How (not) to teach Lorentz covariance of the Dirac equation
Nikolic, H
2013-01-01
In the textbook proofs of Lorentz covariance of the Dirac equation, one treats the wave function as a spinor and gamma matrices as scalars, leading to a quite complicated formalism with several pedagogic drawbacks. As an alternative, I propose to teach Dirac equation and its Lorentz covariance by using a much simpler, but physically equivalent formalism, in which these drawbacks do not appear. In this alternative formalism, the wave function transforms as a scalar and gamma matrices as components of a vector, such that the standard physically relevant bilinear combinations do not change their transformation properties. The alternative formalism allows also a natural construction of some additional non-standard bilinear combinations with well-defined transformation properties.
Baryon spectrum analysis using Dirac's covariant constraint dynamics
Whitney, Joshua F.; Crater, Horace W.
2014-01-01
We present a relativistic quark model for the baryons that combines three related relativistic formalisms. The three-body constraint formalism of Sazdjian is used to recast three relativistic two-body equations for the three pairs of interacting quarks into a single relativistically covariant three-body equation for the bound state energies, having a Schrodinger-like structure. The two-body equations are the two-body Dirac equations of constraint dynamics derived by Crater and Van Alstine for combined world vector and scalar interactions providing the necessary spin dependent and spin independent interaction terms. The minimal quasipotential formalism of Todorov is used to provide an invariant framework for the vector and scalar dynamics used in the two-body Dirac equations into which is inserted a local simplified version of the Richardson potential. The spectral results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and a Monte Carlo method.
Application of covariant analytic mechanics with differential forms to gravity with Dirac field
Nakajima, Satoshi
2015-01-01
We apply the covariant analytic mechanics with the differential forms to the Dirac field and the gravity with the Dirac field. The covariant analytic mechanics treats space and time on an equal footing regarding the differential forms as the basis variables. A significant feature of the covariant analytic mechanics is that the canonical equations, in addition to the Euler-Lagrange equation, are not only manifestly general coordinate covariant but also gauge covariant. Combining our study and the previous works (the scalar field, the abelian and non-abelian gauge fields and the gravity without the Dirac field), the applicability of the covariant analytic mechanics is checked for all fundamental fields. We study both the first and second order formalism of the gravitational field coupled with matters including the Dirac field. Although the first order formalism does not go well for the Hamilton formalism, the second order formalism can be successfully treated within the framework. It is suggested that the covar...
Dirac's Covariant Constraint Dynamics Applied to the Baryon Spectrum
Whitney, Joshua; Crater, Horace
2010-02-01
A baryon is a hadron containing three quarks in a combination of up, down, strange, charm, or bottom. For prediction of the baryon energy spectrum, a baryon is modeled as a three-body system with the interacting forces coming from a set of two-body potentials that depend on the distance between the quarks, the spin-spin and spin-orbit angular momentum coupling terms, and a tensor term. Techniques and equations are derived from Todorov's work on constraint dynamics and the quasi-potential equation together with Two Body Dirac equations developed by Crater and Van Alstine, and adapted to this specific problem by further use of Sazdjian's N-body constraints dynamics for general confined systems. Baryon spectroscopy results are presented and compared with experiment. Typically, a best fit method is used in the analyses that employ several different algorithms, including a gradient approach, Monte Carlo modeling, and simulated annealing methods. )
General-Covariant Quantum Mechanics of Dirac Particle in Curved Space-Times
International Nuclear Information System (INIS)
A general covariant analog of the standard non-relativistic Quantum Mechanics with relativistic corrections in normal geodesic frames in the general Riemannian space-time is constructed for the Dirac particle. Not only the Pauli equation with hermitian Hamiltonian and the pre-Hilbert structure of space of its solutions but also the matrix elements of hermitian operators of momentum, (curvilinear) spatial coordinates and spin of the particle are deduced as general-covariant asymptotic approximation in c-2, c being the velocity of light, to their naturally determined general-relativistic pre images. It is shown that the Hamiltonian in the Pauli equation originated by the Dirac equation is unitary equivalent to the operator of energy, originated by the metric energy-momentum tensor of the spinor field. Commutation and other properties of the observables connected with the considered change of geometrical background of Quantum Mechanics are briefly discussed. 7 refs
On the covariance of the Dirac-Born-Infeld-Myers action
International Nuclear Information System (INIS)
A covariant version of the non-abelian Dirac-Born-Infeld-Myers action is presented. The non-abelian degrees of freedom are incorporated by adjoining to the (bosonic) worldvolume of the brane a number of anticommuting fermionic directions corresponding to boundary fermions in the string picture. The proposed action treats these variables as classical but can be given a matrix interpretation if a suitable quantisation prescription is adopted. After gauge-fixing and quantisation of the fermions, the action is shown to be in agreement with the Myers action derived from T-duality. It is also shown that the requirement of covariance in the above sense leads to a modified WZ term which also agrees with the one proposed by Myers
Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol
2013-11-14
We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail.
Crater, Horace; Yang, Dujiu
1991-09-01
A semirelativistic expansion in powers of 1/c2 is canonically matched through order (1/c4) of the two-particle total Hamiltonian of Wheeler-Feynman vector and scalar electrodynamics to a similar expansion of the center of momentum (c.m.) total energy of two interacting particles obtained from covariant generalized mass shell constraints derived with the use of the classical Todorov equation and Dirac's Hamiltonian constraint mechanics. This determines through order 1/c4 the direct interaction used in the covariant Todorov constraint equation. We show that these interactions are momentum independent in spite of the extensive and complicated momentum dependence of the potential energy terms in the Wheeler-Feynman Hamiltonian. The invariant expressions for the relativistic reduced mass and energy of the fictitious particle of relative motion used in the Todorov equation are also dynamically determined through this order by this same procedure. The resultant covariant Todorov equation then not only reproduces the noncovariant Wheeler-Feynman dynamics through order 1/c4 but also implicitly provides a rather simple covariant extrapolation of it to all orders of 1/c2.
Cartas-Fuentevilla, R
2002-01-01
Using a fully covariant formalism given by Carter for the deformation dynamics of p-branes governed by the Dirac-Nambu-Goto action in a curved background, it is proved that the corresponding Witten's phase space is endowed with a covariant symplectic structure, which can serve as a starting point for a phase space quantization of such objects. Some open questions for further research are outlined.
Ibort, A
2012-01-01
In these three lectures we will discuss some fundamental aspects of the theory of self-adjoint extensions of the covariant Laplace-Beltrami and Dirac operators on compact Riemannian manifolds with smooth boundary emphasizing the relation with the theory of global boundary conditions. Self-adjoint extensions of symmetric operators, specially of the Laplace-Beltrami and Dirac operators, are fundamental in Quantum Physics as they determine either the energy of quantum systems and/or their unitary evolution. The well-known von Neumann's theory of self-adjoint extensions of symmetric operators is not always easily applicable to differential operators, while the description of extensions in terms of boundary conditions constitutes a more natural approach. Thus an effort is done in offering a description of self-adjoint extensions in terms of global boundary conditions showing how an important family of self-adjoint extensions for the Laplace-Beltrami and Dirac operators are easily describable in this way. Moreover ...
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630
Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.
2005-09-01
Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.
Directory of Open Access Journals (Sweden)
Frieder Kleefeld
2013-01-01
Full Text Available According to some generalized correspondence principle the classical limit of a non-Hermitian quantum theory describing quantum degrees of freedom is expected to be the well known classical mechanics of classical degrees of freedom in the complex phase space, i.e., some phase space spanned by complex-valued space and momentum coordinates. As special relativity was developed by Einstein merely for real-valued space-time and four-momentum, we will try to understand how special relativity and covariance can be extended to complex-valued space-time and four-momentum. Our considerations will lead us not only to some unconventional derivation of Lorentz transformations for complex-valued velocities, but also to the non-Hermitian Klein-Gordon and Dirac equations, which are to lay the foundations of a non-Hermitian quantum theory.
International Nuclear Information System (INIS)
This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Covariant canonical quantization
Energy Technology Data Exchange (ETDEWEB)
Hippel, G.M. von [University of Regina, Department of Physics, Regina, Saskatchewan (Canada); Wohlfarth, M.N.R. [Universitaet Hamburg, Institut fuer Theoretische Physik, Hamburg (Germany)
2006-09-15
We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and we apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses. Covariant canonical quantization can thus be understood as a ''first'' or pre-quantization within the framework of conventional QFT. (orig.)
Covariant canonical quantization
Von Hippel, G M; Hippel, Georg M. von; Wohlfarth, Mattias N.R.
2006-01-01
We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. Covariant canonical quantization agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses.
Brown, Laurie M.
Paul Dirac was a brilliant and original thinker. He used his physical intuition and his ideal of mathematical beauty to construct bridges between major areas of physics. This article discusses several such important works, including the bridge between quantum mechanics and relativity that led to his prediction of the existence of antimatter.
Klein-Gordon and Dirac gyroscopes
Energy Technology Data Exchange (ETDEWEB)
SadurnI, E [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)], E-mail: sadurni@fis.unam.mx
2009-01-09
The formulation of a rigid body in relativistic quantum mechanics is studied. Departing from an alternate approach at the relativistic classical level, the corresponding Klein-Gordon and Dirac operators for the rigid body are obtained in covariant form. The resulting wave equations are shown to be consistent, by construction, with earlier definitions of a relativistic rigid body by Aldinger et al (1983 Phys. Rev. D 28 3020). Wavefunctions and spectra for both cases are obtained explicitly, including the Dirac gyroscope with asymmetries.
Balov, Nikolay H.
2008-01-01
We introduce and study covariance fields of distributions on a Riemannian manifold. At each point on the manifold, covariance is defined to be a symmetric and positive definite (2,0)-tensor. Its product with the metric tensor specifies a linear operator on the respected tangent space. Collectively, these operators form a covariance operator field. We show that, in most circumstances, covariance fields are continuous. We also solve the inverse problem: recovering distribution from a covariance...
Gómez, F; Afanasev, L; Benayoun, M; Brekhovskikh, V; Caragheorgheopol, G; Cechák, T; Chiba, M; Constantinescu, S; Doudarev, A; Dreossi, D; Drijard, Daniel; Ferro-Luzzi, M; Gallas, M V; Gerndt, J; Giacomich, R; Gianotti, P; Goldin, D; Gorin, A; Gortchakov, O; Guaraldo, C; Hansroul, M; Hosek, R; Iliescu, M; Jabitski, M; Kalinina, N; Karpoukhine, V; Kluson, J; Kobayshi, M; Kokkas, P; Komarov, V; Koulikov, A; Kouptsov, A; Krouglov, V; Krouglova, L; Kuroda, K I; Lanaro, A; Lapshine, B; Lednicky, R; Leruste, P; Levisandri, P; López-Aguera, A; Lucherini, V; Mäki, T; Manuilov, I; Montanet, L; Narjoux, J L; Nemenov, L; Nikitin, M; Nunez Pardo, T; Okada, K; Olchevskii, V; Pazos, A; Pentia, M; Penzo, Aldo L; Perreau, J M; Petrascu, C; Pló, M; Ponta, T; Pop, D; Riazantsev, A; Rodríguez, J M; Rodriguez Fernandez, A; Rykaline, V; Santamarina, C; Saborido, J; Schacher, J; Sidorov, A; Smolik, J; Takeutchi, F; Tarasov, A; Tauscher, L; Tobar, M J; Trusov, S; Vasquez, P; Vlachos, S; Yazkov, V; Yoshimura, Y; Zrelov, P
2001-01-01
The main objective of DIRAC experiment is the measurement of the lifetime tau of the exotic hadronic atom consisting of pi /sup +/ and pi /sup -/ mesons. The lifetime of this atom is determined by the decay mode pi /sup +/ pi /sup -/ to pi /sup 0/ pi /sup 0/ due to the strong interaction. Through the precise relationship between the lifetime and the S-wave pion-pion scattering length difference a/sub 0/-a/sub 2/ for isospin 0 and 2 (respectively), a measurement of tau with an accuracy of 10% will allow a determination of a/sub 0/-a/sub 2/at a 5% precision level. Pion-pion scattering lengths have been calculated in the framework of chiral perturbation theory with an accuracy below 5%. In this way DIRAC experiment will provide a crucial test of the chiral symmetry breaking scheme in QCD effective theories at low energies. (19 refs).
Particles and Dirac-type operators on curved spaces
International Nuclear Information System (INIS)
We review the geodesic motion of pseudo-classical particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. From the covariantly constant Killing-Yano tensors of this space we construct three new Dirac-type operators which are equivalent with the standard Dirac operator. Finally the Runge-Lenz operator for the Dirac equation in this background is expressed in terms of the fourth Killing-Yano tensor which is not covariantly constant. As a rule the covariantly constant Killing-Yano tensors realize certain square roots of the metric tensor. Such a Killing-Yano tensor produces simultaneously a Dirac-type operator and the generator of a one-parameter Lie group connecting this operator with the standard Dirac one. On the other hand, the not covariantly constant Killing-Yano tensors are important in generating hidden symmetries. The presence of not covariantly constant Killing-Yano tensors implies the existence of non-standard supersymmetries in point particle theories on curved background. (author)
Ultrarelativistic Decoupling Transformation for Generalized Dirac Equations
Noble, J H
2015-01-01
The Foldy--Wouthuysen transformation is known to uncover the nonrelativistic limit of a generalized Dirac Hamiltonian, lending an intuitive physical interpretation to the effective operators within Schr\\"{o}dinger--Pauli theory. We here discuss the opposite, ultrarelativistic limit which requires the use of a fundamentally different expansion where the leading kinetic term in the Dirac equation is perturbed by the mass of the particle and other interaction (potential) terms, rather than vice versa. The ultrarelativistic decoupling transformation is applied to free Dirac particles (in the Weyl basis) and to high-energy tachyons, which are faster-than-light particles described by a fully Lorentz-covariant equation. The effective gravitational interactions are found. For tachyons, the dominant gravitational interaction term in the high-energy limit is shown to be attractive, and equal to the leading term for subluminal Dirac particles (tardyons) in the high-energy limit.
Ultrarelativistic decoupling transformation for generalized Dirac equations
Noble, J. H.; Jentschura, U. D.
2015-07-01
The Foldy-Wouthuysen transformation is known to uncover the nonrelativistic limit of a generalized Dirac Hamiltonian, lending an intuitive physical interpretation to the effective operators within Schrödinger-Pauli theory. We here discuss the opposite, ultrarelativistic limit which requires the use of a fundamentally different expansion where the leading kinetic term in the Dirac equation is perturbed by the mass of the particle and other interaction (potential) terms, rather than vice versa. The ultrarelativistic decoupling transformation is applied to free Dirac particles (in the Weyl basis) and to high-energy tachyons, which are faster-than-light particles described by a fully Lorentz-covariant equation. The effective gravitational interactions are found. For tachyons, the dominant gravitational interaction term in the high-energy limit is shown to be attractive and equal to the leading term for subluminal Dirac particles (tardyons) in the high-energy limit.
Kursunoglu, Behram N.; Wigner, Eugene Paul
1990-04-01
Portrait R. Feyman; List of contributors; A memorial to P. A. M. Dirac B. N. Kursunoglu; Preface B. N. Kursunoglu and E. P. Wigner; Chronology; Part I. Human Side: 1. Thinking of my darling Paul M. Dirac; 2. Dirac in coral gables S. A. Kursunoglu; 3. Recollections of Paul Dirac at Florida State University J. E. Lannutti; 4. My association with Professor Dirac Harish-Chandra; 5. What Paul Dirac meant in my life N. Kemmer; 6. Dirac's way R. Peierls; 7. An experimenter's view of P. A. M. Dirac A. D. Krisch; 8. Dirac at the University of Miami H. K. Stanford; 9. Remembering Paul Dirac E. P. Wigner; Part II. More Scientific Ideas: 10. Another side to Paul Dirac R. H. Dalitz; 11. Playing with equations, the Dirac way A. Pais; 12. Paul Dirac and Werner Heisenberg - a partnership in science L. M. Brown and H. Rechenberg; 13. Dirac's magnetic monopole and the fine structure constant W. J. Marciano and M. Goldhaber; 14. Magnetic monopoles and the halos of galaxies F. Hoyle; 15. The inadequacies of quantum field theory P. A. M. Dirac; 16. Dirac and the foundation of quantum mechanics P. T. Matthews; Part III. Influenced and Inspired by Association: 17. At the feet of Dirac J. C. Polkinghorne; 18. Reminiscences of Paul Dirac N. Mott; 19. From relativistic quantum theory to the human brain H. J. Lipkin; 20. Dirac in 1962, weak and gravitational radiation interactions J. Weber; 21. Schrödinger's cat W. E. Lamb, Jr.; 22. Dirac and finite field theories A. Salam; 23. Dirac's influence on unified field theory B. N. Kursunoglu; Index.
On the spring and mass of the Dirac oscillator
Crawford, James P.
1993-01-01
The Dirac oscillator is a relativistic generalization of the quantum harmonic oscillator. In particular, the square of the Hamiltonian for the Dirac oscillator yields the Klein-Gordon equation with a potential of the form: (ar(sub 2) + b(L x S)), where a and b are constants. To obtain the Dirac oscillator, a 'minimal substitution' is made in the Dirac equation, where the ordinary derivative is replaced with a covariant derivative. However, an unusual feature of the covariant derivative in this case is that the potential is a non-trivial element of the Clifford algebra. A theory which naturally gives rise to gage potentials which are non-trivial elements of the Clifford algebra is that based on local automorphism invariance. An exact solution of the automorphism gage field equations which reproduces both the potential term and the mass term of the Dirac oscillator is presented.
Gravitational Gauge Interactions of Dirac Field
Institute of Scientific and Technical Information of China (English)
WU Ning
2004-01-01
Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge tield, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.
Reality conditions for Ashtekar gravity from Lorentz-covariant formulation
Alexandrov, Sergei
2005-01-01
We show the equivalence of the Lorentz-covariant canonical formulation considered for the Immirzi parameter $\\beta=i$ to the selfdual Ashtekar gravity. We also propose to deal with the reality conditions in terms of Dirac brackets derived from the covariant formulation and defined on an extended phase space which involves, besides the selfdual variables, also their anti-selfdual counterparts.
Electromagnetic Klein-Gordon and Dirac Equations in Scale Relativity
Célérier, Marie-Noëlle; Nottale, Laurent
We present a new step in the foundation of quantum field theory with the tools of scale relativity. Previously, quantum motion equations (Schrödinger, Klein-Gordon, Dirac, Pauli) have been derived as geodesic equations written with a quantum-covariant derivative operator. Then, the nature of gauge transformations, of gauge fields and of conserved charges have been given a geometric meaning in terms of a scale-covariant derivative tool. Finally, the electromagnetic Klein-Gordon equation has been recovered with a covariant derivative constructed by combining the quantum-covariant velocity operator and the scale-covariant derivative. We show here that if one tries to derive the electromagnetic Dirac equation from the Klein-Gordon one as for the free particle motion, i.e. as a square root of the time part of the Klein-Gordon operator, one obtains an additional term which is the relativistic analog of the spin-magnetic field coupling term of the Pauli equation. However, if one first applies the quantum covariance, then implements the scale covariance through the scale-covariant derivative, one obtains the electromagnetic Dirac equation in its usual form. This method can also be applied successfully to the derivation of the electromagnetic Klein-Gordon equation. This suggests it rests on more profound roots of the theory, since it encompasses naturally the spin-charge coupling.
International Nuclear Information System (INIS)
The DIRAC framework for distributed computing has been designed as a flexible and modular solution that can be adapted to the requirements of any community. Users interact with DIRAC via command line, using the web portal or accessing resources via the DIRAC python API. The current DIRAC API requires users to use a python version valid for DIRAC. Some communities have developed their own software solutions for handling their specific workload, and would like to use DIRAC as their back-end to access distributed computing resources easily. Many of these solutions are not coded in python or depend on a specific python version. To solve this gap DIRAC provides a new language agnostic API that any software solution can use. This new API has been designed following the RESTful principles. Any language with libraries to issue standard HTTP queries may use it. GSI proxies can still be used to authenticate against the API services. However GSI proxies are not a widely adopted standard. The new DIRAC API also allows clients to use OAuth for delegating the user credentials to a third party solution. These delegated credentials allow the third party software to query to DIRAC on behalf of the users. This new API will further expand the possibilities communities have to integrate DIRAC into their distributed computing models.
Photoconductivity in Dirac materials
Directory of Open Access Journals (Sweden)
J. M. Shao
2015-11-01
Full Text Available Two-dimensional (2D Dirac materials including graphene and the surface of a three-dimensional (3D topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Photoconductivity in Dirac materials
Energy Technology Data Exchange (ETDEWEB)
Shao, J. M.; Yang, G. W., E-mail: stsygw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials & Engineering, School of Physics & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong (China)
2015-11-15
Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Dirac structures on protobialgebroids
Institute of Scientific and Technical Information of China (English)
YIN; Yanbin; HE; Longguang
2006-01-01
Protobialgebroids include several kinds of algebroid structures such as Lie algebroid,Lie bialgebroid, Lie quasi-bialgebroid, etc. In this paper, the Dirac theories are generalized from Lie bialgebroid to protobialgebroid. We give the integrable conditions for a maximally isotropic subbundle being a Dirac structure for a protobialgebroid by the notion of a characteristic pair. From the integrable conditions, we found out that the Dirac structure has closed relations with the twisting of a protobialgebroid. At last, some special cases of the Dirac structures for protobialgebroids are discussed.
Dimock, J.
2010-01-01
We give an alternate definition of the free Dirac field featuring an explicit construction of the Dirac sea. The treatment employs a semi-infinite wedge product of Hilbert spaces. We also show that the construction is equivalent to the standard Fock space construction.
Energy Technology Data Exchange (ETDEWEB)
Schanuss, Martin
2012-07-01
Optimum yields are only possible with a good flow through the collector array. With large-scale systems it is sometimes necessary to calculate several possible arrangements in order to find the best design. (orig.)
Dirac theory in space-time without torsion
Hannibal, L
1994-01-01
It is proven that the usual quadratic general-covariant Lagrangian for the Dirac field leads to a symmetric, divergence-free energy-momentum tensor in the standard Riemannian framework of space-time without torsion, provided the tetrad field components are the only quantities related to gravitation that are varied independently.
The (2 + 1) curved Dirac equation in polar coordinates in the presence of electromagnetic field
Panahi, H.; Jahangiri, L.
2015-03-01
In this work we study the covariant Dirac equation in (2 + 1) dimensional space-time in the presence of electromagnetic field. In polar coordinates, we show that by using a unitary transformation which implies a constraint between the components of gauge field, the covariant Dirac equation can be transformed into a Schrodinger-like differential equation for one of the spinor components. We also obtain the relativistic energy and spinor wave function for two different kinds of electrostatic potentials. The non-relativistic limit of the Dirac equation is also studied and it is shown that the upper spinor component satisfies the Pauli equation.
Sperling, J.; Vogel, W
2009-01-01
In 1927 the great physicist Paul A. M. Dirac failed to provide a consistent quantum description of the phase of a radiation field. Only one year later, he developed the famous Dirac theory of the electron, which led to the anti-particle -- the positron. We show that the reason for Dirac's failure with the phase problem bears a striking resemblance to his ingenious insight into the nature of the electron. For a correct quantum description of the phase of a radiation field it is necessary to ta...
International Nuclear Information System (INIS)
It was Paul Dirac who cast quantum mechanics into the form we now use, and many generations of theoreticians openly acknowledge his influence on their thinking. When Dirac died in 1984, St. John's College, Cambridge, his base for most of his lifetime, instituted an annual lecture in his memory at Cambridge. The first lecture, in 1986, attracted two heavyweights - Richard Feynman and Steven Weinberg. Far from using the lectures as a platform for their own work, in the Dirac tradition they presented stimulating material on deep underlying questions
Muechler, Lukas; Alexandradinata, Aris; Neupert, Titus; Car, Roberto
2016-01-01
We introduce the notion of a band-inverted, topological semimetal in two-dimensional nonsymmorphic crystals. This notion is materialized in the monolayers of MTe$_2$ (M $=$ W, Mo) if spin-orbit coupling is neglected. We characterize the Dirac band touching topologically by the Wilson loop of the non-Abelian Berry gauge field. An additional feature of the Dirac cone in monolayer MTe$_2$ is that it tilts over in a Lifshitz transition to produce electron and hole pockets, a type-II Dirac cone. T...
Solution of the Dirac equation in a curved space with static metric
Alhaidari, A D
2015-01-01
Compatibility of symmetric quantization of the Dirac equation in a curved space with general covariance gives a special representation of the spin connections in which their dot product with the Dirac gamma matrices becomes equal to the "covariant divergence" of the latter. Requiring that the square of the equation gives the conventional Klein-Gordon equation in a curved space results in an operator algebra for the Dirac gamma matrices that involves the "covariant derivative" connections and the Riemann-Christoffel connections. In 1+1 space-time with static metric, we obtain exact solutions of this Dirac equation model for some examples. We also formulate the interacting theory of the model with various coupling modes and solve it in the same space for a given potential configuration.
Octonion generalization of Pauli and Dirac matrices
Chanyal, B. C.
2015-10-01
Starting with octonion algebra and its 4 × 4 matrix representation, we have made an attempt to write the extension of Pauli's matrices in terms of division algebra (octonion). The octonion generalization of Pauli's matrices shows the counterpart of Pauli's spin and isospin matrices. In this paper, we also have obtained the relationship between Clifford algebras and the division algebras, i.e. a relation between octonion basis elements with Dirac (gamma), Weyl and Majorana representations. The division algebra structure leads to nice representations of the corresponding Clifford algebras. We have made an attempt to investigate the octonion formulation of Dirac wave equations, conserved current and weak isospin in simple, compact, consistent and manifestly covariant manner.
DIRAC distributed computing services
International Nuclear Information System (INIS)
DIRAC Project provides a general-purpose framework for building distributed computing systems. It is used now in several HEP and astrophysics experiments as well as for user communities in other scientific domains. There is a large interest from smaller user communities to have a simple tool like DIRAC for accessing grid and other types of distributed computing resources. However, small experiments cannot afford to install and maintain dedicated services. Therefore, several grid infrastructure projects are providing DIRAC services for their respective user communities. These services are used for user tutorials as well as to help porting the applications to the grid for a practical day-to-day work. The services are giving access typically to several grid infrastructures as well as to standalone computing clusters accessible by the target user communities. In the paper we will present the experience of running DIRAC services provided by the France-Grilles NGI and other national grid infrastructure projects.
DIRAC Workload Management System
Paterson, S
2007-01-01
DIRAC (Distributed Infrastructure with Remote Agent Control) is the Workload and Data Management system (WMS) for the LHCb experiment. The DIRAC WMS offers a transparent way for LHCb users to submit jobs to the EGEE Grid as well as local clusters and individual PCs. This paper will describe workload management optimizations, which ensure high job efficiency and minimized job start times. The computing requirements of the LHCb experiment can only be fulfilled through the use of many distributed compute resources. DIRAC provides a robust platform to run data productions on all the resources available to LHCb including the EGEE Grid. More recently, user support was added to DIRAC that greatly simplifies the procedure of submitting, monitoring and retrieving output of Grid jobs for the LHCb user community. DIRAC submits Pilot Agents to the EGEE Grid via the gLite WMS as normal jobs. Pilot Agents then request jobs from the DIRAC Workload Management System after the local environment has been checked. Therefore DIR...
Is the nucleon a dirac particle
Energy Technology Data Exchange (ETDEWEB)
Achtzehnter, J.; Wilets, L.
1988-01-01
A two-component Pauli equation for a composite model of the nucleon is derived using a relativistically covariant quark model. Results are presented as an expansion in the momentum and in derivatives for scalar-isoscalar, vector-isoscalar, vector-isovector and electromagnetic external potentials. The Dirac equation fails beginning with the magnetic moment and spin-orbit terms; the failure is modest for isoscalar potentials, but is large for the isovector case. For the vector fields we find anomalous ''magnetic moments'', which are simply related to the corresponding electromagnetic kappa. Preliminary results involving the fields quadratically are also presented. 13 refs.
Estimating Cosmological Parameter Covariance
Taylor, Andy
2014-01-01
We investigate the bias and error in estimates of the cosmological parameter covariance matrix, due to sampling or modelling the data covariance matrix, for likelihood width and peak scatter estimators. We show that these estimators do not coincide unless the data covariance is exactly known. For sampled data covariances, with Gaussian distributed data and parameters, the parameter covariance matrix estimated from the width of the likelihood has a Wishart distribution, from which we derive the mean and covariance. This mean is biased and we propose an unbiased estimator of the parameter covariance matrix. Comparing our analytic results to a numerical Wishart sampler of the data covariance matrix we find excellent agreement. An accurate ansatz for the mean parameter covariance for the peak scatter estimator is found, and we fit its covariance to our numerical analysis. The mean is again biased and we propose an unbiased estimator for the peak parameter covariance. For sampled data covariances the width estimat...
On radiation reaction and the Abraham-Lorentz-Dirac equation
de Oca, Alejandro Cabo Montes
2013-01-01
It is underlined that the Lienard-Wiechert solutions indicate that after the external force is instantly removed from a small charged particle, the field in its close neighborhood becomes a Lorentz boosted Coulomb field. It suggests that the force of the self-field on the particle should instantaneously vanish after a sudden removal of the external force. A minimal modification of Abraham-Lorentz-Dirac equation is searched seeking to implement this property. A term assuring this behavior is added to the equation by maintaining Lorentz covariance and vanishing scalar product with the four-velocity. The simple Dirac constant force example does not show runaway acceleration.
Sperling, J
2009-01-01
In 1927 the great physicist Paul A. M. Dirac failed to provide a consistent quantum description of the phase of a radiation field. Only one year later, he developed the famous Dirac theory of the electron, which led to the anti-particle -- the positron. We show that the reason for Dirac's failure with the phase problem bears a striking resemblance to his ingenious insight into the nature of the electron. For a correct quantum description of the phase of a radiation field it is necessary to take the polarisation into account. Similarly to the introduction of the anti-particle of the electron, the inclusion of the second polarisation resolves the inconsistency of the quantum phase problem. This also leads to new insight into the quantum measurement problem of time.
Institute of Scientific and Technical Information of China (English)
LI Zi-Ping; LI Ai-Min; JIANG Jin-Huan; WANG Yong-Long
2005-01-01
The extended canonical Noether identities and canonical first Noether theorem derived from an extended action in phase space for a system with a singular Lagrangian are formulated. Using these canonical Noether identities,it can be shown that the constraint multipliers connected with the first-class constraints may not be independent, so a query to a conjecture of Dirac is presented. Based on the symmetry properties of the constrained Hamiltonian system in phase space, a counterexample to a conjecture of Dirac is given to show that Dirac's conjecture fails in such a system.We present here a different way rather than Cawley's examples and other's ones in that there is no linearization of constraints in the problem. This example has a feature that neither the primary first-class constraints nor secondary first-class constraints are generators of the gauge transformation.
Amorim, R G G; Silva, Edilberto O
2015-01-01
Symplectic unitary representations for the Poincar\\'{e} group are studied. The formalism is based on the noncommutative structure of the star-product, and using group theory approach as a guide, a consistent physical theory in phase space is constructed. The state of a quantum mechanics system is described by a quasi-probability amplitude that is in association with the Wigner function. As a result, the Klein-Gordon and Dirac equations are derived in phase space. As an application, we study the Dirac equation with electromagnetic interaction in phase space.
Energy Technology Data Exchange (ETDEWEB)
Abel, Steven [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; CERN, Geneva (Switzerland); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-02-15
A simple and natural model is presented that gives Dirac gauginos. The configuration is related to ''deconstructed gaugino mediation''. A high energy completion is provided based on existing ISS-like models of deconstructed gaugino mediation. This provides a complete picture of Dirac gauginos that includes the necessary extra adjoint fermions (generated as magnetic quarks of the ISS theory) and supersymmetry breaking (via the ISS mechanism). Moreover the screening of the scalar masses means that they can similar to or less than the gaugino masses, even though the supersymmetry breaking is driven by F-terms. (orig.)
Quaternion Dirac Equation and Supersymmetry
Rawat, Seema; Negi, O. P. S.
2007-01-01
Quaternion Dirac equation has been analyzed and its supersymetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, non zero mass, scalar pote...
Reality conditions for Ashtekar gravity from Lorentz-covariant formulation
Energy Technology Data Exchange (ETDEWEB)
Alexandrov, Sergei [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Postbus 80.195, 3508 TD Utrecht (Netherlands)
2006-03-21
We study the limit of the Lorentz-covariant canonical formulation where the Immirzi parameter approaches {beta} = i. We show that, formulated in terms of a shifted spacetime connection, which also plays a crucial role in the covariant quantization, the limit is smooth and reproduces the canonical structure of the self-dual Ashtekar gravity. The reality conditions of Ashtekar gravity can be incorporated by means of the Dirac brackets derived from the covariant formulation and defined on an extended phase space which involves, besides the self-dual variables, also their anti-self-dual counterparts.
Directory of Open Access Journals (Sweden)
P. G. L. Leach
2014-04-01
Full Text Available Dirac devised his theory of Quantum Mechanics and recognised that his operators resembled the canonical coordinates of Hamiltonian Mechanics. This gave the latter a new lease of life. We look at what happens to Dirac’s Quantum Mechanics if one starts from Hamiltonian Mechanics.
Generalized de Broglie Relations for Dirac Equations in Curved Spacetimes
Arminjon, Mayeul
2011-01-01
One may ask whether the special relativistic relations between energy and frequency and between momentum and wave vector, introduced for matter waves by de Broglie, are rigorously valid in the presence of gravity. In this paper, we show this to be true for Dirac equations in a background of gravitational and electromagnetic fields. We do this by applying Whitham's Lagrangian method to derive covariant equations describing wave packet motion which preserve the symmetries of the Dirac Lagrangian, and in particular, conserve the probability current. We show that generalized de Broglie relations emerge from the Whitham equations after transforming each Dirac equation into a canonical form via a local similarity transformation of the type first introduced by Pauli. This gives the de Broglie relations a universal character for spin-half particles in a curved spacetime. We show that COW and Sagnac type terms also appear in the Whitham equations. We further discuss the classical-quantum correspondence in a curved spa...
Quaternion Dirac Equation and Supersymmetry
Rawat, Seema; Negi, O. P. S.
2009-08-01
Quaternion Dirac equation has been analyzed and its supersymmetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, nonzero mass, scalar potential and generalized electromagnetic potentials. Accordingly we have discussed the splitting of supersymmetrized Dirac equation in terms of electric and magnetic fields.
Quaternion Dirac Equation and Supersymmetry
Rawat, S; Rawat, Seema
2007-01-01
Quaternion Dirac equation has been analyzed and its supersymetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, non zero mass, scalar potential and generalized electromagnetic potentials. Accordingly we have discussed the splitting of supersymmetrized Dirac equation in terms of electric and magnetic fields.
