

    2009-04-01

    In this work, a novel procedure that considerably simplifies the fabrication process of ferroelectret-based multielement array transducers is proposed and evaluated. Also, the potential of ferroelectrets being used as active material for air-coupled ultrasonic transducer design is demonstrated. The new construction method of multi-element transducers introduces 2 distinctive improvements. First, active ferroelectret material is not discretized into elements, and second, the need of structuring upper and/or lower electrodes in advance of the permanent polarization of the film is removed. The aperture discretization and the mechanical connection are achieved in one step using a through-thickness conductive tape. To validate the procedure, 2 linear array prototypes of 32 elements, with a pitch of 3.43 mm and a wide usable frequency range from 30 to 300 kHz, were built and evaluated using a commercial phased-array system. A low crosstalk among elements, below -30 dB, was measured by interferometry. Likewise, a homogeneous response of the array elements, with a maximum deviation of +/-1.8 dB, was obtained. Acoustic beam steering measurements were accomplished at different deflection angles using a calibrated microphone. The ultrasonic beam parameters, namely, lateral resolution, side lobe level, grating lobes, and focus depth, were congruent with theory. Acoustic images of a single reflector were obtained using one of the array elements as the receiver. Resulting images are also in accordance with numerical simulation, demonstrating the feasibility of using these arrays in pulse-echo mode. The proposed procedure simplifies the manufacturing of multidimensional arrays with arbitrary shape elements and not uniformly distributed. Furthermore, this concept can be extended to nonflat arrays as long as the transducer substrate conforms to a developable surface.

  12. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  13. Imaging Properties of Planar Microlens Arrays

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The planar microlens arrays is a two-dimensional array of optical component which is fabricated monolithically available. Imaging properties of planar microlens arrays are described, which provide both image multiplexer and erect, unit magnification images.

  14. Uniaxially aligned ceramic nanofibers obtained by chemical mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Tararam, R. [Univ Estadual Paulista – UNESP – Instituto de Química, Rua Prof. Francisco Degni n° 55, CEP 14800-900 Araraquara, SP (Brazil); Foschini, C.R. [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Bauru, Dept. de Eng. Mecanica, Av. Eng. Luiz Edmundo C. Coube 14-01, CEP 17033-360 Bauru, SP (Brazil); Destro, F.B. [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Guaratinguetá, Guaratinguetá 12516-410, SP (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Guaratinguetá, Guaratinguetá 12516-410, SP (Brazil); Longo, E.; Varela, J.A. [Univ Estadual Paulista – UNESP – Instituto de Química, Rua Prof. Francisco Degni n° 55, CEP 14800-900 Araraquara, SP (Brazil)

    2014-08-01

    For this study, we investigated a simple method to generate well aligned nanofibers over large areas using an organic polymer stretched over the substrate surface With this method, ZnO and CuO 3D parallel nanowire arrays were successfully prepared by calcinations of the polymer fibers. X-ray diffraction (XRD) analysis revealed that the copper oxide has a monoclinic structure while the zinc oxide has a hexagonal structure. Scanning electron microscopy (SEM) analysis showed ceramic nanofibers with an average diameter of 120 nm which were composed of small nanoparticles which are 10 nm in diameter. The ability to obtain uniaxially aligned nanofibers reveals a range of interesting properties with potential applications for sensors, catalysts and energy technologies.

  15. Passive cavitation imaging with ultrasound arrays.

    Science.gov (United States)

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  16. Context-free Grammars for Triangular Arrays

    Institute of Scientific and Technical Information of China (English)

    Robert X. J. HAO; Larry X. W. WANG; Harold R. L. YANG

    2015-01-01

    We consider context-free grammars of the form G={f →fb1+b2+1ga1+a2, g→fb1ga1+1}, where ai and bi are integers subject to certain positivity conditions. Such a grammar G gives rise to triangular arrays {T (n, k)}0≤k≤n satisfying a three-term recurrence relation. Many combinatorial sequences can be generated in this way. Let Tn(x)=? nk=0 T (n, k)xk. Based on the diff erential operator with respect to G, we define a sequence of linear operators Pn such that Tn+1(x)=Pn(Tn(x)). Applying the characterization of real stability preserving linear operators on the multivariate polynomials due to Borcea and Bra¨nd´en, we obtain a necessary and suffi cient condition for the operator Pn to be real stability preserving for any n. As a consequence, we are led to a suffi cient condition for the real-rootedness of the polynomials defined by certain triangular arrays, obtained by Wang and Yeh. Moreover, as special cases we obtain grammars that lead to identities involving the Whitney numbers and the Bessel numbers.

  17. Polymeric Cantilever Arrays for Biosensing Applications

    DEFF Research Database (Denmark)

    Calleja, M.; Tamayo, J.; Johansson, Alicia

    2003-01-01

    We report the fabrication of arrays of polymeric cantilevers for biochemistry applications. The cantilevers are fabricated in the polymer SU-8. The use of a polymer as the component material for the cantilevers provides the sensors with very high sensitivity due to convenient mechanical material...... properties. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. The method allows obtaining well-controlled and uniform mechanical properties of the cantilevers. The elastic constant of the cantilevers was measured, and their dynamic response...

  18. Antenna arrays a computational approach

    CERN Document Server

    Haupt, Randy L

    2010-01-01

    This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.

  19. Fiber Optic Geophysics Sensor Array

    Science.gov (United States)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  20. Terahertz superconducting plasmonic hole array

    CERN Document Server

    Tian, Zhen; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applications in the design of low-loss, large dynamic range amplitude modulation, and surface plasmon based terahertz devices.

  1. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  2. An integral field spectrograph utilizing mirrorlet arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-09-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  3. Efficient imaging techniques using an ultrasonic array

    Science.gov (United States)

    Moreau, L.; Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2010-03-01

    Over the past few years, ultrasonic phased arrays have shown good potential for non-destructive testing (NDT), thanks to high resolution imaging algorithms that allow the characterization of defects in a structure. Many algorithms are based on the full matrix capture, obtained by firing each element of an ultrasonic array independently, while collecting the data with all elements. Because of the finite sound velocity in the specimen, two consecutive firings must be separated by a minimum time interval. Therefore, more elements in the array require longer data acquisition times. Moreover, if the array has N elements, then the full matrix contains N2 temporal signals to be processed. Because of the limited calculation speed of current computers, a large matrix of data can result in rather long post-processing times. In an industrial context where real-time imaging is desirable, it is crucial to reduce acquisition and/or post-processing times. This paper investigates methods designed to reduce acquisition and post-processing times for the TFM and wavenumber algorithms. To reduce data capture and post-processing, limited transmission cycles are used. Post-processing times is also further reduced by demodulating the data to baseband, which allows reducing the sampling rate of signals. Results are presented so that a compromise can be made between acquisition time, post-processing time and image quality. Possible improvement of images quality, using the effective aperture theory, is discussed. This has been implemented for the TFM but it still has to be developed for the wavenumber algorithm.

  4. Fracture characterisation using geoelectric null-arrays

    Science.gov (United States)

    Falco, Pierik; Negro, François; Szalai, Sándor; Milnes, Ellen

    2013-06-01

    The term "geoelectric null-array" is used for direct current electrode configurations yielding a potential difference of zero above a homogeneous half-space. This paper presents a comparative study of the behaviour of three null-arrays, midpoint null-array (MAN), Wenner-γ null-array and Schlumberger null-array in response to a fracture, both in profiling and in azimuthal mode. The main objective is to determine which array(s) best localise fractures or best identify their orientation. Forward modelling of the three null-arrays revealed that the Wenner-γ and Schlumberger null-arrays localise vertical fractures the most accurately, whilst the midpoint null-array combined with the Schlumberger null-array allows accurate orientation of a fracture. Numerical analysis then served as a basis to interpret the field results. Field test measurements were carried out above a quarry in Les Breuleux (Switzerland) with the three null-arrays and classical arrays. The results were cross-validated with quarry-wall geological mapping. In real field circumstances, the Wenner-γ null-array proved to be the most efficient and accurate in localising fractures. The orientations of the fractures according to the numerical results were most efficiently determined with the midpoint null-array, whilst the Schlumberger null-array adds accuracy to the results. This study shows that geoelectrical null-arrays are more suitable than classical arrays for the characterisation of fracture geometry.

