WorldWideScience

Sample records for array devices high-dynamic

  1. Nanocoax Arrays for Sensing Devices

    Science.gov (United States)

    Rizal, Binod

    We have adapted a nanocoax array architecture for high sensitivity, all-electronic, chemical and biological sensing. Arrays of nanocoaxes with various dielectric annuli were developed using polymer replicas of Si nanopillars made via soft lithography. These arrays were implemented in the development of two different kinds of chemical detectors. First, arrays of nanocoaxes constructed with different porosity dielectric annuli were employed to make capacitive detectors for gaseous molecules and to investigate the role of dielectric porosity in the sensitivity of the device. Second, arrays of nanocoaxes with partially hollowed annuli were used to fabricate three-dimensional electrochemical biosensors within which we studied the role of nanoscale gap between electrodes on device sensitivity. In addition, we have employed a molecular imprint technique to develop a non-conducting molecularly imprinted polymer thin film of thickness comparable to size of biomolecules as an "artificial antibody" architecture for the detection of biomolecules.

  2. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Science.gov (United States)

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  3. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun

    2012-10-16

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo-diode current were analyzed in detail. The proposed architecture can extend the DR for about 20N log2 dB at the high end of Photo-diode current with an N bit Up-Down counter. At the low end, it can compensate for the larger readout noise by employing Extended Counting. The Adaptive Delta-Sigma architecture employing a 4-bit Up-Down counter achieved about 160dB in the DR, with a Peak SNR (PSNR) of 80dB at the high end. Compared to the other HDR architectures, the Adaptive Delta-Sigma based architecture provides the widest DR with the best SNR performance in the extended range.

  4. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  5. Titania nanotube arrays: Interfaces for implantable devices

    Science.gov (United States)

    Smith, Barbara Symie

    For the 8--10% of Americans (20--25 million people) that have implanted biomedical devices, biomaterial failure and the need for revision surgery are critical concerns. The major causes for failure in implantable biomedical devices promoting a need for re-implantation and revision surgery include thrombosis, post-operative infection, immune driven fibrosis and biomechanical failure. The successful integration of long-term implantable devices is highly dependent on the early events of tissue/biomaterial interaction, promoting either implant rejection or a wound healing response (extracellular matrix production and vasculature). Favorable interactions between the implant surface and the respective tissue are critical for the long-term success of any implantable device. Recent studies have shown that material surfaces which mimic the natural physiological hierarchy of in vivo tissue may provide a possible solution for enhancing biomaterial integration, thus preventing infection and biomaterial rejection. Titania nanotube arrays, fabricated using a simple anodization technique, provide a template capable of promoting altered cellular functionality at a hierarchy similar to that of natural tissue. This work focuses on the fabrication of immobilized, vertically oriented and highly uniform titania nanotube arrays to determine how this specific nano-architecture affects skin cell functionality, hemocompatibility, thrombogenicity and the immune response. The results in this work identify enhanced dermal matrix production, altered hemocompatibility, reduced thrombogenicity and a deterred immune response on titania nanotube arrays. This evidences promising implications with respect to the use of titania nanotube arrays as beneficial interfaces for the successful implantation of biomedical devices.

  6. Neuroelectronic device based on nanocoax arrays

    Science.gov (United States)

    Naughton, Jeffrey R.; Lundberg, Jaclyn N.; Varela, Juan A.; Burns, Michael J.; Chiles, Thomas C.; Christianson, John P.; Naughton, Michael J.

    2015-03-01

    We report on development of a nanocoax-based neuroelectronic array. The device has been used in real time to noninvasively couple to a ganglion sac located along the main nerve cord of the leech Hirudo medicinalis. This allowed for extracellular recording of synaptic activity in the form of spontaneous synapse firing in pre- and post-synaptic somata, with the next target being recording of local field potentials from rat hippocampal cells. We also discuss an alteration of the architecture to facilitate optical integration of the nanoarray, toward utilizing the so-modified device to elicit / inhibit action potentials in optogenetically-modified cells.

  7. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  8. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

    CERN Document Server

    Tate, Mark W; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert M; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2015-01-01

    We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel detector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as loc...

  9. Measuring Phased-Array Antenna Beampatterns with High Dynamic Range for the Murchison Widefield Array using 137 MHz ORBCOMM Satellites

    CERN Document Server

    Neben, A R; Hewitt, J N; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Goeke, R; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    Detection of the fluctuations in 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the {\\it in situ} beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering), and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second reference dipole. We achieve beam measurements over 30 dB dynamic range in beam...

  10. High-dynamic range image projection using an auxiliary MEMS mirror array.

    Science.gov (United States)

    Hoskinson, Reynald; Stoeber, Boris

    2008-05-12

    We introduce a new concept to improve the contrast and peak brightness of conventional data projectors. Our method provides a non-homogenous light source by dynamically directing fractions of the light from the projector lamp before it reaches the display mechanism. This will supply more light to the areas that need it most, at the expense of the darker parts of the image. In effect, this method will produce a low resolution version of the image onto the image-forming element. To manipulate the light in this manner, we propose using an intermediate array of microelectromechanical system (MEMS) mirrors. By directing the light away from the dark parts earlier in the display chain, the amount of light that needs to be blocked will be reduced, thus decreasing the black level of the final image. Moreover, the ability to dynamically allocate more light to the bright parts of the image will allow for peak brightness higher than the average maximum brightness of display.

  11. A per-pixel Log2ADC for high dynamic range, 1000FPS digital focal plane arrays (DFPA)

    Science.gov (United States)

    Petilli, Eugene

    2016-09-01

    Intrinsix has developed a Digital Focal Plane Array (DFPA) architecture based on a novel piecewise linear Log2 ADC (LADC) with "lossless" analog compression which enables ultra-high dynamic range ROICs that use less power than other extended dynamic range technologies. The LADC provides dynamic range of 126dB with a constant 75dB SNR over the entire frame. The companding 13bit mantissa, 3bit radix per pixel LADCs compress the 21bit signals into efficient 16 bit data words. The Read Out IC (ROIC) is compatible with most IR and LWIR detectors including two-color SLS (photodiode) and uBolometers. The DFPA architecture leverages two (staggered frame prime and redundant) MIPI CSI-3 interfaces to achieve full HD DFPA at 1000 frames/sec; an equivalent uncompressed data rate of 100Gb/sec. The LADC uses direct injection into a moderate sized integrating capacitor and several comparators create a stream of multi-bit data values. These values are accumulated in an SRAM based log2ALU and the radix of the ALU is combined with the data to generate a feedback current to the integrating capacitor, closing the delta loop. The integration time and a single pole low pass IIR filter are configurable using control signals to the log2ALU. The feedback current is at least partially generated using PWM for high linearity.

  12. Multiplexed charge-locking device for large arrays of quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Puddy, R. K., E-mail: rkp27@cam.ac.uk; Smith, L. W; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Smith, C. G. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Al-Taie, H.; Kelly, M. J. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, 9 J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Pepper, M. [Department of Electronic and Electrical Engineering, University College London, WC1E 7JE (United Kingdom)

    2015-10-05

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  13. Multiplexed charge-locking device for large arrays of quantum devices

    Science.gov (United States)

    Puddy, R. K.; Smith, L. W.; Al-Taie, H.; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Kelly, M. J.; Pepper, M.; Smith, C. G.

    2015-10-01

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  14. Reconfiguration of Urban Photovoltaic Arrays Using Commercial Devices

    Directory of Open Access Journals (Sweden)

    Sergio Ignacio Serna-Garcés

    2015-12-01

    Full Text Available A recent approach to mitigate the adverse effects of photovoltaic (PV arrays operating under mismatching conditions is the dynamic electrical reconfiguration of the PV panels. This paper introduces a procedure to determine the best configuration of a PV array connected in a series-parallel structure without using complex mathematical models. Such a procedure uses the experimental current vs. voltage curves of the PV panels, which are composed of multiple PV modules, to construct the power vs. voltage curves of all of the possible configurations to identify the optimal one. The main advantage of this method is the low computational effort required to reconstruct the power vs. voltage curves of the array. This characteristic enables one to implement the proposed solution using inexpensive embedded devices, which are widely adopted in industrial applications. The proposed method, and its embedded implementation, were tested using a hardware-in-the-loop simulation of the PV system. Finally, the real-time operation and benefits of the proposed solution are illustrated using a practical example based on commercial devices.

  15. Single cell array impedance analysis in a microfluidic device

    Science.gov (United States)

    Altinagac, Emre; Taskin, Selen; Kizil, Huseyin

    2016-10-01

    Impedance analysis of single cells is presented in this paper. Following the separation of a target cell type by dielectrophoresis in our previous work, this paper focuses on capturing the cells as a single array and performing impedance analysis to point out the signature difference between each cell type. Lab-on-a-chip devices having a titanium interdigitated electrode layer on a glass substrate and a PDMS microchannel are fabricated to capture each cell in a single form and perform impedance analysis. HCT116 (homosapiens colon colorectal carcin) and HEK293 (human embryonic kidney) cells are used in our experiments.

  16. High-dynamic-range hybrid analog-digital control broadband optical spectral processor using micromirror and acousto-optic devices.

    Science.gov (United States)

    Riza, Nabeel A; Reza, Syed Azer

    2008-06-01

    For the first time, to the best of our knowledge, the design and demonstration of a programmable spectral filtering processor is presented that simultaneously engages the power of an analog-mode optical device such as an acousto-optic tunable filter and a digital-mode optical device such as the digital micromirror device. The demonstrated processor allows a high 50 dB attenuation dynamic range across the chosen 1530-1565 nm (~C band). The hybrid analog-digital spectral control mechanism enables the processor to operate with greater versatility when compared to analog- or digital-only processor designs. Such a processor can be useful both as a test instrument in biomedical applications and as an equalizer in fiber communication networks.

  17. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  18. Microneedle arrays as medical devices for enhanced transdermal drug delivery.

    Science.gov (United States)

    Garland, Martin J; Migalska, Katarzyna; Mahmood, Tuan Mazlelaa Tuan; Singh, Thakur Raghu Raj; Woolfson, A David; Donnelly, Ryan F

    2011-07-01

    In order to exploit the transdermal route for systemic delivery of a wide range of drug molecules, including peptide/protein molecules and genetic material, a means of disrupting the excellent barrier properties of the uppermost layer of the skin, the stratum corneum, must be sought. The use of microneedle (MN) arrays has been proposed as a method to temporarily disrupt the barrier function of the skin and thus enable enhanced transdermal drug delivery. MN arrays consist of a plurality of micron-sized needles, generally ranging from 25 to 2000 µm in height, of a variety of different shapes and composition (e.g., silicon, metal, sugars and biodegradable polymers). The application of such MN arrays to the skin results in the creation of aqueous channels that are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of macromolecules. This article will focus on recent and future developments for MN technology, focusing on the materials used for MN fabrication, the forces required for MN insertion and potential safety aspects that may be involved with the use of MN devices.

  19. High dynamic range low noise amplifier and wideband hybrid phase shifter for SiGe BiCMOS phased array T/R modules

    OpenAIRE

    2014-01-01

    Transmit/Receive Module (T/R Module) is one of the most essential blocks for Phased Array Radio Detection and Ranging (RADAR) system; due to being very influential on system level performance. To achieve high performance specifications, T/R Module structures are constructed with using III-V devices, which has some significant disadvantages; they are costly, and also consume too much area and power. As a result, application area of T/R Module is mainly restricted with the military and dedicate...

  20. Proof of principle study of ultrasonic particle manipulation by a circular array device

    OpenAIRE

    Grinenko, Alon; Wilcox, Paul D.; Courtney, Charles R. P.; Drinkwater, Bruce W.

    2012-01-01

    A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexi...

  1. Development of a high dynamic range spectroscopic system for observation of neutral hydrogen atom density distribution in Large Helical Device core plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K., E-mail: fujii@me.kyoto-u.ac.jp; Atsumi, S.; Watanabe, S.; Shikama, T.; Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8540 (Japan); Goto, M.; Morita, S. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-02-15

    We report development of a high dynamic range spectroscopic system comprising a spectrometer with 30% throughput and a camera with a low-noise fast-readout complementary metal-oxide semiconductor sensor. The system achieves a 10{sup 6} dynamic range (∼20 bit resolution) and an instrumental function approximated by a Voigt profile with Gauss and Lorentz widths of 31 and 0.31 pm, respectively, for 656 nm light. The application of the system for line profile observations of the Balmer-α emissions from high temperature plasmas generated in the Large Helical Device is also presented. In the observed line profiles, emissions are detected in far wings more than 1.0 nm away from the line center, equivalent to neutral hydrogen atom kinetic energies above 1 keV. We evaluate atom density distributions in the core plasma by analyzing the line profiles.

  2. Proof of principle study of ultrasonic particle manipulation by a circular array device

    Science.gov (United States)

    Grinenko, Alon; Wilcox, Paul D.; Courtney, Charles R. P.; Drinkwater, Bruce W.

    2012-01-01

    A feasibility study of a circular ultrasonic array device for acoustic particle manipulation is presented. A general approach based on Green's function is developed to analyse the underlying properties of a circular acoustic array. It allows the size of a controllable device area as a function of the number of array elements to be established and the array excitation required to produce a desired field distribution to be determined. A set of quantitative parameters characterizing the complexity of the pressure landscape is suggested, and relation to the number of array elements is found. Next, a finite-element model of a physically realizable circular piezo-acoustic array device is employed to demonstrate that the trapping capability can be achieved in practice. PMID:23197936

  3. A versatile method to grow localized arrays of nanowires for highly sensitive capacitive devices

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, A.; Yunus, S.

    2008-01-01

    We propose a new approach to increase the detection efficiency of the capacitive sensing devices, by growing vertically aligned nanowires arrays, localized and confined on small interdigited electrodes structures. The metallic tracks are made using optical lithography, and the nanowires are reali......We propose a new approach to increase the detection efficiency of the capacitive sensing devices, by growing vertically aligned nanowires arrays, localized and confined on small interdigited electrodes structures. The metallic tracks are made using optical lithography, and the nanowires...

  4. Experimental Demonstration of Array-level Learning with Phase Change Synaptic Devices

    OpenAIRE

    Eryilmaz, S. Burc; Kuzum, Duygu; Jeyasingh, Rakesh G. D.; Kim, SangBum; BrightSky, Matthew; Lam, Chung; Wong, H.-S. Philip

    2014-01-01

    The computational performance of the biological brain has long attracted significant interest and has led to inspirations in operating principles, algorithms, and architectures for computing and signal processing. In this work, we focus on hardware implementation of brain-like learning in a brain-inspired architecture. We demonstrate, in hardware, that 2-D crossbar arrays of phase change synaptic devices can achieve associative learning and perform pattern recognition. Device and array-level ...

  5. Mini array of quantum Hall devices based on epitaxial graphene

    Science.gov (United States)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.; Iisakka, I.; Immonen, P.; Manninen, A. J.; Satrapinski, A.

    2016-05-01

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux RH,2 at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed that the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×RH,2 = 2 h/e2 was smaller than the relative standard uncertainty of the measurement (resistance bridge.

  6. Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes.

    Science.gov (United States)

    Şen, Mustafa; Ino, Kosuke; Ramón-Azcón, Javier; Shiku, Hitoshi; Matsue, Tomokazu

    2013-09-21

    We present a chip device with an array of 900 gourd-shaped microwells designed to pair single cells of different types. The device consists of interdigitated array (IDA) electrodes and uses positive dielectrophoresis to trap cells within the microwells. Each side of a microwell is on a different comb of the IDA, so that cells of different types are trapped on opposite sides of the microwells, leading to close cell pairing. Using this device, a large number of cell pairs can be formed easily and rapidly, making it a highly attractive tool for controllable cell pairing in a range of biological applications.

  7. Simulation study of a high power density rectenna array for biomedical implantable devices

    Science.gov (United States)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  8. Tuneable photonic device including an array of metamaterial resonators

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Wanke, Michael; Benz, Alexander

    2017-03-14

    A photonic apparatus includes a metamaterial resonator array overlying and electromagnetically coupled to a vertically stacked plurality of quantum wells defined in a semiconductor body. An arrangement of electrical contact layers is provided for facilitating the application of a bias voltage across the quantum well stack. Those portions of the semiconductor body that lie between the electrical contact layers are conformed to provide an electrically conductive path between the contact layers and through the quantum well stack.

  9. Kilopixel X-Ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity

    Science.gov (United States)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Porst, J.-P.; Sadleir, J. E.; Smith, S. J.

    2012-01-01

    We are developing kilopixel arrays of TES microcalorimeters to enable high-resolution x-ray imaging spectrometers for future x-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40×40-pixel core array of 300 micron devices with 2.5 eV energy resolution (at 6 keV). Here we present device characterization of our 32×32 arrays, including x-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (I(sub c)) and transition shape to oscillate with applied magnetic field (B). We show I(sub c)(B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated copper backside heatsinking layer, which provides copper coverage on the four sidewalls of the silicon wells beneath each pixel.

  10. Monolithic microwave integrated circuit devices for active array antennas

    Science.gov (United States)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  11. Sensors and devices containing ultra-small nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  12. Single molecule detection using charge-coupled device array technology

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  13. Fabrication of biomolecules self-assembled on Au nanodot array for bioelectronic device.

    Science.gov (United States)

    Lee, Taek; Kumar, Ajay Yagati; Yoo, Si-Youl; Jung, Mi; Min, Junhong; Choi, Jeong-Woo

    2013-09-01

    In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays. Cytochorme c and single stranded DNA could be immobilized on the Au nanodot using the chemical linker 11-MUA and thiol-modification by covalent bonding, respectively. The atomic structure of the fabricated nano-platform device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrical conductivity of biomolecules immobilized on the Au nanodot arrays was confirmed by scanning tunneling spectroscopy (STS). To investigate the activity of biomolecule-immobilized Au-nano dot array, the cyclic voltammetry was carried out. This proposed nano-platform device, which is composed of biomolecules, can be used for the construction of a novel bioelectronic device.

  14. Digital cell counting device integrated with a single-cell array.

    Science.gov (United States)

    Saeki, Tatsuya; Hosokawa, Masahito; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2014-01-01

    In this paper, we present a novel cell counting method accomplished using a single-cell array fabricated on an image sensor, complementary metal oxide semiconductor sensor. The single-cell array was constructed using a microcavity array, which can trap up to 7,500 single cells on microcavities periodically arranged on a plane metallic substrate via the application of a negative pressure. The proposed method for cell counting is based on shadow imaging, which uses a light diffraction pattern generated by the microcavity array and trapped cells. Under illumination, the cell-occupied microcavities are visualized as shadow patterns in an image recorded by the complementary metal oxide semiconductor sensor due to light attenuation. The cell count is determined by enumerating the uniform shadow patterns created from one-on-one relationships with single cells trapped on the microcavities in digital format. In the experiment, all cell counting processes including entrapment of non-labeled HeLa cells from suspensions on the array and image acquisition of a wide-field-of-view of 30 mm(2) in 1/60 seconds were implemented in a single integrated device. As a result, the results from the digital cell counting had a linear relationship with those obtained from microscopic observation (r(2)  = 0.99). This platform could be used at extremely low cell concentrations, i.e., 25-15,000 cells/mL. Our proposed system provides a simple and rapid miniaturized cell counting device for routine laboratory use.

  15. Diode-array UV solar spectroradiometer implementing a digital micromirror device

    Science.gov (United States)

    Feldman, A.; Burnitt, T.; Porrovecchio, G.; Smid, M.; Egli, L.; Gröbner, J.; Nield, K. M.

    2014-12-01

    The solar ultraviolet spectrum captured by commercially available diode-array spectroradiometers is dominated by stray light from longer wavelengths with higher intensity. The implementation of a digital micromirror device in an array spectroradiometer has the potential to enable the precise selection of desired wavelengths as well as the ability to reduce spectral intensity of some wavelengths via selective mirror modulation, both reducing long wavelength stray light. A prototype consisting of off-the-shelf components has been assembled to verify the validity of the base concept, and initial measurements have been performed to confirm the throughput and image qualities such as spectral resolution and astigmatism.

  16. Use of microneedle array devices for continuous glucose monitoring: a review.

    Science.gov (United States)

    El-Laboudi, Ahmed; Oliver, Nick S; Cass, Anthony; Johnston, Desmond

    2013-01-01

    Microneedle array devices provide the opportunity to overcome the barrier characteristics of the outermost skin layer, the stratum corneum. This novel technology can be used as a therapeutic tool for transdermal drug delivery, including insulin, or as a diagnostic tool providing access to dermal biofluids, with subsequent analysis of its contents. Over the last decade, the use of microneedle array technology has been the focus of extensive research in the field of transdermal drug delivery. More recently, the diagnostic applications of microneedle technology have been developed. This review summarizes the existing evidence for the use of microneedle array technology as biosensors for continuous monitoring of the glucose content of interstitial fluid, focusing also on mechanics of insertion, microchannel characteristics, and safety profile.

  17. A novel device based on a fluorescent cross-responsive sensor array for detecting pesticide residue

    Science.gov (United States)

    Huang, Jing; Hou, Changjun; Lei, Jincan; Huo, Danqun; Luo, Xiaogang; Dong, Liang

    2016-11-01

    In this paper, a novel, simple, rapid, and low-cost detection device for pesticide residue was constructed. A sensor array based on a cross-responsive mechanism was designed. The data collection and processing system was used to detect fluorescent signal of the sensor arrays, and to extract unique patterns of the tested pesticide residue. Four selected pesticides, carbendazim, diazine, fenvalerate, and pentachloronitrobenzene, were detected by the proposed device. Unsupervised pattern recognition methods, hierarchical cluster analysis and principal component analysis, were used to analyze the data. The results showed that the methods could 100% discriminate the four pesticide residues. According to the standard regression linear curve of the fluorescence intensity and the concentration of pesticide, the quantitative value of the pesticide was detected, and the device obtained responses at concentrations below 8 ppb, and it has a good linear relationship in the range of 0.01-1 ppm. According to the results, the proposed detection device showed excellent selectivity and discrimination ability for the pesticide residues. However, our preliminary study demonstrated that the proposed detection device has excellent potential application for the safety inspection of food.

  18. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    Science.gov (United States)

    Sun, Rui-Nan; Peng, Kui-Qing; Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-01

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  19. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch

    Directory of Open Access Journals (Sweden)

    Yi-Chun Du

    2016-06-01

    Full Text Available Hemodialysis (HD is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

  20. Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: arrays, emitters and photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Eden, J G [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Park, S-J [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Ostrom, N P [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); McCain, S T [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Wagner, C J [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Vojak, B A [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Chen, J [Microelectronics Laboratory, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Liu, C [Microelectronics Laboratory, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Allmen, P von [Motorola Laboratories, Solid State Research Center, Tempe, AZ 85284 (United States); Zenhausern, F [Motorola Laboratories, Solid State Research Center, Tempe, AZ 85284 (United States); Sadler, D J [Motorola Laboratories, Solid State Research Center, Tempe, AZ 85284 (United States); Jensen, C [Motorola Laboratories, Solid State Research Center, Tempe, AZ 85284 (United States); Wilcox, D L [Motorola Laboratories, Solid State Research Center, Tempe, AZ 85284 (United States); Ewing, J J [Ewing Technology Associates, 5416 143rd Avenue, SE, Bellevue, WA 98006 (United States)

    2003-12-07

    Recent advances in the development of microplasma devices fabricated in a variety of materials systems (Si, ceramic multilayers, and metal/polymer structures) and configurations are reviewed. Arrays of microplasma emitters, having inverted pyramidal Si electrodes or produced in ceramic multilayer sandwiches with integrated ballasting for each pixel, have been demonstrated and arrays as large as 30 x 30 pixels are described. A new class of photodetectors, hybrid semiconductor/microplasma devices, is shown to exhibit photoresponsivities in the visible and near-infrared that are more than an order of magnitude larger than those typical of semiconductor avalanche photodiodes. Microdischarge devices having refractory or piezoelectric dielectric films such as Al{sub 2}O{sub 3} or BN have extended lifetimes ({approx}86% of initial radiant output after 100 h with an Al{sub 2}O{sub 3} dielectric) and controllable electrical characteristics. A segmented, linear array of microdischarges, fabricated in a ceramic multilayer structure and having an active length of {approx}1 cm and a clear aperture of 80 x 360 {mu}m{sup 2}, exhibits evidence of gain on the 460.3 nm transition of Xe{sup +}, making it the first example of a microdischarge-driven optical amplifier.

  1. Fabricating process of hollow out-of-plane Ni microneedle arrays and properties of the integrated microfluidic device

    Science.gov (United States)

    Zhu, Jun; Cao, Ying; Wang, Hong; Li, Yigui; Chen, Xiang; Chen, Di

    2013-07-01

    Although microfluidic devices that integrate microfluidic chips with hollow out-of-plane microneedle arrays have many advantages in transdermal drug delivery applications, difficulties exist in their fabrication due to the special three-dimensional structures of hollow out-of-plane microneedles. A new, cost-effective process for the fabrication of a hollow out-of-plane Ni microneedle array is presented. The integration of PDMS microchips with the Ni hollow microneedle array and the properties of microfluidic devices are also presented. The integrated microfluidic devices provide a new approach for transdermal drug delivery.

  2. Digital cell counting device integrated with a single-cell array.

    Directory of Open Access Journals (Sweden)

    Tatsuya Saeki

    Full Text Available In this paper, we present a novel cell counting method accomplished using a single-cell array fabricated on an image sensor, complementary metal oxide semiconductor sensor. The single-cell array was constructed using a microcavity array, which can trap up to 7,500 single cells on microcavities periodically arranged on a plane metallic substrate via the application of a negative pressure. The proposed method for cell counting is based on shadow imaging, which uses a light diffraction pattern generated by the microcavity array and trapped cells. Under illumination, the cell-occupied microcavities are visualized as shadow patterns in an image recorded by the complementary metal oxide semiconductor sensor due to light attenuation. The cell count is determined by enumerating the uniform shadow patterns created from one-on-one relationships with single cells trapped on the microcavities in digital format. In the experiment, all cell counting processes including entrapment of non-labeled HeLa cells from suspensions on the array and image acquisition of a wide-field-of-view of 30 mm(2 in 1/60 seconds were implemented in a single integrated device. As a result, the results from the digital cell counting had a linear relationship with those obtained from microscopic observation (r(2  = 0.99. This platform could be used at extremely low cell concentrations, i.e., 25-15,000 cells/mL. Our proposed system provides a simple and rapid miniaturized cell counting device for routine laboratory use.

  3. Effective piezoelectric response of substrate-integrated ZnO nanowire array devices on galvanized steel.

    Science.gov (United States)

    Velazquez, By Jesus M; Baskaran, Sivapalan; Gaikwad, Anil V; Ngo-Duc, Tam-Triet; He, Xiangtong; Oye, Michael M; Meyyappan, M; Rout, Tapan K; Fu, John Y; Banerjee, Sarbajit

    2013-11-13

    Harvesting waste energy through electromechanical coupling in practical devices requires combining device design with the development of synthetic strategies for large-area controlled fabrication of active piezoelectric materials. Here, we show a facile route to the large-area fabrication of ZnO nanostructured arrays using commodity galvanized steel as the Zn precursor as well as the substrate. The ZnO nanowires are further integrated within a device construct and the effective piezoelectric response is deduced based on a novel experimental approach involving induction of stress in the nanowires through pressure wave propagation along with phase-selective lock-in detection of the induced current. The robust methodology for measurement of the effective piezoelectric coefficient developed here allows for interrogation of piezoelectric functionality for the entire substrate under bending-type deformation of the ZnO nanowires.

  4. Glad nanostructured arrays with enhanced carrier collection and light trapping for photoconductive and photovoltaic device applications

    Science.gov (United States)

    Cansizoglu, Hilal

    Solar energy harvesting has been of great interest for researchers over the past 50 years. Main emphasis has been on developing high quality materials with low defect density and proper band gaps. However, high cost of bulk materials and insufficient light absorption in thin films led to utilization of semiconductor nanostructures in photovoltaics and photonics. Light trapping abilities of nanostructures can provide high optical absorption whereas core/shell nanostructured arrays can allow enhanced charge carrier collection. However, most of the nanofabrication methods that can produce uniform nanostructure geometries are limited in materials, dimensions, and not compatible with industrial production systems. Therefore, it is essential to develop innovative low-cost fabrication approaches that can address these issues. The primary goal of this project is to investigate light trapping and carrier collection properties of glancing angle deposited (GLAD) nanostructured arrays for high-efficiency, low-cost photoconductive and photovoltaic devices using characterization techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and time resolved photocurrent measurements. Indium sulfide (In2S3) has been chosen as a model material system in this study. GLAD nanostructured arrays of vertical rods, screws, springs, zigzags and tilted rods were fabricated and characterized. A strong dependence of optical absorption on the shapes of nanostructures is observed from UV-vis-NIR spectroscopy. A simulation study using finite difference time domain (FDTD) shows that introducing 3D geometry results in diffuse scattering of light and leads to high optical absorption. Monte Carlo simulations were conducted to determine a simple and scalable fabrication technique for conformal and uniform shell coatings. The results suggest that an atomic flux with angular distribution, which can be

  5. Ultra-compact optical true time delay device for wideband phased array radars.

    Energy Technology Data Exchange (ETDEWEB)

    Spahn, Olga Blum; Rabb, David J. (AFRL/RYJM, WPAFB, OH); Cowan, William D.; McCray, David L. (Ohio State University, Columbus, OH); Rowe, Delton, J. (Northrop Grumman Aerospace Systems, Redondo Beach, CA); Flannery, Martin R. (Northrop Grumman Aerospace Systems, Redondo Beach, CA); Yi, Allen Y. (Ohio State University, Columbus, OH); Ho, James G. (Northrop Grumman Aerospace Systems, Redondo Beach, CA); Anderson, Betty Lise (Ohio State University, Columbus, OH)

    2010-02-01

    An ultra-compact optical true time delay device is demonstrated that can support 112 antenna elements with better than six bits of delay in a volume 16-inch x 5-inch x 4-inch including the box and electronics. Free-space beams circulate in a White cell, overlapping in space to minimize volume. The 18 mirrors are slow-tool diamond turned on two substrates, one at each end, to streamline alignment. Pointing accuracy of better than 10 {micro}rad is achieved, with surface roughness {approx}45 nm rms. A MEMS tip-style mirror array selects among the paths for each beam independently, requiring {approx}100 {micro}s to switch the whole array. The micromirrors have 1.4{sup o} tip angle and three stable states (east, west, and flat). The input is a fiber-and-microlens array, whose output spots are re-imaged multiple times in the White cell, striking a different area of the single MEMS chip in each of 10 bounces. The output is converted to RF by an integrated InP wideband optical combiner detector array. Delays were accurate to within 4% (shortest delay) to 0.03% (longest mirror train). The fiber-to-detector insertion loss is 7.82 dB for the shortest delay path.

  6. Ex vivo evaluation of a microneedle array device for transdermal application.

    Science.gov (United States)

    Indermun, Sunaina; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Modi, Girish; van Vuuren, Sandy; Luttge, Regina; Pillay, Viness

    2015-12-30

    A new approach of transdermal drug delivery is the use of microneedles. This promising technique offers the potential to be broadly used for drug administration as it enables the dramatic increase in permeation of medicaments across the stratum corneum. The potential of microneedles has evolved to spawn a plethora of potential transdermal applications. In order to advance the microneedle capabilities and possibly revolutionize advanced drug delivery, this study introduces a novel transdermal electro-modulated hydrogel-microneedle array (EMH-MNA) device composed of a nano-porous, embeddable ceramic microneedle array as well as an optimized EMH for the electro-responsive delivery of indomethacin through the skin. The ex vivo permeation as well as drug release experiments were performed on porcine skin tissue to ascertain the electro-responsive capabilities of the device. In addition, the microbial permeation ability of the microneedles across the viable epidermis in both microneedle-punctured skin as well as hypodermic needle-punctured skin was determined. Ex vivo evaluation of the EMH-MNA device across porcine skin demonstrated that without electro-stimulation, significantly less drug release was obtained (±0.4540mg) as compared to electro-stimulation (±2.93mg).

  7. Nonlinear Dynamics of an Ambient Noise Driven Array of Coupled Graphene Nanostructured Devices for Energy Harvesting

    Directory of Open Access Journals (Sweden)

    El Aroudi A.

    2014-01-01

    Full Text Available Nonlinearities have been shown to play an important role in increasing the extracted energy of energy harvesting devices at the macro and micro scales. Vibration-based energy harvesting on the nano scale has also received attention. In this paper, we characterize the nonlinear dynamical behavior of an array of three coupled strained nanostructured graphene for its potential use in energy harvesting applications. The array is formed by three compressed vibrating membrane graphene sheet subject to external vibrational noise excitation. We present the continuous time dynamical model of the system in the form of a double-well three degree of freedom system. Random vibrations are considered as the main ambient energy source for the system and its performances in terms of the probability density function, RMS or amplitude value of the position, FFT spectra and state plane trajectories are presented in the steady state non-equilibrium regime when the noise level is considered as a control parameter.

  8. Optical matrix for clock distribution and synchronous operation in two-dimensional array devices

    Science.gov (United States)

    Lee, K. S.; Shu, C.

    1996-06-01

    A scheme to generate an optical matrix from a mode-locked Nd:YAG laser has been theoretically explored and experimentally demonstrated. The matrix consists of highly synchronized and sequentially delayed optical pulses suitable for use with two-dimensional array optoelectronic devices and clock distribution system. The output pulses have the same state of polarization and no timing jitter is produced among the elements. Encoded outputs have been generated from the matrix using a set of photomasks. This technique can be applied to high-speed optical parallel processing.

  9. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  10. A forensic laboratory tests the Berkeley microfabricated capillary array electrophoresis device.

    Science.gov (United States)

    Greenspoon, Susan A; Yeung, Stephanie H I; Johnson, Kelly R; Chu, Wai K; Rhee, Han N; McGuckian, Amy B; Crouse, Cecelia A; Chiesl, Thomas N; Barron, Annelise E; Scherer, James R; Ban, Jeffrey D; Mathies, Richard A

    2008-07-01

    Miniaturization of capillary electrophoresis onto a microchip for forensic short tandem repeat analysis is the initial step in the process of producing a fully integrated and automated analysis system. A prototype of the Berkeley microfabricated capillary array electrophoresis device was installed at the Virginia Department of Forensic Science for testing. Instrument performance was verified by PowerPlex 16 System profiling of single source, sensitivity series, mixture, and casework samples. Mock sexual assault samples were successfully analyzed using the PowerPlex Y System. Resolution was assessed using the TH01, CSF1PO, TPOX, and Amelogenin loci and demonstrated to be comparable with commercial systems along with the instrument precision. Successful replacement of the Hjerten capillary coating method with a dynamic coating polymer was performed. The accurate and rapid typing of forensic samples demonstrates the successful technology transfer of this device into a practitioner laboratory and its potential for advancing high-throughput forensic typing.

  11. Fabrication of polymer lenses and microlens array for lab-on-a-chip devices

    Science.gov (United States)

    Olivieri, Federico; Todino, Michele; Coppola, Sara; Vespini, Veronica; Pagliarulo, Vito; Grilli, Simonetta; Ferraro, Pietro

    2016-08-01

    Microlenses and microlens arrays are assuming an increasingly important role in optical devices and communication systems. In response to their extended use in different fields of technology, a great emphasis is being placed on research into simple manufacturing approaches for these micro-optical components as well as on the characterization of their performance. This paper provides an overview of the recent emerging technologies for the fabrication of polymer microlenses by electrical, mechanical, chemical, and pyro-electrical methods. Attention is mainly focused on polymer molding and self-assembling for microlens arrays, while ink-jet printing is proposed for on-demand printing of lenses with high resolution. Among all the emerging techniques proposed, the pyro-electrodynamic approach has recently achieved great interest as an easy multiscale approach for the fabrication of polymer microlens arrays through a flexible process driven by electrohydrodynamic pressure. As each processing method has distinct advantages and limitations, the most significant characteristic parameters and the measurements of these parameters are discussed for each method.

  12. Feasibility study of using a Zener diode as the selection device for bipolar RRAM and WORM memory arrays

    Science.gov (United States)

    Li, Yingtao; Fu, Liping; Tao, Chunlan; Jiang, Xinyu; Sun, Pengxiao

    2014-01-01

    Cross-bar arrays are usually used for the high density application of resistive random access memory (RRAM) devices. However, cross-talk interference limits an increase in the integration density. In this paper, the Zener diode is proposed as a selection device to suppress the sneak current in bipolar RRAM arrays. Measurement results show that the Zener diode can act as a good selection device, and the sneak current can be effectively suppressed. The readout margin is sufficiently improved compared to that obtained without the selection device. Due to the improvement for the reading disturbance, the size of the cross-bar array can be enhanced to more than 103 × 103. Furthermore, the possibility of using a write-once-read-many-times (WORM) cross-bar array is also demonstrated by connecting the Zener diode and the bipolar RRAM in series. These results strongly suggest that using a Zener diode as a selection device opens up great opportunities to realize high density bipolar RRAM arrays.

  13. A transfer hamiltonian model for devices based on quantum dot arrays.

    Science.gov (United States)

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  14. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    Directory of Open Access Journals (Sweden)

    S. Illera

    2015-01-01

    Full Text Available We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  15. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    Science.gov (United States)

    Hijmering, Richard A.

    2009-12-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Optical Ground Station on Tenerife. To overcome the limited field of view which can be achieved with single STJ arrays, DROIDS (Distributed Read Out Imaging Devices) are being developed which produce next to energy and timing also produce positional information with each detector element. These DROIDS consist of a superconducting absorber strip with proximized STJs on either end. The STJs are a Ta/Al/AlOx/Al/Ta 100/30/1/30/100nm sandwich of which the bottom electrode Ta layer is one with the 100nm thick absorber layer. The ratio of the two signals from the STJs provides information on the absorption position and the sum signal is a measure for the energy of the absorbed photon. In this thesis we present different important processes which are involved with the detection of optical photons using DROIDs. This includes the spatial and spectral resolution, confinement of the quasiparticles in the proximized STJs to enhance tunnelling and quasiparticle creation resulting from absorption of a photon in the proximized STJ. We have combined our findings in the development of a 2D theoretical model which describes the diffusion of quasiparticles and imperfect confinement via exchange of quasiparticles between the absorber and STJ. Finally we will present some of the first results obtained with an array of 60 360x33.5 μm2 DROIDs in 3x20 format.

  16. Multidimensional microstructured photonic device based on all-solid waveguide array fiber and magnetic fluid

    Science.gov (United States)

    Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Yang, Xiaoping; Yao, Jianquan

    2017-01-01

    An all-solid waveguide array fiber (WAF) is one kind of special microstructured optical fiber in which the higher-index rods are periodically distributed in a low-index silica host to form the transverse two-dimensional photonic crystal. In this paper, one kind of multidimensional microstructured optical fiber photonic device is proposed by using electric arc discharge method to fabricate periodic tapers along the fiber axis. By tuning the applied magnetic field intensity, the propagation characteristics of the all-solid WAF integrated with magnetic fluid are periodically modulated in both radial and axial directions. Experimental results show that the wavelength changes little while the transmission loss increases for an applied magnetic field intensity range from 0 to 500 Oe. The magnetic field sensitivity is 0.055 dB/Oe within the linear range from 50 to 300 Oe. Meanwhile, the all-solid WAF has very similar thermal expansion coefficient for both high- and low-refractive index glasses, and thermal drifts have a little effect on the mode profile. The results show that the temperature-induced transmission loss is <0.3 dB from 26°C to 44°C. Further tuning coherent coupling of waveguides and controlling light propagation, the all-solid WAF would be found great potential applications to develop new micro-nano photonic devices for optical communications and optical sensing applications.