Electromagnetic Klein-Gordon and Dirac equations in scale relativity
Célérier, Marie-Noëlle; 10.1142/S0217751X10050615
2010-01-01
We present a new step in the foundation of quantum field theory with the tools of scale relativity. Previously, quantum motion equations (Schr\\"odinger, Klein-Gordon, Dirac, Pauli) have been derived as geodesic equations written with a quantum-covariant derivative operator. Then, the nature of gauge transformations, of gauge fields and of conserved charges have been given a geometric meaning in terms of a scale-covariant derivative tool. Finally, the electromagnetic Klein-Gordon equation has been recovered with a covariant derivative constructed by combining the quantum-covariant velocity operator and the scale-covariant derivative. We show here that if one tries to derive the electromagnetic Dirac equation from the Klein-Gordon one as for the free particle motion, i.e. as a square root of the time part of the Klein-Gordon operator, one obtains an additional term which is the relativistic analog of the spin-magnetic field coupling term of the Pauli equation. However, if one first applies the quantum covarianc...
DIRAC Workload Management System
Garonne, V; Stokes-Rees, I
2005-01-01
The Workload Management System is the core component of the DIRAC distributed MC production and analysis grid environment of the CERN LHCb experiment. This paper discusses the architecture, implementation and performance of this system. The WMS is a community scheduler, realizing a pull paradigm, particulary for the high troughput computing context. It has recently been used for an intensive physics simulation production involving more than 60 sites, 65 TB of data, and over 1000-GHz processor-years.
Reconsideration of De Donder-Weyl theory by covariant analytic mechanics
Nakajima, Satoshi
2016-01-01
We show that the covariant analytic mechanics (CAM) is closely related to the De Donder-Weyl (DW) theory. To treat space and time on an equal footing, the DW theory introduces $D$ conjugate fields ($D$ is the dimension of space-time) for each field and the CAM regards the differential forms as the basic variables. The generalization of the canonical equations is called the DW equations. Although one of the DW equations is not correct for the gauge field and the gravitational field, we show the way to improve it. By rewriting the canonical equations of the CAM, which are manifestly general coordinate covariant and gauge covariant, using the components of the tensors, we show that these are equivalent to the improved DW equations. As an instance of constraint systems, we investigate the Dirac field. We present a modified Hamilton formalism which regards only the Dirac fields as the basic variables and show it provides the Dirac equations correctly.
Discrete Dirac Structures and Variational Discrete Dirac Mechanics
Leok, Melvin
2008-01-01
We construct discrete analogues of Dirac structures by considering the geometry of symplectic maps and their associated generating functions, in a manner analogous to the construction of continuous Dirac structures in terms of the geometry of symplectic vector fields and their associated Hamiltonians. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian and Hamiltonian systems, while incorporating discrete Dirac constraints. In particular, this yields implicit nonholonomic Lagrangian and Hamiltonian integrators. We also introduce a discrete Hamilton-Pontryagin variational principle on the discrete Pontryagin bundle, which provides an alternative derivation of the same set of integration algorithms. In so doing, we explicitly characterize the discrete Dirac structures that are preserved by Hamilton-Pontryagin integrators. In addition to providing a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of Dirac mechanics, it provid...
De Leo, Stefano
2010-01-01
We present the results of the planar diffusion of a Dirac particle by step and barrier potentials, when the incoming wave impinges at an arbitrary angle with the potential. Except for right-angle incidence this process is characterized by the appearance of spin flip terms. For the step potential, spin flip occurs for both transmitted and reflected waves. However, we find no spin flip in the transmitted barrier result. This is surprising because the barrier result may be derived directly from a two-step calculation. We demonstrate that the spin flip cancellation indeed occurs for each particle (wave packet) contribution.
LHCb: DIRAC Secure Distributed Platform
Casajus, A
2009-01-01
DIRAC, the LHCb community grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by us...
Dirac's Claim and the Chemists
Simões, Ana
In 1929 Paul A. M. Dirac claimed that ``the underlying physical laws necessary for the mathematical theory of ... the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.'' This sentence of Dirac's is cited frequently by historians and philosophers of chemistry in the context of discussions on the hypothetical reduction of chemistry to physics. But how did chemists themselves react to Dirac's claim? Did they feel threatened by physicists who felt they could do their job better than themselves? Did they feel indifferent, or did they simply not care? Was Dirac's paper often cited by chemists? Why was it cited? In this paper, I provide answers to these questions on the basis of an analysis of citations to Dirac's 1929 paper in the Science Citation Index.
Hepner, T. E.; Meyers, J. F. (Inventor)
1985-01-01
A laser velocimeter covariance processor which calculates the auto covariance and cross covariance functions for a turbulent flow field based on Poisson sampled measurements in time from a laser velocimeter is described. The device will process a block of data that is up to 4096 data points in length and return a 512 point covariance function with 48-bit resolution along with a 512 point histogram of the interarrival times which is used to normalize the covariance function. The device is designed to interface and be controlled by a minicomputer from which the data is received and the results returned. A typical 4096 point computation takes approximately 1.5 seconds to receive the data, compute the covariance function, and return the results to the computer.
International Nuclear Information System (INIS)
The DIRAC Project was initiated to provide a data processing system for the LHCb Experiment at CERN. It provides all the necessary functionality and performance to satisfy the current and projected future requirements of the LHCb Computing Model. A considerable restructuring of the DIRAC software was undertaken in order to turn it into a general purpose framework for building distributed computing systems that can be used by various user communities in High Energy Physics and other scientific application domains. The CLIC and ILC-SID detector projects started to use DIRAC for their data production system. The Belle Collaboration at KEK, Japan, has adopted the Computing Model based on the DIRAC system for its second phase starting in 2015. The CTA Collaboration uses DIRAC for the data analysis tasks. A large number of other experiments are starting to use DIRAC or are evaluating this solution for their data processing tasks. DIRAC services are included as part of the production infrastructure of the GISELA Latin America grid. Similar services are provided for the users of the France-Grilles and IBERGrid National Grid Initiatives in France and Spain respectively. The new communities using DIRAC started to provide important contributions to its functionality. Among recent additions can be mentioned the support of the Amazon EC2 computing resources as well as other Cloud management systems; a versatile File Replica Catalog with File Metadata capabilities; support for running MPI jobs in the pilot based Workload Management System. Integration with existing application Web Portals, like WS-PGRADE, is demonstrated. In this paper we will describe the current status of the DIRAC Project, recent developments of its framework and functionality as well as the status of the rapidly evolving community of the DIRAC users.
Székely, Gábor J.; Rizzo, Maria L.
2009-01-01
Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with respect to a stochas...
Dirac operator, bicovariant differential calculus and gauge theory on κ-Minkowski space
International Nuclear Information System (INIS)
Connections between the κ-Poincare covariant space Γ of differential 1-forms on κ-Minkowski space, Dirac operator and Alain Connes formula are studied. The equations and Lagrangian of gauge theory are constructed. The appearance of an additional spin-0 gauge field according to the non-trivial structure of Γ is studied. (author)
Dirac Hamiltonian and Reissner-Nordstrom Metric: Coulomb Interaction in Curved Space-Time
Noble, J H
2016-01-01
We investigate the spin-1/2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordstrom space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordstrom geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational, and electro-gravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electro-gravitational correction terms to the potential proportional to alpha^n G, where alpha is the fine-structure constant, and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic c...
Blanchet, Steve
2007-01-01
I present here a concise summary of the preprint arXiv:0707.3024, written in collaboration with A. Anisimov and P. Di Bari. There we discuss leptogenesis when {\\em CP} violation stems exlusively from the Dirac phase in the PMNS mixing matrix. Under this assumption it turns out that the situation is very constrained when a hierarchical heavy right-handed (RH) neutrino spectrum is considered: the allowed regions are small and the final asymmetry depends on the initial conditions. On the other hand, for a quasi-degenerate spectrum of RH neutrinos, the {\\em CP} asymmetry can be enhanced and the situation becomes much more favorable, with no dependence on the initial conditions. Interestingly, in the extreme case of resonant leptogenesis, in order to match the observed baryon asymmetry of the Universe, we obtain a lower bound on \\sin \\q_{13} which depends on the lightest active neutrino mass m_1.
Hosseinpour, Mansoureh; Silva, Edilberto O; Hassanabadi, Hassan
2016-01-01
We study the covariant Dirac equation in the space-time generated by a cosmic string in presence of vector and scalar potentials of electromagnetic field. We obtain the solution of the radial part of Dirac equation. We consider the scattering states under the Hulth\\'{e}n potential and obtain the phase shifts. From the poles of the scattering $S$-matrix the bound states energies are determined as well.
Lantsman, L
2006-01-01
We show that manifest superfluid properties of the Minkowskian Higgs model with vacuum BPS monopoles quantized by Dirac may be described in the framework of the Cauchy problem to the Gribov ambiguity equation. The latter equation specifies the ambiguity in choosing the covariant Coulomb (transverse) gauge for Yang-Mills fields represented as topological Dirac variables, may be treated as solutions to the Gauss law constraint at the removal of temporal components of these fields. We demonstrate that the above Cauchy problem comes just to fixing the covariant Coulomb gauge for topological Dirac variables in the given initial time instant $t_0$ and finding the solutions to the Gribov ambiguity equation in the shape of vacuum BPS monopoles and excitations over the BPS monopole vacuum referring to the class of multipoles. The next goal of the present study will be specifying the look of Gribov topological multipliers entering Dirac variables in the Minkowskian Higgs model quantized by Dirac, especially at the spat...
Aloisi, A M
2016-01-01
In 1931, Dirac advanced a startling prediction about the existence of a new elementary particle, characterized by a magnetic charge of a single polarity: the magnetic monopole. This prediction, that was not based on experimental reasons but on mathematical consistency considerations and the generalization of the formalism of quantum mechanics, illustrates emblematically the Dirac conception of the relationship between physics and mathematics. ----- Nel 1931 Dirac avanz\\`o una sorprendente previsione circa l'esistenza di una nuova particella elementare, caratterizzata da una carica magnetica di un'unica polarit\\`a: il monopolo magnetico. Questa previsione, che non era fondata su ragioni sperimentali ma su considerazioni di consistenza matematica e sulla generalizzazione del formalismo della meccanica quantistica, illustra emblematicamente la concezione di Dirac del rapporto tra fisica e matematica.
Resonant Dirac leptogenesis on throats
Bechinger, Andreas; Seidl, Gerhart
2009-01-01
We consider resonant Dirac leptogenesis in a geometry with three five-dimensional throats in the flat limit. The baryon asymmetry in the universe is generated by resonant decays of heavy Kaluza-Klein scalars that are copies of the standard model Higgs. Discrete exchange symmetries between the throats are responsible for establishing two key features of the model. First, they ensure a near degeneracy of the scalar masses and thus a resonant decay of the scalars. This allows for Dirac leptogene...
Ambiguity of perturbative Dirac theory
International Nuclear Information System (INIS)
Degeneracy of parity even and odd electron solutions of the free Dirac equation may cause uncertainties in first order calculation of the perturbative energy. Choosing the even parity solution to start perturbation is though direct, not theoretically well supported. The arbitrariness in choosing lowest order electron wave functions causes uncertainties in the Foldy-Wouthuysen transformations and the reduction of the Pauli equation from the Dirac equation
CERN Bulletin
2010-01-01
When a group of physicists entered the Main Auditorium, during the evening of 29 June, they felt they had opened a time portal. Paul Dirac in front of a blackboard showing his formula. ©Sandra Hoogeboom An attentive audience, dressed in early 1900 costumes, were watching a lecture by the elusive Paul Dirac, presenting for the first time his famous formula on the blackboard. Paul Adrien Maurice Dirac (1902-1984) was a British mathematical physicist at Cambridge, and one of the "fathers" of quantum mechanics. When he first wrote it, in 1928, Dirac was not sure what his formula really meant. As demonstrated by Andersson four year later, what Dirac had written on the blackboard was the first definition of a positron, hence he is credited with having anticipated the existence of antimatter. The actor John Kohl performs as Paul Dirac. ©Sandra Hoogeboom What the group of puzzled physicists were really observing when they entered the CERN Auditorium was the shoo...
New scale-relativistic derivations of Pauli and Dirac equations
International Nuclear Information System (INIS)
In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schroedinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation
New scale-relativistic derivations of Pauli and Dirac equations
Energy Technology Data Exchange (ETDEWEB)
Hammad, F [Departement TC-SETI, Universite A Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr
2008-02-22
In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schroedinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation.
New scale-relativistic derivations of Pauli and Dirac equations
Hammad, F.
2008-02-01
In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schrödinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation.
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
Baryon Spectrum Analysis using Covariant Constraint Dynamics
Whitney, Joshua; Crater, Horace
2012-03-01
The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.
Mapping curved spacetimes into Dirac spinors
Sabín, Carlos
2016-01-01
We show how to transform a Dirac equation in curved spacetime into a Dirac equation in flat spacetime. In particular, we show that any solution of the free massless Dirac equation in a 1+1 dimensional flat spacetime can be transformed via a local phase transformation into a solution of the corresponding Dirac equation in a curved background, where the spacetime metric is encoded into the phase. In this way, the existing quantum simulators of the Dirac equation can naturally incorporate curved spacetimes. As a first example we use our technique to obtain solutions of the Dirac equation in a particular family of interesting spacetimes in 1+1 dimensions.
LHCb: LHCbDirac is a DIRAC extension to support LHCb specific workflows
Stagni, Federico
2012-01-01
We present LHCbDIRAC, an extension of the DIRAC community Grid solution to handle the LHCb specificities. The DIRAC software has been developed for many years within LHCb only. Nowadays it is a generic software, used by many scientific communities worldwide. Each community wanting to take advantage of DIRAC has to develop an extension, containing all the necessary code for handling their specific cases. LHCbDIRAC is an actively developed extension, implementing the LHCb computing model and workflows. LHCbDIRAC extends DIRAC to handle all the distributed computing activities of LHCb. Such activities include real data processing (reconstruction, stripping and streaming), Monte-Carlo simulation and data replication. Other activities are groups and user analysis, data management, resources management and monitoring, data provenance, accounting for user and production jobs. LHCbDIRAC also provides extensions of the DIRAC interfaces, including a secure web client, python APIs and CLIs. While DIRAC and LHCbDIRAC f...
Optical Arrangement and Method
DEFF Research Database (Denmark)
2010-01-01
Processing of electromagnetic radiation is described, said incoming electromagnetic radiation comprising radiation in a first wavelength interval and a plurality of spatial frequencies. An arrangement comprises a focusing arrangement for focusing the incoming electromagnetic radiation, a first ca...
Voluntary Environmental Governance Arrangements
J. van der Heijden
2012-01-01
Voluntary environmental governance arrangements have focal attention in studies on environmental policy, regulation and governance. The four major debates in the contemporary literature on voluntary environmental governance arrangements are studied. The literature falls short of sufficiently specify
Dappiaggi, Claudio; Pinamonti, Nicola
2009-01-01
We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We shall explicitly calculate its trace anomaly in particular.
International Nuclear Information System (INIS)
We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2009-03-15
We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)
International Nuclear Information System (INIS)
We investigate the Kondo effect in Dirac systems, where Dirac electrons interact with the localized spin via the s–d exchange coupling. The Dirac electron in solid state has the linear dispersion and is described typically by the Hamiltonian such as Hk = υk · σ for the wave number k where σj are Pauli matrices. We derived the formula of the Kondo temperature TK by means of the Green's function theory for small J. The TK is determined from a singularity of Green's functions in the form TK ≅D-bar exp(-const./ρ|J|) when the exchange coupling |J| is small where D-bar = D/√1+D2 /(2μ)2 for a cutoff D and ρ is the density of states at the Fermi surface. When |μ| << D, TK is proportional to |μ|: TK ≅ |μ| exp(-const./ρ|J|). The Kondo screening will, however, disappear when the Fermi surface shrinks to a point called the Dirac point, that is, TK vanishes when the chemical potential μ is just at the Dirac point. The resistivity and the specific heat exhibit a log-T singularity in the range TK < T << |μ|/kB. Instead, for T ∼ O(|μ|) or T > |μ|, they never show log-T. (author)
The Dirac equation applied to graphene in the presence of topological defects
International Nuclear Information System (INIS)
Full text: The Dirac equation was proposed by Paul Dirac in 1928, in an attempt to get a relativistic wave equation for particles of spin 1/2, because the Schroedinger equation does not remain invariant under Lorentz transformations and the Klein-Gordon only serves for spin 0 particles . Since then, it has been able to describe various systems, in several areas of physics, such as Field Theory, Condensed Matter, among others. Recently, some researchers have use this equation to study the graphene, a very promising material, that consist essentially in a monolayer of carbon atoms, with interesting electronic and transport properties and several possibilities of applications in Material Science and Engineering, for instance. In this work, we study the application of the Dirac equation in graphene, more specifically in the presence of topological defects, that change the physical properties of the material. This is possible because in the formalism of the Dirac equation, we can replace the derivative usual term by a term of covariant derivative, capable of describing the geometry of the space considered. From the job of Vozmediano a and others found in the literature, we write the dirac equation for graphene in presence of a defect, making a modification in the usual Dirac equation. (author)
Basic quantum mechanics for three Dirac equations in a curved spacetime
Arminjon, Mayeul
2008-01-01
We consider three versions of the Dirac equation in a curved spacetime: the standard (Dirac-Fock-Weyl or DFW) equation, and two alternative versions, both of which are based on the recently proposed tensor representation of the Dirac field (TRD). These three equations differ in the covariant derivative D_mu. A common tool is the hermitizing matrix A. Having the current conservation for any solution of the Dirac equation is equivalent to D_mu (A gamma^mu)=0, where gamma^mu is the field of Dirac matrices. This condition is always verified for DFW with its restricted choice for the field gamma^mu. It similarly restricts the choice of the field gamma^mu for TRD. However, this restriction can be achieved. The frame dependence of a general Hamiltonian operator is studied. For the Dirac Hamiltonian, a positive definite scalar product is defined for all reference frames, and a hermiticity condition is derived in a general curved spacetime with minor restrictions on the coordinate system. For DFW, the hermiticity of t...
Frasinski, Leszek J.
2016-08-01
Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.
Traffic disruption in PAM DIRAC road (Prévessin Site)
2003-01-01
From 8th September to 19th September, ST Division will be doing some road works to install HDPE ducts for optical fibre cables under the PAM DIRAC road. For this reason, the road will be closed during 2 days and alternative arrangements will be put in place to reroute the traffic. We kindly ask all users to respect these temporary arrangements. Thank you for your understanding in this matter. ST-EL Group Tel. 77779 - 160484 / 75498 - 163198
Dirac Quantization of Some Singular Theories
Shirzad, A.; Moyassari, P.
2001-01-01
Analyzing the constraint structure of electrodynamics, massive vector bosons, Dirac fermions and electrodynamics coupled to fermions, we show that Dirac quantization method leads to appropriate creation-annihilation algebra among the Forier coefficients of the fields.
Directory of Open Access Journals (Sweden)
Fernando R. González Díaz
2007-01-01
Full Text Available En los años veinte, el físico inglés Paul Dirac ejemplificó de forma casi recreativa una de las partículas que componen la materia, conocido como espín. En este trabajo se muestra tanto la ejemplificación de Dirac, como algunas otras que se pueden encontrar en la literatura. Además, se presenta un esbozo de la demostración matemática del fenómeno utilizando topología algebraica.
Precisely predictable Dirac observables
Cordes, Heinz Otto
2006-01-01
This work presents a "Clean Quantum Theory of the Electron", based on Dirac’s equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac’s theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin ½) moving in a given electromagnetic field. This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, à la Newton and Einstein. Normally, our fields are time-independent, but also discussed is the time-dependent case, where slightly different features prevail. A "Schroedinger particle", such as a light quantum, experiences a very different (time-dependent) "Precise Predictablity of Observables". An attempt is made to compare both cases. There is not the Heisenberg uncertainty of location and momentum; rather, location alone possesses a built-in uncertainty ...
Dirac Cat States in Relativistic Landau Levels
Bermudez, A.; Martin-Delgado, M. A.; Solano, E.
2007-01-01
We show that a relativistic version of Schrodinger cat states, here called Dirac cat states, can be built in relativistic Landau levels when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily Dirac cat states involving the orbital quanta of the particle in a well defined mesoscopic regime. We demonstrate that the proposed Dirac cat states have a purely relativistic origin and cease...
Covariance Applications with Kiwi
Directory of Open Access Journals (Sweden)
Elliott J.B.
2012-05-01
Full Text Available The Computational Nuclear Physics group at Lawrence Livermore National Laboratory (LLNL is developing a new tool, named ‘Kiwi’, that is intended as an interface between the covariance data increasingly available in major nuclear reaction libraries (including ENDF and ENDL and large-scale Uncertainty Quantification (UQ studies. Kiwi is designed to integrate smoothly into large UQ studies, using the covariance matrix to generate multiple variations of nuclear data. The code has been tested using critical assemblies as a test case, and is being integrated into LLNL's quality assurance and benchmarking for nuclear data.
Bourget, Antoine; Troost, Jan
2016-03-01
We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N = (4 , 4) supersymmetry in two dimensions. For seed target spaces K3 and T 4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.
Bourget, Antoine
2015-01-01
We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
Dirac, Jordan and quantum fields
International Nuclear Information System (INIS)
The case of two principal physicists of quantum mechanics is specially chose: Paul Dirac and Pascual Jordan. They gave a signification and an importance very different to the notion of quantum field, and in particular to the quantized matter wave one. Through their formation and motivation differences, such as they are expressed in their writings, this deep difference is tentatively understood
Superconductivity in doped Dirac semimetals
Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi
2016-07-01
We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.
Patrice Loïez
2002-01-01
Photo 01: The DIRAC upstream vacuum channel placed between the target and the upstream detector region. Both the non-intracting primary proton beam and the seconday particle channel travel inside the shown vacuum channel. Photo 02: The DIRAC upstream detector region consisting of 4 planes of GEM/MSGC; 3 planes of Scintillating Fibres; 4 planes of Ionisation hodospope. The photo shows the cabling of GEM/MSGC (right end) and Scintillating Fibres (left end) detectors. Photo 03: Detailed view of the 4 GEM/MSGC planes. The secondary particle channel and the detectors are tilted by 5.7 degrees with respect to the primary proton beam channel visible on the bottom. Photo 04: View of the downstream part of the double arm DIRAC spectrometer, facing the direction of incoming particles. The Drift Chamber system, the scintillation hodoscopes and the threshold Cherenkov counters are shown in the picture. Photo 05: The DIRAC vacuum region between upstream detectors and the dipole magnet. The shielding around the primary pro...
Institute of Scientific and Technical Information of China (English)
M. Ko(c)ak; B. G(o)nül
2007-01-01
The solutions, in terms of orthogonal polynomials, of Dirac equation with analytically solvable potentials are investigated within a novel formalism by transforming the relativistic equation into a Schr(o)dinger-like one. Earlier results are discussed in a unified framework, and some solutions of a large class of potentials are given.
Kocak, M.; Gonul, B.
2007-01-01
The solutions, in terms of orthogonal polynomials, of Dirac equation with analytically solvable potentials are investigated within a novel formalism by transforming the relativistic equation into a Schrodinger like one. Earlier results are discussed in a unified framework and certain solutions of a large class of potentials are given.
Torsion Gravity for Dirac Fields
Fabbri, Luca
2016-01-01
In this article we will take into account the most complete back-ground with torsion and curvature, providing the most exhaustive coupling for the Dirac field: we will discuss the integrability of the interaction of the matter field and the reduction of the matter field equations.
Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Ni Guang-Jiong; Xu Jian-Jun; Lou Sea-Yue
2011-01-01
Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S-2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity.
Dirac constraint analysis and symplectic structure of anti-self-dual Yang–Mills equations
Indian Academy of Sciences (India)
U Camci; Z Can; Y Nutku; Y Sucu; D Yazici
2006-12-01
We present the explicit form of the symplectic structure of anti-self-dual Yang–Mills (ASDYM) equations in Yang's - and -gauges in order to establish the bi-Hamiltonian structure of this completely integrable system. Dirac's theory of constraints is applied to the degenerate Lagrangians that yield the ASDYM equations. The constraints are second class as in the case of all completely integrable systems which stands in sharp contrast to the situation in full Yang–Mills theory. We construct the Dirac brackets and the symplectic 2-forms for both - and -gauges. The covariant symplectic structure of ASDYM equations is obtained using the Witten–Zuckerman formalism. We show that the appropriate component of the Witten–Zuckerman closed and conserved 2-form vector density reduces to the symplectic 2-form obtained from Dirac's theory. Finally, we present the Bäcklund transformation between the - and -gauges in order to apply Magri's theorem to the respective two Hamiltonian structures.
A mathematical introduction to Dirac's formalism
van Eijndhoven, SJL
1986-01-01
This monograph contains a functional analytic introduction to Dirac''s formalism. The first part presents some new mathematical notions in the setting of triples of Hilbert spaces, mentioning the concept of Dirac basis. The second part introduces a conceptually new theory of generalized functions, integrating the notions of the first part.The last part of the book is devoted to a mathematical interpretation of the main features of Dirac''s formalism. It involves a pairing between distributional bras and kets, continuum expansions and continuum matrices.
Spin-polarized gapped Dirac spectrum of unsupported silicene
Podsiadły-Paszkowska, A.; Krawiec, M.
2016-06-01
We study effects of the spin-orbit interaction and the atomic reconstruction of silicene on its electronic spectrum. As an example we consider unsupported silicene pulled off from Pb(111) substrate. Using first principles density functional theory we show that the inversion symmetry broken arrangement of atoms and the spin-orbit interaction generate a spin-polarized electronic spectrum with an energy gap in the Dirac cone. These findings are particularly interesting in view of the quantum anomalous and quantum valley Hall effects and should be observable in weakly interacting silicene-substrate systems.
Gauge-covariant bimetric theory of gravitation and electromagnetism
Energy Technology Data Exchange (ETDEWEB)
Israelit, M.; Rosen, N.
1983-10-01
The Weyl theory of gravitation and electromagnetism, as modified by Dirac, contains a gauge-covariant scalar ..beta.. which has no geometric significance. This is a flaw if one is looking for a geometric description of gravitation and electromagnetism. A bimetric formalism is therefore introduced which enables one to replace ..beta.. by a geometric quantity. The formalism can be simplified by the use of a gauge-invariant physical metric. The resulting theory agrees with the general relativity for phenomena in the solar system.
Problems and Progress in Covariant High Spin Description
Kirchbach, Mariana
2016-01-01
A universal description of particles with spins j greater or equal one , transforming in (j,0)+(0,j), is developed by means of representation specific second order differential wave equations without auxiliary conditions and in covariant bases such as Lorentz tensors for bosons, Lorentz-tensors with Dirac spinor components for fermions, or, within the basis of the more fundamental Weyl-Van-der-Waerden sl(2,C) spinor-tensors. At the root of the method, which is free from the pathologies suffered by the traditional approaches, are projectors constructed from the Casimir invariants of the spin-Lorentz group, and the group of translations in the Minkowski space time.
A Tale of Three Equations: Breit, Eddington-Guant, and Two-Body Dirac
Van Alstine, Peter; Crater, Horace W.
1997-01-01
G.Breit's original paper of 1929 postulates the Breit equation as a correction to an earlier defective equation due to Eddington and Gaunt, containing a form of interaction suggested by Heisenberg and Pauli. We observe that manifestly covariant electromagnetic Two-Body Dirac equations previously obtained by us in the framework of Relativistic Constraint Mechanics reproduce the spectral results of the Breit equation but through an interaction structure that contains that of Eddington and Gaunt...
Using Analysis of Covariance (ANCOVA) with Fallible Covariates
Culpepper, Steven Andrew; Aguinis, Herman
2011-01-01
Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but…
DIRAC pilot framework and the DIRAC Workload Management System
Casajus, Adrian; Graciani, Ricardo; Paterson, Stuart; Tsaregorodtsev, Andrei; LHCb DIRAC Team
2010-04-01
DIRAC, the LHCb community Grid solution, has pioneered the use of pilot jobs in the Grid. Pilot Jobs provide a homogeneous interface to an heterogeneous set of computing resources. At the same time, Pilot Jobs allow to delay the scheduling decision to the last moment, thus taking into account the precise running conditions at the resource and last moment requests to the system. The DIRAC Workload Management System provides one single scheduling mechanism for jobs with very different profiles. To achieve an overall optimisation, it organizes pending jobs in task queues, both for individual users and production activities. Task queues are created with jobs having similar requirements. Following the VO policy a priority is assigned to each task queue. Pilot submission and subsequent job matching are based on these priorities following a statistical approach.
On arrangements of pseudohyperplanes
Indian Academy of Sciences (India)
PRIYAVRAT DESHPANDE
2016-08-01
To every realizable oriented matroid there corresponds an arrangement of real hyperplanes. The homeomorphism type of the complexified complement of such an arrangement is completely determined by the oriented matroid. In this paper we study arrangements of pseudohyperplanes; they correspond to non-realizable oriented matroids. These arrangements arise as a consequence of the Folkman--Lawrence topological representation theorem. We propose a generalization of the complexification process in this context. In particular we construct a space naturally associated with these pseudo-arrangements which is homeomorphic to the complexified complement in the realizable case. Further, we generalize the classical theorem of Salvetti and show that this space has the homotopy type of a cell complex defined in terms of the oriented matroid.
Batelaan, H
2000-01-01
The Kapitza - Dirac effect is the diffraction of a well - collimated particle beam by a standing wave of light. Why is this interesting? Comparing this situation to the introductory physics textbook example of diffraction of a laser beam by a grating, the particle beam plays the role of the incoming wave and the standing light wave the role of the material grating, highlighting particle - wave duality. Apart from representing such a beautiful example of particle - wave duality, the diffracted particle beams are coherent. This allows the construction of matter interferometers and explains why the Kapitza - Dirac effect is one of the workhorses in the field of atom optics. Atom optics concerns the manipulation of atomic waves in ways analogous to the manipulation of light waves with optical elements. The excitement and activity in this new field of physics stems for a part from the realisation that the shorter de Broglie wavelengths of matter waves allow ultimate sensitivities for diffractive and interferometri...
Gravitational Repulsion and Dirac Antimatter
Kowitt, Mark E.
1996-03-01
Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.
Renormalization of Dirac's Polarized Vacuum
Lewin, Mathieu
2010-01-01
We review recent results on a mean-field model for relativistic electrons in atoms and molecules, which allows to describe at the same time the self-consistent behavior of the polarized Dirac sea. We quickly derive this model from Quantum Electrodynamics and state the existence of solutions, imposing an ultraviolet cut-off $\\Lambda$. We then discuss the limit $\\Lambda\\to\\infty$ in detail, by resorting to charge renormalization.
Parabolic metamaterials and Dirac bridges
Colquitt, D. J.; Movchan, N. V.; Movchan, A. B.
2016-10-01
A new class of multi-scale structures, referred to as `parabolic metamaterials' is introduced and studied in this paper. For an elastic two-dimensional triangular lattice, we identify dynamic regimes, which corresponds to so-called `Dirac Bridges' on the dispersion surfaces. Such regimes lead to a highly localised and focussed unidirectional beam when the lattice is excited. We also show that the flexural rigidities of elastic ligaments are essential in establishing the `parabolic metamaterial' regimes.
Dirac neutrinos from flavor symmetry
Aranda, Alfredo; Morisi, S; Peinado, E; Valle, J W F
2013-01-01
We present a model where Majorana neutrino mass terms are forbidden by the flavor symmetry group Delta(27). Neutrinos are Dirac fermions and their masses arise in the same way as that of the charged fermions, due to very small Yukawa couplings. The model fits current neutrino oscillation data and correlates the octant of the atmospheric angle with the magnitude of the lightest neutrino mass, with maximal mixing excluded for any neutrino mass
Luo, Da-Wei; Pyshkin, P. V.; Yu, Ting; Lin, Hai-Qing; You, J. Q.; Wu, Lian-Ao
2016-01-01
We provide an alternative approach to relativistic dynamics based on the Feshbach projection technique. Instead of directly studying the Dirac equation, we derive a two-component equation for the upper spinor. This approach allows one to investigate the underlying physics in a different perspective. For particles with small mass such as the neutrino, the leading order equation has a Hermitian effective Hamiltonian, implying there is no leakage between the upper and lower spinors. In the weak ...
Revisiting pseudo-Dirac neutrinos
Balaji, K R S; Maalampi, J; Kalliomaki, Anna; Maalampi, Jukka
2002-01-01
We study the pseudo-Dirac mixing of left and right-handed neutrinos in the case where the Majorana masses M_L and M_R are small when compared with the Dirac mass, M_D. The light Majorana masses could be generated by a non-renormalizable operator reflecting effects of new physics at some high energy scale. In this context, we obtain a simple model independent closed bound for M_D. A phenomenologically consistent scenario is achieved with M_L,M_R ~ 10^{-7} eV and M_D ~ 10^{-5}-10^{-4} eV. This precludes the possibility of positive mass searches in the planned future experiments like GENIUS or in tritium decay experiments. If on the other hand, GENIUS does observe a positive signal for a Majorana mass \\geq 10^{-3} eV, then with very little fine tuning of neutrino parameters, the scale of new physics could be in the TeV range, but pseudo-Dirac scenario in that case is excluded. We briefly discuss the constraints from cosmology when a fraction of the dark matter is composed of nearly degenerate neutrinos.
Earth Observing System Covariance Realism
Zaidi, Waqar H.; Hejduk, Matthew D.
2016-01-01
The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.
Double Dirac cones in phononic crystals
Li, Yan
2014-07-07
A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.
Data Management System of the DIRAC Project
Haen, Christophe; Tsaregorodtsev, Andrei
2015-01-01
The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. The DIRAC DMS is in use by several user communities now. The contribution will present the experience of the LHCb exper...
Institute of Scientific and Technical Information of China (English)
官琪
2004-01-01
Fiveyouthsfromdifferentcountriescometoapartyandsitaroundaroundtable.AisaChinesewhoalsospeaksEnglish;BisaFrenchWhohaslearnedJapanese;CcomesfromEnglandbutalsospeaksFrench;DisaJapanesewhoseforeignlanguageisChinese;EisaFrenchwhoalsospeaksSpanish(西班牙语).HowcanyouarrangetheirseatssothattheyCanspeakwiththepersonssittingnexttohim?(Keytobefound.)Arranging the Seats@官琪
Institute of Scientific and Technical Information of China (English)
Ming; Zhao
2015-01-01
<正>Marriage is an important institution in our society,which binds men and women the most frequently.When men and women are together,the gender relationship becomes obvious.Most societies in the world are patriarchal,so men’s power penetrates everywhere,including the marriage institution.Marriage institution is built on men’s power,and at the same time,it contributes to men’s power.Arranged marriage is a good example to illustrate how men’s power is over women,which was prevailing in China.China also has arranged marriage today,but particularly in rural areas.Urban China develops a new form of arranged marriage recently,but whether traditional arranged
Covariant Magnetic Connection Hypersurfaces
Pegoraro, F
2016-01-01
In the single fluid, nonrelativistic, ideal-Magnetohydrodynamic (MHD) plasma description magnetic field lines play a fundamental role by defining dynamically preserved "magnetic connections" between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D {\\it magnetic connection hypersurfaces} in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when ${\\bf E} \\cdot {\\bf B} = 0$.