  5. Capture and release of traveling intrinsic localized mode in coupled cantilever array

    OpenAIRE

    Kimura, Masayuki; Hikihara, Takashi

    2009-01-01

    A method to manipulate intrinsic localized mode (ILM) is numerically discussed in a nonlinear coupled oscillator array, which is obtained by modeling a microcantilever array. Prior to the manipulation, coexistence and dynamical stability of standing ILMs are first investigated. The stability of coexisting ILMs is determined by a nonlinear coupling coefficient of the array. In addition, the global phase structure, which dominates traveling ILMs, is also changed with the stability. It makes pos...

  6. Convergence in the r-th Mean and the Marcinkiewicz Type Weak Law of Large Numbers for Weighted Sums of Lq-mixingale Arrays

    Institute of Scientific and Technical Information of China (English)

    Gan Shi-xin

    2003-01-01

    Lr convergence and convergence in probability for weighted sums of Lq-mixingale arrays have been discussed and the Marcinkiewicz type weak law of large numbers for Lq-mixingale arrays has been obtained.

  7. The Square Kilometer Array

    Science.gov (United States)

    Cordes, James M.

    2006-06-01

    The SKA is an observatory for m/cm wavelengths that will provide quantum leaps in studies of the early universe, the high-energy universe, and astrobiology. Key science areas include:(1) Galaxy Evolution and Large-Scale Structure, including Dark Energy;(2) Probing the Dark Ages through studies of highly redshifted hydrogen and carbon monoxide;(3) Cosmic magnetism;(4) Probing Gravity with Pulsars and Black Holes; and(5) The Cradle of Life, including real-time images of protoplanetary disks, inventory of organic molecules, and the search for signals from extraterrestrial intelligence.From a phase-space point of view, the SKA will expand enormously our ability to discover new and known phenomena, including transient sources with time scales from nano-seconds to years. Particular examples include coherent emissions from extrasolar planets and gamma-ray burst afterglows, detectable at levels 100 times smaller than currently. Specifications needed to meet the science requirements are technically quite challenging: a frequency range of approximately 0.1 to 25 GHz; wide field of view, tens of square degrees (frequency dependent); high dynamic range and image fidelity; flexibility in imaging on scales from sub-mas to degrees; and sampling the time-frequency domain as demanded by transient objects. Meeting these specifications requires collaboration of a world-wide group of engineers and scientists. For this and other reasons, the SKA will be realized internationally. Initially, several concepts have been explored for building inexpensive collecting area that provides broad frequency coverage. The Reference Design now specifies an SKA based on a large number of small-diameter dish antennas with "smart feeds." Complementary to the dishes is a phased aperture array that will provide very wide-field capability. I will discuss the Reference Design, along with a timeline for developing the technology, building the first 10% of the SKA, and finishing the full SKA, along with the

  8. Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  9. Innovative LuYAP:Ce array for PET imaging

    Science.gov (United States)

    Cinti, M. N.; Scafe, R.; Bennati, P.; Lo Meo, S.; Frantellizzi, V.; Pellegrini, R.; De Vincentis, G.; Sacco, D.; Fabbri, A.; Pani, R.

    2017-03-01

    We present an imaging characterization of a 10 × 10 LuYAP array (2 × 2 × 10 mm3 pixels) with an innovative dielectric coating insulation (0.015 mm thick), in view of its possible use in a gamma camera for imaging positron emission tomography (PET) or in similar applications, e.g. as γ -prompt detector in hadron therapy. The particular assembly of this array was realized in order to obtain a packing fraction of 98%, improving detection efficiency and light collection. For imaging purpose, the array has been coupled with a selected Hamamatsu H10966-100 Multi Anode Photomultiplier read out by a customized 64 independent channels electronics. This tube presents a superbialkali photocathode with 38% of quantum efficiency, permitting to enhance energy resolution and consequently image quality. A pixel identification of about 0.5 mm at 662 keV was obtained, highlighting the potentiality of this detector in PET applications.

  10. Complete convergence for weighted sums of arrays of random elements

    Directory of Open Access Journals (Sweden)

    Robert Lee Taylor

    1983-01-01

    Full Text Available Let {Xnk:k,n=1,2,…} be an array of row-wise independent random elements in a separable Banach space. Let {ank:k,n=1,2,…} be an array of real numbers such that ∑k=1∞|ank|≤1 and ∑n=1∞exp(−α/An<∞ for each α ϵ R+ where An=∑k=1∞ank2. The complete convergence of ∑k=1∞ankXnk is obtained under varying moment and distribution conditions on the random elements. In particular, laws of large numbers follow for triangular arrays of random elements, and consistency of the kernel density estimates is obtained from these results.

  11. Integrated Spatial Filter Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Earth Science Division need for spatial filter arrays for amplitude and wavefront control, Luminit proposes to develop a novel Integrated Spatial...

  12. The Murchison Widefield Array Correlator

    CERN Document Server

    Ord, S M; Emrich, D; Pallot, D; Wayth, R B; Clark, M A; Tremblay, S E; Arcus, W; Barnes, D; Bell, M; Bernardi, G; Bhat, N D R; Bowman, J D; Briggs, F; Bunton, J D; Cappallo, R J; Corey, B E; Deshpande, A A; deSouza, L; Ewell-Wice, A; Feng, L; Goeke, R; Greenhill, L J; Hazelton, B J; Herne, D; Hewitt, J N; Hindson, L; Hurley-Walker, H; Jacobs, D; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kincaid, B B; Koenig, R; Kratzenberg, E; Kudryavtseva, N; Lenc, E; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Offringa, A; Pathikulangara, J; Pindor, B; Prabu, T; Procopio, P; Remillard, R A; Riding, J; Rogers, A E E; Roshi, A; Salah, J E; Sault, R J; Shankar, N Udaya; Srivani, K S; Stevens, J; Subrahmanyan, R; Tingay, S J; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wyithe, J S B

    2015-01-01

    The Murchison Widefield Array (MWA) is a Square Kilometre Array (SKA) Precursor. The telescope is located at the Murchison Radio--astronomy Observatory (MRO) in Western Australia (WA). The MWA consists of 4096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays (FPGAs), and others by Graphics Processing Units (GPUs) housed in general purpose rack mounted servers. The correlation capability required is approximately 8 TFLOPS (Tera FLoating point Operations Per Second). The MWA has commenced operations and the correlator is generating 8.3 TB/day of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper we outline the correlator design, signal path, and proce...

  13. Next Generation Microshutter Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  14. Thermopile Area Array Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA/JPL thermopile detector linear arrays, wire bonded to Black Forest Engineering (BFE) CMOS readout integrated circuits (ROICs), have been utilized in NASA...

  15. CMOS-Based Biosensor Arrays

    CERN Document Server

    Thewes, R; Schienle, M; Hofmann, F; Frey, A; Brederlow, R; Augustyniak, M; Jenkner, M; Eversmann, B; Schindler-Bauer, P; Atzesberger, M; Holzapfl, B; Beer, G; Haneder, T; Hanke, H -C

    2011-01-01

    CMOS-based sensor array chips provide new and attractive features as compared to today's standard tools for medical, diagnostic, and biotechnical applications. Examples for molecule- and cell-based approaches and related circuit design issues are discussed.