  17. Multidimensional microstructured photonic device based on all-solid waveguide array fiber and magnetic fluid

    Directory of Open Access Journals (Sweden)

    Miao Yinping

    2016-11-01

    Full Text Available An all-solid waveguide array fiber (WAF is one kind of special microstructured optical fiber in which the higher-index rods are periodically distributed in a low-index silica host to form the transverse two-dimensional photonic crystal. In this paper, one kind of multidimensional microstructured optical fiber photonic device is proposed by using electric arc discharge method to fabricate periodic tapers along the fiber axis. By tuning the applied magnetic field intensity, the propagation characteristics of the all-solid WAF integrated with magnetic fluid are periodically modulated in both radial and axial directions. Experimental results show that the wavelength changes little while the transmission loss increases for an applied magnetic field intensity range from 0 to 500 Oe. The magnetic field sensitivity is 0.055 dB/Oe within the linear range from 50 to 300 Oe. Meanwhile, the all-solid WAF has very similar thermal expansion coefficient for both high- and low-refractive index glasses, and thermal drifts have a little effect on the mode profile. The results show that the temperature-induced transmission loss is <0.3 dB from 26°C to 44°C. Further tuning coherent coupling of waveguides and controlling light propagation, the all-solid WAF would be found great potential applications to develop new micro-nano photonic devices for optical communications and optical sensing applications.

  18. Framework and limits on power density in wind and hydrokinetic device arrays using systematic flow manipulation

    CERN Document Server

    Mandre, Shreyas

    2016-01-01

    Wind and hydrokinetic turbine array performance suffers because the wakes of upstream turbines diminish flow to downstream turbines. Here we analyze systematic deflection of the wakes to direct unimpeded flow onto the downstream turbines and increase the area power density. We examine the case of an abstract 1D turbine-deflector array aligned parallel to a 2D free stream flow, in which case the array presents negligible frontal area to the flow without deflection. Using the framework of inviscid fluid dynamics, the flow manipulation is decomposed into flow deflection due to bound vorticity in the array, and energy extraction resulting from free vorticity shed by the array. While this general framework is agnostic to the technological details, it captures the geometry of a vertical fence of turbines and deflectors along the centerline of a river, minimizing the array footprint. We find a localized array can direct significant kinetic energy through itself, while having a minimal impact on array efficiency; the...

  19. Electro-Deformation of Fused Cells in a Microfluidic Array Device

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2016-11-01

    Full Text Available We present a new method of analyzing the deformability of fused cells in a microfluidic array device. Electrical stresses—generated by applying voltages (4–20 V across discrete co-planar microelectrodes along the side walls of a microfluidic channel—have been used to electro-deform fused and unfused stem cells. Under an electro-deformation force induced by applying an alternating current (AC signal, we observed significant electro-deformation phenomena. The experimental results show that the fused stem cells were stiffer than the unfused stem cells at a relatively low voltage (<16 V. However, at a relatively high voltage, the fused stem cells were more easily deformed than were the unfused stem cells. In addition, the electro-deformation process is modeled based on the Maxwell stress tensor and structural mechanics of cells. The theoretical results show that a positive correlation is found between the deformation of the cell and the applied voltage, which is consistent with the experimental results. Combined with a numerical analysis and experimental study, the results showed that the significant difference of the deformation ratio of the fused and unfused cells is not due to their size difference. This demonstrates that some other properties of cell membranes (such as the membrane structure were also changed in the electrofusion process, in addition to the size modification of that process.

  20. Thermal imager based on the array light sensor device of 128×128 CdHgTe-photodiodes

    Directory of Open Access Journals (Sweden)

    Reva V. P.

    2010-08-01

    Full Text Available The results of investigation of developed thermal imager for middle (3—5 µm infrared region are presented and its applications features are discussed. The thermal imager consists of cooled to 80 K 128×128 diodes focal plane array on the base of cadmium–mercury–telluride compound and cryostat with temperature checking system. The photodiode array is bonded with readout device (silicon focal processor via indium microcontacts. The measured average value of noise equivalent temperature difference was NETD= 20±4 mK (background radiation temperature T = 300 K, field of view 2θ = 180°, the cooled diaphragm was not used.

  1. Laser-Assisted Simultaneous Transfer and Patterning of Vertically Aligned Carbon Nanotube Arrays on Polymer Substrates for Flexible Devices

    KAUST Repository

    In, Jung Bin

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications. © 2012 American Chemical Society.

  2. Encapsulated, High-Performance, Stretchable Array of Stacked Planar Micro-Supercapacitors as Waterproof Wearable Energy Storage Devices.

    Science.gov (United States)

    Kim, Hyoungjun; Yoon, Jangyeol; Lee, Geumbee; Paik, Seung-Ho; Choi, Gukgwon; Kim, Daeil; Kim, Beop-Min; Zi, Goangseup; Ha, Jeong Sook

    2016-06-29

    We report the fabrication of an encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors (MSCs) as a wearable energy storage device for waterproof applications. A pair of planar all-solid-state MSCs with spray-coated multiwalled carbon nanotube electrodes and a drop-cast UV-patternable ion-gel electrolyte was fabricated on a polyethylene terephthalate film using serial connection to increase the operation voltage of the MSC. Additionally, multiple MSCs could be vertically stacked with parallel connections to increase both the total capacitance and the areal capacitance owing to the use of a solid-state patterned electrolyte. The overall device of five parallel-connected stacked MSCs, a microlight-emitting diode (μ-LED), and a switch was encapsulated in thin Ecoflex film so that the capacitance remained at 82% of its initial value even after 4 d in water; the μ-LED was lit without noticeable decrease in brightness under deformation including bending and stretching. Furthermore, an Ecoflex encapsulated oximeter wound around a finger was operated using the stored energy of the MSC array attached to the hand (even in water) to give information on arterial pulse rate and oxygen saturation in the blood. This study suggests potential applications of our encapsulated MSC array in wearable energy storage devices especially in water.

  3. Development and characterization of an all-solid-state potentiometric biosensor array microfluidic device for multiple ion analysis.

    Science.gov (United States)

    Liao, Wei-Yin; Weng, Chen-Hsun; Lee, Gwo-Bin; Chou, Tse-Chuan

    2006-10-01

    A microfluidic device with an all-solid-state potentiometric biosensor array was developed using microfabrication technology. The sensor array included a pH indicator, and potassium and calcium ion-selective microelectrodes. The pH indicator was an iridium oxide thin film modified platinum microelectrode and the iridium oxide was deposited by an electrochemical method. The potassium and calcium ion-selective microelectrodes were platinum coated with silicon rubber based ion-selective membranes with respectively potassium (valinomycin) and calcium (ETH 1001) ionophores. The detection system was integrated with a micro-pneumatic pump which can continuously drive fluids into the microchannel through sensors at flow rates ranging from 52.4 microl min(-1) to 7.67 microl min(-1). The sensor array microfluidic device showed near-Nernstian responses with slopes of 62.62 mV +/- 2.5 mV pH(-1), 53.76 mV +/- 3 mV -log[K+](-1) and 25.77 mV +/- 2 mV -log[Ca2+](-1) at 25 degrees C +/- 5 degrees C, and a linear response within the pH range of 2-10, with potassium and calcium concentrations between 0.1 M and 10(-6) M. In this study the device provided a convenient way to measure the concentration of hydrogen, potassium and calcium ions, which are important physiological parameters.

  4. Resolution enhancement using pulse width modulation in digital micromirror device-based point-array scanning pattern exposure

    Science.gov (United States)

    Kuo, Hung-Fei; Huang, Yi-Jun

    2016-04-01

    Digital-mask lithography systems, with a digital micromirror device (DMD) as their central piece, have been widely used for defining patterns on printed circuit board (PCB). This study designed optical module parameters for point-array projection lithography based on field tracing technique to improve the quality of the aerial image on the exposure plane. In the realized optical module for the point-array projection lithography, a DMD was used as the dynamic digital-mask, and a 405-nm-wavelength laser was used to illuminate the DMD. The laser was then focused through the micro-lens array in the optical module to form a point array and was projected onto a dynamic scanning stage. By calculating the beam-overlapping rate, stage velocity, spot diameter, and DMD frame rate and programming them into the stage- and DMD-synchronized controller, the point array formed line patterns on the photoresist. Furthermore, using pulse width modulation (PWM) technique to operate the activation periods of the DMD mirrors effectively controlled the exposure and achieved a feature linewidth of less than 10 μm.

  5. Analysis of process parameter effect on DIBL in n-channel MOSFET device using L27 orthogonal array

    Science.gov (United States)

    Salehuddin, F.; Kaharudin, K. E.; Zain, A. S. M.; Yamin, A. K. Mat; Ahmad, I.

    2014-10-01

    In this research, the effect of the process parameters variation on drain induced barrier lowering (DIBL) was investigated. The fabrication of the transistor device was performed using TCAD simulator, consisting of ATHENA and ATLAS modules. These two modules were combined with Taguchi method to optimize the process parameters. The setting of process parameters was determined by using the orthogonal array of L27 in Taguchi Method. In NMOS device, the most dominant or significant factors for S/N Ratio are halo implant energy, S/D implant dose and S/D implant energy. Meanwhile, the S/N Ratio values of DIBL after the optimization approaches for array L27 is 29.42 dB. In L27 experiments, DIBL value for n-channel MOSFET device after optimizations approaches is +37.8 mV. The results obtained were satisfied to be small as expected. As conclusions, by setting up design of experiment with the Taguchi Method and TCAD simulator, the optimal solutions on DIBL for the robust design recipe of 32nm n-channel MOSFET device was successfully achieved.

  6. High-Throughput DNA Array for SNP Detection of KRAS Gene Using a Centrifugal Microfluidic Device.

    Science.gov (United States)

    Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    Here, we describe detection of single nucleotide polymorphism (SNP) in genomic DNA samples using a NanoBioArray (NBA) chip. Fast DNA hybridization is achieved in the chip when target DNAs are introduced to the surface-arrayed probes using centrifugal force. Gold nanoparticles (AuNPs) are used to assist SNP detection at room temperature. The parallel setting of sample introduction in the spiral channels of the NBA chip enables multiple analyses on many samples, resulting in a technique appropriate for high-throughput SNP detection. The experimental procedure, including chip fabrication, probe array printing, DNA amplification, hybridization, signal detection, and data analysis, is described in detail.

  7. SEMICONDUCTOR DEVICES Novel multi-bit non-uniform channel charge trapping memory device with virtual-source NAND flash array

    Science.gov (United States)

    Haiming, Gu; Liyang, Pan; Peng, Zhu; Dong, Wu; Zhigang, Zhang; Jun, Xu

    2010-10-01

    In order to overcome the bit-to-bit interference of the traditional multi-level NAND type device, this paper firstly proposes a novel multi-bit non-uniform channel charge trapping memory (NUC-CTM) device with virtual-source NAND-type array architecture, which can effectively restrain the second-bit effect (SBE) and provide 3-bit per cell capability. Owing to the n- buffer region, the SBE induced threshold voltage window shift can be reduced to less than 400 mV and the minimum threshold voltage window between neighboring levels is larger than 750 mV for reliable 3-bit operation. A silicon-rich SiON is also investigated as a trapping layer to improve the retention reliability of the NUC-CTM.

  8. A backing device based on an embedded stiffener and retractable insertion tool for thin-film cochlear arrays

    Science.gov (United States)

    Tewari, Radheshyam

    Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hot-embossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes

  9. High dynamic range subjective testing

    Science.gov (United States)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  10. Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays.

    Science.gov (United States)

    Wang, Chao-Hung; Liao, Wei-Shun; Ku, Nai-Jen; Li, Yi-Chang; Chen, Yen-Chih; Tu, Li-Wei; Liu, Chuan-Pu

    2014-11-01

    This study investigates the role of carrier concentration in semiconducting piezoelectric single-nanowire nanogenerators (SNWNGs) and piezotronic devices. Unintentionally doped and Si-doped GaN nanowire arrays with various carrier concentrations, ranging from 10(17) (unintentionally doped) to 10(19) cm(-3) (heavily doped), are synthesized. For SNWNGs, the output current of individual nanowires starts from a negligible level and rises to the maximum of ≈50 nA at a doping concentration of 5.63 × 10(18) cm(-3) and then falls off with further increase in carrier concentration, due to the competition between the reduction of inner resistance and the screening effect on piezoelectric potential. For piezotronic applications, the force sensitivity based on the change of the Schottky barrier height works best for unintentionally doped nanowires, reaching 26.20 ± 1.82 meV nN(-1) and then decreasing with carrier concentration. Although both types of devices share the same Schottky diode, they involve different characteristics in that the slope of the current-voltage characteristics governs SNWNG devices, while the turn-on voltage determines piezotronic devices. It is demonstrated that free carriers in piezotronic materials can influence the slope and turn-on voltage of the diode characteristics concurrently when subjected to strain. This work offers a design guideline for the optimum doping concentration in semiconductors for obtaining the best performance in piezotronic devices and SNWNGs.

  11. Secure High Dynamic Range Images

    OpenAIRE

    Med Amine Touil; Noureddine Ellouze

    2016-01-01

    In this paper, a tone mapping algorithm is proposed to produce LDR (Limited Dynamic Range) images from HDR (High Dynamic Range) images. In the approach, non-linear functions are applied to compress the dynamic range of HDR images. Security tools will be then applied to the resulting LDR images and their effectiveness will be tested on the reconstructed HDR images. Three specific examples of security tools are described in more details: integrity verification using hash function to compute loc...

  12. Stereoscopic High Dynamic Range Video

    OpenAIRE

    Rüfenacht, Dominic

    2011-01-01

    Stereoscopic video content is usually being created by using two or more cameras which are recording the same scene. Traditionally, those cameras have the exact same intrinsic camera parameters. In this project, the exposure times of the cameras differ, allowing to record different parts of the dynamic range of the scene. Image processing techniques are then used to enhance the dynamic range of the captured data. A pipeline for the recording, processing, and displaying of high dynamic range (...

  13. Advanced High Dynamic Range Imaging Theory and Practice

    CERN Document Server

    Banterle, Francesco

    2011-01-01

    Imaging techniques seek to simulate the array of light that reaches our eyes to provide the illusion of sensing scenes directly. Both photography and computer graphics deal with the generation of images. Both disciplines have to cope with the high dynamic range in the energy of visible light that human eyes can sense. Traditionally photography and computer graphics took different approaches to the high dynamic range problem. Work over the last ten years though has unified these disciplines and created powerful new tools for the creation of complex, compelling and realistic images. This book pr

  14. Tracer gas dispersion in ducts-study of a new compact device using arrays of sonic micro jets

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.R. [Instituto Nacional de Engenharia e Tecnologia Industrial (INETI), Lisboa (Portugal); Afonso, C.F. [Faculdade de Engenharia, Universidade do Porto Departmento de Mecanica e Gestao Industrial, Porto (Portugal)

    2004-07-01

    One of the most feasible ways to measure duct airflows is by tracer gas techniques, especially for complex situations when the duct lengths are short as well as their access, which makes extremely difficult or impossible other methods to be implemented. One problem associated with the implementation of tracer gas technique when the ducts lengths are short is due to the impossibility of achieving complete mixing of the tracer with airflow and its sampling. In this work, the development of a new device for the injection of tracer gas in ducts is discussed as well as a new tracer-sampling device. The developed injection device has a compact tubular shape, with magnetic fixation to be easy to apply in duct walls. An array of sonic micro jets in counter current direction, with the possibility of angular movement according to its main axle ensures a complete mixing of the tracer in very short distances. The tracer-sampling device, with a very effective integration function, feeds the sampling system for analysis. Both devices were tested in a wind tunnel of approximately 21 m total length. The tests distances between injection and integration device considered were: X/Dh = 22; X/Dh = 4; X/Dh 2; and X/Dh = 1. For very short distances of X/Dh = 2 and X/Dh = 1, semi-empirical expressions were needed. A good reproducibility of airflow rate values was obtained. These preliminary tests showed that the practical implementation of tracer gas techniques in HVAC systems for measuring airflow rates with a very short mixing distance is possible with the devices developed. (author)

  15. Excellent nonlinearity of a selection device based on anti-series connected Zener diodes for ultrahigh-density bipolar RRAM arrays.

    Science.gov (United States)

    Li, Yingtao; Li, Rongrong; Fu, Liping; Gao, Xiaoping; Wang, Yang; Tao, Chunlan

    2015-10-23

    A crossbar array is usually used for the high-density application of a resistive random access memory (RRAM) device. However, the cross-talk interference limits the increase in the integration density. In this paper, anti-series connected Zener diodes as a selection device are proposed for bipolar RRAM arrays. Simulation results show that, by using the anti-series connected Zener diodes as a selection device, the readout margin is sufficiently improved compared to that obtained without a selection device or with anti-parallel connected diodes as the selection device. The maximum size of the crossbar arrays with anti-series connected Zener diodes as a selection device over 1 TB is estimated by theoretical simulation. In addition, the feasibility of using the anti-series connected Zener diodes as a selection device for bipolar RRAM is demonstrated experimentally. These results indicate that anti-series connected Zener diodes as a selection device opens up great opportunities to realize ultrahigh-density bipolar RRAM arrays.

  16. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    NARCIS (Netherlands)

    Hijmering, R.A.

    2009-01-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Opti

  17. Floating Droplet Array: An Ultrahigh-Throughput Device for Droplet Trapping, Real-time Analysisand Recovery

    Directory of Open Access Journals (Sweden)

    Louai Labanieh

    2015-09-01

    Full Text Available We describe the design, fabrication and use of a dual-layered microfluidic device for ultrahigh-throughput droplet trapping, analysis, and recovery using droplet buoyancy. To demonstrate the utility of this device for digital quantification of analytes, we quantify the number of droplets, which contain a β-galactosidase-conjugated bead among more than 100,000 immobilized droplets. In addition, we demonstrate that this device can be used for droplet clustering and real-time analysis by clustering several droplets together into microwells and monitoring diffusion of fluorescein, a product of the enzymatic reaction of β-galactosidase and its fluorogenic substrate FDG, between droplets.

  18. Secure High Dynamic Range Images

    Directory of Open Access Journals (Sweden)

    Med Amine Touil

    2016-04-01

    Full Text Available In this paper, a tone mapping algorithm is proposed to produce LDR (Limited Dynamic Range images from HDR (High Dynamic Range images. In the approach, non-linear functions are applied to compress the dynamic range of HDR images. Security tools will be then applied to the resulting LDR images and their effectiveness will be tested on the reconstructed HDR images. Three specific examples of security tools are described in more details: integrity verification using hash function to compute local digital signatures, encryption for confidentiality, and scrambling technique.

  19. Array-type miniature interferometer as the core optical microsystem of an optical coherence tomography device for tissue inspection

    Science.gov (United States)

    Passilly, Nicolas; Perrin, Stéphane; Lullin, Justine; Albero, Jorge; Bargiel, Sylwester; Froehly, Luc; Gorecki, Christophe; Krauter, Johann; Osten, Wolfgang; Wang, Wei-Shan; Wiemer, Maik

    2016-04-01

    Some of the critical limitations for widespread use in medical applications of optical devices, such as confocal or optical coherence tomography (OCT) systems, are related to their cost and large size. Indeed, although quite efficient systems are available on the market, e.g. in dermatology, they equip only a few hospitals and hence, are far from being used as an early detection tool, for instance in screening of patients for early detection of cancers. In this framework, the VIAMOS project aims at proposing a concept of miniaturized, batch-fabricated and lower-cost, OCT system dedicated to non-invasive skin inspection. In order to image a large skin area, the system is based on a full-field approach. Moreover, since it relies on micro-fabricated devices whose fields of view are limited, 16 small interferometers are arranged in a dense array to perform multi-channel simultaneous imaging. Gaps between each channel are then filled by scanning of the system followed by stitching. This approach allows imaging a large area without the need of large optics. It also avoids the use of very fast and often expensive laser sources, since instead of a single point detector, almost 250 thousands pixels are used simultaneously. The architecture is then based on an array of Mirau interferometers which are interesting for their vertical arrangement compatible with vertical assembly at the wafer-level. Each array is consequently a local part of a stack of seven wafers. This stack includes a glass lens doublet, an out-of-plane actuated micro-mirror for phase shifting, a spacer and a planar beam-splitter. Consequently, different materials, such as silicon and glass, are bonded together and well-aligned thanks to lithographic-based fabrication processes.

  20. Determination of the Ultraviolet and Visible Spectral Response of a Charge - Injection Device Array Detector.

    Science.gov (United States)

    1980-08-01

    spectroscopic systems. In contrast to these approaches the charge-injection device has several unique features. The CID * ensor consists of a discrete...Embassy University of California, San Diego APO San Francisco 96503 La Jolla, California Mr. James Kelley Dr. A. Zirino DT.R.C Code 2R03 Naval Undersea Center Annapolis, Maryland 21402 San Diego, California 92132 1

  1. Dried reagents for multiplex genotyping by tag-array minisequencing to be used in microfluidic devices

    DEFF Research Database (Denmark)

    Ahlford, Annika; Kjeldsen, Bastian; Reimers, Jakob;

    2010-01-01

    was carried out with freeze-dried reagents stored in reaction chambers fabricated by micromilling in a cyclic olefin copolymer substrate. The results reported in this study are a key step towards the development of an integrated microfluidic device for point-of-care DNA-based diagnostics....

  2. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices.

    Science.gov (United States)

    Cansizoglu, Hilal; Cansizoglu, Mehmet F; Watanabe, Fumiya; Karabacak, Tansel

    2014-06-11

    Enhanced photocurrent values were achieved through a semiconductor-core/metal-shell nanorod array photoconductive device geometry. Vertically aligned indium sulfide (In2S3) nanorods were formed as the core by using glancing angle deposition technique (GLAD). A thin silver (Ag) layer is conformally coated around nanorods as the metallic shell through a high pressure sputter deposition method. This was followed by capping the nanorods with a metallic blanket layer of Ag film by utilizing a new small angle deposition technique combined with GLAD. Radial interface that was formed by the core/shell geometry provided an efficient charge carrier collection by shortening carrier transit times, which led to a superior photocurrent and gain. Thin metal shells around nanorods acted as a passivation layer to decrease surface states that cause prolonged carrier lifetimes and slow recovery of the photocurrent in nanorods. A combination of efficient carrier collection with surface passivation resulted in enhanced photocurrent and dynamic response at the same time in one device structure. In2S3 nanorod devices without the metal shell and with relatively thicker metal shell were also fabricated and characterized for comparison. In2S3 nanorods with thin metal shell showed the highest photosensitivity (photocurrent/dark current) response compared to two other designs. Microstructural, morphological, and electronic properties of the core/shell nanorods were used to explain the results observed.

  3. FAST TRACK COMMUNICATION: Self-patterned aluminium interconnects and ring electrodes for arrays of microcavity plasma devices encapsulated in Al2O3

    Science.gov (United States)

    Kim, K. S.; Park, S.-J.; Eden, J. G.

    2008-01-01

    Automatic formation of Al interconnects and ring electrodes, fully encapsulated by alumina, in planar arrays of Al2O3/Al/Al2O3 microcavity plasma devices has been accomplished by electrochemical processing of Al foil. Following the fabrication of cylindrical microcavities (50-350 µm in diameter) in 127 µm thick Al foil, virtually complete anodization of the foil yields azimuthally symmetric Al electrodes surrounding each cavity and interconnects between adjacent microcavities that are produced and simultaneously buried within a transparent Al2O3 film without the need for conventional patterning techniques. The diameter and pitch of the microcavities prior to anodization, as well as the anodization process parameters, determine which of the microcavity plasma devices in a one- or two-dimensional array are connected electrically. Data presented for 200 µm diameter cavities with a pitch of 150-225 µm illustrate the patterning of the interconnects and electrode connectivity after 4-10 h of anodization in oxalic acid. Self-patterned, linear arrays comprising 25 dielectric barrier devices have been excited by a sinusoidal or bipolar pulse voltage waveform and operated in 400-700 Torr of rare gas. Owing to the electrochemical conversion of most of the Al foil into Al2O3, the self-formed arrays exhibit an areal capacitance ~82% lower than that characteristic of previous Al/Al2O3 device arrays (Park et al 2006 J. Appl. Phys. 99 026107).

  4. Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates.

    Science.gov (United States)

    Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K

    2014-09-10

    Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.

  5. Validation of Parmigiano Reggiano Cheese Aroma Authenticity, Categorized through the Use of an Array of Semiconductors Nanowire Device (S3

    Directory of Open Access Journals (Sweden)

    Veronica Sberveglieri

    2016-01-01

    Full Text Available Parmigiano Reggiano (PR cheese is one of the most important Italian Protected Designation of Origin (PDO cheeses and it is exported worldwide. As a PDO, the product is supposed to have distinctive sensory characteristics. In this work we present the use of the Small Gas Sensor System (S3 device for the identification of specific PR markers, as compared to classical chemical techniques, such as Gas chromatography–mass spectrometry solid-phase microextraction (SPME-GC-MS. Markers are used to determine the percent of grated pulp and rind commercially utilized. The S3 device is equipped with an array of six metal oxide semiconductor (MOX gas sensors, three of them with a nanowire (NW morphology and the other three in the form of thin films. PDO can cover grated PR cheese as well, but only if made with whole cheese. Grated PR cheese must be characterized by the absence of additives and no more than 18% crust. The achieved results strongly encourage the use of S3 for a rapid identification of the percentage of grated PR.

  6. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.

    Science.gov (United States)

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho

    2017-06-15

    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm(2)) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt.

  7. Single molecule detection using charge-coupled device array technology. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  8. A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration.

    Science.gov (United States)

    Habibey, Rouhollah; Golabchi, Asiyeh; Latifi, Shahrzad; Difato, Francesco; Blau, Axel

    2015-12-21

    We designed a miniaturized and thin polydimethylsiloxane (PDMS) microchannel device compatible with commercial microelectrode array (MEA) chips. It was optimized for selective axonal ablation by laser microdissection (LMD) to investigate the electrophysiological and morphological responses to a focal injury in distinct network compartments over 45 days in vitro (45 DIV). Low-density cortical or hippocampal networks (microchannels aligned over the recording electrodes. The device geometries amplified extracellularly recorded signals in the somal reservoir and the axonal microchannels to detectable levels. Locally extended areas along the microchannel, so-called working stations, forced axonal bundles to branch out and thereby allowed for their repeatable and controllable local, partial or complete dissections. Proximal and distal changes in the activity and morphology of the dissected axons were monitored and compared to those of their parent networks and of intact axons in the control microchannels. Microscopy images confirmed progressive anterograde degeneration of distal axonal segments over four weeks after surgery. Dissection on cortical and hippocampal axons revealed different cell type- and age-dependent network responses. At 17 DIV, network activity increased in both the somal and proximal microchannel compartments of the dissected hippocampal or cortical axons. At later days (24 DIV), the hippocampal networks were more susceptible to axonal injury. While their activity decreased, that in the cortical cultures actually increased. Subsequent partial dissections of the same axonal bundles led to a stepwise activity reduction in the distal hippocampal or cortical axonal fragments. We anticipate that the MEA-PDMS microchannel device for the combined morphological and electrophysiological study of axonal de- and regeneration can be easily merged with other experimental paradigms like molecular or pharmacological screening studies.

  9. Toward Wearable Cooling Devices: Highly Flexible Electrocaloric Ba0.67 Sr0.33 TiO3 Nanowire Arrays.

    Science.gov (United States)

    Zhang, Guangzu; Zhang, Xiaoshan; Huang, Houbing; Wang, Jianjun; Li, Qi; Chen, Long-Qing; Wang, Qing

    2016-06-01

    Flexible lead-free ferroelectric ceramic nanowire arrays exhibit a unique combination of features that can contribute to the realization of wearable cooling devices, including an outstanding electrocaloric effect at low fields, high efficiency, bendability and stretchability, and robustness against mechanical deformations. Thermodynamic and phase-field simulations are carried out to validate their superior electrocaloric effect in comparison to thin films.

  10. Low-complexity, high-speed, and high-dynamic range time-to-impact algorithm

    Science.gov (United States)

    Åström, Anders; Forchheimer, Robert

    2012-10-01

    We present a method suitable for a time-to-impact sensor. Inspired by the seemingly "low" complexity of small insects, we propose a new approach to optical flow estimation that is the key component in time-to-impact estimation. The approach is based on measuring time instead of the apparent motion of points in the image plane. The specific properties of the motion field in the time-to-impact application are used, such as measuring only along a one-dimensional (1-D) line and using simple feature points, which are tracked from frame to frame. The method lends itself readily to be implemented in a parallel processor with an analog front-end. Such a processing concept [near-sensor image processing (NSIP)] was described for the first time in 1983. In this device, an optical sensor array and a low-level processing unit are tightly integrated into a hybrid analog-digital device. The high dynamic range, which is a key feature of NSIP, is used to extract the feature points. The output from the device consists of a few parameters, which will give the time-to-impact as well as possible transversal speed for off-centered viewing. Performance and complexity aspects of the implementation are discussed, indicating that time-to-impact data can be achieved at a rate of 10 kHz with today's technology.

  11. Context-aware Authorization in Highly Dynamic Environments

    CERN Document Server

    Tigli, Jean-Yves; Rey, Gaetan; Hourdin, Vincent; Riveill, Michel

    2011-01-01

    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security.

  12. Context-aware Authorization in Highly Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Vincent Hourdin

    2009-09-01

    Full Text Available Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS, in smart home security.

  13. High Dynamic Range Electric Field Sensor for Electromagnetic Pulse Detection

    CERN Document Server

    Lin, Che-Yun; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2014-01-01

    We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.

  14. Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices

    Science.gov (United States)

    Gleghorn, Jason P.; Smith, James P.; Kirby, Brian J.

    2013-09-01

    Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles or capture rare cells from complex samples has broad and impactful applications in biology and medicine. We have investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide the design of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and full computational fluid dynamics simulations are used to understand the collision modes that evolve in cylindrical obstacle arrays with various geometries. We identify previously unrecognized collision mode structures and differential size-based collision frequencies that emerge from these arrays. Previous descriptions of transverse displacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properly as these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendant change in the flow field. Using these analytical and computational simulations, we elucidate design parameters that induce high collision rates for all particles larger than a threshold size or selectively increase collision frequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigate how the particle Péclet number affects collision dynamics and mode transitions and demonstrate that experimental observations from various obstacle array geometries are well described by our computational model.

  15. High-dynamic-range water window ptychography

    CERN Document Server

    Rose, Max; Senkbeil, Tobias; von Gundlach, Andreas R; Stuhr, Susan; Rumancev, Christoph; Besedin, Ilya; Skopintsev, Petr; Viefhaus, Jens; Rosenhahn, Axel; Vartanyants, Ivan A

    2016-01-01

    Ptychographic imaging with soft X-rays, especially in the water window energy range, suffers from limited detector dynamic range that directly influences the maximum spatial resolution achievable. High-dynamic-range data can be obtained by multiple exposures. By this approach we have increased the dynamic range of a ptychographic data set by a factor of 76 and obtained diffraction signal till the corners of the detector. The real space half period resolution was improved from 50 nm for the single exposure data to 18 nm for the high-dynamic-range data.

  16. Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte

    Science.gov (United States)

    Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun

    2017-02-01

    A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.

  17. Shadow Attenuation With High Dynamic Range Images

    Science.gov (United States)

    Shadow often interferes with accurate image analysis. To mitigate shadow effects in near-earth imagery (2 m above ground level), we created high dynamic range (HDR) nadir images and used them to measure grassland ground cover. HDR composites were created by merging three differentially-exposed image...

  18. Fabrication and characterization of well-aligned zinc oxide nanowire arrays and their realizations in Schottky-device applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin Mun; Grote, Fabian; Sun, Hui; Lei, Yong [Institute of Materials Physics, Center for Nanotechnology, University of Muenster (Germany); Wen, Liaoyong; Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China)

    2011-07-01

    Highly ordered arrays of vertical zinc oxide (ZnO) nanowires (NWs) or nanopores were fabricated in our group by first thermal evaporating a thin film of gold on the ultrathin alumina membrane (UTAM). The UTAM was then utilized as a substrate for the growth of the ordered arrays using a chemical vapour deposition (CVD) process. Alternatively, a modified CVD process was also used to fabricate ultra-long ZnO NWs with the length of the nanowire exceeding 100 micrometres. Subsequently, densely packed arrays of ZnO NWs Schottky diodes were synthesized by transferring the long NWs on a substrate using a dry contact printing method and the electrical contacts were made on the NWs with a photolithographic process. The interesting electrical properties of the ZnO NWs, diodes or other metal oxide NWs such as the field emission, electron transport and piezoelectric properties were characterized by current-voltage or by other appropriate measurements.

  19. Flexible core masking technique for beam halo measurements with high dynamic range

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, J [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Welsch, C P, E-mail: Carsten.Welsch@quasar-group.co [Cockcroft Institute, Daresbury Science and Innovation Campus, WA4 4AD Warrington (United Kingdom)

    2010-04-15

    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the beam pipe, and activate this, as well as accelerator and experimental components in close proximity, which makes work on the accelerator costly and time consuming. Well established techniques for transverse beam profile measurements of electron or high energy hadron beams are the observation of synchrotron radiation, optical transition radiation or the like. A particular challenge, however, is the detection of particles in the tail regions of the beam distribution in close proximity of the very intense beam core. Results from laboratory measurements on two different devices are presented that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system which has an intrinsically high dynamic range due to its unique pixel design, and a flexible masking technique based on a DMD micro mirror array which allows for a fast mask generation to blank out the central core.

  20. Design of a prototype device to calibrate the Large Size Telescope camera of the Cherenkov Telescope Array

    CERN Document Server

    Iori, M; De Persio, F; Chatterjee, A; Ferrarotto, F; Nagesh, B K; Saha, L; Singh, B B

    2015-01-01

    The Cherenkov Telescope Array is a project that aims to exploring the highest energy region of electromagnetic spectrum. Two arrays, one for each hemisphere, will cover the full sky in a range from few tens of GeV to hundreds of TeV improving the sensitivity and angular resolution of the present operating arrays. A prototype of the Large Size Telescope (LST) for the study of gamma ray astronomy above some tens of GeV will be installed at the Canary Island of La Palma in 2016. The LST camera, made by an array of photomultipliers (PMTs), requires an accurate and systematic calibration over a wide dynamic range. In this contribution, we present an optical calibration system made by a 355 nm wavelength laser with 400 ps pulse width, 1 muJ output energy, up to 4k Hz repetition rate and a set of neutral density filters to obtain a wide range of photon intensities, up to 1000 photoelectrons/PMT, to be sent to the camera plane 28 m away. The number of photons after the diffuser of the calibration box, located in the ...

  1. Improved High Dynamic Range Image Reproduction Method

    Directory of Open Access Journals (Sweden)

    András Rövid

    2007-10-01

    Full Text Available High dynamic range (HDR of illumination may cause serious distortions andother problems in viewing and further processing of digital images. This paper describes anew algorithm for HDR image creation based on merging images taken with differentexposure time. There are many fields, in which HDR images can be used advantageously,with the help of them the accuracy, reliability and many other features of the certain imageprocessing methods can be improved.

  2. Versatile Transfer of an Ultralong and Seamless Nanowire Array Crystallized at High Temperature for Use in High-Performance Flexible Devices.

    Science.gov (United States)

    Seo, Min-Ho; Yoo, Jae-Young; Choi, So-Young; Lee, Jae-Shin; Choi, Kwang-Wook; Jeong, Chang Kyu; Lee, Keon Jae; Yoon, Jun-Bo

    2017-02-28

    Nanowire (NW) transfer technology has provided promising strategies to realize future flexible materials and electronics. Using this technology, geometrically controlled, high-quality NW arrays can now be obtained easily on various flexible substrates with high throughput. However, it is still challenging to extend this technology to a wide range of high-performance device applications because its limited temperature tolerance precludes the use of high-temperature annealing, which is essential for NW crystallization and functionalization. A pulsed laser technique has been developed to anneal NWs in the presence of a flexible substrate; however, the induced temperature is not high enough to improve the properties of materials such as ceramics and semiconductors. Here, we present a versatile nanotransfer method that is applicable to NWs that require high-temperature annealing. To successfully anneal NWs during their transfer, the developed fabrication method involves sequential removal of a nanoscale sacrificial layer. Using this method, we first produce an ultralong, perfectly aligned polycrystalline barium titanate (BaTiO3) NW array that is heat treated at 700 °C on a flexible polyethylene terephthalate (PET) substrate. This high-quality piezoelectric NW array on a flexible substrate is used as a flexible nanogenerator that generates current and voltage 37 and 10 times higher, respectively, than those of a nanogenerator made of noncrystallized BaTiO3 NWs.

  3. New fabrication techniques for high dynamic range tunneling sensors

    Science.gov (United States)

    Chang, David T.; Stratton, Fred P.; Kubena, Randall L.; Vickers-Kirby, Deborah J.; Joyce, Richard J.; Schimert, Thomas R.; Gooch, Roland W.

    2000-08-01

    We have developed high dynamic range (105-106 g's) tunneling accelerometers1,2 that may be ideal for smart munitions applications by employing both surface and bulk micromachining processing techniques. The highly miniaturized surface-micromachined devices can be manufactured at very low cost and integrated on chip with the control electronics. Bulk-micromachined devices with Si as the cantilever material should have reduced long-term bias drift as well as better stability at higher temperatures. Fully integrated sensors may provide advantages in minimizing microphonics for high-g applications. Previously, we described initial test results using electrostatic forces generated by a self-test electrode located under a Au cantilever3. In this paper, we describe more recent testing of Ni and Au cantilever devices on a shaker table using a novel, low input voltage (5 V) servo controller on both printed wiring board and surface-mount control circuitry. In addition, we report our initial test results for devices packaged using a low-temperature wafer-level vacuum packaging technique for low-cost manufacturing.

  4. Linear array measurements of enhanced dynamic wedge and treatment planning system (TPS) calculation for 15 MV photon beam and comparison with electronic portal imaging device (EPID) measurements

    Science.gov (United States)

    Petrovic, Borislava; Grzadziel, Aleksandra; Rutonjski, Laza; Slosarek, Krzysztof

    2010-01-01

    Introduction. Enhanced dynamic wedges (EDW) are known to increase drastically the radiation therapy treatment efficiency. This paper has the aim to compare linear array measurements of EDW with the calculations of treatment planning system (TPS) and the electronic portal imaging device (EPID) for 15 MV photon energy. Materials and methods. The range of different field sizes and wedge angles (for 15 MV photon beam) were measured by the linear chamber array CA 24 in Blue water phantom. The measurement conditions were applied to the calculations of the commercial treatment planning system XIO CMS v.4.2.0 using convolution algorithm. EPID measurements were done on EPID-focus distance of 100 cm, and beam parameters being the same as for CA24 measurements. Results Both depth doses and profiles were measured. EDW linear array measurements of profiles to XIO CMS TPS calculation differ around 0.5%. Profiles in non-wedged direction and open field profiles practically do not differ. Percentage depth doses (PDDs) for all EDW measurements show the difference of not more than 0.2%, while the open field PDD is almost the same as EDW PDD. Wedge factors for 60 deg wedge angle were also examined, and the difference is up to 4%. EPID to linear array differs up to 5%. Conclusions The implementation of EDW in radiation therapy treatments provides clinicians with an effective tool for the conformal radiotherapy treatment planning. If modelling of EDW beam in TPS is done correctly, a very good agreement between measurements and calculation is obtained, but EPID cannot be used for reference measurements. PMID:22933916

  5. Effect of growth solution, membrane size and array connection on microbial fuel cell power supply for medical devices.

    Science.gov (United States)

    Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T

    2016-08-01

    Implanted biomedical devices typically last a number of years before their batteries are depleted and a surgery is required to replace them. A Microbial Fuel Cell (MFC) is a device which by using bacteria, directly breaks down sugars to generate electricity. Conceptually there is potential to continually power implanted medical devices for the lifetime of a patient. To investigate the practical potential of this technology, H-Cell Dual Chamber MFCs were evaluated with two different growth solutions and measurements recorded for maximum power output both of individual MFCs and connected MFCs. Using Luria-Bertani media and connecting MFCs in a hybrid series and parallel arrangement with larger membrane sizes showed the highest power output and the greatest potential for replacing implanted batteries.

