WorldWideScience

Sample records for aromatic radical anions

  1. Ion pairing of radical ions of aromatic alkenes and alkynes studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Yamamoto, Yukio; Hayashi, Koichiro

    1991-01-01

    Pulse radiolysis of 1,2-dichloroethane solutions of trans,trans-1,4-bis(2-phenylethenyl)benzene and 1,4-bis(2-phenylethynyl)benzene was undertaken in the presence of Bu 4 NPF 6 (Bu=butyl) to investigate the effect of ion pairing of the solute radical cations with PF 6 - . It was also undertaken for the tetrahydrofuran solutions of the above compounds in the presence of Bu 4 NPF 6 and NaBPh 4 , where the solute radical anions are generated and form ion pairs with Bu 4 N + and Na + . The decay of the radical ions, which is due to neutralization, is retarded by the ion pairing. The rate constants for the neutralization reactions in the free-ion and ion-paired states were determined. Also presented are the data for the radical ions of trans-stilbene, diphenylacetylene, trans,trans-1,4-diphenyl-1,3-butadiene, and diphenylbutadiene. The radical ions of the aromatic alkynes are less stabilized by the ion pairing than those of the aromatic alkenes having the same carbon skeletons probably because of more extensive charge delocalization of the former radical ions. Spectral shifts to shorter wavelengths caused by the ion pairing are appreciable for the radical anions. Dependence of the spectral shifts on the size of the radical anions is described. (author)

  2. Effect of carbonyl group on the lifetimes of pentafluoroacetophenone and pentafluorobenzaldehyde radical anions in aqueous solution: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Shoute, L.C.T.

    1996-01-01

    Hydrated electrons react with pentafluoroacetophenone (PFA) to form radical anion. Evidence for the formation of the radical anion was obtained from observation of intermolecular electron transfer from PFA .- to p-benzoquinone (Q) and methyl viologen (MV 2+ ) to form Q .- and MV .+ . The radical anion lose fluoride with a rate constant of 5x10 4 s -1 . The radical anion has a pK a =7.5. Radical anion of pentafluorobenzaldehyde (PFB) was observed on reduction PFB with hydrated electron. It has a pK a =7.2. It loses fluoride with a rate constant of 1.2x10 5 s -1 . The studies show that substitution of a carbonyl group in the aromatic ring of a perfluorinated compound led to dramatic increase in the lifetime of the radical anion formed on electron addition due to decrease in the rate of fluoride elimination. This led to the possibility of observing their reactions with other solute present in the solution. (author). 6 refs., 1 tab

  3. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  4. Free radicals in an adamantane matrix. XIII. Electron paramagnetic resonance study of sigma* - π* orbital crossover in fluorinated pyridine anions

    International Nuclear Information System (INIS)

    Yim, M.B.; DiGregorio, S.; Wood, D.E.

    1977-01-01

    Pentafluoropyridine,2,3,4,6-tetrafluoropyridine, 2,6-difluoropyridine, and 2-fluoropyridine anion radicals were produced by x irradiation of an adamantane matrix which was doubly doped with the aromatic precursors and Me 3 NBH 3 and their EPR spectra obtained. The large fluorine hyperfine splitting constants (hfsc) of penta- and 2,3,4,6-tetrafluoropyridine anions and the small fluorine hfsc's of 2,6-di- and 2-fluoropyridine anions suggest that the former two are sigma radicals while the latter two are π radicals. The sigma*-π* orbital crossover phenomenon observed in these fluorinated pyridine anions is explained in terms of the combined effects of stabilization of sigma* orbitals and destabilization of π* orbitals. The EPR results show that nitrogen has a negligible contribution to the unpaired electron sigma* orbitals. INDO calculations were performed for the various states and the results compared with experiment

  5. Experimental evidence for interactions between anions and electron-deficient aromatic rings.

    Science.gov (United States)

    Berryman, Orion B; Johnson, Darren W

    2009-06-14

    This feature article summarizes our research aimed at using electron-deficient aromatic rings to bind anions in the context of complementary research in this active field. Particular attention is paid to the different types of interactions exhibited between anions and electron-deficient arenes in solution. The 120+ references cited in this article underscore the flurry of recent activity by numerous researchers in this field, which was relatively nascent when our efforts began in 2005. While the interaction of anions with electron-deficient aromatic rings has recently garnered much attention by supramolecular chemists, the observation of these interactions is not a recent discovery. Therefore, we begin with a historical perspective on early examples of anions interacting with electron-deficient arenes. An introduction to recent (and not so recent) computational investigations concerning anions and electron-deficient aromatic rings as well as a brief structural survey of crystalline examples of this interaction are provided. Finally, the limited solution-based observations of anions interacting with electron-deficient aromatic rings are summarized to introduce our current investigations in this area. We highlight three different systems from our lab where anion-arene interactions have been investigated. First, we show that tandem hydrogen bonds and anion-arene interactions augment halide binding in solution. Second, a crystallographic and computational study highlights the multiple types of interactions possible between anions and electron-deficient arenes. Third, we summarize the first example of a class of designed receptors that emphasize the different types of anion-arene interactions possible in solution.

  6. ESR study of the anion radicals of 5-nitropyrimidines: conversion to iminoxy radicals

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Clark, C.; Failor, R.