  16. Performance Test of Various Types of Antenna Arrays in Real Propagation Environment

    Science.gov (United States)

    Budiyanto, Setiyo; Nugraha, Beny; WidiAstuti, Dian

    2016-01-01

    The research was conducted on various types of antenna arrays namely Uniform Array, Binomial Array, Dolph-Chebyshev Array, and Taylor Array. This research is done in the real propagation environment in order to define precisely the number of antenna elements, the distance between the elements, the angle of the antenna arrays, the side lobe level and the n-bar array distribution. The testing process is done by using Matlab and the Non-Uniform Array Simulation Program. The results obtained for various types of antenna arrays are as follows: On Uniform Array produces Half Power Beam Width (HPBW) of 10.152° and directivity of l0 dB, on Binomial Array generates Half Power Beam Width (HPBW) of 20.245° and directivity of 7.47 dB, on Dolph-Chebyshev Arrayproduces Half Power Beam Width (HPBW) of 20.304° and directivity of 4.0185 dB, and on Taylor Arrayproduces Half Power Beam Width (HPBW) of 12.78° and directivity of 8.9 dB.

  17. Flexible solar-array mechanism

    Science.gov (United States)

    Olson, M. C.

    1972-01-01

    One of the key elements of the flexible rolled-up solar array system is a mechanism to deploy, retract, and store the flexible solar-cell arrays. The selection of components, the design of the mechanism assembly, and the tests that were performed are discussed. During 6 months in orbit, all mission objectives were satisfied, and inflight performance has shown good correlation with preflight analyses and tests.

  18. Tent Shaped Phased Array Tests.

    Science.gov (United States)

    1982-01-01

    AD-A113 191 HARRIS CORP MELBOURNE FL GOVERNMENT COMMUNICATION SY-ETC Fi 20/11TENT SHAPED PHASED ARRAY TESTS.(U JAN 82 C A CHUANG F19628-79-C-T173...821714f1 45 0 +450 SCAN PLANE ARRAY PATTERNS FIG. B-31 B- 31 AD-AL13 191 HARRS CRP PMELBOURNE FLY GOVERNMENT COMMUNICATION ST--ETC F/6 20/14 TENT SHAPED

  19. Struetural and Magnetic Properties of Electrodeposited Ni70Fe30 Nanowire Array

    Institute of Scientific and Technical Information of China (English)

    XU Jinxia; WANG Keyu

    2008-01-01

    Ordered Ni70Fe30 nanowire array was fabricated in a porous alumina template by altemating current electrodeDositiOn.The structural and magnetic properties of the as-obtained nanowire array were investigated by SEM,TEM,XRD,EDS and VSM.The results indicate that the as-obtained Ni70Fe30 nanowires exhibit a diameter of about 69.9 nm and aspect ratio of more than 60.Meanwhile,a preferred orientation[110]of bcc lattice was observed.The as-obtained nanowire array has an obvious magnetic anisotropy,of which the easy direction is perpendicular to the surface of the array.Moreover,after annealed,the Ni70Fe30 nanowire array exhibits an enhanced magnetic anisotropy.

  20. Hemocompatibility of titania nanotube arrays.

    Science.gov (United States)

    Smith, Barbara S; Yoriya, Sorachon; Grissom, Laura; Grimes, Craig A; Popat, Ketul C

    2010-11-01

    Hemocompatibility is a key consideration for the long-term success of blood contacting biomaterials; hence, there is a critical need to understand the physiological response elicited from blood/nano-biomaterial interactions. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets, and clotting kinetics of whole blood on titania nanotube arrays. Previous studies have demonstrated improved mesenchymal stem cell functionality, osteoblast phenotypic behavior, localized drug delivery, and the production of endothelial cell ECM on titania nanotube arrays. Furthermore, these titania nanotube arrays have elicited minimal levels of monocyte activation and cytokine secretion, thus exhibiting a very low degree of immunogenicity. Titania nanotube arrays were fabricated using anodization technique and the surface morphology was examined through scanning electron microscopy (SEM). The crystalline phases were identified using glancing angled X-ray diffraction (GAXRD). Nanoindentation and scratch tests were used to characterize the mechanical properties of titania nanotube arrays. The adsorption of key blood proteins (albumin, fibrinogen, and immunoglobulin-g) was evaluated using a micro-BCA assay and X-ray photoelectron spectroscopy (XPS). The adhesion and activation of platelets was investigated using live-cell staining, MTT assay, and SEM. Whole blood clotting kinetics was evaluated by measuring the free hemoglobin concentration, and SEM was used to visualize the clot formation. Our results indicate increased blood serum protein adsorption, platelet adhesion and activation, and whole blood clotting kinetics on titania nanotube arrays.

  1. Array imaging system for lithography

    Science.gov (United States)

    Kirner, Raoul; Mueller, Kevin; Malaurie, Pauline; Vogler, Uwe; Noell, Wilfried; Scharf, Toralf; Voelkel, Reinhard

    2016-09-01

    We present an integrated array imaging system based on a stack of microlens arrays. The microlens arrays are manufactured by melting resist and reactive ion etching (RIE) technology on 8'' wafers (fused silica) and mounted by wafer-level packaging (WLP)1. The array imaging system is configured for 1X projection (magnification m = +1) of a mask pattern onto a planar wafer. The optical system is based on two symmetric telescopes, thus anti-symmetric wavefront aberrations like coma, distortion, lateral color are minimal. Spherical aberrations are reduced by using microlenses with aspherical lens profiles. In our system design approach, sub-images of individual imaging channels do not overlap to avoid interference. Image superposition is achieved by moving the array imaging system during the exposure time. A tandem Koehler integrator illumination system (MO Exposure Optics) is used for illumination. The angular spectrum of the illumination light underfills the pupils of the imaging channels to avoid crosstalk. We present and discuss results from simulation, mounting and testing of a first prototype of the investigated array imaging system for lithography.

  2. Solar Array Verification Analysis Tool (SAVANT) Developed

    Science.gov (United States)

    Bailey, Sheila G.; Long, KIenwyn J.; Curtis, Henry B.; Gardner, Barbara; Davis, Victoria; Messenger, Scott; Walters, Robert

    1999-01-01

    Modeling solar cell performance for a specific radiation environment to obtain the end-of-life photovoltaic array performance has become both increasingly important and, with the rapid advent of new types of cell technology, more difficult. For large constellations of satellites, a few percent difference in the lifetime prediction can have an enormous economic impact. The tool described here automates the assessment of solar array on-orbit end-of-life performance and assists in the development and design of ground test protocols for different solar cell designs. Once established, these protocols can be used to calculate on-orbit end-of-life performance from ground test results. The Solar Array Verification Analysis Tool (SAVANT) utilizes the radiation environment from the Environment Work Bench (EWB) model developed by the NASA Lewis Research Center s Photovoltaic and Space Environmental Effects Branch in conjunction with Maxwell Technologies. It then modifies and combines this information with the displacement damage model proposed by Summers et al. (ref. 1) of the Naval Research Laboratory to determine solar cell performance during the course of a given mission. The resulting predictions can then be compared with flight data. The Environment WorkBench (ref. 2) uses the NASA AE8 (electron) and AP8 (proton) models of the radiation belts to calculate the trapped radiation flux. These fluxes are integrated over the defined spacecraft orbit for the duration of the mission to obtain the total omnidirectional fluence spectra. Components such as the solar cell coverglass, adhesive, and antireflective coatings can slow and attenuate the particle fluence reaching the solar cell. In SAVANT, a continuous slowing down approximation is used to model this effect.