  6. High dynamic range imaging sensors and architectures

    CERN Document Server

    Darmont, Arnaud

    2013-01-01

    Illumination is a crucial element in many applications, matching the luminance of the scene with the operational range of a camera. When luminance cannot be adequately controlled, a high dynamic range (HDR) imaging system may be necessary. These systems are being increasingly used in automotive on-board systems, road traffic monitoring, and other industrial, security, and military applications. This book provides readers with an intermediate discussion of HDR image sensors and techniques for industrial and non-industrial applications. It describes various sensor and pixel architectures capable

  7. Modeling of intensified high dynamic star tracker.

    Science.gov (United States)

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2017-01-23

    An intensified high dynamic star tracker (IHDST) is a photoelectric instrument and stably outputs three-axis attitude for a spacecraft at very high angular velocity. The IHDST uses an image intensifier to multiply the incident starlight. Thus, high sensitivity of the star detection is achieved under short exposure time such that extremely high dynamic performance is achieved. The IHDST differs from a traditional star tracker in terms of the imaging process. Therefore, we establish a quantum transfer model of IHDST based on stochastic process theory. By this model, the probability distribution of the output quantum number is obtained accurately. Then, we introduce two-dimensional Lorentz functions to describe the spatial spreading process of the IHDST. Considering the interaction of these two processes, a complete star imaging model of IHDST is provided. Using this model, the centroiding accuracy of the IHDST is analyzed in detail. Accordingly, a working parameter optimizing strategy is developed for high centroiding accuracy and improved dynamic performance. Finally, the laboratory tests and the night sky experiment support the conclusions.

  8. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Science.gov (United States)

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  9. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.; Bhallamudi, Vidya P.; Johnston-Halperin, Ezekiel; Pelekhov, Denis V.; Hammel, P. Chris [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Jacob, Jan [Werum Software and Systems CIS AG, Wulf-Werum-Straße 3, 21337 Lüneburg (Germany); Lewis, Jim; Wenzel, Lothar [National Instruments, Austin, Texas 78759 (United States)

    2014-12-15

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  10. A novel approach combining the Calgary Biofilm Device and Phenotype MicroArray for the characterization of the chemical sensitivity of bacterial biofilms.

    Science.gov (United States)

    Santopolo, L; Marchi, E; Frediani, L; Decorosi, F; Viti, C; Giovannetti, L

    2012-01-01

    A rapid method for screening the metabolic susceptibility of biofilms to toxic compounds was developed by combining the Calgary Biofilm Device (MBEC device) and Phenotype MicroArray (PM) technology. The method was developed using Pseudomonas alcaliphila 34, a Cr(VI)-hyper-resistant bacterium, as the test organism. P. alcaliphila produced a robust biofilm after incubation for 16 h, reaching the maximum value after incubation for 24 h (9.4 × 10(6) ± 3.3 × 10(6) CFU peg(-1)). In order to detect the metabolic activity of cells in the biofilm, dye E (5×) and menadione sodium bisulphate (100 μM) were selected for redox detection chemistry, because they produced a high colorimetric yield in response to bacterial metabolism (340.4 ± 6.9 Omnilog Arbitrary Units). This combined approach, which avoids the limitations of traditional plate counts, was validated by testing the susceptibility of P. alcaliphila biofilm to 22 toxic compounds. For each compound the concentration level that significantly lowered the metabolic activity of the biofilm was identified. Chemical sensitivity analysis of the planktonic culture was also performed, allowing comparison of the metabolic susceptibility patterns of biofilm and planktonic cultures.

  11. Shape recovery using high dynamic range images

    Institute of Scientific and Technical Information of China (English)

    Zheng Zuoyong; Ma Lizhuang; Li Zhong

    2008-01-01

    An effective method for object shape recovery using HDRIs (high dynamic range images) is proposed. The radiance values of each point on the reference sphere and target object are firstly calculated, thus the set of candidate normals of each target point are found by comparing its radiance to that of each reference sphere point. In single-image shape recovery, a smoothness operation is applied to the target normals to obtain a stable and reasonable result; while in photometric stereo, radiance vectors of reference and target objects formed due to illuminations under different light source directions are directly compared to get the most suitable target normals. Finally, the height values can be recovered from the resulting normal field. Because diffuse and specular reflection are handled in an unified framework with radiance, our approach eliminates the limitation presented in most recovery strategies, i.e., only Lambertian model can be used. The experiment results from the real and synthesized images show the performance of our approach.

  12. Circumferential lesion formation around the pulmonary veins in the left atrium with focused ultrasound using a 2D-array endoesophageal device: a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Pichardo, Samuel; Hynynen, Kullervo [Imaging Research-Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room C713, Toronto, ON M4N 3M5 (Canada)

    2007-08-21

    Atrial fibrillation (AF) is the most frequently sustained cardiac arrhythmia affecting humans. The electrical isolation by ablation of the pulmonary veins (PVs) in the left atrium (LA) of the heart has been proven as an effective cure of AF. The ablation consists mainly in the formation of a localized circumferential thermal coagulation of the cardiac tissue surrounding the PVs. In the present numerical study, the feasibility of producing the required circumferential lesion with an endoesophageal ultrasound probe is investigated. The probe operates at 1 MHz and consists of a 2D array with enough elements (114 x 20) to steer the acoustic field electronically in a volume comparable to the LA. Realistic anatomical conditions of the thorax were considered from the segmentation of histological images of the thorax. The cardiac muscle and the blood-filled cavities in the heart were identified and considered in the sound propagation and thermal models. The influence of different conditions of the thermal sinking in the LA chamber was also studied. The circumferential ablation of the PVs was achieved by the sum of individual lesions induced with the proposed device. Different scenarios of lesion formation were considered where ultrasound exposures (1, 2, 5 and 10 s) were combined with maximal peak temperatures (60, 70 and 80 {sup 0}C). The results of this numerical study allowed identifying the limits and best conditions for controlled lesion formation in the LA using the proposed device. A controlled situation for the lesion formation surrounding the PVs was obtained when the targets were located within a distance from the device in the range of 26 {+-} 7 mm. When combined with a maximal temperature of 70 {sup 0}C and an exposure time between 5 and 10 s, this distance ensured preservation of the esophageal structures, controlled lesion formation and delivery of an acoustic intensity at the transducer surface that is compatible with existing materials. With a peak

  13. Integrated avalanche photodiode arrays

    Science.gov (United States)

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  14. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PEDOT: PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  15. Imaging with high Dynamic using an Ionization Chamber

    CERN Document Server

    Menk, Ralf-Hendrik; Arfelli, Fulvia; Bernstorff, Sigrid; Besch, Hans Juergen; Voltolina, Francesco

    2010-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the described detector is an ionization chamber adapted to fan beam geometry with an active area of 192 cm and a pitch of the anode strips of 150 micrometer. In the vertical direction beams as high as 10 mm can be accepted. Every read-out strip is connected to an analogue integrating electronics channel realized in a custom made VLSI chip. A MicroCAT structure utilized as a shielding grid enables frame rates as high as 10kHz. The high dynamic range observed stems from the fact that the MicroCAT enables active electron amplification ...

  16. Quantitative high dynamic range beam profiling for fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  17. Overlay Share Mesh for Interactive Group Communication with High Dynamic

    Institute of Scientific and Technical Information of China (English)

    WU Yan-hua; CAI Yun-ze; XU Xiao-ming

    2007-01-01

    An overlay share mesh infrastructure is presented for high dynamic group communication systems, such as distributed interactive simulation (DIS) and distributed virtual environments (DVE). Overlay share mesh infrastructure can own better adapting ability for high dynamic group than tradition multi-tree multicast infrastructure by sharing links among different groups. The mechanism of overlay share mesh based on area of interest (AOI) was discussed in detail in this paper. A large number of simulation experiments were done and the permance of mesh infrastructure was studied. Experiments results proved that overlay mesh infrastructure owns better adaptability than traditional multi-tree infrastructure for high dynamic group communication systems.

  18. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G.; Salapura, Valentina

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  19. On the way to high dynamic range beam profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Jan; Artikova, Sayyora [Max-Planck-Institut fuer Kernphysik (Germany); Welsch, Carsten [University of Liverpool (United Kingdom); Cockcroft Institute of Accelerator Science and Technology (United Kingdom)

    2009-07-01

    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the drift chamber and thereby activate the beam pipe, which makes work on the accelerator costly and time consuming. A well-established technique for transverse beam profile measurements is synchrotron radiation (SR) for high energy and high luminosity accelerators like the LHC or CTF3. At much lower beam energies, an alternative for transverse beam profile measurements based on the direct measurement of light is optical transition radiation (OTR) or the insertion of a luminescent screen. What applies for essentially all these light generation processes, is that the light intensity is over a wide range proportional to the particle density, which makes the optical analysis of such light an ideal tool for beam profile measurements. A particular challenge, however, is to distinguish the particles in the tail regions of the beam distribution from the much more intense beam core. In this contribution, we present results from laboratory measurements on two different devices that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system and a flexible masking technique based on a DMD micro mirror array.

  20. New Highly Dynamic Approach for Thrust Vector Control

    Science.gov (United States)

    Hecht, M.; Ettl, J.; Grothe, D.; Hrbud, I.

    2015-09-01

    For a new launcher system a thrust vector control system is needed. This launch vehicle system consists of two rockets which are namely the VS-50 (two-stage suborbital vehicle) and the VLM-1 (three-stage microsatellite launch vehicle). VLM-1 and VS-50 are developed in a cooperation between the German Aerospace Center (DLR) and the Brazilian Aeronautics and Space Institute (IAE). To keep these two rockets on its trajectory during flight a highly dynamic thrust vector control system is required. For the purpose of developing such a highly dynamic thrust vector control system a master thesis was written by the author. The development includes all mechanical constructions as well as control algorithms and electronics design. Moreover an optimization of control algorithms was made to increase the dynamic capabilities of the thrust vector control system. The composition of the right components plus the sophisticated control algorithm make the thrust vector control system highly dynamic.

  1. Coordinated garbage collection for raid array of solid state disks

    Science.gov (United States)

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  2. Single Event Analysis and Fault Injection Techniques Targeting Complex Designs Implemented in Xilinx-Virtex Family Field Programmable Gate Array (FPGA) Devices

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth; Kim, Hak

    2014-01-01

    An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.

  3. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  4. High speed high dynamic range high accuracy measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  5. Veiling Glare and Perceived Black in High Dynamic Range Displays

    NARCIS (Netherlands)

    Murdoch, M.J.; Heynderickx, I.E.J.

    2012-01-01

    A perceptual experiment was conducted to measure the visibility of black-level differences in the proximity of a bright glare source. In a controlled viewing environment, visual difference thresholds were adaptively measured using dark, shadow-detail images shown on a high dynamic range liquid crys

  6. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial...

  7. High dynamic solutions for short-wavelength infrared imaging based on InGaAs

    Science.gov (United States)

    Reverchon, Jean-Luc; Decobert, Jean; Djedidi, Anis; Gentner, Jean-Louis; Huet, Odile; Lagay, Nadine; Rouvié, Anne; Robo, Jean-Alexandre; Truffer, Jean-Patrick; Costard, Eric; Ni, Yang; Arion, Bogdan; Zhu, Yiming; Potet, Pierre

    2011-06-01

    Short-wavelength infrared image sensors based on p-i-n photodiode arrays present a tremendous interest in applications such as passive and active imagery for laser detection/warning, hot spot or detection for lasers sensors, enhanced vision systems or low light level sensors. The capability to work at room temperature with dark current equivalent to silicon-based devices is another motivation for the fast development of this technology. This paper presents several modules and camera based on InGaAs photodiode arrays from the III-VLab. First, we describe the electro-optics performance in terms of dark signal, sensitivity, and particularly the visible extension capability. We also present a nucless logarithmic sensor based on a 1/2 video graphics array (VGA) format at a pitch of 25 μm initially designed for visible CMOS camera chip. We will also present the next generation of focal plane arrays based on a VGA format of 640×512 pixels with a pitch of 15 μm. This array will be associated to a CTIA readout circuit and also to an innovative CMOS logarithmic wide dynamic range ROIC, developed by New Imaging Technologies. This VGA logarithmic device developed for automotive safety will involve visible extension capability in a European project named 2Wide_sense.

  8. Dynamics and function of compact nucleosome arrays.

    Science.gov (United States)

    Poirier, Michael G; Oh, Eugene; Tims, Hannah S; Widom, Jonathan

    2009-09-01

    The packaging of eukaryotic DNA into chromatin sterically occludes polymerases, recombinases and repair enzymes. How chromatin structure changes to allow their actions is unknown. We constructed defined fluorescently labeled trinucleosome arrays, allowing analysis of chromatin conformational dynamics via fluorescence resonance energy transfer (FRET). The arrays undergo reversible Mg2+-dependent folding similar to that of longer arrays studied previously. We define two intermediate conformational states in the reversible folding of the nucleosome arrays and characterize the microscopic rate constants. Nucleosome arrays are highly dynamic even when compact, undergoing conformational fluctuations on timescales in the second to microsecond range. Compact states of the arrays allow binding to DNA within the central nucleosome via site exposure. Protein binding can also drive decompaction of the arrays. Thus, our results reveal multiple modes by which spontaneous chromatin fiber dynamics allow for the invasion and action of DNA-processing protein complexes.

  9. Microelectronic Stimulator Array

    Science.gov (United States)

    2000-08-09

    retinal prosthesis test device. Figure 3b shows an enlarged view of a nano-channel glass (NCG) electrode array. Figure 4 shows a conceptual layout (floor...against a visual cortex. 10 This involves invasive brain surgery through the cranium . From a surgical point of view, the intra ocular approach is

  10. Real-time high dynamic range laser scanning microscopy.

    Science.gov (United States)

    Vinegoni, C; Leon Swisher, C; Fumene Feruglio, P; Giedt, R J; Rousso, D L; Stapleton, S; Weissleder, R

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  11. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  12. Planar electrochemical device assembly

    Science.gov (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  13. A high dynamic range readout unit for a calorimeter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-Long; WU Jian; CHANG Jin; LI Bing; FENG Chang-Qing; LI Xian-Li; WANG Xiao-Lian; XU Zi-Zong; GUO Jian-Hua; CAI Ming-Sheng; HU Yi-Ming

    2012-01-01

    A high dynamic range readout system,consisting of a multi-dynode readout PMT and a VA32 chip,is presented.An LED system is set up to calibrate the relative gains between the dynodes,and the ADC counts per MIPs from dynode 7 are determined under cosmic-ray calibration.A dynamic range from 0.5 MIPs to 1 × 105 MIPs is achieved.

  14. High dynamic range images for enhancing low dynamic range content

    OpenAIRE

    Banterle, Francesco; Dellepiane, Matteo; Scopigno, Roberto

    2011-01-01

    This poster presents a practical system for enhancing the quality of Low Dynamic Range (LDR) videos using High Dynamic Range (HDR) background images. Our technique relies on the assumption that the HDR information is static in the video footage. This assumption can be valid in many scenarios where moving subjects are the main focus of the footage and do not have to interact with moving light sources or highly reflective objects. Another valid scenario is teleconferencing via webcams, where th...

  15. IMPACT OF TONE MAPPING IN HIGH DYNAMIC RANGE IMAGE COMPRESSION

    OpenAIRE

    Narwaria, Manish; Perreira Da Silva, Matthieu; Le Callet, Patrick; Pépion, Romuald

    2014-01-01

    International audience; Tone mapping or range reduction is often used in High Dynamic Range (HDR) visual signal compression to take advantage of the existing image/video coding architectures. Thus, it is important to study the impact of tone mapping on the visual quality of decompressed HDR visual signals. To our knowledge, most of the existing studies focus only on the quality loss in the resultant low dynamic range (LDR) signal (obtained via tone mapping) and typically employ LDR displays f...

  16. Electronic Switch Arrays for Managing Microbattery Arrays

    Science.gov (United States)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  17. Photoelectrical properties of Ag2S quantum dot-modified TiO2 nanorod arrays and their application for photovoltaic devices.

    Science.gov (United States)

    Liu, Bingkun; Wang, Dejun; Zhang, Yu; Fan, Haimei; Lin, Yanhong; Jiang, Tengfei; Xie, Tengfeng

    2013-02-14

    Vertically aligned TiO(2) nanorod arrays (NRAs) modified with Ag(2)S quantum dots (QDs) have been successfully prepared via a successive ionic layer adsorption and reaction (SILAR) process. Ultraviolet-visible (UV-vis) absorption spectra and surface photovoltage (SPV) measurements reveal that the Ag(2)S sensitization extends the range of the photoresponse of the TiO(2) NRAs to the visible region and exhibits higher photovoltage responses. With a polysulfide electrolyte, a maximum conversion efficiency of 0.148% with a superior J(sc) of 1.177 mA cm(-2) are obtained after 6 SILAR cycles under illumination at 100 mW cm(-2). These results indicate that the Ag(2)S QDs/TiO(2) NRAs photoelectrode has a promising application in solar cells.

  18. Adaptive Process Management in Highly Dynamic and Pervasive Scenarios

    Directory of Open Access Journals (Sweden)

    Massimiliano de Leoni

    2009-06-01

    Full Text Available Process Management Systems (PMSs are currently more and more used as a supporting tool for cooperative processes in pervasive and highly dynamic situations, such as emergency situations, pervasive healthcare or domotics/home automation. But in all such situations, designed processes can be easily invalidated since the execution environment may change continuously due to frequent unforeseeable events. This paper aims at illustrating the theoretical framework and the concrete implementation of SmartPM, a PMS that features a set of sound and complete techniques to automatically cope with unplanned exceptions. PMS SmartPM is based on a general framework which adopts the Situation Calculus and Indigolog.

  19. High Dynamic Range Imaging by Perceptual Logarithmic Exposure Merging

    Directory of Open Access Journals (Sweden)

    Florea Corneliu

    2015-12-01

    Full Text Available In this paper we emphasize a similarity between the logarithmic type image processing (LTIP model and the Naka–Rushton model of the human visual system (HVS. LTIP is a derivation of logarithmic image processing (LIP, which further replaces the logarithmic function with a ratio of polynomial functions. Based on this similarity, we show that it is possible to present a unifying framework for the high dynamic range (HDR imaging problem, namely, that performing exposure merging under the LTIP model is equivalent to standard irradiance map fusion. The resulting HDR algorithm is shown to provide high quality in both subjective and objective evaluations.

  20. High dynamic range real-time 3D shape measurement.

    Science.gov (United States)

    Jiang, Chufan; Bell, Tyler; Zhang, Song

    2016-04-04

    This paper proposes a method that can measure high-contrast surfaces in real-time without changing camera exposures. We propose to use 180-degree phase-shifted (or inverted) fringe patterns to complement regular fringe patterns. If not all of the regular patterns are saturated, inverted fringe patterns are used in lieu of original saturated patterns for phase retrieval, and if all of the regular fringe patterns are saturated, both the original and inverted fringe patterns are all used for phase computation to reduce phase error. Experimental results demonstrate that three-dimensional (3D) shape measurement can be achieved in real time by adopting the proposed high dynamic range method.

  1. Generation of high-dynamic range image from digital photo

    Science.gov (United States)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  2. High Dynamic Range Image Based on Multiple Exposure Time Synthetization

    Directory of Open Access Journals (Sweden)

    Yoshifumi Shimodaira

    2007-03-01

    Full Text Available High dynamic range of illumination may cause serious distortions and otherproblems in viewing and further processing of digital images. In this paper a new tonereproduction preprocessing algorithm is introduced which may help in developing hardly ornon-viewable features and content of the images. The method is based on the synthetizationof multiple exposure images from which the dense part, i.e. regions having the maximumlevel of detail are included in the output image. The resulted high quality HDR image makeseasier the information extraction and effectively supports the further processing of theimage.

  3. Adaptive Process Management in Highly Dynamic and Pervasive Scenarios

    CERN Document Server

    de Leoni, Massimiliano

    2009-01-01

    Process Management Systems (PMSs) are currently more and more used as a supporting tool for cooperative processes in pervasive and highly dynamic situations, such as emergency situations, pervasive healthcare or domotics/home automation. But in all such situations, designed processes can be easily invalidated since the execution environment may change continuously due to frequent unforeseeable events. This paper aims at illustrating the theoretical framework and the concrete implementation of SmartPM, a PMS that features a set of sound and complete techniques to automatically cope with unplanned exceptions. PMS SmartPM is based on a general framework which adopts the Situation Calculus and Indigolog.

  4. RADIANCE DOMAIN COMPOSITING FOR HIGH DYNAMIC RANGE IMAGING

    Directory of Open Access Journals (Sweden)

    M.R. Renu

    2013-02-01

    Full Text Available High dynamic range imaging aims at creating an image with a range of intensity variations larger than the range supported by a camera sensor. Most commonly used methods combine multiple exposure low dynamic range (LDR images, to obtain the high dynamic range (HDR image. Available methods typically neglect the noise term while finding appropriate weighting functions to estimate the camera response function as well as the radiance map. We look at the HDR imaging problem in a denoising frame work and aim at reconstructing a low noise radiance map from noisy low dynamic range images, which is tone mapped to get the LDR equivalent of the HDR image. We propose a maximum aposteriori probability (MAP based reconstruction of the HDR image using Gibb’s prior to model the radiance map, with total variation (TV as the prior to avoid unnecessary smoothing of the radiance field. To make the computation with TV prior efficient, we extend the majorize-minimize method of upper bounding the total variation by a quadratic function to our case which has a nonlinear term arising from the camera response function. A theoretical justification for doing radiance domain denoising as opposed to image domain denoising is also provided.

  5. Oxygen Escape from Venus During High Dynamic Pressure ICMEs

    Science.gov (United States)

    McEnulty, Tess; Luhmann, J. G.; Brain, D. A.; Fedorov, A.; Jian, L. K.; Russell, C. T.; Zhang, T.; Möstl, C.; Futaana, Y.; de Pater, I.

    2013-10-01

    Previous studies using data from Pioneer Venus suggested that oxygen ion escape flux may be enhanced by orders of magnitude during Interplanetary Coronal Mass Ejections. However, this large enhancement has been ambiguous in Venus Express ion data - with some analyses showing no flux enhancement or a small enhancement (within 2 times undisturbed cases). One possible explanation is that high escape flux may be due to high dynamic pressure in the solar wind, and the dynamic pressure has been lower during the VEX time period. So, we focus on ICMEs with the largest dynamic pressure and with VEX sampling of the escaping ions during the sheath of the ICMEs (during which the highest dynamic pressures in the solar wind occur). We will show the characteristics of these large events measured by VEX, and compare them to the largest ICMEs measured by PVO. We will then discuss estimates of the oxygen ion escape flux during these events.

  6. Color Sensitivity Multiple Exposure Fusion using High Dynamic Range Image

    Directory of Open Access Journals (Sweden)

    Varsha Borole

    2014-02-01

    Full Text Available In this paper, we present a high dynamic range imaging (HDRI method using a capturing camera image using normally exposure, over exposure and under exposure. We make three different images from a multiple input image using local histogram stretching. Because the proposed method generated three histogram-stretched images from a multiple input image, ghost artifacts that are the result of the relative motion between the camera and objects during exposure time, are inherently removed. Therefore, the proposed method can be applied to a consumer compact camera to provide the ghost artifacts free HDRI. Experiments with several sets of test images with different exposures show that the proposed method gives a better performance than existing methods in terms of visual results and computation time.

  7. High Dynamic Range Particle Image Velocimetry Applied to Heat Convection Studies

    Directory of Open Access Journals (Sweden)

    Persoons Tim

    2014-03-01

    Full Text Available Convective heat transfer occurs in a wide range of engineering applications, from nuclear reactors to portable electronic devices. Accurate whole-field turbulence and flow measurements are crucial to understanding convective heat transfer in complex flow fields, thereby enabling optimal design of these devices. Particle image velocimetry (PIV is the preferred whole-field flow measurement technique. However in many configurations the dynamic velocity range of conventional PIV is too limited to accurately resolve both high mean velocities and turbulence intensities in lower velocity regions. This paper employs high dynamic range (HDR PIV with an advanced acquisition and processing technique based on multiple pulse separation (MPS double-frame imaging. The methodology uses a conventional adaptive multi-grid algorithm for vector evaluation, and determines the optimal pulse separation in space and time in a post-processing routine. Two test cases are discussed: For an impinging synthetic jet flow (Case I, HDR PIV increases the dynamic velocity range 25-fold compared to conventional PIV. For an oscillatory buoyant plume from a pair of horizontal heated cylinders (Case II, the dynamic velocity range is increased 5.5 times. This technique has yielded new insights in synthetic jet heat transfer by correlating local surface heat transfer rates to near-wall turbulence intensity in a single whole-field measurement.

  8. High dynamic grayscale lithography with an LED-based micro-image stepper

    Science.gov (United States)

    Eckstein, Hans-Christoph; Zeitner, Uwe D.; Leitel, Robert; Stumpf, Marko; Schleicher, Philipp; Bräuer, Andreas; Tünnermann, Andreas

    2016-03-01

    We developed a novel LED projection based direct write grayscale lithography system for the generation of optical surface profiles such as micro-lenses, diffractive elements, diffusors, and micro freeforms. The image formation is realized by a LCoS micro-display which is illuminated by a 405 nm UV High Power LED. The image on the display can be demagnified from factors 5x to 100x with an exchangeable lens. By controlling exposure time and LED power, the presented technique enables a highly dynamic dosage control for the exposure of h-line sensitive photo resist. In addition, the LCoS micro-display allows for an intensity control within the micro-image which is particularly advantageous to eliminate surface profile errors from stitching and limited homogeneity from LED illumination. Together with an accurate calibration of the resist response this leads to a superior low surface error of realized profiles below area of 500 × 500 mm2 with a positioning accuracy of 80°. Another benefit of the approach is a patterning speed up to 100 cm2/h, which allows fabricating large-scale optics and microstructures in an acceptable time. We present the setup and show examples of micro-structures to demonstrate the performance of the system, namely a refractive freeform array, where the RMS surface deviation does not exceed 0.2% of the total structure depth of 75 μm. Furthermore, we show that this exposure tool is suitable to generate diffractive optical elements as well as freeform optics and arrays with a high aspect ratio and structure depth showing a superior optical performance. Lastly we demonstrate a multi-level diffraction grating on a curved substrate.

  9. Coherent magnetic semiconductor nanodot arrays

    Directory of Open Access Journals (Sweden)

    Xiu Faxian

    2011-01-01

    Full Text Available Abstract In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation.

  10. Realization of High Dynamic Range Imaging in the GLORIA Network and Its Effect on Astronomical Measurement

    Directory of Open Access Journals (Sweden)

    Stanislav Vítek

    2016-01-01

    Full Text Available Citizen science project GLORIA (GLObal Robotic-telescopes Intelligent Array is a first free- and open-access network of robotic telescopes in the world. It provides a web-based environment where users can do research in astronomy by observing with robotic telescopes and/or by analyzing data that other users have acquired with GLORIA or from other free-access databases. Network of 17 telescopes allows users to control selected telescopes in real time or schedule any more demanding observation. This paper deals with new opportunity that GLORIA project provides to teachers and students of various levels of education. At the moment, there are prepared educational materials related to events like Sun eclipse (measuring local atmosphere changes, Aurora Borealis (calculation of Northern Lights height, or transit of Venus (measurement of the Earth-Sun distance. Student should be able to learn principles of CCD imaging, spectral analysis, basic calibration like dark frames subtraction, or advanced methods of noise suppression. Every user of the network can design his own experiment. We propose advanced experiment aimed at obtaining astronomical image data with high dynamic range. We also introduce methods of objective image quality evaluation in order to discover how HDR methods are affecting astronomical measurements.

  11. High dynamic range VLA observations of eight core-dominated quasars

    Energy Technology Data Exchange (ETDEWEB)

    Kollgaard, R.I.; Wardle, J.F.C.; Roberts, D.H. (Brandeis Univ., Waltham, MA (USA))

    1990-10-01

    The Very Large Array has been used at 5 GHz to make high dynamic range observations of eight quasars with prominent cores. All exhibit one-sided jets, and all but one show evidence of diffuse halos. The luminosity of the extended emission by itself is sufficient for these to be Fanaroff-Riley Class II radio sources. This interpretation is confirmed by the polarization of the extended structure: the inferred magnetic field is parallel to the jet axis in all cases, and in all but one instance turns to be nearly perpendicular to the jet at its outer end. These latter structures are identified as classical terminal hot-spots. Both the total intensity data and especially the polarization data strongly support the notion that these quasars are similar to the classical lobe-dominated quasars, but are oriented with jet axes close to the line of sight. If this is so, then the relatively high degrees of polarization observed in the terminal hotspots appear to require that the downstream fluid velocities in the hotspots are mildly relativistic, in the range v/c = 0.2 - 0.8. This, in turn, implies that the jets are at least moderately relativistic over their entire length. 53 refs.

  12. High Dynamic Range X-ray Detector Pixel Architectures Utilizing Charge Removal

    CERN Document Server

    Weiss, Joel T; Philipp, Hugh T; Becker, Julian; Chamberlain, Darol; Purohit, Prafull; Tate, Mark W; Gruner, Sol M

    2016-01-01

    Several charge integrating CMOS pixel front-ends utilizing charge removal techniques have been fabricated to extend dynamic range for x-ray diffraction applications at synchrotron sources and x-ray free electron lasers (XFELs). The pixels described herein build on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging. These new pixels boast several orders of magnitude improvement in maximum flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 10$^{8}$ x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to t...

  13. Enhanced reflection from inverse tapered nanocone arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiang-Tian; Dai, Qing, E-mail: daiq@nanoctr.cn [National Center for Nanoscience and Technology, Beijing 100190 (China); Butt, Haider, E-mail: h.butt@bham.ac.uk; Deng, Sunan [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Cruz Vasconcellos, Fernando da [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom); Kangwanwatana, Chuan; Montelongo, Yunuen; Qasim, Malik M.; Wilkinson, Timothy D. [Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2014-08-04

    We computationally and experimentally demonstrate enhanced reflection effects displayed by silicon-based inverted nanocone arrays. A 3D finite element model is used to characterize the optical properties of the nanocone arrays with respect to the change in polarization and incident angles. The nanocone arrays are fabricated by e-beam lithography in hexagonal and triangular geometries with a lattice constant of 300 nm. The fabricated devices show a two-fold increase in reflection compared with bare silicon surface, as well as a strong diffraction within the visible and near-infrared spectra. The nanocone arrays may find a variety of applications from optical devices to energy conservation technologies.

  14. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  15. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel [JLAB; Douglas, David R. [JLAB; Legg, Robert A. [JLAB; Tennant, Christopher D. [JLAB

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  16. High Dynamic Range Processing for Magnetic Resonance Imaging

    Science.gov (United States)

    Sukerkar, Preeti A.; Meade, Thomas J.

    2013-01-01

    Purpose To minimize feature loss in T1- and T2-weighted MRI by merging multiple MR images acquired at different TR and TE to generate an image with increased dynamic range. Materials and Methods High Dynamic Range (HDR) processing techniques from the field of photography were applied to a series of acquired MR images. Specifically, a method to parameterize the algorithm for MRI data was developed and tested. T1- and T2-weighted images of a number of contrast agent phantoms and a live mouse were acquired with varying TR and TE parameters. The images were computationally merged to produce HDR-MR images. All acquisitions were performed on a 7.05 T Bruker PharmaScan with a multi-echo spin echo pulse sequence. Results HDR-MRI delineated bright and dark features that were either saturated or indistinguishable from background in standard T1- and T2-weighted MRI. The increased dynamic range preserved intensity gradation over a larger range of T1 and T2 in phantoms and revealed more anatomical features in vivo. Conclusions We have developed and tested a method to apply HDR processing to MR images. The increased dynamic range of HDR-MR images as compared to standard T1- and T2-weighted images minimizes feature loss caused by magnetization recovery or low SNR. PMID:24250788

  17. High dynamic range processing for magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Andy H Hung

    Full Text Available To minimize feature loss in T1- and T2-weighted MRI by merging multiple MR images acquired at different TR and TE to generate an image with increased dynamic range.High Dynamic Range (HDR processing techniques from the field of photography were applied to a series of acquired MR images. Specifically, a method to parameterize the algorithm for MRI data was developed and tested. T1- and T2-weighted images of a number of contrast agent phantoms and a live mouse were acquired with varying TR and TE parameters. The images were computationally merged to produce HDR-MR images. All acquisitions were performed on a 7.05 T Bruker PharmaScan with a multi-echo spin echo pulse sequence.HDR-MRI delineated bright and dark features that were either saturated or indistinguishable from background in standard T1- and T2-weighted MRI. The increased dynamic range preserved intensity gradation over a larger range of T1 and T2 in phantoms and revealed more anatomical features in vivo.We have developed and tested a method to apply HDR processing to MR images. The increased dynamic range of HDR-MR images as compared to standard T1- and T2-weighted images minimizes feature loss caused by magnetization recovery or low SNR.

  18. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel E. [JLAB; Douglas, David R. [JLAB

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  19. Delocalization of Electrons in Strong Insulators at High Dynamic Pressures

    Directory of Open Access Journals (Sweden)

    William J. Nellis

    2011-06-01

    Full Text Available Systematics of material responses to shock flows at high dynamic pressures are discussed. Dissipation in shock flows drives structural and electronic transitions or crossovers, such as used to synthesize metallic liquid hydrogen and most probably Al2O3 metallic glass. The term “metal” here means electrical conduction in a degenerate system, which occurs by band overlap in degenerate condensed matter, rather than by thermal ionization in a non-degenerate plasma. Since H2 and probably disordered Al2O3 become poor metals with minimum metallic conductivity (MMC virtually all insulators with intermediate strengths do so as well under dynamic compression. That is, the magnitude of strength determines the split between thermal energy and disorder, which determines material response. These crossovers occur via a transition from insulators with electrons localized in chemical bonds to poor metals with electron energy bands. For example, radial extents of outermost electrons of Al and O atoms are 7 a0 and 4 a0, respectively, much greater than 1.7 a0 needed for onset of hybridization at 300 GPa. All such insulators are Mott insulators, provided the term “correlated electrons” includes chemical bonds.

  20. Terahertz superconducting plasmonic hole array

    CERN Document Server

    Tian, Zhen; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applications in the design of low-loss, large dynamic range amplitude modulation, and surface plasmon based terahertz devices.

  1. Electrophoresis device

    Science.gov (United States)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  2. Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  3. Advanced spectral analysis of ionospheric waves observed with sparse arrays

    CERN Document Server

    Helmboldt, Joseph

    2014-01-01

    This paper presents a case study from a single, six-hour observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330 MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal to noise (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the...

  4. Imaging with high Dynamic using an Ionization Chamber

    OpenAIRE

    Menk, Ralf-Hendrik; Amenitsch, Heinz; Arfelli, Fulvia; Bernstorff, Sigrid; Besch, Hans Juergen; Voltolina, Francesco

    2010-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the describ...

  5. High dynamic range, hyper-terahertz detection with silicon photoconductors

    Science.gov (United States)

    Muir, A. C.; Hussain, A.; Andrews, S. R.

    2016-06-01

    The frequency response of ion implanted silicon photoconductive devices designed for coherent detection in time domain terahertz spectroscopy has been studied between 0.2 and 30 THz. Unlike devices using polar photoconductors or ones having polar substrates, which have a complicated response spectrum in the region of their reststrahlen bands, the response of silicon detectors fabricated on silicon substrates is relatively featureless. When used with amplified laser systems, the dynamic range of Si detectors is shown to be very similar to that of GaAs devices with the same geometry over a 20 THz range, superior to air-biased coherent detection (ABCD) at frequencies below ˜7 THz and comparable with both ABCD and electro-optic sampling in thin ZnTe crystals between 7 and 20 THz. Together with their ease of use and linear response in terahertz fields approaching 1 MV/cm, this suggests that Si photoconductors could be a competitive choice for sensitive detection in nonlinear hyper-terahertz spectroscopy.

  6. MMIC devices for active phased array antennas

    Science.gov (United States)

    Mittra, R.

    1986-01-01

    The use of finlines for microwave monolithic integrated circuit application in the 20 to 40 GHz frequency range. Other wave guiding structures, are also examined from a comparative point of view and some sonclusions are drawn on the basis of the results.

  7. Characterization of HZC XP1805 photomultiplier tube for LHAASO-WCDA with a high dynamic range base

    Science.gov (United States)

    Zhao, X.; Tang, Z.; Li, C.; Li, X.; Zha, W.; Chen, H.; Zhang, Y.; Shao, M.; Sun, Y.; Zhou, Y.

    2016-10-01

    The Water Cherenkov Detector Array (WCDA) for the Large High Altitude Air Shower Observatory (LHAASO) will employ 3000 large-sized hemisphere photomultiplier tubes (PMTs) to collect the Cherenkov light produced by shower particles crossing water. The PMTs require not only good single photoelectron (SPE) resolution and small transit time spread (TTS), but also good linearity up to 4000 photoelectrons. XP1805 PMT produced by Hainan Zhanchuang Photonics Technology Co., Ltd (HZC), China, with a production line imported from Photonis (France) is a good candidate for LHAASO-WCDA readout. In this paper, the design of a high dynamic range base for XP1805 is presented. The SPE responses and non-linearity of XP1805 with the high dynamic range base are measured. These results show that HZC XP1805 with the designed base is well qualified for LHAASO-WCDA, with peak-to-valley ratio greater than 2, TTS around 3 ns, dynamic range (non-linearity within 5%) over 1500 and 5300 photoelectrons for anode and the 6th dynode output, respectively, at PMT gain of 3 × 106 with the inciting light pulse width of 6.4 ns.

  8. Multichannel Array Magnetic Flux Leakage Testing System Using Hall Devices%基于霍尔元件阵列的缺陷漏磁检测技术研究

    Institute of Scientific and Technical Information of China (English)

    张卫民; 杨旭; 王珏; 高乾鹏

    2011-01-01

    By using Hall devices with high sensitivity, multi-channel array magnetic flux leakage sensor and its signal processing circuit were designed and developed. The experiments of testing defects in ferromagnetic samples with different parameters and sizes were carried out. The developed magnetic flux leakage detection system realized the image display of defect signals under geomagnetic excitation and artificial weak magnetic excitation. The display method of subject defects based on signals from testing system was discussed. In addition, the nonlinear inversion between flaw parameters and tested signals could be mapped by using the technique of artificial neural network, that could be used to quantitatively analyze the subject flaw.%利用高灵敏度霍尔器件,设计研制了多通道阵列式漏磁检测传感器及信号处理电路.对不同几何参数的铁磁性试件缺陷进行了检测实验研究,该漏磁检测系统可实现地磁场激励和人工弱磁激励下的缺陷信号图像显示.探讨了基于多通道漏磁信号的缺陷表示方法,并利用人工神经网络技术对基于多通道传感器漏磁信号的缺陷反演问题进行了初步研究,表明利用霍尔元件阵列检测装置和人工智能信息处理方法,可以实现多通道漏磁信号与缺陷参数的非线性拟合,进而实现漏磁检测中的缺陷定量化分析.

  9. picoArray Technology: The Tool's Story

    CERN Document Server

    Duller, Andrew; Panesar, Gajinder; Gray, Alan; Robbins, Will

    2011-01-01

    This paper briefly describes the picoArray? architecture, and in particular the deterministic internal communication fabric. The methods that have been developed for debugging and verifying systems using devices from the picoArray family are explained. In order to maximize the computational ability of these devices, hardware debugging support has been kept to a minimum and the methods and tools developed to take this into account.

  10. High density arrays of micromirrors

    Energy Technology Data Exchange (ETDEWEB)

    Folta, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Decker, J. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolman, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brase, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-02-01

    We established and achieved our goal to (1) fabricate and evaluate test structures based on the micromirror design optimized for maskless lithography applications, (2) perform system analysis and code development for the maskless lithography concept, and (3) identify specifications for micromirror arrays (MMAs) for LLNL's adaptive optics (AO) applications and conceptualize new devices.

  11. Satellite and acoustic tracking device

    KAUST Repository

    Berumen, Michael L.

    2014-02-20

    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  12. Modal liquid crystal array of optical elements.