    1976-01-01

    The anion radicals of a number of 5-nitropyrimidines have been investigated by ESR spectroscopy. The anions are formed by electrolysis in dimethylformamide and by electron attachment in aqueous glasses, 12 M LiCl--D 2 O and 8 M NaOD. The electrolysis of 5-nitrouracil and 5-nitro-6-methyluracil results in relatively stable anion radicals. The results for 5-nitrouracil give evidence for two or perhaps three anions which differ only by the degree of ring nitrogen protonation. The results for 5-nitro-6-methyluracil suggest that the nitro group of the anion is twisted so that it is coupled only weakly to the ring π-electron system. The anions of 5-nitrouracil, 5-nitroorotic acid, 5-nitrobarbituric acid, and 5-nitro-6-methyluracil have been produced in the alkaline and neutral aqueous glasses. The anisotropic spectra found have been analyzed with the aid of computer simulations which assume axial symmetry. For example, the analysis of the spectrum of 5-nitrouracil anion in 12 M LiCl yields A/sub parallel//sup N/ = 33; A/sub perpendicular to//sup N/ = 5, a 6 /sup H/ = 5.5 G, g/sub parallel/ = 2.0016, and g/sub perpendicular to/ = 2.0059. A concentration dependence in the splittings is noted and discussed. Ultraviolet photolysis of the anions of 5-nitro-6-methyluracil and 5-nitrobarbituric acid results in the formation of iminoxy radicals. Mechanisms of formation of the iminoxy radicals are discussed and results found in this work are compared to results found in single crystals and aqueous solution

  7. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  8. The AHA Moment: Assessment of the Redox Stability of Ionic Liquids Based on Aromatic Heterocyclic Anions (AHAs) for Nuclear Separations and Electric Energy Storage.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2015-11-19

    Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N σ-radical or as an N π-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich π-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes.

  9. Sensitization of microorganisms and enzymes by radiation-induced selective inorganic radical anions

    International Nuclear Information System (INIS)

    Schubert, J.; Stegeman, H.

    1981-01-01

    Bacterial survival and enzymatic inactivation were examined following exposure to radiolytically-generated radical anions, X - 2 , where X=Cl, Br, I or CNS - . Depending on pH, radical anions react selectively or specifically with cysteine, tryptophan, tyrosine and histidine. Consequently, when one or more of these amino acids is crucial for enzymatic activity or bacterial survival and is attacked by a radical anion, a high degree or radiosensitization may be realized. Halide radical anions can form free chlorine, bromine or iodine. However, these bactericidal halogens are destroyed by reaction with the hydrated electron, e - sub(aq), or at pHs>9, as occurs, for example, when a medium saturated with nitrous oxide, N 2 O, and e - sub(aq) scavenger, is replaced by nitrogen or oxygen. Increasing concentration of other e - sub(aq) scavengers, such as phosphate buffer, promotes formation of halogen from halides. The conditions producing formation and elimination of halogens in irradiated media must be appreciated to avoid confusing radiosensitization by X 2 to X - 2 . Radiosensitization by radical anions of several microorganisms: S. faecalis, S. typhimurium, E. coli, and M. radiodurens is described. A crucial amino acid for survival of S. faecalis appears to be tyrosine, while both tyrosine and tryptophan seem essential for recovery of S. typhimurium from effects of ionizing radiation. It is postulated that the radiosensitizing action of radical anions involves inhibition of DNA repair of strand-breaks by depriving the cells of energy. In view of the high OH scavenging power of foods, it is concluded that the radiosensitization of bacteria and enzymes in foods by radical anions, except for special cases, is not practical. Rather, radical anions serve to identify crucial amino acids to radiosensitization mechanisms in model systems, and possibly in radiotherapy. (author)

  10. Zwitterion radicals and anion radicals from electron transfer and solvent condensation with the fingerprint developing agent ninhydrin.

    Science.gov (United States)

    Schertz, T D; Reiter, R C; Stevenson, C D

    2001-11-16

    Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.

  11. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    International Nuclear Information System (INIS)

    Mani, Tomoyasu; Brookhaven National Laboratory; Grills, David C.

    2017-01-01

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we show that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1 . IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.

  12. Mechanism of protection of adenosine from sulphate radical anion ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Repair by caffeic acid; repair of adenosine radicals; oxidation by sulphate radical anions. ... known that hydroxycinnamic acids are natural anti- oxidants ... acid. 2. Experimental ..... ously and independently under kinetic conditions at.

  13. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    Okamoto, Kazumasa; Tagawa, Seiichi

    2009-01-01

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  14. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  15. Structure and reactivity of the N-acetyl-cysteine radical cation and anion: does radical migration occur?

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; O'Hair, R.A.J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  16. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NARCIS (Netherlands)

    Osburn, S.; G. Berden,; Oomens, J.; O' Hair, R. A. J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  17. Radical anion structure of β-halogen-substituted acetamides in X-ray-irradiated single crystals: an INDO and EPR study

    International Nuclear Information System (INIS)

    Samskog, P.O.; Kispert, L.D.

    1984-01-01

    The anion radicals of bromodifluoroacetamide and chlorodifluoroacetamide are investigated by using the INDO method and EPR spectroscopy. INDO calculations for the anions give a spin density distribution in agreement with that suggested from experiment. Results of the analyses show that the unpaired electron occupies the sigma* orbital composed of the rho orbitals, along the C/sub β/-X bond, on the carbon and the unique halogen atoms. The results are compared to the radical anion in trifluoroacetamide. The electronic structure of SCF 2 CONH 2 - radical anions is a π-radical anion when X = F and a sigma*-radical anion when X = Cl and Br. 2 figures, 4 tables

  18. Resonance Raman Spectrum of the Transient (SCN)2 Free Radical Anion

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1979-01-01

    The resonance Raman spectrum of the transient species (λmax = 475 nm, τ½ = 1.6 μs) formed by pulse radiolysis of aqueous solutions of thiocyanate, SCN2−, is reported. The spectrum is discussed in terms of the previous assignment of this transient to the radical anion, (SCN)−2. The observed...... vibrational frequencies of the radical anion are consistent with substantial weakening of the S---S and the Ctriple bond; length as m-dashN bonds are compared with neutral thiocyanogen....

  19. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  20. Carbonate radical anion-induced electron transfer in bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2006-07-15

    Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO{sub 3}{sup -} radical) has been studied using pulse radiolysis technique. Scavenging of CO{sub 3}{sup -} radical by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k{approx}1.7x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO{sub 3}{sup -} radical and the electron transfer process have been studied and discussed in this paper.

  1. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy.