Universality of Covariance Matrices
Pillai, Natesh S
2011-01-01
We prove the universality of covariance matrices of the form $H_{N \\times N} = {1 \\over N} \\tp{X}X$ where $[X]_{M \\times N}$ is a rectangular matrix with independent real valued entries $[x_{ij}]$ satisfying $\\E \\,x_{ij} = 0$ and $\\E \\,x^2_{ij} = {1 \\over M}$, $N, M\\to \\infty$. Furthermore it is assumed that these entries have sub-exponential tails. We will study the asymptotics in the regime $N/M = d_N \\in (0,\\infty), \\lim_{N\\to \\infty}d_N \
Covariant magnetic connection hypersurfaces
Pegoraro, F.
2016-04-01
> In the single fluid, non-relativistic, ideal magnetohydrodynamic (MHD) plasma description, magnetic field lines play a fundamental role by defining dynamically preserved `magnetic connections' between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D magnetic connection hypersurfaces in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when .
Covariant Projective Extensions
Institute of Scientific and Technical Information of China (English)
许天周; 梁洁
2003-01-01
@@ The theory of crossed products of C*-algebras by groups of automorphisms is a well-developed area of the theory of operator algebras. Given the importance and the success ofthat theory, it is natural to attempt to extend it to a more general situation by, for example,developing a theory of crossed products of C*-algebras by semigroups of automorphisms, or evenof endomorphisms. Indeed, in recent years a number of papers have appeared that are concernedwith such non-classicaltheories of covariance algebras, see, for instance [1-3].
Stokes-Dirac structures through reduction of infinite-dimensional Dirac structures
Vankerschaver, Joris; Yoshimura, Hiroaki; Leok, Melvin; Marsden, Jerrold E
2010-01-01
We consider the concept of Stokes-Dirac structures in boundary control theory proposed by van der Schaft and Maschke. We introduce Poisson reduction in this context and show how Stokes-Dirac structures can be derived through symmetry reduction from a canonical Dirac structure on the unreduced phase space. In this way, we recover not only the standard structure matrix of Stokes-Dirac structures, but also the typical non-canonical advection terms in (for instance) the Euler equation.
Dirac and Weyl superconductors in three dimensions.
Yang, Shengyuan A; Pan, Hui; Zhang, Fan
2014-07-25
We introduce the concept of three-dimensional Dirac (Weyl) superconductors (SC), which have protected bulk fourfold (twofold) nodal points and surface Majorana arcs at zero energy. We provide a sufficient criterion for realizing them in centrosymmetric SCs with odd-parity pairing and mirror symmetry. Pairs of Dirac nodes appear in a mirror-invariant plane when the mirror winding number is nontrivial. Breaking mirror symmetry may gap Dirac nodes producing a topological SC. Each Dirac node evolves to a nodal ring when inversion-gauge symmetry is broken, whereas it splits into a pair of Weyl nodes when, and only when, time-reversal symmetry is broken. PMID:25105637
A Short Biography of Paul A. M. Dirac and Historical Development of Dirac Delta Function
Debnath, Lokenath
2013-01-01
This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic…
SU(2) loop quantum gravity seen from covariant theory
International Nuclear Information System (INIS)
Covariant loop gravity comes out of the canonical analysis of the Palatini action and the use of the Dirac brackets arising from dealing with the second class constraints ('simplicity' constraints). Within this framework, we underline a quantization ambiguity due to the existence of a family of possible Lorentz connections. We show the existence of a Lorentz connection generalizing the Ashtekar-Barbero connection and we loop quantize the theory showing that it leads to the usual SU(2) loop quantum gravity and to the area spectrum given by the SU(2) Casimir operator. This covariant point of view allows us to analyze closely the drawbacks of the SU(2) formalism: the quantization based on the (generalized) Ashtekar-Barbero connection breaks time diffeomorphisms and physical outputs depend nontrivially on the embedding of the canonical hypersurface into the space-time manifold. On the other hand, there exists a true space-time connection, transforming properly under all diffeomorphisms. We argue that it is this connection that should be used in the definition of loop variables. However, we are still not able to complete the quantization program for this connection giving a full solution of the second class constraints at the Hilbert space level. Nevertheless, we show how a canonical quantization of the Dirac brackets at a finite number of points leads to the kinematical setting of the Barrett-Crane model, with simple spin networks and an area spectrum given by the SL(2,C) Casimir operator
Adjunctation and Scalar Product in the Dirac Equation - I
Dima, M.
2016-02-01
The Bargmann-Pauli adjunctator (hermitiser) of {C}{l}_{_{1,3}}(C) is derived in a representation independent way, circumventing the early derivations (Pauli, Ann. inst. Henri Poincaré 6, 109 and 121 1936) using representation-dependent arguments. Relations for the adjunctator's transformation with the scalar product and space generator set are given. The S U(2) adjunctator is shown to determine the {C}{l}_{_{1,3}}(C) adjunctator. Part-II of the paper will approach the problem of the two scalar products used in Dirac theory - an unphysical situation of "piece-wise physics" with erroneous results. The adequate usage of scalar product - via calibration - will be presented, in particular under boosts, yielding the known covariant transformations of physical quantities.
Abraham-Lorentz-Dirac Equation in 5D Stuekelberg Electrodynamics
Land, Martin
2016-01-01
We derive the Abraham-Lorentz-Dirac (ALD) equation in the framework of the electrodynamic theory associated with Stueckelberg manifestly covariant canonical mechanics. In this framework, a particle worldline is traced out through the evolution of an event $x^\\mu(\\tau)$. By admitting unconstrained commutation relations between the positions and velocities, the associated electromagnetic gauge fields are in general dependent on the parameter $\\tau$, which plays the role of time in Newtonian mechanics. Standard Maxwell theory emerges from this system as a $\\tau$-independent equilibrium limit. In this paper, we calculate the $\\tau$-dependent field induced by an arbitrarily evolving event, and study the long-range radiation part, which is seen to be an on-shell plane wave of the Maxwell type. Following Dirac's method, we obtain an expression for the finite part of the self-interaction, which leads to the ALD equation that generalizes the Lorentz force. This third-order differential equation is then converted to an...
Dirac tensor with heavy photon
Energy Technology Data Exchange (ETDEWEB)
Bytev, V.V.; Kuraev, E.A. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Scherbakova, E.S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik
2012-01-15
For the large-angles hard photon emission by initial leptons in process of high energy annihilation of e{sup +}e{sup -} {yields} to hadrons the Dirac tensor is obtained, taking into account the lowest order radiative corrections. The case of large-angles emission of two hard photons by initial leptons is considered. This result is being completed by the kinematics case of collinear hard photons emission as well as soft virtual and real photons and can be used for construction of Monte-Carlo generators. (orig.)
Halogenated arsenenes as Dirac materials
Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin
2016-07-01
Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155-3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.
Institute of Scientific and Technical Information of China (English)
LI Chang-Hui; DING Hao-Gang; DAI Jian; SONG Xing-Chang
2001-01-01
Several models in noncommutative geometry (NCG) with mild changes to the standard model are introduced to discuss the neutrino mass problem. We use two constraints, Poincaré duality and gauge anomaly free, to discuss the possibility of containing right-handed neutrinos in them. Our work shows that no model in this paper, with each generation containing a right-handed neutrino, can satisfy these two constraints at the same time. So, to consist with neutrino oscillation experiment results, maybe fundamental changes to the present version of NCG are usually needed to include Dirac massive neutrinos.
Bayes linear covariance matrix adjustment
Wilkinson, Darren J
1995-01-01
In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be a...
Global symplectic potentials on the Witten covariant phase space for bosonic extendons
Cartas-Fuentevilla, R
2002-01-01
It is proved that the projections of the deformation vector field, normal and tangential to the worldsheet manifold swept out by Dirac-Nambu-Goto bosonic extendons propagating in a curved background, play the role of {\\it global} symplectic potentials on the corresponding Witten covariant phase space. It is also proved that the {\\it presymplectic} structure obtained from such potentials by direct exterior derivation, has not components tangent to the action of the relevant diffeomorphisms group of the theory.
Deriving covariant holographic entanglement
Dong, Xi; Rangamani, Mukund
2016-01-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Renyi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Covariant holographic entanglement negativity
Chaturvedi, Pankaj; Sengupta, Gautam
2016-01-01
We conjecture a holographic prescription for the covariant entanglement negativity of $d$-dimensional conformal field theories dual to non static bulk $AdS_{d+1}$ gravitational configurations in the framework of the $AdS/CFT$ correspondence. Application of our conjecture to a $AdS_3/CFT_2$ scenario involving bulk rotating BTZ black holes exactly reproduces the entanglement negativity of the corresponding $(1+1)$ dimensional conformal field theories and precisely captures the distillable quantum entanglement. Interestingly our conjecture for the scenario involving dual bulk extremal rotating BTZ black holes also accurately leads to the entanglement negativity for the chiral half of the corresponding $(1+1)$ dimensional conformal field theory at zero temperature.
Dirac-Kahler Theory and Massless Fields
Pletyukhov, V A
2010-01-01
Three massless limits of the Dirac-Kahler theory are considered. It is shown that the Dirac-Kahler equation for massive particles can be represented as a result of the gauge-invariant mixture (topological interaction) of the above massless fields.
Quasi-exact Solvability of Dirac Equations
Ho, Choon-Lin
2007-01-01
We present a general procedure for determining quasi-exact solvability of the Dirac and the Pauli equation with an underlying $sl(2)$ symmetry. This procedure makes full use of the close connection between quasi-exactly solvable systems and supersymmetry. The Dirac-Pauli equation with spherical electric field is taken as an example to illustrate the procedure.
HILBERT-DIRAC OPERATORS IN CLIFFORD ANALYSIS
Institute of Scientific and Technical Information of China (English)
F.BRACKX; H.DE SCHEPPER
2005-01-01
Around the central theme of "square root" of the Laplace operator it is shown that the classical Riesz potentials of the first and of the second kind allow for an explicit expression of so-called Hilbert-Dirac convolution operators involving natural and complex powers of the Dirac operator.
On localization of Dirac fermions by disorder
Medvedyeva, Mariya Vyacheslavivna
2011-01-01
This thesis is devoted to the effects of disorder on two-dimensional systems of Dirac fermions. Disorder localizes the usual electron system governed by the Schroedinger equation. The influence of disorder on Dirac fermions is qualitevely different. We concentrate on a random mass term in the Dira
Katz, Mikhail G.; Tall, David
2012-01-01
The Dirac delta function has solid roots in 19th century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac's discovery by over a century, and illuminating the nature of Cauchy's infinitesimals and his infinitesimal definition of delta.
On supersymmetric Dirac delta interactions
Guilarte, J Mateos; Castaneda, J M Munoz
2014-01-01
In this paper we construct $\\mathcal{N}=2$ supersymmetric quantum mechanics over several configurations of Dirac delta potentials from one single delta to a Dirac "comb". We show in detail how the building of supersymmetry on potentials with delta interactions placed in two or more points on the real line requires the inclusion of quasi-square wells. We find an scenario of either unbroken supersymmetry with Witten index one or supersymmetry breaking when there is one "bosonic" and one "fermionic" ground state such that the Witten index is zero. We explain next the different structure of the scattering waves produced by three $\\delta/\\theta$ potentials with respect to the the eigenfunctions arising in the non-SUSY case. In particular, much more bound states paired by supersymmetry exist within the supersymmetric framework as compared with the non-SUSY problem. An infinite array of equally spaced $\\delta$-interactions of the same strength but alternatively attractive and repulsive are susceptible of being promo...
Revisiting double Dirac delta potential
Ahmed, Zafar; Kumar, Sachin; Sharma, Mayank; Sharma, Vibhu
2016-07-01
We study a general double Dirac delta potential to show that this is the simplest yet still versatile solvable potential to introduce double wells, avoided crossings, resonances and perfect transmission (T = 1). Perfect transmission energies turn out to be the critical property of symmetric and anti-symmetric cases wherein these discrete energies are found to correspond to the eigenvalues of a Dirac delta potential placed symmetrically between two rigid walls. For well(s) or barrier(s), perfect transmission (or zero reflectivity, R(E)) at energy E=0 is non-intuitive. However, this has been found earlier and called the ‘threshold anomaly’. Here we show that it is a critical phenomenon and we can have 0≤slant R(0)\\lt 1 when the parameters of the double delta potential satisfy an interesting condition. We also invoke a zero-energy and zero curvature eigenstate (\\psi (x)={Ax}+B) of the delta well between two symmetric rigid walls for R(0)=0. We resolve that the resonant energies and the perfect transmission energies are different and they arise differently.
Field emission from Dirac and Weyl semimetals
Mao, Ling-Feng; Li, X.; Ning, H.; Hu, Changjun; Wang, Gaofeng
2016-09-01
Based on theoretical investigation on characteristics of the field emission current of Dirac/Weyl semimetals, the dependence of the field emission current on the applied bias is deduced and studied. This theoretical study demonstrates that the field emission current of a Dirac semimetal is much smaller than that of a conventional material when they have similar carrier parameters. This makes Dirac semimetal a better candidate for gate/base electrode material than gold and other conventional metals for an ultra-thin gate oxide metal-oxide-semiconductor field effect transistor. The field emission current of a Dirac semimetal decreases with the effective electron mass, while it increases for a conventional material. This implies that such an effective mass dependence can be used as a simple criterion to probe a Dirac semimetal in practice.
LHCbDIRAC as Apache Mesos microservices
Couturier, Ben
2016-01-01
The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and ran on virtual machines (VM) or bare metal hardware. Due to the increased load of work, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called "framework". The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an arc...
Energy Technology Data Exchange (ETDEWEB)
Karbstein, Felix
2009-07-08
We introduce a new method for dealing with fermionic quantum field theories amenable to a mean-field-type approximation. In this work we focus on the relativistic Hartree approximation. Our aim is to integrate out the Dirac sea and derive a no-sea effective theory'' with positive energy single particle states only. As the derivation of the no-sea effective theory involves only standard Feynman diagrams, our approach is quite general and not restricted to particular space-time dimensions. We develop and illustrate the approach in the ''large N'' limit of the Gross-Neveu model family in 1+1 dimensions. As the Gross-Neveu model has been intensely studied and several analytical solutions are known for this model, it is an ideal testing ground for our no-sea effective theory approach. The chiral Gross-Neveu model, also referred to as 1+1 dimensional Nambu-Jona-Lasinio model, turns out to be of particular interest. In this case, we explicitly derive a consistent effective theory featuring both elementary ''{pi} meson'' fields and (positive energy) ''quark'' fields, starting from a purely fermionic quantum field theory. In the second part of this work, we apply our approach to the Walecka model in 1+1 and 3+1 dimensions. As the Dirac sea caused considerable difficulties in attempts to base nuclear physics on field theoretic models like the Walecka model, mean-field calculations were typically done without the sea. We confront several of these mean-field theory results with our no-sea effective theory approach. The potential of our approach is twofold. While the no-sea effective theory can be utilized to provide new analytical insights in particular parameter regimes, it also sheds new light on more fundamental issues as the explicit emergence of effective, Dirac-sea induced multi-fermion interactions in an effective theory with positive energy states only. (orig.)
Dirac Coupled Channel Analyses of the high-lying excited states at $^{22}$Ne(p,p$'$)$^{22}$Ne
Shim, Sugie
2015-01-01
Dirac phenomenological coupled channel analyses are performed using an optical potential model for the high-lying excited vibrational states at 800 MeV unpolarized proton inelastic scatterings from $^{22}$Ne nucleus. Lorentz-covariant scalar and time-like vector potentials are used as direct optical potentials and the first-order vibrational collective model is used for the transition optical potentials to describe the high-lying excited vibrational collective states. The complicated Dirac coupled channel equations are solved phenomenologically using a sequential iteration method by varying the optical potential and the deformation parameters. Relativistic Dirac coupled channel calculations are able to describe the high-lying excited states of the vibrational bands in $^{22}$Ne clearly better than the nonrelativistic coupled channel calculations. The channel-coupling effects of the multistep process for the excited states of the vibrational bands are investigated. The deformation parameters obtained from the ...
Paul Dirac: the purest soul in physics
International Nuclear Information System (INIS)
Paul Dirac published the first of his papers on ''The Quantum Theory of the Electron'' seventy years ago this month. Published in the Proceedings of the Royal Society (London) in February and March 1928, the papers contained one of the greatest leaps of imagination in 20th century physics. The Dirac equation, derived in those papers, is one of the most important equations in physics. Dirac showed that the simplest wave satisfying the requirements of quantum mechanics and relativity was not a simple number but had four components. He found that the logic that led to the theory was, although deeply sophisticated, in a sense beautifully simple. Much later, when someone asked him ''How did you find the Dirac equation?'' he is said to have replied: ''I found it beautiful''. In addition to explaining the magnetic and spin properties of the electron, the equation also predicts the existence of antimatter. Because Dirac was a quiet man - famously quiet, indeed - he is not well known outside physics, although this is slowly changing. In 1995 a plaque to Dirac was unveiled at Westminster Abbey in London and last year Institute of Physics Publishing, which is based in Bristol, named its new building Dirac House. In this article the author recalls the achievements of the greatest physicists of the 20th century. (UK)
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
Imaging arrangement and microscope
Pertsinidis, Alexandros; Chu, Steven
2015-12-15
An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.
Evaluation and processing of covariance data
International Nuclear Information System (INIS)
These proceedings of a specialists'meeting on evaluation and processing of covariance data is divided into 4 parts bearing on: part 1- Needs for evaluated covariance data (2 Papers), part 2- generation of covariance data (15 Papers), part 3- Processing of covariance files (2 Papers), part 4-Experience in the use of evaluated covariance data (2 Papers)
Bilinear covariants and spinor fields duality in quantum Clifford algebras
Energy Technology Data Exchange (ETDEWEB)
Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu [Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br [Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, SP (Brazil); Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy)
2014-10-15
Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.
Coloring and Guarding Arrangements
Bose, Prosenjit; Collette, Sébastien; Hurtado, Ferran; Korman, Matias; Langerman, Stefan; Taslakian, Perouz
2012-01-01
Given an arrangement of lines in the plane, what is the minimum number $c$ of colors required to color the lines so that no cell of the arrangement is monochromatic? In this paper we give bounds on the number c both for the above question, as well as some of its variations. We redefine these problems as geometric hypergraph coloring problems. If we define $\\Hlinecell$ as the hypergraph where vertices are lines and edges represent cells of the arrangement, the answer to the above question is equal to the chromatic number of this hypergraph. We prove that this chromatic number is between $\\Omega (\\log n / \\log\\log n)$. and $O(\\sqrt{n})$. Similarly, we give bounds on the minimum size of a subset $S$ of the intersections of the lines in $\\mathcal{A}$ such that every cell is bounded by at least one of the vertices in $S$. This may be seen as a problem on guarding cells with vertices when the lines act as obstacles. The problem can also be defined as the minimum vertex cover problem in the hypergraph $\\Hvertexcell$...
On the local structure of Dirac manifolds
Dufour, Jean-Paul; Wade, Aissa
2004-01-01
We give a local normal form for Dirac structures. As a consequence, we show that the dimensions of the pre-symplectic leaves of a Dirac manifold have the same parity. We also show that, given a point $m$ of a Dirac manifold $M$, there is a well-defined transverse Poisson structure to the pre-symplectic leaf $P$ through $m$. Finally, we describe the neighborhood of a pre-symplectic leaf in terms of geometric data. This description agrees with that given by Vorobjev for the Poisson case
The Dirac equation and its solutions
Bagrov, Vladislav G
2014-01-01
Dirac equations are of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly.In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.
Quasi-Dirac neutrinos at the LHC
Anamiati, G; Nardi, E
2016-01-01
Lepton number violation is searched for at the LHC using same-sign leptons plus jets. The standard lore is that the ratio of same-sign lepton to opposite-sign lepton events, $R_{ll}$, is equal to $R_{ll}=1$ ($R_{ll}=0$) for Majorana (Dirac) neutrinos. We argue that for "quasi-Dirac" neutrinos, $R_{ll}$ can have any value between 0 and 1, the precise value being controlled by the mass splitting versus the width of the quasi-Dirac resonances. A measurement of $R_{ll}\
The incredible shrinking covariance estimator
Theiler, James
2012-05-01
Covariance estimation is a key step in many target detection algorithms. To distinguish target from background requires that the background be well-characterized. This applies to targets ranging from the precisely known chemical signatures of gaseous plumes to the wholly unspecified signals that are sought by anomaly detectors. When the background is modelled by a (global or local) Gaussian or other elliptically contoured distribution (such as Laplacian or multivariate-t), a covariance matrix must be estimated. The standard sample covariance overfits the data, and when the training sample size is small, the target detection performance suffers. Shrinkage addresses the problem of overfitting that inevitably arises when a high-dimensional model is fit from a small dataset. In place of the (overfit) sample covariance matrix, a linear combination of that covariance with a fixed matrix is employed. The fixed matrix might be the identity, the diagonal elements of the sample covariance, or some other underfit estimator. The idea is that the combination of an overfit with an underfit estimator can lead to a well-fit estimator. The coefficient that does this combining, called the shrinkage parameter, is generally estimated by some kind of cross-validation approach, but direct cross-validation can be computationally expensive. This paper extends an approach suggested by Hoffbeck and Landgrebe, and presents efficient approximations of the leave-one-out cross-validation (LOOC) estimate of the shrinkage parameter used in estimating the covariance matrix from a limited sample of data.
Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems
Energy Technology Data Exchange (ETDEWEB)
SadurnI, E; Torres, J M; Seligman, T H, E-mail: sadurni@fis.unam.m, E-mail: mau@fis.unam.m, E-mail: seligman@fis.unam.m [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)
2010-07-16
The Dirac oscillator coupled to an external two-component field can retain its solvability, if couplings are appropriately chosen. This provides a new class of integrable systems. A simplified way of a solution is given by recasting the known solution of the Dirac oscillator into matrix form; there one notes that a block-diagonal form arises in a Hamiltonian formulation. The blocks are two dimensional. Choosing couplings that do not affect the block structure, these blow up the 2 x 2 matrices to 4 x 4 matrices, thus conserving solvability. The result can be cast again in covariant form. By way of an example we apply this exact solution to calculate the evolution of entanglement.
Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems
Sadurní, E.; Torres, J. M.; Seligman, T. H.
2010-07-01
The Dirac oscillator coupled to an external two-component field can retain its solvability, if couplings are appropriately chosen. This provides a new class of integrable systems. A simplified way of a solution is given by recasting the known solution of the Dirac oscillator into matrix form; there one notes that a block-diagonal form arises in a Hamiltonian formulation. The blocks are two dimensional. Choosing couplings that do not affect the block structure, these blow up the 2 × 2 matrices to 4 × 4 matrices, thus conserving solvability. The result can be cast again in covariant form. By way of an example we apply this exact solution to calculate the evolution of entanglement.
Chowdhury, Debashree; B. Basu
2013-01-01
We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non relativistic limit of a generally covariant Dirac equation under the presence of electromagnetic field where the methodology of Foldy-Wouthuysen transformation is applied to achieve the non relativistic limit. Spin currents appear due to the combined action of the external electric field, crystal field and the induce...
Heptagraphene: Tunable Dirac Cones in a Graphitic Structure
Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.
2016-01-01
We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap. PMID:27622775
Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra
Directory of Open Access Journals (Sweden)
I.Yu. Krivsky
2010-01-01
Full Text Available We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration is proved. In order to provide the corresponding proofs, a 64-dimensional extended real Clifford-Dirac algebra is put into consideration.
Dirac equation on a curved surface
Brandt, F. T.; Sánchez-Monroy, J. A.
2016-09-01
The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein-Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles.
Dirac and Maxwell equations in Split Octonions
Beradze, Revaz
2016-01-01
The split octonionic form of Dirac and Maxwell equations are found. In contrast with the previous attempts these equations are derived from the octonionic analyticity condition and also we use different basis of the 8-dimensional space of split octonions.
Investigating Student Difficulties with Dirac Notation
Singh, Chandralekha
2015-01-01
Quantum mechanics is challenging even for advanced undergraduate and graduate students. Dirac notation is a convenient notation used extensively in quantum mechanics. We have been investigating the difficulties that the advanced undergraduate and graduate students have with Dirac notation. We administered written free response and multiple-choice questions to students and also conducted semi-structured individual interviews with 23 students using a think-aloud protocol to obtain a better understanding of the rationale behind their responses. We find that many students struggle with Dirac notation and they are not consistent in using this notation across various questions in a given test. In particular, whether they answer questions involving Dirac notation correctly or not is context dependent.
Inspection of Emergency Arrangements
International Nuclear Information System (INIS)
The Working Group on Inspection Practices (WGIP) was tasked by the NEA CNRA to examine and evaluate the extent to which emergency arrangements are inspected and to identify areas of importance for the development of good inspection practices. WGIP members shared their approaches to the inspection of emergency arrangements by the use of questionnaires, which were developed from the requirements set out in IAEA Safety Standards. Detailed responses to the questionnaires from WGIP member countries have been compiled and are presented in the appendix to this report. The following commendable practices have been drawn from the completed questionnaires and views provided by WGIP members: - RBs and their Inspectors have sufficient knowledge and information regarding operator's arrangements for the preparedness and response to nuclear emergencies, to enable authoritative advice to be given to the national coordinating authority, where necessary. - Inspectors check that the operator's response to a nuclear emergency is adequately integrated with relevant response organisations. - Inspectors pay attention to consider the integration of the operator's response to safety and security threats. - The efficiency of international relations is checked in depth during some exercises (e.g. early warning, assistance and technical information), especially for near-border facilities that could lead to an emergency response abroad. - RB inspection programmes consider the adequacy of arrangements for emergency preparedness and response to multi-unit accidents. - RBs assess the adequacy of arrangements to respond to accidents in other countries. - The RB's role is adequately documented and communicated to all agencies taking part in the response to a nuclear or radiological emergency. - Inspectors check that threat assessments for NPPs have been undertaken in accordance with national requirements and that up-to-date assessments have been used as the basis for developing emergency plans for
General covariance in computational electrodynamics
DEFF Research Database (Denmark)
Shyroki, Dzmitry; Lægsgaard, Jesper; Bang, Ole;
2007-01-01
We advocate the generally covariant formulation of Maxwell equations as underpinning some recent advances in computational electrodynamics—in the dimensionality reduction for separable structures; in mesh truncation for finite-difference computations; and in adaptive coordinate mapping as opposed...
Seating arrangement in Althingi
Directory of Open Access Journals (Sweden)
Þorsteinn Magnússon
2014-12-01
Full Text Available Almost a century has passed since Althingi, the Parliament of Iceland, introduced, in 1916, the method of allocating seats to Members by drawing lots at the start of each session. This arrangement is not customary in any other national parliament in the world. It has never been established why this particular method of allocating seats was introduced in Althingi. Neither has it been mapped out how the allocation was conducted, what the Members thought of it nor what impact, if any, the arrangement had on the relations of Members and the workings of Althingi. This article therefore presents the first study of this subject in Iceland. The article also places the seat allocation procedure of Althingi in an international context, as the general rule in parliaments around the world is that Members are seated together in parliamentary party groups. The conclusions of the study are, among other things, that the seat allocation by lot was probably modelled on the House of Representatives of the United States Congress, where seats were allocated by lot from 1845-1913. The study also reveals that over 40 years passed until seat allocation by lot became fully established procedure in Althingi. In the Upper House seats were not allocated by lot at the great majority of sessions until 1959 and Members appear to have been mainly seated along party lines. In the Lower House it was common for some Members to exchange seats following the drawing of lots, and for some time attempts were made to introduce seating by parliamentary party, but the efforts were unsuccessful due to insufficient support. Since 1959 there has not been any disagreement regarding the drawing of lots for seats. Generally speaking, Members appear to hold the opinion that the seating arrangement in Althingi has a positive impact on personal relations, is a positive counterbalance to the division of Members into government supporters and opposition members and that the allocation of seats by
Dirac Neutrino Masses from Generalized Supersymmetry Breaking
Demir, Durmus A.; Everett, Lisa L.; Langacker, Paul
2007-01-01
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1)'), effective Dirac mass terms involving the "wrong Higgs" field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonana...
Two Qubits in the Dirac Representation
Rajagopal, A K; Rendell, R. W.
2000-01-01
A general two qubit system expressed in terms of the complete set of unit and fifteen traceless, Hermitian Dirac matrices, is shown to exhibit novel features of this system. The well-known physical interpretations associated with the relativistic Dirac equation involving the symmetry operations of time-reversal T, charge conjugation C, parity P, and their products are reinterpreted here by examining their action on the basic Bell states. The transformation properties of the Bell basis states ...
Pseudo-Dirac Scenario for Neutrino Oscillations
Kobayashi, Makoto; Lim, C. S.
2000-01-01
We argue how pseudo-Dirac scenario for neutrinos leads to rich neutrino oscillation phenomena, including oscillation inside each generation. The pseudo-Dirac scenario is generalized by incorporating generation mixings and formulae for the various neutrino oscillations are derived. As the application we compare the formulae with the corresponding data. We find that observed pattern of mixings, such as almost maximal mixing in the atmospheric neutrino oscillation, is naturally explained in the ...
Dirac particle spin in strong gravitational fields
Obukhov, Yu. N.; Silenko, A. J.; Teryaev, O. V.
2014-01-01
Dynamics of the Dirac particle spin in general strong gravitational fields is discussed. The Hermitian Dirac Hamiltonian is derived and transformed to the Foldy-Wouthuysen (FW) representation for an arbitrary metric. The quantum mechanical equations of spin motion are found. These equations agree with corresponding classical ones. The new restriction on the anomalous gravitomagnetic moment (AGM) by the reinterpretation of Lorentz invariance tests is obtained.
On the Dirac Monopole Mass Scale
Caruso, Francisco
2013-01-01
It is shown, by a semi-classical argument, that the Dirac charge quantization is still valid in the (classical) Born-Infeld electromagnetic theory. Then it is possible to calculate Dirac's monopole mass in the framework of this theory, which is not possible in Maxwell's theory. The existence of an upper limit for the field intensities in this theory plays an important role in this proof.
Polyakov loop fluctuations in Dirac eigenmode expansion
Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo
2015-01-01
We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal non-twisted periodic boundary condition for the link-variables. We find that the low-lying Dirac modes yield negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in confined and deconfined phase by numerical simulations in SU(3) quenched QCD. Thes...
An algorithm for multiplication of Dirac numbers
Aleksandr Cariow; Galina Cariowa
2013-01-01
In this work a rationalized algorithm for Dirac numbers multiplication is presented. This algorithm has a low computational complexity feature and is well suited to parallelization of computations. The computation of two Dirac numbers product using the naïve method takes 256 real multiplications and 240 real additions, while the proposed algorithm can compute the same result in only 128 real multiplications and 160 real additions. During synthesis of the discussed algorithm we use the fact th...
Ultrarelativistic Decoupling Transformation for Generalized Dirac Equations
Noble, J. H.; Jentschura, U. D.
2015-01-01
The Foldy--Wouthuysen transformation is known to uncover the nonrelativistic limit of a generalized Dirac Hamiltonian, lending an intuitive physical interpretation to the effective operators within Schr\\"{o}dinger--Pauli theory. We here discuss the opposite, ultrarelativistic limit which requires the use of a fundamentally different expansion where the leading kinetic term in the Dirac equation is perturbed by the mass of the particle and other interaction (potential) terms, rather than vice ...
Pathways to Naturally Small Dirac Neutrino Masses
Ma, Ernest
2016-01-01
If neutrinos are truly Dirac fermions, the smallness of their masses may still be natural if certain symmetries exist beyond those of the standard model of quarks and leptons. We perform a systematic study of how this may occur at tree level and in one loop. We also propose a scotogenic version of the left-right gauge model with naturally small Dirac neutrino masses in one loop.
Mathe, Z.; Casajus Ramo, A.; Lazovsky, N.; Stagni, F.
2015-12-01
For many years the DIRAC interware (Distributed Infrastructure with Remote Agent Control) has had a web interface, allowing the users to monitor DIRAC activities and also interact with the system. Since then many new web technologies have emerged, therefore a redesign and a new implementation of the DIRAC Web portal were necessary, taking into account the lessons learnt using the old portal. These new technologies allowed to build a more compact, robust and responsive web interface that enables users to have better control over the whole system while keeping a simple interface. The web framework provides a large set of “applications”, each of which can be used for interacting with various parts of the system. Communities can also create their own set of personalised web applications, and can easily extend already existing ones with a minimal effort. Each user can configure and personalise the view for each application and save it using the DIRAC User Profile service as RESTful state provider, instead of using cookies. The owner of a view can share it with other users or within a user community. Compatibility between different browsers is assured, as well as with mobile versions. In this paper, we present the new DIRAC Web framework as well as the LHCb extension of the DIRAC Web portal.
Phenomenology of Dirac Neutralino Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Buckley, Matthew R.; Hooper, Dan; Kumar, Jason
2013-09-01
In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.
International Nuclear Information System (INIS)
The objective of the paper is to describe the safety scheme port authorities should establish to deal with any contingency that may result from the visit of a nuclear powered ship. The safety scheme should be devised to cover both normal operation and any accident conditions that could arise while the ship is in port. The paper is divided into three parts. The three parts being: background information, general instructions, and emergency procedures. The background information will describe the nature of the hazards a port authority has to be prepared to deal with, and the philosophical basis for a berthing policy. In the part dealing with general instructions the objective of the safety scheme will be described. Also this part will describe the composition of the Port Safety Panel, allocation of responsibilities, passage and berthing arrangements, general safety precautions, records required, and rescue arrangements. In the part dealing with emergency procedures the role of: the Ship's Master, Harbour Authorities, Local Police, and local Health Services are discussed. As an Appendix to the paper a copy of the safety scheme that has been devised for visits of nuclear merchant ships to Southampton is given
Covariant approach of perturbations in Lovelock type brane gravity
Norma, Bagatella-Flores; Miguel, Cruz; Efrain, Rojas
2016-01-01
We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type branes probing a Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field $\\Phi$. Whithin this framework, we analyse the stability of spherically symmetric branes with a de Sitter geometry floating in a flat Minkowski spacetime where we find that the Jacobi equation specializes to a Klein-Gordon equation for a scalar field possessing a tachyonic mass. This fact shows that, to some extent, these type of branes share the symmetries of the usual Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in the Lovelock type brane gravity.