    Science.gov (United States)

    Algorri, J F; Love, G D; Urruchi, V

    2013-10-21

    In this study, a novel liquid crystal array based on modal control principle is proposed and demonstrated. The advanced device comprises a six striped electrode structure that forms a configurable 2D matrix of optical elements. A simulation program based on the Frank-Oseen equations and modal control theory has been developed to predict the device electrooptic response, that is, voltage distribution, interference pattern and unwrapped phase. A low-power electronics circuit, that generates complex waveforms, has been built for driving the device. A combined variation of the waveform amplitude and phase has provided a high tuning versatility to the device. Thus, the simulations have demonstrated the generation of a liquid crystal prism array with tunable slope. The proposed device has also been configured as an axicon array. Test measurements have allowed us to demonstrate that electrooptic responses, simulated and empirical, are fairly in agreement.

  13. Bolometric Arrays for Millimeter Wavelengths

    Science.gov (United States)

    Castillo, E.; Serrano, A.; Torres-Jácome, A.

    2009-11-01

    During last years, semiconductor bolometers using thin films have been developed at INAOE, specifically boron-doped hydrogenated amorphous silicon films. The characteristics shown by these devices made them attractive to be used in astronomical instrumentation, mainly in two-dimentional arrays. These detector arrays used at the Large Millimeter Telescope will make possible to obtain astronomical images in millimeter and sub-millimeter wavelengths. With this in mind, we are developing a method to produce, with enough reliability, bolometer arrays at INAOE. Until now, silicon nitride diaphragm arrays, useful as radiation absorbers, have succesfully been obtained. Sizes going from one to four millimeter by element in a consistent way; however we have not tested thermometers and metallic contact deposition yet. At the same time, we are working on two possible configurations for the readout electronics; one of them using commercial components while the other will be an integrated circuit specifically designed for this application. Both versions will work below 77K.

  14. The design of high dynamic range ROIC for IRFPAs

    Science.gov (United States)

    Jiang, Dazhao; Liang, Qinghua; Zhang, Qiwen; Chen, Honglei; Ding, Ruijun

    2015-10-01

    The charge packet readout integrated circuit (ROIC) technology for the IRFPAs is introduced, which can realize that every pixel achieves a very high capacity of the electrons storage, and it also improves the performance of the SNR and reduces the saturation possibility of the pixels. The ROIC for the LWIR requires ability that obtaining high capacity for storing electrons. For the conventional ROIC, the maximum charge capacity is determined by the integration capacitance and the operating voltage, it can achieve a high charge capacity through increasing the area of the integration capacitor or raising the operating voltage. And this paper would introduce a digital method of ROIC that can achieve a very high charge capacity. The circuit architecture of this approach includes the following parts, a preamplifier, a comparator, a counter, and memory arrays. And the maximum charge capacity of the pixel is determined by the counter bits. This new method can achieve a high charge capacity more than 1Ge- every pixel and output the digital signal directly, while that of conventional ROIC is less than 50Me- and output the analog signal from the pixel. In this new circuit, the comparator is a important module, as the integration voltage value need compare with threshold voltage through the comparator all the time during the integration period, and we will discuss the influence of the comparator. This work design the circuit with the CSMC 0.35um CMOS technology, and the simulation use the spectre model.

  15. Fluidic nanotubes and devices

    Science.gov (United States)

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  16. High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation

    Science.gov (United States)

    Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan

    2016-07-01

    Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).

  17. Skin-inspired electronic devices

    Directory of Open Access Journals (Sweden)

    Alex Chortos

    2014-09-01

    Full Text Available Electronic devices that mimic the properties of skin have potential important applications in advanced robotics, prosthetics, and health monitoring technologies. Methods for measuring tactile and temperature signals have progressed rapidly due to innovations in materials and processing methods. Imparting skin-like stretchability to electronic devices can be accomplished by patterning traditional electronic materials or developing new materials that are intrinsically stretchable. The incorporation of sensing methods with transistors facilitates large-area sensor arrays. While sensor arrays have surpassed the properties of human skin in terms of sensitivity, time response, and device density, many opportunities remain for future development.

  18. Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  19. Spaceborne Processor Array

    Science.gov (United States)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  20. C-Band SATCOM Range Communications System for ELVs using ESAs and High Dynamics Modem Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development and implementation of passive phased array antennas (PAAs) offers significant performance benefits over the current active arrays. The keys to...

  1. Versatile Flexible Graphene Multielectrode Arrays.

    Science.gov (United States)

    Kireev, Dmitry; Seyock, Silke; Ernst, Mathis; Maybeck, Vanessa; Wolfrum, Bernhard; Offenhäusser, Andreas

    2016-12-23

    Graphene is a promising material possessing features relevant to bioelectronics applications. Graphene microelectrodes (GMEAs), which are fabricated in a dense array on a flexible polyimide substrate, were investigated in this work for their performance via electrical impedance spectroscopy. Biocompatibility and suitability of the GMEAs for extracellular recordings were tested by measuring electrical activities from acute heart tissue and cardiac muscle cells. The recordings show encouraging signal-to-noise ratios of 65 ± 15 for heart tissue recordings and 20 ± 10 for HL-1 cells. Considering the low noise and excellent robustness of the devices, the sensor arrays are suitable for diverse and biologically relevant applications.

  2. Global Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  3. Electrical device fabrication from nanotube formations

    Science.gov (United States)

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  4. Development of HEROICs: High-Sensitivity, High-Dynamic Range Detector Systems for Ultraviolet Astronomy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose a four-year program for the fabrication and characterization of high dynamic range, low background photon counting detectors that will support the next...

  5. Anisotropic permeability in deterministic lateral displacement arrays

    CERN Document Server

    Vernekar, Rohan; Loutherback, Kevin; Morton, Keith; Inglis, David

    2016-01-01

    We investigate anisotropic permeability of microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of micro-particles, including bioparticles such as cells. Correct operation requires that the fluid flow remains at a fixed angle with respect to the periodic obstacle array. We show via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. The anisotropy, which indicates the array's intrinsic tendency to induce an undesired lateral pressure gradient, can lead to off-axis flows and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation duty. We show that for circular posts the rotated-square layout, unlike the parallelogram layout, does not suffer from anisotropy and is the preferred geometry. Furthermore, anisotropy becomes severe for arrays with unequal axial and lateral gaps...

  6. Analytic device including nanostructures

    KAUST Repository

    Di, Fabrizio, E.

    2015-07-02

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  7. A TOUCH-SENSITIVE DEVICE

    DEFF Research Database (Denmark)

    2009-01-01

    propagating towards a specific point of the detector array is prevented from being incident upon the specific point of the detector array when an object contacts a touch-sensitive surface of the touch-sensitive waveguide at a corresponding specific contact point.......The present invention relates to an optical touch-sensitive device and a method of determining a position and determining a position change of an object contacting an optical touch sensitive device. In particular, the present invention relates to an optical touch pad and a method of determining...... a position and determining a position change of an object contacting an optical touch pad. A touch-sensitive device, according to the present invention may comprise a light source, a touch- sensitive waveguide, a detector array, and a first light redirecting member, wherein at least a part of the light...

  8. Notch Charge-Coupled Devices

    Science.gov (United States)

    Janesick, James

    1992-01-01

    Notch charge-coupled devices are imaging arrays of photodetectors designed to exhibit high charge-transfer efficiencies necessary for operation in ultra-large array, and less vulnerable to degradation by energetic protons, neutrons, and electrons. Main channel of horizontal register includes deep narrow inner channel (notch). Small packets of charge remain confined to notch. Larger packets spill into rest of channel; transferred in usual way. Degradation of charge-transfer efficiency by energetic particles reduced.

  9. Colorimetric Determination of Lactate Dehydrogenase on Paper-Based Microwell Arrays Microfluidic Device%纸基微孔阵列芯片比色法检测乳酸脱氢酶

    Institute of Scientific and Technical Information of China (English)

    张慧妍; 张珍; 吉邢虎; 何治柯

    2014-01-01

    A low-cost, simple, sensitive detection method of lactate dehydrogense ( LDH) was developed on paper-based microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride ( PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9. 44 U/L (3σ) by Gel Documentation System;and the linear range was 15-150 U/L by camera with a LOD of 12. 36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This low-cost, portable paper-based analytical platform could be suitable for the application in the point-of-care with high sensitivity and reproducibility.%利用纸基微芯片便捷、直观的优势,采用吩嗪二甲酯硫酸盐( PMS)/氯化硝基四氮唑蓝( NBT)显色体系,借助凝胶成像仪和普通照相机两种成像方式,建立了纸基微孔阵列芯片比色法检测乳酸脱氢酶( LDH)的方法。在最佳实验条件下,显色强度与LDH浓度呈线性相关。采用凝胶成像仪检测时,线性范围为10~150 U/L,检出限(3σ)为9.44 U/L(n=18)。采用照相法获得的线性范围为15~150 U/L,检出限(3σ)为12.36 U/L(n=18)。实验表明,人血清白蛋白(HSA)对显色结果具有增强作用,探讨了HSA的增色作用,并以HSA为增强试剂得到工作曲线。基于纸基微孔阵列芯片的LDH活性测定方法具有操作简单、结果直观可见、灵敏度高等优点,对于脱氢酶类的便捷检测有一定参考价值,可望在生物医疗检测领域获得应用。

  10. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  11. The Square Kilometer Array

    Science.gov (United States)

    Cordes, James M.

    2006-06-01

    The SKA is an observatory for m/cm wavelengths that will provide quantum leaps in studies of the early universe, the high-energy universe, and astrobiology. Key science areas include:(1) Galaxy Evolution and Large-Scale Structure, including Dark Energy;(2) Probing the Dark Ages through studies of highly redshifted hydrogen and carbon monoxide;(3) Cosmic magnetism;(4) Probing Gravity with Pulsars and Black Holes; and(5) The Cradle of Life, including real-time images of protoplanetary disks, inventory of organic molecules, and the search for signals from extraterrestrial intelligence.From a phase-space point of view, the SKA will expand enormously our ability to discover new and known phenomena, including transient sources with time scales from nano-seconds to years. Particular examples include coherent emissions from extrasolar planets and gamma-ray burst afterglows, detectable at levels 100 times smaller than currently. Specifications needed to meet the science requirements are technically quite challenging: a frequency range of approximately 0.1 to 25 GHz; wide field of view, tens of square degrees (frequency dependent); high dynamic range and image fidelity; flexibility in imaging on scales from sub-mas to degrees; and sampling the time-frequency domain as demanded by transient objects. Meeting these specifications requires collaboration of a world-wide group of engineers and scientists. For this and other reasons, the SKA will be realized internationally. Initially, several concepts have been explored for building inexpensive collecting area that provides broad frequency coverage. The Reference Design now specifies an SKA based on a large number of small-diameter dish antennas with "smart feeds." Complementary to the dishes is a phased aperture array that will provide very wide-field capability. I will discuss the Reference Design, along with a timeline for developing the technology, building the first 10% of the SKA, and finishing the full SKA, along with the

  12. Insertion devices

    CERN Document Server

    Bahrdt, J

    2006-01-01

    The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.

  13. IRAN: interferometric remapped array nulling

    Science.gov (United States)

    Aristidi, Eric; Vakili, Farrokh; Abe, Lyu; Belu, Adrian; Lopez, Bruno; Lanteri, Henri; Schutz, A.; Menut, Jean-Luc

    2004-10-01

    This paper describes a method of beam-combination in the so-called hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. The method we propose is an alternative to the Michelson pupil reconfiguration that suffers from the loss of the classical object-image convolution relation. From elementary theory of Fourier optics we demonstrate that this problem can be solved by observing in a combined pupil plane instead of an image plane. The point-source intensity distribution (PSID) of this interferometric "image" tends towards a psuedo Airy disc (similar to that of a giant monolithic telescope) for a sufficiently large number of telescopes. Our method is applicable to snap-shot imaging of extended sources with a field comparable to the Airy pattern of single telescopes operated in a co-phased multi-aperture interferometric array. It thus allows to apply conveniently pupil plane coronagraphy. Our technique called Interferometric Remapped Array Nulling (IRAN) is particularly suitable for high dynamic imaging of extra-solar planetary companions, circumstellar nebulosities or extra-galactic objects where long baseline interferometry would closely probe the central regions of AGNs for instance.

  14. Towards the Long Wavelength Array

    Science.gov (United States)

    Kassim, N. E.; Erickson, W. C.

    2008-08-01

    Nearly three decades ago, the Very Large Array (VLA) opened the cm-wavelength radio sky to high-dynamic range imaging. By developing and exploiting new techniques to mitigate ionospheric phase fluctuations, the VLA 74 MHz system is providing the first sub-arcminute resolution view of the meter-wavelength radio universe. This technical innovation has inspired an emerging suite of much more powerful low-frequency instruments, including the Long Wavelength Array (LWA). The LWA, with its great collecting area (approaching one square kilometer at 20 MHz) and long baselines (up to 400 km), will surpass, by up to 2--3 orders of magnitude, the imaging power of any previous low-frequency interferometer. LWA science goals include Cosmic Evolution, the Acceleration of Relativistic Particles, Plasma Astrophysics, and Ionospheric & Space Weather Science. Because it will explore one of the last and most poorly investigated regions of the spectrum, the potential for unexpected new discoveries is high. For more on the LWA, see http://lwa.unm.edu. The LWA project is led by the University of New Mexico, and includes the Naval Research Laboratory, Applied Research Laboratories of U. Texas, Los Alamos National Laboratory, Virginia Tech, and U. Iowa, with cooperation from the National Radio Astronomy Observatory.

  15. High performance compound semiconductor SPAD arrays

    Science.gov (United States)

    Harmon, Eric S.; Naydenkov, Mikhail; Bowling, Jared

    2016-05-01

    Aggregated compound semiconductor single photon avalanche diode (SPAD) arrays are emerging as a viable alternative to the silicon photomultiplier (SiPM). Compound semiconductors have the potential to surpass SiPM performance, potentially achieving orders of magnitude lower dark count rates and improved radiation hardness. New planar processing techniques have been developed to enable compound semiconductor SPAD devices to be produced with pixel pitches of 11 - 25 microns, with thousands of SPADs per array.

  16. Dissolved organic C export is highly dynamic - capturing this variability and challenges in modelling

    Science.gov (United States)

    Waldron, S.; Coleman, M.; Scott, E. M.; Drew, S.

    2013-12-01

    [DOC] range of 8 - 55.6 mg/l C, with the greatest shift in a single day being 23.5 mg/l C. We will present this highly dynamic [DOC] time series and also contemporaneous data from an in-situ water chemistry sonde profiling other measures of the ';riverine circulation system': pH, conductivity, temperature and stage height. The challenge now is how to allow data series of ~17,500 measurements per annum to interact to better understand and model drivers of carbon export. We are exploring the application of wavelet analysis to identify periods of coherence between [DOC] and these other variables. Our initial results indicate show that coherence with [DOC] can be intermittent and irregular, and so the challenge sensor technology presents continues.

  17. Methods and devices for protein assays

    Science.gov (United States)

    Chhabra, Swapnil; Cintron, Jose M.; Shediac, Renee

    2009-11-03

    Methods and devices for protein assays based on Edman degradation in microfluidic channels are disclosed herein. As disclosed, the cleaved amino acid residues may be immobilized in an array format and identified by detectable labels, such as antibodies, which specifically bind given amino acid residues. Alternatively, the antibodies are immobilized in an array format and the cleaved amino acids are labeled identified by being bound by the antibodies in the array.

  18. In-line X-slot element focal plane array of kinetic inductance detectors

    NARCIS (Netherlands)

    Iacono, A.; Freni, A.; Neto, A.; Gerini, G.

    2011-01-01

    Kinetic Inductance Detectors are very promising THz imaging devices to be used in Focal Plane Array configuration. In this work a new antenna feed element has been studied and optimized. Preliminary results on array configuration are also shown.

  19. Superconducting Quantum Arrays for Broadband RF Systems

    Science.gov (United States)

    Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.

    2014-05-01

    Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.

  20. Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  1. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  2. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  3. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  4. Methods and devices for fabricating and assembling printable semiconductor elements

    Science.gov (United States)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  5. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic...

  6. Improved solid state electron-charge-storage device

    Science.gov (United States)

    Kuper, A. B.

    1970-01-01

    Storage device is applicable in memory systems and in high-resolution arrays for light-responsive image sensing. The device offers high yield in multiple arrays and allows charge release with light striking only the edge of a metal electrode.

  7. Magnetic crossover effect in Nickel nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ghaddar, A. [Laboratoire de Magnetisme de Bretagne, CNRS-FRE 3117, C.S. 93837, 29238 Brest, Cedex (France); Gloaguen, F. [Laboratoire de Chimie, Electrochimie Moleculaire et Chimie Analytique, CNRS-UMR 6521, C. S. 93837 Brest Cedex 3 (France); Gieraltowski, J. [Laboratoire de Magnetisme de Bretagne, CNRS-FRE 3117, C.S. 93837, 29238 Brest, Cedex (France); Tannous, C., E-mail: tannous@univ-brest.f [Laboratoire de Magnetisme de Bretagne, CNRS-FRE 3117, C.S. 93837, 29238 Brest, Cedex (France)

    2011-05-01

    A crossover effect in the magnetic reversal mechanism within arrays of Nickel nanowires whose diameter varies from 15 to 100 nm is observed around 50 nm. Hysteresis loops and FMR measurements confirm that nanowire diameter controls effectively the nanowire easy axis as well as the magnetization reversal mechanism. This might be very interesting for spintronic devices based on current-induced domain motion such as non-volatile magnetic memory elements (MRAM) and low Ohmic loss devices.

  8. A Fast Component-Tree Algorithm for High Dynamic-Range Images and Second Generation Connectivity

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2011-01-01

    Component trees are important data structures for computation of connected attribute filters. Though some of the available algorithms are suitable for high-dynamic range, and in particular floating point data, none are suitable for computation of component trees for so-called second-generation, and

  9. Encoding of High Dynamic Range Video With a Model of Human Cones

    NARCIS (Netherlands)

    Hateren, J.H. van

    2006-01-01

    A recently developed quantitative model describing the dynamical response characteristics of primate cones is used for rendering high dynamic range (HDR) video. The model provides range compression, as well as luminance-dependent noise suppression. The steady-state (static) version of the model prov

  10. High-dynamic-range rf fiber optic link for passive antenna remoting

    Science.gov (United States)

    LaGasse, Michael J.; Thaniyavarn, Suwat

    1996-11-01

    This paper describes a bias-free, high-dynamic range, phase- modulated fiber optic link. An optical delay line filter is used for both phase demodulation and optical carrier suppression. A spur free dynamic range of 114 dB-Hz2/3 is experimentally demonstrated at a frequency of 12.5 GHz.

  11. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    Science.gov (United States)

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  12. BOLOMETRIC ARRAYS FOR MILLIMETER WAVELENGTHS

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2009-01-01

    Full Text Available During last years, semiconductor bolometers using thin lms have been developed at INAOE, speci cally boron-doped hydrogenated amorphous silicon lms. The characteristics shown by these devices made them attractive to be used in astronomical instrumentation, mainly in two-dimentional arrays. These detector arrays used at the Large Millimeter Telescope will make possible to obtain astronomical images in millimeter and submillimeter wavelengths. With this in mind, we are developing a method to produce, with enough reliability, bolometer arrays at INAOE. Until now, silicon nitride diaphragm arrays, useful as radiation absorbers, have succesfully been obtained. Sizes going from one to four millimeter by element in a consistent way; however we have not tested thermometers and metallic contact deposition yet. At the same time, we are working on two possible con gurations for the readout electronics; one of them using commercial components while the other will be an integrated circuit speci cally designed for this application. Both versions will work below 77K.

  13. Focal Plane Array Sensor for Imaging Infrared Seeker of Antitank Guided Missile

    Directory of Open Access Journals (Sweden)

    A.V.R. Warrier

    1995-07-01

    Full Text Available Technological issues and Processes for fabrication of mercury cadmium telluride detector arrays, charge coupled device readout arrays and integration of these into a focal plane array sensor have been discussed. Mini arrays of 16 X 16 size have been realised and tested to prove the technology and process schedule with a view to scaling up this for larger arrays to be used in the antitank guided missile.

  14. Stretchable Micro-Electrode Array

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, M; Hamilton, J; Polla, D; Rose, K; Wilson, T; Krulevitch, P

    2002-03-08

    This paper focuses on the design consideration, fabrication processes and preliminary testing of the stretchable micro-electrode array. We are developing an implantable, stretchable micro-electrode array using polymer-based microfabrication techniques. The device will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces and electroplated electrodes. The metal features are embedded within a thin ({approx}50 micron) substrate fabricated using poly (dimethylsiloxane) (PDMS), a biocompatible elastomeric material that has very low water permeability. The conformable nature of PDMS is critical for ensuring uniform contact with the curved surface of the retina. To fabricate the device, we developed unique processes for metalizing PDMS to produce robust traces capable of maintaining conductivity when stretched (5%, SD 1.5), and for selectively passivating the conductive elements. An in situ measurement of residual strain in the PDMS during curing reveals a tensile strain of 10%, explaining the stretchable nature of the thin metalized devices.

  15. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    Directory of Open Access Journals (Sweden)

    H. Carter Edwards

    2012-01-01

    Full Text Available Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs, and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1 manycore compute devices each with its own memory space, (2 data parallel kernels and (3 multidimensional arrays. Kernel execution performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1 separating data access patterns from computational kernels through a multidimensional array API and (2 introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].

  16. Phased array based ultrasound scanning system development

    Science.gov (United States)

    Sagdiev, R. K.; Denisov, E. S.; Evdokimov, Yu K.; Fazlyyyakhmatov, M. G.; Kashapov, N. F.

    2014-12-01

    Multichannel ultrasound scanning system based on phased arrays development is presented in this paper. Substantiation of system parameters is presented. The description of block diagram and hardware development is presented. The combination of the self-developed receiving and a transmitting units and commercially available FPGA unit and Personal Computer can solve our scientific goals, while providing a relatively low device cost.

  17. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  18. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  19. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning

    Science.gov (United States)

    Peng, Chaoyong; Chen, Yang; Chen, Quansheng; Yang, Jiansi; Wang, Hongti; Zhu, Xiaoyi; Xu, Zhiqiang; Zheng, Yu

    2017-03-01

    Earthquake Early Warning System (EEWS) has shown its efficiency for earthquake damage mitigation. As the progress of low-cost Micro Electro Mechanical System (MEMS), many types of MEMS-based accelerometers have been developed and widely used in deploying large-scale, dense seismic networks for EEWS. However, the noise performance of these commercially available MEMS is still insufficient for weak seismic signals, leading to the large scatter of early-warning parameters estimation. In this study, we developed a new type of tri-axial accelerometer based on high dynamic range MEMS with low noise level using for EEWS. It is a MEMS-integrated data logger with built-in seismological processing. The device is built on a custom-tailored Linux 2.6.27 operating system and the method for automatic detecting seismic events is STA/LTA algorithms. When a seismic event is detected, peak ground parameters of all data components will be calculated at an interval of 1 s, and τc-Pd values will be evaluated using the initial 3 s of P wave. These values will then be organized as a trigger packet actively sent to the processing center for event combining detection. The output data of all three components are calibrated to sensitivity 500 counts/cm/s2. Several tests and a real field test deployment were performed to obtain the performances of this device. The results show that the dynamic range can reach 98 dB for the vertical component and 99 dB for the horizontal components, and majority of bias temperature coefficients are lower than 200 μg/°C. In addition, the results of event detection and real field deployment have shown its capabilities for EEWS and rapid intensity reporting.

  20. INS/GPS for High-Dynamic UAV-Based Applications

    Directory of Open Access Journals (Sweden)

    Junchuan Zhou

    2012-01-01

    Full Text Available The carrier-phase-derived delta pseudorange measurements are often used for velocity determination. However, it is a type of integrated measurements with errors strongly related to pseudorange errors at the start and end of the integration interval. Conventional methods circumvent these errors with approximations, which may lead to large velocity estimation errors in high-dynamic applications. In this paper, we employ the extra states to “remember” the pseudorange errors at the start point of the integration interval. Sequential processing is employed for reducing the processing load. Simulations are performed based on a field-collected UAV trajectory. Numerical results show that the correct handling of errors involved in the delta pseudorange measurements is critical for high-dynamic applications. Besides, sequential processing can update different types of measurements without degrading the system estimation accuracy, if certain conditions are met.

  1. An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors

    Directory of Open Access Journals (Sweden)

    Yuan Cao

    2014-12-01

    Full Text Available In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO based analog-to-digital converter (ADC to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS process.

  2. Research on temperature distribution of combustion flames based on high dynamic range imaging

    Science.gov (United States)

    Zhao, Hui; Feng, Huajun; Xu, Zhihai; Li, Qi

    2007-10-01

    The imaging-based three-color method is widely used in the field of non-contact temperature measurement of combustion flames. In this paper, by analyzing the imaging process of a combustion flame in detail, we re-derivate the three-color method by adopting a theory of high dynamic range imaging. Instead of using white balanced, gamma calibrated or other algorithms applied 8-bit pixel values, we use irradiance values on the image plane; these values are obtained by combining two differently exposed raw images into one high dynamic range irradiance map with the help of the imaging system's response function. An instrumentation system is presented and a series of experiments have been carried out, the results of which are satisfactory.

  3. A Novel Highly Dynamic Choice Routing Scheme for Mobile Adhoc Network

    Directory of Open Access Journals (Sweden)

    M. Varghese

    2014-08-01

    Full Text Available This study aims to improve the performance of the traditional routing protocol for MANET such as DSR and AODV in terms of delay and overhead. The proposed routing scheme is called as Highly Dynamic Choice Routing (HDCR which adopts with the highly dynamic environment of MANET. The link residual life is estimated to reduce the link failure before forwarding data through a node. The velocity of the moving mode is considered while choosing the next forwarder node. This enables the HDCR to decrease the delay in the network. The proposed routing scheme reduces routing overhead and reduces the delay. This scheme reduces the link failure too. The performance is evaluated by using the simulation results obtained by using NS2 simulator.

  4. Advanced spectral analysis of ionospheric waves observed with sparse arrays

    Science.gov (United States)

    Helmboldt, J. F.; Intema, H. T.

    2014-02-01

    This paper presents a case study from a single, 6h observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal-to-noise ratio (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the GPS data when combining all available satellite/receiver pairs, which probe a larger physical area and likely have a wider variety of measurement errors than in the single-satellite case. In this instance, we found that the peak S/N of the detected waves was improved by more than an order of magnitude. The data products generated by the deconvolution procedure also allow for a reconstruction of the fluctuations as a two-dimensional waveform/phase screen that can be used to correct for their effects.

  5. High dynamic range multi-channel cross-correlator for single-shot temporal contrast measurement

    Science.gov (United States)

    Kon, A.; Nishiuchi, M.; Kiriyama, H.; Ogura, K.; Mori, M.; Sakaki, H.; Kando, M.; Kondo, K.

    2016-05-01

    We have developed a multi-channel cross-correlator for high dynamic range (>1010), single-shot temporal contrast measurements. The correlator utilizes a third-order crosscorrelation technique and has a reference channel, to be normalized by the measured peak intensity, and four independent optical delay lines. The measurement results of the shot-to-shot temporal contrast clearly show the intensity fluctuations of short pre-pulses at -4.5 ps and -26 ps before main pulse.

  6. Axiom turkey genotyping array

    Science.gov (United States)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  7. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  8. High dynamic range hyperspectral imaging for camouflage performance test and evaluation

    Science.gov (United States)

    Pearce, D.; Feenan, J.

    2016-10-01

    This paper demonstrates the use of high dynamic range processing applied to the specific technique of hyper-spectral imaging with linescan spectrometers. The technique provides an improvement in signal to noise for reflectance estimation. This is demonstrated for field measurements of rural imagery collected from a ground-based linescan spectrometer of rural scenes. Once fully developed, the specific application is expected to improve the colour estimation approaches and consequently the test and evaluation accuracy of camouflage performance tests. Data are presented on both field and laboratory experiments that have been used to evaluate the improvements granted by the adoption of high dynamic range data acquisition in the field of hyperspectral imaging. High dynamic ranging imaging is well suited to the hyperspectral domain due to the large variation in solar irradiance across the visible and short wave infra-red (SWIR) spectrum coupled with the wavelength dependence of the nominal silicon detector response. Under field measurement conditions it is generally impractical to provide artificial illumination; consequently, an adaptation of the hyperspectral imaging and re ectance estimation process has been developed to accommodate the solar spectrum. This is shown to improve the signal to noise ratio for the re ectance estimation process of scene materials in the 400-500 nm and 700-900 nm regions.

  9. 3D shape measurement of objects with high dynamic range of surface reflectivity.

    Science.gov (United States)

    Liu, Gui-hua; Liu, Xian-Yong; Feng, Quan-Yuan

    2011-08-10

    This paper presents a method that allows a conventional dual-camera structured light system to directly acquire the three-dimensional shape of the whole surface of an object with high dynamic range of surface reflectivity. To reduce the degradation in area-based correlation caused by specular highlights and diffused darkness, we first disregard these highly specular and dark pixels. Then, to solve this problem and further obtain unmatched area data, this binocular vision system was also used as two camera-projector monocular systems operated from different viewing angles at the same time to fill in missing data of the binocular reconstruction. This method involves producing measurable images by integrating such techniques as multiple exposures and high dynamic range imaging to ensure the capture of high-quality phase of each point. An image-segmentation technique was also introduced to distinguish which monocular system is suitable to reconstruct a certain lost point accurately. Our experiments demonstrate that these techniques extended the measurable areas on the high dynamic range of surface reflectivity such as specular objects or scenes with high contrast to the whole projector-illuminated field.

  10. GNSS Signal Tracking Performance Improvement for Highly Dynamic Receivers by Gyroscopic Mounting Crystal Oscillator.

    Science.gov (United States)

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-08-31

    In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.

  11. A comparative study of supercapacitive performances of nickel cobalt layered double hydroxides coated on ZnO nanostructured arrays on textile fibre as electrodes for wearable energy storage devices.

    Science.gov (United States)

    Trang, Nguyen Thi Hong; Ngoc, Huynh Van; Lingappan, Niranjanmurthi; Kang, Dae Joon

    2014-02-21

    We demonstrated an efficient method for the fabrication of novel, flexible electrodes based on ZnO nanoflakes and nickel-cobalt layered double hydroxides (denoted as ZnONF/NiCoLDH) as a core-shell nanostructure on textile substrates for wearable energy storage devices. NiCoLDH coated ZnO nanowire (denoted as ZnONW/NiCoLDH) flexible electrodes are also prepared for comparison. As an electrode for supercapacitors, ZnONF/NiCoLDH exhibits a high specific capacitance of 1624 F g(-1), which is nearly 1.6 times greater than ZnONW/NiCoLDH counterparts. It also shows a maximum energy density of 48.32 W h kg(-1) at a power density of 27.53 kW kg(-1), and an excellent cycling stability with capacitance retention of 94% and a Coulombic efficiency of 93% over 2000 cycles. We believe that the superior performance of the ZnONF/NiCoLDH hybrids is due primarily to the large surface area of the nanoflake structure and the open spaces between nanoflakes, both of which provide a large space for the deposition of NiCoLDH, resulting in reduced internal resistance and improved capacitance performance. Our results are significant for the development of electrode materials for high-performance wearable energy storage devices.

  12. A low-noise high dynamic-range time-domain EMI measurement system for CISPR Band E

    Science.gov (United States)

    Hoffmann, C.; Russer, P.

    2011-08-01

    In this paper, a broadband time-domain EMI measurement system for measurements from 9 kHz to 18 GHz is presented that allows for compliant EMI measurements in CISPR Band E. Combining ultra-fast analog-to-digital-conversion and real-time digital signal processing on a field-programmable-gate-array (FPGA) with ultra-broadband multi-stage down-conversion, scan times can be reduced by several orders of magnitude in comparison to a traditional heterodyne EMI-receiver. The ultra-low system noise floor of 6-8 dB and the real-time spectrogram allow for the characterisation of the time-behaviour of EMI near the noise floor. EMI measurements of electronic consumer devices and electric household appliances are presented.

  13. Micro-fluidic (Lab-on the- Chip) PCR Array Cartridge for Biological Screening in a Hand Held Device: FInal Report for CRADA no 264. PNNL-T2-258-RU with CombiMatrix Corp

    Energy Technology Data Exchange (ETDEWEB)

    Rainina, Evguenia I.

    2010-10-31

    The worldwide emergence of both new and old diseases resulting from human expansion and also human and materials mobility has and will continue to place stress on both medical and clinical diagnostics. The classical approach to bioagents detection involves the use of differential metabolic assays to determine species type in the case of most bacteria, or the use of cell culture and electron microscopy to diagnose viruses and some bacteria that are intracellular parasites. The long-term goal in bioagent detection is to develop a hand-held instrument featuring disposable cartridges which contain all the necessary reagents, reaction chambers, waste chambers, and micro-fluidics to extract, concentrate, amplify, and analyze nucleic acids. This GIPP project began development of a sensory platform using nucleic-acid based probes. Although research was not completed, initial findings indicated that an advanced sensing device could theoretically be built on a DNA/RNA-based technology platform.

  14. Comparison of Thrust Characteristics in Pencil Sized Cylinder-type Linear Motors with Different Magnet Arrays

    OpenAIRE

    Nakaiwa, K; Yamada, A; Tashiro, K.; Wakiwaka, H.

    2009-01-01

    From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.

  15. A SQUID series array dc current sensor

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J; Drung, D [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)], E-mail: joern.beyer@ptb.de, E-mail: dietmar.drung@ptb.de

    2008-09-15

    Superconducting quantum interference device (SQUID) sensors are used to sense changes in various physical quantities, which can be transformed into changes in the magnetic flux threading the SQUID loop. We have developed a novel SQUID array dc current sensor. The device is based on a series array of identical dc SQUIDs. An input signal current to be measured is coupled tightly but non-uniformly to the SQUID array elements. The input signal coupling to the individual array elements is chosen such that a single-valued, non-periodic overall voltage response is obtained. Flux offsets in the individual SQUIDs which would compromise the sensor voltage response are avoided or can be compensated. We present simulations and experimental results on the SQUID Array for Dc (SQUAD) current sensor current sensor performance. A dc current resolution of <1 nA in a measurement bandwidth of 0-25 Hz is achieved for an input inductance of L{sub In}<3 nH.

  16. Ferroelectric devices

    CERN Document Server

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  17. Spherical Arrays for Wireless Channel Characterization and Emulation

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund

    2014-01-01

    Three types of spherical arrays for use in wireless communication research are presented. First, a spherical array of 32 monopoles with beam steering in arbitrary direction and with arbitrary polarization is described. Next, a spherical array with 16 quad-ridged open-flared horns is introduced, o......, offering better wideband performance and easier beam steering. Finally, a multi-probe setup for over-the-air testing of multiple-input multiple-output mobile devices is presented, being essentially a spherical array with inward radiation....

  18. Optimized Optomechanical Micro-Cantilever Array for Uncooled Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    DONG Feng-Liang; ZHANG Qing-Chuan; CHEN Da-Peng; MIAO Zheng-Yu; XIONG Zhi-Ming; GUO Zhe-Ying; LI Chao-Bo; JIAO Bin-Bin; WU Xiao-Ping

    2007-01-01

    We present a new substrate-free bimaterial cantilever array made of SiNx and Au for an uncooled microoptomechanical infrared imaging device.Each cantilever element has an optimized deformation magnification structure.A 160×160 array with a 120μm×120μm pitch is fabricared and an optical readout is used to collectively measure deflections of all microcantilevers in the array.Tharmal images of room-temperature objects with higher spatial resolution have been obtained and the noise-equivalent temperature difference of the fabricated focal plane arrays is giyen statistically and is measured to be about 270mK.

  19. Miniature Sensor Node with Conformal Phased Array

    Directory of Open Access Journals (Sweden)

    W. De Raedt

    2011-12-01

    Full Text Available This paper reports on the design and fabrication of a fully integrated antenna beam steering concept for wireless sensor nodes. The conformal array circumcises four cube faces with a silicon core mounted on each face. Every silicon core represents a 2 by 1 antenna array with an antenna element consisting of a dipole antenna, a balun, and a distributed MEMS phase shifter. All these components are based on a single wafer process and designed to work at 17.2 GHz. Simulations of the entire system and first results of individual devices are reported.

  20. The ROSPHERE γ-ray spectroscopy array

    Science.gov (United States)

    Bucurescu, D.; Căta-Danil, I.; Ciocan, G.; Costache, C.; Deleanu, D.; Dima, R.; Filipescu, D.; Florea, N.; Ghiţă, D. G.; Glodariu, T.; Ivaşcu, M.; Lică, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Niţă, C. R.; Olăcel, A.; Pascu, S.; Sava, T.; Stroe, L.; Şerban, A.; Şuvăilă, R.; Toma, S.; Zamfir, N. V.; Căta-Danil, G.; Gheorghe, I.; Mitu, I. O.; Suliman, G.; Ur, C. A.; Braunroth, T.; Dewald, A.; Fransen, C.; Bruce, A. M.; Podolyák, Zs.; Regan, P. H.; Roberts, O. J.

    2016-11-01

    The ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) has been designed as a multi-detector setup dedicated to γ-ray spectroscopy studies at the Bucharest 9 MV Tandem accelerator. Consisting of up to 25 detectors (either Compton suppressed HPGe detectors or fast LaBr3(Ce) scintillator detectors) together with a state of the art plunger device, ROSPHERE is a powerful tool for lifetime measurements using the Recoil Distance Doppler Shift (RDDS) and the in-beam Fast Electronic Scintillation Timing (FEST) methods. The array's geometry, detectors, electronics and data acquisition system are described. Selected results from the first experimental campaigns are also presented.

  1. 用于测量和调控入射光偏振态的大面积阵列液晶器件%Large-area arrayed liquid crystal device for measuring and regulating polarization state of incident light

    Institute of Scientific and Technical Information of China (English)

    佟庆; 荣幸; 张新宇; 桑红石; 谢长生

    2014-01-01

    介绍了一种通过改变电极上的驱动电压来测量和调控入射光偏振态的液晶器件,同时模拟了该器件的液晶分子指向矢分布。众所周知,液晶分子的倾斜角较容易控制,却常忽视其扭曲角同样可以被调控。所以,液晶材料能够用作可变化、可转动的相位延迟器,这样就可以实现用同一器件结构测量入射光偏振态,随后调控该入射光偏振态。模拟了在十字结构电极下液晶层的指向矢分布,表明扭曲角可被电控,同时也说明将入射光偏振态调控到任意偏振态是可以实现的。%The design of a liquid crystal (LC) device was presented, which could be used to measure and regulate the polarization state of the incident light by only changing the voltage amplitude of the driving signal applied over the patterned electrodes, and simulate the direction orientation distribution in the LC layer of the device. As known, the tilt angle of the LC molecular can be controlled easily. However, it always was ignored that the twist angle could also be electrically controlled. So, the LC material can be used as a variable and rotatable phase retarder, and then the polarization state was regulated after measuring the polarized incident light through the same testing architecture. The direction orientation distribution of the LC layer with the cross-shape electrodes was simulated firstly. Results show that the twist angle can be electrically controlled, and it is achievable to regulate the polarized state of incident light to any desired polarization state.

  2. Array Phase Shifters: Theory and Technology

    Science.gov (United States)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  3. Construction of a Piezoresistive Neural Sensor Array

    Science.gov (United States)

    Carlson, W. B.; Schulze, W. A.; Pilgrim, P. M.

    1996-01-01

    The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors

  4. Introduction to FPGA Devices and The Challenges for Critical Application - A User's Perspective

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth

    2015-01-01

    This presentation is an introduction to Field Programmable Gate Array (FPGA) devices and the challenges of critical application including: safety, reliability, availability, recoverability, and security.