    Science.gov (United States)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides. © American Society for Mass Spectrometry, 2011

  2. Oxidation of aromatic amines and diamines by OH radicals. Formation and ionization constants of amine cation radicals in water

    International Nuclear Information System (INIS)

    Hayon, E.; Rao, P.S.

    1975-01-01

    The one-electron oxidation by hydroxyl radicals of aromatic amines and diamines in water was studied using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. The following compounds were examined: N,N,N 1 ,N 1 - tetramethyl-p-phenylenediamine (TMPD), p-phenylenediamine (PD), N,N-dimethyl-p-phenylenediamene (DMPD), N,N,N 1 ,N 1 -tetramethylbenzidine (TMB), and diphenylamine (DPA). The main initial reaction of the OH radicals is suggested to be an addition to these compounds to give absorption spectra which absorb strongly in the visible and uv regions. These OH radical adducts decay by first-order kinetics and have lifetimes of approximately 5-50 μsec, dependent on the pH, buffer concentration, and the nature of the aromatic amines and diamines. They decay to give species with somewhat similar absorption spectra and extinction coefficients, which are very long lived in the absence of oxygen. The latter species are assigned to the cation radicals TMPD. + , PD. + , DMPD. + , TMB. + , and DPA. + . The OH radical adducts and the cation radicals have acid-base properties. The pK/sub a/ values of the cation radicals TMPDH. 2+ , PDH. 2+ , DMPDH. 2+ , TMBH. 2+ , and DPAH. 2+ were found to be 5.3, 5.9, 6.1, 5.1, and 4.2, respectively. The results indicate that these aromatic amines and diamines can be oxidized by free radicals to yield the corresponding cation radicals. (U.S.)

  3. Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis.

    Science.gov (United States)

    Tay, Nicholas E S; Nicewicz, David A

    2017-11-15

    Nucleophilic aromatic substitution (S N Ar) is a direct method for arene functionalization; however, it can be hampered by low reactivity of arene substrates and their availability. Herein we describe a cation radical-accelerated nucleophilic aromatic substitution using methoxy- and benzyloxy-groups as nucleofuges. In particular, lignin-derived aromatics containing guaiacol and veratrole motifs were competent substrates for functionalization. We also demonstrate an example of site-selective substitutive oxygenation with trifluoroethanol to afford the desired trifluoromethylaryl ether.

  4. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.

    1982-01-01

    The participation of the primary radicals in the bleaching of aqueous solutions of the carotenoid crocin by ionizing radiation was investigated, employing both X-radiolysis and pulse radiolysis. The pulse-radiolytic data demonstrated a very rapid diffusion-controlled attack by both hydroxyl radicals (radicalsOH) and hydrated electrons (e - sub(aq)), while superoxide anions (O 2 - ) did not react at all. The site of the initial reaction of these radicals was not limited to the polyene chromophore. Slower secondary reactions involving crocin alkyl or peroxy radicals contribute mainly to the overall bleaching, in particular during steady-state irradiation. (author)

  5. A Computational Study of Structure and Reactivity of N-Substitued-4-Piperidones Curcumin Analogues and Their Radical Anions

    Directory of Open Access Journals (Sweden)

    Maximiliano Martínez-Cifuentes

    2016-12-01

    Full Text Available In this work, a computational study of a series of N-substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N-substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA and vertical electron affinities (VEA, as well as vertical detachment energy (VDE. To study electrophilic properties of these structures, local reactivity indices, such as Fukui (f+ and Parr (P+ functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.

  6. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    Radiosensitizers are used in radiotherapy to enhance tumour control of radioresistant hypoxic tumours. While the detailed mechanism of radiosensitization is still unknown, the formation of radical anions is believed to be a key step. Thus understanding the ionization reactions of radiosensitizers......, misonidazole and related compounds using a hybrid linear ion trap – Fourier Transform Ion Cyclotron Resonance mass spectrometer (Finnigan-LTQ-FT). A key finding is that negative electrospray ionization of these radiosensitizers leads to the formation of radical anions, allowing their fragmentation reactions...

  7. Aromatic products from reaction of lignin model compounds with UV-alkaline peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    A series of guaiacyl and syringyl lignin model compounds and their methylated analogues were reacted with alkaline hydrogen peroxide while irradiating with UV light at 254 nm. The aromatic products obtained were investigated by gas chromatography-mass spectrometry (GC-MS). Guaiacol, syringol and veratrol gave no detectable aromatic products. However, syringol methyl ether gave small amounts of aromatic products, resulting from ring substitution and methoxyl displacement by hydroxyl radicals. Reaction of vanillin and syringaldehyde gave the Dakin reaction products, methoxy-1,4-hydroquinones, while reaction of their methyl ethers yielded benzoic acids. Acetoguaiacone, acetosyringone and their methyl ethers afforded several hydroxylated aromatic products, but no aromatic products were identified in the reaction mixtures from guaiacylpropane and syringylpropane. In contrast, veratrylpropane gave a mixture from which 17 aromatic hydroxylated compounds were identified. It is concluded that for phenolic lignin model compounds, particularly those possessing electrondonating aromatic ring substituents, ring-cleavage reactions involving superoxide radical anions are dominant, whereas for non-phenolic lignin models, hydroxylation reactions through attack of hydroxyl radicals prevail

  8. Super-pnicogen bonding in the radical anion of the fluorophosphine dimer

    Science.gov (United States)

    Setiawan, Dani; Cremer, Dieter

    2016-10-01

    The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.

  9. o-Iminobenzosemiquinonate and o-imino-p-methylbenzosemiquinonate anion radicals coupled VO2+ stabilization.