The Dirac particle on central backgrounds and the anti-de Sitter oscillator
Cotaescu, I I
1998-01-01
It is shown that, for spherically symmetric static backgrounds, a simple reduced Dirac equation can be obtained by using the Cartesian tetrad gauge in Cartesian holonomic coordinates. This equation is manifestly covariant under rotations so that the spherical coordinates can be separated in terms of angular spinors like in special relativity, obtaining a pair of radial equations and a specific form of the radial scalar product. As an example, we analytically solve the anti-de Sitter oscillator giving the formula of the energy levels and the form of the corresponding eigenspinors.
International Nuclear Information System (INIS)
A method for expressing spinor amplitudes M=vectorμ(p1sigma1)GAMMAsubMμ(psigma) in a formal covariant way and calculating them by trace calculations is described. By means of complex Lorentz transformations an expression for μ(psigma)vectorμ(p1sigma1) in terms of Dirac γ-matrices, four vectors and the complex Lorentz transformation coefficients is obtained. M can then be written as a trace of γ-matrices similar to the expression for Σsub(pol)matrixM2. The method is easily extended to cases when higher spin spinors and matrices are involved. (Auth.)
Quasi-classical derivation of the Dirac and one-particle Schroedinger equations
International Nuclear Information System (INIS)
The quasi-classical approach, in which particles are regarded as extended periodic excitations of a classical nonlinear field, is for the first time applied quantitatively in the quantum domain. It is shown that the twofold intrinsic 'spin' degree of freedom possessed by an electron can be interpreted in a purely classical way, and that the Lorentz covariant incorporation of this degree of freedom requires that the spacetime evolution of an electron excitation in a prescribed external field be given by the Dirac equation and hence, in the nonrelativistic limit, by the Pauli or Schroedinger one-particle equations. 17 refs
Graphene wormholes: A condensed matter illustration of Dirac fermions in curved space
International Nuclear Information System (INIS)
We study the properties of graphene wormholes in which a short nanotube acts as a bridge between two graphene sheets, where the honeycomb carbon lattice is curved from the presence of 12 heptagonal defects. By taking the nanotube bridge with very small length compared to the radius, we develop an effective theory of Dirac fermions to account for the low-energy electronic properties of the wormholes in the continuum limit, where the frustration induced by the heptagonal defects is mimicked by a line of fictitious gauge flux attached to each of them. We find in particular that, when the effective gauge flux from the topological defects becomes maximal, the zero-energy modes of the Dirac equation can be arranged into two triplets, that can be thought as the counterpart of the two triplets of zero modes that arise in the dual instance of the continuum limit of large spherical fullerenes. We further investigate the graphene wormhole spectra by performing a numerical diagonalization of tight-binding Hamiltonians for very large lattices realizing the wormhole geometry. The correspondence between the number of localized electronic states observed in the numerical approach and the effective gauge flux predicted in the continuum limit shows that graphene wormholes can be consistently described by an effective theory of two Dirac fermion fields in the curved geometry of the wormhole, opening the possibility of using real samples of the carbon material as a playground to experiment with the interaction between the background curvature and the Dirac fields.
Quasi-exact solvability of Dirac-Pauli equation and generalized Dirac oscillators
Ho, Choon-Lin; Roy, Pinaki
2003-01-01
We demonstrate that neutral Dirac particles in external electric fields, which are equivalent to generalized Dirac oscillators, are physical examples of quasi-exactly solvable systems. Electric field configurations permitting quasi-exact solvability of the system based on the $sl(2)$ symmetry are discussed separately in spherical, cylindrical, and Cartesian coordinates. Some exactly solvable field configurations are also exhibited.
Quasi-exact solvability of Dirac-Pauli equation and generalized Dirac oscillators
International Nuclear Information System (INIS)
In this paper we demonstrate that neutral Dirac particles in external electric fields, which are equivalent to generalized Dirac oscillators, are physical examples of quasi-exactly solvable systems. Electric field configurations permitting quasi-exact solvability of the system based on the sl(2) symmetry are discussed separately in the spherical, cylindrical, and Cartesian coordinates. Some exactly solvable field configurations are also exhibited
Shrinkage estimators for covariance matrices.
Daniels, M J; Kass, R E
2001-12-01
Estimation of covariance matrices in small samples has been studied by many authors. Standard estimators, like the unstructured maximum likelihood estimator (ML) or restricted maximum likelihood (REML) estimator, can be very unstable with the smallest estimated eigenvalues being too small and the largest too big. A standard approach to more stably estimating the matrix in small samples is to compute the ML or REML estimator under some simple structure that involves estimation of fewer parameters, such as compound symmetry or independence. However, these estimators will not be consistent unless the hypothesized structure is correct. If interest focuses on estimation of regression coefficients with correlated (or longitudinal) data, a sandwich estimator of the covariance matrix may be used to provide standard errors for the estimated coefficients that are robust in the sense that they remain consistent under misspecification of the covariance structure. With large matrices, however, the inefficiency of the sandwich estimator becomes worrisome. We consider here two general shrinkage approaches to estimating the covariance matrix and regression coefficients. The first involves shrinking the eigenvalues of the unstructured ML or REML estimator. The second involves shrinking an unstructured estimator toward a structured estimator. For both cases, the data determine the amount of shrinkage. These estimators are consistent and give consistent and asymptotically efficient estimates for regression coefficients. Simulations show the improved operating characteristics of the shrinkage estimators of the covariance matrix and the regression coefficients in finite samples. The final estimator chosen includes a combination of both shrinkage approaches, i.e., shrinking the eigenvalues and then shrinking toward structure. We illustrate our approach on a sleep EEG study that requires estimation of a 24 x 24 covariance matrix and for which inferences on mean parameters critically
Auspicious tatami mat arrangements
Erickson, Alejandro; Schurch, Mark; Woodcock, Jennifer
2011-01-01
An \\emph{auspicious tatami mat arrangement} is a tiling of a rectilinear region with two types of tiles, $1 \\times 2$ tiles (dimers) and $1 \\times 1$ tiles (monomers). The tiles must cover the region and satisfy the constraint that no four corners of the tiles meet; such tilings are called \\emph{tatami tilings}. The main focus of this paper is when the rectilinear region is a rectangle. We provide a structural characterization of rectangular tatami tilings and use it to prove that the tiling is completely determined by the tiles that are on its border. We prove that the number of tatami tilings of an $n \\times n$ square with $n$ monomers is $n2^{n-1}$. We also show that, for fixed-height, the generating function for the number of tatami tilings of a rectangle is a rational function, and outline an algorithm that produces the generating function.
Power distribution arrangement
DEFF Research Database (Denmark)
2010-01-01
An arrangement and a method for distributing power supplied by a power source to two or more of loads (e.g., electrical vehicular systems) is disclosed, where a representation of the power taken by a particular one of the loads from the source is measured. The measured representation of the amount...... of power taken from the source by the particular one of the loads is compared to a threshold to provide an overload signal in the event the representation exceeds the threshold. Control signals dependant on the occurring of the overload signal are provided such that the control signal decreases the output...... power of the power circuit in case the overload signal occurs...
First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals
Mei, Jun
2012-07-24
By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.
Levy Matrices and Financial Covariances
Burda, Zdzislaw; Jurkiewicz, Jerzy; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail
2003-10-01
In a given market, financial covariances capture the intra-stock correlations and can be used to address statistically the bulk nature of the market as a complex system. We provide a statistical analysis of three SP500 covariances with evidence for raw tail distributions. We study the stability of these tails against reshuffling for the SP500 data and show that the covariance with the strongest tails is robust, with a spectral density in remarkable agreement with random Lévy matrix theory. We study the inverse participation ratio for the three covariances. The strong localization observed at both ends of the spectral density is analogous to the localization exhibited in the random Lévy matrix ensemble. We discuss two competitive mechanisms responsible for the occurrence of an extensive and delocalized eigenvalue at the edge of the spectrum: (a) the Lévy character of the entries of the correlation matrix and (b) a sort of off-diagonal order induced by underlying inter-stock correlations. (b) can be destroyed by reshuffling, while (a) cannot. We show that the stocks with the largest scattering are the least susceptible to correlations, and likely candidates for the localized states. We introduce a simple model for price fluctuations which captures behavior of the SP500 covariances. It may be of importance for assets diversification.
Volfson, Boris
2013-09-01
The hypothesis of transition from a chaotic Dirac Sea, via highly unstable positronium, into a Simhony Model of stable face-centered cubic lattice structure of electrons and positrons securely bound in vacuum space, is considered. 13.75 Billion years ago, the new lattice, which, unlike a Dirac Sea, is permeable by photons and phonons, made the Universe detectable. Many electrons and positrons ended up annihilating each other producing energy quanta and neutrino-antineutrino pairs. The weak force of the electron-positron crystal lattice, bombarded by the chirality-changing neutrinos, may have started capturing these neutrinos thus transforming from cubic crystals into a quasicrystal lattice. Unlike cubic crystal lattice, clusters of quasicrystals are "slippery" allowing the formation of centers of local torsion, where gravity condenses matter into galaxies, stars and planets. In the presence of quanta, in a quasicrystal lattice, the Majorana neutrinos' rotation flips to the opposite direction causing natural transformations in a category comprised of three components; two others being positron and electron. In other words, each particle-antiparticle pair "e-" and "e+", in an individual crystal unit, could become either a quasi- component "e- ve e+", or a quasi- component "e+ - ve e-". Five-to-six six billion years ago, a continuous stimulation of the quasicrystal aetherial lattice by the same, similar, or different, astronomical events, could have triggered Hebbian and anti-Hebbian learning processes. The Universe may have started writing script into its own aether in a code most appropriate for the quasicrystal aether "hardware": Eight three-dimensional "alphabet" characters, each corresponding to the individual quasi-crystal unit shape. They could be expressed as quantum Turing machine qubits, or, alternatively, in a binary code. The code numerals could contain terminal and nonterminal symbols of the Chomsky's hierarchy, wherein, the showers of quanta, forming the
Glinka, Yuri D; Babakiray, Sercan; Johnson, Trent A; Lederman, David
2015-02-11
We report on a >100-fold enhancement of Raman responses from Bi2Se3 thin films if laser photon energy switches from 2.33 eV (532 nm) to 1.58 eV (785 nm), which is due to direct optical coupling to Dirac surface states (SS) at the resonance energy of ∼1.5 eV (a thickness-independent enhancement) and due to nonlinearly excited Dirac plasmon (a thickness-dependent enhancement). Owing to the direct optical coupling, we observed an in-plane phonon mode of hexagonally arranged Se-atoms associated with a continuous network of Dirac SS. This mode revealed a Fano lineshape for films interference between surface phonon and Dirac plasmon states. PMID:25614684
Semi-Dirac points in phononic crystals
Zhang, Xiujuan
2014-01-01
A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in
Pairing instabilities of Dirac composite fermions
Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.
2016-09-01
Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.
Covariance evaluation work at LANL
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Young, Phillip [Los Alamos National Laboratory; Hale, Gerald [Los Alamos National Laboratory; Chadwick, M B [Los Alamos National Laboratory; Little, R C [Los Alamos National Laboratory
2008-01-01
Los Alamos evaluates covariances for nuclear data library, mainly for actinides above the resonance regions and light elements in the enUre energy range. We also develop techniques to evaluate the covariance data, like Bayesian and least-squares fitting methods, which are important to explore the uncertainty information on different types of physical quantities such as elastic scattering angular distribution, or prompt neutron fission spectra. This paper summarizes our current activities of the covariance evaluation work at LANL, including the actinide and light element data mainly for the criticality safety study and transmutation technology. The Bayesian method based on the Kalman filter technique, which combines uncertainties in the theoretical model and experimental data, is discussed.
Covariant jump conditions in electromagnetism
Itin, Yakov
2014-01-01
A generally covariant four-dimensional representation of Maxwell's electrodynamics in a generic material medium can be achieved straightforwardly in the metric-free formulation of electromagnetism. In this setup, the electromagnetic phenomena described by two tensor fields, which satisfy Maxwell's equations. A generic tensorial constitutive relation between these fields is an independent ingredient of the theory. By use of different constitutive relations (local and non-local, linear and non-linear, etc.), a wide area of applications can be covered. In the current paper, we present the jump conditions for the fields and for the energy-momentum tensor on an arbitrarily moving surface between two media. From the differential and integral Maxwell equations, we derive the covariant boundary conditions, which are independent of any metric and connection. These conditions include the covariantly defined surface current and are applicable to an arbitrarily moving smooth curved boundary surface. As an application of ...
Cosmic Censorship Conjecture revisited: Covariantly
Hamid, Aymen I M; Maharaj, Sunil D
2014-01-01
In this paper we study the dynamics of the trapped region using a frame independent semi-tetrad covariant formalism for general Locally Rotationally Symmetric (LRS) class II spacetimes. We covariantly prove some important geometrical results for the apparent horizon, and state the necessary and sufficient conditions for a singularity to be locally naked. These conditions bring out, for the first time in a quantitative and transparent manner, the importance of the Weyl curvature in deforming and delaying the trapped region during continual gravitational collapse, making the central singularity locally visible.
DIRAC - Distributed Infrastructure with Remote Agent Control
Tsaregorodtsev, A; Closier, J; Frank, M; Gaspar, C; van Herwijnen, E; Loverre, F; Ponce, S; Graciani Diaz, R.; Galli, D; Marconi, U; Vagnoni, V; Brook, N; Buckley, A; Harrison, K; Schmelling, M; Egede, U; Bogdanchikov, A; Korolko, I; Washbrook, A; Palacios, J P; Klous, S; Saborido, J J; Khan, A; Pickford, A; Soroko, A; Romanovski, V; Patrick, G N; Kuznetsov, G; Gandelman, M
2003-01-01
This paper describes DIRAC, the LHCb Monte Carlo production system. DIRAC has a client/server architecture based on: Compute elements distributed among the collaborating institutes; Databases for production management, bookkeeping (the metadata catalogue) and software configuration; Monitoring and cataloguing services for updating and accessing the databases. Locally installed software agents implemented in Python monitor the local batch queue, interrogate the production database for any outstanding production requests using the XML-RPC protocol and initiate the job submission. The agent checks and, if necessary, installs any required software automatically. After the job has processed the events, the agent transfers the output data and updates the metadata catalogue. DIRAC has been successfully installed at 18 collaborating institutes, including the DataGRID, and has been used in recent Physics Data Challenges. In the near to medium term future we must use a mixed environment with different types of grid mid...
Turner, Michael S.
1991-01-01
Previous work has shown that the cooling of SN 1987A excludes a Dirac-neutrino mass greater than theta(20 keV) for nu(sub e), nu(sub mu), or nu(sub tau). The emission of wrong-helicity, Dirac neutrinos from SN 1987A, is re-examined. It is concluded that the effect of a Dirac neutrino on the cooling of SN 1987A has been underestimated due to neutrino degeneracy and additional emission processes. The limit that follows from the cooling of SN 1987A is believed to be greater (probably much greater) than 10 keV. This result is significant in light of the recent evidence for a 17 keV mass eigenstate that mixes with the electron neutrino.
LHCb: Monitoring the DIRAC Distribution System
Nandakumar, R; Santinelli, R
2009-01-01
DIRAC is the LHCb gateway to any computing grid infrastructure (currently supporting WLCG) and is intended to reliably run large data mining activities. The DIRAC system consists of various services (which wait to be contacted to perform actions) and agents (which carry out periodic activities) to direct jobs as required. An important part of ensuring the reliability of the infrastructure is the monitoring and logging of these DIRAC distributed systems. The monitoring is done collecting information from two sources - one is from pinging the services or by keeping track of the regular heartbeats of the agents, and the other from the analysis of the error messages generated by both agents and services and collected by the logging system. This allows us to ensure that he components are running properly and to collect useful information regarding their operations. The process status monitoring is displayed using the SLS sensor mechanism which also automatically allows one to plot various quantities and also keep ...
Student Difficulties with the Dirac Delta Function
Wilcox, Bethany R
2014-01-01
The Dirac delta function is a standard mathematical tool used in multiple topical areas in the undergraduate physics curriculum. While Dirac delta functions are usually introduced in order to simplify a problem mathematically, students often struggle to manipulate and interpret them. To better understand student difficulties with the delta function at the upper-division level, we examined responses to traditional exam questions and conducted think-aloud interviews. Our analysis was guided by an analytical framework that focuses on how students activate, construct, execute, and reflect on the Dirac delta function in physics. Here, we focus on student difficulties using the delta function to express charge distributions in the context of junior-level electrostatics. Challenges included: invoking the delta function spontaneously, constructing two- and three-dimensional delta functions, integrating novel delta function expressions, and recognizing that the delta function can have units.
Analytic Representation of the Dirac Equation
Gill, T L; Zachary, W W
2006-01-01
In this paper we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wave functions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behavior of the particle-antiparticle relationship. We then show explicitly that the Pauli equation is not completely valid for the study of the Dirac hydrogen atom problem in s-states (hyperfine splitting). We conclude that there are some open mathematical problems with any attempt to explicitly show that the Dirac equation is insufficient to explain the full hydrogen spectrum. If the perturbation method can be justified, our analysis suggests that the use of cutoffs in QED is already justified by the eigenvalue analysis that supports it. Using a new method, we are able to effect separation of variables for full coupling, solve the radial equation and provide graphs of the probability d...
Supersymmetry in 6d Dirac Action
Fujimoto, Yukihiro; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro
2016-01-01
We investigate a 6d Dirac fermion on a rectangle. It is found that the 4d spectrum is governed by $N = 2$ supersymmetric quantum mechanics. Then we demonstrate that the supersymmetry is very useful to classify all allowed boundary conditions and to expand the 6d Dirac field in Kaluza-Klein modes. A striking feature of the model is that even though the 6d Dirac fermion has non-vanishing bulk mass, the 4d mass spectrum can contain degenerate massless chiral fermions, which may provide a hint to solve the generation problem of the quarks and leptons. It is pointed out that zero energy solutions are not affected by the presence of the boundaries, while the boundary conditions work well for determining the positive energy solutions.
Dirac eigenvalues and eigenvectors at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M.; Hehl, H.; Rakow, P.E.L.; Schaefer, A.; Soeldner, W.; Wettig, T
2001-03-01
We investigate the eigenvalues and eigenvectors of the staggered Dirac operator in the vicinity of the chiral phase transition of quenched SU(3) lattice gauge theory. We consider both the global features of the spectrum and the local correlations. In the chirally symmetric phase, the local correlations in the bulk of the spectrum are still described by random matrix theory, and we investigate the dependence of the bulk Thouless energy on the simulation parameters. At and above the critical point, the properties of the low-lying Dirac eigenvalues depend on the Z{sub 3}-phase of the Polyakov loop. In the real phase, they are no longer described by chiral random matrix theory. We also investigate the localization properties of the Dirac eigenvectors in the different Z{sub 3}-phases.
Dirac eigenvalues and eigenvectors at finite temperature
Göckeler, M; Rakow, P E L; Schäfer, A; Söldner, W; Wettig, T
2001-01-01
We investigate the eigenvalues and eigenvectors of the staggered Dirac operator in the vicinity of the chiral phase transition of quenched SU(3) lattice gauge theory. We consider both the global features of the spectrum and the local correlations. In the chirally symmetric phase, the local correlations in the bulk of the spectrum are still described by random matrix theory, and we investigate the dependence of the bulk Thouless energy on the simulation parameters. At and above the critical point, the properties of the low-lying Dirac eigenvalues depend on the $Z_3$-phase of the Polyakov loop. In the real phase, they are no longer described by chiral random matrix theory. We also investigate the localization properties of the Dirac eigenvectors in the different $Z_3$-phases.
Localized form of Fock terms in nuclear covariant density functional theory
Liang, Haozhao; Ring, Peter; Roca-Maza, Xavier; Meng, Jie
2012-01-01
In most of the successful versions of covariant density functional theory in nuclei, the Fock terms are not included explicitly, which leads to local functionals and forms the basis of their widespread applicability at present. However, it has serious consequences for the description of Gamow-Teller resonances (GTR) and spin-dipole resonances (SDR) which can only be cured by adding further phenomenological parameters. Relativistic Hartree-Fock models do not suffer from these problems. They can successfully describe the GTR and SDR as well as the isovector part of the Dirac effective mass without any additional parameters. However, they are non-local and require considerable numerical efforts. By the zero-range reduction and the Fierz transformation, a new method is proposed to take into account the Fock terms in local functionals, which retains the simplicity of conventional models and provides proper descriptions of the spin-isospin channels and the Dirac masses.
Time-dependent constrained Hamiltonian systems and Dirac brackets
Energy Technology Data Exchange (ETDEWEB)
Leon, Manuel de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Marrero, Juan C. [Departamento de Matematica Fundamental, Facultad de Matematicas, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands (Spain); Martin de Diego, David [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, Madrid (Spain)
1996-11-07
In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)
Higher Dirac cohomology of modules with generalized infinitesimal character
Pandžić, Pavle; Somberg, Petr
2013-01-01
We modify the definition of Dirac cohomology in such a way that the standard properties of the usual Dirac cohomology, valid for modules with infinitesimal character, become valid also for modules with only generalized infinitesimal character.
Asymptotic formula for eigenvalues of one dimensional Dirac system
Ulusoy, Ismail; Penahlı, Etibar
2016-06-01
In this paper, we study the spectral problem for one dimensional Dirac system with Dirichlet boundary conditions. By using Counting lemma, we give an asymptotic formulas of eigenvalues of Dirac system.
Time-dependent constrained Hamiltonian systems and Dirac brackets
International Nuclear Information System (INIS)
In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)
DIRAC - The Distributed MC Production and Analysis for LHCb
Tsaregorodtsev, A
2004-01-01
DIRAC is the LHCb distributed computing grid infrastructure for MC production and analysis. Its architecture is based on a set of distributed collaborating services. The service decomposition broadly follows the ARDA project proposal, allowing for the possibility of interchanging the EGEE/ARDA and DIRAC components in the future. Some components developed outside the DIRAC project are already in use as services, for example the File Catalog developed by the AliEn project. An overview of the DIRAC architecture will be given, in particular the recent developments to support user analysis. The main design choices will be presented. One of the main design goals of DIRAC is the simplicity of installation, configuring and operation of various services. This allows all the DIRAC resources to be easily managed by a single Production Manager. The modular design of the DIRAC components allows its functionality to be easily extended to include new computing and storage elements or to handle new tasks. The DIRAC system al...
Cloud flexibility using DIRAC interware
International Nuclear Information System (INIS)
Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for
Cloud flexibility using DIRAC interware
Fernandez Albor, Víctor; Seco Miguelez, Marcos; Fernandez Pena, Tomas; Mendez Muñoz, Victor; Saborido Silva, Juan Jose; Graciani Diaz, Ricardo
2014-06-01
Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for several
Threshold conditions, energy spectrum and bands generated by locally periodic Dirac comb potentials
Dharani, M.; Shastry, C. S.
2016-01-01
We derive expressions for polynomials governing the threshold conditions for different types of locally periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these polynomials specify the conditions on the potential parameters in order to generate threshold energy bound states. The mathematical and numerical methods used by us were first formulated in our earlier works and it is also very briefly summarized in this paper. We report a number of mathematical results pertaining to the threshold conditions and these are useful in controlling the number of negative energy states as desired. We further demonstrate the correlation between the distribution of roots of these polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies. In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific box eigenvalues occur in the middle of each band excluding the first band. From our study we find that by controlling the number and strength parameters of delta terms in the Dirac comb and the size of confining box it is possible to generate desired types of band formations. We believe the results from our systematic analysis are useful and relevant in the study of various one dimensional systems of physical interest in areas like nanoscience.
Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra
I.Yu. Krivsky; Simulik, V. M.
2010-01-01
We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance) the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration ...
D-Instanton Generated Dirac Neutrino Masses
Cvetic, Mirjam; Langacker, Paul
2008-01-01
We present a stringy mechanism to generate Dirac neutrino masses by D-instantons in an experimentally relevant mass scale without fine-tuning. Within Type IIA string theory with intersecting D6-branes, we spell out specific conditions for the emergence of such couplings and provide a class of supersymmetric local SU(5) Grand Unified models, based on the Z_2 x Z'_2 orientifold compactification, where perturbatively absent Dirac neutrino masses can be generated by D2-brane instantons in the exp...
D-instanton generated Dirac neutrino masses
International Nuclear Information System (INIS)
We present a stringy mechanism to generate Dirac neutrino masses by D-instantons in an experimentally relevant mass scale without fine-tuning. Within type IIA string theory with intersecting D6-branes, we spell out specific conditions for the emergence of such couplings and provide a class of supersymmetric local SU(5) grand unified models, based on the Z2xZ2' orientifold compactification, where perturbatively absent Dirac neutrino masses can be generated by D2-brane instantons in the experimentally observed mass regime, while Majorana masses remain absent, thus providing an intriguing mechanism for the origin of small neutrino masses due to nonperturbative stringy effects.
Dirac Neutrino Masses from Generalized Supersymmetry Breaking
International Nuclear Information System (INIS)
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the standard model with a generalized supersymmetry breaking sector. If the superpotential neutrino Yukawa terms are forbidden by the gauge symmetry [such as a U(1)'], sub-eV scale effective Dirac mass terms can arise at tree level from hard supersymmetry breaking Yukawa couplings, or at one loop due to nonanalytic soft supersymmetry breaking trilinear scalar couplings. The radiative neutrino magnetic and electric dipole moments vanish at one-loop order
Massive Dirac neutrinos and SN 1987A
Burrows, Adam; Gandhi, Raj; Turner, Michael S.
1992-01-01
The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.
Polyakov loop fluctuations in Dirac eigenmode expansion
Doi, Takahiro M; Sasaki, Chihiro; Suganuma, Hideo
2015-01-01
We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal non-twisted periodic boundary condition for the link-variables. We find that the low-lying Dirac modes yield negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in confined and deconfined phase by numerical simulations in quenched QCD. These results indicate that there is no direct, one-to-one correspondence between confinement and chiral symmetry breaking in QCD in the context of different properties of the Polyakov loop fluctuation ratios.
Relativistic covariance of Ohm's law
Starke, R
2014-01-01
The derivation of relativistic generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic plasmas in astrophysics and cosmology. Here we propose an alternative route to this problem by introducing the most general Lorentz covariant first order response law, which is written in terms of the fundamental response tensor $\\chi^\\mu_{~\
Generalized Dirac and Klein-Gordon equations for spinor wavefunctions
Huegele, R.; Musielak, Z. E.; Fry, J. L.
2013-01-01
A novel method is developed to derive the original Dirac equation and demonstrate that it is the only Poincare invariant dynamical equation for 4-component spinor wavefunctions. New Poincare invariant generalized Dirac and Klein-Gordon equations are also derived. In the non-relativistic limit the generalized Dirac equation gives the generalized Levy-Leblond equation and the generalized Pauli-Schrodinger equation. The main difference between the original and generalized Dirac equations is that...
Maxwell and Dirac theories as an already unified theory
Vaz, Jr., Jayme; Rodrigues, Jr., Waldyr A.
1995-01-01
In this paper we formulate Maxwell and Dirac theories as an already unified theory (in the sense of Misner and Wheeler). We introduce Dirac spinors as "Dirac square root" of the Faraday bivector, and use this in order to find a spinorial representation of Maxwell equations. Then we show that under certain circunstances this spinor equation reduces to an equation formally identical to Dirac equation. Finally we discuss certain conditions under which this equation can be really interpreted as D...
PERSAMAAN MEDAN DIRAC DALAM PENGARUH MEDAN MAGNETIK YANG SERAGAM
Directory of Open Access Journals (Sweden)
Andrias Widiantoro, Erika Rani
2012-03-01
Full Text Available Telah dilakukan perlakuan khusus terhadap persamaan gerak partikel elementer yaitu Persamaan Dirac dengan dipengaruhi oleh medan magnet eksternal yang seragam untuk mendapat solusi Persamaan Dirac dalam pengaruh medan magnetic. Penambahan pengaruh potensial magnetik terhadap momentum dan energi total suatu partikel bermuatan dalam kajian teoritis terhadap persamaan gerak yaitu persamaan Dirac telah memberikan solusi persamaan medan Dirac yang baru, dan kuantisasi kedua yang terdapat konstanta tambahan serta propagasi fermioniknya terdapat suku pengali baru.
k-Parabolic Subspace Arrangements
Severs, Christopher; White, Jacob
2009-01-01
Nous généralisons les arrangements k-égaux à tous les groupes de réflexions finis réels. Les arrangements ainsi obtenus sont dits k-paraboliques. Dans le cas où k = 2 nous retrouvons les arrangements de Coxeter qui sont bien connus. En 1971, Brieskorn démontra que le groupe fondamental associé au complément (complexe) de l'arrangement de Coxeter de type W est en fait isomorphe au groupe pure d'Artin de type W . En 1996, Khovanov donne une description algébrique du groupe fondamental du complé...
Dirac cones beyond the honeycomb lattice : a symmetry based approach
Miert, G. van; de Morais Smith, Cristiane
2016-01-01
Recently, several new materials exhibiting massless Dirac fermions have been proposed. However, many of these do not have the typical graphene honeycomb lattice, which is often associated with Dirac cones. Here, we present a classification of these different two-dimensional Dirac systems based on th
A five-dimensional form of the Dirac equation
International Nuclear Information System (INIS)
A Dirac equation in a covariant form with respect to proper orthochronous rotations in (4+1)-dimensional pseudo-orthogonal space, i.e. Minkowski space extended by one real dimension is introduced. It contains a five-vector potential with a non-electromagnetic fifth component. The invariance of this equation under the CPT transformation is conditioned by the assumption that the real fifth coordinate changes its sign under charge conjugation, and that it simultaneously changes its sign either under time reversal or under space inversion. The energy levels of an electron under the simultaneous action of Coulomb and central gravitational fields are determined. To this end, (1) new eigenspinors of the total angular momentum operator are derived, with non-zero entries in the first and fourth or in the second and third row of the column matrix and (2) a scalar function is constructed from doubly-periodic Jacobian elliptic functions which, in the limit of the vanishing modulus of the elliptic functions, replaces the function exp(iωt) in the stationary-state solutions. The iterated five-dimensional equation contains the ten components of the antisymmetric field tensor. It also contains a term determining the potential energy operator of electron spin density in a non-electromagnetic field. The Pauli equation is derived from the five-dimensional equation, with the transformational characteristics of the original equation. It contains a spin-orbit coupling term depending on the non-electromagnetic potential. (author)
A five-dimensional form of the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Kocinski, J. [Institute of Physics, Warsaw University of Technology, Warsaw (Poland)]. E-mail: kocinsk@if.pw.edu.pl
1999-06-11
A Dirac equation in a covariant form with respect to proper orthochronous rotations in (4+1)-dimensional pseudo-orthogonal space, i.e. Minkowski space extended by one real dimension is introduced. It contains a five-vector potential with a non-electromagnetic fifth component. The invariance of this equation under the CPT transformation is conditioned by the assumption that the real fifth coordinate changes its sign under charge conjugation, and that it simultaneously changes its sign either under time reversal or under space inversion. The energy levels of an electron under the simultaneous action of Coulomb and central gravitational fields are determined. To this end, (1) new eigenspinors of the total angular momentum operator are derived, with non-zero entries in the first and fourth or in the second and third row of the column matrix and (2) a scalar function is constructed from doubly-periodic Jacobian elliptic functions which, in the limit of the vanishing modulus of the elliptic functions, replaces the function exp(i{omega}t) in the stationary-state solutions. The iterated five-dimensional equation contains the ten components of the antisymmetric field tensor. It also contains a term determining the potential energy operator of electron spin density in a non-electromagnetic field. The Pauli equation is derived from the five-dimensional equation, with the transformational characteristics of the original equation. It contains a spin-orbit coupling term depending on the non-electromagnetic potential. (author)
Lu, Wei; Liu, Xuefeng; Lu, Hong; Li, Caizhen; Lai, Jiawei; Zhao, Chuan; Tian, Ye; Liao, Zhimin; Jia, Shuang; Sun, Dong
2016-01-01
Three dimensional (3D) Dirac semimetal exhibiting ultrahigh mobility has recently attracted enormous research interests as 3D analogues of graphene. From the prospects of future application toward electronic/optoelectronic devices with extreme performance, it is crucial to understand the relaxation dynamics of photo-excited carriers and their coupling with lattice. In this work, we report ultrafast transient reflection measurements of photo-excited carrier dynamics in cadmium arsenide (Cd3As2), which is among the most stable Dirac semimetals that have been confirmed experimentally. With low energy probe photon of 0.3 eV, photo-excited Dirac Fermions dynamics closing to Dirac point are probed. Through transient reflection measurements on bulk and nanoplate samples that have different doping intensities, and systematic probe wavelength, pump power and lattice temperature dependent measurements, the dynamical evolution of carrier distributions can be retrieved qualitatively using a two-temperature model. The pho...
Boker, Steven M.; McArdle, J. J.; Neale, Michael
2002-01-01
Presents an algorithm for the production of a graphical diagram from a matrix formula in such a way that its components are logically and hierarchically arranged. The algorithm, which relies on the matrix equations of J. McArdle and R. McDonald (1984), calculates the individual path components of expected covariance between variables and…
Paul Dirac:. Building Bridges of the Mind
Brown, Laurie M.
2003-12-01
Paul Dirac was a brilliant and original thinker. He used his physical intuition and his ideal of mathematical beauty to construct bridges between major areas of physics. This article discusses several such important works, including the bridge between quantum mechanics and relativity that led to his prediction of the existence of antimatter.
Path Integral for the Dirac Equation
Polonyi, Janos
1998-01-01
A c-number path integral representation is constructed for the solution of the Dirac equation. The integration is over the real trajectories in the continuous three-space and other two canonical pairs of compact variables controlling the spin and the chirality flips.
Probabilistic solution of the Dirac equation
International Nuclear Information System (INIS)
Various probabilistic representations of the 2, 3 and 4 dimensional Dirac equation are given in terms of expectation with respect to stochastic jump processes and are used to derive the nonrelativistic limit even in the presence of an external electromagnetic field. (orig.)
Eigenvalue asymptotics for Dirac-Bessel operators
Hryniv, Rostyslav O.; Mykytyuk, Yaroslav V.
2016-06-01
In this paper, we establish the eigenvalue asymptotics for non-self-adjoint Dirac-Bessel operators on (0, 1) with arbitrary real angular momenta and square integrable potentials, which gives the first step for solution of the related inverse problem. The approach is based on a careful examination of the corresponding characteristic functions and their zero distribution.
Understanding Quaternions and the Dirac Belt Trick
Staley, Mark
2010-01-01
The Dirac belt trick is often employed in physics classrooms to show that a 2n rotation is not topologically equivalent to the absence of rotation whereas a 4n rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors…
Quantum simulation of the Dirac equation.