  5. Evaluation of High Dynamic Range Photography as a Luminance Mapping Technique

    Energy Technology Data Exchange (ETDEWEB)

    Inanici, Mehlika; Galvin, Jim

    2004-12-30

    The potential, limitations, and applicability of the High Dynamic Range (HDR) photography technique is evaluated as a luminance mapping tool. Multiple exposure photographs of static scenes are taken with a Nikon 5400 digital camera to capture the wide luminance variation within the scenes. The camera response function is computationally derived using the Photosphere software, and is used to fuse the multiple photographs into HDR images. The vignetting effect and point spread function of the camera and lens system is determined. Laboratory and field studies have shown that the pixel values in the HDR photographs can correspond to the physical quantity of luminance with reasonable precision and repeatability.

  6. Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyong; Zhang, Yunlong, E-mail: ylzhang1@mail.ustc.edu.cn; Dong, Jianing; Wen, Sicheng; Feng, Changqing; Wang, Chi; Wei, Yifeng; Wang, Xiaolian; Xu, Zizong; Liu, Shubin

    2015-04-21

    A base board for photomultiplier tube (PMT) with multi-dynode readout has been developed for the BGO electromagnetic calorimeter (ECAL) of the Dark Matter Particle Explorer (DAMPE). In order to cover a high dynamic range of energy measurements, the signals are read out from different sensitive dynodes 2, 5, and 8 (Dy2, Dy5 and Dy8). The performance of this new type of base board is studied with a light-emitting diode (LED) system and cosmic rays. A wide measuring range from 0.5 to 1.0×10{sup 5} MIPs can be achieved using the VA32 readout Application Specific Integrated Circuit (ASIC)

  7. EO-polymer waveguide based high dynamic range EM wave sensors

    CERN Document Server

    Lin, Che-Yun; Zhang, Xingyu; Lee, Beom Suk; Chen, Ray T

    2014-01-01

    In this paper, we present the design and experimental demonstration of a high dynamic range electric field sensor based on electro-optic (EO) polymer directional coupler waveguides that offers the strong and ultra-fast EO response of EO polymer. As compared to conventional photonic electric field sensors, our directional coupler waveguide design offers several advantages such as bias-free operation, highly linear measurement response up to 70dB, and a wide electric field detection range from 16.7V/m to 750kV/m at a frequency of 1GHz.

  8. Testing Microshutter Arrays Using Commercial FPGA Hardware

    Science.gov (United States)

    Rapchun, David

    2008-01-01

    NASA is developing micro-shutter arrays for the Near Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST). These micro-shutter arrays allow NIRspec to do Multi Object Spectroscopy, a key part of the mission. Each array consists of 62414 individual 100 x 200 micron shutters. These shutters are magnetically opened and held electrostatically. Individual shutters are then programmatically closed using a simple row/column addressing technique. A common approach to provide these data/clock patterns is to use a Field Programmable Gate Array (FPGA). Such devices require complex VHSIC Hardware Description Language (VHDL) programming and custom electronic hardware. Due to JWST's rapid schedule on the development of the micro-shutters, rapid changes were required to the FPGA code to facilitate new approaches being discovered to optimize the array performance. Such rapid changes simply could not be made using conventional VHDL programming. Subsequently, National Instruments introduced an FPGA product that could be programmed through a Labview interface. Because Labview programming is considerably easier than VHDL programming, this method was adopted and brought success. The software/hardware allowed the rapid change the FPGA code and timely results of new micro-shutter array performance data. As a result, numerous labor hours and money to the project were conserved.

  9. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  10. Array Antenna Limitations

    CERN Document Server

    Jonsson, B L G; Hussain, N

    2013-01-01

    This letter defines a physical bound based array figure of merit that provides a tool to compare the performance of both single and multi-band array antennas with respect to return-loss, thickness of the array over the ground-plane, and scan-range. The result is based on a sum-rule result of Rozanov-type for linear polarization. For single-band antennas it extends an existing limit for a given fixed scan-angle to include the whole scan-range of the array, as well as the unit-cell structure in the bound. The letter ends with an investigation of the array figure of merit for some wideband and/or wide-scan antennas with linear polarization. We find arrays with a figure of merit >0.6 that empirically defines high-performance antennas with respect to this measure.

  11. HIGHLY DYNAMIC RANGE IMAGE ENHANCEMENT ALGORITHM%高动态范围图像增强算法

    Institute of Scientific and Technical Information of China (English)

    席志红; 赵蓝飞

    2014-01-01

    Due to display devices cannot restore the true effects of highly dynamic range images,the article puts forward an image en-hancement algorithm based on hierarchical tone mapping.Firstly the algorithm applies Retinex model and fast bilateral filtering algorithm to estimate the illumination images.Secondly it applies Gaussian mixture model and expectation maximization algorithm to split the illumination image probability into hierarchical Gaussian models mixed together.Thirdly by iteration it acquires the optimal gamma coefficients correspond-ing to each Gaussian probability hierarchies.At last the hierarchies are layered to obtain the enhanced illumination image.Experiment verifies that the algorithm realizes the compression of image dynamic range while its image enhancement effects are obvious.%针对显示设备无法还原高动态范围图像的真实效果,提出一种基于分层色阶映射的图像增强算法。该算法首先通过Retinex模型与快速双边滤波算法估计光照图像。然后利用高斯混合模型和期望最大算法将光照图像概率分布分割为多层高斯模型混合而成。并通过迭代获得各高斯概率层对应的最优校正系数。最后叠加各层并获得增强后的光照图像。实验证明,该算法在整体上实现了图像动态范围的压缩,图像增强效果明显。

  12. Pacific Array (Transportable Broadband Ocean Floor Array)

    Science.gov (United States)

    Kawakatsu, Hitoshi; Ekstrom, Goran; Evans, Rob; Forsyth, Don; Gaherty, Jim; Kennett, Brian; Montagner, Jean-Paul; Utada, Hisashi

    2016-04-01

    Based on recent developments on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry1, together with advances in the seismic analysis methodology, have enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (azimuthal, and hopefully radial), with deployments of ~15 broadband ocean bottom seismometers (BBOBSs). Having ~15 BBOBSs as an array unit for a 2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure beneath Pacific ocean, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations is essential: if three countries/institutions participate this endeavor together, Pacific Array may be accomplished within five-or-so years.

  13. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  14. A Pneumatic Actuated Microfluidic Beads-Trapping Device

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Cai, Ziliang; Wang, Jun; Wang, Wanjun; Lin, Yuehe

    2011-08-20

    The development of a polydimethylsiloxane (PDMS) microfluidic microbeads trapping device is reported in this paper. Besides fluid channels, the proposed device includes a pneumatic control chamber and a beads-trapping chamber with a filter array structure. The pneumatic flow control chamber and the beads-trapping chamber are vertically stacked and separated by a thin membrane. By adjusting the pressure in the pneumatic control chamber, the membrane can either be pushed against the filter array to set the device in trapping mode or be released to set the device in releasing mode. In this paper, a computational fluid dynamics simulation was conducted to optimize the geometry design of the filter array structure; the device fabrication was also carried out. The prototype device was tested and the preliminary experimental results showed that it can be used as a beads-trapping unit for various biochemistry and analytical chemistry applications, especially for flow injection analysis systems.

  15. Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick; Porter, Frederick S.; Ray, C.; Sadleir, John E.; Smith, S. J.; Wassell, Edward J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.

  16. Ventricular assist device

    Science.gov (United States)

    VAD; RVAD; LVAD; BVAD; Right ventricular assist device; Left ventricular assist device; Biventricular assist device; Heart pump; Left ventricular assist system; LVAS; Implantable ventricular assist device

  17. A Novel Low Power High Dynamic Threshold Swing Limited Repeater Insertion for On-Chip Interconnects

    Directory of Open Access Journals (Sweden)

    S.Rajendar

    2014-12-01

    Full Text Available In Very Large Scale Integration (VLSI, interconnec t design has become a supreme issue in high speed I Cs. With the decreased feature size of CMOS circuits, o n-chip interconnect now dominates both circuit dela y and power consumption. An eminent technique known a s repeater/buffer insertion is used in long interconnections to reduce delay in VLSI circuits. This paper deals with some distinct low power alternative circuits in buffer insertion technique and it proposes two new techniques: Dynamic Thresho ld Swing Limited (DTSL and High Dynamic Threshold Swi ng Limited (HDTSL. The DTSL uses Dynamic Threshold MOSFET configuration. In this gate is tie d to the body and it limits the output swing. High Dynamic Threshold Swing Limited (HDTSL also uses t he same configuration along with a high threshold voltage(high-Vth. The simulation results are perfo rmed in Cadence virtuoso environment tool using 45n m technology. By simulating and comparing these vario us repeater circuits along with the proposed circui ts it is analyzed that there is trade off among power, de lay and Power Delay Product and the 34.66% of power is reduced by using the high- V th in HDTSL w hen compared to DTSL

  18. A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR ON-CHIP INTERCONNECTS

    Directory of Open Access Journals (Sweden)

    S. Rajendar

    2014-12-01

    Full Text Available In Very Large Scale Integration (VLSI, interconnect design has become a supreme issue in high speed ICs. With the decreased feature size of CMOS circuits, on-chip interconnect now dominates both circuit delay and power consumption. An eminent technique known as repeater/buffer insertion is used in long interconnections to reduce delay in VLSI circuits. This paper deals with some distinct low power alternative circuits in buffer insertion technique and it proposes two new techniques: Dynamic Threshold Swing Limited (DTSL and High Dynamic Threshold Swing Limited (HDTSL. The DTSL uses Dynamic Threshold MOSFET configuration. In this gate is tied to the body and it limits the output swing. High Dynamic Threshold Swing Limited (HDTSL also uses the same configuration along with a high threshold voltage(high-Vth. The simulation results are performed in Cadence virtuoso environment tool using 45nm technology. By simulating and comparing these various repeater circuits along with the proposed circuits it is analyzed that there is trade off among power, delay and Power Delay Product and the 34.66% of power is reduced by using the high- Vth in HDTSL when compared to DTSL.

  19. Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior

    Science.gov (United States)

    Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.

    Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.

  20. A high dynamic range linear RF power detector with a preceding LNA

    Science.gov (United States)

    Yingbo, Dai; Kefeng, Han; Na, Yan; Xi, Tan

    2012-01-01

    A design of high dynamic range linear radio frequency power detector (PD), aimed for transmitter carrier leakage suppression is presented in this paper. Based on the logarithmic amplifier principle, this detector utilizes the successive detection method to achieve a high dynamic range in the radio frequency band. In order to increase sensitivity, a low noise amplifier (LNA) is placed in the front of this detector. DC coupling is adopted in this architecture to reduce parasitics and save area, but this will unavoidably cause DC offsets in the circuit which are detrimental to the dynamic range. So a DC offset cancelling (DCOC) technique is proposed to solve the problem. Finally, this detector was fabricated in the SMIC 0.13 μm CMOS process. The measured results show that it achieves a wide dynamic range of 50 dB/40 dB with log errors in ±1 dB at 900 MHz/2 GHz, while draws 16 mA from a 1.5 V power supply. The active chip area is 0.27 × 0.67 mm2.

  1. Optimized Carrier Tracking Loop Design for Real-Time High-Dynamics GNSS Receivers

    Directory of Open Access Journals (Sweden)

    Pedro A. Roncagliolo

    2012-01-01

    Full Text Available Carrier phase estimation in real-time Global Navigation Satellite System (GNSS receivers is usually performed by tracking loops due to their very low computational complexity. We show that a careful design of these loops allows them to operate properly in high-dynamics environments, that is, accelerations up to 40 g or more. Their phase and frequency discriminators and loop filter are derived considering the digital nature of the loop inputs. Based on these ideas, we propose a new loop structure named Unambiguous Frequency-Aided Phase-Locked Loop (UFA-PLL. In terms of tracking capacity and noise resistance UFA-PLL has the same advantages of frequently used coupled-loop schemes, but it is simpler to design and to implement. Moreover, it can keep phase lock in situations where other loops cannot. The loop design is completed selecting the correlation time and loop bandwidth that minimize the pull-out probability, without relying on typical rules of thumb. Optimal and efficient ways to smooth the phase estimates are also presented. Hence, high-quality phase measurements—usually exploited in offline and quasistatic applications—become practical for real-time and high-dynamics receivers. Experiments with fixed-point implementations of the proposed loops and actual radio signals are also shown.

  2. Focal plane array with modular pixel array components for scalability

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  3. Electroluminescent, polycrystalline cadmium selenide nanowire arrays.

    Science.gov (United States)

    Ayvazian, Talin; van der Veer, Wytze E; Xing, Wendong; Yan, Wenbo; Penner, Reginald M

    2013-10-22

    Electroluminescence (EL) from nanocrystalline CdSe (nc-CdSe) nanowire arrays is reported. The n-type, nc-CdSe nanowires, 400-450 nm in width and 60 nm in thickness, were synthesized using lithographically patterned nanowire electrodeposition, and metal-semiconductor-metal (M-S-M) devices were prepared by the evaporation of two gold contacts spaced by either 0.6 or 5 μm. These M-S-M devices showed symmetrical current voltage curves characterized by currents that increased exponentially with applied voltage bias. As the applied biased was increased, an increasing number of nanowires within the array "turned on", culminating in EL emission from 30 to 50% of these nanowires at applied voltages of 25-30 V. The spectrum of the emitted light was broad and centered at 770 nm, close to the 1.74 eV (712 nm) band gap of CdSe. EL light emission occurred with an external quantum efficiency of 4 × 10(-6) for devices with a 0.60 μm gap between the gold contacts and 0.5 × 10(-6) for a 5 μm gap-values similar to those reported for M-S-M devices constructed from single-crystalline CdSe nanowires. Kelvin probe force microscopy of 5 μm nc-CdSe nanowire arrays showed pronounced electric fields at the gold electrical contacts, coinciding with the location of strongest EL light emission in these devices. This electric field is implicated in the Poole-Frenkel minority carrier emission and recombination mechanism proposed to account for EL light emission in most of the devices that were investigated.

  4. Analysis of VCSEL Array Module Using a Simple Microlens Array

    Institute of Scientific and Technical Information of China (English)

    Hen-Wai; Tsao; Shyh-Lin; Tsao

    2003-01-01

    A simple microlens array is designed between VCSEL array and fiber array for integration of array module. We increase the optical coupling efficiency from -32.057 dBm to -0.9054 dBm by using our designed microlens array.

  5. Analysis of VCSEL Array Module Using a Simple Microlens Array

    Institute of Scientific and Technical Information of China (English)

    Wen-Ming Cheng; Hen-Wai Tsao; Shyh-Lin Tsao

    2003-01-01

    A simple microlens array is designed between VCSEL array and fiber array for integration of array module. We increase the optical coupling efficiency from-32.057 dBm to-0.9054 dBm by using our designed microlens array.

  6. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  7. Assistive Devices

    Science.gov (United States)

    ... a number of assistive devices. These are tools, products or types of equipment that help you perform tasks and activities. They may help you move around, see, communicate, eat, or get dressed. Some are high-tech tools, such as computers. Others are much simpler, ...

  8. Printing Device

    NARCIS (Netherlands)

    Berg, van den M.J.; Markies, P.R.; Zuilhof, H.

    2014-01-01

    An ink jetprinting device includes a pressure chamber formed by a plurality of wall segments, a first aperture extending through a wall segment and communicating with an ink jet orifice and a second aperture extending through a wall segment and communicating with an ink supply duct. The pressure cha

  9. Detection device

    Science.gov (United States)

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  10. Separating device

    NARCIS (Netherlands)

    De Jong, T.P.R.

    2001-01-01

    A sorting device (1) suitable for sorting wire from a waste stream, comprising a body (2) that moves when in use, and provided with spikes or similar projections. The body is embodied as a rotatable roll (2), which oscillates axially during its rotation. The roll is coupled to an oscillation engine

  11. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan

    2016-11-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  12. Solar array deployment mechanism

    Science.gov (United States)

    Calassa, Mark C.; Kackley, Russell

    1995-05-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  13. Array for detecting microbes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Gary L.; DeSantis, Todd D.

    2014-07-08

    The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.

  14. Self imaging in segmented waveguide arrays

    Science.gov (United States)

    Heinrich, Matthias; Szameit, Alexander; Dreisow, Felix; Pertsch, Thomas; Nolte, Stefan; Tünnermann, Andreas; Suran, Eric; Louradour, Frédéric; Bathélémy, Alain; Longhi, Stefano

    2009-02-01

    Self-imaging in integrated optical devices is interesting for many applications including image transmission, optical collimation and even reshaping of ultrashort laser pulses. However, in general this relies on boundary-free light propagation, since interaction with boundaries results in a considerable distortion of the self-imaging effect. This problem can be overcome in waveguide arrays by segmentation of particular lattice sites, yielding phase shifts which result in image reconstruction in one- as well as two-dimensional configurations. Here, we demonstrate the first experimental realization of this concept. For the fabrication of the segmented waveguide arrays we used the femtosecond laser direct-writing technique. The total length of the arrays is 50mm with a waveguide spacing of 16 μm and 20μm in the one- and two-dimensional case, respectively. The length of the segmented area was 2.6mm, while the segmentation period was chosen to be 16 μm. This results in a complete inversion of the global phase of the travelling field inside the array, so that the evolution dynamics are reversed and the input field is imaged onto the sample output facet. Accordingly, segmented integrated optical devices provide a new and attractive opportunity for image transmission in finite systems.

  15. Photovoltaic array loss mechanisms

    Science.gov (United States)

    Gonzalez, Charles

    1986-10-01

    Loss mechanisms which come into play when solar cell modules are mounted in arrays are identified. Losses can occur either from a reduction in the array electrical performance or with nonoptimal extraction of power from the array. Electrical performance degradation is caused by electrical mismatch, transmission losses from cell surface soiling and steep angle of reflectance, and electrical losses from field wiring resistance and the voltage drop across blocking diodes. The second type of loss, concerned with the operating points of the array, can involve nonoptimal load impedance and limiting the operating envelope of the array to specific ranges of voltage and current. Each of the loss mechanisms are discussed and average energy losses expected from soiling, steep reflectance angles and circuit losses are calculated.

  16. Advanced Mechatronics and MEMS Devices

    CERN Document Server

    2013-01-01

    Advanced Mechatronics and MEMS Devicesdescribes state-of-the-art MEMS devices and introduces the latest technology in electrical and mechanical microsystems. The evolution of design in microfabrication, as well as emerging issues in nanomaterials, micromachining, micromanufacturing and microassembly are all discussed at length in this volume. Advanced Mechatronics also provides a reader with knowledge of MEMS sensors array, MEMS multidimensional accelerometer, artificial skin with imbedded tactile components, as well as other topics in MEMS sensors and transducers. The book also presents a number of topics in advanced robotics and an abundance of applications of MEMS in robotics, like reconfigurable modular snake robots, magnetic MEMS robots for drug delivery and flying robots with adjustable wings, to name a few. This book also: Covers the fundamentals of advanced mechatronics and MEMS devices while also presenting new state-of-the-art methodology and technology used in the application of these devices Prese...

  17. Image Monitoring of Pharmaceutical Blending Processes and the Determination of an End Point by Using a Portable Near-Infrared Imaging Device Based on a Polychromator-Type Near-Infrared Spectrometer with a High-speed and High-Resolution Photo Diode Array Detector

    Directory of Open Access Journals (Sweden)

    Kodai Murayama

    2015-03-01

    Full Text Available In the present study we have developed a new version (ND-NIRs of a polychromator-type near-infrared (NIR spectrometer with a high-resolution photo diode array detector, which we built before (D-NIRs. The new version has four 5 W halogen lamps compared with the three lamps for the older version. The new version also has a condenser lens with a shorter focal point length. The increase in the number of the lamps and the shortening of the focal point of the condenser lens realize high signal-to-noise ratio and high-speed NIR imaging measurement. By using the ND-NIRs we carried out the in-line monitoring of pharmaceutical blending and determined an end point of the blending process. Moreover, to determinate a more accurate end point, a NIR image of the blending sample was acquired by means of a portable NIR imaging device based on ND-NIRs. The imaging result has demonstrated that the mixing time of 8 min is enough for homogeneous mixing. In this way the present study has demonstrated that ND-NIRs and the imaging system based on a ND-NIRs hold considerable promise for process analysis.

  18. Microlens arrays with integrated pores

    Directory of Open Access Journals (Sweden)

    Shu Yang

    2005-12-01

    Full Text Available Microlenses are important optical components that image, detect, and couple light. But most synthetic microlenses have fixed position and shape once they are fabricated, so their possible range of tunability and complexity is rather limited. By comparison, biology provides many varied, new paradigms for the development of adaptive optical networks. Here, we discuss inspirational examples of biological lenses and their synthetic analogs. We focus on the fabrication and characterization of biomimetic microlens arrays with integrated pores, whose appearance and function are similar to highly efficient optical elements formed by brittlestars. The complex design can be created by three-beam interference lithography. The synthetic lens has strong focusing ability for use as an adjustable lithographic mask and a tunable optical device coupled with the microfluidic system. Replacing rigid microlenses with soft hydrogels provides a way of changing the lens geometry and refractive index continuously in response to external stimuli, resulting in intelligent, multifunctional, tunable optics.

  19. "Distinvar" device

    CERN Multimedia

    1965-01-01

    The alignment of one of the accelerator magnets being checked by the AR Division survey group. A "distinvar" device, invented by the group, using calibrated invar wires stretched between the fixed survey pillar (on the left) and a fixed point on the magnet. In two days it is thus possible to measure the alignment of the 100 magnets with an accuracy better than 1/10.

  20. Magnetohydrodynamic device

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, S.M.; Ljubimov, G.A.; Bitjurin, V.A.; Kovbasjuk, V.I.; Maximenko, V.I.; Medin, S.A.; Barshak, A.E.

    1979-12-25

    A magnetohydrodynamic device having a duct for a conducting gas to flow at an angle with the direction of the magnetic field induction vector is described. The duct is situated in the magnetic system and is provided with a plurality of electrodes adapted to interact electrically with the gas, whereas the cross-sectional shape of the duct working space is bounded by a closed contour formed by a curve inscribed into a rectangle. 1 claim.

  1. PanoSwarm: Collaborative and Synchronized Multi-Device Panoramic Photography

    OpenAIRE

    Wang, Yan; Cho, Sunghyun; Wang,Jue; Chang, Shih-Fu

    2015-01-01

    Taking a picture has been traditionally a one-persons task. In this paper we present a novel system that allows multiple mobile devices to work collaboratively in a synchronized fashion to capture a panorama of a highly dynamic scene, creating an entirely new photography experience that encourages social interactions and teamwork. Our system contains two components: a client app that runs on all participating devices, and a server program that monitors and communicates with each device. In a ...

  2. Low Dynamic Range Solutions to the High Dynamic Range Imaging Problem

    Institute of Scientific and Technical Information of China (English)

    Shanmuganathan RAMAN; Subhasis CHAUDHURI

    2010-01-01

    While capturing a real world scene using a common digital camera,due to limitations of the sensar dynamic range,we will not be able to capture the entire dynamic range of the soene.This problem is evident while capturing a picture of a scene which has both brightly and poorly illumninated regions.High Dynamic Range (HDR) imaging aims to recover the entire dynamic range of the scene by compositing multi-exposure images.Tone reproduction is required for displaying HDR images as the corresponding Low Dynamic Range(LDR) images on common displays.This paper discusses novel approaches to reconstruct LDR images directly from multi-exposure images.It is assumed that there is no knowledge of camera response function and other caraera settings.At last,it is explained how this task can be achieved effectively for static and dynamic scenes.

  3. High-dynamic-range cross-correlator for shot-to-shot measurement of temporal contrast

    Science.gov (United States)

    Kon, Akira; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Ogura, Koichi; Mori, Michiaki; Sakaki, Hironao; Kando, Masaki; Kondo, Kiminori

    2017-01-01

    The temporal contrast of an ultrahigh-intensity laser is a crucial parameter for laser plasma experiments. We have developed a multichannel cross-correlator (MCCC) for single-shot measurements of the temporal contrast in a high-power laser system. The MCCC is based on third-order cross-correlation, and has four channels and independent optical delay lines. We have experimentally demonstrated that the MCCC system achieves a high dynamic range of ˜1012 and a large temporal window of ˜1 ns. Moreover, we were able to measure the shot-to-shot fluctuations of a short-prepulse intensity at -26 ps and long-pulse (amplified spontaneous emission, ASE) intensities at -30, -450, and -950 ps before the arrival of the main pulse at the interaction point.

  4. High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging

    Science.gov (United States)

    2015-01-01

    For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT) imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT) reconstruction is proposed. For this new method, the tube’s voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components. PMID:26544723

  5. High dynamic range infrared images detail enhancement based on local edge preserving filter

    Science.gov (United States)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  6. High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging.

    Directory of Open Access Journals (Sweden)

    Ping Chen

    Full Text Available For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT reconstruction is proposed. For this new method, the tube's voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components.

  7. An Efficient Reverse Converter for The New High Dynamic Range 5-Moduli Set

    Directory of Open Access Journals (Sweden)

    Xiaolan Lv

    2013-11-01

    Full Text Available In this paper, an efficient residue to binary converter design for the new high dynamic range moduli set {2n-1,2n+1,22n,22n+1,22n-1-1} is presented. The reverse conversion in the four-moduli set {22n, 22n+1, 2n+1, 2n-1} has been proposed in literature. Hence, the converters are based on the new moduli set {22n-1-1, (2n-1(2n+1(22n+122n} and propose its residue to binary converter using New Chinese Remainder Theorem 2 ( New CRT 2. The new moduli set is proposed with a dynamic range 8n-1 bits and has the same features of the popular one. When compared to the common five moduli reverse converters, this enhanced moduli set has more dynamic range, and it useful for high performance computing.

  8. High Dynamic-Range Radio-Interferometric Images at 327 MHz

    CERN Document Server

    Uson, Juan M

    2011-01-01

    Radio astronomical imaging using aperture synthesis telescopes requires deconvolution of the point spread function as well as calibration of the instrumental characteristics (primary beam) and foreground (ionospheric/atmospheric) effects. These effects vary in time and also across the field of view, resulting in directionally-dependent (DD), time-varying gains. The primary beam will deviate from the theoretical estimate in real cases at levels that will limit the dynamic range of images if left uncorrected. Ionospheric electron density variations cause time and position variable refraction of sources. At low frequencies and sufficiently high dynamic range this will also defocus the images producing error patterns that vary with position and also with frequency due to the chromatic aberration of synthesis telescopes. Superposition of such residual sidelobes can lead to spurious spectral signals. Field-based ionospheric calibration as well as "peeling" calibration of strong sources leads to images with higher d...

  9. 32-channel pyrometer with high dynamic range for studies of shocked nanothermites

    Science.gov (United States)

    Bassett, Will P.; Dlott, Dana D.

    2017-01-01

    A 32-channel optical pyrometer has been developed for studying temperature dynamics of shock-initiated reactive materials with one nanosecond time resolution and high dynamic range. The pyrometer consists of a prism spectrograph which directs the spectrally-resolved emission to 32 fiber optics and 32 photomultiplier tubes and digitizers. Preliminary results show shock-initiated reactions of a nanothermite composite, nano CuO/Al in nitrocellulose binder, consists of three stages. The first stage occurred at 30 ns, right after the shock unloaded, the second stage at 100 ns and the third at 1 μs, and the temperatures ranged from 2100K to 3000K. Time-resolved emission spectra suggest hot spots formed during shock unloading, which initiated the bulk thermite/nitrocellulose reaction.

  10. Modeling and comparison of superconducting linear actuators for highly dynamic motion

    Directory of Open Access Journals (Sweden)

    Bruyn B.J.H. de

    2015-12-01

    Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.

  11. Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database

    Science.gov (United States)

    Banitalebi-Dehkordi, Amin

    2017-03-01

    High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.

  12. Lossy compression of floating point high-dynamic range images using JPEG2000

    Science.gov (United States)

    Springer, Dominic; Kaup, Andre

    2009-01-01

    In recent years, a new technique called High Dynamic Range (HDR) has gained attention in the image processing field. By representing pixel values with floating point numbers, recorded images can hold significantly more luminance information than ordinary integer images. This paper focuses on the realization of a lossy compression scheme for HDR images. The JPEG2000 standard is used as a basic component and is efficiently integrated into the compression chain. Based on a detailed analysis of the floating point format and the human visual system, a concept for lossy compression is worked out and thoroughly optimized. Our scheme outperforms all other existing lossy HDR compression schemes and shows superior performance both at low and high bitrates.

  13. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm

    Science.gov (United States)

    Wang, Minmin; Du, Guangliang; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie

    2017-02-01

    Measuring objects with large reflectivity variations across their surface is one of the open challenges in phase measurement profilometry (PMP). Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time three-dimensional (3D) shape measurement method (Jiang et al., 2016) [17] that does not require changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval whenever any of the regular fringe patterns are saturated. Nonetheless, Jiang's method has some drawbacks: (1) the phases of saturated pixels are estimated by different formulas on a case by case basis; in other words, the method lacks a universal formula; (2) it cannot be extended to the four-step phase-shifting algorithm, because inverted fringe patterns are the repetition of regular fringe patterns; (3) for every pixel in the fringe patterns, only three unsaturated intensity values can be chosen for phase demodulation, leaving the other unsaturated ones idle. We propose a method to enhance high dynamic range 3D shape measurement based on a generalized phase-shifting algorithm, which combines the complementary techniques of inverted and regular fringe patterns with a generalized phase-shifting algorithm. Firstly, two sets of complementary phase-shifted fringe patterns, namely the regular and the inverted fringe patterns, are projected and collected. Then, all unsaturated intensity values at the same camera pixel from two sets of fringe patterns are selected and employed to retrieve the phase using a generalized phase-shifting algorithm. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results are analyzed and compared with those of Jiang's method, demonstrating that our method not only expands the scope of Jiang's method, but also improves

  14. Arrays of Individual DNA Molecules on Nanopatterned Substrates

    Science.gov (United States)

    Hager, Roland; Halilovic, Alma; Burns, Jonathan R.; Schäffler, Friedrich; Howorka, Stefan

    2017-02-01

    Arrays of individual molecules can combine the advantages of microarrays and single-molecule studies. They miniaturize assays to reduce sample and reagent consumption and increase throughput, and additionally uncover static and dynamic heterogeneity usually masked in molecular ensembles. However, realizing single-DNA arrays must tackle the challenge of capturing structurally highly dynamic strands onto defined substrate positions. Here, we create single-molecule arrays by electrostatically adhering single-stranded DNA of gene-like length onto positively charged carbon nanoislands. The nanosites are so small that only one molecule can bind per island. Undesired adsorption of DNA to the surrounding non-target areas is prevented via a surface-passivating film. Of further relevance, the DNA arrays are of tunable dimensions, and fabricated on optically transparent substrates that enable singe-molecule detection with fluorescence microscopy. The arrays are hence compatible with a wide range of bioanalytical, biophysical, and cell biological studies where individual DNA strands are either examined in isolation, or interact with other molecules or cells.

  15. Silicon ball grid array chip carrier

    Science.gov (United States)

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  16. Radiation-hard/high-speed array-based optical engine

    Science.gov (United States)

    Gan, K. K.; Buchholz, P.; Heidbrink, S.; Kagan, H. P.; Kass, R. D.; Moore, J.; Smith, D. S.; Vogt, M.; Ziolkowski, M.

    2016-12-01

    We have designed and fabricated a compact array-based optical engine for transmitting data at 10 Gb/s. The device consists of a 4-channel ASIC driving a VCSEL (Vertical Cavity Surface Emitting Laser) array in an optical package. The ASIC is designed using only core transistors in a 65 nm CMOS process to enhance the radiation-hardness. The ASIC contains an 8-bit DAC to control the bias and modulation currents of the individual channels in the VCSEL array. The DAC settings are stored in SEU (single event upset) tolerant registers. Several devices were irradiated with 24 GeV/c protons and the performance of the devices is satisfactory after the irradiation.

  17. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  18. Microelectrode array fabrication by electrical discharge machining and chemical etching.

    Science.gov (United States)

    Fofonoff, Timothy A; Martel, Sylvain M; Hatsopoulos, Nicholas G; Donoghue, John P; Hunter, Ian W

    2004-06-01

    Wire electrical discharge machining (EDM), with a complementary chemical etching process, is explored and assessed as a method for developing microelectrode array assemblies for intracortically recording brain activity. Assembly processes based on these methods are highlighted, and results showing neural activity successfully recorded from the brain of a mouse using an EDM-based device are presented. Several structures relevant to the fabrication of microelectrode arrays are also offered in order to demonstrate the capabilities of EDM.

  19. P systems with array objects and array rewriting rules

    Institute of Scientific and Technical Information of China (English)

    K.G. Subramanian; R. Saravanan; M. Geethalakshmi; P. Helen Chandra; M. Margenstern

    2007-01-01

    Array P systems were introduced by Pǎun Gh. which is linking the two areas of membrane computing and picture grammars. Puzzle grammars were introduced by us for generating connected picture arrays in the two-dimensional plane, motivated by the problem of tiling the plane. On the other hand, incorporating into arrays the developmental type of generation used in the well-known biologically motivated L systems, Siromoney and Siromoney proposed a very general rectangular array generating model, called extended controlled tabled L array system (ECTLAS). In this paper we introduce two variations of the array P system, called BPG array P system and parallel array P system. The former has in the regions array objects and basic puzzle grammar rules (BPG), which are a specific kind of puzzle grammar rules. In the latter, the regions have rectangular array objects and tables of context-free rules. We examine these two types of P systems for their array generative power.

  20. Digital Camera as Gloss Measurement Device

    Directory of Open Access Journals (Sweden)

    Mihálik A.

    2016-05-01

    Full Text Available Nowadays digital cameras with both high resolution and the high dynamic range (HDR can be considered as parallel multiple sensors producing multiple measurements at once. In this paper we describe a technique for processing the captured HDR data and than fit them to theoretical surface reflection models in the form of bidirectional reflectance distribution function (BRDF. Finally, the tabular BRDF can be used to calculate the gloss reflection of the surface. We compare the captured glossiness by digital camera with gloss measured with the industry device and conclude that the results fit well in our experiments.

  1. Electrooptical devices

    Science.gov (United States)

    Hurwitz, C. E.

    1980-03-01

    This report covers work carried out with support of the Department of the Air Force during the period 1 October 1979 through 31 March 1980. A part of this support was provided by the Rome Air Development Center. CW operation at temperatures up to 55 C has been achieved for GaInAsP/InP double-heterostructure (DH) lasers emitting at 1.5 micrometers, which were grown without a GaInAsP buffer layer. These devices are of interest for use as sources in fiber-optics communications systems, since the lowest transmission loss reported for fused-silica optical fibers occurs at 1.55 micrometers. Surface passivation techniques developed for InP and GaInAsP avalanche photodiodes have resulted in reductions of dark current as large as four orders of magnitude, to values as low as .0000016 A/sq cm at 0.9 V(b) where V(b) is the breakdown voltage. Devices consisting entirely of InP have been passivated with plasma-deposited Si3N4, and those with a GaInAsP layer but with the p-n junction in InP have been passivated with polyimide. Neither of these techniques successfully reduces dark currents in devices with the p-n junction in the GaInAsP, but a film of photoresist sprayed with SF6 as the propellant has given excellent results. The electrical characteristics in InP ion implanted with Sn, Ge, Si, and C have been investigated. All of these column IV elements yielded n-type conductivity and Sn, Ge, and Si showed high electrical activation; however, implanted C was found to have a net electrical activation of only about 5 percent.

  2. Pattern Recognition by Retina-Like Devices.

    Science.gov (United States)

    Weiman, Carl F. R.; Rothstein, Jerome

    This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…

  3. DWDM Devices Based on Planar Waveguide Technologies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A review is presented on some of our recent results for designs, simulations and fabrication of several photonic integrated devices, such as arrayed-waveguide gratings (AWGs) and etched diffraction gratings (EDGs), based on planar waveguide technologies. Some novel designs for flat-top AWGs and EDGs with flat-top spectral responses are presented.

  4. A Novel DOA Estimation Algorithm Using Array Rotation Technique

    Directory of Open Access Journals (Sweden)

    Xiaoyu Lan

    2014-03-01

    Full Text Available The performance of traditional direction of arrival (DOA estimation algorithm based on uniform circular array (UCA is constrained by the array aperture. Furthermore, the array requires more antenna elements than targets, which will increase the size and weight of the device and cause higher energy loss. In order to solve these issues, a novel low energy algorithm utilizing array base-line rotation for multiple targets estimation is proposed. By rotating two elements and setting a fixed time delay, even the number of elements is selected to form a virtual UCA. Then, the received data of signals will be sampled at multiple positions, which improves the array elements utilization greatly. 2D-DOA estimation of the rotation array is accomplished via multiple signal classification (MUSIC algorithms. Finally, the Cramer-Rao bound (CRB is derived and simulation results verified the effectiveness of the proposed algorithm with high resolution and estimation accuracy performance. Besides, because of the significant reduction of array elements number, the array antennas system is much simpler and less complex than traditional array.

  5. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  6. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.

    Directory of Open Access Journals (Sweden)

    Huijie Hou

    Full Text Available Microbial fuel cells (MFCs are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.

  7. Multiplexed optical operation of distributed nanoelectromechanical systems arrays.

    Science.gov (United States)

    Sampathkumar, A; Ekinci, K L; Murray, T W

    2011-03-09

    We report a versatile all optical technique to excite and read-out a distributed nanoelectromechanical systems (NEMS) array. The NEMS array is driven by a distributed, intensity modulated optical pump through the photothermal effect. The ensuing vibrational response of the array is multiplexed onto a single probe beam in the form of a high frequency phase modulation. The phase modulation is optically down converted to a low frequency intensity modulation using an adaptive full-field interferometer, and subsequently detected using a CCD array. Rapid and single step mechanical characterization of ∼44 nominally identical high-frequency resonators is demonstrated. The technique may enable sensitivity improvements over single NEMS resonators by averaging signals coming from a multitude of devices in the array. In addition, the diffraction limited spatial resolution may allow for position-dependent read-out of NEMS sensor chips for sensing multiple analytes or spatially inhomogeneous forces.

  8. Silica needle template fabrication of metal hollow microneedle arrays

    Science.gov (United States)

    Zhu, M. W.; Li, H. W.; Chen, X. L.; Tang, Y. F.; Lu, M. H.; Chen, Y. F.

    2009-11-01

    Drug delivery through hollow microneedle (HMN) arrays has now been recognized as one of the most promising techniques because it minimizes the shortcomings of the traditional drug delivery methods and has many exciting advantages—pain free and tunable release rates, for example. However, this drug delivery method has been hindered greatly from mass clinical application because of the high fabrication cost of HMN arrays. Hence, we developed a simple and cost-effective procedure using silica needles as templates to massively fabricate HMN arrays by using popular materials and industrially applicable processes of micro- imprint, hot embossing, electroplating and polishing. Metal HMN arrays with high quality are prepared with great flexibility with tunable parameters of area, length of needle, size of hollow and array dimension. This efficient and cost-effective fabrication method can also be applied to other applications after minor alterations, such as preparation of optic, acoustic and solar harvesting materials and devices.

  9. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Directory of Open Access Journals (Sweden)

    David R. W. Barr

    2009-01-01

    Full Text Available We present a software environment for the efficient simulation of cellular processor arrays (CPAs. This software (APRON is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  10. Scalable devices

    KAUST Repository

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  11. Full light absorption in single arrays of spherical nanoparticles

    CERN Document Server

    Ra'di, Y; Kosulnikov, S U; Omelyanovich, M M; Morits, D; Osipov, A V; Simovski, C R; Tretyakov, S A

    2015-01-01

    In this paper we show that arrays of core-shell nanoparticles function as effective thin absorbers of light. In contrast to known metamaterial absorbers, the introduced absorbers are formed by single planar arrays of spherical inclusions and enable full absorption of light incident on either or both sides of the array. We demonstrate possibilities for realizing different kinds of symmetric absorbers, including resonant, ultra-broadband, angularly selective, and all-angle absorbers. The physical principle behind these designs is explained considering balanced electric and magnetic responses of unit cells. Photovoltaic devices and thermal emitters are the two most important potential applications of the proposed designs.