  3. Nanoelectrospray emitter arrays providing interemitter electric field uniformity.

    Science.gov (United States)

    Kelly, Ryan T; Page, Jason S; Marginean, Ioan; Tang, Keqi; Smith, Richard D

    2008-07-15

    Arrays of electrospray ionization (ESI) emitters have been reported previously as a means of enhancing ionization efficiency or signal intensity. A key challenge when working with multiple, closely spaced ESI emitters is overcoming the deleterious effects caused by electrical interference among neighboring emitters. Individual emitters can experience different electric fields depending on their relative position in the array, such that it becomes difficult to operate all of the emitters optimally for a given applied potential. In this work, we have developed multi-nanoESI emitters arranged with a circular pattern, which enable the constituent emitters to experience a uniform electric field. The performance of the circular emitter array was compared to a single emitter and to a previously developed linear emitter array, which verified that improved electric field uniformity was achieved with the circular arrangement. The circular arrays were also interfaced with a mass spectrometer via a matching multicapillary inlet, and the results were compared with those obtained using a single emitter. By minimizing interemitter electric field inhomogeneities, much larger arrays having closer emitter spacing should be feasible.

  4. On the maximum backscattering cross section of passive linear arrays

    DEFF Research Database (Denmark)

    Solymar, L.; Appel-Hansen, Jørgen

    1974-01-01

    The maximum backscattering cross section of an equispaced linear array connected to a reactive network and consisting of isotropic radiators is calculated forn = 2, 3, and 4 elements as a function of the incident angle and of the distance between the elements. On the basis of the results obtained...

  5. A novel deconvolution beamforming algorithm for virtual phased arrays

    DEFF Research Database (Denmark)

    Fernandez Comesana, Daniel; Fernandez Grande, Efren; Tiana Roig, Elisabet;

    2013-01-01

    traditionally obtained using large arrays can be emulated by applying beamforming algorithms to data acquired from only two sensors. This paper presents a novel beamforming algorithm which uses a deconvolution approach to strongly reduce the presence of side lobes. A series of synthetic noise sources...

  6. Design of Circularly-Polarised, Crossed Drooping Dipole, Phased Array Antenna Using Genetic Algorithm Optimisation

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal

    2007-01-01

    A printed drooping dipole array is designed and constructed. The design is based on a genetic algorithm optimisation procedure used in conjunction with the software programme AWAS. By optimising the array G/T for specific combinations of scan angles and frequencies an optimum design is obtained...

  7. Planar Circularly Symmetric EBG's to Improve the Isolation of Array Elements

    NARCIS (Netherlands)

    Llombart, N.; Neto, A.; Gerini, G.; Maagt, P. de

    2005-01-01

    A trade off has to be made between bandwidth and isolation of array elements when designing phased arrays. When the isolation is achieved via a PCS-EBG that is aimed at reducing the TM00 mode only, the reduction of bandwidth could be even more important rather than the one obtained when using a more

  8. Comparison Between Mitigation Effects of the Finite Larmor Radius and Sheared Axial Flow on Rayleigh-Taylor Instability in Z-Pinch implosions

    Institute of Scientific and Technical Information of China (English)

    邱孝明; 黄林; 简广德

    2002-01-01

    A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via а/аt → -i(ω + ik2⊥ρi2Ωi), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k2⊥ρ2i is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed massdensity and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber κ> 2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.

  9. Modelling clustering of vertically aligned carbon nanotube arrays

    Science.gov (United States)

    Schaber, Clemens F.; Filippov, Alexander E.; Heinlein, Thorsten; Schneider, Jörg J.; Gorb, Stanislav N.

    2015-01-01

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications. PMID:26464787

  10. Sparse Planar Array Synthesis Using Matrix Enhancement and Matrix Pencil

    Directory of Open Access Journals (Sweden)

    Mei-yan Zheng

    2013-01-01

    Full Text Available The matrix enhancement and matrix pencil (MEMP plays important roles in modern signal processing applications. In this paper, MEMP is applied to attack the problem of two-dimensional sparse array synthesis. Firstly, the desired array radiation pattern, as the original pattern for approximating, is sampled to form an enhanced matrix. After performing the singular value decomposition (SVD and discarding the insignificant singular values according to the prior approximate error, the minimum number of elements can be obtained. Secondly, in order to obtain the eigenvalues, the generalized eigen-decomposition is employed on the approximate matrix, which is the optimal low-rank approximation of the enhanced matrix corresponding to sparse planar array, and then the ESPRIT algorithm is utilized to pair the eigenvalues related to each dimension of the planar array. Finally, element positions and excitations of the sparse planar array are calculated according to the correct pairing of eigenvalues. Simulation results are presented to illustrate the effectiveness of the proposed approach.

  11. Palladium nanoparticles obtained by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Sampedro, B.; Hernando, A. [Instituto de Magnetismo Aplicado (RENFE-UCM-CSIC), P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Dpto. Fisica de Materiales, UCM, 28040 Madrid (Spain); Rojas, T.C.; Fernandez, A. [Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-UNIV, 41092 Sevilla (Spain)

    2006-05-15

    Opposed to the existing chemical methods, we have used a physical one in order to obtain palladium nanoparticles. In this work we present the HRTEM observation of Pd nanoparticles obtained by mechanical milling. These particles are around 6 nm in size. The Pd milled samples have exhaustively been structurally characterized. We have also studied its magnetic properties as a function of the milling time and magnetic measurements are according to those previously carried out by us in palladium nanoparticles obtained by chemical methods. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Alternative Optimizations of X-ray TES Arrays: Soft X-rays, High Count Rates, and Mixed-Pixel Arrays

    Science.gov (United States)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A.-D.; Chervenak, J. A.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.

    2007-01-01

    We are developing arrays of superconducting transition-edge sensors (TES) for imaging spectroscopy telescopes such as the XMS on Constellation-X. While our primary focus has been on arrays that meet the XMS requirements (of which, foremost, is an energy resolution of 2.5 eV at 6 keV and a bandpass from approx. 0.3 keV to 12 keV), we have also investigated other optimizations that might be used to extend the XMS capabilities. In one of these optimizations, improved resolution below 1 keV is achieved by reducing the heat capacity. Such pixels can be based on our XMS-style TES's with the separate absorbers omitted. These pixels can added to an array with broadband response either as a separate array or interspersed, depending on other factors that include telescope design and science requirements. In one version of this approach, we have designed and fabricated a composite array of low-energy and broad-band pixels to provide high spectral resolving power over a broader energy bandpass than could be obtained with a single TES design. The array consists of alternating pixels with and without overhanging absorbers. To explore optimizations for higher count rates, we are also optimizing the design and operating temperature of pixels that are coupled to a solid substrate. We will present the performance of these variations and discuss other optimizations that could be used to enhance the XMS or enable other astrophysics experiments.

  13. Instrumentation for multi-detector arrays

    Indian Academy of Sciences (India)

    R K Bhowmik

    2001-07-01

    The new generation of detector arrays require complex instrumentation and data acquisition system to ensure increased reliability of operation, high degree of integration, software control and faster data handling capability. The main features of some of the existing multi-detector arrays like MSU 4 array, Gammasphere and Eurogam are summarized. The instrumentation for the proposed INGA array in India is discussed.