    Science.gov (United States)

    Roy, Amit Saha; Saha, Pinaki; Adhikary, Nirmal Das; Ghosh, Prasanta

    2011-03-21

    The diamagnetic VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-), R = H, Me) complexes, (L(-))(VO(2+))(L(R)(IS)(•-)): (L(1)(-))(VO(2+))(L(H)(IS)(•-))•3/2MeOH (1•3/2MeOH), (L(2)(-))(VO(2+))(L(H)(IS)(•-)) (2), and (L(2)(-))(VO(2+))(L(Me)(IS)(•-))•1/2 L(Me)(AP) (3•1/2 L(Me)(AP)), incorporating tridentate monoanionic NNO-donor ligands {L = L(1)(-) or L(2)(-), L(1)H = (2-[(phenylpyridin-2-yl-methylene)amino]phenol; L(2)H = 1-(2-pyridylazo)-2-naphthol; L(H)(IS)(•-) = o-iminobenzosemiquinonate anion radical; L(Me)(IS)(•-) = o-imino-p-methylbenzosemiquinonate anion radical; and L(Me)(AP) = o-amino-p-methylphenol} have been isolated and characterized by elemental analyses, IR, mass, NMR, and UV-vis spectra, including the single-crystal X-ray structure determinations of 1•3/2MeOH and 3•1/2 L(Me)(AP). Complexes 1•3/2MeOH, 2, and 3•1/2 L(Me)(AP) absorb strongly in the visible region because of intraligand (IL) and ligand-to-metal charge transfers (LMCT). 1•3/2MeOH is luminescent (λ(ext), 333 nm; λ(em), 522, 553 nm) in frozen dichloromethane-toluene glass at 77 K due to π(diimine→)π(diimine)* transition. The V-O(phenolato) (cis to the V═O) lengths, 1.940(2) and 1.984(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP) are consistent with the VO(2+) description. The V-O(iminosemiquinonate) (trans to the V═O) lengths, 2.1324(19) in 1•3/2MeOH and 2.083(2) Å in 3•1/2 L(Me)(AP), are expectedly ∼0.20 Å longer due to the trans influence of the V═O bond. Because of the stronger affinity of the paramagnetic VO(2+) ion to the L(H)(IS)(•-) or L(Me)(IS)(•-), the V-N(iminosemiquinonate) lengths, 1.908(2) and 1.921(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP), are unexpectedly shorter. Density functional theory (DFT) calculations using B3LYP, B3PW91, and PBE1PBE functionals on 1 and 2 have established that the closed shell singlet (CSS) solutions (VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination) of these

  10. Polar-Nonpolar Radical Copolymerization under Li+ Catalysis

    Science.gov (United States)

    2008-09-21

    bonds or aromatic rings. Thus, we propose that a transfer of a methyl radical from CB11Me12C to IB triggers a radical polymerization chain that yields ...b-PIB and the resulting CB11Me11 byproduct concurrently triggers a cationic polymerization chain that yields l-PIB terminated with a carborate anion...tetrahydrofuran and passed through a column of alumina about five times to remove the bulk of the catalyst. A Soxhlet apparatus was used to recover

  11. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    Matsuura, K.; Muto, H.

    1991-01-01

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--H β proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp 2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  12. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    The nitration of aromatic compounds in the gas phase is an important source of toxic, carcinogenic, and mutagenic species in the atmosphere and has therefore received much attention. Gas phase nitration typically occurs by free-radical reactions. Condensed-phase free-radical reactions, and in particular nitrite and nitrate radical chemistry, have been studied far less. These condensed-phase free-radical reactions may be relevant in fog and cloud water in polluted areas, in urban aerosols with low pH, in water treatment using advanced oxidation processes such as electron beam (e-beam) irradiation, and in nuclear waste treatment applications. This study discusses research toward an improved understanding of nitration of aromatic compounds in the condensed phase under conditions conducive to free-radical formation. The results are of benefit in several areas of environmental chemistry, in particular nuclear waste treatment applications. The nitration reactions of anisole and toluene as model compounds were investigated in γ-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. Cs-7SB, 1-(2,2,3,3,-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, is used as a solvent modifier in the fission product extraction (FPEX) formulation for the extraction of Cs and Sr from dissolved nuclear fuel. The formulation also contains the ligands calix(4)arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6) for Cs extraction and 4,4(prime),(5(prime))-di-(t-butyldicyclohexano)-18-crown-6 (DtBuCH18C6) for Sr extraction, all in Isopar L, a branched-chain alkane diluent. FPEX solvent has favorable extraction efficiency for Cs and Sr from acidic solution and was investigated at the Idaho National Laboratory (INL) for changes in extraction efficiency after γ-irradiation. Extraction efficiency decreased after irradiation. The decrease in solvent extraction efficiency was identical for Cs and Sr, even though they are complexed by different ligands. This suggests that

  13. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    Science.gov (United States)

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  14. Study of organic radicals through anion photoelectron velocity-map imaging spectroscopy

    Science.gov (United States)

    Dixon, Andrew Robert

    We report preliminary results on the photoelectron imaging of phenylcarbene, cyanophenylcarbene, and chlorophenylcarbene anions. Triplet phenylcarbene is observed to have an EA of ≤ 0.83 eV, considerably lower than the previously indirectly-determined value. Transitions to the singlet and triplet ground state of both cyanophenylcarbene and chlorophenylcarbene are observable, though unidentified bands make full assignment difficult. Cyanophenylcarbene is found to have a triplet ground-state, with a tentative EA of 2.04 eV. Chlorophenylcarbene is found to have a singlet ground-state. The phenyl-group is found to favor the singlet state slightly. The cyanofluoromethyl radical, FC(H)CN, was estimated to have an EA of 1.53 +/- 0.08 eV, by a combination of experimental and theoretical results.. With similar methodology, we report the adiabatic electron affinity of the cyanobenzyl radical, EA(PhCHCN) = 1.90 +/- 0.01 eV, and assign an upper limit of the EA for the chlorobenzyl radical, EA(PhCHCl) ≤ 1.12 eV. These values were used to estimate the C-H bond dissociation energy (BDE)s for these substituted methanes. Fluoroacetonitrile was found to have a BDE of D H198 = 90.7 +/- 2.8 kcal mol□1. The C-H bond dissociation energies at the benzyl-alpha sites of the phenylmethanes are determined as 80.9 +/- 2.3 kcal mol-1 for benzyl nitrile and an upper limit of 84.2 kcal mol-1 for benzyl chloride. These results are discussed in terms of substituent interactions in a simple MO framework and in relation to other similar molecules, including recently reported results for chloroacetonitrile. The 532 nm photoelectron spectrum of glyoxal provides the first direct spectroscopic determination of the adiabatic electron affinity, EA = 1.10(2) eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy (VDE) of the glyoxal radical anion is determined as VDE = 1

  15. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.