  12. Magnetic forces between arrays of cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, D.; Tomassetti, G.; Beleggia, Marco

    2011-01-01

    Permanent magnet arrays are often employed in a broad range of applications: actuators, sensors, drug targeting and delivery systems, fabrication of self-assembled particles, just to name a few. An estimate of the magnetic forces in play between arrays is required to control devices and fabrication...... procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...

  13. Plasmonic antenna array at optical frequency made by nanoapertures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.J.; Huang, X.; Peng, R. W.; Wang, Z.; Gao, F.; Sun, W. H.; Wang, Q. J.; Wang, Mu

    2008-10-31

    We show here that the plasmonic array based on nanoapertures in ultrathin silver film radiates at optical frequency and behaves as an optical antenna array (OAA). The far-field radiation originates from the coherent superposition of plasmonic emissions on each bank of the aperture. The radiation of OAA presents a strong directivity, which depends on the in-plane rotation of aperture array, and on the polarization and incidence angle of the excitation light as well. We suggest that these features have potential applications in photovoltaics, light-emitting devices, and optical sensors.

  14. DNA nanostructure immobilization to lithographic DNA arrays

    Science.gov (United States)

    Negrete, Omar D.

    Although DNA is well known for its genetic role in biology, DNA has also been sought-after as a material for the self-assembly of biological and electronic devices. Examples of DNA nanostructure construction include DNA tiled self-assembly and DNA Origami, where by controlling the sequence and concentration of DNA molecules, the rational design of geometric DNA nanostructures is possible. The assembly of DNA nanostructures takes place in solution and thus they are in disorder and require further organization to construct circuitry or devices. Hence, it is essential for future applications of this technology to develop methods to direct the placement of DNA nanostructures on a surface. To address this challenge my research examines the use of DNA microarrays to capture DNA nanostructures via DNA hybridization. Modern DNA arrays offer a high-density of sequence-specific molecular recognition sites where the addressable placement of DNA nanostructures can be achieved. Using Maskless Array Synthesizer (MAS) technology, I have characterized photolithographic DNA arrays for the hybridization of DNA complexes like large DNA molecules (> 1 kb), DNA-gold nanoparticle conjugates, and DNA Origami. Although modern photolithographic DNA arrays can possess a high-density of sequence (106/cm2), the printed DNA areas are on the order of tens of microns. Thus, I have also developed a method to reduce the DNA array spot size to nanoscale dimensions through the combined use of electron beam lithography with photolithographic DNA synthesis. This work addresses the key elements towards developing a surface patterning technology that takes advantage of DNA base-pairing for both molecular sub-assembly and surface patterning.

  15. Microwell Arrays for Studying Many Individual Cells

    Science.gov (United States)

    Folch, Albert; Kosar, Turgut Fettah

    2009-01-01

    "Laboratory-on-a-chip" devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically 0.5 m wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.

  16. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  17. Optical sensor array platform based on polymer electronic devices

    NARCIS (Netherlands)

    Koetse, M.M.; Rensing, P.A.; Sharpe, R.B.A.; Heck, G.T. van; Allard, B.A.M.; Meulendijks, N.N.M.M.; Kruijt, P.G.M.; Tijdink, M.W.W.J.; Zwart, R.M. de; Houben, R.J.; Enting, E.; Veen, S.J.J.F. van; Schoo, H.F.M.

    2007-01-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrate

  18. Stratification devices

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    heating system. High temperatures in the top of the storage tank established by the energy from the solar collector reduce the use of auxiliary energy. Low temperatures in the bottom of the storage tank improve the operation conditions for the solar collector. Using thermal stratified heat storages...... results in longer operation periods and improved utilization of the solar collector. Thermal stratification can be achieved, for example by using inlet stratification devices at all inlets to the storage tank. This paper presents how thermal stratification is established and utilized by means of inlet......Thermal stratification in the storage tank is extremely important in order to achieve high thermal performance of a solar heating system. High temperatures in the top of the storage tank and low temperatures in the bottom of the storage tank lead to the best operation conditions for any solar...

  19. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  20. Acoustic Source Localization via Subspace Based Method Using Small Aperture MEMS Arrays

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available Small aperture microphone arrays provide many advantages for portable devices and hearing aid equipment. In this paper, a subspace based localization method is proposed for acoustic source using small aperture arrays. The effects of array aperture on localization are analyzed by using array response (array manifold. Besides array aperture, the frequency of acoustic source and the variance of signal power are simulated to demonstrate how to optimize localization performance, which is carried out by introducing frequency error with the proposed method. The proposed method for 5 mm array aperture is validated by simulations and experiments with MEMS microphone arrays. Different types of acoustic sources can be localized with the highest precision of 6 degrees even in the presence of wind noise and other noises. Furthermore, the proposed method reduces the computational complexity compared with other methods.

  1. FODA: a novel efficient multiple access protocol for highly dynamic self-organizing networks

    Science.gov (United States)

    Li, Hantao; Liu, Kai; Zhang, Jun

    2005-11-01

    Based on the concept of contention reservation for polling transmission and collision prevention strategy for collision resolution, a fair on-demand access (FODA) protocol for supporting node mobility and multihop architecture in highly dynamic self-organizing networks is proposed. In the protocol, a distributed clustering network architecture formed by self-organizing algorithm and a main idea of reserving channel resources to get polling service are adopted, so that the hidden terminal (HT) and exposed terminal (ET) problems existed in traffic transmission due to multihop architecture and wireless transmission can be eliminated completely. In addition, an improved collision prevention scheme based on binary countdown algorithm (BCA), called fair collision prevention (FCP) algorithm, is proposed to greatly eliminate unfair phenomena existed in contention access of newly active ordinary nodes and completely resolve access collisions. Finally, the performance comparison of the FODA protocol with carrier sense multiple access with collision avoidance (CSMA/CA) and polling protocols by OPNET simulation are presented. Simulation results show that the FODA protocol can overcome the disadvantages of CSMA/CA and polling protocols, and achieve higher throughput, lower average message delay and less average message dropping rate.

  2. High dynamic range magnetometry with a single nuclear spin in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Waldherr, Gerald; Beck, Johannes; Neumann, Philipp; Nitsche, Matthias; Wrachtrup, Joerg [3. Physikalisches Institut, Universitaet Stuttgart, 70569 Stuttgart (Germany); Said, Ressa S. [Institut fuer Quanten-Informationsverarbeitung, Universitaet Ulm, 89081 Ulm (Germany); Twamley, Jason [Centre for Engineered Quantum Systems, Faculty of Science, Macquarie University, Sydney (Australia); Jelezko, Fedor [Institut fuer Quantenoptik, Universitaet Ulm, 89073 Ulm (Germany)

    2012-07-01

    Sensors based on the nitrogen-vacancy (NV) defect in diamond are being developed to measure weak magnetic and electric fields at nanoscale. However, such sensors rely on measurements of a shift in the Lamor frequency of the defect, so an accumulation of quantum phase causes the measurement signal to exhibit a periodic modulation. This means that the measurement time is either restricted to half of one oscillation period, which limits accuracy, or that the magnetic field range must be known in advance. Moreover, the precision increases only slowly, as T{sup -0.5}, with the measurement time T. We implement a quantum phase estimation algorithm on a single nuclear spin in diamond to combine both high sensitivity and high dynamic range. By achieving a scaling of the precision with time to T{sup -0.85}, we improve the sensitivity by a factor of 7.4, for an accessible field range of 16 mT, or alternatively, we improve the dynamic range by a factor of 130 for a sensitivity of 2.5 {mu}T/Hz{sup 0.5}. These methods are applicable to a variety of field detection schemes, and do not require entanglement.

  3. A Maximum a Posteriori Estimation Framework for Robust High Dynamic Range Video Synthesis.

    Science.gov (United States)

    Li, Yuelong; Lee, Chul; Monga, Vishal

    2017-03-01

    High dynamic range (HDR) image synthesis from multiple low dynamic range exposures continues to be actively researched. The extension to HDR video synthesis is a topic of significant current interest due to potential cost benefits. For HDR video, a stiff practical challenge presents itself in the form of accurate correspondence estimation of objects between video frames. In particular, loss of data resulting from poor exposures and varying intensity makes conventional optical flow methods highly inaccurate. We avoid exact correspondence estimation by proposing a statistical approach via maximum a posterior estimation, and under appropriate statistical assumptions and choice of priors and models, we reduce it to an optimization problem of solving for the foreground and background of the target frame. We obtain the background through rank minimization and estimate the foreground via a novel multiscale adaptive kernel regression technique, which implicitly captures local structure and temporal motion by solving an unconstrained optimization problem. Extensive experimental results on both real and synthetic data sets demonstrate that our algorithm is more capable of delivering high-quality HDR videos than current state-of-the-art methods, under both subjective and objective assessments. Furthermore, a thorough complexity analysis reveals that our algorithm achieves better complexity-performance tradeoff than conventional methods.

  4. A Novel Method to Increase LinLog CMOS Sensors’ Performance in High Dynamic Range Scenarios

    Directory of Open Access Journals (Sweden)

    Andrés Iborra

    2011-08-01

    Full Text Available Images from high dynamic range (HDR scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor’s maximum dynamic range (120 dB can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method.

  5. Adaptive reshaper for high dynamic range and wide color gamut video compression

    Science.gov (United States)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Pytlarz, Jaclyn; Chen, Tao; Husak, Walt

    2016-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The characteristics of HDR/WCG content are very different from the SDR content. It poses a challenge to the compression system which is originally designed for SDR content. Recently in MPEG/VCEG, two directions have been taken to improve compression performances for HDR/WCG video using HEVC Main10 codec. The first direction is to improve HDR-10 using encoder optimization. The second direction is to modify the video signal in pre/post processing to better fit compression system. The process therefore is out of coding loop and does not involve changes to the HEVC specification. Among many proposals in the second direction, reshaper is identified to be the key component. In this paper, a novel luma reshaper is presented which re-allocates the codewords to help codec improve subjective quality. In addition, encoder optimization can be performed jointly with reshaping. Experiments are conducted with ICtCp color difference signal. Simulation results show that if both joint optimization of reshaper and encoder are carried out, there is evidence that improvement over the HDR-10 anchor can be achieved.

  6. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  7. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  8. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm

    CERN Document Server

    Wang, Minmin; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie

    2016-01-01

    It is a challenge for Phase Measurement Profilometry (PMP) to measure objects with a large range of reflectivity variation across the surface. Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time 3D shape measurement method without changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval when any of the regular fringe patterns are saturated. But Jiang's method still has some drawbacks: (1) The phases in saturated pixels are respectively estimated by different formulas for different cases. It is shortage of an universal formula; (2) it cannot be extended to four-step phase-shifting algorithm because inverted fringe patterns are the repetition of regular fringe patterns; (3) only three unsaturated intensity values at every pixel of fringe patterns are chosen for phase demodulation, lying i...

  9. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    Science.gov (United States)

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-04

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

  10. Multichannel emission spectrometer for high dynamic range optical pyrometry of shock-driven materials

    Science.gov (United States)

    Bassett, Will P.; Dlott, Dana D.

    2016-10-01

    An emission spectrometer (450-850 nm) using a high-throughput, high numerical aperture (N.A. = 0.3) prism spectrograph with stepped fiberoptic coupling, 32 fast photomultipliers and thirty-two 1.25 GHz digitizers is described. The spectrometer can capture single-shot events with a high dynamic range in amplitude and time (nanoseconds to milliseconds or longer). Methods to calibrate the spectrometer and verify its performance and accuracy are described. When a reference thermal source is used for calibration, the spectrometer can function as a fast optical pyrometer. Applications of the spectrometer are illustrated by using it to capture single-shot emission transients from energetic materials or reactive materials initiated by kmṡs-1 impacts with laser-driven flyer plates. A log (time) data analysis method is used to visualize multiple kinetic processes resulting from impact initiation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) or a Zr/CuO nanolaminate thermite. Using a gray body algorithm to interpret the spectral radiance from shocked HMX, a time history of temperature and emissivity was obtained, which could be used to investigate HMX hot spot dynamics. Finally, two examples are presented showing how the spectrometer can avoid temperature determination errors in systems where thermal emission is accompanied by atomic or molecular emission lines.

  11. High Dynamic Range Color Image Enhancement Using Fuzzy Logic and Bacterial Foraging

    Directory of Open Access Journals (Sweden)

    Om Prakash Verma

    2011-09-01

    Full Text Available High dynamic range images contain both the underexposed and the overexposed regions. The enhancement of the underexposed and the overexposed regions is the main concern of this paper. Two new transformation functions are proposed to modify the fuzzy membership values of under and the overexposed regions of an image respectively.For the overexposed regions, a rectangular hyperbolic function is used while for the underexposed regions, an S-function is applied. The shape and range of these functions can be controlled by the parameters involved, which are optimized using the bacterial foraging optimization algorithm so as to obtain the enhanced image. The hue, saturation, and intensity (HSV color space is employed for the purpose of enhancement, where the hue component is preserved to keep the original color composition intact. This approach is applicable to a degraded image of mixed type. On comparison, the proposed transforms yield better results than the existing transformation functions17 for both the underexposed and the overexposed regions.Defence Science Journal, 2011, 61(5, pp.462-472, DOI:http://dx.doi.org/10.14429/dsj.61.1184

  12. Polarization mosaicing: high dynamic range and polarization imaging in a wide field of view

    Science.gov (United States)

    Schechner, Yoav Y.; Nayar, Shree K.

    2003-12-01

    We present an approach for imaging the polarization state of scene points in a wide field of view, while enhancing the radiometric dynamic range of imaging systems. This is achieved by a simple modification of image mosaicking, which is a common technique in remote sensing. In traditional image mosaics, images taken in varying directions or positions are stitched to obtain a larger image. Yet, as the camera moves, it senses each scene point multiple times in overlapping regions of the raw frames. We rigidly attach to the camera a fixed, spatially varying polarization and attenuation filter. This way, the camera motion-induced multiple measurements per scene point are taken under different optical settings. This is in contrast to the redundant measurements of traditional mosaics. Computational algorithms then analyze the data to extract polarization imaging with high dynamic range across the mosaic field of view. We developed a Maximum Likelihood method to automatically register the images, in spite of the challenging spatially varying effects. Then, we use Maximum Likelihood to handle, in a single framework, variable exposures (due to transmittance variations), saturation, and partial polarization filtering. As a by product, these results enable polarization settings of cameras to change while the camera moves, alleviating the need for camera stability. This work demonstrates the modularity of the Generalized Mosaicing approach, which we recently introduced for multispectral image mosaics. The results are useful for the wealth of polarization imaging applications, in addition to mosaicking applications, particularly remote sensing. We demonstrate experimental results obtained using a system we built.

  13. Novel Logarithmic Active Pixel Sensor with High Dynamic Range and High Output Swing

    Institute of Scientific and Technical Information of China (English)

    FU Xian-song; YAO Su-ying; YUAN Yi-dong; XU Jiang-tao; DING Ke; YAN Kun-shan

    2008-01-01

    The logarithmic response complementary metal oxide semiconductor(CMOS) image sensor provides a wide dynamic range, but its drawback is the lack of simple fixed pattern noise(FPN) cancellation scheme. Designed is a novel logarithmic active pixel sensor(APS) with high dynamic range and high output swing. Firstly, the operation principle of mixed-model APS is introduced. The pixel can work in three operation modes by choosing the proper control signals. Then, FPN sources of logarithmic APS are analyzed, and double-sampled technique is implemented to reduce FPN. Finally, according to the simulation results, layout is designed and has passed design rule check(DRC), electronic rule check(ERC) and layout versus schematic(LVS) verifications, and the post-simulation results are basically in agreement with the simulation results. Dynamic range of the new logarithmic APS can reach about 140 dB; and the output swing is about 750 mV. Results show that by using double sampled technique, most FPN is eliminated and the dynamic range is enhanced.

  14. Analysis and compensation for code Doppler effect of BDS II signal under high dynamics

    Science.gov (United States)

    Ouyang, Xiaofeng; Zeng, Fangling

    2016-01-01

    In high dynamic circumstances, the acquisition of BDS (BeiDou Navigation Satellite System) signal would be affected by the pseudo-code Doppler. The pseudo-code frequency shift is more prominent and complex when BOC modulation has been adopted by BDS-II, but is not yet involved in current compensation algorithm. In addition, the most frequently used code Doppler compensation algorithm is modifying the sampling rate or local bit rate, which not only increases the complexity of the acquisition and tracking, but also is barely realizable for the hardware receiver to modify the local frequency. Therefore, this paper proposes a code Doppler compensation method based on double estimator receiver, which simultaneously controls NCO delay of code tracking loop and subcarrier tracking loop to compensate for pseudo-code frequency shift. The simulation and test are implemented with BDS-II BOC signal. The test results demonstrate that the proposed algorithm can effectively compensate for pseudo-code Doppler of BOC signal and has detection probability 3dB higher than the uncompensated situation when the false alarm rate is under 0.01 and the coherent integration time is 1ms.

  15. Using high-dynamic-range digital repeat photography to measure plant phenology in a subarctic mire.

    Science.gov (United States)

    Garnello, A.; Dye, D. G.; Bogle, R.; Vogel, J.; Saleska, S. R.; Crill, P. M.

    2015-12-01

    A novel Visual Imaging System (VIS) was designed and deployed in a subarctic mire (68° 20' N, 19° 03'E) aimed at cataloging plant biological changes (phenology) and analyzing seasonal color shifts in relation to micrometeorological data along the summer growing season: June-November, 2015. The VIS is designed as a tower-based, solar-powered, automated phenology camera (Phenocam) that collects red, green, blue (RGB) and near-infrared (NIR) landscape images in High Dynamic Range (HDR) with fully programmable temporal resolution. HDR composite images are made through combining a series of rapid-capture photos with incremental increases of exposure times and a fixed focus, minimizing the spatial and visual data lost from shadows or from the over-saturation of light. This visual record of ecosystem phenology stages (Phenophases) is being used to (1) investigate vegetation-dependent spectral indices; (2) establish a cross-year comparison record of Phenophase seasonality; (3) investigate meteorological-dependent vegetation Phenophases; (4) provide ground-truthing measurements that enhance broader spatial-scale remote sensing analyses of subarctic wetlands.

  16. Improving Success Ratio of Object Search in Highly-Dynamic Mobile P2P Networks

    Science.gov (United States)

    Takeshita, Kei; Sasabe, Masahiro; Nakano, Hirotaka

    Mobile Ad Hoc Networks (MANETs) are temporal and infrastructure-independent wireless networks that consist of mobile nodes. For instance, a MANET can be used as an emergent network for communication among people when a disaster occurred. Since there is no central server in the network, each node has to find out its desired information (objects) by itself. Constructing a mobile Peer-to-Peer (P2P) network over the MANET can support the object search. Some researchers proposed construction schemes of mobile P2P networks, such as Ekta and MADPastry. They integrated DHT-based application-layer routing and network-layer routing to increase search efficiency. Furthermore, MADPastry proposed a clustering method which groups the overlay nodes according to their physical distance. However, it has also been pointed out that the search efficiency deteriorates in highly dynamic environments where nodes quickly move around. In this paper, we focus on route disappearances in the network layer which cause the deterioration of search efficiency. We describe the detail of this problem and evaluate quantitatively it through simulation experiments. We extend MADPastry by introducing a method sharing objects among nodes in a cluster. Through simulation experiments, we show that the proposed method can achieve up to 2.5 times larger success rate of object search than MADPastry.

  17. Nanostructured conjugated polymers for photovoltaic devices

    Science.gov (United States)

    Xi, Dongjuan

    This dissertation focuses on making new systems of interdigitated bilayer structures for organic solar cells from two aspects: (i) fabricating vertically aligned semiconductor nanorod arrays by low-temperature solution process; (ii) applying the resulting nanorods arrays in solar cell devices with pre-formed or in-situ electropolymerized conjugated polymers. Two low-temperature solution methods are investigated to fabricate vertically aligned semiconductor nanorod arrays. The first method is using porous templates to prepare vertically aligned conjugated polymer nanorods arrays. In-situ anodized nanoporous alumina film is specifically designed to suspend on substrates to improve the wettability of organic solution to the alumina film, and to generate a big foot anchoring the polymer nanorods. With this specific design, vertically aligned polymer nanotube arrays with high density, 3x1010/cm2, is achieved and the nanotubes can stand vertically at the aspect ratio of 5. The second method is low-temperature direct growth of high quality semiconductor nanorod arrays without any templates by electrochemical deposition. Vertically aligned cadmium sulfide nanorod arrays are achieved by studying the growth mechanism of cadmium sulfide nanocrystal deposition and fine tuning the solution composition of the electrolyte. Chlorine doping, as a function of chlorine ion concentration in the electrolyte, modifies crystal lattice, and therefore the build-in stress, which dominates the morphology of the deposited nanocrystals as nanorods or thin films. Scanning electron microscopy, x-ray diffraction and transmission electron microscopy are applied to study the microstructures of the nanorods. Optical, electrical and field emission properties of the cadmium sulfide nanorod arrays are also studied in detail to pursue further applications of the nanorod arrays as nano-lasers and cold field emitters. Organic solar cells based on template-processed polythiophene nanotube arrays will be

  18. Evaporating metal nanocrystal arrays

    Science.gov (United States)

    Zhang, Xue; Joy, James C.; Zhao, Chenwei; Kim, Jin Ho; Fernandes, Gustavo; Xu, J. M.; Valles, James M., Jr.

    2017-03-01

    Anodic aluminum oxide (AAO) substrates with a self-ordered triangular array of nanopores provide the means to fabricate multiple forms of nano materials, such as nanowires and nanoparticles. This study focuses on nanostructures that emerge in thin films of metals thermally evaporated onto the surface of AAO. Previous work showed that films of different evaporated metals assume dramatically different structures, e.g. an ordered triangular array of nearly monodisperse nanoparticles forms for lead (Pb) while a polycrystalline nanohoneycomb structure forms for silver (Ag). Here, we present investigations of the effects of substrate temperature and deposition angle that reveal the processes controlling the nano particle array formation. Our findings indicate that arrays form provided the grain nucleation density exceeds the pore density and the atomic mobility is high enough to promote grain coalescence. They introduce a method for producing films with anisotropic grain array structure. The results provide insight into the influence of substrate nano-morphology on thin film growth energetics and kinetics that can be harnessed for creating films with other novel nano-structures.

  19. Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage

    DEFF Research Database (Denmark)

    Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2015-01-01

    and Reed-Solomon mechanisms. Our results use traces from a BitTorrent client for Android devices to show that RLNC outperforms the next best scheme (fully centralized Reed-Solomon) not only by having a much lower probability of data loss, but by reducing storage requirements by up to 50% and reconstruction...

  20. Monolithic blue LED series arrays for high-voltage AC operation

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Jin-Ping [Satellite Venture Business Laboratory, University of Tokushima, Tokushima 770-8506 (Japan); Sato, Hisao; Mizobuchi, Takashi; Morioka, Kenji; Kawano, Shunsuke; Muramoto, Yoshihiko; Sato, Daisuke; Sakai, Shiro [Nitride Semiconductor Co. Ltd., Naruto, Tokushima 771-0360 (Japan); Lee, Young-Bae; Ohno, Yasuo [Department of Electrical and Electronic Engineering, University of Tokushima, Tokushima 770-8506 (Japan)

    2002-12-16

    Design and fabrication of monolithic blue LED series arrays that can be operated under high ac voltage are described. Several LEDs, such as 3, 7, and 20, are connected in series and in parallel to meet ac operation. The chip size of a single device is 150 {mu}m x 120 {mu}m and the total size is 1.1 mm x 1 mm for a 40(20+20) LED array. Deep dry etching was performed as device isolation. Two-layer interconnection and air bridge are utilized to connect the devices in an array. The monolithic series array exhibit the expected operation function under dc and ac bias. The output power and forward voltage are almost proportional to LED numbers connected in series. On-wafer measurement shows that the output power is 40 mW for 40(20+20) LED array under ac 72 V. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  1. Integration of spintronic interface for nanomagnetic arrays

    Directory of Open Access Journals (Sweden)

    Andrew Lyle

    2011-12-01

    Full Text Available An experimental demonstration utilizing a spintronic input/output (I/O interface for arrays of closely spaced nanomagnets is presented. The free layers of magnetic tunnel junctions (MTJs form dipole coupled nanomagnet arrays which can be applied to different contexts including Magnetic Quantum Cellular Automata (MQCA for logic applications and self-biased devices for field sensing applications. Dipole coupled nanomagnet arrays demonstrate adaptability to a variety of contexts due to the ability for tuning of magnetic response. Spintronics allows individual nanomagnets to be manipulated with spin transfer torque and monitored with magnetoresistance. This facilitates measurement of the magnetic coupling which is important for (yet to be demonstrated data propagation reliability studies. In addition, the same magnetic coupling can be tuned to reduce coercivity for field sensing. Dipole coupled nanomagnet arrays have the potential to be thousands of times more energy efficient than CMOS technology for logic applications, and they also have the potential to form multi-axis field sensors.

  2. 基于DMD的高动态范围成像光学系统设计%Design of high dynamic range imaging optical system based on DMD

    Institute of Scientific and Technical Information of China (English)

    吕伟振; 刘伟奇; 魏忠伦; 康玉思; 冯睿; 杨建明

    2014-01-01

    为了解决光电成像设备对空间实际场景观测时提出的高动态范围要求,设计了一种新型的像元级光强调制的高动态范围成像系统。系统由成像物镜、折叠反射镜、二次成像转置物镜组成,采用TI公司的数字微镜阵列(DMD)作为光强调制器件,通过光瞳匹配原则使两个系统完美衔接,并利用二次成像系统实现DMD单元与图像传感器的像素一一对应,设计结果显示:在像面的Nyquist频率处,全视场的MTF≥0.55,弥散圆的直径小于CMOS图像传感器的像素尺寸,并且畸变等像差也校正良好。该方法不仅可以提高图像传感器的可探测动态范围,还能够实时地探测到强弱目标,满足空间目标视景成像的要求。%In order to solve the high dynamic range requirement for photoelectric imaging device when it was used to observe the actual spatial scene, a newly high dynamic range imaging system whose light intensity was modulated in pixel level was designed. This system consisted of imaging lens, a fold mirror, secondary transpose imaging lens, using a DMD(Digital Micromirror Device) produced by TI Inc. as light intensity modulator, connecting the two systems perfectly through the principle of the pupil matching, and utilizing the secondary imaging system to realize one to one correspondence between DMD units and image sensor pixels. Full field of view of the MTF are higher than 0.55 at the Nyquist frequency of the image plane, and the RMS spot diameter is less than the pixel size of the CMOS image sensor in the focal plane, meanwhile such aberration of distortion is also corrected excellently. This method not only enhances detected dynamic range of the image senor, but also can detect bright and dark target simultaneously, meeting the requirements of spatial visual target imaging.

  3. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    Science.gov (United States)

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device.

  4. High Power Fiber Bundle Array Coupled LDA Module

    Institute of Scientific and Technical Information of China (English)

    QU Zhou; LIU Yang; ZHAO Chong-guang; WANG Ji; YIN Hong-he; WANG Li-jun

    2006-01-01

    An optical fiber bundle array coupling module with high output power is presented in this paper. The device integrated the coupling technique of the high power laser diode array (LDA) and the micro-ball lenses fiber array. This module can efficiently couple the output laser of the LDA into 19 fibers array with micro-ball lens endsurface. The difference of the couple efficiency between the flat-end fiber and micro-ball-end fiber is discussed.The micro-ball lenses fiber array made of 19 fibers have the same fiber core diameter of 200 μm, and then the endsurfaces of 19 fibers are fused to 19 micro-ball lenses. The micro-ball lenses fiber array are fixed precisely in the neighborhood on the V-grooves, and the fiber array has the same arrange period with the semiconductor laser units of LDA. This configuration of micro-ball lens fiber array can greatly reduce the divergence of the laser beam from all directions, and a very efficient laser beam homogenizer and shaper are obtained. Finally, high output power of 30.1 W of the fiber coupled LDA is achieved, and the maximal coupling efficiency is >83% with the numeral aperture (NA) of 0.16.

  5. ZnS nanostructure arrays: a developing material star.

    Science.gov (United States)

    Fang, Xiaosheng; Wu, Limin; Hu, Linfeng

    2011-02-01

    Semiconductor nanostructure arrays are of great scientific and technical interest because of the strong non-linear and electro-optic effects that occur due to carrier confinement in three dimensions. The use of such nanostructure arrays with tailored geometry, array density, and length-diameter-ratio as building blocks are expected to play a crucial role in future nanoscale devices. With the unique properties of a direct wide-bandgap semiconductor, such as the presence of polar surfaces, excellent transport properties, good thermal stability, and high electronic mobility, ZnS nanostructure arrays has been a developing material star. The research on ZnS nanostructure arrays has seen remarkable progress over the last five years due to the unique properties and important potential applications of nanostructure arrays, which are summarized here. Firstly, a survey of various methods to the synthesis of ZnS nanostructure arrays will be introduced. Next recent efforts on exploiting the unique properties and applications of ZnS nanostructure arrays are discussed. Potential future directions of this research field are also highlighted.

  6. Wireless Josephson Junction Arrays

    Science.gov (United States)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  7. Laser device

    Science.gov (United States)

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  8. Microwell arrays with nanoholes

    Science.gov (United States)

    Folch, Albert (Inventor); Kosar, Turgut Fettah (Inventor)

    2009-01-01

    A device for conducting parallel analysis or manipulation of multiple cells or biomolecules is disclosed. In one embodiment, the device comprises a silicon chip with a microwell, and at least one membrane suspended at the bottom opening of the microwell. The suspended portion of the membrane defines a nanohole that provides access to the material on the other side of the membrane.

  9. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  10. The Submillimeter Array

    CERN Document Server

    Ho, P T P; Lo, K Y; Ho, Paul T.P.; Moran, James M.; Lo, Kwok Yung

    2004-01-01

    The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m telescopes comprise the array, which will cover the frequency range of 180-900 GHz. All eight telescopes have been deployed and are operational. First scientific results utilizing the three receiver bands at 230, 345, and 690 GHz have been obtained and are presented in the accompanying papers.

  11. Photovoltaic array performance model.

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  12. Selecting Sums in Arrays

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jørgensen, Allan Grønlund

    2008-01-01

    In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k larges...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....

  13. Video Game Device Haptic Interface for Robotic Arc Welding

    Energy Technology Data Exchange (ETDEWEB)

    Corrie I. Nichol; Milos Manic

    2009-05-01

    Recent advances in technology for video games have made a broad array of haptic feedback devices available at low cost. This paper presents a bi-manual haptic system to enable an operator to weld remotely using the a commercially available haptic feedback video game device for the user interface. The system showed good performance in initial tests, demonstrating the utility of low cost input devices for remote haptic operations.

  14. Improving Light Outcoupling Efficiency for OLEDs with Microlens Array Fabricated on Transparent Substrate

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-01-01

    Full Text Available Low light outcoupling efficiency restricts the wide application of organic light-emitting diodes in solid state light market although the internal quantum efficiency of the device could reach near to 100%. In order to improve the output efficiency, different kinds of microlens array on the substrate emission surface were designed and simulated using light tracing method. Simulation results indicate that the microlens array on the substrate could efficiently improve the light output efficiency and an enhancement of 1.8 could be obtained with optimized microlens structure design. The microlens array with semicircle shape using polymer material was fabricated on glass substrate by a facile approach. Finally, the organic device with microlens array substrate was manufactured and the light output of the device with surface microlens structure could increase to 1.64 times comparing with the device without microlens.

  15. Monte Carlo simulation of the standardization of {sup 22}Na using scintillation detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y., E-mail: yss.sato@aist.go.j [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Murayama, H. [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage, Chiba 263-8555 (Japan); Yamada, T. [Japan Radioisotope Association, 2-28-45, Hon-komagome, Bunkyo, Tokyo 113-8941 (Japan); National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Tohoku University, 6-6, Aoba, Aramaki, Aoba, Sendai 980-8579 (Japan); Hasegawa, T. [Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Oda, K. [Tokyo Metropolitan Institute of Gerontology, 1-1 Nakacho, Itabashi-ku, Tokyo 173-0022 (Japan); Unno, Y.; Yunoki, A. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2010-07-15

    In order to calibrate PET devices by a sealed point source, we contrived an absolute activity measurement method for the sealed point source using scintillation detector arrays. This new method was verified by EGS5 Monte Carlo simulation.

  16. Arrays of Remote Autonomous Sensors Using On-Board Hybrid Power Supplies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is significant need for arrays of miniature sensors that are completely wireless. Ideally these sensors would be built as an integrated device, including...

  17. Design & fabrication of cantilever array biosensors

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2009-09-01

    Full Text Available Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes of samples. Currently available fabrication technology will allow the integration of electronic readout and sample introduction into a single unit, decreasing the device size, detection time, and cost. Biosensing technologies based on microfabricated cantilever arrays involving multiple cantilevers, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors.

  18. Thermal crosstalk in 3-dimensional RRAM crossbar array.

    Science.gov (United States)

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-08-27

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  19. High dynamic range CMOS-based mammography detector for FFDM and DBT

    Science.gov (United States)

    Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey

    2016-03-01

    Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.

  20. Optoelectronic signal processing for phased-array antennas II; Proceedings of the Meeting, Los Angeles, CA, Jan. 16, 17, 1990

    Science.gov (United States)

    Hendrickson, Brian M.; Koepf, Gerhard A.

    Various papers on optoelectronic signal processing for phased-array antennas (PAAs) are presented. Individual topics addressed include: the dynamics of high-frequency lasers, an electrooptic phase modulator for PA applications, a laser mixer for microwave fiber optics, optical control of microwaves with III-V semiconductor optical waveguides, a high-dynamic-range modulator for microwave PAs, the high-modulation-rate potential of surface-emitter laser-diode arrays, an electrooptical switch for antenna beam steering, and adaptive PA radar processing using photorefractive crystals. Also discussed are an optical processor for array antenna beam shaping and steering, an integrated optical Butler matrix for beam forming in PAAs, an acoustooptic/photorefractive processor for adaptive antenna arrays, BER testing of fiber-optic data links for MMIC-based phased-array antennas, and the design of an optically controlled K(a)-band GaAs MMIC PAA.

  1. Nuclear structure at high spin using multidetector gamma array and ancillary detectors

    Indian Academy of Sciences (India)

    S Muralithar

    2014-04-01

    A multidetector gamma array (GDA), for studying nuclear structure was built with ancillary devices namely gamma multiplicity filter and charged particle detector array. This facility was designed for in-beam gamma spectroscopy measurements in fusion evaporation reactions at Inter-University Accelerator Centre, New Delhi. Description of the facility and in-beam performance with two experimental studies done are presented. This array was used in a number of nuclear spectroscopic and reaction investigations.

  2. Analogue Hawking Radiation in a dc-SQUID Array Transmission Line

    Science.gov (United States)

    Nation, P. D.; Blencowe, M. P.; Rimberg, A. J.; Buks, E.

    2009-08-01

    We propose the use of a superconducting transmission line formed from an array of direct-current superconducting quantum interference devices for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. Being a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process.

  3. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control

    Energy Technology Data Exchange (ETDEWEB)

    Bongers, W. A.; Beveren, V. van; Westerhof, E.; Goede, A. P. H.; Krijger, B.; Berg, M. A. van den; Graswinckel, M. F.; Schueller, F. C. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Thoen, D. J. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Nuij, P. J. W. M. [Eindhoven University of Technology, Control Systems Technology Group, and Applied Physics Department, PO Box 513, NL-5600 MB Eindhoven (Netherlands); Baar, M. R. de; Donne, A. J. H.; Hennen, B. A. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, Control Systems Technology Group, and Applied Physics Department, PO Box 513, NL-5600 MB Eindhoven (Netherlands); Kantor, M. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Forschungszentrum Juelich GMBH, Institute of Energy and Climate research, Plasma Physics, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Juelich (Germany); Ioffe Institute, RAS, Saint-Petersburg, 195256 (Russian Federation)

    2011-06-15

    An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototype system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.

  4. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control

    Science.gov (United States)

    Bongers, W. A.; van Beveren, V.; Thoen, D. J.; Nuij, P. J. W. M.; de Baar, M. R.; Donné, A. J. H.; Westerhof, E.; Goede, A. P. H.; Krijger, B.; van den Berg, M. A.; Kantor, M.; Graswinckel, M. F.; Hennen, B. A.; Schüller, F. C.

    2011-06-01

    An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototype system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.

  5. TRMM Solar Array Panels

    Science.gov (United States)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  6. TANGO Array.. 2. Simulations

    Science.gov (United States)

    Bauleo, P.; Bonifazi, C.; Filevich, A.

    2004-01-01

    The angular and energy resolutions of the TANGO Array were obtained using extensive Monte Carlo simulations performed with a double purpose: (1) to determine the appropriate parameters for the array fitting to the desired range of sensitivity (the knee energy region), and (2) to construct a reliable shower database required for reference in the analysis of experimental data. The AIRES code, with the SIBYLL hadronic collision package, was used to simulate Extended Air Showers produced by primary cosmic rays (assuming protons and iron nuclei), with energies ranging from 10 14 to 10 18 eV. These data were fed into a realistic code which simulates the response of the detectors (water Cherenkov detectors), including the electronics, pickup noise, and the signal attenuation in the connecting cables. The trigger stage was considered in the simulations in order to estimate the trigger efficiency of the array and to verify the accuracy of the reconstruction codes. This paper delineates the simulations performed to obtain the expected behavior of the array, and describes the simulated data. The results of these simulations suggest that we can expect an error in the energy of the primary cosmic-ray of ˜60% of the estimated value and that the error in the measurement of the direction of arrival can be estimated as ˜4°. The present simulations also indicate that unambiguous assignments of the primary energy cannot be obtained because of the uncertainty in the nature of the primary cosmic ray.

  7. TANGO Array. 2. Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauleo, P. E-mail: pablo.bauleo@colostate.edu; Bonifazi, C.; Filevich, A

    2004-01-11

    The angular and energy resolutions of the TANGO Array were obtained using extensive Monte Carlo simulations performed with a double purpose: (1) to determine the appropriate parameters for the array fitting to the desired range of sensitivity (the knee energy region), and (2) to construct a reliable shower database required for reference in the analysis of experimental data. The AIRES code, with the SIBYLL hadronic collision package, was used to simulate Extended Air Showers produced by primary cosmic rays (assuming protons and iron nuclei), with energies ranging from 10{sup 14} to 10{sup 18} eV. These data were fed into a realistic code which simulates the response of the detectors (water Cherenkov detectors), including the electronics, pickup noise, and the signal attenuation in the connecting cables. The trigger stage was considered in the simulations in order to estimate the trigger efficiency of the array and to verify the accuracy of the reconstruction codes. This paper delineates the simulations performed to obtain the expected behavior of the array, and describes the simulated data. The results of these simulations suggest that we can expect an error in the energy of the primary cosmic-ray of {approx}60% of the estimated value and that the error in the measurement of the direction of arrival can be estimated as {approx}4 deg. . The present simulations also indicate that unambiguous assignments of the primary energy cannot be obtained because of the uncertainty in the nature of the primary cosmic ray.

  8. The Murchison Widefield Array

    NARCIS (Netherlands)

    Mitchell, Daniel A.; Greenhill, Lincoln J.; Ord, Stephen M.; Bernardi, Gianni

    2010-01-01

    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imagin

  9. Array processors in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  10. Bandwidth Reconfigurable Metamaterial Arrays

    Directory of Open Access Journals (Sweden)

    Nathanael J. Smith

    2014-01-01

    Full Text Available Metamaterial structures provide innovative ways to manipulate electromagnetic wave responses to realize new applications. This paper presents a conformal wideband metamaterial array that achieves as much as 10 : 1 continuous bandwidth. This was done by using interelement coupling to concurrently achieve significant wave slow-down and cancel the inductance stemming from the ground plane. The corresponding equivalent circuit of the resulting array is the same as that of classic metamaterial structures. In this paper, we present a wideband Marchand-type balun with validation measurements demonstrating the metamaterial (MTM array’s bandwidth from 280 MHz to 2800 MHz. Bandwidth reconfiguration of this class of array is then demonstrated achieving a variety of band-pass or band-rejection responses within its original bandwidth. In contrast with previous bandwidth and frequency response reconfigurations, our approach does not change the aperture’s or ground plane’s geometry, nor does it introduce external filtering structures. Instead, the new responses are realized by making simple circuit changes into the balanced feed integrated with the wideband MTM array. A variety of circuit changes can be employed using MEMS switches or variable lumped loads within the feed and 5 example band-pass and band-rejection responses are presented. These demonstrate the potential of the MTM array’s reconfiguration to address a variety of responses.