  14. Treatment of biomass to obtain ethanol

    Science.gov (United States)

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  15. Functional nanostructured titanium nitride films obtained by sputtering magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, O. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain)]. E-mail: olgas@icmm.csic.es; Hernandez-Velez, M. [Instituto de Ciencia de Materiales de Madrid (CSIC), or Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain); Dept. Fisica Aplicada C-XII, Universidad Autonoma, Cantoblanco 28049 Madrid (Spain); Navas, D. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain); Auger, M.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio, del Amo 8, 28040 Madrid (Spain); Baldonedo, J.L. [Centro de Microscopia Electronica y Citometria de la Universidad Complutense de, Madrid (Spain); Sanz, R. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain); Pirota, K.R. [Instituto de Ciencia de Materiales de Madrid (CSIC), or Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain); Vazquez, M. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain)

    2006-01-20

    Development of new methods in the formation of hollow structures, in particular, nanotubes and nanocages are currently generating a great interest as a consequence of the growing relevance of these nanostructures on many technological fields, ranging from optoelectronics to biotechnology. In this work, we report the formation of titanium nitride (TiN) nanotubes and nanohills via reactive sputtering magnetron processes. Anodic Alumina Membranes (AAM) were used as template substrates to grow the TiN nanostructures. The AAM were obtained through electrochemical anodization processes by using oxalic acid solutions as electrolytes. The nanotubes were produced at temperatures below 100 deg. C, and using a pure titanium (99.995%) sputtering target and nitrogen as reactive gas. The obtained TiN thin films showed surface morphologies adjusted to pore diameter and interpore distance of the substrates, as well as ordered arrays of nanotubes or nanohills depending on the sputtering and template conditions. High Resolution Scanning Electron Microscopy (HRSEM) was used to elucidate both the surface order and morphology of the different grown nanostructures. The crystalline structure of the samples was examined using X-ray Diffraction (XRD) patterns and their qualitative chemical composition by using X-ray Energy Dispersive Spectroscopy (XEDS) in a scanning electron microscopy.

  16. Obtaining breathers in nonlinear Hamiltonian lattices

    CERN Document Server

    Flach, S

    1995-01-01

    Abstract We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further applications of the method and results.

  17. Critical Heegaard surfaces obtained by amalgamation

    CERN Document Server

    Lee, Jung Hoon

    2011-01-01

    Critical surfaces are defined by Bachman as topological index 2 surfaces, generalizing incompressible surfaces and strongly irreducible surfaces. In this paper we give a condition to obtain critical Heegaard surfaces by amalgamation. As a special case, we obtain critical Heegaard surfaces by boundary stabilization. It gives critical Heegaard surfaces of non-minimal genus, for 3-manifolds which do not admit distinct Heegaard splittings (up to isotopy).

  18. Revision of the energy calibration of the Yakutsk EAS array

    CERN Document Server

    Glushkov, A V; Sabourov, A

    2014-01-01

    Responses of surface and underground scintillation detectors of Yakutsk array are calculated for showers initiated by primary particles with energy E0>=1.0E17 eV within the frameworks of QGSJet01 QGSIIJet-II-04, SIBYLL-2.1 and EPOS-LHC hadron interaction models. A new estimation of E0 is obtained with the use of various methods. The resulting energy is lower compared to the obtained with earlier method by factor ~1.33.

  19. Hyperchaotic behaviours and controlling hyperchaos in an array of RCL-shunted Josephson junctions

    Institute of Scientific and Technical Information of China (English)

    Ri Ilmyong; Feng Yu-Ling; Yao Zhi-Hai; Fan Jian

    2011-01-01

    This paper deals with dynamical behaviours in an array composed of two resistive-capacitive-inductive-shunted (RCL-shunted) Josephson junctions (RCLSJJs) and a shunted resistor.Numerical simulations show that periodic,chaotic and hyperchaotic states can coexist in this array.Moreover,a scheme for controlling hyperchaos in this array is presented by adjusting the external bias current.Numerical results confirm that this scheme can be effectively used to control hyperchaotic states in this array into stable periodic states,and different stable periodic states with different period numbers can be obtained by appropriately choosing the intensity of the external bias current.

  20. Joint Gain/Phase and Mutual Coupling Array Calibration Technique with Single Calibrating Source

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2012-01-01

    Full Text Available An iterative-based method for joint gain/phase and mutual coupling array calibration is proposed in this paper. It estimates the array gain/phase and mutual coupling coefficients with a set of simultaneous equations formed by using the beam pattern property of the array. Only one calibrating source with known direction is requiblue to obtain the unique estimate. The effectiveness of this approach is illustrated by simulation results and by experimental data collected with an antenna array operating in high-frequency radio band.

  1. Detection of wheel rim by immersion scan of phased array ultrasonic flaw testing

    Science.gov (United States)

    Cai, Yi-He; Guo, Jian-qiang; Wang, Ze-yong; Gao, Xiao-rong; Jiang, Xiang-dong; Li, Xi

    2015-02-01

    In order to achieve the in-service detection to high speed train wheel rims, this article analyzed the effects of the number of array elements to image focusing and image quality using water immersion ultrasonic phased array technology. Also, the effects of the depth of water to detecting technique had been researched. According to the results of the experiments, the number of optimal array elements, the corresponding thickness of immersion layer, and the optimal range of water's depth had been obtained. Thus, appropriate references had been provided to water immersion ultrasonic phased array testing.

  2. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom and Rolls-Royce plc., Bristol BS34 7QE (United Kingdom); Velichko, Alexander; Wilcox, Paul D. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Barden, Tim J.; Dunhill, Tony K. [Rolls-Royce plc., Bristol BS34 7QE (United Kingdom)

    2014-02-18

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  3. Metal nanodot arrays fabricated via seed-mediated electroless plating with block copolymer thin film scaffolding.

    Science.gov (United States)

    Komiyama, Hideaki; Iyoda, Tomokazu; Sanji, Takanobu

    2015-10-02

    We present an alternative approach to fabricating hexagonally arranged nanodot arrays of various metals by seed-mediated electroless plating with a cylinder-forming block copolymer thin film, PEO-b-PMA(Az), as a scaffold. Metal ions were selectively incorporated into PEO cylinders, followed by their reduction to metal and the etching of the scaffold to obtain highly ordered seed arrays of Au, Pd, and Pt. Nanodot arrays of the target metals (Au, Ag, and Ni) were selectively grown on the seed with their highly ordered arrangement by electroless plating. We studied the fabrication processes' suitability for control of the nanodot array size, as well as the plasmonic properties thereof.

  4. Validity and reliability of rectus femoris ultrasound measurements: Comparison of curved-array and linear-array transducers

    Directory of Open Access Journals (Sweden)

    Kendra Hammond, MD

    2014-11-01

    Full Text Available Muscle-mass loss augers increased morbidity and mortality in critically ill patients. Muscle-mass loss can be assessed by wide linear-array ultrasound transducers connected to cumbersome, expensive console units. Whether cheaper, hand-carried units equipped with curved-array transducers can be used as alternatives is unknown. Accordingly, our primary aim was to investigate in 15 nondisabled subjects the validity of measurements of rectus femoris cross-sectional area by using a curved-array transducer against a linear-array transducer—the reference-standard technique. In these subjects, we also determined the reliability of measurements obtained by a novice operator versus measurements obtained by an experienced operator. Lastly, the relationship between quadriceps strength and rectus area recorded by two experienced operators with a curved-array transducer was assessed in 17 patients with chronic obstructive pulmonary disease (COPD. In nondisabled subjects, the rectus cross-sectional area measured with the curved-array transducer by the novice and experienced operators was valid (intraclass correlation coefficient [ICC]: 0.98, typical percentage error [%TE]: 3.7% and reliable (ICC: 0.79, %TE: 9.7%. In the subjects with COPD, both reliability (ICC: 0.99 and repeatability (%TE: 7.6% and 9.8% were high. Rectus area was related to quadriceps strength in COPD for both experienced operators (coefficient of determination: 0.67 and 0.70. In conclusion, measurements of rectus femoris cross-sectional area recorded with a curved-array transducer connected to a hand-carried unit are valid, reliable, and reproducible, leading us to contend that this technique is suitable for cross-sectional and longitudinal studies.