Gerritsma, R; Kirchmair, G; Zähringer, F; Solano, E; Blatt, R; Roos, C F
2010-01-01
The Dirac equation successfully merges quantum mechanics with special relativity. It provides a natural description of the electron spin, predicts the existence of antimatter and is able to reproduce accurately the spectrum of the hydrogen atom. The realm of the Dirac equation-relativistic quantum mechanics-is considered to be the natural transition to quantum field theory. However, the Dirac equation also predicts some peculiar effects, such as Klein's paradox and 'Zitterbewegung', an unexpected quivering motion of a free relativistic quantum particle. These and other predicted phenomena are key fundamental examples for understanding relativistic quantum effects, but are difficult to observe in real particles. In recent years, there has been increased interest in simulations of relativistic quantum effects using different physical set-ups, in which parameter tunability allows access to different physical regimes. Here we perform a proof-of-principle quantum simulation of the one-dimensional Dirac equation using a single trapped ion set to behave as a free relativistic quantum particle. We measure the particle position as a function of time and study Zitterbewegung for different initial superpositions of positive- and negative-energy spinor states, as well as the crossover from relativistic to non-relativistic dynamics. The high level of control of trapped-ion experimental parameters makes it possible to simulate textbook examples of relativistic quantum physics. PMID:20054392
Analytic representation of the Dirac equation
International Nuclear Information System (INIS)
In this paper, we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wavefunctions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behaviour of the particle-antiparticle relationship. We then show explicitly that the Pauli equation is not completely valid for the study of the Dirac hydrogen atom problem in s-states (hyperfine splitting). We conclude that there are some open mathematical problems with any attempt to explicitly show that the Dirac equation is insufficient to explain the full hydrogen spectrum. If the perturbation method can be justified, our analysis suggests that the use of cut-offs in QED is already justified by the eigenvalue analysis that supports it. Using a new method, we are able to effect separation of variables for full coupling, solve the radial equation and provide graphs of the probability density function for the 2p- and 2s-states, and compare them with those of the Dirac-Coulomb case
Analytic representation of the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Gill, Tepper L [Department of Electrical and Computer Engineering, Howard University, Washington, DC 20059 (United States); Zachary, W W [Department of Electrical and Computer Engineering, Howard University, Washington, DC 20059 (United States); Alfred, Marcus [Computational Physics Laboratory, Howard University, Washington, DC 20059 (United States)
2005-08-05
In this paper, we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wavefunctions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behaviour of the particle-antiparticle relationship. We then show explicitly that the Pauli equation is not completely valid for the study of the Dirac hydrogen atom problem in s-states (hyperfine splitting). We conclude that there are some open mathematical problems with any attempt to explicitly show that the Dirac equation is insufficient to explain the full hydrogen spectrum. If the perturbation method can be justified, our analysis suggests that the use of cut-offs in QED is already justified by the eigenvalue analysis that supports it. Using a new method, we are able to effect separation of variables for full coupling, solve the radial equation and provide graphs of the probability density function for the 2p- and 2s-states, and compare them with those of the Dirac-Coulomb case.
LHCb: DIRAC A community grid solution
Tsaregorodtsev, A
2007-01-01
The DIRAC project began as a solution for the LHCb experiment at CERN to carry out massive Monte Carlo simulation and data processing on various distributed computing resources. Now it is evolving to a complete Grid solution for community of users such as LHCb.
Distance preconditioning for lattice Dirac operators
de Divitiis, G M; Tantalo, N
2010-01-01
We propose a preconditioning of the Dirac operator based on the factorisation of a predefined function related to the decay of the propagator with the distance. We show that it can improve the accuracy of correlators involving heavy quarks at large distances and accelerate the computation of light quark propagators.
Uses of Covariant Formalism for Analytical Computation of Feynman Diagrams with Massive Fermions
Rogalyov, R N
2003-01-01
The bilinear combination of Dirac spinors $u(p_1,n_1)\\bar u(p_2,n_2)$ is expressed in terms of Lorentz vectors in an explicit covariant form. The fact that the obtained expression involves only one auxiliary vector makes it very convenient for analytical computations with REDUCE (or FORM) package in the helicity formalism. The other advantage of the proposed formulas is that they are applicable to massive fermions as well as to massless fermions. The proposed approach is employed for the computation of one-loop Feynman diagrams and it is demonstrated that it considerably reduces the time of computations.
The GridPP DIRAC project - DIRAC for non-LHC communities
Bauer, D.; Colling, D.; Currie, R.; Fayer, S.; Huffman, A.; Martyniak, J.; Rand, D.; Richards, A.
2015-12-01
The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communities.
The GridPP DIRAC project - DIRAC for non-LHC communities
Bauer, D; Currie, R; Fayer, S; Huffman, A; Martyniak, J; Rand, D; Richards, A
2015-01-01
The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communiti...
Wigner function for the Dirac oscillator in spinor space
Institute of Scientific and Technical Information of China (English)
MA Kai; WANG Jian-Hua; YUAN Yi
2011-01-01
The Wigner function for the Dirac oscillator in spinor space is studied in this paper.Firstly,since the Dirac equation is described as a matrix equation in phase space,it is necessary to define the Wigner function as a matrix function in spinor space.Secondly,the matrix form of the Wigner function is proven to support the Dirac equation.Thirdly,by solving the Dirac equation,energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained.
Discrete Symmetries in Covariant LQG
Rovelli, Carlo
2012-01-01
We study time-reversal and parity ---on the physical manifold and in internal space--- in covariant loop gravity. We consider a minor modification of the Holst action which makes it transform coherently under such transformations. The classical theory is not affected but the quantum theory is slightly different. In particular, the simplicity constraints are slightly modified and this restricts orientation flips in a spinfoam to occur only across degenerate regions, thus reducing the sources of potential divergences.
Shrinkage Estimators for Covariance Matrices
Daniels, Michael J.; Kass, Robert E.
2001-01-01
Estimation of covariance matrices in small samples has been studied by many authors. Standard estimators, like the unstructured maximum likelihood estimator (ML) or restricted maximum likelihood (REML) estimator, can be very unstable with the smallest estimated eigenvalues being too small and the largest too big. A standard approach to more stably estimating the matrix in small samples is to compute the ML or REML estimator under some simple structure that involves estimation of fewer paramet...
Alexandrov, Sergei
2007-01-01
We generalize the covariant c-map found in hep-th/0701214 including perturbative quantum corrections. We also perform explicitly the superconformal quotient from the hyperkahler cone obtained by the quantum c-map to the quaternion-Kahler space, which is the moduli space of hypermultiplets. As a result, the perturbatively corrected metric on the moduli space is found in a simplified form comparing to the expression known in the literature.
Are Maxwell's equations Lorentz-covariant?
Redzic, D V
2016-01-01
The statement that Maxwell's electrodynamics in vacuum is already covariant under Lorentz transformations is commonplace in the literature. We analyse the actual meaning of that statement and demonstrate that Maxwell's equations are perfectly fit to be Lorentz-covariant; they become Lorentz-covariant if we construct to be so, by postulating certain transformation properties of field functions. In Aristotelian terms, the covariance is a plain potentiality, but not necessarily entelechy.
Covariant Perturbations of Schwarzschild Black Holes
Clarkson, Chris A.; Barrett, Richard K.
2002-01-01
We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black hole spacetime. The 1+3 covariant approach is extended to a `1+1+2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this....
The H-Covariant Strong Picard Groupoid
Jansen, Stefan; Waldmann, Stefan
2004-01-01
The notion of H-covariant strong Morita equivalence is introduced for *-algebras over C = R(i) with an ordered ring R which are equipped with a *-action of a Hopf *-algebra H. This defines a corresponding H-covariant strong Picard groupoid which encodes the entire Morita theory. Dropping the positivity conditions one obtains H-covariant *-Morita equivalence with its H-covariant *-Picard groupoid. We discuss various groupoid morphisms between the corresponding notions of the Picard groupoids. ...
Dirac dynamical resonance states around Schwarzschild black holes
Zhou, Xiang-Nan; Yang, Ke; Liu, Yu-Xiao
2013-01-01
Recently, a novel kind of scalar wigs around Schwarzschild black holes---scalar dynamical resonance states were introduced in [Phys. Rev. D 84, 083008 (2011)] and [Phys. Rev. Lett. 109, 081102 (2012)]. In this paper, we investigate the existence and evolution of Dirac dynamical resonance states. First we look for stationary resonance states of a Dirac field around a Schwarzchild black hole by using the Schrodinger-like equations reduced from the Dirac equation in Schwarzschild spacetime. Then Dirac pseudo-stationary configurations are constructed from the stationary resonance states. We use these configurations as initial data and investigate their numerical evolutions and energy decay. These dynamical solutions are the so-called "Dirac dynamical resonance states". It is found that the energy of the Dirac dynamical resonance states shows an exponential decay. The decay rate of energy is affected by the resonant frequency, the mass of Dirac field, the total angular momentum, and the spin-orbit interaction. In ...
Wu, Yun; Wang, Lin-Lin; Mun, Eundeok; Johnson, D. D.; Mou, Daixiang; Huang, Lunan; Lee, Yongbin; Bud'Ko, S. L.; Canfield, P. C.; Kaminski, Adam
2016-07-01
In topological quantum materials the conduction and valence bands are connected at points or along lines in the momentum space. A number of studies have demonstrated that several materials are indeed Dirac/Weyl semimetals. However, there is still no experimental confirmation of materials with line nodes, in which the Dirac nodes form closed loops in the momentum space. Here we report the discovery of a novel topological structure--Dirac node arcs--in the ultrahigh magnetoresistive material PtSn4 using laser-based angle-resolved photoemission spectroscopy data and density functional theory calculations. Unlike the closed loops of line nodes, the Dirac node arc structure arises owing to the surface states and resembles the Dirac dispersion in graphene that is extended along a short line in the momentum space. We propose that this reported Dirac node arc structure is a novel topological state that provides an exciting platform for studying the exotic properties of Dirac fermions.
Covariant jump conditions in electromagnetism
Itin, Yakov
2012-02-01
A generally covariant four-dimensional representation of Maxwell's electrodynamics in a generic material medium can be achieved straightforwardly in the metric-free formulation of electromagnetism. In this setup, the electromagnetic phenomena are described by two tensor fields, which satisfy Maxwell's equations. A generic tensorial constitutive relation between these fields is an independent ingredient of the theory. By use of different constitutive relations (local and non-local, linear and non-linear, etc.), a wide area of applications can be covered. In the current paper, we present the jump conditions for the fields and for the energy-momentum tensor on an arbitrarily moving surface between two media. From the differential and integral Maxwell equations, we derive the covariant boundary conditions, which are independent of any metric and connection. These conditions include the covariantly defined surface current and are applicable to an arbitrarily moving smooth curved boundary surface. As an application of the presented jump formulas, we derive a Lorentzian type metric as a condition for existence of the wave front in isotropic media. This result holds for ordinary materials as well as for metamaterials with negative material constants.
Competing risks and time-dependent covariates
DEFF Research Database (Denmark)
Cortese, Giuliana; Andersen, Per K
2010-01-01
Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates...
Covariant Quantization of D-branes
Kallosh, Renata
1997-01-01
We have found that kappa-symmetry allows a covariant quantization provided the ground state of the theory is strictly massive. For D-p-branes a Hamiltonian analysis is performed to explain the existence of a manifestly supersymmetric and Lorentz covariant description of the BPS states of the theory. The covariant quantization of the D-0-brane is presented as an example.
Covariance Evaluation Methodology for Neutron Cross Sections
Energy Technology Data Exchange (ETDEWEB)
Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.
2008-09-01
We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.
Determinants of flexible work arrangements
Sarbu, Miruna
2014-01-01
Flexible work arrangements such as allowing employees to work at home are used in firms, especially since information and communication technologies have become so widespread. Using individual-level data from 10,884 German employees, this paper analyses the determinants of working at home as a form of flexible work arrangements. The analysis is based on descriptive analyses and a discrete choice model using a probit estimation approach. The results reveal that men have a higher...
"Fraud alert": joint venture arrangements.
Vipperman, R M
1989-01-01
The Office of Inspector General of the Department of Health and Human Services recently issued a special "Fraud Alert" identifying those characteristics of joint venture arrangements that it views as indicators of potentially unlawful activity. As discussed in this article, participants in joint ventures should examine their arrangements to see if one or more of the questionable features are present, and, if so, should take steps to eliminate them, to the extent possible.
Dirac Neutrino Masses from Generalized Supersymmetry Breaking
Demir, Durmus A; Langacker, Paul
2007-01-01
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1)'), effective Dirac mass terms involving the "wrong Higgs" field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or "nonholomorphic" soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order.
Dirac Geometry of the Holonomy Fibration
Cabrera, Alejandro; Meinrenken, Eckhard
2015-01-01
In this paper, we solve the problem of giving a gauge-theoretic description of the natural Dirac structure on a Lie Group which plays a prominent role in the theory of D- branes for the Wess-Zumino-Witten model as well as the theory of quasi-Hamiltonian spaces. We describe the structure as an infinite-dimensional reduction of the space of connections over the circle. Our insight is that the formal Poisson structure on the space of connections is not an actual Poisson structure, but is itself a Dirac structure, due to the fact that it is defined by an unbounded operator. We also develop general tools for reducing Courant algebroids and morphisms between them, allowing us to give a precise correspondence between Hamiltonian loop group spaces and quasi- Hamiltonian spaces.
Chirality and Dirac Operator on Noncommutative Sphere
Carow-Watamura, Ursula; Watamura, Satoshi
1997-01-01
We give a derivation of the Dirac operator on the noncommutative 2-sphere within the framework of the bosonic fuzzy sphere and define Connes' triple. It turns out that there are two different types of spectra of the Dirac operator and correspondingly there are two classes of quantized algebras. As a result we obtain a new restriction on the Planck constant in Berezin's quantization. The map to the local frame in noncommutative geometry is also discussed. Acknowledgement. The authors benefited from discussions with M. Bordemann, O. Grandjean and M. Pillin. S.W. would like to thank K. Osterwalder for his hospitality during the stay in ETH where this work began. He also thanks the Canon Foundation in Europe for supporting that stay. U.C. would like to acknowledge the Japan Society for Promotion of Science for financial support.-->
Symmetry Breaking And The Nilpotent Dirac Equation
Rowlands, Peter
2004-08-01
A multivariate 4-vector representation for space-time and a quaternion representation for mass and the electric, strong and weak charges leads to a nilpotent form of the Dirac equation, which packages the entire physical information available about a fermion state. The nilpotent state vector breaks the symmetry between the strong, electric and weak interactions, by associating their respective charges with vector, scalar and pseudoscalar operators, leading directly to the SU(3) × SU(2)L × U(1) symmetry, and to particle structures and mass-generating states. In addition, the nilpotent Dirac equation has just three solutions for spherically-symmetric distance-dependent potentials, and these correspond once again to those that would be expected for the three interactions: linear for the strong interaction; inverse linear for the electromagnetic; and a harmonic oscillator-type solution, which can be equated with the dipolar annihilation and creation mechanisms of the weak interaction.
LHCb: Pilot Framework and the DIRAC WMS
Graciani, R; Casajus, A
2009-01-01
DIRAC, the LHCb community Grid solution, has pioneered the use of pilot jobs in the Grid. Pilot jobs provide a homogeneous interface to an heterogeneous set of computing resources. At the same time, pilot jobs allow to delay the scheduling decision to the last moment, thus taking into account the precise running conditions at the resource and last moment requests to the system. The DIRAC Workload Management System provides one single scheduling mechanism for jobs with very different profiles. To achieve an overall optimisation, it organizes pending jobs in task queues, both for individual users and production activities. Task queues are created with jobs having similar requirements. Following the VO policy a priority is assigned to each task queue. Pilot submission and subsequent job matching are based on these priorities following a statistical approach. Details of the implementation and the security aspects of this framework will be discussed.
Dirac Gauginos in Low Scale Supersymmetry Breaking
Goodsell, Mark D
2014-01-01
It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy -- with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.
Dirac gauginos in low scale supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Goodsell, Mark D., E-mail: mark.goodsell@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Tziveloglou, Pantelis, E-mail: pantelis.tziveloglou@vub.ac.be [Theoretische Natuurkunde and IIHE, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium)
2014-12-15
It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy – with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.
Thermometry for Dirac fermions in graphene
Energy Technology Data Exchange (ETDEWEB)
Liu, Fan-Hung; Hsu, Chang-Shun; Lo, Shun-Tsung [National Taiwan University, Taipei, Taiwan (China); and others
2015-01-15
We use both the zero-magnetic-field resistivity and the phase coherence time determined by weak localization as independent thermometers for Dirac fermions (DF) in multilayer graphene. In the high current (I) region, there exists a simple power law T{sub DF} ∼ I{sup ∼0.5}, where T{sub DF} is the effective Dirac fermion temperature for epitaxial graphene on SiC. In contrast, T{sub DF} ∼ I{sup ∼1} in exfoliated multilayer graphene. We discuss possible reasons for the different power laws observed in these multilayer graphene systems. Our experimental results on DF-phonon scattering may find applications in graphene-based nanoelectronics.
Dirac Equations with Linear Confining Potentials
Noble, J H
2014-01-01
This paper is devoted to a study of relativistic eigenstates of Dirac particles which are simultaneously bound by a static Coulomb potential and added linear confining potentials. It has recently been shown that, despite the addition of radially symmetric, linear confining potentials, some specific bound-state energies surprisingly retain their exact Dirac-Coulomb values (in the sense of an "exact symmetry"). This observation raises pertinent questions as to the generality of the cancellation mechanism. A Foldy-Wouthuysen transformation is used to find the relevant nonrelativistic physical degrees of freedom, which include additional spin-orbit couplings induced by the linear confining potentials. The matrix elements of the effective operators obtained from the scalar, and time-like confining potentials mutually cancel for specific ratios of the prefactors of the effective operators, which must be tailored to the cancellation mechanism. The result of the Foldy-Wouthuysen transformation is used to explicitly s...
Dirac particles in a gravitational field
International Nuclear Information System (INIS)
The semiclassical approximation for the Hamiltonian of Dirac particles interacting with an arbitrary gravitational field is investigated. The time dependence of the metric leads to new contributions to the in-band energy operator in comparison to previous works in the static case. In particular we find a new coupling term between the linear momentum and the spin, as well as couplings that contribute to the breaking of the particle-antiparticle symmetry. (orig.)
Emergent tilt order in Dirac polymer liquids
Souslov, Anton; Loewe, Benjamin; Goldbart, Paul M.
2014-01-01
We study a liquid of zigzagging two-dimensional directed polymers with bending rigidity, i.e., polymers whose conformations follow checkerboard paths. In the continuum limit the statistics of such polymers obey the Dirac equation for particles of imaginary mass. We exploit this observation to investigate a liquid of these polymers via a quantum many-fermion analogy. A self-consistent approximation predicts a phase of tilted order, in which the polymers may develop a preference to zig rather t...
Membrane fluids and Dirac membrane fluids
Ivanov, M G
2004-01-01
The relation between two different methods of membrane fluid description is clarified by construction of combined method. Dirac membrane field appears naturally in new approach. It provides a possibility to consider new aspects of electrodynamics-type theories with electric and magnetic sources. The membrane fluid models automatically prohibit simulatenos existence of electric and magnetic currents. Possible applications to the dark energy problem are mentioned.
The Dirac equation and the Lamb shift
International Nuclear Information System (INIS)
In this paper we show that the Pauli equation does not contain all the essential information of the full, completely separated Dirac equation. We point out that the term which is quadratic in the vector potential is small in all but s-states, where it diverges. A simplistic analysis shows that this term can be used to account for the Lamb shift. (orig./HSI)
Dirac neutrinos from a second Higgs doublet
Davidson, Shainen M.; Logan, Heather E.
2009-01-01
We propose a minimal extension of the Standard Model in which neutrinos are Dirac particles and their tiny masses are explained without requiring tiny Yukawa couplings. A second Higgs doublet with a tiny vacuum expectation value provides neutrino masses while simultaneously improving the naturalness of the model by allowing a heavier Standard Model-like Higgs boson consistent with electroweak precision data. The model predicts a mu to e gamma rate potentially detectable in the current round o...
Resonant valley filtering of massive Dirac electrons
Moldovan, D.; Masir, M. Ramezani; Covaci, L.; Peeters, F. M.
2013-01-01
Electrons in graphene, in addition to their spin, have two pseudospin degrees of freedom: sublattice and valley pseudospin. Valleytronics uses the valley degree of freedom as a carrier of information similar to the way spintronics uses electron spin. We show how a double barrier structure consisting of electric and vector potentials can be used to filter massive Dirac electrons based on their valley index. We study the resonant transmission through a finite number of barriers and we obtain th...
Dynamical seesaw mechanism for Dirac neutrinos
Directory of Open Access Journals (Sweden)
José W.F. Valle
2016-04-01
Full Text Available So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.
Quantum transport through 3D Dirac materials
International Nuclear Information System (INIS)
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect
Quantum transport through 3D Dirac materials
Energy Technology Data Exchange (ETDEWEB)
Salehi, M. [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Jafari, S.A., E-mail: jafari@physics.sharif.edu [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Center of Excellence for Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694 (Iran, Islamic Republic of)
2015-08-15
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.
Quantum transport through 3D Dirac materials
Salehi, M.; Jafari, S. A.
2015-08-01
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.
Quantum logic gates from Dirac quasiparticles
Marino, E. C.; Brozeguini, J. C.
2015-03-01
We show that one of the fundamental operations of topological quantum computation, namely the non-Abelian braiding of identical particles, can be physically realized in a general system of Dirac quasiparticles in 1 + 1D. Our method is based on the study of the analytic structure of the different Euclidean correlation functions of Dirac fields, which are conveniently expressed as functions of a complex variable. When the Dirac field is an (Abelian) anyon with statistics parameter s (2s not an integer), we show that the associated Majorana states of such a field present non-Abelian statistics. The explicit form of the unitary, non-commuting (monodromy) matrices generated upon braiding is derived as a function of s and is shown to satisfy the Yang-Baxter algebra. For the special case of s = 1/4, we show that the braiding matrices become the logic gates NOT, CNOT,… required in the algorithms of universal quantum computation. We suggest that maybe polyacetylene, alternately doped with alkali and halogen atoms, is a potential candidate for a physical material realization of the system studied here.
Pseudo-Dirac dark matter leaves a trace.
De Simone, Andrea; Sanz, Veronica; Sato, Hiromitsu Phil
2010-09-17
Pseudo-Dirac dark matter is a viable type of dark matter which originates from a new Dirac fermion whose two Weyl states get slightly split in mass by a small Majorana term. The decay of the heavier to the lighter state naturally occurs over a detectable length scale. Thus, whenever pseudo-Dirac dark matter is produced in a collider, it leaves a clear trace: a visible displaced vertex in association with missing energy. Moreover, pseudo-Dirac dark matter behaves Dirac-like for relic abundance and Majorana-like in direct detection experiments. We provide a general effective field theory treatment, specializing to a pseudo-Dirac bino. The dark matter mass and the mass splitting can be extracted from measurements of the decay length and the invariant mass of the products, even in the presence of missing energy.
DIRAC - The Distributed MC Production and Analysis for LHCb
Tsaregorodtsev, A; Closier, J; Frank, M; Garonne, V; Witek, M; Romanovski, V; Egede, U; Vagnoni, V; Korolko, I; Blouw, J; Kuznetsov, G; Patrick, G; Gandelman, M; Graciani-Diaz, R; Bernet, R; Brook, N; Pickford, A; Tobin, M; Saroka, A; Stokes-Rees, I; Saborido-Silva, J; Sanchez-Garcia, M
2004-09-30
DIRAC is the LHCb distributed computing grid infrastructure for Monte Carlo (MC) production and analysis. Its architecture is based on a set of distributed collaborating services. The service decomposition broadly follows the CERN/ARDA-RTAG proposal, which should allow for the interchange of the EGEE/gLite and DIRAC components. In this paper we give an overview of the DIRAC architecture, as well as the main design choices in its implementation. The light nature and modular design of the DIRAC components allows its functionality to be easily extended to include new computing and storage elements or to handle new types of tasks. The DIRAC system already uses different types of computing resources - from single PC's to a variety of batch systems and to the Grid environment. In particular, the DIRAC interface to the LCG2 grid will be presented.
The GridPP DIRAC project: Implementation of a multi-VO DIRAC service
Bauer, D.; Colling, D.; Currie, R.; Fayer, S.; Huffman, A.; Martyniak, J.; Rand, D.; Richards, A.
2015-12-01
The GridPP consortium provides computing support to many high energy physics projects in the UK. As part of this GridPP offers access to a large amount of highly distributed resources across the UK for multiple collaborations. The userbase supported by GridPP includes hundreds of users spanning multiple virtual organisations with many different computing requirements. In order to provide a common interface to these distributed a centralised DIRAC instance has been setup at Imperial College London. This paper describes the experiences learnt from deploying this DIRAC instance and the modifications that have made to support the GridPP use case.
Dirac Neutrinos and Dark Matter Stability from Lepton Quarticity
Chuliá, Salvador Centelles; Srivastava, Rahul; Valle, José W F
2016-01-01
We propose to relate dark matter stability to the possible Dirac nature of neutrinos. The idea is illustrated in a simple scheme where small Dirac neutrino masses arise from a type--I seesaw mechanism as a result of a $Z_4$ discrete lepton number symmetry. The latter implies the existence of a viable WIMP dark matter candidate, whose stability arises from the same symmetry which ensures the Diracness of neutrinos.
Supersymmetrization of Quaternion Dirac Equation for Generalized Fields of Dyons
Rawat, A. S.; Rawat, Seema; Li, Tianjun; Negi, O. P. S.
2012-01-01
The quaternion Dirac equation in presence of generalized electromagnetic field has been discussed in terms of two gauge potentials of dyons. Accordingly, the supersymmetry has been established consistently and thereafter the one, two and component Dirac Spinors of generalized quaternion Dirac equation of dyons for various energy and spin values are obtained for different cases in order to understand the duality invariance between the electric and magnetic constituents of dyons.
Supersymmetrization of Quaternion Dirac Equation for Generalized Fields of Dyons
Rawat, A. S.; Rawat, Seema; Li, Tianjun; Negi, O. P. S.
2012-10-01
The quaternion Dirac equation in presence of generalized electromagnetic field has been discussed in terms of two gauge potentials of dyons. Accordingly, the supersymmetry has been established consistently and thereafter the one, two and component Dirac Spinors of generalized quaternion Dirac equation of dyons for various energy and spin values are obtained for different cases in order to understand the duality invariance between the electric and magnetic constituents of dyons.
A new algorithm for multiplying two Dirac numbers
Cariow, Aleksandr; Cariowa, Galina
2015-01-01
In this work a rationalized algorithm for Dirac numbers multiplication is presented. This algorithm has a low computational complexity feature and is well suited to FPGA implementation. The computation of two Dirac numbers product using the na\\"ive method takes 256 real multiplications and 240 real additions, while the proposed algorithm can compute the same result in only 88 real multiplications and 256 real additions. During synthesis of the discussed algorithm we use the fact that Dirac nu...
Arranged marriages annulled by law.
Zhu, H
1996-06-01
The arranged marriages of 210 young people in Yongle Town in Zunyi County of Guizhou Province were dissolved in 1995. The proportion of child betrothals, which generally happens among close relatives, is as high as 85% in the town. Some engagements, known as fetus betrothals or belt betrothals, are arranged before the children are born or while they are still infants strapped (belted) to their mothers. Dissemination of information from the Constitution, the Marriage Law, and the Regulations on the Registration of Marriage concerning marriage, healthier births, and good upbringing of children, and other information on reproductive health, has shown young people that they have the freedom to love and marry of their own free will, that their marriage is protected by law, and that consanguineous marriage is harmful to the health of future generations. Some convinced their parents that their arranged marriages should be annulled.
Dirac-mode expansion analysis for Polyakov loop
Iritani, Takumi; Gongyo, Shinya; Suganuma, Hideo
2012-01-01
To clarify the relation between chiral symmetry breaking and color confinement, we investigate the Polyakov loop in terms of the Dirac eigenmodes in SU(3) lattice QCD. We analyze the low-lying (IR) and UV Dirac-mode contribution to the Polyakov loop, respectively, using the Dirac-mode expansion method. In the confined phase, the Polyakov loop $$ remains almost zero and $Z_3$ center symmetry is thus unbroken, even after removing low-lying Dirac-modes, which are responsible to chiral sym...
Polyakov loop analysis with Dirac-mode expansion
Iritani, Takumi; Gongyo, Shinya; Suganuma, Hideo
2013-01-01
In order to investigate the direct relation between confinement and chiral symmetry breaking in QCD, we investigate the Polyakov loop in terms of the Dirac eigenmodes in both confined and deconfined phases. Using the Dirac-mode expansion method in SU(3) lattice QCD, we analyze the contribution of low-lying and higher Dirac-modes to the Polyakov loop, respectively.In the confined phase below T_c, after removing low-lying Dirac-modes, the chiral condensate $$ is largely reduced, how...
Computational Determination of the Dirac-Theory Adjunctator
Directory of Open Access Journals (Sweden)
M. Dima
2013-01-01
Full Text Available A number of particle properties stem from the use of γ0 as adjunctator (Bargmann-Pauli in the Dirac theory (spin alignment, Dirac current, etc.. The early motivations for accepting γ0 as adjunctator were representation-dependent, mildly bearing relation to the actual conditions forcing γ0 as adjunctator. Representation-independent approaches to the physical predictions of the Dirac equation are somewhat new, here presented as being the reasons for γ0 as adjunctator of the Dirac theory, together with the essential role of the latter in the physical aspects of the theory.
ISSUES IN NEUTRON CROSS SECTION COVARIANCES
Energy Technology Data Exchange (ETDEWEB)
Mattoon, C.M.; Oblozinsky,P.
2010-04-30
We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.
Covariant diagrams for one-loop matching
Zhang, Zhengkang
2016-01-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Hyperplane Arrangements and Diagonal Harmonics
Armstrong, Drew
2011-01-01
En 2003, la statistique bounce de Haglund a donné la première interprétation combinatoire de la somme des nombres q,t-Catalan et de la série de Hilbert des harmoniques diagonaux. Dans cet article nous proposons une nouvelle interprétation combinatoire à partir du groupe de Weyl affine de type A. En particulier, nous définissons deux statistiques sur les permutations affines; l'une à partir de l'arrangement d'hyperplans Shi, et l'autre à partir d'un nouvel arrangement — que nous appelons l'arr...
Kalman Filtering with Unknown Noise Covariances
Nilsson, Martin
2006-01-01
Since it is often difficult to identify the noise covariances for a Kalman filter, they are commonly considered design variables. If so, we can as well try to choose them so that the corresponding Kalman filter has some nice form. In this paper, we introduce a one-parameter subfamily of Kalman filters with the property that the covariance parameters cancel in the expression for the Kalman gain. We provide a simple criterion which guarantees that the implicitly defined process covariance matri...
Balancing Covariates via Propensity Score Weighting
Li, Fan; Morgan, Kari Lock; Zaslavsky, Alan M.
2014-01-01
Covariate balance is crucial for an unconfounded descriptive or causal comparison. However, lack of balance is common in observational studies. This article considers weighting strategies for balancing covariates. We define a general class of weights-the balancing weights-that balance the weighted distributions of the covariates between treatment groups. These weights incorporate the propensity score to weight each group to an analyst-selected target population. This class unifies existing we...
Conformal covariance and the split property
Morinelli, Vincenzo; Weiner, Mihály
2016-01-01
We show that for a conformal local net of observables on the circle, the split property is automatic. Both full conformal covariance (i.e. diffeomorphism covariance) and the circle-setting play essential roles in this fact, while by previously constructed examples it was already known that even on the circle, M\\"obius covariance does not imply the split property. On the other hand, here we also provide an example of a local conformal net living on the two-dimensional Minkowski space, which - although being diffeomorphism covariant - does not have the split property.
Manipulating Multistage Interconnection Networks Using Fundamental Arrangements
Directory of Open Access Journals (Sweden)
E. Gur
2010-12-01
Full Text Available Optimizing interconnection networks is a prime object in switching schemes. In this work the authors present a novel approach for obtaining a required channel arrangement in a multi-stage interconnectionnetwork, using a new concept – a fundamental arrangement. The fundamental arrangement is an initial N-1 stage switch arrangement that allows obtaining any required output channel arrangement given an input arrangement, using N/2 binary switches at each stage. The paper demonstrates how a fundamental arrangement can be achieved and how, once this is done, any required arrangement may be obtained within 2(N-1 steps.
THE DOUBLE COUPLING OF THE ASHTEKAR GRAVITATIONAL FIELD TO THE DIRAC SPINORAL FIELDS*
Institute of Scientific and Technical Information of China (English)
吴亚波; 桂元星
2001-01-01
By introducing the double spacetime manifold, the double gamma matrices and Dirac spinors, the action of theDirac spinoral fields is doubled. Furthermore, the double coupling of the Dirac fields to the Ashtekar gravitational fields is studied.
"Quark Confinement" and Evolution of Covariant Hadron-Classification Scheme
Ishida, Shin
2014-01-01
The extension of Non-Relativistic-to-Covariant classification scheme seems to be an urgent problem in the Hadron Spectroscopy. Here are given the recent results of our research. 1) Brief history of our way of the extension on Kinematical Frameworks: from SU(2)_{sigma} $\\otimes$ O(3)_{L} to U (4)_{DS,m} (Tensor-space of Dirac Spinor with the static unitary symm. SU(2)_{m}, which is new Mass-Reversal symm. reflecting the situation of Q.C.) $\\otimes O(2)_{r\\perp v}$ (2-dim. internal spatial-vector r vertical to Boost-velocity v, embedded in the O(3,1)_{Lorentz}). Also is brought in Cov. scheme the thus far Overlooked Chirality Symm. of QCD/Stand. Gauge Model. 2) Propertime tau-Quantum Mechanics for Conf. Q. System and Quantization of Comp. Hadron field is developed. The similar to conventional procedures are performed in Lorentz-Inv. Particle Frame (Galilean Inertial Frame with v=const) which becomes Lorentz-Cov. Observer F., when v=0. The one notable feature of the tau-Q.M. is concerned only future-development,...
Maxwell-Dirac stress-energy tensor in terms of Fierz bilinear currents
Inglis, Shaun; Jarvis, Peter
2016-03-01
We analyse the stress-energy tensor for the self-coupled Maxwell-Dirac system in the bilinear current formalism, using two independent approaches. The first method used is that attributed to Belinfante: starting from the spinor form of the action, the well-known canonical stress-energy tensor is augmented, by extending the Noether symmetry current to include contributions from the Lorentz group, to a manifestly symmetric form. This form admits a transcription to bilinear current form. The second method used is the variational derivation based on the covariant coupling to general relativity. The starting point here at the outset is the transcription of the action using, as independent field variables, both the bilinear currents, together with a gauge invariant vector field (a proxy for the electromagnetic vector potential). A central feature of the two constructions is that they both involve the mapping of the Dirac contribution to the stress-energy from the spinor fields to the equivalent set of bilinear tensor currents, through the use of appropriate Fierz identities. Although this mapping is done at quite different stages, nonetheless we find that the two forms of the bilinear stress-energy tensor agree. Finally, as an application, we consider the reduction of the obtained stress-energy tensor in bilinear form, under the assumption of spherical symmetry.