  11. Medical devices: US medical device regulation.

    Science.gov (United States)

    Jarow, Jonathan P; Baxley, John H

    2015-03-01

    Medical devices are regulated by the US Food and Drug Administration (FDA) within the Center for Devices and Radiological Health. Center for Devices and Radiological Health is responsible for protecting and promoting the public health by ensuring the safety, effectiveness, and quality of medical devices, ensuring the safety of radiation-emitting products, fostering innovation, and providing the public with accurate, science-based information about the products we oversee, throughout the total product life cycle. The FDA was granted the authority to regulate the manufacturing and marketing of medical devices in 1976. It does not regulate the practice of medicine. Devices are classified based on complexity and level of risk, and "pre-1976" devices were allowed to remain on the market after being classified without FDA review. Post-1976 devices of lower complexity and risk that are substantially equivalent to a marketed "predicate" device may be cleared through the 510(k) premarket notification process. Clinical data are typically not needed for 510(k) clearance. In contrast, higher-risk devices typically require premarket approval. Premarket approval applications must contain data demonstrating reasonable assurance of safety and efficacy, and this information typically includes clinical data. For novel devices that are not high risk, the de novo process allows FDA to simultaneously review and classify new devices. Devices that are not legally marketed are permitted to be used for clinical investigation purposes in the United States under the Investigational Device Exemptions regulation.

  12. Optical Transmission Properties of Dielectric Aperture Arrays

    Science.gov (United States)

    Yang, Tao

    Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index

  13. Advanced Semiconductor Devices

    Science.gov (United States)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    Sb-heterostructure backward diodes for millimeter-wave detection / N. Su ... [et al.]. A Mixed-signal row/Column architecture for very large monolithic mm-wave phased arrays / C. Carta, M. Seo and M. Rodwell. Terahertz emission from electrically pumped silicon germanium itersubband devices / N. Sustersic [et al.]. Terahertz sensing of materials / G. Xuan ... [et al.] -- III. silicon and SiGe devices. Negative bias temperature instability in TiN/HF-Silicate based gate stacks / N. A. Chowdhury, D. Misra and N. Rahim. Power adaptive control of dense configured super-self-aligned back-gate planar transistors / H. Lin ... [et al.]. Non-volatile high speed & low power charge trapping devices / M. K. Kim and S. Tiwari. High performance SiGeC/Si Near-IR electrooptic modulators and photodetectors / M. Schubert and F. Rana -- III. Silicon and SiGe devices. Negative bias temperature instability in TiN/HF-Silicate based gate stacks / N. A. Chowdhury, D. Misra and N. Rahim. Power adaptive control of dense configured super-self-aligned back-gate planar transistors / H. Lin ... [et al.]Non-volatile high speed & low power charge trapping devices / M. K. Kim and S. Tiwari. High performance SiGeC/Si Near-IR electrooptic modulators and photodetectors / M. Schubert and F. Rana -- IV. Nanoelelectronics and ballistic devices. Hybrid nanomaterials for multi-spectral infrared photodetection / A. D. Stiff-Roberts. Ballistic electron acceleration negative-differential-conductivity devices / B. Aslan ... [et al.] -- V. Photoluminescence and photocapacitance. Understanding ultraviolet emitter performance using intensity dependent Time-Resolved photoluminescence / M. Wraback ... [ et al.]. Photocapacitance of selectively doped AlGaAs/GaAs heterostructures containing deep traps / N. B. Gorev ... [et al.

  14. Transformation optics for cavity array metamaterials.

    Science.gov (United States)

    Quach, James Q; Su, Chun-Hsu; Greentree, Andrew D

    2013-03-11

    Cavity array metamaterials (CAMs), composed of optical microcavities in a lattice coupled via tight-binding interactions, represent a novel architecture for engineering metamaterials. Since the size of the CAMs' constituent elements are commensurate with the operating wavelength of the device, it cannot directly utilise classical transformation optics in the same way as traditional metamaterials. By directly transforming the internal geometry of the system, and locally tuning the permittivity between cavities, we provide an alternative framework suitable for tight-binding implementations of metamaterials. We develop a CAM-based cloak as the case study.

  15. Piezoresistive pressure sensor array for robotic skin

    Science.gov (United States)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  16. Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids

    Directory of Open Access Journals (Sweden)

    Fernandes António MG

    2008-10-01

    Full Text Available Abstract Background Segmental duplications (SDs are euchromatic portions of genomic DNA (≥ 1 kb that occur at more than one site within the genome, and typically share a high level of sequence identity (>90%. Approximately 5% of the human genome is composed of such duplicated sequences. Here we report the detailed investigation of CHEK2 duplications. CHEK2 is a multiorgan cancer susceptibility gene encoding a cell cycle checkpoint kinase acting in the DNA-damage response signalling pathway. The continuous presence of the CHEK2 gene in all eukaryotes and its important role in maintaining genome stability prompted us to investigate the duplicative evolution and phylogeny of CHEK2 and its paralogs during anthropoid evolution. Results To study CHEK2 duplicon evolution in anthropoids we applied a combination of comparative FISH and in silico analyses. Our comparative FISH results with a CHEK2 fosmid probe revealed the single-copy status of CHEK2 in New World monkeys, Old World monkeys and gibbons. Whereas a single CHEK2 duplication was detected in orangutan, a multi-site signal pattern indicated a burst of duplication in African great apes and human. Phylogenetic analysis of paralogous and ancestral CHEK2 sequences in human, chimpanzee and rhesus macaque confirmed this burst of duplication, which occurred after the radiation of orangutan and African great apes. In addition, we used inter-species quantitative PCR to determine CHEK2 copy numbers. An amplification of CHEK2 was detected in African great apes and the highest CHEK2 copy number of all analysed species was observed in the human genome. Furthermore, we detected variation in CHEK2 copy numbers within the analysed set of human samples. Conclusion Our detailed analysis revealed the highly dynamic nature of CHEK2 duplication during anthropoid evolution. We determined a burst of CHEK2 duplication after the radiation of orangutan and African great apes and identified the highest CHEK2 copy number

  17. Phase-locked arrays of vertical-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.E.; Lear, K.L.; Gourley, P.L.; Hadley, G.R.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Zolper, J.C. [Sandia National Labs., Albuquerque, NM (United States); Lott, J.A. [Air Force Institute of Technology, Wright Patterson Air Force Base, OH (United States); Chalmers, S.A. [Optical Solutions, Albany, CA (United States)

    1994-04-01

    Vertical-Cavity Surface-Emitting Lasers (VCSELS) are of increasing interest to the photonics community because of their surface-emitting structure, simple fabrication and packaging, wafer-level testability, and potential for low cost manufacture. Scaling VCSELs to higher power outputs requires increasing the device area, which leads to transverse mode control difficulties if devices become larger than about 5 microns. One approach to increasing the device size while maintaining a well controlled transverse mode profile is formation of coupled or phase-locked two-dimensional arrays of VCSELs that are individually single-transverse mode. Such arrays have unique optical properties, not all of which are desirable. This paper covers some of the basic principles of these devices and reviews recent work on device designs, fabrication and operation. A technique for improving the far-field properties of the arrays is demonstrated and performance limitations are discussed.

  18. Tunable plasmonic response of metallic nanoantennna heterodimer arrays modified by atomic-layer deposition

    Science.gov (United States)

    Wambold, Raymond A.; Borst, Benjamin D.; Qi, Jie; Weisel, Gary J.; Willis, Brian G.; Zimmerman, Darin T.

    2016-04-01

    We present a systematic study of tunable, plasmon extinction characteristics of arrays of nanoscale antennas that have potential use as sensors, energy-harvesting devices, catalytic converters, in near-field optical microscopy, and in surface-enhanced spectroscopy. Each device is composed of a palladium triangular-prism antenna and a flat counter-electrode. Arrays of devices are fabricated on silica using electron-beam lithography, followed by atomic-layer deposition of copper. Optical extinction is measured by employing a broadband light source in a confocal, transmission arrangement. We characterize the plasmon resonance behavior by examining the dependence on device length, the gap spacing between the electrodes, material properties, and the device array density, all of which contribute in varying degrees to the measured response. We employ finite-difference time-domain simulations to demonstrate good qualitative agreement between experimental trends and theory and use scanning electron microscopy to correlate plasmonic extinction characteristics with changes in morphology.

  19. Study of intrinsic localized vibrational modes in micromechanical oscillator arrays.

    Science.gov (United States)

    Sato, M; Hubbard, B E; English, L Q; Sievers, A J; Ilic, B; Czaplewski, D A; Craighead, H G

    2003-06-01

    Intrinsic localized modes (ILMs) have been observed in micromechanical cantilever arrays, and their creation, locking, interaction, and relaxation dynamics in the presence of a driver have been studied. The micromechanical array is fabricated in a 300 nm thick silicon-nitride film on a silicon substrate, and consists of up to 248 cantilevers of two alternating lengths. To observe the ILMs in this experimental system a line-shaped laser beam is focused on the 1D cantilever array, and the reflected beam is captured with a fast charge coupled device camera. The array is driven near its highest frequency mode with a piezoelectric transducer. Numerical simulations of the nonlinear Klein-Gordon lattice have been carried out to assist with the detailed interpretation of the experimental results. These include pinning and locking of the ILMs when the driver is on, collisions between ILMs, low frequency excitation modes of the locked ILMs and their relaxation behavior after the driver is turned off.

  20. Preliminary experimental study of a carbon fiber array cathode

    Science.gov (United States)

    Li, An-kun; Fan, Yu-wei

    2016-08-01

    The preliminary experimental results of a carbon fiber array cathode for the magnetically insulated transmission line oscillator (MILO) operations are reported. When the diode voltage and diode current were 480 kV and 44 kA, respectively, high-power microwaves with a peak power of about 3 GW and a pulse duration of about 60 ns were obtained in a MILO device with the carbon fiber array cathode. The preliminary experimental results show that the shot-to-shot reproducibility of the diode current and the microwave power is stable until 700 shots. No obvious damage or deterioration can be observed in the carbon fiber surface morphology after 700 shots. Moreover, the cathode performance has no observable deterioration after 700 shots. In conclusion, the maintain-free lifetime of the carbon fiber array cathode is more than 700 shots. In this way, this carbon fiber array cathode offers a potential replacement for the existing velvet cathode.

  1. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  2. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  3. Real-time visualization of low contrast targets from high-dynamic range infrared images based on temporal digital detail enhancement filter

    Science.gov (United States)

    Garcia, Frederic; Schockaert, Cedric; Mirbach, Bruno

    2015-11-01

    An image detail enhancement method to effectively visualize low contrast targets in high-dynamic range (HDR) infrared (IR) images is presented regardless of the dynamic range width. In general, high temperature dynamics from real-world scenes used to be encoded in a 12 or 14 bits IR image. However, the limitations of the human visual perception, from which no more than 128 shades of gray are distinguishable, and the 8-bit working range of common display devices make necessary an effective 12/14 bits HDR mapping into the 8-bit data representation. To do so, we propose to independently treat the base and detail image components that result from splitting the IR image using two dedicated guided filters. We also introduce a plausibility mask from which those regions that are prominent to present noise are accurately defined to be explicitly tackled to avoid noise amplification. The final 8-bit data representation results from the combination of the processed detail and base image components and its mapping to the 8-bit domain using an adaptive histogram-based projection approach. The limits of the histogram are accommodated through time in order to avoid global brightness fluctuations between frames. The experimental evaluation shows that the proposed noise-aware approach preserves low contrast details with an overall contrast enhancement of the image. A comparison with widely used HDR mapping approaches and runtime analysis is also provided. Furthermore, the proposed mathematical formulation enables a real-time adjustment of the global contrast and brightness, letting the operator adapt to the visualization display device without nondesirable artifacts.

  4. Smart trigger logic for focal plane arrays

    Science.gov (United States)

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  5. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  6. Plasmonic hole arrays for combined photon and electron management

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-11-01

    Material architectures that balance optical transparency and electrical conductivity are highly sought after for thin-film device applications. However, these are competing properties, since the electronic structure that gives rise to conductivity typically also leads to optical opacity. Nanostructured metal films that exhibit extraordinary optical transmission, while at the same time being electrically continuous, offer considerable flexibility in the design of their transparency and resistivity. Here, we present design guidelines for metal films perforated with arrays of nanometer-scale holes, discussing the consequences of the choice of nanostructure dimensions, of the type of metal, and of the underlying substrate on their electrical, optical, and interfacial properties. We experimentally demonstrate that such films can be designed to have broad-band optical transparency while being an order of magnitude more conductive than indium tin oxide. Prototypical photovoltaic devices constructed with perforated metal contacts convert ˜18% of the incident photons, compared to devices having contacts without the hole array.

  7. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  8. Backshort-Under-Grid arrays for infrared astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C.A. [NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)]. E-mail: christine.allen@nasa.gov; Benford, D.J. [NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Chervenak, J.A. [NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Chuss, D.T. [NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Miller, T.M. [NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); QSS Group, Inc., 4500 Forbes Blvd. Suite 200, Lanham, MD 20706 (United States); Moseley, S.H. [NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Staguhn, J.G. [NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Wollack, E.J. [NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2006-04-15

    We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from {approx}30-300 {mu}m, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8x8 detector elements. We present detector design, fabrication overview, and assembly technologies.

  9. A CMOS-MEMS arrayed resonant-gate field effect transistor (RGFET) oscillator

    Science.gov (United States)

    Chin, Chi-Hang; Li, Ming-Huang; Chen, Chao-Yu; Wang, Yu-Lin; Li, Sheng-Shian

    2015-11-01

    A high-frequency CMOS-MEMS arrayed resonant-gate field effect transistor (RGFET) fabricated by a standard 0.35 μm 2-poly-4-metal CMOS-MEMS platform is implemented to enable a Pierce-type oscillator. The proposed arrayed RGFET exhibits low motional impedance of only 5 kΩ under a purely capacitive transduction and decent power handling capability. With such features, the implemented oscillator shows impressive phase noise of  -117 dBc Hz-1 at the far-from-carrier offset (1 MHz). In this work, we design a clamped-clamped beam (CCB) arrayed resonator utilizing a high-velocity mechanical coupling scheme to serve as the resonant-gate array. To achieve a functional arrayed RGFET, a corresponding FET array is directly placed underneath the resonant gate array to convert the motional current on the resonant-gate array into a voltage output with a tunable transconductance gain. To understand the behavior of the proposed device, an equivalent circuit model consisting of the resonant unit and FET is also provided. To verify the effects of the post-CMOS process on device performance, a conventional MOS I D current measurement is carried out. Finally, a CMOS-MEMS arrayed RGFET oscillator is realized by utilizing a Pierce oscillator architecture, showing decent phase noise performance that benefits from the array design to alleviate the nonlinear effect of the resonant gate.

  10. CMOS MEMS Fabrication Technologies and Devices

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2016-01-01

    Full Text Available This paper reviews CMOS (complementary metal-oxide-semiconductor MEMS (micro-electro-mechanical systems fabrication technologies and enabled micro devices of various sensors and actuators. The technologies are classified based on the sequence of the fabrication of CMOS circuitry and MEMS elements, while SOI (silicon-on-insulator CMOS MEMS are introduced separately. Introduction of associated devices follows the description of the respective CMOS MEMS technologies. Due to the vast array of CMOS MEMS devices, this review focuses only on the most typical MEMS sensors and actuators including pressure sensors, inertial sensors, frequency reference devices and actuators utilizing different physics effects and the fabrication processes introduced. Moreover, the incorporation of MEMS and CMOS is limited to monolithic integration, meaning wafer-bonding-based stacking and other integration approaches, despite their advantages, are excluded from the discussion. Both competitive industrial products and state-of-the-art research results on CMOS MEMS are covered.

  11. Appendage mountable electronic devices conformable to surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John; Ying, Ming; Bonifas, Andrew; Lu, Nanshu

    2017-01-24

    Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.

  12. Chemically sensitive interfaces on SAW devices

    Energy Technology Data Exchange (ETDEWEB)

    Ricco, A.J.; Martin, S.J. [Sandia National Labs., Albuquerque, NM (United States); Crooks, R.M.; Xu, Chuanjing [Texas A and M Univ., College Station, TX (United States); Allred, R.E. [Adherent Technologies, Inc., Albuquerque, NM (United States)

    1993-11-01

    Using surface acoustic wave (SAW) devices, three approaches to the effective use of chemically sensitive interfaces that are not highly chemically selective have been examined: (1) molecular identification from time-resolved permeation transients; (2) using multifrequency SAW devices to determine the frequency dependence of analyte/film interactions; (3) use of an array of SAW devices bearing diverse chemically sensitive interfaces to produce a distinct response pattern for each analyte. In addition to their well-known sensitivity to mass changes (0.0035 monolayer of N{sub 2} can be measured), SAW devices respond to the mechanical and electronic properties of thin films, enhancing response information content but making a thorough understanding of the perturbation critical. Simultaneous measurement of changes in frequency and attenuation, which can provide the information necessary to determine the type of perturbation, are used as part of the above discrimination schemes.

  13. High Dynamic Magnetic Beam Current Measurements by Means of Optimised Magneto-Resistance (MR) Sensor Engineering

    CERN Document Server

    Hape, M; Ricken, W

    2005-01-01

    The GSI-FAIR project (facility for antiprotons and ion research) will comprehend DC currents up to around 5 A in the SIS 100 synchrotron and after bunch compression down to 50 ns pulse length the peak currents will reach up to 100 A. To meet these higher demands of beam current measurements new sensor techniques are foreseen. The measurement device itself will be designed in form of a clip-on ampere-meter. The air gap of the flux concentrator is assumed to be around 5 mm and thus, the estimated maximum field therein is around 30 mT for a beam current of 100 A peak. The resolution of this device is aimed to be 1 mA in beam current, corresponding to a system dynamic of around 105. This high demands of beam current measurement require more sophisticated sensor types than just using a Hall probe. The characteristics of AMR (anisotropic magneto-resistance), GMR (giant magneto-resistance) and GMI (giant magneto-impedance) sensors like hysteresis, linearity and sensitivity have been measured within the magnetic fiel...

  14. Atacama Compact Array Antennas

    CERN Document Server

    Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.

  15. Pulsar Timing Arrays

    OpenAIRE

    Joshi, Bhal Chandra

    2013-01-01

    In the last decade, the use of an ensemble of radio pulsars to constrain the characteristic strain caused by a stochastic gravitational wave background has advanced the cause of detection of very low frequency gravitational waves significantly. This electromagnetic means of gravitational wave detection, called Pulsar Timing Array(PTA), is reviewed in this article. The principle of operation of PTA, the current operating PTAs and their status is presented along-with a discussion of the main ch...

  16. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  17. The Cherenkov Telescope Array

    Science.gov (United States)

    Connaughton, Valerie

    2014-03-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort dedicated to the design and operation of the next-generation ground-based very high-energy gamma-ray observatory. CTA will improve by about one order of magnitude the sensitivity with respect to the current major arrays (VERITAS, H.E.S.S., and MAGIC) in the core energy range of 100 GeV to 10 TeV, and will extend the viability of the imaging atmospheric Cherenkov technique (IACT) down to tens of GeV and above 100 TeV. In order to achieve such improved performance at both a northern and southern CTA site, four 23m diameter Large Size Telescopes (LST) optimized for low energy gamma rays will be deployed close to the centre of the array. A larger number of Medium Size Telescopes (MST) will be optimized for the core IACT energy range. The southern site will include 25 12m single-mirror MSTs and a US contribution of up to 24 novel dual-mirror design Schwarzschild-Couder (SC) type MSTs with a primary mirror of 9.5m diameter, and will also include an array of Small Size Telescopes (SST) to observe the highest-energy gamma rays from galactic sources. The SSTs can be smaller and more widely separated because more energetic gamma rays produce a larger Cherenkov light pool with many photons. The SSTs achieve a large collection area by covering a wide (10 sq km) footprint on the ground. The CTA project is finishing its preparatory phase, and the pre-production phase will start this year. I will review the status and the expected performance of CTA as well as the main scientific goals for the observatory.

  18. YBCO Josephson Junction Arrays

    Science.gov (United States)

    1993-07-14

    40, 489 (1961). [8] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical recipes: the art of scientific computing (Cambridge...has recently become a commercial product. He has developed processes for depositing state-of-the art YBCO films on buffered sapphire substrates. His...technology can most improve and on what subsystems would benefit most from the pt.. .imance available from these arrays. Aqppoved f or publicO re󈧎OSI AIR

  19. Solar collector array

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  20. The TALE Infill Array

    Science.gov (United States)

    Bergman, Douglas

    2009-05-01

    The TALE Infill Array in conjunction with the TALE Tower Detector will provide hybrid coverage of the cosmic ray energy spectrum down to 3x10^16 eV. It will consist of about 100, two square meter scintillators on the surface spaced at 400 m; and 24 buried twelve square meter scintillators. The combination of surface and underground detectors will allow for the determination of the muon content of showers and thus give a handle on cosmic ray composition.

  1. Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control

    Science.gov (United States)

    Pi, Shuang; Lin, Peng; Xia, Qiangfei

    2016-11-01

    Sub-10 nm metal nanowire arrays are important electrodes for building high density emerging ‘beyond CMOS’ devices. We made Pt nanowire arrays with sub-10 nm feature size using nanoimprint lithography on silicon substrates with 100 nm thick thermal oxide. We further studied the critical dimension (CD) evolution in the fabrication procedure and achieved 0.4 nm CD control, providing a viable solution to the imprint lithography CD challenge as specified by the international technology roadmap for semiconductors. Finally, we fabricated Pt/TiO2/Pt memristor crossbar arrays with the 8 nm electrodes, demonstrating great potential in dimension scaling of this emerging device.

  2. TANGO ARRAY II: Simulations

    Science.gov (United States)

    Bauleo, P.; Bonifazi, C.; Filevich, A.

    The angular and energy resolution of the TANGO Array has been obtained using Monte Carlo simulations. The AIRES code, with the SYBILL hadronic collision package, was used to simulate Extended Air Showers produced by primary cosmic rays (protons and iron nuclei), with energies ranging from 1014 eV to 1018 eV. These data were fed into a realistic code which simulates the response of the detector stations (water ˇCerenkov detectors), including the electronics, pick up noise, and the signal attenuation in the connecting cabling. The trigger stage is taken into account in order to produce estimates of the trigger efficiency of the array and to check the accuracy of the reconstruction codes. This paper describes the simulations performed to obtain the expected behavior of the array, and presents the simulated data. These simulations indicate that the accuracy of the cosmic ray primary energy determination is expected to be ˜ 60 % and the precision in the measurement of the direction of arrival can be estimated as ˜ 4 degrees.

  3. Mir Cooperative Solar Array

    Science.gov (United States)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  4. Electronic system for high power load control. [solar arrays

    Science.gov (United States)

    Miller, E. L. (Inventor)

    1980-01-01

    Parallel current paths are divided into two groups, with control devices in the current paths of one group each having a current limiting resistor, and the control devices in the other group each having no limiting resistor, so that when the control devices of the second group are turned fully on, a short circuit is achieved by the arrangement of parallel current paths. Separate but coordinated control signals are provided to turn on the control devices of the first group and increase their conduction toward saturation as a function of control input, and when fully on, or shortly before, to turn on the control devices of the second group and increase their conduction toward saturation as a function of the control input as that input continues to increase. Electronic means may be used to generate signals. The system may be used for 1-V characteristic measurements of solar arrays as well as for other load control purposes.

  5. Medical Device Safety

    Science.gov (United States)

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They ... may need one in a hospital. To use medical devices safely Know how your device works. Keep ...

  6. Microscopy imaging device with advanced imaging properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  7. Microscopy imaging device with advanced imaging properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  8. Microscopy imaging device with advanced imaging properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  9. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-12-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  10. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  11. Mixed Frequency Ultrasound Phased Array

    Institute of Scientific and Technical Information of China (English)

    香勇; 霍健; 施克仁; 陈以方

    2004-01-01

    A mixed frequency ultrasonic phased array (MPA) was developed to improve the focus, in which the element excitation frequencies are not all the same as in a normal constant frequency phased array. A theoretical model of the mixed frequency phased array based on the interference principle was used to simulate the array's sound distribution. The pressure intensity in the array focal area was enhanced and the scanning area having effective contrast resolution was enlarged. The system is especially useful for high intensity focused ultrasound (HIFU) with more powerful energy and ultrasound imaging diagnostics with improved signal to noise ratios, improved beam forming and more uniform imaging quality.

  12. Ultraefficient Themoelectric Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric (TE) devices already found a wide range of commercial, military and aerospace applications. However, at present commercially available TE devices...

  13. rf superconducting quantum interference device metamaterials

    Science.gov (United States)

    Lazarides, N.; Tsironis, G. P.

    2007-04-01

    A rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing its tuning by a slight change of the intensity of the applied field.

  14. Advanced ACTPol Cryogenic Detector Arrays and Readout

    Science.gov (United States)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  15. An Optical Phased Array for LIDAR

    Science.gov (United States)

    Wang, Y.; Wu, M. C.

    2016-11-01

    We have previously demonstrated the development of an Optical Phased Array (OPA) micromechanical system (MEMS) used for beam steering, which shows great advantages over previous mechanisms such as opto-mechanical, acousto-optical (AO) or electro-optical (EO). We aim to integrate the OPA MEMS system into the application of automobile navigation, which is currently primarily dominated by opto-mechanical scanning based systems. Opto-mechanical scanning devices are usually bulky and relatively slow, while competing technologies (AO, EO) utilize devices that while small in size, cannot provide the steering speeds and versatility necessary for many applications. In drawing from phased array concepts that revolutionized RADAR technology by providing a compact, agile alternative to mechanically steered technology, the OPA based LIDAR program seeks to integrate thousands of closely packed optical emitting facets, precise relative electronic phase control of these facets, and all within a very small form factor. Comparing with other competing LIDAR system, the OPA based LIDAR system will have multiple degrees of freedom for phase control which enables not only agile beam steering but also beam forming and multiple beam generation, greatly expanding the diversity of applications.

  16. Integrated strain array for cellular mechanobiology studies

    Science.gov (United States)

    Simmons, C. S.; Sim, J. Y.; Baechtold, P.; Gonzalez, A.; Chung, C.; Borghi, N.; Pruitt, B. L.

    2011-05-01

    We have developed an integrated strain array for cell culture enabling high-throughput mechano-transduction studies. Biocompatible cell culture chambers were integrated with an acrylic pneumatic compartment and microprocessor-based control system. Each element of the array consists of a deformable membrane supported by a cylindrical pillar within a well. For user-prescribed waveforms, the annular region of the deformable membrane is pulled into the well around the pillar under vacuum, causing the pillar-supported region with cultured cells to be stretched biaxially. The optically clear device and pillar-based mechanism of operation enables imaging on standard laboratory microscopes. Straightforward fabrication utilizes off-the-shelf components, soft lithography techniques in polydimethylsiloxane and laser ablation of acrylic sheets. Proof of compatibility with basic biological assays and standard imaging equipment were accomplished by straining C2C12 skeletal myoblasts on the device for 6 h. At higher strains, cells and actin stress fibers realign with a circumferential preference.

  17. Synchronization of an Array of Miniature Acoustic Engines

    Science.gov (United States)

    Kwon, Young Sang; Symko, Orest G.

    2004-03-01

    In the development of miniature arrays of acoustic engines for energy conversion, phase-locking of the array ensemble was investigated. As the individual acoustic devices are independent resonant elements, maximum output can be achieved by a coherent summation of the elements of the array. They have small variations in resonant frequency and they have different phases as they are non-linear self-sustained oscillators and their phases depend on the initial conditions. The acoustic engines are based on thermoacoustics, where heat is converted to sound in a resonator by applying a temperature gradient across a stack of high surface area elements. In the experiments described here, the devices oscillate in the frequency range of 3 kHz and they are assembled into arrays of 5 elements and 9 elements. When the array is activated with heat, the acoustic power output is not coherent; it contains all sorts of beats and frequency mixtures produced by each independent oscillator. However, coherence is achieved by the introduction of a relatively weak signal from a separate resonator which phase-locks all the self-sustained acoustic oscillators and causes coherent summation of oscillations. Such approach provides a high intensity acoustic signal which can be used in energy conversion of heat to electricity.

  18. Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation

    CERN Document Server

    Semkin, V; Kyro, M; Kolmonen, V-M; Luxey, C; Ferrero, F; Devillers, F; Raisanen, A V

    2015-01-01

    In this paper, we study the influence of the radius of a cylindrical supporting structure on radiation properties of a conformal millimeter-wave antenna array. Bent antenna array structures on cylindrical surfaces may have important applications in future mobile devices. Small radii may be needed if the antenna is printed on the edges of mobile devices and in items which human beings are wearing, such as wrist watches, bracelets and rings. The antenna under study consists of four linear series-fed arrays of four patch elements and is operating at 58.8 GHz with linear polarization. The antenna array is fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due to its good plasticity properties and low losses. Results for both planar and conformal antenna arrays show rather good agreement between simulation and measurements. The results show that conformal antenna structures allow achieving large angular coverage and may allow beam-steering implementations if switches are used to select betw...

  19. Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation

    Science.gov (United States)

    Robert E. Apfel; Zheng, Yibing

    2000-01-01

    An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.

  20. Spatiospectral and picosecond spatiotemporal properties of a broad area operating channeled-substrate-planar laser array

    Science.gov (United States)

    Yu, NU; Defreez, Richard K.; Bossert, David J.; Wilson, Geoffrey A.; Elliott, Richard A.

    1991-01-01

    Spatiospectral and spatiotemporal properties of an eight-element channeled-substrate-planar laser array are investigated in both CW and pulsed operating conditions. The closely spaced CSP array with strong optical coupling between array elements is characterized by a broad area laserlike operation determined by its spatial mode spectra. The spatiotemporal evolution of the near and far field exhibits complex dynamic behavior in the picosecond to nanosecond domain. Operating parameters for the laser device have been experimentally determined. These results provide important information for the evaluation of the dynamic behavior of coherent semiconductor laser arrays.

  1. Theoretical and experimental implementation of vibrational resonance in an array of hard limiters

    Science.gov (United States)

    Ren, Yuhao; Duan, Fabing

    2016-08-01

    We report that the output signal-to-noise ratio (SNR) of a parallel array of hard limiters can be maximized at an optimal high-frequency vibration amplitude, i.e. the vibrational resonance (VR) effect. As the external noise shape parameter varies, the bifurcation mode of maximal SNR gain is found, and the upper limit of SNR gain is discussed. We theoretically demonstrate a tractable realization of an infinite array approached by a finite array of two hard limiters, and design an electronic circuit experiment to verify the feasibility of this effective method. These results indicate the potential applications of vibrational devices to array signal processing.

  2. Parameter Optimization of a 9 × 9 Polymer Arrayed Waveguide Grating Multiplexer

    Institute of Scientific and Technical Information of China (English)

    郭文滨; 马春生; 陈维友; 张大明; 陈开鑫; 崔战臣; 赵禹; 刘式墉

    2002-01-01

    Some important parameters are optimized for a 9 × 9 polymer arrayed waveguide grating multiplexer around the central wavelength of 1.55μm with the wavelength spacing of 1.6nm. These parameters include the thickness and width of the guide core, diffraction order, pitch of adjacent waveguides, path length difference of adjacent arrayed waveguides, focal length of slab waveguides, free spectral range, the number of input/output channels and the number of arrayed waveguides. Finally, a schematic waveguide layout of this device is presented, which contains 2 slabs, 9 input and 9 output channels, and 91 arrayed waveguides.

  3. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies

    Science.gov (United States)

    Normann, Richard A.; Fernandez, Eduardo

    2016-12-01

    This paper briefly describes some of the recent progress in the development of penetrating microelectrode arrays and highlights the use of two of these devices, Utah electrode arrays and Utah slanted electrode arrays, in two therapeutic interventions: recording volitional skeletal motor commands from the central nervous system, and recording motor commands and evoking somatosensory percepts in the peripheral nervous system (PNS). The paper also briefly explores other potential sites for microelectrode array interventions that could be profitably pursued and that could have important consequences in enhancing the quality of life of patients that has been compromised by disorders of the central and PNSs.

  4. Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays

    Science.gov (United States)

    Liu, Haixiao; Sun, Weiqiang; Xiang, An; Shi, Tuanwei; Chen, Qing; Xu, Shengyong

    2012-08-01

    In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices.

  5. Density Detection of Aligned Nanowire Arrays Using Terahertz Time-Domain Spectroscopy

    Science.gov (United States)

    Xiang, Wenfeng; Wang, Xin; Liu, Yuan; Zhang, JiaQi; Zhao, Kun

    2016-07-01

    A rapid technique is necessary to quantitatively detect the density of nanowire (NW) and nanotube arrays in one-dimensional devices which have been identified as useful building blocks for nanoelectronics, optoelectronics, biomedical devices, etc. Terahertz (THz) time-domain spectroscopy was employed in this research to detect the density of aligned Ni NW arrays. The transmitted amplitude of THz peaks and optical thickness of NW arrays was found to be the effective parameters to analyze the density change of NW arrays. Owing to the low multiple scattering and high order of Ni NW arrays, a linear relationship was observed for the transmitted amplitude and optical thickness regarding NW density, respectively. Therefore, THz technique may be used as a promising tool to characterize the density of one-dimensional structures in the large-scale integrated nanodevice fabrication.

  6. Application of a Halbach magnetic array for long-range cell and particle separations in biological samples

    Science.gov (United States)

    Kang, Joo H.; Driscoll, Harry; Super, Michael; Ingber, Donald E.

    2016-05-01

    Here, we describe a versatile application of a planar Halbach permanent magnet array for an efficient long-range magnetic separation of living cells and microparticles over distances up to 30 mm. A Halbach array was constructed from rectangular bar magnets using 3D-printed holders and compared to a conventional alternating array of identical magnets. We theoretically predicted the superiority of the Halbach array for a long-range magnetic separation and then experimentally validated that the Halbach configuration outperforms the alternating array for isolating magnetic microparticles or microparticle-bound bacterial cells at longer distances. Magnetophoretic velocities (ymag) of magnetic particles (7.9 μm diameter) induced by the Halbach array in a microfluidic device were significantly higher and extended over a larger area than those induced by the alternating magnet array (ymag = 178 versus 0 μm/s at 10 mm, respectively). When applied to 50 ml tubes (˜30 mm diameter), the Halbach array removed >95% of Staphylococcus aureus bacterial cells bound with 1 μm magnetic particles compared to ˜70% removed using the alternating array. In addition, the Halbach array enabled manipulation of 1 μm magnetic beads in a deep 96-well plate for ELISA applications, which was not possible with the conventional magnet arrays. Our analysis demonstrates the utility of the Halbach array for the future design of devices for high-throughput magnetic separations of cells, molecules, and toxins.

  7. Flexible organic memory devices with multilayer graphene electrodes.

    Science.gov (United States)

    Ji, Yongsung; Lee, Sangchul; Cho, Byungjin; Song, Sunghoon; Lee, Takhee

    2011-07-26

    We fabricated 8 × 8 cross-bar array-type flexible organic resistive memory devices with transparent multilayer graphene (MLG) electrodes on a poly(ethylene terephthalate) substrate. The active layer of the memory devices is a composite of polyimide and 6-phenyl-C61 butyric acid methyl ester. The sheet resistance of the MLG film on memory device was found to be ∼270 Ω/◻, and the transmittance of separated MLG film from memory device was ∼92%. The memory devices showed typical write-once-read-many (WORM) characteristics and an ON/OFF ratio of over ∼10(6). The memory devices also exhibited outstanding cell-to-cell uniformity with flexibility. There was no substantial variation observed in the current levels of the WORM memory devices upon bending and bending cycling up to 10 000 times. A retention time of over 10(4) s was observed without fluctuation under bending.

  8. Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy

    Science.gov (United States)

    Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary

    2012-01-01

    A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing

  9. On intermodulation beams of satellite DBF transmitting multibeam array antenna

    Science.gov (United States)

    Zhao, Hongmei; Wang, Huali; Mu, Shanxiang

    2007-11-01

    Digital beamforming (DBF) transmitting multibeam planar array antenna with nonlinear behaviors of solid-state power amplifiers (SSPA) is discussed. This paper investigates the intermodulation beams produced by the nonlinearity characteristics of the SSPA with multiple carrier components. The Shimbo model is simplified to describe the nonlinear behaviors of SSPA. The optimal SSPA input back-off (IBO) point which is given the desired the carrier and the intermodulatin ratio (C/IM) is simulated. And the tradeoffs between linearity and efficiency of the power amplifier which influence this IBO is also discussed, helping to selecting suitable SSPA device and reducing the dc power consumption in satellite array antenna system.

  10. Radiation detection from phase-locked serial dc SQUID arrays

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Mygind, Jesper; Pedersen, Niels Falsig;

    1993-01-01

    We report on synchronous operation of series arrays of inductively coupled superconducting quantum interference devices (SQUIDs). Each array consisted of N=3 or 11 dc SQUIDs with common inductances providing a strong interaction between neighboring cells. Externally shunted (betac...... on the external loading. For small loading it was N times smaller than expected for a single cell. The influence of the inductive coupling mechanism on the operation of discrete Josephson junction circuits and the similarity to the coupling in layered structures of long Josephson junctions is discussed. Journal...

  11. Three dimensional stress vector sensor array and method therefor

    Science.gov (United States)

    Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery

    2005-07-05

    A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.

  12. Log-converting processor element for CCD linear imaging arrays.

    Science.gov (United States)

    Chang, S H; Boyd, J T

    1983-11-15

    A photosensor element suitable for incorporation into charge-coupled device (CCD) imaging arrays in which the charge injected into the CCD is proportional to the logarithm of incident light intensity is presented. The photosensor element consists of a photodiode directly coupled to a two-stage MOSFET common source amplifier. This element occupies an area of 25 x 100 microm and is arranged so that it could be incorporated into a linear CCD imaging array having a period of 25 microm. A logarithmic response is measured over a 68.6-dB range of incident light intensity with a sensitivity of 55 mV/decade of light intensity.

  13. Field emission properties of an array of pyramidal structures

    Energy Technology Data Exchange (ETDEWEB)

    De Assis, Thiago A [Departamento de QuImica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Borondo, F [Departamento de QuImica, Instituto Mixto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); De Castilho, C M C; Brito Mota, F [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador, BA (Brazil); Benito, R M, E-mail: t.albuquerque@uam.e, E-mail: f.borondo@uam.e, E-mail: caio@ufba.b, E-mail: fbmota@ufba.b, E-mail: rosamaria.benito@upm.e [Grupo de Sistemas Complejos, Departamento de Fisica y Mecanica, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2009-10-07

    The properties and efficiency of the emission current density produced by a metallic array of pyramidal structures are investigated. The theoretical results obtained by numerical integration of the corresponding Laplace equation using a finite differences scheme offer useful information for the optimization of field emission devices based on cathodes with this geometry. Our study shows that the inter-pyramidal distance strongly affects the current density, and even more important for this issue is the protrusion characteristics of these structures. Another relevant, although less important, parameter determining this density is the anode-cathode distance. The effect of the array characteristics on the maximum local electric field intensity is also discussed.

  14. Optoelectronic analysis of multijunction wire array solar cells

    OpenAIRE

    2013-01-01

    Wire arrays have demonstrated promising photovoltaic performance as single junction solar cells and are well suited to defect mitigation in heteroepitaxy. These attributes can combine in tandem wire array solar cells, potentially leading to high efficiencies. Here, we demonstrate initial growths of GaAs on Si_(0.9)Ge_(0.1) structures and investigate III-V on Si_(1-x)Ge_x device design with an analytical model and optoelectronic simulations. We consider Si_(0.1)Ge_(0.9) wires coated with a GaA...