  5. Transparent film with inverted conical microholes array for reflection enhancement

    Science.gov (United States)

    Lei, Biao; Liu, Hongzhong; Jiang, Weitao; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Liu, Xiaokang

    2016-04-01

    PDMS has been widely utilized for microfluidic chips and microchannel detections, as its good optical properties are the prerequisite to achieve accurate and efficient detection. However, it is difficult to obtain effective information for opaque liquids. With the development of microchannel detection for wider fields, it is imperative to obtain more comprehensive information of the observed objects by integrating high transmission with enhanced reflection. This article investigates reflection enhancement by Polydimethylsiloxane (PDMS) film with inverted conical microholes array. PDMS film with inverted conical microholes array is fabricated by replication from the silicon mold with inverted microcones array which is prepared by Inductively Coupled Plasma (ICP) etch tool. The monolayer PDMS film with inverted conical microholes array shows a two-fold effectively increase in reflection, approximately up to 15%, at a broad wavelength range of 637-1131 nm and 1214-1350 nm, compared with bare PDMS film. In addition, the reflection can be further enhanced by multilayered lamination of PDMS film with inverted conical microholes array, and the enhancement is also dependent on the lamination way, i.e., for bilayer laminations, the maximum reflection enhancement occurs when with face-to-back lamination, and 32.79% larger than that with back-to-face lamination. From the experiments, the maximum reflectivity of 8-layered PDMS films can obtain 64.4% while the maximum reflectivity of monolayer PDMS film barely has 17.5%. The transparent film with inverted conical microholes array for reflection enhancement may find a variety of applications in optical devices, microchips, and energy conservation technologies etc.

  6. Wavenumber response of Shanghai Seismic Array

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Seismic array can be traced back to 1950s when it mainly aimed at detecting and distinguishing the signals of nuclear explosion and seismic signals. The research on seismic array includes seismic array techniques and applications of array in geophysics. Array techniques involve array design and data processing methods (Anne, 1990). Nowadays, the continuous development of seismic array¢s theory could relate to many scientific issues in geophysical field (Tormod, 1989; Mykkeltveit, Bungum, 1984). Seismic array is mainly applied to detect weak events. The response characteristic of array is an important indication of array¢s detection ability. Therefore, when we study an array or construct an array, one of the neces-sary works is to calculate the response characteristics of the array (Harjes, 1990). The aperture and layout of array are two dominating geometrical features. The typical aperture of interna-tional array is generally from several to tens kilometers. For instance, arrays with aperture of dozens kilometers aperture are KSA, WRA, YKA, etc, while arrays with several kilometer aperture are ARC, FIN, GEE, etc. Moreo-ver, in the view of array¢s layout, NOR, GER, etc have circle layout, while WRA, YKA, etc have decussating layout. This paper mainly discusses the relation between deployment of array and wavenumber response. With the example of constructing Shanghai Seismic Array, this paper provides one practical solution to search the proper array deployment. In this paper, the simple delay beam technique is adopted to calculate the response characteris-tics of array. Certainly, the different processing methods have different result, but the result from the simple delay beam processing could be enough to reflect the feature of an array.

  7. Retrieval of Mir Solar Array

    Science.gov (United States)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  8. Mathematical Simulating Model of Phased-Array Antenna in Multifunction Array Radar

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A mathematical simulating model of phased-array antenna in multifunction array radar has been approached in this paper, including the mathematical simulating model of plane phased-array pattern, the mathematical simulating model of directionality factor, the mathematical simulating model of array factor, the mathematical simulating model of array element factor and the mathematical simulating model of beam steering.

  9. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    Science.gov (United States)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  10. Synthesis of circularly polarized multiprobe feed radial line slot array

    OpenAIRE

    Sierra Pérez, Manuel; Salamanca, José Manuel; Vera Isasa, María; Sierra Castañer, Manuel

    1998-01-01

    In previous articles, we presented an easy way to analyze a slot array fed through a radial line and the design of an array of slots placed in an Archimedes spiral. The analysis was based on a circuit approach where the circuit parameters have been estimated using the first propagation mode in the radial line and the far field theory. The Archimedes spiral design, obtained with only one probe, has an efficiency problem due to the reflected field, that can be solved with this multiprobe design...

  11. Three dimensional stress vector sensor array and method therefor

    Science.gov (United States)

    Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery

    2005-07-05

    A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.

  12. Optical phased array radiating optical vortex with manipulated topological charges.

    Science.gov (United States)

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Luo, Xiangang

    2015-02-23

    Optical antennas are key elements in quantum optics emitting and sensing, and behave wide range applications in optical domain. However, integration of optical antenna radiating orbital angular momentum is still a challenge in nano-scale. We theoretically demonstrate a sub-wavelength phased optical antenna array, which manipulates the distribution of the orbital angular momentum in the near field. Orbital angular momentum with topological charge of 4 can be obtained by controlling the phase distribution of the fundamental mode orbital angular momentum in each antenna element. Our results indicate this phased array may be utilized in high integrated optical communication systems.

  13. Field emission properties of an array of pyramidal structures

    Energy Technology Data Exchange (ETDEWEB)

    De Assis, Thiago A [Departamento de QuImica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Borondo, F [Departamento de QuImica, Instituto Mixto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); De Castilho, C M C; Brito Mota, F [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador, BA (Brazil); Benito, R M, E-mail: t.albuquerque@uam.e, E-mail: f.borondo@uam.e, E-mail: caio@ufba.b, E-mail: fbmota@ufba.b, E-mail: rosamaria.benito@upm.e [Grupo de Sistemas Complejos, Departamento de Fisica y Mecanica, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2009-10-07

    The properties and efficiency of the emission current density produced by a metallic array of pyramidal structures are investigated. The theoretical results obtained by numerical integration of the corresponding Laplace equation using a finite differences scheme offer useful information for the optimization of field emission devices based on cathodes with this geometry. Our study shows that the inter-pyramidal distance strongly affects the current density, and even more important for this issue is the protrusion characteristics of these structures. Another relevant, although less important, parameter determining this density is the anode-cathode distance. The effect of the array characteristics on the maximum local electric field intensity is also discussed.

  14. Ultrasonic Imaging Using a Flexible Array: Improvements to the Maximum Contrast Autofocus Algorithm

    Science.gov (United States)

    Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2009-03-01

    In previous work, we have presented the maximum contrast autofocus algorithm for estimating unknown imaging parameters, e.g., for imaging through complicated surfaces using a flexible ultrasonic array. This paper details recent improvements to the algorithm. The algorithm operates by maximizing the image contrast metric with respect to the imaging parameters. For a flexible array, the relative positions of the array elements are parameterized using a cubic spline function and the spline control points are estimated by iterative maximisation of the image contrast via simulated annealing. The resultant spline gives an estimate of the array geometry and the profile of the surface that it has conformed to, allowing the generation of a well-focused image. A pre-processing step is introduced to obtain an initial estimate of the array geometry, reducing the time taken for the algorithm to convergence. Experimental results are demonstrated using a flexible array prototype.