    1994-01-01

    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  16. Screening of radical scavenging activity of some medicinal and aromatic plant extracts

    NARCIS (Netherlands)

    Miliauskas, G.; Venskutonis, R.P.; Beek, van T.A.

    2004-01-01

    Extracts of 12 medicinal and aromatic plants were investigated for their radical scavenging activity using DPPH and ABTS assays: Salvia sclarea, Salvia glutinosa, Salvia pratensis, Lavandula angustifolia, Calendula officinalis, Matricaria recutita, Echinacea purpurea, Rhaponticum carthamoides,

  17. Fast reactions of organic anion radicals with organic halides in hexamethylphosphoric triamide studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Honda, Eiji; Tokuda, Masao; Yoshida, Hiroshi; Ogasawara, Masaaki

    1987-01-01

    Fast reactions of diethyl fumarate anion radical (DEF - ) and fluorenone anion radical (Fl - ) with various organic halides (RX) in hexamethylphosphoric triamide have been studied by means of ns pulse radiolysis at room temperature. Reactions of acetophenone anion radical were also studied for comparison. It was found that the reaction rate of Fl - was subject to the steric and resonance effects of R groups of RX in accord with the classical concept of S N 2 reactions: the rate constant was reduced by 2 orders of magnitude by the steric effect when R was changed from ethyl to bulky isopropyl or t-butyl, and it was still large by the resonance effect of R even if R was changed from ethyl to an allyl or a benzyl group. While the reaction rate of DEF - was not much affected when R was changed to more bulky groups, the rate constant was correlated to the reduction potential of RX. The results were interpreted in terms of a VB correlation diagram approach or rate-equilibrium relationship within a framework of S N 2 reactions. (author)

  18. (Ph4P)S6—A Compound Containing the Cyclic Radical Anion S6.−

    NARCIS (Netherlands)

    Neumuller, F.; Schmock, R.; Kirmse, A.; Voigt, A.; Diefenbach, A.; Bickelhaupt, F.M.; Dehnicke, K.

    2000-01-01

    Two long S−S bonds link the two S3 fragments in the cyclic radical anion S6.−. This forms as orange‐red crystals with PPh4+ as the counterion in the reaction of sulfane with (tetraphenylphosphonium) hydrogen diazide. The anion has a chair conformation with C2h symmetry (see picture).

  19. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  20. 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.

    Science.gov (United States)

    Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang

    2012-05-01

    Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).

  1. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Resonance Raman Spectra of the Transient Cl2 and Br2 Radical Anions

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Sillesen, Alfred Hegaard

    1984-01-01

    The resonance Raman spectra of the short-lived radical anions ClImage 2− and BrImage − in aqueous solution are reported. The observed wavenumbers of 279 cm−1 for ClImage − and 177 cm−1 for BrImage − are about 10% higher than those published for the corresponding species isolated in solid argon ma...

  3. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  4. Effects of microsolvation on uracil and its radical anion: Uracil.(H2O)n (n=1-5)

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F.

    2006-10-01

    Microsolvation effects on the stabilities of uracil and its anion have been investigated by explicitly considering the structures of complexes of uracil with up to five water molecules at the B3LYP /DZP++ level of theory. For all five systems, the global minimum of the neutral cluster has a different equilibrium geometry from that of the radical anion. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of uracil are predicted to increase gradually with the number of hydrating molecules, qualitatively consistent with experimental results from a photodetachment-photoelectron spectroscopy study [J. Schiedt et al., Chem. Phys. 239, 511 (1998)]. The trend in the AEAs implies that while the conventional valence radical anion of uracil is only marginally bound in the gas phase, it will form a stable anion in aqueous solution. The gas-phase AEA of uracil (0.24eV) was higher than that of thymine by 0.04eV and this gap was not significantly affected by microsolvation. The largest AEA is that predicted for uracil•(H2O)5, namely, 0.96eV. The VDEs range from 0.76to1.78eV.

  5. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  6. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    International Nuclear Information System (INIS)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J.; Gonzalez, Ignacio; Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos; Ribeiro, Rogerio Tavares; Longo, Ricardo L.; Navarro, Marcelo; Frontana, Carlos

    2010-01-01

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A 2- + A → 2A· - ). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  7. Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: simulation-aided molecular design.

    Science.gov (United States)

    Chen, Fengkun; Zhang, Jie; Jiang, Hong; Wan, Xinhua

    2013-07-01

    The large redshift of near-infrared (NIR) absorptions of nitro-substituted anthraquinone imide (Nitro-AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO-LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron-withdrawing dicyanovinyl (di-CN) substituent was designed and prepared. The resulting molecule, di-CN-AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700-1000 (λmax ≈860 nm) and λ=1100-1800 nm (λmax ≈1400 nm) upon one-electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple-red. The relationship between calculated radical anionic HOMO-LUMO gaps and the electron-withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of sodium aromatic sulfonate group in anionic polymer dispersant on the viscosity of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Toshio Kakui; Hidehiro Kamiya [Lion Corporation, Tokyo (Japan). Chemicals Research Laboratories, Chemicals Division