  15. Compact Transducers and Arrays

    Science.gov (United States)

    2005-05-01

    Soc. Am., 104, pp.64-71 44 25.Decarpigny, J.N., J.C. Debus, B. Tocquet & D. Boucher. 1985. "In-Air Analysis Of Piezoelectric Tonpilz Transducers In A... Transducers and Arrays Final Report May 2005 Contacts: Dr. Robert E. Newnham The Pennsylvania State University, 251 MRL, University Park, PA 16802 phone...814) 865-1612 fax: (814) 865-2326 email: ....c xx.....i.i.....ht.. .u a.p.u..c.e.du. Dr. Richard J. Meyer, Jr. Systems Engineering ( Transducers ), ARL

  16. Standard practice for radiological examination using digital detector arrays

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice establishes the minimum requirements for radiological examination for metallic and nonmetallic material using a digital detector array (DDA) system. 1.2 The requirements in this practice are intended to control the quality of radiologic images and are not intended to establish acceptance criteria for parts or materials. 1.3 This practice covers the radiologic examination with DDAs including DDAs described in Practice E2597 such as a device that contains a photoconductor attached to a Thin Film Transistor (TFT) read out structure, a device that has a phosphor coupled directly to an amorphous silicon read-out structure, and devices where a phosphor is coupled to a CMOS (Complementary metal–oxide–semiconductor) array, a Linear Detector Array (LDA) or a CCD (charge coupled device) crystalline silicon read-out structure. 1.4 The DDA shall be selected for an NDT application based on knowledge of the technology described in Guide , and of the selected DDA properties provided by the manufactu...

  17. Programmable Aperture with MEMS Microshutter Arrays

    Science.gov (United States)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.

  18. Nonlinear phased array imaging

    Science.gov (United States)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  19. Microplasma generating array

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, Jeffrey A.; Wu, Chen; Hoskinson, Alan R.; Sonkusale, Sameer

    2016-10-04

    A microplasma generator includes first and second conductive resonators disposed on a first surface of a dielectric substrate. The first and second conductive resonators are arranged in line with one another with a gap defined between a first end of each resonator. A ground plane is disposed on a second surface of the dielectric substrate and a second end of each of the first and second resonators is coupled to the ground plane. A power input connector is coupled to the first resonator at a first predetermined distance from the second end chosen as a function of the impedance of the first conductive resonator. A microplasma generating array includes a number of resonators in a dielectric material substrate with one end of each resonator coupled to ground. A micro-plasma is generated at the non-grounded end of each resonator. The substrate includes a ground electrode and the microplasmas are generated between the non-grounded end of the resonator and the ground electrode. The coupling of each resonator to ground may be made through controlled switches in order to turn each resonator off or on and therefore control where and when a microplasma will be created in the array.

  20. in vivo ischemia monitoring array for endoscopic surgery.

    Science.gov (United States)

    Tahirbegi, Islam Bogachan; Mir, Mònica; Schostek, Sebastian; Schurr, Marc; Samitier, Josep

    2014-11-15

    An array with all-solid-state, potentiometric, miniaturized sensors for pH and potassium was developed to be introduced into the stomach or other sectors of the digestive tract by means of flexible endoscopy. These sensors perform continuous and simultaneous measurement of extracellular pH and potassium. This detection seeks to sense ischemia in the gastric mucosa inside the stomach, an event indicative of local microvascular perfusion and tissue oxygenation status. Our array is proposed as a medical tool to identify the occurrence of the ischemia after gastrointestinal or gastroesophageal anastomosis. The stability and feasibility of the miniaturized working and reference electrodes integrated in the array were studied under in vitro conditions, and the behavior of the potassium and pH ion-selective membranes were optimized to work under acidic gastric conditions with high concentrations of HCl. The array was tested in vivo in pigs to measure the ischemia produced by clamping the blood flow into the stomach. Our results indicate that ischemic and reperfusion states can be sensed in vivo and that information on tissue damage can be collected by this sensor array. The device described here provides a miniaturized, inexpensive, and mass producible sensor array for detecting local ischemia caused by unfavorable anastomotic perfusion and will thus contribute to preventing anastomotic leakage and failure caused by tissue necrosis.

  1. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  2. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  3. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Directory of Open Access Journals (Sweden)

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  4. Piezoelectric devices for generating low power

    Science.gov (United States)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  5. Review of nanostructured devices for thermoelectric applications.

    Science.gov (United States)

    Pennelli, Giovanni

    2014-01-01

    A big research effort is currently dedicated to the development of thermoelectric devices capable of a direct thermal-to-electrical energy conversion, aiming at efficiencies as high as possible. These devices are very attractive for many applications in the fields of energy recovery and green energy harvesting. In this paper, after a quick summary of the fundamental principles of thermoelectricity, the main characteristics of materials needed for high efficiency thermoelectric conversion will be discussed, and a quick review of the most promising materials currently under development will be given. This review paper will put a particular emphasis on nanostructured silicon, which represents a valid compromise between good thermoelectric properties on one side and material availability, sustainability, technological feasibility on the other side. The most important bottom-up and top-down nanofabrication techniques for large area silicon nanowire arrays, to be used for high efficiency thermoelectric devices, will be presented and discussed.

  6. Review of nanostructured devices for thermoelectric applications

    Directory of Open Access Journals (Sweden)

    Giovanni Pennelli

    2014-08-01

    Full Text Available A big research effort is currently dedicated to the development of thermoelectric devices capable of a direct thermal-to-electrical energy conversion, aiming at efficiencies as high as possible. These devices are very attractive for many applications in the fields of energy recovery and green energy harvesting. In this paper, after a quick summary of the fundamental principles of thermoelectricity, the main characteristics of materials needed for high efficiency thermoelectric conversion will be discussed, and a quick review of the most promising materials currently under development will be given. This review paper will put a particular emphasis on nanostructured silicon, which represents a valid compromise between good thermoelectric properties on one side and material availability, sustainability, technological feasibility on the other side. The most important bottom-up and top-down nanofabrication techniques for large area silicon nanowire arrays, to be used for high efficiency thermoelectric devices, will be presented and discussed.

  7. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  8. Thermal Isolation and Differential Cooling of Heterogeneously Integrated Devices

    Science.gov (United States)

    2016-07-01

    Signature// JOHN D. BLEVINS ROSS W. DETTMER, Chief Program Manager Devices for Sensing Branch Devices for Sensing Branch Aerospace Components...one another was investigated. This work introduces the concept of microspreading resistance as a component of the thermal behavior of arrays of...components housed in separate packages. A poorly understood feature of HI is that it presents additional challenges to the thermal management of the

  9. Array biosensor: recent developments

    Science.gov (United States)

    Golden, Joel P.; Rowe-Taitt, Chris A.; Feldstein, Mark J.; Ligler, Frances S.

    1999-05-01

    A fluorescence-based immunosensor has been developed for simultaneous analyses of multiple samples for 1 to 6 different antigens. A patterned array of recognition antibodies immobilized on the surface of a planar waveguide is used to 'capture' analyte present in samples. Bound analyte is then quantified by means of fluorescent detector molecules. Upon excitation of the fluorescent label by a small diode laser, a CCD camera detects the pattern of fluorescent antigen:antibody complexes on the sensor surface. Image analysis software correlates the position of fluorescent signals with the identity of the analyte. A new design for a fluidics distribution system is shown, as well as results from assays for physiologically relevant concentrations of staphylococcal enterotoxin B (SEB), F1 antigen from Yersinia pestis, and D- dimer, a marker of sepsis and thrombotic disorders.

  10. The Submillimeter Array Polarimeter

    CERN Document Server

    Marrone, Daniel P

    2008-01-01

    We describe the Submillimeter Array (SMA) Polarimeter, a polarization converter and feed multiplexer installed on the SMA. The polarimeter uses narrow-band quarter-wave plates to generate circular polarization sensitivity from the linearly-polarized SMA feeds. The wave plates are mounted in rotation stages under computer control so that the polarization handedness of each antenna is rapidly selectable. Positioning of the wave plates is found to be highly repeatable, better than 0.2 degrees. Although only a single polarization is detected at any time, all four cross correlations of left- and right-circular polarization are efficiently sampled on each baseline through coordinated switching of the antenna polarizations in Walsh function patterns. The initial set of anti-reflection coated quartz and sapphire wave plates allows polarimetry near 345 GHz; these plates have been have been used in observations between 325 and 350 GHz. The frequency-dependent cross-polarization of each antenna, largely due to the varia...

  11. Phase-locked array of quantum cascade lasers with an intracavity spatial filter

    CERN Document Server

    Wang, Lei; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Liu, Fengqi

    2016-01-01

    Phase-locking an array of quantum cascade lasers is an effective way to achieve higher output power and beam shaping. In this article, based on Talbot effect, we show a new-type phase-locked array of mid-infrared quantum cascade lasers with an integrated spatial- filtering Talbot cavity. All the arrays show stable in-phase operation from the threshold current to full power current. The beam divergence of the array device is smaller than that of a single-ridge laser. We use the multi-slit Fraunhofer diffraction mode to interpret the far-field radiation profile and give a solution to get better beam quality. The maximum power is just about 5 times that of a single-ridge laser for eleven-laser array device and 3 times for seven-laser array device. Considering the great modal selection ability, simple fabricating process and the potential for achieving better beam quality and smaller cavity loss, this new-type phase-locked array may be a hopeful and elegant solution to get high power or beam shaping.

  12. A new electro-optic waveguide architecture and the unprecedented devices it enables

    Science.gov (United States)

    Davis, Scott R.; Rommel, Scott D.; Farca, George; Anderson, Michael H.

    2008-04-01

    A new electro-optic waveguide platform, which provides unprecedented electro-optical phase delays (> 1mm), with very low loss (integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, laser illumination, phased array radar, optical communications, etc. Performance attributes of several example devices are presented.

  13. Muon-hadron detector of the carpet-2 array

    Science.gov (United States)

    Dzhappuev, D. D.; Kudzhaev, A. U.; Klimenko, N. F.

    2016-05-01

    The 1-GeV muon-hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01) code package and performed for primary protons and iron nuclei.

  14. Harmful Gas Recognition Exploiting a CTL Sensor Array

    Directory of Open Access Journals (Sweden)

    Yao Zheng

    2013-10-01

    Full Text Available In this paper, a novel cataluminescence (CTL-based sensor array consisting of nine types of catalytic materials is developed for the recognition of several harmful gases, namely carbon monoxide, acetone, chloroform and toluene. First, the experimental setup is constructed by using sensing nanomaterials, a heating plate, a pneumatic pump, a gas flow meter, a digital temperature device, a camera and a BPCL Ultra Weak Chemiluminescence Analyzer. Then, unique CTL patterns for the four types of harmful gas are obtained from the sensor array. The harmful gases are successful recognized by the PCA method. The optimal conditions are also investigated. Finally, experimental results show high sensitivity, long-term stability and good linearity of the sensor array, which combined with simplicity, make our system a promising application in this field.

  15. Long-distance coherent coupling in a quantum dot array.

    Science.gov (United States)

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.

  16. A novel serrated columnar phased array ultrasonic transducer

    Science.gov (United States)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  17. Energy harvesting from vertically aligned PZT nanowire arrays

    Science.gov (United States)

    Malakooti, Mohammad H.; Zhou, Zhi; Sodano, Henry A.

    2016-04-01

    In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

  18. Full process for integrating silicon nanowire arrays into solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perraud, Simon; Poncet, Severine; Noel, Sebastien; Levis, Michel; Faucherand, Pascal; Rouviere, Emmanuelle [CEA, LITEN, Laboratoire des Composants pour la Recuperation d' Energie, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Thony, Philippe; Jaussaud, Claude; Delsol, Regis [CEA, LITEN, Laboratoire des Composants Solaires, INES-RDI, Savoie Technolac, 50 avenue du Lac Leman, 73377 Le-Bourget-du-Lac (France)

    2009-09-15

    A novel process was developed for integrating silicon nanowire arrays into solar cells. n-Type silicon nanowires were grown by chemical-vapour deposition via the gold-catalysed vapour-liquid-solid method, on a p-type silicon substrate. After the growth, the nanowire array was planarized, by embedding the nanowires in a spin-on glass matrix and subsequent chemical-mechanical polishing of the front surface. This planarization step allows to deposit a continuous and uniform conductive film on top of the nanowire array, and thus to form a high-quality front electrical contact. For an illumination intensity of 100 mW/cm{sup 2}, our devices exhibit an energy conversion efficiency of 1.9%. The main performance limiting factor is a high pn junction reverse current, due to contamination by the growth catalyst or to a lack of passivation of surface electronic defects. (author)

  19. Ka-band MMIC microstrip array for high rate communications

    Science.gov (United States)

    Lee, R. Q.; Raquet, C. A.; Tolleson, J. B.; Sanzgiri, S. M.

    1991-01-01

    In a recent technology assessment of alternative communication systems for the space exploration initiative (SEI), Ka-band (18 to 40 GHz) communication technology was identified to meet the mission requirements of telecommunication, navigation, and information management. Compared to the lower frequency bands, Ka-band antennas offer higher gain and broader bandwidths; thus, they are more suitable for high data rate communications. Over the years, NASA has played an important role in monolithic microwave integrated circuit (MMIC) phased array technology development, and currently, has an ongoing contract with Texas Instrument (TI) to develop a modular Ka-band MMIC microstrip subarray (NAS3-25718). The TI contract emphasizes MMIC integration technology development and stipulates using existing MMIC devices to minimize the array development cost. The objective of this paper is to present array component technologies and integration techniques used to construct the subarray modules.

  20. Pyroelectric sensor arrays for detection and thermal imaging

    Science.gov (United States)

    Holden, Anthony J.

    2013-06-01

    Penetration of uncooled (room temperature operation) thermal detector arrays into high volume commercial products depends on very low cost technology linked to high volume production. A series of innovative and revolutionary developments is now allowing arrays based on bulk pyroelectric ceramic material to enter the consumer marketplace providing everything from sophisticated security and people monitoring devices to hand held thermal imagers and visual IR thermometers for preventative maintenance and building inspection. Although uncooled resistive microbolometer detector technology has captured market share in higher cost thermal imager products we describe a pyroelectric ceramic technology which does not need micro electro-mechanical systems (MEMS) technology and vacuum packaging to give good performance. This is a breakthrough for very low cost sensors and imagers. Recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability compared and contrasted with competing technologies.

  1. Non-specific sensor arrays for chemical detection

    Science.gov (United States)

    Johnson, Kevin; Minor, Christian

    2015-05-01

    Non-specific chemical sensor arrays have been the subject of considerable research efforts over the past thirty years with the idea that, by analogy to vertebrate olfaction, they are potentially capable of rendering complex chemical assessments with relatively modest logistical footprints. However, the actual implementation of such devices in challenging "real world" scenarios has arguably continued to fall short of these expectations. This work examines the inherent limitations of such devices for complex chemical sensing scenarios, placing them on a continuum between simple univariate sensors and complex multivariate analytical instrumentation and analyzing their utility in general-purpose chemical detection and accurate chemical sensing in the presence of unknown "unknowns." Results with simulated and acquired data sets are presented with discussion of the implications in development of chemical sensor arrays suitable for complex scenarios.

  2. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array

    CERN Document Server

    Zhang, Cheng; Ni, Yuan; Li, Mingzhuo; Mao, Lei; Liu, Chen; Zhang, Douguo; Ming, Hai; Wang, Pei

    2014-01-01

    Plasmonic nanolasers have ultrahigh lasing thresholds, especially those devices for which all three dimensions are truly subwavelength. Because of a momentum mismatch between the propagating light and localized optical field of the subwavelength nanocavity, poor optical pumping efficiency is another important reason for the ultrahigh threshold but is normally always ignored. Based on a cavity-embedded nanoantenna array design, we demonstrate a room-temperature low-threshold plasmonic nanolaser that is robust, reproducible, and easy-to-fabricate using chemical-template lithography. The mode volume of the device is~0.22({\\lambda}/2n)3 (here,{\\lambda} is resonant wavelength and n is the refractive index), and the experimental lasing threshold produced is ~2.70MW/mm2. The lasing polarization and the function of nanoantenna array are investigated in detail. Our work provides a new strategy to achieve room-temperature low-threshold plasmonic nanolasers of interest in applications to biological sensoring and informa...

  3. Antenna-coupled TES bolometer arrays for CMB polarimetry

    CERN Document Server

    Kuo, C L; Bonetti, J A; Brevik, J; Chattopadhyay, G; Day, P K; Golwala, S; Kenyon, M; Lange, A E; LeDuc, H G; Nguyen, H; Ogburn, R W; Orlando, A; Trangsrud, A; Turner, A; Wang, G; Zmuidzinas, J; 10.1117/12.788588

    2009-01-01

    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL...

  4. Micromechanical resonator array for an implantable bionic ear.

    Science.gov (United States)

    Bachman, Mark; Zeng, Fan-Gang; Xu, Tao; Li, G-P

    2006-01-01

    In this paper we report on a multi-resonant transducer that may be used to replace a traditional speech processor in cochlear implant applications. The transducer, made from an array of micro-machined polymer resonators, is capable of passively splitting sound into its frequency sub-bands without the need for analog-to-digital conversion and subsequent digital processing. Since all bands are mechanically filtered in parallel, there is low latency in the output signals. The simplicity of the device, high channel capability, low power requirements, and small form factor (less than 1 cm) make it a good candidate for a completely implantable bionic ear device.

  5. Rhetorical Devices in English Advertisements

    Institute of Scientific and Technical Information of China (English)

    陈芃

    2011-01-01

    In order to achieve persuasive and convincing effects,rhetorical devices are frequently applied in English advertisements.The paper classifies rhetorical devices into four basic categories: phonetic devices,lexical devices,syntactic devices and figures of

  6. Development and Demonstration of Measurement-Time Efficient Methods for Impedance Spectroscopy of Electrode and Sensor Arrays

    OpenAIRE

    Derek Johnson; Matthew Smith; Kevin R. Cooper

    2008-01-01

    The development of impedance-based array devices is hindered by a lack of robust platforms and methods upon which to evaluate and interrogate sensors. One aspect to be addressed is the development of measurement-time efficient techniques for broadband impedance spectroscopy of large electrode arrays. The objective of this work was to substantially increase the low frequency impedance measurement throughput capability of a large channel count array analyzer by developing true parallel measurem...

  7. A high dynamic-range instrument for SPICA for coronagraphic observation of exoplanets and monitoring of transiting exoplanets

    CERN Document Server

    Enya, K; Takeuchi, S; Kotani, T; Yamamuro, T

    2011-01-01

    This paper, first, presents introductory reviews of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission and the SPICA Coronagraph Instrument (SCI). SPICA will realize a 3m class telescope cooled to 6K in orbit. The launch of SPICA is planned to take place in FY2018. The SPICA mission provides us with a unique opportunity to make high dynamic-range observations because of its large telescope aperture, high stability, and the capability for making infrared observations from deep space. The SCI is a high dynamic-range instrument proposed for SPICA. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in the infrared region, while the monitoring of transiting planets is another important target owing to the non-coronagraphic mode of the SCI. Then, recent technical progress and ideas in conceptual studies are presented, which can potentially enhance the performance of the instrument: the designs of an integral 1-dimensional binary-s...

  8. A New Inertial Aid Method for High Dynamic Compass Signal Tracking Based on a Nonlinear Tracking Differentiator

    Directory of Open Access Journals (Sweden)

    Wenqi Wu

    2012-06-01

    Full Text Available In Compass/INS integrated navigation systems, feedback inertial navigation solutions to baseband tracking loops may eliminate receiver dynamic effects, and effectively improve the tracking accuracy and sensitivity. In the conventional inertially-aided tracking loop, the satellite-receiver line-of-sight velocity is used directly to adjust local carrier frequency. However, if the inertial solution drifts, the phase tracking error will be enlarged. By using Kalman filter based carrier phase tracking loop, this paper introduces a new inertial aid method, in which the line-of-sight jerk obtained from inertial acceleration by a nonlinear tracking differentiator is used to adjust relevant parameters of the Kalman filter’s process noise matrix. Validation is achieved through high dynamic Compass B3 signal with line-of-sight jerk of 10 g/s collected by a GNSS simulator. Experimental results indicate that the new inertial aid method proposed in this paper is free of the impact of the receiver dynamic and inertial errors. Therefore, when the integrated navigation system is starting or re-tracking after losing lock, the inertial error is absent from the navigation solution correction that induces large drift, and the new aid method proposed in this paper can track highly dynamic signals.

  9. A new inertial aid method for high dynamic Compass signal tracking based on a nonlinear tracking differentiator.

    Science.gov (United States)

    Guo, Yao; Wu, Wenqi; Tang, Kanghua

    2012-01-01

    In Compass/INS integrated navigation systems, feedback inertial navigation solutions to baseband tracking loops may eliminate receiver dynamic effects, and effectively improve the tracking accuracy and sensitivity. In the conventional inertially-aided tracking loop, the satellite-receiver line-of-sight velocity is used directly to adjust local carrier frequency. However, if the inertial solution drifts, the phase tracking error will be enlarged. By using Kalman filter based carrier phase tracking loop, this paper introduces a new inertial aid method, in which the line-of-sight jerk obtained from inertial acceleration by a nonlinear tracking differentiator is used to adjust relevant parameters of the Kalman filter's process noise matrix. Validation is achieved through high dynamic Compass B3 signal with line-of-sight jerk of 10 g/s collected by a GNSS simulator. Experimental results indicate that the new inertial aid method proposed in this paper is free of the impact of the receiver dynamic and inertial errors. Therefore, when the integrated navigation system is starting or re-tracking after losing lock, the inertial error is absent from the navigation solution correction that induces large drift, and the new aid method proposed in this paper can track highly dynamic signals.

  10. Phase-locked arrays of vertical-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.E.; Hadley, G.R.; Lear, K.L.; Gourley, P.L.; Vawter, G.A.; Zolper, J.C.; Brennan, T.M.; Hammons, B.E.

    1994-05-01

    Vertical Cavity Surface-Emitting Lasers (VCSELs) are of increasing interest to the photonics community because of their surface-emitting structure, simple fabrication and packaging, wafer-level testability and potential for low cost. Scaling VCSELs to higher power outputs requires increasing the device area, which leads to transverse mode control difficulties if devices become larger than 10-15 microns. One approach to increasing the device size while maintaining a well controlled transverse mode profile is to form coupled or phase-locked, two-dimensional arrays of VCSELs that are individually single-transverse mode. The authors have fabricated and characterized both photopumped and electrically injected two-dimensional VCSEL arrays with apertures over 100 microns wide. Their work has led to an increased understanding of these devices and they have developed new types of devices, including hybrid semiconductor/dielectric mirror VCSEL arrays, VCSEL arrays with etched trench, self-aligned, gold grid contacts and arrays with integrated phase-shifters to correct the far-field pattern.

  11. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    -structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...

  12. Automated Solar-Array Assembly

    Science.gov (United States)

    Soffa, A.; Bycer, M.

    1982-01-01

    Large arrays are rapidly assembled from individual solar cells by automated production line developed for NASA's Jet Propulsion Laboratory. Apparatus positions cells within array, attaches interconnection tabs, applies solder flux, and solders interconnections. Cells are placed in either straight or staggered configurations and may be connected either in series or in parallel. Are attached at rate of one every 5 seconds.

  13. Fabrication and characterization of ordered arrays of nanostructures

    Science.gov (United States)

    Larson, Preston

    2005-11-01

    Nanostructures are currently of great interest because of their unique properties and potential applications in a wide range of areas such as opto-electronic and biomedical devices. Current research in nanotechnology involves fabrication and characterization of these structures, as well as theoretical and experimental studies to explore their unique and novel properties. Not only do nanostructures have the potential to be both evolutionary (state-of-the-art ICs have more and more features on the nanoscale) but revolutionary (quantum computing) as well. In this thesis, a combination of bottom-up and top-down approaches is explored to fabricate ordered arrays of nanostrucutures. The bottom-up approach involves the growth of self-organized porous anodic aluminum oxide (AAO) films. AAO films consist of a well ordered hexagonal array of close-packed pores with diameters and spacings ranging from around 5 to 500 nm. Via a top-down approach, these AAO films are then used as masks or templates to fabricate ordered arrays of nanostructures (i.e. dots, holes, meshes, pillars, rings, etc.) of various materials using conventional deposition and/or etching techniques. Using AAO films as masks allows a simple and economical method to fabricate arrays of structures with nano-scale dimensions. Furthermore, they allow the fabrication of large areas (many millimeters on a side) of highly uniform and well-ordered arrays of nanostructures, a crucial requirement for most characterization techniques and applications. Characterization of these nanostructures using various techniques (electron microscopy, atomic force microscopy, UV-Vis absorption spectroscopy, photoluminescence, capacitance-voltage measurements, magnetization hysteresis curves, etc.) will be presented. Finally, these structures provide a unique opportunity to determine the single and collective properties of nanostructure arrays and will have various future applications including but not limited to: data storage, light

  14. Tremor as observed by the Array of Arrays in Cascadia

    Science.gov (United States)

    Ghosh, A.; Vidale, J. E.; Creager, K. C.

    2010-12-01

    We are capturing the intimate details of tremor activity in Cascadia with 8 small-aperture seismic arrays in northwestern Washington. The Array of Arrays (AoA) focuses on the tremor-active megathrust, including the area we previously imaged with a solo seismic array in 2008 [Ghosh et al., GRL, 2009, 2010]. Each array consists of 10 to 20 three-component sensors recording in continuous mode. Since it became operational in June 2009, the AoA has recorded several minor tremor episodes, and the recent episodic tremor and slip (ETS) event in August 2010. During the ETS event, each array was augmented by 10 additional single-channel, vertical-component sensors. We have already started to analyze seismic data for tremor episodes in July 2009, and March 2010. At each array, we apply a beamforming technique to stack the seismic energy at every 0.2 Hz from 2 to 15 Hz. During active tremor, the arrays show stable slowness, and azimuth over time, and up to 15 Hz energy on vertical channels, and 6 Hz on horizontals, with slowness consistent with the P and S waves respectively (Figure 1). Vidale et al. in this meeting provide a detailed description of a weeklong tremor episode in March 2010. The ETS started early second week of August about 60 km south of our arrays, and in a week or so, migrated along-strike to the north passing directly underneath the arrays. Strong tremor is still active about 50 km north of the arrays as we write this abstract. We will imminently analyze this data, and by the time of AGU, have preliminary results to present. Currently, we are developing an algorithm to focus as many arrays as possible to locate the tremor sources. With fine tremor detection capability and good azimuthal coverage, our AoA will better resolve the various confounding features of tremor spatiotemporal distribution (e.g., tremor patches, bands, streaks, rapid tremor reversals, low frequency earthquakes) that have been recently discovered in Cascadia. The AoA is poised to provide

  15. Large arrays and properties of 3-terminal graphene nanoelectromechanical switches.

    Science.gov (United States)

    Liu, Xinghui; Suk, Ji Won; Boddeti, Narasimha G; Cantley, Lauren; Wang, Luda; Gray, Jason M; Hall, Harris J; Bright, Victor M; Rogers, Charles T; Dunn, Martin L; Ruoff, Rodney S; Bunch, J Scott

    2014-03-12

    Large arrays of 3-terminal nanoelectromechanical graphene switches are fabricated. The switch is designed with a novel geometry that leads to low actuation voltages and improved mechanical integrity, while reducing adhesion forces, which improves the reliability of the switch. A finite element model including non-linear electromechanics is used to simulate the switching behavior and to deduce a scaling relation between the switching voltage and device dimensions.

  16. Amorphous Silicon 16—bit Array Photodetector①

    Institute of Scientific and Technical Information of China (English)

    ZHANGShaoqiang; XUZhongyang; 等

    1997-01-01

    An amorphous silicon 16-bit array photodetector with the a-SiC/a-Si heterojunction diode is presented.The fabrication processes of the device were studied systematically.By the optimum of the diode structure and the preparation procedures,the diode with Id<10-12A/mm2 and photocurrentIp≥0.35A/W has been obtained at the wavelength of 632nm.

  17. Field emission characteristics of regular arrays of carbon nanotubes.

    Science.gov (United States)

    Al-Ghamdi, A A; Al-Heniti, S; Al-Hazmi, F S; Faidah, Adel S; Shalaan, E; Husain, M

    2014-06-01

    The developments of electronic devices based on micron-sized vacuum electron sources during the last decades have triggered intense research on highly efficient carbon based thin film electron emitters. The synthesis of massive arrays of carbon nanotubes that are oriented on patterned Fe catalyst deposited on quartz substrates is reported. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotubes devices integrated into future technology. The emission from carbon nanotubes array is explained by Fowler-Nordheim tunneling of electrons from tip-like structures in the nanometer range, which locally amplify the applied field by the field enhancement factor beta. We found that the low pressure chemical vapour deposition (LPCVD) system can produce nanotubes capable of excellent emission currents at lower voltages. The carbon nanotubes array shows good field emission with turn on field E(alpha) = 1.30 V/microm at the current density of 3.50 mA/cm2 with enhancement factor beta = 1.22 x 10(2).

  18. Chunking of Large Multidimensional Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  19. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  20. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    Science.gov (United States)

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-01

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  1. Physical electrochemistry of nanostructured devices.

    Science.gov (United States)

    Bisquert, Juan

    2008-01-07

    This Perspective reviews recent developments in experimental techniques and conceptual methods applied to the electrochemical properties of metal-oxide semiconductor nanostructures and organic conductors, such as those used in dye-sensitized solar cells, high-energy batteries, sensors, and electrochromic devices. The aim is to provide a broad view of the interpretation of electrochemical and optoelectrical measurements for semiconductor nanostructures (sintered colloidal particles, nanorods, arrays of quantum dots, etc.) deposited or grown on a conducting substrate. The Fermi level displacement by potentiostatic control causes a broad change of physical properties such as the hopping conductivity, that can be investigated over a very large variation of electron density. In contrast to traditional electrochemistry, we emphasize that in nanostructured devices we must deal with systems that depart heavily from the ideal, Maxwell-Boltzmann statistics, due to broad distributions of states (energy disorder) and interactions of charge carriers, therefore the electrochemical analysis must be aided by thermodynamics and statistical mechanics. We discuss in detail the most characteristic densities of states, the chemical capacitance, and the transport properties, specially the chemical diffusion coefficient, mobility, and generalized Einstein relation.

  2. Thermography of electronic devices

    OpenAIRE

    Panfilova S. P.; Vlasov A. I.; Gridnev V. N.; Chervinsky A. S.

    2007-01-01

    The possibility of application of thermography to diagnose the electronic devices is analyzed in the article. Typical faults of electronic devices which can be found by means of thermography are given. Advantages of noncontact thermal inspection in comparison with the contact one are described. Some features of thermography of electronic devices are considered. Thermography apparatus is viewed and some pieces of advice about choosing it for electronic devices diagnosis are given. An example o...

  3. Heterostructures and quantum devices

    CERN Document Server

    Einspruch, Norman G

    1994-01-01

    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  4. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  5. Array gain for a cylindrical array with baffle scatter effects.

    Science.gov (United States)

    Bertilone, Derek C; Killeen, Damien S; Bao, Chaoying

    2007-11-01

    Cylindrical arrays used in sonar for passive underwater surveillance often have sensors surrounding a cylindrical metal baffle. In some operational sonars, the phones in each stave (i.e., each line of phones aligned with the cylinder axis) are hardwired together so that the array is equivalent to a baffled circular array of directional elements, where each element corresponds to a line array of omnidirectional phones steered to broadside. In this paper a model is introduced for computing the array gain of such an array at high frequencies, which incorporates baffle scatter using infinite, rigid cylinder scattering theory, and with ambient noise described by an angular spectral density function. In practice the phones are often offset from the baffle surface, and the acoustic field sampled by the staves is distorted at high frequencies due to interference between the incident and scattered fields. Examples are given to illustrate the resulting array gain degradation, using three noise distributions that are frequently used in sonar performance modeling: three-dimensional isotropic, two-dimensional isotropic, and surface dipole noise.

  6. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    Science.gov (United States)

    Li, Jun; Meyyappan, Meyya; Dangelo, Carols

    2012-01-01

    State-of-the-art integrated circuits (ICs) for microprocessors routinely dissipate power densities on the order of 50 W/cm2. This large power is due to the localized heating of ICs operating at high frequencies and must be managed for future high-frequency microelectronic applications. As the size of components and devices for ICs and other appliances becomes smaller, it becomes more difficult to provide heat dissipation and transport for such components and devices. A thermal conductor for a macro-sized thermal conductor is generally inadequate for use with a microsized component or device, in part due to scaling problems. A method has been developed for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler-composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place, and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  7. Highly-compliant, conformal and stretchable microelectrode arrays

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongzhi; Xie Lei; Yu Mei; Liu Zhiyuan; Li Yuchun; Yu Zhe

    2013-01-01

    Most biological tissues are supple and elastic,While current electronic devices fabricated by semiconductors and metals are usually stiff and brittle.As a result,implanted electronic devices can irritate and damage surrounding tissues,causing immune reaction and scarring.In this work,we develop stretchable microelectrode arrays,with the development of a novel soft lithography technology,which are designed and fabricated with a polymer/stretchable metal/polymer sandwich structure.With the great deformability of stretch,compression,bend and twisting,while preserving electrical property,this technology overcomes the fundamental mismatch of mechanical properties between biological tissues and electronic devices,and provides highly-compliant,conformal and stretchable bio-electronic interfaces.Here we also describe the following three applications of the stretchable electrode arrays:a.monitoring intracranial electroencephalography (EEG); b.stimulating peripheral nerves to drive muscles; c.monitoring epicardial electrocardiography (ECG).Stretchable microelectrode arrays create a promising field in biomedical applications for its better modulus match with biological tissues and robust mechanical and electrical properties.They allow for construction of electronic integrated circuits spread over on complex and dynamic curved surfaces,providing a much friendlier bio-electronic interface for diagnosis,treatment and intelligent bio-control.

  8. Device-less interaction

    NARCIS (Netherlands)

    Monaci, G.; Triki, M.; Sarroukh, B.E.

    2009-01-01

    This document describes the results of a technology survey for device-less interaction. The Device-less Interaction project (2007-307) aims at providing interaction options for future home appliances without resorting to a remote control or any other dedicated control device. The target home applia

  9. Organic photosensitive devices

    Science.gov (United States)

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  10. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  11. The Long Wavelength Array

    Science.gov (United States)

    Taylor, G. B.

    2006-08-01

    The Long Wavelength Array (LWA) will be a new, open, user-oriented astronomical instrument operating in the poorly explored window from 20-80 MHz at arcsecond level resolution and mJy level sensitivity. Key science drivers include (1) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays, supernova remnants, and pulsars; (2) the high redshift universe, including the most distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy; (3) planetary, solar, and space science, including space weather prediction and extra-solar planet searches; and (4) the radio transient universe: including the known (e.g., SNe, GRBs) and the unknown. Because the LWA will explore one of the last and least investigated regions of the spectrum, the potential for new discoveries, including new classes of physical phenomena, is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements, e.g. for cosmic ray acceleration, transients, and galaxy clusters. Operated by the University of New Mexico on behalf of the South West Consortium (SWC) the LWA will also provide a unique training ground for the next generation of radio astronomers. Students may also put skills learned on the LWA to work in computer science, electrical engineering, and the communications industry, among others. The development of the LWA will follow a phased build, which benefits from lessons learned at each phase. Four university-based Scientific Testing and Evaluation (ST&E) teams with different areas of concentration (1. High resolution imaging and particle acceleration; 2. Wide field imaging and large scale structures; 3. Ionosphere, and 4. RFI suppression and transient detection) will provide the feedback needed to assure that science objectives are met as the build develops. Currently in its first year of construction funding, the LWA

  12. Thermal microphotonic sensor and sensor array

    Science.gov (United States)

    Watts, Michael R.; Shaw, Michael J.; Nielson, Gregory N.; Lentine, Anthony L.

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  13. Biochemical Sensors Using Carbon Nanotube Arrays

    Science.gov (United States)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Cassell, Alan M. (Inventor)

    2011-01-01

    Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes ("CNTs") is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.

  14. Gold nanodisk array surface plasmon resonance sensor

    Science.gov (United States)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  15. Multiband Photonic Phased-Array Antenna

    Science.gov (United States)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  16. Magnetic nanocap arrays with tilted magnetization

    Science.gov (United States)

    Albrecht, Manfred

    2009-03-01

    In modern magnetic recording materials the ``superparamagnetic effect'' has become increasingly important as new magnetic hard disk drive products are designed for higher storage densities. In this regard, patterned media [1], where two-dimensional arrays of nanostructures are used, is one of the concepts that might provide the required areal density in future magnetic recording devices. However, also nanostructure arrays will ultimately need high anisotropy material such as L10-FePt to provid enough thermal stability and thus much higher writing fields than currently obtainable from perpendicular magnetic recording heads. One proposed solution to this problem is the use of tilted magnetic recording media [2]. The basic idea is to tilt the easy axis of the magnetic medium from the perpendicular direction to 45 degree. In this case, the switching field will be reduced by a foctor of two in the Stoner-Wohlfarth limit. Recently, this approach was realized by oblique film deposition onto arrays of self-assembled spherical particles [3-5]. In this presentation, recent results on different film systems including Co/Pt multilayers, FePt and CoPtCr-SiO2 alloys which have been deposited onto SiO2 particle monolayers will be presented. It turned out that by tuning the growth conditions single domain nanocaps with enhanced magnetic coercivity and tilted anisostropy axis can be achieved even for particle sizes below 50 nm. [4pt] [1] B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38 (2005) R199 [0pt] [2] J.-P. Wang, Nat. Mater. 4, 191 (2005). [0pt] [3] M. Albrecht et al., Nat. Mater. 4, 203 (2005). [0pt] [4] T. Ulbrich et al., Phys. Rev. Lett. 96 (2006) 077202. [0pt] [5] D. Makarov et al., Appl. Phys. Lett. 93, 153112 (2008).

  17. Column Grid Array Rework for High Reliability

    Science.gov (United States)

    Mehta, Atul C.; Bodie, Charles C.

    2008-01-01

    Due to requirements for reduced size and weight, use of grid array packages in space applications has become common place. To meet the requirement of high reliability and high number of I/Os, ceramic column grid array packages (CCGA) were selected for major electronic components used in next MARS Rover mission (specifically high density Field Programmable Gate Arrays). ABSTRACT The probability of removal and replacement of these devices on the actual flight printed wiring board assemblies is deemed to be very high because of last minute discoveries in final test which will dictate changes in the firmware. The questions and challenges presented to the manufacturing organizations engaged in the production of high reliability electronic assemblies are, Is the reliability of the PWBA adversely affected by rework (removal and replacement) of the CGA package? and How many times can we rework the same board without destroying a pad or degrading the lifetime of the assembly? To answer these questions, the most complex printed wiring board assembly used by the project was chosen to be used as the test vehicle, the PWB was modified to provide a daisy chain pattern, and a number of bare PWB s were acquired to this modified design. Non-functional 624 pin CGA packages with internal daisy chained matching the pattern on the PWB were procured. The combination of the modified PWB and the daisy chained packages enables continuity measurements of every soldered contact during subsequent testing and thermal cycling. Several test vehicles boards were assembled, reworked and then thermal cycled to assess the reliability of the solder joints and board material including pads and traces near the CGA. The details of rework process and results of thermal cycling are presented in this paper.

  18. Buried nanoantenna arrays: versatile antireflection coating.

    Science.gov (United States)

    Kabiri, Ali; Girgis, Emad; Capasso, Federico

    2013-01-01

    Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum.

  19. Colorimetric Sensor Array for White Wine Tasting.

    Science.gov (United States)

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-07-24

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  20. Colorimetric Sensor Array for White Wine Tasting

    Directory of Open Access Journals (Sweden)

    Soo Chung

    2015-07-01

    Full Text Available A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2 for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.