  15. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)

    2011-12-15

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  16. LPA 2D-DOA Estimation for Fast Nonstationary Sources Using New Array Geometry Configuration

    Directory of Open Access Journals (Sweden)

    AmiraAshour

    2013-09-01

    Full Text Available This paper proposes a new array geometry configuration to improve the two dimensional direction of arrival (2D-DOA estimation of narrowband moving sources with less complexity. This new array is denoted by verticircular configuration, which is composed of both Uniform linear array (ULA and Uniform Circular array (UCA to avoid too much computation for 2D-DOA estimation. The proposed verticircular array is applied with the LPA nonparametric estimator to estimate multiple rapidly moving sources’ parameters (angles and angular velocities for both azimuth as well as elevation directions. Simulation results show that this nonparametric technique is capable of resolving closely spaced sources provided that their velocities are sufficiently different with decreased computational complexity when using the verticircular array. Different scenarios are used to show the efficient LPA beamformer to distinguish sources that can have the same angles using their different angular velocities. In addition, this paper is to compare the performance of the 2D- LPA DOA estimation algorithm when using verticircular array (proposed array geometry or rectangular planar array geometry. Simulation results show that the performance of the proposed method with less complexity than that obtained when using rectangular planar array.

  17. Campaign of measurements to probe the good performance of the new array FARCOS for spectroscopy and correlations.

    Science.gov (United States)

    Acosta, L.; Andolina, R.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D'Andrea, M.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; Lombardo, I.; Martorana, N.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Parsani, T.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccá, G.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Zambon, P.

    2016-07-01

    During the last four years, several measurements have been carried out where the capabilities of FARCOS array were tested. In some of this occasions, FARCOS was coupled to the 4π array CHIMERA, permanently placed at INFN-Laboratori Nazionali del Sud, Catania in order to be tested in real experimental measurements. At the present situation, the FARCOS demonstrator is formed by 4 telescopes out of the originally 20 that will constitute the final array. Here are presented some preliminary results obtained with the new array, probing its qualities and showing the effectiveness of FARCOS telescopes. The initial encouraging results support the construction of the complete array.

  18. Complete Moment Convergence for Weighted Sums of Arrays of Rowwise NA Random Variables

    Institute of Scientific and Technical Information of China (English)

    Dehua QIU; Pingyan CHEN

    2012-01-01

    In this paper we obtain some new results on complete moment convergence for weighted sums of arrays of rowwise NA random variables.Our results improve and extend some well known results from the literature.

  19. EHF multifunction phased array antenna

    Science.gov (United States)

    Solbach, Klaus

    1986-07-01

    The design of a low cost demonstration EHF multifunction-phased array antenna is described. Both, the radiating elements and the phase-shifter circuits are realized on microstrip substrate material in order to allow photolithographic batch fabrication. Self-encapsulated beam-lead PIN-diodes are employed as the electronic switch elements to avoid expensive hermetic encapsulation of the semiconductors or complete circuits. A space-feed using a horn-radiator to illuminate the array from the front-side is found to be the simplest and most inexpensive feed. The phased array antenna thus operates as a reflect-array, the antenna elements employed in a dual role for the collection of energy from the feed-horn and for the re-radiation of the phase-shifted waves (in transmit-mode). The antenna is divided into modules containing the radiator/phase-shifter plate plus drive- and BITE-circuitry at the back. Both drive- and BITE-components use gate-array integrated circuits especially designed for the purpose. Several bus-systems are used to supply bias and logical data flows to the modules. The beam-steering unit utilizes several signal processors and high-speed discrete adder circuits to combine the pointing, frequency and beam-shape information from the radar system computer with the stored phase-shift codes for the array elements. Since space, weight and power consumption are prime considerations only the most advanced technology is used in the design of both the microwave and the digital/drive circuitry.

  20. Wicking a confined micropillar array

    CERN Document Server

    Texier, Baptiste Darbois; Stoukatch, Serguei; Dorbolo, Stéphane

    2016-01-01

    This study considers the spreading of a Newtonian and perfectly wetting liquid in a square array of cylindric micropillars confined between two plates. We show experimentally that the dynamics of the contact line follows a Washburn-like law which depends on the characteristics of the micropillar array (height, diameter and pitch). The presence of pillars can either enhanced or slow down the motion of the contact line. A theoretical model based on capillary and viscous forces has been developed in order to rationalize our observations. Finally, the impact of pillars on the volumic flow rate of liquid which is pumped in the microchannel is inspected.

  1. Highlights from the Telescope Array

    Science.gov (United States)

    Matthews, J. N.

    2016-11-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  2. Airborne electronically steerable phased array

    Science.gov (United States)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  3. Substrate integrated antennas and arrays

    CERN Document Server

    Cheng, Yu Jian

    2015-01-01

    Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book:Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologiesExamines theoretical and experimental results connected to electrical and mechanical performanceExp

  4. Versatile Flexible Graphene Multielectrode Arrays.

    Science.gov (United States)

    Kireev, Dmitry; Seyock, Silke; Ernst, Mathis; Maybeck, Vanessa; Wolfrum, Bernhard; Offenhäusser, Andreas

    2016-12-23

    Graphene is a promising material possessing features relevant to bioelectronics applications. Graphene microelectrodes (GMEAs), which are fabricated in a dense array on a flexible polyimide substrate, were investigated in this work for their performance via electrical impedance spectroscopy. Biocompatibility and suitability of the GMEAs for extracellular recordings were tested by measuring electrical activities from acute heart tissue and cardiac muscle cells. The recordings show encouraging signal-to-noise ratios of 65 ± 15 for heart tissue recordings and 20 ± 10 for HL-1 cells. Considering the low noise and excellent robustness of the devices, the sensor arrays are suitable for diverse and biologically relevant applications.

  5. Speckle imaging from an array

    Science.gov (United States)

    Riker, Jim F.; Tyler, Glenn A.; Vaughn, Jeff L.

    2016-09-01

    In this paper, we present two analytic theories developed recently to predict the performance of an imaging system composed of a phased array illuminator and a set of receiver subapertures. The receiver need not coincide with the transmitter. The two theories have been documented separately (ref. 1, 2), and the reader can find more details there - the theories present the analytic phased array irradiance on target in the presence of piston errors, and the resulting speckle pattern-induced imaging noise. The principal results presented here are the Signal to Noise Ratios (SNR) for both the radiometric portion of the problem and the speckle imaging portion of the problem.

  6. Phased arrays: inline flow line hub inspection using phased arrays

    NARCIS (Netherlands)

    Bloom, J.G.P.; Chougrani, K.; Rundberg, H.; Oldenziel, G.; Deleye, X.; Martina, Q.

    2011-01-01

    The feasibility of the inspection of flow line hubs using the phased array technique was investigated to determine the surface area of the seal area degraded by corrosion. A clean model of the hub was simulated to gain insight into the geometrical echoes and to determine the area covered by the ultr

  7. Magnetic nanocap arrays with tilted magnetization

    Science.gov (United States)

    Albrecht, Manfred

    2009-03-01

    In modern magnetic recording materials the ``superparamagnetic effect'' has become increasingly important as new magnetic hard disk drive products are designed for higher storage densities. In this regard, patterned media [1], where two-dimensional arrays of nanostructures are used, is one of the concepts that might provide the required areal density in future magnetic recording devices. However, also nanostructure arrays will ultimately need high anisotropy material such as L10-FePt to provid enough thermal stability and thus much higher writing fields than currently obtainable from perpendicular magnetic recording heads. One proposed solution to this problem is the use of tilted magnetic recording media [2]. The basic idea is to tilt the easy axis of the magnetic medium from the perpendicular direction to 45 degree. In this case, the switching field will be reduced by a foctor of two in the Stoner-Wohlfarth limit. Recently, this approach was realized by oblique film deposition onto arrays of self-assembled spherical particles [3-5]. In this presentation, recent results on different film systems including Co/Pt multilayers, FePt and CoPtCr-SiO2 alloys which have been deposited onto SiO2 particle monolayers will be presented. It turned out that by tuning the growth conditions single domain nanocaps with enhanced magnetic coercivity and tilted anisostropy axis can be achieved even for particle sizes below 50 nm. [4pt] [1] B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38 (2005) R199 [0pt] [2] J.-P. Wang, Nat. Mater. 4, 191 (2005). [0pt] [3] M. Albrecht et al., Nat. Mater. 4, 203 (2005). [0pt] [4] T. Ulbrich et al., Phys. Rev. Lett. 96 (2006) 077202. [0pt] [5] D. Makarov et al., Appl. Phys. Lett. 93, 153112 (2008).