    2004-06-01

    This paper focused on the effect of sodium aromatic sulfonate in anionic polymer dispersants on the viscosity of coal-water mixtures (CWMs) with a Tatung coal powder. To determine the optimum molecular structure of a polymer dispersant for the minimum viscosity of a CWM, various anionic co-polymers with different hydrophilic and hydrophobic groups or different molecular weights were prepared, using various types of monomers. Anionic co-polymers with sodium aromatic sulfonate, such as sodium styrene-sulfonate and sodium naphthalene-sulfonate, reduced the viscosity of dense CWMs. In particular, a co-polymer of sodium styrene-sulfonate and sodium acrylate with a molar ratio of 70:30 and a molecular weight of {approximately} 10 000 gave the minimum viscosity of a 70 wt % CWM. To obtain a low viscosity for a CWM, a large electrostatic repulsive force with an absolute value of the zeta potential of the coal particles of {gt} 70 mV and {gt} 6.5 mg/g of adsorbed polymer on the coal surface were needed. The mixture of sodium polystyrene-sulfonate and sodium polyacrylate with a weight ratio of 50:50 also gave a low viscosity of 70 wt % CWM. On the basis of the results, the adsorption behavior of polymer dispersants on the coal surface is examined by measuring the wettability of coal powder pellets. 27 refs., 8 figs., 3 tabs.

  9. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  10. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J. [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico); Gonzalez, Ignacio [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Area de Electroquimica, Apartado Postal 55-534, 09340, D.F. (Mexico); Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, Tabuleiro do Martins, Maceio, AL, 57072-970 (Brazil); Ribeiro, Rogerio Tavares; Longo, Ricardo L. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Navarro, Marcelo, E-mail: navarro@ufpe.b [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico)

    2010-11-30

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A{sup 2-} + A {yields} 2A{center_dot}{sup -}). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  11. Equilibrium studies of the adsorption of aromatic disulfonates by Mg-Al oxide

    Science.gov (United States)

    Kameda, Tomohito; Umetsu, Mami; Kumagai, Shogo; Yoshioka, Toshiaki

    2018-03-01

    The removal of m-benzenedisulfonate (BDS2-) and 2,6-naphthalenedisulfonate (NDS2-) anions by Mg-Al oxide was investigated. Langmuir model best describes the adsorption of both aromatic disulfonate anions, with the maximum amount of uptake higher for BDS2-. Mg-Al oxide reacts easier with the aromatic disulfonate anion with higher charge density, a trend that is the opposite of that observed in aromatic sulfonate anions. After increasing the charge from -1 to -2, the removal of aromatic disulfonates by Mg-Al oxide is controlled by electrostatic interactions, instead of hydrophobic interactions that are dominant for aromatic sulfonate anions.

  12. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  13. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  14. The strong influence of the solvent on the electron spin resonance spectra of semiquinone radical anions

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2013-01-01

    ). The proton hyperfine constants predicted for the chrysazin semiquinone radical anion were highly sensitive to the assumed dielectric constant ε of the solvent continuum, inverting the relative magnitudes of the hyperfine constants and thereby leading to agreement with the observed data published by Stegmann...

  15. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  16. Studies of radiation-produced radicals and radical ions. Progress report, June 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Williams, T.F.

    1982-01-01

    The discovery and characterization of novel radical ions produced by the γ irradiation of solids continues to be a fertile field for investigation. This Progress Report describes the generation and ESR identification of several new paramagnetic species, some of which have long been sought as important intermediates in radiation chemistry. We have also contributed to a general theoretical problem in ESR spectroscopy. Solid-state studies of electron attachment reactions, both non-dissociative and dissociative, reveal interesting structural and chemical information about the molecular nature of these processes for simple compounds. In particular, ESR measurements of the spin distribution in the products allow a fairly sharp distinction to be drawn between radical anions and radical-anion pairs or adducts. Dimer radical anion formation can also take place but the crystal structure plays a role in this process, as expected. Some radical anions undergo photolysis to give radical-anion pairs which may then revert back to the original radical anion by a thermal reaction. The chemistry of these reversible processes is made more intricate by a competing reaction in which the radical abstracts a hydrogen atom from a neighboring molecule. However, the unraveling of this complication has also served to extend our knowledge of the role of quantum tunneling in chemical reactions. The results of this investigation testify to the potential of solid-state techniques for the study of novel and frangible radical ions. Progress in this field shows no sign of abating, as witness the recent discovery of perfluorocycloalkane radical anions and alkane radical cations

  17. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Liu, Tingting; Niu, Xiangheng; Shi, Libo; Zhu, Xiang; Zhao, Hongli; Lana, Minbo

    2015-01-01

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O 2 ·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm −2 μM −1 ) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  18. Enhancing and inhibiting effects of aromatic compounds on luminol-dimethylsulfoxide-OH(-) chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC with chemiluminescence detection.

    Science.gov (United States)

    Zhou, Jian; Xu, Hong; Wan, Guo-Hui; Duan, Chun-Feng; Cui, Hua

    2004-10-08

    The effect of 36 aromatic compounds on the luminol-dimethylsulfoxide-OH(-) chemiluminescence (CL) was systematically studied. It was found that dihydroxybenzenes, and ortho- and para-substituted aminophenols and phenylenediamines inhibited the CL and phenols with three or more than three hydroxyls except phloroglucin tended to enhance the CL. The CL inhibition and enhancement was proposed to be dependent on whether superoxide anion radical (O(2)(-)) was competitively consumed by compounds in the CL system. Trihydroxybenzenes were capable of generating superoxide anion radical, leading to the CL enhancement, whereas dihydroxybenzenes were superoxide anion radical scavenger, causing the CL inhibition. Based on the inhibited CL, a novel method for the simultaneous determination of p-phenylenediamine, o-phenylenediamine, p-aminophenol, o-aminophenol, resorcinol and hydroquinone by high-performance liquid chromatography coupled with chemiluminescence detection was developed. The method has been successfully applied to determine intermediates in oxidative hair dyes and wastewater of shampooing after hair dyed.