D-Instanton Generated Dirac Neutrino Masses
Cvetic, Mirjam
2008-01-01
We present a stringy mechanism to generate Dirac neutrino masses by D-instantons. Within Type IIA string theory with intersecting D6-branes, we spell out specific conditions for the emergence of such couplings and provide a class of explicit supersymmetric local SU(5) Grand Unified models, based on the Z_2 x Z'_2 orientifold compactification, where perturbatively absent neutrino masses can be generated by D2-brane instantons in the desired mass regime, thus providing an intriguing mechanism for the origin of small neutrino masses due to exponentially suppressed non-perturbative stringy effects.
Incomplete Dirac reduction of constrained Hamiltonian systems
Energy Technology Data Exchange (ETDEWEB)
Chandre, C., E-mail: chandre@cpt.univ-mrs.fr
2015-10-15
First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified.
Dirac gauginos, gauge mediation and unification
Energy Technology Data Exchange (ETDEWEB)
Benakli, K. [UPMC Univ. Paris 06 (France). Laboratoire de Physique Theorique et Hautes Energies, CNRS; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-03-15
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)
Incomplete Dirac reduction of constrained Hamiltonian systems
International Nuclear Information System (INIS)
First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified
Cosmic String Global Superconducting Dirac Born Infeld
Ikrima, Ika; Ramadhan, Handhika S.; Mart, Terry
2016-08-01
Superconducting cosmic string possibly plays an important role in the formation of the universe structure. The physics of this phenomenon has been explored by studying the field theory in the string interior. Numerical solutions of superconducting strings with all relevant fields are presented in this paper. The field is constructed from a generalization of the usual field theory of superconducting global string, but the kinetic term consists of the Dirac Born Infeld (DBI). Some changes in the characteristic of the superconducting string DBI from the usual superconducting string case have been observed. The observation includes physical mechanism of all related fields.
Dirac oscillator interacting with a topological defect
Energy Technology Data Exchange (ETDEWEB)
Carvalho, J.; Furtado, C.; Moraes, F. [Unidade Academica de Tecnologia de Alimentos, CCTA, Universidade Federal de Campina Grande, Pereiros, 58840-000, Pombal, Paraiba (Brazil); Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, Paraiba (Brazil)
2011-09-15
In this work we study the interaction problem of a Dirac oscillator with gravitational fields produced by topological defects. The energy levels of the relativistic oscillator in the cosmic string and in the cosmic dislocation space-times are sensible to curvature and torsion associated to these defects and are important evidence of the influence of the topology on this system. In the presence of a localized magnetic field the energy levels acquire a term associated with the Aharonov-Bohm effect. We obtain the eigenfunctions and eigenvalues and see that in the nonrelativistic limit some results known in standard quantum mechanics are reached.
Natural Dirac Neutrinos from Warped Extra Dimension
Wu, Jackson M S
2010-01-01
Dirac neutrinos arising from gauged discrete symmetry \\`a la Krauss-Wilczek are implemented in the minimal custodial Randall-Sundrum model. In the case of a normal hierarchy, all lepton masses and mixing pattern can be naturally reproduced at the TeV scale set by the electroweak constraints, while simultanously satisfy bounds from lepton flavour violation. A nonzero neutrino mixing angle, $\\theta_{13}$, is generic in the scenario, as well as the existence of sub-TeV right-handed Kaluza-Klein neutrinos, which may be searched for at the LHC.
A Covariance NMR Toolbox for MATLAB and OCTAVE
Short, Timothy; Alzapiedi, Leigh; Brüschweiler, Rafael; Snyder, David
2010-01-01
The Covariance NMR Toolbox is a new software suite that provides a streamlined implementation of covariance-based analysis of multi-dimensional NMR data. The Covariance NMR Toolbox uses the MATLAB or, alternatively, the freely available GNU OCTAVE computer language, providing a user-friendly environment in which to apply and explore covariance techniques. Covariance methods implemented in the toolbox described here include direct and indirect covariance processing, 4D covariance, generalized ...
Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation
Directory of Open Access Journals (Sweden)
A. A. Deriglazov
2011-01-01
Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.
NEW KINDS OF DIRAC ENERGY LEVELS AND THEIR CROSSING REGIONS
Institute of Scientific and Technical Information of China (English)
杨树政; 林理彬
2001-01-01
In the space-time of a non-Kerr-Newman black hole, the Dirac energy levels and their crossing regions are inves-tigated. Near the event horizon of the black hole there are crossing Dirac energy levels, which lead to the occurrence of non-thermal radiation.
Tools for analysis of Dirac structures on banach spaces
Iftime, Orest V.; Sandovici, Adrian; Golo, Goran
2005-01-01
Power-conserving and Dirac structures are known as an approach to mathematical modeling of physical engineering systems. In this paper connections between Dirac structures and well known tools from standard functional analysis are presented. The analysis can be seen as a possible starting framework
Pole-Based Approximation of the Fermi-Dirac Function
Institute of Scientific and Technical Information of China (English)
Lin LIN; Jianfeng LU; Lexing YING; Weinan E
2009-01-01
Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal map-ping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.
New exactly solvable periodic potentials for the Dirac equation
Samsonov, B F; Pozdeeva, E O; Glasser, M L
2003-01-01
A new exactly solvable relativistic periodic potential is obtained by the periodic extension of a well-known transparent scalar potential. It is found that the energy band edges are determined by a transcendental equation which is very similar to the corresponding equation for the Dirac Kronig-Penney model. The solutions of the Dirac equation are expressed in terms of elementary functions.
Intertwining technique for the one-dimensional stationary Dirac equation
Nieto, L M; Samsonov, B F; Samsonov, Boris F.
2003-01-01
The technique of differential intertwining operators (or Darboux transformation operators) is systematically applied to the one-dimensional Dirac equation. The following aspects are investigated: factorization of a polynomial of Dirac Hamiltonians, quadratic supersymmetry, closed extension of transformation operators, chains of transformations, and finally particular cases of pseudoscalar and scalar potentials. The method is widely illustrated by numerous examples.
Wigner function for the Dirac oscillator in spinor space
Institute of Scientific and Technical Information of China (English)
马凯; 王剑华; 袁毅
2011-01-01
The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space.
Tunneling of Dirac Particles from Kaluza-Klein Black Hole
Institute of Scientific and Technical Information of China (English)
ZENG Xiao-Xiong; LI Qiang
2009-01-01
Applying the fermions tunneling method, proposed by Kerner and Mann recently, we discuss the tunneling characteristics of Dirac particles from the stationary Kaluza-Klein black hole. To choose Gamma matrix conveniently and avoid the ergosphere dragging effect, we perform it in the dragging coordinate frame. The result shows that Hawking temperature in this case also can be reproduced by the general Dirac equation.
The Dirac oscillator in a rotating frame of reference
Strange, P.; Ryder, L. H.
2016-10-01
The Dirac equation in a rotating frame of reference is derived from first principles within a linear approximation. This equation is employed to exhibit an equivalence between a particle in a Dirac oscillator potential and a free particle in a rotating frame of reference. A zero-point contribution to the energy of the particle, resulting from its spin, is also noted.
Neutrino masses from a pseudo-Dirac Bino
Coloma, Pilar
2016-01-01
We show that, in $U(1)_R$-symmetric supersymmetric models, the bino and its Dirac partner (the singlino) can play the role of right-handed neutrinos and generate the neutrino masses and mixing, without the need for bilinear or trilinear R-parity violating operators. The two particles form a pseudo-Dirac pair, the `bi$\
Dirac oscillator and nonrelativistic Snyder-de Sitter algebra
Energy Technology Data Exchange (ETDEWEB)
Stetsko, M. M., E-mail: mstetsko@gmail.com, E-mail: mykola@ktf.franko.lviv.ua [Department of Theoretical Physics, Ivan Franko National University of Lviv, 12 Drahomanov Str., Lviv, UA-79005 (Ukraine)
2015-01-15
Three dimensional Dirac oscillator was considered in space with deformed commutation relations known as Snyder-de Sitter algebra. Snyder-de Sitter commutation relations give rise to appearance of minimal uncertainties in position as well as in momentum. To derive energy spectrum and wavefunctions of the Dirac oscillator, supersymmetric quantum mechanics and shape invariance technique were applied.
On the Origin of Gravitational Lorentz Covariance
Khoury, Justin; Tolley, Andrew J
2013-01-01
We provide evidence that general relativity is the unique spatially covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of general relativity, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector.
Treatment Effects with Many Covariates and Heteroskedasticity
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Jansson, Michael; Newey, Whitney K.
propose a new heteroskedasticity consistent standard error formula that is fully automatic and robust to both (conditional) heteroskedasticity of unknown form and the inclusion of possibly many covariates. We apply our findings to three settings: (i) parametric linear models with many covariates, (ii...
Dirac particle, gravity, and inertial effects
Huang, Justin C.
Dirac's equation with gravity for a noninertial observer is derived using local coordinate methods. Calculations for the equation are carried out to second order in the local coordinates. For easy application to interference experiments, the Schrödinger form of the Dirac equation with a well defined Hamiltonian in the local coordinates is presented. The presence of gravitational weighting factors in the scalar product lead to hermitian and antihermitian sectors for the Hamiltonian. The antihermitian part depends directly on the curvature and vanishes for zero curvature. The hermitian part which is important for the determination of phases is studied in detail and the nonrelativistic case is obtained by the application of three successive Foldy-Wouthuysen transformations. The results also give local currents and interactions which have pure inertial, pure gravity and mixed sectors. The pure inertial terms are the ones obtained by Hehl and Ni. The pure gravity and mixed sectors have contributions which are electric, magnetic and double magnetic in character. The focus is on the curvature contributions. Some are well within reach of the anticipated accuracy of atomic interferometers currently under consideration and other terms may follow if improvements can be made.
Effect modification by time-varying covariates.
Robins, James M; Hernán, Miguel A; Rotnitzky, Andrea
2007-11-01
Marginal structural models (MSMs) allow estimation of effect modification by baseline covariates, but they are less useful for estimating effect modification by evolving time-varying covariates. Rather, structural nested models (SNMs) were specifically designed to estimate effect modification by time-varying covariates. In their paper, Petersen et al. (Am J Epidemiol 2007;166:985-993) describe history-adjusted MSMs as a generalized form of MSM and argue that history-adjusted MSMs allow a researcher to easily estimate effect modification by time-varying covariates. However, history-adjusted MSMs can result in logically incompatible parameter estimates and hence in contradictory substantive conclusions. Here the authors propose a more restrictive definition of history-adjusted MSMs than the one provided by Petersen et al. and compare the advantages and disadvantages of using history-adjusted MSMs, as opposed to SNMs, to examine effect modification by time-dependent covariates. PMID:17875581
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
Energy Technology Data Exchange (ETDEWEB)
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.
Abnormal Dirac point shift in graphene field-effect transistors
Wang, Shaoqing; Jin, Zhi; Huang, Xinnan; Peng, Songang; Zhang, Dayong; Shi, Jingyuan
2016-09-01
The shift of Dirac point in graphene devices is of great importance, influencing the reliability and stability. Previous studies show the Dirac point shifts slightly to be more positive when the drain bias increases. Here, an abnormal shift of Dirac point is observed in monolayer graphene field effect transistors by investigating the transfer curves under various drain biases. The voltage of Dirac point shifts positively at first and then decreases rapidly when the channel electric field exceeds some threshold. The negative Dirac point shift is attributed to holes injection into oxide layer and captured by the oxide traps under high channel electric field. This can also be demonstrated through a simple probability model and the graphene Raman spectra before and after the DC measurement.
The Clifford algebra of physical space and Dirac theory
Vaz, Jayme, Jr.
2016-09-01
The claim found in many textbooks that the Dirac equation cannot be written solely in terms of Pauli matrices is shown to not be completely true. It is only true as long as the term β \\psi in the usual Dirac factorization of the Klein-Gordon equation is assumed to be the product of a square matrix β and a column matrix ψ. In this paper we show that there is another possibility besides this matrix product, in fact a possibility involving a matrix operation, and show that it leads to another possible expression for the Dirac equation. We show that, behind this other possible factorization is the formalism of the Clifford algebra of physical space. We exploit this fact, and discuss several different aspects of Dirac theory using this formalism. In particular, we show that there are four different possible sets of definitions for the parity, time reversal, and charge conjugation operations for the Dirac equation.
The Clifford algebra of physical space and Dirac theory
Vaz, Jayme, Jr.
2016-09-01
The claim found in many textbooks that the Dirac equation cannot be written solely in terms of Pauli matrices is shown to not be completely true. It is only true as long as the term β \\psi in the usual Dirac factorization of the Klein–Gordon equation is assumed to be the product of a square matrix β and a column matrix ψ. In this paper we show that there is another possibility besides this matrix product, in fact a possibility involving a matrix operation, and show that it leads to another possible expression for the Dirac equation. We show that, behind this other possible factorization is the formalism of the Clifford algebra of physical space. We exploit this fact, and discuss several different aspects of Dirac theory using this formalism. In particular, we show that there are four different possible sets of definitions for the parity, time reversal, and charge conjugation operations for the Dirac equation.
Tunneling times with covariant measurements
Kiukas, J; Werner, R F; 10.1007/s10701-009-9275-z
2009-01-01
We consider the time delay of massive, non-relativistic, one-dimensional particles due to a tunneling potential. In this setting the well-known Hartman effect asserts that often the sub-ensemble of particles going through the tunnel seems to cross the tunnel region instantaneously. An obstacle to the utilization of this effect for getting faster signals is the exponential damping by the tunnel, so there seems to be a trade-off between speedup and intensity. In this paper we prove that this trade-off is never in favor of faster signals: the probability for a signal to reach its destination before some deadline is always reduced by the tunnel, for arbitrary incoming states, arbitrary positive and compactly supported tunnel potentials, and arbitrary detectors. More specifically, we show this for several different ways to define ``the same incoming state'' and ''the same detector'' when comparing the settings with and without tunnel potential. The arrival time measurements are expressed in the time-covariant appr...
International Nuclear Information System (INIS)
A technique for ensuring the rapid correction of both amplitude and offset errors in the deflectional movement of an electron beam along an X-ray emissive target is described. The movement is monitored at at least two positions during a sweep and differences, between the two movements and a desired movement, at these positions are combined in different proportions to produce a corrective servo signal. Such arrangements find application, for example, in computerised tomographic scanners. (author)
Analogies and correspondences between variograms and covariance functions
Gneiting, Tilmann; Sasvári, Zoltán; Schlather, Martin
2001-01-01
Variograms and covariance functions are key tools in geostatistics. However, various properties, characterizations, and decomposition theorems have been established for covariance functions only. We present analogous results for variograms and explore the connections with covariance functions. Our findings include criteria for covariance functions on intervals, and we apply them to exponential models, fractional Brownian motion, and locally polynomial covariances. In part...
The covariate-adjusted frequency plot.
Holling, Heinz; Böhning, Walailuck; Böhning, Dankmar; Formann, Anton K
2016-04-01
Count data arise in numerous fields of interest. Analysis of these data frequently require distributional assumptions. Although the graphical display of a fitted model is straightforward in the univariate scenario, this becomes more complex if covariate information needs to be included into the model. Stratification is one way to proceed, but has its limitations if the covariate has many levels or the number of covariates is large. The article suggests a marginal method which works even in the case that all possible covariate combinations are different (i.e. no covariate combination occurs more than once). For each covariate combination the fitted model value is computed and then summed over the entire data set. The technique is quite general and works with all count distributional models as well as with all forms of covariate modelling. The article provides illustrations of the method for various situations and also shows that the proposed estimator as well as the empirical count frequency are consistent with respect to the same parameter.
Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion
Energy Technology Data Exchange (ETDEWEB)
Becker-Bender, Julia
2012-12-17
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
Forecasting Covariance Matrices: A Mixed Frequency Approach
DEFF Research Database (Denmark)
Halbleib, Roxana; Voev, Valeri
This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...... matrix dynamics. Our empirical results show that the new mixing approach provides superior forecasts compared to multivariate volatility specifications using single sources of information....
Estimation of Low-Rank Covariance Function
Koltchinskii, Vladimir; Lounici, Karim; Tsybakov, Alexander B.
2015-01-01
We consider the problem of estimating a low rank covariance function $K(t,u)$ of a Gaussian process $S(t), t\\in [0,1]$ based on $n$ i.i.d. copies of $S$ observed in a white noise. We suggest a new estimation procedure adapting simultaneously to the low rank structure and the smoothness of the covariance function. The new procedure is based on nuclear norm penalization and exhibits superior performances as compared to the sample covariance function by a polynomial factor in the sample size $n$...
Wang, Yong-Jian; Shi, Xue-Ping; Wu, Xiao-Jing; Meng, Xue-Feng; Wang, Peng-Cheng; Zhou, Zhi-Xiang; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
The availabilities of light and soil water resources usually spatially co-vary in natural habitats, and the spatial pattern of such co-variation may affect the benefits of physiological integration between connected ramets of clonal plants. In a greenhouse experiment, we grew connected or disconnected ramet pairs [consisting of a proximal (relatively old) and a distal (relative young) ramet] of a rhizomatous herb Iris japonica in four heterogeneous environments differing in patch arrangement (reciprocal vs. parallel patchiness of light and soil water) and patch contrast (high vs. low contrast of light and water). Biomass of the proximal part, distal part and clonal fragment of I. japonica were all significantly greater in the intact than in the severed treatment, in the parallel than in the reciprocal patchiness treatment and in the high than in the low contrast treatment, but the effect of severing the connection between ramet pairs did not depend on patch arrangement or contrast. Severing the connection decreased number of ramets of the distal part and the clonal fragment in the parallel patchiness arrangement, but not in the reciprocal patchiness arrangement. Therefore, the spatial arrangement of resource patches can alter the effects of clonal integration on asexual reproduction in I. japonica. PMID:27759040
Topological Insulators Dirac Equation in Condensed Matters
Shen, Shun-Qing
2012-01-01
Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...
Chaos, Dirac observables and constraint quantization
Dittrich, Bianca; Koslowski, Tim A; Nelson, Mike I
2015-01-01
There is good evidence that full general relativity is non-integrable or even chaotic. We point out the severe repercussions: differentiable Dirac observables and a reduced phase space do not exist in non-integrable constrained systems and are thus unlikely to occur in a generic general relativistic context. Instead, gauge invariant quantities generally become discontinuous, thus not admitting Poisson-algebraic structures and posing serious challenges to a quantization. Non-integrability also renders the paradigm of relational dynamics cumbersome, thereby straining common interpretations of the dynamics. We illustrate these conceptual and technical challenges with simple toy models. In particular, we exhibit reparametrization invariant models which fail to be integrable and, as a consequence, can either not be quantized with standard methods or lead to sick quantum theories without a semiclassical limit. These troubles are qualitatively distinct from semiclassical subtleties in unconstrained quantum chaos and...
Massive mesons in Weyl-Dirac theory
Mirabotalebi, S.; Ahmadi, F.; Salehi, H.
2008-01-01
In order to study the mass generation of the vector fields in the framework of a conformal invariant gravitational model, the Weyl-Dirac theory is considered. The mass of the Weyl’s meson fields plays a principal role in this theory, it connects basically the conformal and gauge symmetries. We estimate this mass by using the large-scale characteristics of the observed universe. To do this we firstly specify a preferred conformal frame as a cosmological frame, then in this frame, we introduce an exact possible solution of the theory. We also study the dynamical effect of the massive vector meson fields on the trajectories of an elementary particle. We show that a local change of the cosmological frame leads to a Hamilton-Jacobi equation describing a particle with an adjustable mass. The dynamical effect of the massive vector meson field presents itself in the form of a correction term for the mass of the particle.
Lanczos's equation to replace Dirac's equation ?
Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre
1994-01-01
Lanczos's quaternionic interpretation of Dirac's equation provides a unified description for all elementary particles of spin 0, 1/2, 1, and 3/2. The Lagrangian formulation given by Einstein and Mayer in 1933 predicts two main classes of solutions. (1) Point like partons which come in two families, quarks and leptons. The correct fractional or integral electric and baryonic charges, and zero mass for the neutrino and the u-quark, are set by eigenvalue equations. The electro-weak interaction of the partons is the same as with the Standard model, with the same two free parameters: e and sin^2 theta. There is no need for a Higgs symmetry breaking mechanism. (2) Extended hadrons for which there is no simple eigenvalue equation for the mass. The strong interaction is essentially non-local. The pion mass and pion-nucleon coupling constant determine to first order the nucleon size, mass and anomalous magnetic moment.
DIRAC reliable data management for LHCb
Smith, A C
2008-01-01
DIRAC, LHCb's Grid Workload and Data Management System, utilizes WLCG resources and middleware components to perform distributed computing tasks satisfying LHCb's Computing Model. The Data Management System (DMS) handles data transfer and data access within LHCb. Its scope ranges from the output of the LHCb Online system to Grid-enabled storage for all data types. It supports metadata for these files in replica and bookkeeping catalogues, allowing dataset selection and localization. The DMS controls the movement of files in a redundant fashion whilst providing utilities for accessing all metadata. To do these tasks effectively the DMS requires complete self integrity between its components and external physical storage. The DMS provides highly redundant management of all LHCb data to leverage available storage resources and to manage transient errors in underlying services. It provides data driven and reliable distribution of files as well as reliable job output upload, utilizing VO Boxes at LHCb Tier1 sites ...
On regularizations of the Dirac delta distribution
Hosseini, Bamdad; Nigam, Nilima; Stockie, John M.
2016-01-01
In this article we consider regularizations of the Dirac delta distribution with applications to prototypical elliptic and hyperbolic partial differential equations (PDEs). We study the convergence of a sequence of distributions SH to a singular term S as a parameter H (associated with the support size of SH) shrinks to zero. We characterize this convergence in both the weak-* topology of distributions and a weighted Sobolev norm. These notions motivate a framework for constructing regularizations of the delta distribution that includes a large class of existing methods in the literature. This framework allows different regularizations to be compared. The convergence of solutions of PDEs with these regularized source terms is then studied in various topologies such as pointwise convergence on a deleted neighborhood and weighted Sobolev norms. We also examine the lack of symmetry in tensor product regularizations and effects of dissipative error in hyperbolic problems.
Absorbing layers for the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Pinaud, Olivier, E-mail: pinaud@math.colostate.edu
2015-05-15
This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.
From "Dirac combs" to Fourier-positivity
Giraud, Bertrand G
2015-01-01
Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the "Dirac comb" distribution and of its tensor products in higher dimensions lead to Poisson resummation, allowing for a useful approximation formula of a Fourier transform in terms of a limited number of terms. A connection with the Bochner theorem on positive definiteness of Fourier-positive functions is discussed. As a practical application, we find simple and rapid analytic algorithms for checking Fourier-positivity in 1- and (radial) 2-dimensions among a large variety of real positive functions. This may provide a step towards a classification of positive positive-definite functions.
Moduli of weighted hyperplane arrangements
Lahoz, Martí; Macrí, Emanuele; Stellari, Paolo
2015-01-01
This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces play a crucial role in Number Theory, String Theory, and Quantum Field Theory – to mention just a few. In particular, the notion of compactification of moduli spaces has been crucial for solving various open problems and long-standing conjectures. Further, the book reports on compactification techniques for moduli spaces in a large class where computations are possible, namely that of weighted stable hyperplane arrangements.
Arrangement for selectively irradiating webs
International Nuclear Information System (INIS)
The arrangement for selectively irradiating a web includes a perforated band of a radiation impermeable substance which is guided in an endless path via a pair of guide rollers and has two juxtaposed runs in this path. A take-up roller conveys a web of material past one of the runs at a side thereof remote from the other run, the direction of movement of the web being other than parallel to that of the band and, preferably, normal thereto. An electron accelerator is provided at the far side of the run remote from the web and is effective for directing a radiation beam at the web through the perforations
Strangest man the hidden life of Paul Dirac, quantum genius
Farmelo, Graham
2009-01-01
Paul Dirac was among the great scientific geniuses of the modern age. One of the discoverers of quantum mechanics, the most revolutionary theory of the past century, his contributions had a unique insight, eloquence, clarity, and mathematical power. His prediction of antimatter was one of the greatest triumphs in the history of physics. One of Einstein's most admired colleagues, Dirac was in 1933 the youngest theoretician ever to win the Nobel Prize in physics. Dirac's personality is legendary. He was an extraordinarily reserved loner, relentlessly literal-minded and appeared to have no empath
Strain-Engineering the Gauge Potential of Dirac fermions in PECVD-grown Graphene
Hsu, Chen-Chih; Teague, Marcus; Wang, Jaiqing; Yeh, Nai-Chang
Non-trivial strain can induce pseudo-magnetic fields in graphene so that the electronic properties of Dirac fermions can be tuned by controlling the strain on graphene. Here we employ nearly strain-free single-domain PECVD-graphene1 to induce controlled strain by placing graphene on nanostructured substrates. Strain-induced gauge potentials and pseudo-magnetic fields can be manifested by the local tunneling conductance peaks at quantized energies.2,3 Additionally, pseudo-magnetic field-induced local spontaneous time-reversal symmetry breaking can be revealed by spatially alternating presence and absence of the zero mode in the tunneling conductance spectra.2,3 We also employ molecular dynamics simulations to determine the spatial distribution of the pseudo-magnetic field for a given nanostructure. We find that a tetrahedron-like nanostructure can be an effective ``valley splitter'' to separate the trajectories of Dirac fermions of opposite pseudo-spins. Proper design and arrangement of several valley filters can function as a ``valley propagator'' to guide valley-polarized currents. We plan to verify the valley Hall effect associated with a valley splitter and to assess the feasibility of realistic valleytronic applications.
Modular covariance, PCT, spin and statistics
Guido, D
1995-01-01
The notion of modular covariance is reviewed and the reconstruction of the Poincar\\'e group extended to the low-dimensional case. The relations with the PCT symmetry and the Spin and Statistics theorem are described.
Covariant Vertex Operators for Cosmic Strings
Skliros, Dimitri P
2009-01-01
We construct covariant vertex operators for high mass bosonic F-string states and present the first realization of coherent open and closed string states in the covariant gauge. We relate a suitable subclass of the vertex operators constructed to both general and specific classical string solutions. In the process we derive the explicit map from light-cone gauge string states (where the physical interpretation is more direct) to the fully covariant normal ordered vertex operators (where the physical interpretation has hitherto been somewhat obscured by the presence of ghosts, but which is nevertheless more appropriate for amplitude computations in general) by making use of DDF operators. In addition to coherent states, we construct quasi-classical states, in particular monomial and polynomial vertex operators in both lightcone and covariant gauge which lie beyond the leading Regge trajectory and extract via factorization vertex operators produced in tachyon-tachyon, tachyon-massless and massless-massless stri...
Geometric methods for estimation of structured covariances
Ning, Lipeng; Georgiou, Tryphon
2011-01-01
We consider problems of estimation of structured covariance matrices, and in particular of matrices with a Toeplitz structure. We follow a geometric viewpoint that is based on some suitable notion of distance. To this end, we overview and compare several alternatives metrics and divergence measures. We advocate a specific one which represents the Wasserstein distance between the corresponding Gaussians distributions and show that it coincides with the so-called Bures/Hellinger distance between covariance matrices as well. Most importantly, besides the physically appealing interpretation, computation of the metric requires solving a linear matrix inequality (LMI). As a consequence, computations scale nicely for problems involving large covariance matrices, and linear prior constraints on the covariance structure are easy to handle. We compare this transportation/Bures/Hellinger metric with the maximum likelihood and the Burg methods as to their performance with regard to estimation of power spectra with spectr...
The Covariant Picard Groupoid in Differential Geometry
Waldmann, Stefan
2005-01-01
In this article we discuss some general results on the covariant Picard groupoid in the context of differential geometry and interpret the problem of lifting Lie algebra actions to line bundles in the Picard groupoid approach.
Characteristic Polynomials of Sample Covariance Matrices
Kösters, Holger
2009-01-01
We investigate the second-order correlation function of the characteristic polynomial of a sample covariance matrix. Starting from an explicit formula for the generating function, we re-obtain several well-known kernels from random matrix theory.
Covariance Spectroscopy for Fissile Material Detection
Energy Technology Data Exchange (ETDEWEB)
Rusty Trainham, Jim Tinsley, Paul Hurley, Ray Keegan
2009-06-02
Nuclear fission produces multiple prompt neutrons and gammas at each fission event. The resulting daughter nuclei continue to emit delayed radiation as neutrons boil off, beta decay occurs, etc. All of the radiations are causally connected, and therefore correlated. The correlations are generally positive, but when different decay channels compete, so that some radiations tend to exclude others, negative correlations could also be observed. A similar problem of reduced complexity is that of cascades radiation, whereby a simple radioactive decay produces two or more correlated gamma rays at each decay. Covariance is the usual means for measuring correlation, and techniques of covariance mapping may be useful to produce distinct signatures of special nuclear materials (SNM). A covariance measurement can also be used to filter data streams because uncorrelated signals are largely rejected. The technique is generally more effective than a coincidence measurement. In this poster, we concentrate on cascades and the covariance filtering problem.
Evaluation of covariance for fission neutron spectra
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Ohsawa, Takaaki; Shibata, Keiichi
1999-02-01
A covariance evaluation system for the evaluated nuclear data library JENDL-3.2 was established, and the covariance data for fission neutron spectra of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu were evaluated. Two methods were employed to evaluate the covariance. One is based on the experimental data, and the other is based on a model calculation including some kinds of renormalizations. The latter technique was adopted for the covariance evaluation of the fission neutron spectra in JENDL-3.2. We performed an adjustment of the evaluated fission neutron spectrum of {sup 235}U using the spectrum averaged cross sections for the {sup 27}Al(n, p), {sup 46,47,48}Ti(n, p), {sup 54,56}Fe(n, p), {sup 58}Ni(n, p), {sup 90}Zr(n, 2n) reactions. The adjusted spectrum integrated over energy was found to be unity. (author)
Red'kov, V M
2011-01-01
Tetrad based equation for Dirac-K\\"{a}hler particle is solved in spherical coordinates in the flat Minkocski space-time. Spherical solutions of boson type (J =0,1,2,...) are constructed. After performing a special transformation over spherical boson solutions of the Dirac-K\\"{a}hler equation, 4 \\times 4-matrices U(x) \\Longrightarrow V(x), simple linear expansions of the four rows of new representativeof the Dirac--K\\"{a}hler field V(x) in terms of spherical fermion solutions \\Psi_{i}(x) of the four ordinary Dirac equations have been derived. However, this fact cannot be interpreted as the possibility not to distinguish between the Dirac-K\\"{a}hler field and the system four Dirac fermions. The main formal argument is that the special transformation (I \\otimes S(x)) involved does not belong to the group of tetrad local gauge transformation for Dirac-K\\"{a}hler field, 2-rank bispinor under the Lorentz group. Therefore, the linear expansions between boson and fermion functions are not gauge invariant under the gr...
Functional CLT for sample covariance matrices
Bai, Zhidong; Zhou, Wang; 10.3150/10-BEJ250
2010-01-01
Using Bernstein polynomial approximations, we prove the central limit theorem for linear spectral statistics of sample covariance matrices, indexed by a set of functions with continuous fourth order derivatives on an open interval including $[(1-\\sqrt{y})^2,(1+\\sqrt{y})^2]$, the support of the Mar\\u{c}enko--Pastur law. We also derive the explicit expressions for asymptotic mean and covariance functions.
Covariant action for type IIB supergravity
Sen, Ashoke
2016-07-01
Taking clues from the recent construction of the covariant action for type II and heterotic string field theories, we construct a manifestly Lorentz covariant action for type IIB supergravity, and discuss its gauge fixing maintaining manifest Lorentz invariance. The action contains a (non-gravitating) free 4-form field besides the usual fields of type IIB supergravity. This free field, being completely decoupled from the interacting sector, has no physical consequence.
Covariate analysis of bivariate survival data
Energy Technology Data Exchange (ETDEWEB)
Bennett, L.E.
1992-01-01
The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methods have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.
Representations of Inverse Covariances by Differential Operators
Institute of Scientific and Technical Information of China (English)
Qin XU
2005-01-01
In the cost function of three- or four-dimensional variational data assimilation, each term is weighted by the inverse of its associated error covariance matrix and the background error covariance matrix is usually much larger than the other covariance matrices. Although the background error covariances are traditionally normalized and parameterized by simple smooth homogeneous correlation functions, the covariance matrices constructed from these correlation functions are often too large to be inverted or even manipulated. It is thus desirable to find direct representations of the inverses of background errorcorrelations. This problem is studied in this paper. In particular, it is shown that the background term can be written into ∫ dx|Dv(x)|2, that is, a squared L2 norm of a vector differential operator D, called the D-operator, applied to the field of analysis increment v(x). For autoregressive correlation functions, the Doperators are of finite orders. For Gaussian correlation functions, the D-operators are of infinite order. For practical applications, the Gaussian D-operators must be truncated to finite orders. The truncation errors are found to be small even when the Gaussian D-operators are truncated to low orders. With a truncated D-operator, the background term can be easily constructed with neither inversion nor direct calculation of the covariance matrix. D-operators are also derived for non-Gaussian correlations and transformed into non-isotropic forms.
Sequential BART for imputation of missing covariates.
Xu, Dandan; Daniels, Michael J; Winterstein, Almut G
2016-07-01
To conduct comparative effectiveness research using electronic health records (EHR), many covariates are typically needed to adjust for selection and confounding biases. Unfortunately, it is typical to have missingness in these covariates. Just using cases with complete covariates will result in considerable efficiency losses and likely bias. Here, we consider the covariates missing at random with missing data mechanism either depending on the response or not. Standard methods for multiple imputation can either fail to capture nonlinear relationships or suffer from the incompatibility and uncongeniality issues. We explore a flexible Bayesian nonparametric approach to impute the missing covariates, which involves factoring the joint distribution of the covariates with missingness into a set of sequential conditionals and applying Bayesian additive regression trees to model each of these univariate conditionals. Using data augmentation, the posterior for each conditional can be sampled simultaneously. We provide details on the computational algorithm and make comparisons to other methods, including parametric sequential imputation and two versions of multiple imputation by chained equations. We illustrate the proposed approach on EHR data from an affiliated tertiary care institution to examine factors related to hyperglycemia. PMID:26980459
'Chrysanthemum petal' arrangements of silver nano wires.
Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi
2014-12-01
Highly ordered 'Chrysanthemum petal' arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these 'Chrysanthemum petal' arrangements was discussed specifically. These 'Chrysanthemum petal' arrangements will be helpful to increase the electrical conductivity of silver nano wires films. PMID:25397618
Covariance Modifications to Subspace Bases
Energy Technology Data Exchange (ETDEWEB)
Harris, D B
2008-11-19
Adaptive signal processing algorithms that rely upon representations of signal and noise subspaces often require updates to those representations when new data become available. Subspace representations frequently are estimated from available data with singular value (SVD) decompositions. Subspace updates require modifications to these decompositions. Updates can be performed inexpensively provided they are low-rank. A substantial literature on SVD updates exists, frequently focusing on rank-1 updates (see e.g. [Karasalo, 1986; Comon and Golub, 1990, Badeau, 2004]). In these methods, data matrices are modified by addition or deletion of a row or column, or data covariance matrices are modified by addition of the outer product of a new vector. A recent paper by Brand [2006] provides a general and efficient method for arbitrary rank updates to an SVD. The purpose of this note is to describe a closely-related method for applications where right singular vectors are not required. This note also describes the SVD updates to a particular scenario of interest in seismic array signal processing. The particular application involve updating the wideband subspace representation used in seismic subspace detectors [Harris, 2006]. These subspace detectors generalize waveform correlation algorithms to detect signals that lie in a subspace of waveforms of dimension d {ge} 1. They potentially are of interest because they extend the range of waveform variation over which these sensitive detectors apply. Subspace detectors operate by projecting waveform data from a detection window into a subspace specified by a collection of orthonormal waveform basis vectors (referred to as the template). Subspace templates are constructed from a suite of normalized, aligned master event waveforms that may be acquired by a single sensor, a three-component sensor, an array of such sensors or a sensor network. The template design process entails constructing a data matrix whose columns contain the
Higher-order Dirac solitons in binary waveguide arrays
International Nuclear Information System (INIS)
We study optical analogues of higher-order Dirac solitons (HODSs) in binary waveguide arrays. Like higher-order solitons obtained from the well-known nonlinear Schrödinger equation governing the pulse propagation in an optical fiber, these HODSs have amplitude profiles which are numerically shown to be periodic over large propagation distances. At the same time, HODSs possess some unique features. Firstly, the period of a HODS depends on its order parameter. Secondly, the discrete nature in binary waveguide arrays imposes the upper limit on the order parameter of HODSs. Thirdly, the order parameter of HODSs can vary continuously in a certain range. - Highlights: • Higher-order Dirac solitons in nonlinear binary waveguide arrays are numerically demonstrated. • Amplitude profiles of higher-order Dirac solitons are periodic during propagation. • The period of higher-order Dirac solitons decreases when the soliton order increases
Science in culture the life of Paul Dirac
Abbott, A
2000-01-01
The life of Paul Dirac has been used as the theme of a show held underground at the Delphi experiment at CERN. The 'Oracle of Delphi' was created as an outreach project and has been extremely successful (1 p).
All you need to know about the Dirac equation
Weinberger, Peter
2008-01-01
Abstract A very brief introduction is given to all that is needed to appreciate the formal structure of the Dirac equation and why -- without destroying this structure -- it cannot be reduced to a Paul-Schrodinger type equation.
Spawning rings of exceptional points out of Dirac cones
Zhen, Bo; Igarashi, Yuichi; Lu, Ling; Kaminer, Ido; Pick, Adi; Chua, Song-Liang; Joannopoulos, John D; Soljačić, Marin
2015-01-01
The Dirac cone underlies many unique electronic properties of graphene and topological insulators, and its band structure--two conical bands touching at a single point--has also been realized for photons in waveguide arrays, atoms in optical lattices, and through accidental degeneracy. Deformations of the Dirac cone often reveal intriguing properties; an example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone into isolated Landau levels. A seemingly unrelated phenomenon is the exceptional point, also known as the parity-time symmetry breaking point, where two resonances coincide in both their positions and widths. Exceptional points lead to counter-intuitive phenomena such as loss-induced transparency, unidirectional transmission or reflection, and lasers with reversed pump dependence or single-mode operation. These two fields of research are in fact connected: here we discover the ability of a Dirac cone to evolve into a ring of exceptional points, which we call an "exceptio...
Common Origin of Neutrino Mass, Dark Matter and Dirac Leptogenesis
Borah, Debasish
2016-01-01
We study the possibility of generating tiny Dirac neutrino masses at one loop level through the \\textit{scotogenic} mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Plan...
A Study of the Dirac-Sidharth Equation
Andriambololona, Raoelina; Rakotonirina, Christian
2009-01-01
The Dirac-Siddharth Equation has been constructed from the Siddharth hamiltonian by quantization of the energy and momentum in Pauli algebra. We have solved this equation by using tensor product of matrices.
Dirac-Point Solitons in Nonlinear Optical Lattices
Xie, Kang; Boardman, Allan D; Guo, Qi; Shi, Zhiwei; Jiang, Haiming; Hu, Zhijia; Zhang, Wei; Mao, Qiuping; Hu, Lei; Yang, Tianyu; Wen, Fei; Wang, Erlei
2015-01-01
The discovery of a new type of solitons occuring in periodic systems without photonic bandgaps is reported. Solitons are nonlinear self-trapped wave packets. They have been extensively studied in many branches of physics. Solitons in periodic systems, which have become the mainstream of soliton research in the past decade, are localized states supported by photonic bandgaps. In this Letter, we report the discovery of a new type of solitons located at the Dirac point beyond photonic bandgaps. The Dirac point is a conical singularity of a photonic band structure where wave motion obeys the famous Dirac equation. These new solitons are sustained by the Dirac point rather than photonic bandgaps, thus provides a sort of advance in conceptual understanding over the traditional gap solitons. Apart from their theoretical impact within soliton theory, they have many potential uses because such solitons have dramatic stability characteristics and are possible in both Kerr material and photorefractive crystals that poss...
Numerical integration of Fermi-Dirac and Voigt functions
Energy Technology Data Exchange (ETDEWEB)
Kozhukhovskii, A.D.; Simonzhenkov, S.D.; Litvin, A.I.
1994-11-25
Two numerical integration methods are proposed for Fermi-Dirac functions, which play a major role in the physics of metals and semiconductors, and for Voigt functions, which describe spectral line shapes.
Dirac Operator on Complex Manifolds and Supersymmetric Quantum Mechanics
Ivanov, E A
2010-01-01
We explore a new simple N=2 SQM model describing the motion over complex manifolds in external gauge fields. The nilpotent supercharge Q of the model can be interpreted as a (twisted) exterior holomorphic derivative, such that the model realizes the twisted Dolbeault complex. The sum Q + \\bar Q can be interpreted as the Dirac operator: the standard Dirac operator if the manifold is K\\"ahler and a certain "truncated" Dirac operator for a generic complex manifold. Focusing on the K\\"ahler case, we give new simple physical proofs of the two mathematical facts: (i) the equivalence of the twisted Dirac and twisted Dolbeault complexes and (ii) the Atiyah-Singer theorem.
LHCb: Analysing DIRAC's Behavior using Model Checking with Process Algebra
Remenska, Daniela
2012-01-01
DIRAC is the Grid solution designed to support LHCb production activities as well as user data analysis. Based on a service-oriented architecture, DIRAC consists of many cooperating distributed services and agents delivering the workload to the Grid resources. Services accept requests from agents and running jobs, while agents run as light-weight components, fulfilling specific goals. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check for changes in the service states, and react to these accordingly. A characteristic of DIRAC's architecture is the relatively low complexity in the logic of each agent; the main source of complexity lies in their cooperation. These agents run concurrently, and communicate using the services' databases as a shared memory for synchronizing the state transitions. Although much effort is invested in making DIRAC reliable, entities occasionally get into inconsistent states, leadi...
The connection between Dirac dynamic and parity symmetry
Villalobos, C H Coronado
2016-01-01
Dirac spinors are important objects in the current literature, the algebraic structure presented in the text-books is a general method to write it, however, not unique. The purpose of the present work is to show an alternative approach to construct Dirac spinors, considering the interchange between the Lorentz representation space (1/2,0) and (0,1/2) made by the "Magic of Pauli matrices" and not by parity, as commonly it was thought. As it is well known, parity operator is related with the Dirac dynamics. The major focus is to establish the relation between Dirac dynamics with parity operator, the reverse path shown in L. D. Speran\\c{c}a (2014).
Dirac mass dynamics in a multidimensional nonlocal parabolic equation
Lorz, Alexander; Perthame, Benoit
2010-01-01
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses co-exist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a structure of gradient flow. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models darwinian evolution.
Dirac equation in low dimensions: The factorization method
Sánchez-Monroy, J. A.; Quimbay, C. J.
2014-11-01
We present a general approach to solve the (1 + 1) and (2 + 1) -dimensional Dirac equations in the presence of static scalar, pseudoscalar and gauge potentials, for the case in which the potentials have the same functional form and thus the factorization method can be applied. We show that the presence of electric potentials in the Dirac equation leads to two Klein-Gordon equations including an energy-dependent potential. We then generalize the factorization method for the case of energy-dependent Hamiltonians. Additionally, the shape invariance is generalized for a specific class of energy-dependent Hamiltonians. We also present a condition for the absence of the Klein paradox (stability of the Dirac sea), showing how Dirac particles in low dimensions can be confined for a wide family of potentials.
Monte-Carlo study of Dirac semimetals phase diagram
Braguta, V V; Kotov, A Yu; Nikolaev, A A
2016-01-01
In this paper the phase diagram of Dirac semimetals is studied within lattice Monte-Carlo simulation. In particular, we concentrate on the dynamical chiral symmetry breaking which results in semimetal/insulator transition. Using numerical simulation we determined the values of the critical coupling constant of the semimetal/insulator transition for different values of the anisotropy of the Fermi velocity. This measurement allowed us to draw tentative phase diagram for Dirac semimetals. It turns out that within the Dirac model with Coulomb interaction both Na$_3$Bi and Cd$_3$As$_2$ known experimentally to be Dirac semimetals would lie deeply in the insulating region of the phase diagram. It probably shows a decisive role of screening of the interelectron interaction in real materials, similar to the situation in graphene.
RKKY interaction of magnetic impurities in Dirac and Weyl semimetals
Chang, Hao-Ran; Zhou, Jianhui; Wang, Shi-Xiong; Shan, Wen-Yu; Xiao, Di
2015-12-01
We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities in both Dirac and Weyl semimetals (SMs). We find that the internode process, as well as the unique three-dimensional spin-momentum locking, has significant influences on the RKKY interaction, resulting in both a Heisenberg and an Ising term, and an additional Dzyaloshinsky-Moriya term if the inversion symmetry is absent. These interactions can lead to rich spin textures and possible ferromagnetism in Dirac and time-reversal symmetry-invariant Weyl SMs. The effect of anisotropic Dirac and Weyl nodes on the RKKY interaction is also discussed. Our results provide an alternative scheme to engineer topological SMs and shed new light on the application of Dirac and Weyl SMs in spintronics.
Higher-order Dirac solitons in binary waveguide arrays
Energy Technology Data Exchange (ETDEWEB)
Tran, Truong X., E-mail: Truong.Tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Duong, Dũng C. [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam)
2015-10-15
We study optical analogues of higher-order Dirac solitons (HODSs) in binary waveguide arrays. Like higher-order solitons obtained from the well-known nonlinear Schrödinger equation governing the pulse propagation in an optical fiber, these HODSs have amplitude profiles which are numerically shown to be periodic over large propagation distances. At the same time, HODSs possess some unique features. Firstly, the period of a HODS depends on its order parameter. Secondly, the discrete nature in binary waveguide arrays imposes the upper limit on the order parameter of HODSs. Thirdly, the order parameter of HODSs can vary continuously in a certain range. - Highlights: • Higher-order Dirac solitons in nonlinear binary waveguide arrays are numerically demonstrated. • Amplitude profiles of higher-order Dirac solitons are periodic during propagation. • The period of higher-order Dirac solitons decreases when the soliton order increases.
Dirac cohomology of unitary representations of equal rank exceptional groups
Institute of Scientific and Technical Information of China (English)
Fu-hai ZHU; Ke LIANG
2007-01-01
In this paper, we consider the unitary representations of equal rank exceptional groups of type E with a regular lambda-lowest K-type and classify those unitary representations with the nonzero Dirac cohomology.
Digital quantum simulation of Dirac equation with a trapped ion
Shen, Yangchao; Zhang, Xiang; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jingning; Kim, Kihwan; Department Of Physical Chemistry Collaboration
2014-05-01
Recently there has been growing interest in simulating relativistic effects in controllable physical system. We digitally simulate the Dirac equation in 3 +1 dimensions with a single trapped ion. We map four internal levels of 171Yb+ ion to the Dirac bispinor. The time evolution of the Dirac equation is implemented by trotter expansion. In the 3 +1 dimension, we can observe a helicoidal motion of a free Dirac particle which reduces to Zitterbewegung in 1 +1 dimension. This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540. KK acknowledge the support from the recruitment program of global youth experts.
Semiclassical dynamics of Dirac and Weyl particles in rotating coordinates
Dayi, O F; Yunt, E
2016-01-01
Semiclassical kinetic theory of Dirac particles in the presence of external electromagnetic fields and global rotation is established. To provide the Hamiltonian formulation of Dirac particles a symplectic two-form which is a matrix in spin indices is proposed. The particle number and current densities for the Dirac particles are acquired in the helicity basis. Following a similar procedure, semiclassical kinetic theory of the Weyl particles is accomplished. It is shown that phase space dynamics of the Weyl and Dirac particles are directly linked and their continuity equations with source terms are derived. The anomalies and anomalous chiral effects due to the external electromagnetic fields and angular velocity of the frame are calculated.
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander
2011-01-17
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
42 CFR 413.241 - Pharmacy arrangements.
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Pharmacy arrangements. 413.241 Section 413.241... Disease (ESRD) Services and Organ Procurement Costs § 413.241 Pharmacy arrangements. Effective January 1, 2011, an ESRD facility that enters into an arrangement with a pharmacy to furnish renal...
29 CFR 779.229 - Other arrangements.
2010-07-01
..., Franchise and Other Business Arrangements § 779.229 Other arrangements. With respect to those arrangements... local independent food store operators have joined together in many phases of their business. While... an economic unity of related activities for a common business purpose. In that case, the...
The physics of custody arrangements
Gomberoff, Andrés; Romagnoli, Pierre Paul
2013-01-01
Divorced individuals face complex situations when they have children with different ex-partners, or even more, when their new partners have children of their own. In such cases, and when kids spend every other weekend with each parent, a practical problem emerges: Is it possible to have such a custody arrangement that every couple has either all of the kids together or no kids at all? We show that in general, it is not possible, but that the number of couples that do can be maximized. The problem turns out to be equivalent to finding the ground state of a spin glass system, which is known to be equivalent to what is called a weighted max-cut problem in graph theory, and hence it is NP-Complete.
MUSICAL ARRANGEMENT OF MEDIA ADS
Directory of Open Access Journals (Sweden)
Chernyshov Alexander V.
2015-01-01
Full Text Available The music-compositional principles of commercial and political advertising and also the self-promotion of electronic media (radio, television, Internet are considered in this mediatext: from the elementary beeps, symbolic functions, emblems/logos and musical brands to the sound engineering technology to underscore the product's name and the complex synthesis between music and intra movements and color-light design of frames. Simultaneously examines, how the musical arrangement of ethereal advertising is involved in creation the emotional drama or bravado which reach the level of explicit or associative counterpoint 'music with the advertised object or subject' and which extend to expression of cultural image of all the broadcast channel. The article explores the works of the next genres like infomercial, teleshopping, film-ad, and autonomous commercials that have been produced in European countries or USA.
Moving potential for Dirac and Klein–Gordon equations
Indian Academy of Sciences (India)
Hamil B; Chetouani L
2016-04-01
Using the Lorentz transformation, the Klein–Gordon and Dirac equations with moving potentials are reduced to one standard where the potential is time-independent. As application, the reflection and transmission coefficients are determined by considering the moving step with a constant velocity $v$. It has been found that $R \\pm T = 1$ only at $x = vt$. The problem of massless (2+1) Dirac particle is also considerered.
Paul Dirac and the Pervasiveness of His Thinking
Olive, David I.
2003-01-01
I shall use a few personal reminiscences of my time as a student and colleague of Dirac in Cambridge to introduce some reflections on the nature of research in theoretical physics. I shall discuss and illustrate the approach of Dirac to his own research and the pervasiveness of the influence his example has provided. I shall discuss how ideas produced at all stages of his career have proved to be extraordinarily visionary, still motivating and exerting an influence on research many years afte...
The abstract Hodge-Dirac operator and its stable discretization
Leopardi, Paul; Stern, Ari
2014-01-01
This paper adapts the techniques of finite element exterior calculus to study and discretize the abstract Hodge-Dirac operator, which is a square root of the abstract Hodge-Laplace operator considered by Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281-354]. Dirac-type operators are central to the field of Clifford analysis, where recently there has been considerable interest in their discretization. We prove a priori stability and convergence estimates, and show that several ...
Neutron scattering by Dirac multipoles with application to cuprate superconductors
Lovesey, S. W.; Khalyavin, D. D.
2016-01-01
Ordered magnetic charge created by Dirac multipoles that are magnetic and polar is examined. It has previously been revealed in the pseudo-gap phase of high-Tc materials by use of the Kerr effect and magnetic neutron Bragg diffraction. The empirical revelations dent the credibility of existing theories of the pseudo-gap phase. There are several forms of the polar operator for magnetic neutron scattering built from spin and electric dipole operators of unpaired electrons. Construction of Dirac...
Supersymmetry between Jackiw-Nair and Dirac-Majorana anyons
Horvathy, Peter A; Valenzuela, Mauricio
2010-01-01
The Jackiw-Nair description of anyons combines spin-1 topologically massive fields with the discrete series representation of the Lorentz algebra, which has fractional spin. In the Dirac-Majorana formulation the spin-1 part is replaced by the spin 1/2 planar Dirac equation. The two models are shown to belong to an N=1 supermultiplet, which carries a super-Poincar\\'e symmetry.
A super-twisted Dirac operator and Novikov inequalities
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A super-twisted Dirac operator is constructed and deformed suitably.Following Shubin's approach to Novikov inequalities associated to the deformed de Rham-Hodge operator,we give a formula for the index of the super-twisted Dirac operator,and Novikov type inequalities for the deformed operator.In particular,we obtain a purely analytic proof of the Hopf index theorem for general vector bundles.
A super-twisted Dirac operator and Novikov inequalities
Institute of Scientific and Technical Information of China (English)
冯惠涛; 郭恩力
2000-01-01
A s黳er-twisted Dirac operator is constructed and deformed suitably. Following Shubin’s approach to Novikov inequalities associated to the deformed de Rham-Hodge operator, we give a for-mula for the index of the super-twisted Dirac operator, and Novikov type inequalities for the deformed operator, In particular, we obtain a purely analytic proof of the Hopf index theorem for general vector bundles.
Weyl, Majorana and Dirac Fields from a Unified Perspective
Directory of Open Access Journals (Sweden)
Andreas Aste
2016-08-01
Full Text Available A self-contained derivation of the formalism describing Weyl, Majorana and Dirac fields from a unified perspective is given based on a concise description of the representation theory of the proper orthochronous Lorentz group. Lagrangian methods play no role in the present exposition, which covers several fundamental aspects of relativistic field theory, which are commonly not included in introductory courses when treating fermionic fields via the Dirac equation in the first place.
Weyl, Majorana and Dirac fields from a unified perspective
Aste, Andreas
2016-01-01
A self-contained derivation of the formalism describing Weyl, Majorana and Dirac fields from a unified perspective is given based on a concise description of the representation theory of the proper orthochronous Lorentz group. Lagrangian methods play no role in the present exposition, which covers several fundamental aspects of relativistic field theory which are commonly not included in introductory courses treating fermionic fields via the Dirac equation in the first place.
Common Origin of Neutrino Mass, Dark Matter and Dirac Leptogenesis
Borah, Debasish; Dasgupta, Arnab
2016-01-01
We study the possibility of generating tiny Dirac neutrino masses at one loop level through the \\textit{scotogenic} mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence o...
Dirac spectrum representation of Polyakov loop fluctuations in lattice QCD
Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo
2015-01-01
Dirac spectrum representations of the Polyakov loop fluctuations are derived on the temporally odd-number lattice, where the temporal length is odd with the periodic boundary condition. We investigate the Polyakov loop fluctuations based on these analytical relations. It is semianalytically and numerically found that the low-lying Dirac eigenmodes have little contribution to the Polyakov loop fluctuations, which are sensitive probe for the quark deconfinement. Our results suggest no direct on...
Polyakov loop fluctuations in the Dirac eigenmode expansion
Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo
2015-01-01
We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal nontwisted periodic boundary condition for the link variables. We find that the low-lying Dirac modes yield negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in confined and deconfined phases by numerical simulations in SU(3) quenched QCD. Thes...
Virial identity and weak dispersion for the magnetic Dirac equation
Boussaid, Nabile; D'Ancona, Piero; Fanelli, Luca
2009-01-01
13 pages, typos in the statement of theorem 1.3 and clarification of the proof in subsection 3.2 We analyze the dispersive properties of a Dirac system perturbed with a magnetic field. We prove a general virial identity; as applications, we obtain smoothing and endpoint Strichartz estimates which are optimal from the decay point of view. We also prove a Hardy-type inequality for the perturbed Dirac operator.
Dirac equation in low dimensions: The factorization method
Energy Technology Data Exchange (ETDEWEB)
Sánchez-Monroy, J.A., E-mail: antosan@if.usp.br [Instituto de Física, Universidade de São Paulo, 05508-090, São Paulo, SP (Brazil); Quimbay, C.J., E-mail: cjquimbayh@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, Bogotá, D. C. (Colombia); CIF, Bogotá (Colombia)
2014-11-15
We present a general approach to solve the (1+1) and (2+1)-dimensional Dirac equations in the presence of static scalar, pseudoscalar and gauge potentials, for the case in which the potentials have the same functional form and thus the factorization method can be applied. We show that the presence of electric potentials in the Dirac equation leads to two Klein–Gordon equations including an energy-dependent potential. We then generalize the factorization method for the case of energy-dependent Hamiltonians. Additionally, the shape invariance is generalized for a specific class of energy-dependent Hamiltonians. We also present a condition for the absence of the Klein paradox (stability of the Dirac sea), showing how Dirac particles in low dimensions can be confined for a wide family of potentials. - Highlights: • The low-dimensional Dirac equation in the presence of static potentials is solved. • The factorization method is generalized for energy-dependent Hamiltonians. • The shape invariance is generalized for energy-dependent Hamiltonians. • The stability of the Dirac sea is related to the existence of supersymmetric partner Hamiltonians.
The DIRAC Data Management System and the Gaudi dataset federation
Haen, Christophe; Frank, Markus; Tsaregorodtsev, Andrei
2015-01-01
The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks.In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. This paper also focuses on the DIRAC File Catalog, for which a lot of new developments have been carried out, so that LH...
Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones
Trescher, Maximilian; Sbierski, Björn; Brouwer, Piet W.; Bergholtz, Emil J.
2015-03-01
We calculate conductance and noise for quantum transport at the nodal point for arbitrarily tilted and anisotropic Dirac or Weyl cones. Tilted and anisotropic dispersions are generic in the absence of certain discrete symmetries, such as particle-hole and lattice point group symmetries. Whereas anisotropy affects the conductance g , but leaves the Fano factor F (the ratio of shot noise power and current) unchanged, a tilt affects both g and F . Since F is a universal number in many other situations, this finding is remarkable. We apply our general considerations to specific lattice models of strained graphene and a pyrochlore Weyl semimetal.
Nuclear data covariances in the Indian context
International Nuclear Information System (INIS)
The topic of covariances is recognized as an important part of several ongoing nuclear data science activities, since 2007, in the Nuclear Data Physics Centre of India (NDPCI). A Phase-1 project in collaboration with the Statistics department in Manipal University, Karnataka (Prof. K.M. Prasad and Prof. S. Nair) on nuclear data covariances was executed successfully during 2007-2011 period. In Phase-I, the NDPCI has conducted three national Theme meetings sponsored by the DAE-BRNS in 2008, 2010 and 2013 on nuclear data covariances. In Phase-1, the emphasis was on a thorough basic understanding of the concept of covariances including assigning uncertainties to experimental data in terms of partial errors and micro correlations, through a study and a detailed discussion of open literature. Towards the end of Phase-1, measurements and a first time covariance analysis of cross-sections for 58Ni (n, p) 58Co reaction measured in Mumbai Pelletron accelerator using 7Li (p,n) reactions as neutron source in the MeV energy region were performed under a PhD programme on nuclear data covariances in which enrolled are two students, Shri B.S. Shivashankar and Ms. Shanti Sheela. India is also successfully evolving a team of young researchers to code nuclear data of uncertainties, with the perspectives on covariances, in the IAEA-EXFOR format. A Phase-II DAE-BRNS-NDPCI proposal of project at Manipal has been submitted and the proposal is undergoing a peer-review at this time. In Phase-2, modern nuclear data evaluation techniques that including covariances will be further studied as a research and development effort, as a first time effort. These efforts include the use of techniques such as that of the Kalman filter. Presently, a 48 hours lecture series on treatment of errors and their propagation is being formulated under auspices of the Homi Bhabha National Institute. The talk describes the progress achieved thus far in the learning curve of the above-mentioned and exciting
Cross-covariance functions for multivariate geostatistics
Genton, Marc G.
2015-05-01
Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.
Activities on covariance estimation in Japanese Nuclear Data Committee
Energy Technology Data Exchange (ETDEWEB)
Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
Described are activities on covariance estimation in the Japanese Nuclear Data Committee. Covariances are obtained from measurements by using the least-squares methods. A simultaneous evaluation was performed to deduce covariances of fission cross sections of U and Pu isotopes. A code system, KALMAN, is used to estimate covariances of nuclear model calculations from uncertainties in model parameters. (author)
Dirac Fermions in Nanoassembled Artificial Graphene
Gomes, Kenjiro K.; Ko, Wonhee; Mar, Warren; Manoharan, Hari C.
2011-03-01
In condensed matter, electronic properties derive from the energy band structure created by a periodic potential formed by the atoms that constitute a particular material. The power to design unique electronic states is ultimately tied to the power to design the atomic lattice. Utilizing the technique of atomic manipulation with a scanning tunneling microscope, we create an artificial lattice potential that reshapes the band structure of a normal 2D electron gas---found in the surface states of a normal metal---into a unique and distinct 2D gas of massless Dirac fermions. We present scanning tunneling spectroscopic measurements of nanoassembled honeycomb electron lattices, and we characterize their band structure through Fourier transform analysis of impurity scattering maps. The control of every atomic position in the lattice provides unprecedented control over physical parameters elusive in natural graphene systems. These abilities include atomically sharp doping configurations and the power to embed topological singularities, resulting in unique electronic states rarely encountered in natural systems. Supported by the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515.
Dirac Hamiltonian with superstrong Coulomb field
Voronov, B L; Tyutin, I V
2006-01-01
We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=137 based on the fact that the standard expression for energy eigenvalues yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is the nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamilt...
DIRAC: reliable data management for LHCb
Smith, A. C.; Tsaregorodtsev, A.
2008-07-01
DIRAC, LHCb's Grid Workload and Data Management System, utilizes WLCG resources and middleware components to perform distributed computing tasks satisfying LHCb's Computing Model. The Data Management System (DMS) handles data transfer and data access within LHCb. Its scope ranges from the output of the LHCb Online system to Grid-enabled storage for all data types. It supports metadata for these files in replica and bookkeeping catalogues, allowing dataset selection and localization. The DMS controls the movement of files in a redundant fashion whilst providing utilities for accessing all metadata. To do these tasks effectively the DMS requires complete self integrity between its components and external physical storage. The DMS provides highly redundant management of all LHCb data to leverage available storage resources and to manage transient errors in underlying services. It provides data driven and reliable distribution of files as well as reliable job output upload, utilizing VO Boxes at LHCb Tier1 sites to prevent data loss. This paper presents several examples of mechanisms implemented in the DMS to increase reliability, availability and integrity, highlighting successful design choices and limitations discovered.
Dirac Green function for angular projection potentials
Zeller, Rudolf
2015-11-01
The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired.
Accurate covariance estimation of galaxy-galaxy weak lensing: limitations of jackknife covariance
Shirasaki, Masato; Miyatake, Hironao; Takahashi, Ryuichi; Hamana, Takashi; Nishimichi, Takahiro; Murata, Ryoma
2016-01-01
We develop a method to simulate galaxy-galaxy weak lensing by utilizing all-sky, light-cone simulations. We populate a real catalog of source galaxies into a light-cone simulation realization, simulate the lensing effect on each galaxy, and then identify lensing halos that are considered to host galaxies or clusters of interest. We use the mock catalog to study the error covariance matrix of galaxy-galaxy weak lensing and find that the super-sample covariance (SSC), which arises from density fluctuations with length scales comparable with or greater than a size of survey area, gives a dominant source of the sample variance. We then compare the full covariance with the jackknife (JK) covariance, the method that estimates the covariance from the resamples of the data itself. We show that, although the JK method gives an unbiased estimator of the covariance in the shot noise or Gaussian regime, it always over-estimates the true covariance in the sample variance regime, because the JK covariance turns out to be a...
Progress on Nuclear Data Covariances: AFCI-1.2 Covariance Library
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky,P.; Oblozinsky,P.; Mattoon,C.M.; Herman,M.; Mughabghab,S.F.; Pigni,M.T.; Talou,P.; Hale,G.M.; Kahler,A.C.; Kawano,T.; Little,R.C.; Young,P.G
2009-09-28
Improved neutron cross section covariances were produced for 110 materials including 12 light nuclei (coolants and moderators), 78 structural materials and fission products, and 20 actinides. Improved covariances were organized into AFCI-1.2 covariance library in 33-energy groups, from 10{sup -5} eV to 19.6 MeV. BNL contributed improved covariance data for the following materials: {sup 23}Na and {sup 55}Mn where more detailed evaluation was done; improvements in major structural materials {sup 52}Cr, {sup 56}Fe and {sup 58}Ni; improved estimates for remaining structural materials and fission products; improved covariances for 14 minor actinides, and estimates of mubar covariances for {sup 23}Na and {sup 56}Fe. LANL contributed improved covariance data for {sup 235}U and {sup 239}Pu including prompt neutron fission spectra and completely new evaluation for {sup 240}Pu. New R-matrix evaluation for {sup 16}O including mubar covariances is under completion. BNL assembled the library and performed basic testing using improved procedures including inspection of uncertainty and correlation plots for each material. The AFCI-1.2 library was released to ANL and INL in August 2009.
Manifest Covariant Hamiltonian Theory of General Relativity
Cremaschini, Claudio
2016-01-01
The problem of formulating a manifest covariant Hamiltonian theory of General Relativity in the presence of source fields is addressed, by extending the so-called "DeDonder-Weyl" formalism to the treatment of classical fields in curved space-time. The theory is based on a synchronous variational principle for the Einstein equation, formulated in terms of superabundant variables. The technique permits one to determine the continuum covariant Hamiltonian structure associated with the Einstein equation. The corresponding continuum Poisson bracket representation is also determined. The theory relies on first-principles, in the sense that the conclusions are reached in the framework of a non-perturbative covariant approach, which allows one to preserve both the 4-scalar nature of Lagrangian and Hamiltonian densities as well as the gauge invariance property of the theory.
Linearly arranged polytypic CZTSSe nanocrystals
Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong
2012-01-01
Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871
A covariant formulation of classical spinning particle
Cho, J H; Kim, J K; Jin-Ho Cho; Seungjoon Hyun; Jae-Kwan Kim
1994-01-01
Covariantly we reformulate the description of a spinning particle in terms of the which entails all possible constraints explicitly; all constraints can be obtained just from the Lagrangian. Furthermore, in this covariant reformulation, the Lorentz element is to be considered to evolve the momentum or spin component from an arbitrary fixed frame and not just from the particle rest frame. In distinction with the usual formulation, our system is directly comparable with the pseudo-classical formulation. We get a peculiar symmetry which resembles the supersymmetry of the pseudo-classical formulation.
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated. PMID:27078354
Notes on Cosmic Censorship Conjecture revisited: Covariantly
Hamid, Aymen I M; Maharaj, Sunil D
2016-01-01
In this paper we study the dynamics of the trapped region using a frame independent semi-tetrad covariant formalism for general Locally Rotationally Symmetric (LRS) class II spacetimes. We covariantly prove some important geometrical results for the apparent horizon, and state the necessary and sufficient conditions for a singularity to be locally naked. These conditions bring out, for the first time in a quantitative and transparent manner, the importance of the Weyl curvature in deforming and delaying the trapped region during continual gravitational collapse, making the central singularity locally visible.
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
A violation of the covariant entropy bound?
Masoumi, Ali
2014-01-01
Several arguments suggest that the entropy density at high energy density $\\rho$ should be given by the expression $s=K\\sqrt{\\rho/G}$, where $K$ is a constant of order unity. On the other hand the covariant entropy bound requires that the entropy on a light sheet be bounded by $A/4G$, where $A$ is the area of the boundary of the sheet. We find that in a suitably chosen cosmological geometry, the above expression for $s$ violates the covariant entropy bound. We consider different possible explanations for this fact; in particular the possibility that entropy bounds should be defined in terms of volumes of regions rather than areas of surfaces.
Deformed Hamilton-Jacobi Method in Covariant Quantum Gravity Effective Models
Benrong, Mu; Yang, Haitang
2014-01-01
We first briefly revisit the original Hamilton-Jacobi method and show that the Hamilton-Jacobi equation for the action $I$ of tunnelings of a fermionic particle from a charged black hole can be written in the same form as that of a scalar particle. For the low energy quantum gravity effective models which respect covariance of the curved spacetime, we derive the deformed model-independent KG/Dirac and Hamilton-Jacobi equations using the methods of effective field theory. We then find that, to all orders of the effective theories, the deformed Hamilton-Jacobi equations can be obtained from the original ones by simply replacing the mass of emitted particles $m$ with a parameter $m_{eff}$ that includes all the quantum gravity corrections. Therefore, in this scenario, there will be no corrections to the Hawking temperature of a black hole from the quantum gravity effects if its original Hawking temperature is independent of the mass of emitted particles. As a consequence, our results show that breaking covariance...
Covariant momentum projection of the soliton bag: recoil corrections to the hadronic masses
International Nuclear Information System (INIS)
A central problem in calculations based on relativistic bags is that of projection onto an eigenstate of zero momentum and the subsequent covariant boosting of that state to a non-zero momentum eigenstate. We are here particularly concerned with relativistic bag models. The prototype of such models is the MIT bag model. Along with a number of derivative models, it shares the common feature of a surface boundary condition to confine the quarks. The Lagrangian contains coordinates which describe the surface, but the time derivatives of these coordinates do not appear. This complicates quantization which can, however, be accomplished through the techniques of Dirac constraints. It is important to work in a fully quantum mechanical framework. A model which fulfills that requirement, is covariant, and is tractable is the soliton bag model of Freidberg and Lee. This is a model for the low energy properties of QCD in which hadrons appear as solitons in a scalar field with quarks trapped inside the structures. The soliton model, for the present discussion, contains (massless) quarks interacting with a nonlinear scalar field sigma; the momentum operator conjugate to sigma is π = sigma, and the two satisfy the usual canonical equal-time commutation reltions. 12 references
Flexible Working Time Arrangements in Bulgaria
Beleva, Iskra
2009-01-01
The objective of this paper is to analyze the flexible working time arrangements in Bulgaria, using a life-course perspective. Two important features have to be outlined, namely: underdeveloped flexible forms of employment in the country, including working time arrangement, and lack of previous analysis on flexible working time arrangements from the angle of life-course perspective. The author describes the regulatory framework, collective agreements at national and company level as a frame w...
Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z
2015-11-01
Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity.
Analytic Representation of Relativistic Wave Equations I The Dirac Case
Tepper, L; Zachary, W W
2003-01-01
In this paper we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wave functions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behavior of the particle-antiparticle relationship. It is well known that the Foldy-Wouthuysen transformation leads to a diagonalization that is nonlocal in space. We interpret the zitterbewegung, and the result that a velocity measurement (of a Dirac particle) at any instant in time is +(-)c, as reflections of the fact that the Dirac equation makes a spatially extended particle appear as a point in the present by forcing it to oscillate between the past and future at speed c. This suggests that although the Dirac Hamiltonian and the square-root Hamiltonian, are mathematically, they are not physically, equivalent. Furthermore, we see that alt! ho! ugh the form of the Dirac equation serve...
New approach to polarized proton scattering based on Dirac dynamics
International Nuclear Information System (INIS)
The Dirac impulse approximation has to date provided dramatic improvement in our ability to predict, with no free parameters, spin observables in proton-nucleus elastic scattering at intermediate energies. The key ingredients of this approach are Dirac propagation and the nucleon-nucleon invariant amplitudes. So far, local approximations to the NN amplitudes have been used. The standard NN representation in terms of Dirac scalar, vector, and so on, parts which is free of kinematical singularities seems to naturally predict the correct coupling to negative energy states for energies above 300 MeV. At low energy, this coupling is subject to an ambiguity between pseudoscalar and pseudovector πN coupling mechanisms and it is evident that the pseudoscalar coupling treated in a local approximation causes too much scalar-vector difference and thus too large pair contributions. Once this problem is remedied, the Dirac optical potential is expected to be calculable from a nucleon-nucleon quasi-potential over the range 0 to 1000 MeV. For the energy region above about 300 MeV, the large scalar and vector potentials of Dirac phenomenology are seen to be accurately predicted by the impulse approximation. Work by Shakin and collaborators provides complementary results at low energy based on a nuclear matter g-matrix. A basic conclusion is that relativistic spin effects cannot be neglected in nuclear physics. 36 references
Dirac Dispersion in Two-Dimensional Photonic Crystals
Directory of Open Access Journals (Sweden)
C. T. Chan
2012-01-01
Full Text Available We show how one may obtain conical (Dirac dispersions in photonic crystals, and in some cases, such conical dispersions can be used to create a metamaterial with an effective zero refractive index. We show specifically that in two-dimensional photonic crystals with C4v symmetry, we can adjust the system parameters to obtain accidental triple degeneracy at Γ point, whose band dispersion comprises two linear bands that generate conical dispersion surfaces and an additional flat band crossing the Dirac-like point. If this triply degenerate state is formed by monopole and dipole excitations, the system can be mapped to an effective medium with permittivity and permeability equal to zero simultaneously, and this system can transport wave as if the refractive index is effectively zero. However, not all the triply degenerate states can be described by monopole and dipole excitations and in those cases, the conical dispersion may not be related to an effective zero refractive index. Using multiple scattering theory, we calculate the Berry phase of the eigenmodes in the Dirac-like cone to be equal to zero for modes in the Dirac-like cone at the zone center, in contrast with the Berry phase of π for Dirac cones at the zone boundary.
Optimal covariate designs theory and applications
Das, Premadhis; Mandal, Nripes Kumar; Sinha, Bikas Kumar
2015-01-01
This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for...
Covariates of Sesame Street Viewing by Preschoolers.
Spaner, Steven D.
A study was made of nine covariates as to their discriminating power between preschoolers who watch Sesame Street regularly and preschoolers who do not watch Sesame Street, Surveyed were 372 3-4 year old children on 9 variables. The nine variables were: race, socioeconomic status, number of siblings, child's birth order, maternal age, maternal…
Linear transformations of variance/covariance matrices
Parois, P.J.A.; Lutz, M.
2011-01-01
Many applications in crystallography require the use of linear transformations on parameters and their standard uncertainties. While the transformation of the parameters is textbook knowledge, the transformation of the standard uncertainties is more complicated and needs the full variance/covariance
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2004-01-01
This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....
Quantum Radiation of Dirac Particles in General Nonstationary Black Holes
Hua, J C; Hua, Jia-Chen; Huang, Yong-Chang
2006-01-01
Quantum radiation of Dirac particles in general nonstationary black holes in the general case is investigated by using the method of generalized tortoise coordinate transformation and considering simultaneously the asymptotic behaviors of the first order and second order forms of Dirac equation near the event horizon. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is absent from the thermal radiation spectrum of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in non-thermal radiation for general nonstationary black holes.
P.A.M. Dirac's Impact on Physics
Merzbacher, Eugen
2008-10-01
Paul Dirac (1902-1984) was not as well known as the other founding fathers of quantum mechanics in the 1920's, but his contributions were equally important, and he won the Nobel Prize in 1933, at the same time as Heisenberg and Schröodinger. He spent the last fifteen years of his life in the SESAPS region, in Tallahassee, Florida. I will describe his life and his work, comment on his style, and recount how he arrived at the relativistic wave equation. I will describe one of my personal encounters with Dirac and, if I can manage not to bungle it, show a physics demonstration that is relevant to the application of group theory to quantum mechanics, a subject that Dirac and other detractors scathingly referred to as Gruppenpest.
Beauty in physics: the legacy of Paul Dirac
McCubbin, Norman
2004-04-01
In 2002 physicists around the world celebrated the centenary of the birth of Paul Dirac, OM, FRS, Nobel Laureate, who was one of the greatest physicists of the 20th century. He made towering contributions to the formulation of quantum mechanics and he was one of the principal creators of quantum field theory. In 1928 he combined relativity and quantum mechanics in the Dirac equation, which provides a natural description for the spin of the electron and which led to the prediction, by Dirac himself, of the existence of anti-matter. In this article I try to explain, in the simplest terms, these major contributions to physics and to give some flavour of the man himself.
Spin-1 Dirac-Weyl fermions protected by bipartite symmetry
Energy Technology Data Exchange (ETDEWEB)
Lin, Zeren [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); School of Physics, Peking University, Beijing 100871 (China); Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871 (China)
2015-12-07
We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.
Upper-division student difficulties with the Dirac delta function
Wilcox, Bethany R
2015-01-01
The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them. To characterize student difficulties with the delta function at the upper-division level, we examined students' responses to traditional exam questions and a standardized conceptual assessment, and conducted think-aloud interviews. Our analysis was guided by an analytical framework that focuses on how students activate, construct, execute, and reflect on the Dirac delta function in the context of problem solving in physics. Here, we focus on student difficulties using the delta function to express charge distributions in the context of junior-level electrostatics. Common challenges included: invoking the delta function spontaneously, translating a description of a c...
Spin-1 Dirac-Weyl fermions protected by bipartite symmetry
International Nuclear Information System (INIS)
We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T3, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′
Renormalization and asymptotic expansion of Dirac's polarized vacuum
Gravejat, Philippe; Séré, Eric
2010-01-01
We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no `real' electron. We show that it admits an asymptotic expansion to any order in powers of the physical coupling constant $\\alphaph$, provided that the ultraviolet cut-off behaves as $\\Lambda\\sim e^{3\\pi(1-Z_3)/2\\alphaph}\\gg1$. The renormalization parameter $0
Inverse scattering scheme for the Dirac equation at fixed energy
International Nuclear Information System (INIS)
Full text: Based on the concept of generalized transformation operators a new hierarchy of Dirac equations with spherical symmetric scalar and fourth component vector potentials is presented. Within this hierarchy closed form expressions for the solutions, the potentials and the S-matrix can be given in terms of solutions of the original Dirac equation. Using these transformations an inverse scattering scheme has been constructed for the Dirac equation which is the analog to the rational scheme in the non-relativistic case. The given method provides for the first time an inversion scheme with closed form expressions for the S-matrix for non-relativistic scattering problems with central and spin-orbit potentials. (author)
Luciano Maiani and Jean Iliopoulos awarded the Dirac Medal
2007-01-01
Luciano Maiani, when he was Director-General of CERN. Jean Iliopoulos in 1999. (©CNRS Photothèque - Julien Quideau)On 8 August, the 2007 Dirac Medal, one of the most prestigious prizes in the fields of theoretical physics and mathematics, was awarded to Luciano Maiani, professor at Rome’s La Sapienza University and former Director-General of CERN, and to Jean Iliopoulos, emeritus Director of Research at the CNRS Laboratory of Theoretical Physics. The medal was awarded to both physicists for their joint "work on the physics of the charm quark, a major contribution to the birth of the Standard Model, the modern theory of Elementary Particles." Founded by the Abdus Salam International Centre for Theoretical Physics (ICTP) in 1985, the Dirac Medal is awarded annually on 8 August, the birthday of the famous physicist Paul Dirac, winner of the 1933 Nobel Prize for Physics. It is awarded to ...
A new way of describing the Dirac bands in graphene
Kissinger, Gregory; Satpathy, Sashi
We develop a new way of describing the electronic structure of graphene, by treating the honeycomb lattice as a network of one-dimensional quantum wires. The electrons travel as free particles along these quantum wires and interfere at the three-way junctions formed by the carbon atoms. The model generates the linearly dispersive Dirac cone band structure as well as the chiral nature of the pseudo-spin sublattice wave functions. When vacancies are incorporated, we find that it also reproduces the well known zero mode states. This simple approach might have advantages over other methods for some applications, such as in analyzing electronic transport through graphene nanoribbons. In addition, this finding suggests new ways of constructing Dirac band materials in the laboratory by nano-patterning for investigating Dirac fermions.
Shot noise in systems with semi-Dirac points
Zhai, Feng; Wang, Juan
2014-08-01
We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L1/2. Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points.
Shot noise in systems with semi-Dirac points
Energy Technology Data Exchange (ETDEWEB)
Zhai, Feng; Wang, Juan [Center of Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)
2014-08-14
We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L{sup 1∕2}. Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points.
Shot noise in systems with semi-Dirac points
International Nuclear Information System (INIS)
We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L1∕2. Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points
Accidental degeneracy of double Dirac cones in a phononic crystal
Chen, Ze-Guo
2014-04-09
Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect.
Free Dirac evolution as a quantum random walk
Bracken, A J; Smyrnakis, I
2006-01-01
Any positive-energy state of a free Dirac particle that is initially highly-localized, evolves in time by spreading at speeds close to the speed of light. This general phenomenon is explained by the fact that the Dirac evolution can be approximated arbitrarily closely by a quantum random walk, where the roles of coin and walker systems are naturally attributed to the spin and position degrees of freedom of the particle. Initially entangled and spatially localized spin-position states evolve with asymptotic two-horned distributions of the position probability, familiar from earlier studies of quantum walks. For the Dirac particle, the two horns travel apart at close to the speed of light.
Electronic structure of a graphene superlattice with massive Dirac fermions
Energy Technology Data Exchange (ETDEWEB)
Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com [Instituto de Ciencia de Materiales de Madrid (CSIC) - Cantoblanco, Madrid 28049 (Spain)
2015-02-28
We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.
Institute of Scientific and Technical Information of China (English)
舒维星; 吴普训; 余洪伟
2003-01-01
Negative energy density and the quantum inequality are examined for the Dirac field. A proof is given of the quantum inequality for negative energy densities in the massive Dirac field produced by the superposition of two single particle electron states.
On Quasi-Jacobi Bialgebroid and Its Dirac-Jacobi Structure
Institute of Scientific and Technical Information of China (English)
LIU Ling; SU Nong
2014-01-01
Notions of quasi-Jacobi bialgebroid and its Dirac-Jacobi structure are introduced. The necessary and sufficient conditions for a maximal isotropic subbundle L to be a Dirac-Jacobi structure are proved. Meanwhile several special examples are presented.
PREFACE: International Workshop on Dirac Electrons in Solids 2015
Ogata, M.; Suzumura, Y.; Fuseya, Y.; Matsuura, H.
2015-04-01
It is our pleasure to publish the Proceedings of the International Workshop on Dirac Electrons in Solids held in University of Tokyo, Japan, for January 14-15, 2015. The workshop was organized by the entitled project which lasted from April 2012 to March 2015 with 10 theorists. It has been supported by a Grand-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The subjects discussed in the workshop include bismuth, organic conductors, graphene, topological insulators, new materials including Ca3PbO, and new directions in theory (superconductivity, orbital susceptibility, etc). The number of participants was about 70 and the papers presented in the workshop include four invited talks, 16 oral presentations, and 23 poster presentations. Dirac electron systems appear in various systems, such as graphene, quasi-two-dimensional organic conductors, bismuth, surface states in topological insulators, new materials like Ca3PbO. In these systems, characteristic transport properties caused by the linear dispersion of Dirac electrons and topological properties, have been extensively discussed. In addition to these, there are many interesting research fields such as Spin-Hall effect, orbital diamagnetism due to interband effects, Landau levels characteristic to Dirac dispersion, anomalous interlayer transport phenomena and magnetoresistance, the effects of spin-orbit interaction, and electron correlation. The workshop focused on recent developments of theory and experiment of Dirac electron systems in the above materials. We note that all papers published in this volume of Journal of Physics: Conference Series were peer reviewed. Reviews were performed by expert referees with professional knowledge and high scientific standards in this field. Editors made efforts so that the papers may satisfy the criterion of a proceedings journal published by IOP Publishing. We hope that all the participants of the workshop
Governance Arrangements for State Owned Enterprises
Vagliasindi, Maria
2008-01-01
The aim of this paper is to shed new light on key challenges in governance arrangements for state owned enterprises in infrastructure sectors. The paper provides guidelines on how to classify the fuzzy and sometimes conflicting development goals of infrastructure and the governance arrangements needed to reach such goals. Three policy recommendations emerge. First, some of the structures i...
The fundamental group of complex hyperplanes arrangements
International Nuclear Information System (INIS)
In this paper we suggest a new method to compute the fundamental group of the complemented of any complex hyperplanes arrangements. Our computation is based on a construction called labyrinth of an arrangement of complex lines. The method can be generalized for the case of an arbitrary affine curve. (author). 9 refs, 3 figs
Encoding and Decoding Procedures for Arrangements
Directory of Open Access Journals (Sweden)
Alexander A. Babaev
2012-05-01
Full Text Available This article discusses an algorithm based on the encoding procedure for representing a set of arrangement elements as a single number. Also the author provides the procedure for the inverse transformation of the code into arrangement elements. In addition the Article includes recommendations on the use of the above procedures in combinatorial algorithms of optimization.
Music Arrangements and the Copyright Law.
Krasilovsky, M. William
1979-01-01
This discussion of copyright law on music focuses on the special problems of the band director who wishes to make a special arrangement or alteration of a copyrighted work. Guidelines and a sample form are provided for securing the publisher's permission to arrange a musical work. (SJL)
International Nuclear Information System (INIS)
In this article we construct the chirality and Dirac operators on fuzzy AdS2. We also derive the discrete spectrum of the Dirac operator which is important in the study of the spectral triple associated to AdS2. It is shown that the degeneracy of the spectrum present in the commutative AdS2 is lifted in the noncommutative case. The way we construct the chirality operator is suggestive of how to introduce the projector operators of the corresponding projective modules on this space. (author)
Dirac Operator on Noncommutative AdS_2
Fakhri, H
2003-01-01
In this article we construct the chirality and Dirac operators on noncommutative AdS_2. We also derive the discrete spectrum of the Dirac operator which is important in the study of the spectral triple associated with AdS_2. It is shown that the degeneracy of the spectrum present in the commutative AdS_2 is lifted in the noncommutative case. The way we construct the chirality operator is suggestive of how to introduce the projector operators of the corresponding projective modules on this space.
Fakhri, Hossein; Imaanpur, Ali
2003-03-01
In this article we construct the chirality and Dirac operators on noncommutative AdS2. We also derive the discrete spectrum of the Dirac operator which is important in the study of the spectral triple associated to AdS2. It is shown that the degeneracy of the spectrum present in the commutative AdS2 is lifted in the noncommutative case. The way we construct the chirality operator is suggestive of how to introduce the projector operators of the corresponding projective modules on this space.
H. Fakhri; Imaanpur, A.
2003-01-01
In this article we construct the chirality and Dirac operators on noncommutative AdS_2. We also derive the discrete spectrum of the Dirac operator which is important in the study of the spectral triple associated with AdS_2. It is shown that the degeneracy of the spectrum present in the commutative AdS_2 is lifted in the noncommutative case. The way we construct the chirality operator is suggestive of how to introduce the projector operators of the corresponding projective modules on this space.
Light Dirac right-handed sneutrino dark matter
Choi, Ki-Young
2013-01-01
We show that mostly right-handed Dirac sneutrino is a viable supersymmetric light dark matter candidate. While the Dirac sneutrino scattering with nuclei is dominantly through the $Z$ boson exchange and is stringently constrained by the invisible decay width of $Z$ boson, it is possible to realize a large enough cross section with nucleon to account for possible signals observed at direct dark matter searches such as CDMS II-Si or CoGeNT. Even if the XENON100 limit is taken into account, a small part of signal region for CDMS II-Si events remains outside the excluded region by XENON100.
Rosenfeld, Bergmann, Dirac and the Invention of Constrained Hamiltonian Dynamics
Salisbury, D C
2008-01-01
In a paper appearing in Annalen der Physik in 1930 Leon Rosenfeld invented the first procedure for producing Hamiltonian constraints. He displayed and correctly distinguished the vanishing Hamiltonian generator of time evolution, and the vanishing generator of gauge transformations for general relativity with Dirac electron and electrodynamic field sources. Though he did not do so, had he chosen one of his tetrad fields to be normal to his spacetime foliation, he would have anticipated by almost thirty years the general relativisitic Hamiltonian first published by Paul Dirac.
Rosenfeld, Bergmann, Dirac and the Invention of Constrained Hamiltonian Dynamics
Salisbury, D. C.
2008-09-01
In a paper appearing in Annalen der Physik in 1930 Leon Rosenfeld invented the first procedure for producing Hamiltonian constraints. He displayed and correctly distinguished the vanishing Hamiltonian generator of time evolution, and the vanishing generator of gauge transformations for general relativity with Dirac electron and electrodynamic field sources. Though he did not do so, had he chosen one of his tetrad fields to be normal to his spacetime foliation, he would have anticipated by almost thirty years the general relativisitic Hamiltonian first published by Paul Dirac.
Landau Quantization of Massless Dirac Fermions in Topological Insulator
Cheng, Peng; Song, Canli; Zhang, Tong; Zhang, Yanyi; Wang, Yilin; Jia, Jin-Feng; Jing WANG; Wang, Yayu; Zhu, Bang-fen; Chen, Xi; Ma, Xucun; He, Ke; Wang, Lili; Dai, Xi; Fang, Zhong
2010-01-01
The recent theoretical prediction and experimental realization of topological insulators (TI) has generated intense interest in this new state of quantum matter. The surface states of a three-dimensional (3D) TI such as Bi_2Te_3, Bi_2Se_3 and Sb_2Te_3 consist of a single massless Dirac cones. Crossing of the two surface state branches with opposite spins in the materials is fully protected by the time reversal (TR) symmetry at the Dirac points, which cannot be destroyed by any TR invariant pe...
Random Dirac operators with time-reversal symmetry
Sadel, Christian
2009-01-01
Quasi-one-dimensional stochastic Dirac operators with an odd number of channels, time reversal symmetry but otherwise efficiently coupled randomness are shown to have one conducting channel and absolutely continuous spectrum of multiplicity two. This follows by adapting the criteria of Guivac-Raughi and Goldsheid-Margulis to the analysis of random products of matrices in the group SO$^*(2L)$, and then a version of Kotani theory for these operators. Absence of singular spectrum can be shown by adapting an argument of Jaksic-Last if the potential contains random Dirac peaks with absolutely continuous distribution.
Dirac operators on quasi-Hamiltonian G-spaces
Song, Yanli
2016-08-01
We construct twisted spinor bundles as well as twisted pre-quantum bundles on quasi-Hamiltonian G-spaces, using the spin representation of loop group and the Hilbert space of Wess-Zumino-Witten model. We then define a Hilbert space together with a Dirac operator acting on it. The main result of this paper is that we show the Dirac operator has a well-defined index given by positive energy representation of the loop group. This generalizes the geometric quantization of Hamiltonian G-spaces to quasi-Hamiltonian G-spaces.
Dirac particles tunneling from black holes with topological defects
Jusufi, Kimet
2015-01-01
We study Hawking radiation of Dirac particles with spin-$1/2$ as a tunneling process from Schwarzschild-de Sitter and Reissner-Nordstr\\"{o}m-de Sitter black holes in background spacetimes with a spinning cosmic string and a global monopole. Solving Dirac's equation by employing the Hamilton-Jacobi method and WKB approximation we find the corresponding tunneling probabilities and the Hawking temperature. Furthermore, we show that the Hawking temperature of black holes remains unchanged in presence of topological defects in both cases.
Dirac particles tunneling from black holes with topological defects
Jusufi, Kimet
2016-08-01
We study Hawking radiation of Dirac particles with spin-1 / 2 as a tunneling process from Schwarzschild-de Sitter and Reissner-Nordström-de Sitter black holes in background spacetimes with a spinning cosmic string and a global monopole. Solving Dirac's equation by employing the Hamilton-Jacobi method and WKB approximation we find the corresponding tunneling probabilities and the Hawking temperature. Furthermore, we show that the Hawking temperature of those black holes remains unchanged in presence of topological defects in both cases.
Left-right symmetric model with ultralight Dirac neutrinos
International Nuclear Information System (INIS)
A low energy, left-right symmetri gauge model incorporating mirror fermions and a discrete symmetry yields a skewed Dirac neutrino mass matrix. Some of the Dirac neutrinos can be made ultralight, since a ratio of Higgs vacuum expectation values can be taken to be naturally small, while others become heavy with masses on the order of 100 GeV. To avoid neutrino masses in the cosmologically disfavored range, 100 eV < M/sub ν/ < 2 GeV, the numbers of standard and mirror generations must be equal. 14 refs
Small amplitude solitary waves in the Dirac-Maxwell system
Comech, Andrew; Stuart, David
2012-01-01
We study nonlinear bound states, or solitary waves, in the Dirac-Maxwell system proving the existence of solutions in which the Dirac wave function is of the form $\\phi(x,\\omega)e^{-i\\omega t}$, $\\omega\\in(-m,\\omega_*)$, with some $\\omega_*>-m$, such that $\\phi_\\omega\\in H^1(\\R^3,\\C^4)$, $\\Vert\\phi_\\omega\\Vert^2_{L^2}=O(m-|\\omega|)$, and $\\Vert\\phi_\\omega\\Vert_{L^\\infty}=O(m-|\\omega|)$. The method of proof is an implicit function theorem argument based on an identification of the nonrelativis...
A Semiclassical Kinetic Theory of Dirac Particles and Thomas Precession
Dayi, O F
2015-01-01
Kinetic theory of Dirac fermions is studied within the matrix valued differential forms method. It is based on the symplectic form derived by employing the semiclassical wave packet build of the positive energy solutions of the Dirac equation. A satisfactory definition of the distribution matrix elements imposes to work in the basis where the helicity is diagonal which is also needed to attain the massless limit. We show that the kinematic Thomas precession correction can be studied straightforwardly within this approach. It contributes on an equal footing with the Berry gauge fields. In fact in equations of motion it eliminates the terms arising from the Berry gauge fields.
Reconstruction of symmetric Dirac-Maxwell equations using nonassociative algebra
Kalauni, Pushpa; Barata, J. C. A.
2015-01-01
In the presence of sources, the usual Maxwell equations are neither symmetric nor invariant with respect to the duality transformation between electric and magnetic fields. Dirac proposed the existence of magnetic monopoles for symmetrizing the Maxwell equations. In the present work, we obtain the fully symmetric Dirac-Maxwell's equations (i.e. with electric and magnetic charges and currents) as a single equation by using 4 × 4 matrix presentation of fields and derivative operators. This matrix representation has been derived with the help of the algebraic properties of quaternions and octonions. Such description gives a compact representation of electric and magnetic counterparts of the field in a single equation.
Dirac-Born-Infeld-Einstein theory with Weyl invariance
Maki, Takuya; Shiraishi, Kiyoshi
2011-01-01
Weyl invariant gravity has been investigated as the fundamental theory of the vector inflation. Accordingly, we consider a Weyl invariant extension of Dirac-Born-Infeld type gravity. We find that an appropriate choice of the metric removes the scalar degree of freedom which is at the first sight required by the local scale invariance of the action, and then a vector field acquires mass. Then nonminimal couplings of the vector field and curvatures are induced. We find that the Dirac-Born-Infeld type gravity is a suitable theory to the vector inflation scenario.
Zeta Functions of the Dirac Operator on Quantum Graphs
Harrison, J M; Kirsten, K
2016-01-01
We construct spectral zeta functions for the Dirac operator on metric graphs. We start with the case of a rose graph, a graph with a single vertex where every edge is a loop. The technique is then developed to cover any finite graph with general energy independent matching conditions at the vertices. The regularized spectral determinant of the Dirac operator is also obtained as the derivative of the zeta function at a special value. In each case the zeta function is formulated using a contour integral method, which extends results obtained for Laplace and Schrodinger operators on graphs.
Klein-Gordon and Dirac Equations with Thermodynamic Quantities
Arda, Altuğ; Tezcan, Cevdet; Sever, Ramazan
2016-03-01
We study the thermodynamic quantities such as the Helmholtz free energy, the mean energy and the specific heat for both the Klein-Gordon, and Dirac equations. Our analyze includes two main subsections: (1) statistical functions for the Klein-Gordon equation with a linear potential having Lorentz vector, and Lorentz scalar parts (2) thermodynamic functions for the Dirac equation with a Lorentz scalar, inverse-linear potential by assuming that the scalar potential field is strong ( A ≫ 1). We restrict ourselves to the case where only the positive part of the spectrum gives a contribution to the sum in partition function. We give the analytical results for high temperatures.
Polyakov loop fluctuations in the Dirac eigenmode expansion
Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo
2015-11-01
We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal nontwisted periodic boundary condition for the link variables. We find that the low-lying Dirac modes yield negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in confined and deconfined phases by numerical simulations in SU(3) quenched QCD. These results indicate that there is no direct, one-to-one correspondence between confinement and chiral symmetry breaking in QCD in the context of different properties of the Polyakov loop fluctuation ratios.
Dirac spectrum representation of Polyakov loop fluctuations in lattice QCD
Doi, Takahiro M; Sasaki, Chihiro; Suganuma, Hideo
2015-01-01
Dirac spectrum representations of the Polyakov loop fluctuations are derived on the temporally odd-number lattice, where the temporal length is odd with the periodic boundary condition. We investigate the Polyakov loop fluctuations based on these analytical relations. It is semianalytically and numerically found that the low-lying Dirac eigenmodes have little contribution to the Polyakov loop fluctuations, which are sensitive probe for the quark deconfinement. Our results suggest no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD.
The q-deformed Dirac oscillator in 2 + 1 dimensions
Hatami, N.; Setare, M. R.
2016-10-01
In this paper we obtain the Hamiltonian of Dirac oscillator in an external magnetic field in terms of q-deformed creation and annihilation operators in 2 + 1 dimensions. For this system, we find coordinate representations of q-deformed creation and annihilation operators, eigenvalues and eigenfunctions. We also construct the lowest Landau levels exactly by applying the q-deformed Dirac annihilation operator to the vacuum state. This system may be considered for the study of graphene in the q-deformed version.
Hole doped Dirac states in silicene by biaxial tensile strain
Kaloni, Thaneshwor P.
2013-03-11
The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.
Dirac Particle in External Non-Abelian Gauge Field
Bilel Hamil; Lyazid Chetouani
2014-01-01
The Green function of a Dirac particle in interaction with a non-Abelian SU(N) gauge field exactly and analytically determined via the path integral formalism by using the approach so-called “global projection.” The essential steps in the calculation are the choice of a convenient gauge (Lorentz gauge) and the introduction of two constraints, φ=kx (related to space) and Grassmannian η=kψ (related to Dirac matrices). Furthermore, it is shown that certain selected equations obtained during the ...
Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator
International Nuclear Information System (INIS)
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ5-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.
Dirac quantization of a three-dimensional gauge theory
Energy Technology Data Exchange (ETDEWEB)
Burnel, A.; Van Der Rest-Jaspers, M.
1985-12-01
A model recently proposed by Hagen is examined from the point of view of Dirac quantization of constrained systems. This model exhibits interesting particular features for the Dirac method itself. Among them are the odd number of second-class constraints and the fact that, when a gauge is fixed, constraints result from compatibility conditions between Lagrange multipliers. From the point of view of the model itself, the invalidity of the axial gauge in the non-Abelian case is obtained by comparing the effective Hamiltonians for two different values of the arbitrary spacelike vector.
Three-dimensional gauge theory in Dirac formalism
Kamimura, Kiyoshi
1986-08-01
The Hagen model [C. R. Hagen, Ann. Phys. (NY) 157, 342 (1984); Phys. Rev. D 31, 331 (1985)] is studied using the method of constrained Hamiltonian formalism developed by Dirac [P. A. M. Dirac, Can. J. Math. 2, 129 (1950); Lectures on Quantum Mechanics (Yeshiva U. P., New York, 1964)]. The results recently obtained by Burnel and Van Der Rest-Jaspers [A. Burnel and M. Van Der Rest-Jaspers, J. Math. Phys. 26, 3155 (1985)] are reexamined and modified. There appear two second-class constraints and their choice is not crucial. The equivalence of different gauges is proved without referring to the current conservation law.
Lattice QCD analysis of the Polyakov loop in terms of Dirac eigenmodes
Iritani, Takumi; Suganuma, Hideo
2014-01-01
Using the Dirac mode expansion method, which keeps gauge invariance, we analyze the Polyakov loop in terms of the Dirac modes in SU(3) quenched lattice QCD in both confined and deconfined phases. First, to investigate the direct correspondence between confinement and chiral symmetry breaking, we remove low-lying Dirac modes from the confined vacuum generated by lattice QCD. In this system without low-lying Dirac modes, while the chiral condensate $\\langle \\bar {q} q\\rangle $ is extremely redu...
Performance evaluation of sensor allocation algorithm based on covariance control
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The covariance control capability of sensor allocation algorithms based on covariance control strategy is an important index to evaluate the performance of these algorithms. Owing to lack of standard performance metric indices to evaluate covariance control capability, sensor allocation ratio, etc, there are no guides to follow in the design procedure of sensor allocation algorithm in practical applications. To meet these demands, three quantified performance metric indices are presented, which are average covariance misadjustment quantity (ACMQ), average sensor allocation ratio (ASAR) and matrix metric influence factor (MMIF), where ACMQ, ASAR and MMIF quantify the covariance control capability, the usage of sensor resources and the robustness of sensor allocation algorithm, respectively. Meanwhile, a covariance adaptive sensor allocation algorithm based on a new objective function is proposed to improve the covariance control capability of the algorithm based on information gain. The experiment results show that the proposed algorithm have the advantage over the preceding sensor allocation algorithm in covariance control capability and robustness.
Covariant holography of a tachyonic accelerating universe
Energy Technology Data Exchange (ETDEWEB)
Rozas-Fernandez, Alberto [Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Fundamental, Madrid (Spain); University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth (United Kingdom)
2014-08-15
We apply the holographic principle to a flat dark energy dominated Friedmann-Robertson-Walker spacetime filled with a tachyon scalar field with constant equation of state w = p/ρ, both for w > -1 and w < -1. By using a geometrical covariant procedure, which allows the construction of holographic hypersurfaces, we have obtained for each case the position of the preferred screen and have then compared these with those obtained by using the holographic dark energy model with the future event horizon as the infrared cutoff. In the phantom scenario, one of the two obtained holographic screens is placed on the big rip hypersurface, both for the covariant holographic formalism and the holographic phantom model. It is also analyzed whether the existence of these preferred screens allows a mathematically consistent formulation of fundamental theories based on the existence of an S-matrix at infinite distances. (orig.)
Covariant Gauge Fixing and Canonical Quantization
McKeon, D G C
2011-01-01
Theories that contain first class constraints possess gauge invariance which results in the necessity of altering the measure in the associated quantum mechanical path integral. If the path integral is derived from the canonical structure of the theory, then the choice of gauge conditions used in constructing Faddeev's measure cannot be covariant. This shortcoming is normally overcome either by using the "Faddeev-Popov" quantization procedure, or by the approach of Batalin-Fradkin-Fradkina-Vilkovisky, and then demonstrating that these approaches are equivalent to the path integral constructed from the canonical approach with Faddeev's measure. We propose in this paper an alternate way of defining the measure for the path integral when it is constructed using the canonical procedure for theories containing first class constraints and that this new approach can be used in conjunction with covariant gauges. This procedure follows the Faddeev-Popov approach, but rather than working with the form of the gauge tran...
Model selection for Poisson processes with covariates
Sart, Mathieu
2011-01-01
We observe $n$ inhomogeneous Poisson processes with covariates and aim at estimating their intensities. To handle this problem, we assume that the intensity of each Poisson process is of the form $s (\\cdot, x)$ where $x$ is the covariate and where $s$ is an unknown function. We propose a model selection approach where the models are used to approximate the multivariate function $s$. We show that our estimator satisfies an oracle-type inequality under very weak assumptions both on the intensities and the models. By using an Hellinger-type loss, we establish non-asymptotic risk bounds and specify them under various kind of assumptions on the target function $s$ such as being smooth or composite. Besides, we show that our estimation procedure is robust with respect to these assumptions.
Errors on errors - Estimating cosmological parameter covariance
Joachimi, Benjamin
2014-01-01
Current and forthcoming cosmological data analyses share the challenge of huge datasets alongside increasingly tight requirements on the precision and accuracy of extracted cosmological parameters. The community is becoming increasingly aware that these requirements not only apply to the central values of parameters but, equally important, also to the error bars. Due to non-linear effects in the astrophysics, the instrument, and the analysis pipeline, data covariance matrices are usually not well known a priori and need to be estimated from the data itself, or from suites of large simulations. In either case, the finite number of realisations available to determine data covariances introduces significant biases and additional variance in the errors on cosmological parameters in a standard likelihood analysis. Here, we review recent work on quantifying these biases and additional variances and discuss approaches to remedy these effects.
Covariance and the hierarchy of frame bundles
Estabrook, Frank B.
1987-01-01
This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.