  8. Bondwire array modeling for the design of hybrid high power amplifiers above C-band

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla; Jónasson, Sævar Þór; Hanberg, Jesper

    2012-01-01

    This paper presents a bondwire array model obtained using a software based on the finite elements method and validated up to 15 GHz by measurements over a purpose-build array structure. This work addresses the limits of the inductor-based bondwire model when used at frequencies above C-band to si......This paper presents a bondwire array model obtained using a software based on the finite elements method and validated up to 15 GHz by measurements over a purpose-build array structure. This work addresses the limits of the inductor-based bondwire model when used at frequencies above C...... comprising the array on the hybrid performance is discussed....

  9. Obtaining Funding and Support for Undergraduate Research

    Science.gov (United States)

    Dorff, Michael; Narayan, Darren A.

    2013-01-01

    Over the past decade there has been a dramatic increase in undergraduate research activities at colleges and universities nationwide. However, this comes at a time when budgets are being tightened and some institutions do not have the resources to pursue new initiatives. In this article we present some ideas for obtaining funding and support for…

  10. Obtaining exact value by approximate computations

    Institute of Scientific and Technical Information of China (English)

    Jing-zhong ZHANG; Yong FENG

    2007-01-01

    Numerical approximate computations can solve large and complex problems fast. They have the advantage of high efficiency. However they only give approximate results, whereas we need exact results in some fields. There is a gap between approximate computations and exact results.In this paper, we build a bridge by which exact results can be obtained by numerical approximate computations.

  11. 47 CFR 54.615 - Obtaining services.

    Science.gov (United States)

    2010-10-01

    ... non-profit entity that falls within one of the seven categories set forth in the definition of health... provided under § 54.621, that the requester cannot obtain toll-free access to an Internet service provider... thing of value; (6) If the service or services are being purchased as part of an aggregated...

  12. Obtaining the Andersen's chart, triangulation algorithm

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    Andersen’s chart (Andersen & Berre, 1999) is a graphical method of observing cyclic soil response. It allows observing soil response to various stress amplitudes that can lead to liquefaction, excess plastic deformation or stabilizing soil response. The process of obtaining the original chart has...

  13. Strategies for obtaining unpublished drug trial data

    DEFF Research Database (Denmark)

    Wolfe, Nicole; Gøtzsche, Peter C.; Bero, Lisa Anne

    2013-01-01

    Authors of systematic reviews have difficulty obtaining unpublished data for their reviews. This project aimed to provide an in-depth description of the experiences of authors in searching for and gaining access to unpublished data for their systematic reviews, and to give guidance on best practi...

  14. Obtaining exact value by approximate computations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Numerical approximate computations can solve large and complex problems fast.They have the advantage of high efficiency.However they only give approximate results,whereas we need exact results in some fields.There is a gap between approximate computations and exact results. In this paper,we build a bridge by which exact results can be obtained by numerical approximate computations.

  15. Slow and fast light in SOA-EA structures for phased-array antennas

    DEFF Research Database (Denmark)

    Sales, S.; Öhman, Filip; Bermejo, A.;

    We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage.......We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage....

  16. A K/Ka band radiating element for Tx/Rx phased array

    KAUST Repository

    Sandhu, Ali Imran

    2017-01-20

    The paper presents a K/Ka band radiating element for TX/RX phased arrays. Dual band operations is obtained using a single radiating surface: a novel radiator is adopted and placed in a configuration in which dual band and single band elements are interleaved. The array elements are optimized to scan the beam in excess of 50° in both bands. A subarray with 49 Rx elements and 105 Tx elements was built and measured confirming the results obtained in simulations.

  17. Key Science Observations of AGNs with KaVA Array

    CERN Document Server

    Kino, Motoki; Zhao, Guang-Yao; Sohn, Bong Won

    2015-01-01

    KaVA (KVN and VERA Array) is a new combined VLBI array with KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). First, we briefly review the imaging capabilities of KaVA array which actually achieves more than three times better dynamic range than that achieved by VERA alone. The KaVA images clearly show detailed structures of extended radio jets in AGNs. Next, we represent the key science program to be led by KaVA AGN sub working group. We will conduct the monitoring observations of Sgr A* and M87 because of the largeness of their central super-massive black hole angular sizes. The main science goals of the program are (i) testing magnetically-driven-jet paradigm by mapping velocity fields of the M87 jet, and (ii) obtaining tight constraints on physical properties of radio emitting region in Sgr A*.

  18. Improvement for the steering performance of liquid crystal phased array

    Institute of Scientific and Technical Information of China (English)

    SONG Yan; KONG Ling-jiang; CHEN Jun; ZHU Ying; YANG Jian-yu

    2009-01-01

    Optical phased array technology is introduced and the steering performances of liquid crystal phased array are discussed, several factors affecting the beam steering performances arc analyzed completely, also simple models for some typical factors are developed. Then, a new method based on iterating and modifying the output phase pattern of liquid crystal phase shifters is proposed. Using this method, the modified voltages applied on electrodes of liquid crystal phase shifters can be obtained, after applying the voltages, the influence of factors can be compensated to some extent; the steering angle accu-racy and efficiency with liquid crystal phased array can be improved. Through the simulation for the angle range from 0° to -1°, the error of steering angle can be reduced three orders of magnitude, and the efficiency can be increased almost 30% after several iterations.

  19. Partial-aperture array imaging in acoustic waveguides

    Science.gov (United States)

    Tsogka, Chrysoula; Mitsoudis, Dimitrios A.; Papadimitropoulos, Symeon

    2016-12-01

    We consider the problem of imaging extended reflectors in waveguides using partial-aperture array, i.e. an array that does not span the whole depth of the waveguide. For this imaging, we employ a method that back-propagates a weighted modal projection of the usual array response matrix. The challenge in this setup is to correctly define this projection matrix in order to maintain good energy concentration properties for the imaging method, which were obtained previously by Tsogka et al (2013 SIAM J. Imaging Sci. 6 2714-39) for the full-aperture case. In this paper we propose a way of achieving this and study the properties of the resulting imaging method.

  20. Harmful Gas Recognition Exploiting a CTL Sensor Array

    Directory of Open Access Journals (Sweden)

    Yao Zheng

    2013-10-01

    Full Text Available In this paper, a novel cataluminescence (CTL-based sensor array consisting of nine types of catalytic materials is developed for the recognition of several harmful gases, namely carbon monoxide, acetone, chloroform and toluene. First, the experimental setup is constructed by using sensing nanomaterials, a heating plate, a pneumatic pump, a gas flow meter, a digital temperature device, a camera and a BPCL Ultra Weak Chemiluminescence Analyzer. Then, unique CTL patterns for the four types of harmful gas are obtained from the sensor array. The harmful gases are successful recognized by the PCA method. The optimal conditions are also investigated. Finally, experimental results show high sensitivity, long-term stability and good linearity of the sensor array, which combined with simplicity, make our system a promising application in this field.