  19. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    Science.gov (United States)

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion

  20. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  1. Antioxidant Effects of Herbal Tea Leaves from Yacon (Smallanthus sonchifolius) on Multiple Free Radical and Reducing Power Assays, Especially on Different Superoxide Anion Radical Generation Systems.

    Science.gov (United States)

    Sugahara, Shintaro; Ueda, Yuto; Fukuhara, Kumiko; Kamamuta, Yuki; Matsuda, Yasushi; Murata, Tatsuro; Kuroda, Yasuhiro; Kabata, Kiyotaka; Ono, Masateru; Igoshi, Keiji; Yasuda, Shin

    2015-11-01

    Yacon (Smallanthus sonchifolius), a native Andean plant, has been cultivated as a crop and locally used as a traditional folk medicine for the people suffering from diabetes and digestive/renal disorders. However, the medicinal properties of this plant and its processed foods have not been completely established. This study investigates the potent antioxidative effects of herbal tea leaves from yacon in different free radical models and a ferric reducing model. A hot-water extract exhibited the highest yield of total polyphenol and scavenging effect on 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical among four extracts prepared with hot water, methanol, ethanol, and ethylacetate. In addition, a higher reducing power of the hot-water extract was similarly demonstrated among these extracts. Varying concentrations of the hot-water extract resulted in different scavenging activities in four synthetic free radical models: DPPH radical (EC50 28.1 μg/mL), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (EC50 23.7 μg/mL), galvinoxyl radical (EC50 3.06 μg/mL), and chlorpromazine cation radical (EC50 475 μg/mL). The yacon tea-leaf extract further demonstrated superoxide anion (O2(-)) radical scavenging effects in the phenazine methosulfate-NADH-nitroblue tetrazolium (EC50 64.5 μg/mL) and xanthine oxidase assay systems (EC50 20.7 μg/mL). Subsequently, incubating human neutrophilic cells in the presence of the tea-leaf extract could suppress the cellular O2(-) radical generation (IC50 65.7 μg/mL) in a phorbol 12-myristate 13-acetate-activated cell model. These results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. Yacon has been considered to be a potent alternative food source for patients who require a dietary cure in regional area, while the leaf part has been provided and consumed as an herbal tea in local markets. We demonstrated here potent antioxidative effects of the tea

  2. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  3. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    Science.gov (United States)

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  4. Microhydration of cytosine and its radical anion: Cytosine.(H2O)n (n=1-5)

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F.

    2007-02-01

    Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n =5) is bound by 7-10kcalmol-1 to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48eV, it is predicted to increase to 1.27eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03to0.61eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al. [Chem. Phys. 239, 511 (1998)].

  5. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    Science.gov (United States)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  6. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces.

    Science.gov (United States)

    Cotelle, Yoann; Benz, Sebastian; Avestro, Alyssa-Jennifer; Ward, Thomas R; Sakai, Naomi; Matile, Stefan

    2016-03-18

    To integrate anion-π, cation-π, and ion pair-π interactions in catalysis, the fundamental challenge is to run reactions reliably on aromatic surfaces. Addressing a specific question concerning enolate addition to nitroolefins, this study elaborates on Leonard turns to tackle this problem in a general manner. Increasingly refined turns are constructed to position malonate half thioesters as close as possible on π-acidic surfaces. The resulting preorganization of reactive intermediates is shown to support the disfavored addition to enolate acceptors to an absolutely unexpected extent. This decisive impact on anion-π catalysis increases with the rigidity of the turns. The new, rigidified Leonard turns are most effective with weak anion-π interactions, whereas stronger interactions do not require such ideal substrate positioning to operate well. The stunning simplicity of the motif and its surprisingly strong relevance for function should render the introduced approach generally useful. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. X-ray absorption spectroscopy of ultramarine pigments: A new analytical method for the polysulfide radical anion S3- chromophore

    International Nuclear Information System (INIS)

    Fleet, Michael E.; Liu, Xi

    2010-01-01

    Blue and mauve ultramarine artists' pigments and their heat-treated products have been investigated by sulfur K-edge X-ray absorption. X-ray absorption near-edge structure spectra are dominated by features of reduced sulfur and sulfate species. There is also a pre-peak at about 2468.0 eV which reflects the presence of the unpaired electron on the polysulfide radical anion (S 3 - ). Pre-peak intensity is directly proportional to the depth of blue coloration, and provides a new, independent method for estimating the proportion of ultramarine cage sites occupied by the blue chromophore. The occupancy of the polysulfide radical anion S 3 - is estimated to be 33% in an intense ultramarine blue pigment, 22% in a dark blue ultramarine pigment, and 1% in deep royal blue lazurite from Afghanistan. The more efficient development of color in lazurite is attributed to extensive annealing of the mineral structure in the natural environment.

  8. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Albarran, G.; Schuler, R.H.

    2003-01-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, · OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because · OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  9. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  10. Assessment of the radiation resistance of some aromatic polyesters

    International Nuclear Information System (INIS)

    Choi, E.J.; Hill, D.J.T.; Kim, K.Y.

    1998-01-01

    comparison with known values for aliphatic polyesters indicates the important role of aromatic groups in radiation stabilization of polymers. Photobleaching experiments of PET-related polymers at 77 k with a cut-off filter (λ≥610 nm) showed that the concentration of the radical species decreased by a factor of approximately 50 percent after 30 minutes and that the major factor contributing to components of radiolysis at 77 K are singlet and anion radicals located on aromatic rings probably. Since there is little effect on the thermal stabilities following radiolysis in air and vacuum at the low dose used (16.9 Mrad), indicates that the crosslinking is not occurred by radiation at this low dose rate

  11. Thermodynamic and kinetic analysis of the reaction between biological catecholamines and chlorinated methylperoxy radicals

    Science.gov (United States)

    Dimić, Dušan S.; Milenković, Dejan A.; Marković, Jasmina M. Dimitrić; Marković, Zoran S.

    2018-05-01

    The antiradical potency of catecholamines (dopamine, epinephrine, norepinephrine, L-DOPA), metabolites of dopamine (homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) and catechol towards substituted methylperoxy radicals is investigated. The thermodynamic parameters, together with the kinetic approach, are used to determine the most probable mechanism of action. The natural bond orbital and quantum theory of atoms in molecules are utilised to explain the highest reactivity of trichloromethylperoxy radical. The preferred mechanism is dependent both on the thermodynamic and kinetic parameters . The number of chlorine atoms on radical, the presence of intra-molecular hydrogen bond and number of hydroxy groups attached to the aromatic ring significantly influence the mechanism. The results suggest that sequential proton loss electron transfer (SPLET) is the most probable for reaction with methylperoxy and hydrogen atom transfer (HAT) for reaction with trichloromethylperoxy radicals, with a gradual transition between SPLET and HAT for other two radicals. Due to the significant deprotonation of molecules containing the carboxyl group, the respective anions are also investigated. The HAT and SPLET mechanisms are highly competitive in reaction with MP radical, while the dominant mechanism towards chlorinated radicals is HAT. The reactions in methanol and benzene are also discussed.

  12. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. GAS-PHASE REACTIONS OF POLYCYCLIC AROMATIC HYDROCARBON ANIONS WITH MOLECULES OF INTERSTELLAR RELEVANCE

    International Nuclear Information System (INIS)

    Demarais, Nicholas J.; Yang Zhibo; Martinez, Oscar; Wehres, Nadine; Bierbaum, Veronica M.; Snow, Theodore P.

    2012-01-01

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C 6 H – 5 ), naphthalenide (C 10 H – 7 ), and anthracenide (C 14 H – 9 ) with atomic H, H 2 , and D 2 using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O 2 , CO 2 , N 2 O, C 2 H 2 , CH 3 OH, CH 3 CN, (CH 3 ) 2 CO, CH 3 CHO, CH 3 Cl, and (CH 3 CH 2 ) 2 O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  14. Gas-phase Reactions of Polycyclic Aromatic Hydrocarbon Anions with Molecules of Interstellar Relevance

    Science.gov (United States)

    Demarais, Nicholas J.; Yang, Zhibo; Martinez, Oscar; Wehres, Nadine; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-02-01

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C6H- 5), naphthalenide (C10H- 7), and anthracenide (C14H- 9) with atomic H, H2, and D2 using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O2, CO2, N2O, C2H2, CH3OH, CH3CN, (CH3)2CO, CH3CHO, CH3Cl, and (CH3CH2)2O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  15. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  16. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    Cundall, R.B.; Bisby, R.H.; Hoe, S.T.; Sims, H.E.; Anderson, R.F.

    1979-01-01

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  17. The effect of varying the anion of an ionic liquid on the solvent effects on a nucleophilic aromatic substitution reaction.

    Science.gov (United States)

    Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B

    2018-05-09

    A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.

  18. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  19. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  20. Structural damage to lymphocyte nuclei by H2O2 or gamma irradiation is dependent on the mechanism of OH anion radical production

    International Nuclear Information System (INIS)

    Allan, I.M.; Vaughan, A.T.M.; Milner, A.E.; Lunec, J.; Bacon, P.A.

    1988-01-01

    Normal human lymphocytes were exposed to OH anion radicals produced indirectly by exposure to H 2 O 2 or directly by gamma irradiation. Using a flow cytometry technique to measure changes in nucleoid size, it was found that generation of OH anion in each system produced a characteristic relaxation in nuclear supercoiling. Exposure of cells to H 2 O 2 produced a metal-dependent step-wise relaxation in extracted nucleoids, while gamma irradiation induced a gradual dose-dependent increase in nucleoid size. The site-specific metal-dependent changes produced in lymphocytes incubated in H 2 O 2 should also occur in gamma irradiated cells, but the characteristic effects on nuclear supercoiling would not be detected within the background of random DNA damage. The importance of metals in maintaining the supercoiled loop configuration of DNA within the protein matrix suggests that free radical damage at metal locations may be particularly toxic for the cell. (author)

  1. A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion

    Energy Technology Data Exchange (ETDEWEB)

    Transue, Wesley J.; Velian, Alexandra; Nava, Matthew; Martin-Drumel, Marie-Aline; Womack, Caroline C.; Jiang, Jun; Hou, Gao-Lei; Wang, Xue-Bin; McCarthy, Michael C.; Field, Robert W.; Cummins, Christopher C.

    2016-06-01

    Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been characterized by molecular beam mass spectrometry (MBMS), laser-induced fluorescence (LIF), microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH = 25.5 kcal/mol and ΔS = ₋2.43 e.u., and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3- , for which structural data have been obtained in a single-crystal Xray diffraction study. Negative ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3- has been assessed using nucleus-independent chemical shift (NICS), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) methods.

  2. Association of alkali and alkaline earth metal cations with radical-anions of 9-fluorenone and 9.10-anthraquinone in dimethyl formamide medium

    International Nuclear Information System (INIS)

    Karpinets, A.P.; Bezuglyj, V.D.; Svetlichnaya, T.M.

    1988-01-01

    The polarographic method is used to estimate the stability of associates formed in dimethyl formamide by the products of one-electron reduction of 9-fluorenone and 9.10-anthraquinone with cations of alkali and alkali earth metals. It is shown that the strength of 9-fluorenone and 9.10-anthraquinone radical anion associates studied increases with cation charge increase and decrease of its crystallographic radius

  3. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  4. Electron spin resonance and optical studies on the radiolysis of carbon tetrachloride. II. Structure and reaction of CClṡ-4 radical anion in tetramethylsilane low-temperature solids

    Science.gov (United States)

    Muto, Hachizo; Nunome, Keichi

    1991-04-01

    An electron spin resonance (ESR) and optical study of carbon tetrachloride radical anion has been made to provide for a better understanding of the radiolysis of CCl4, following CClṡ+4 cation previously studied. It was found that the anion was metastably trapped in tetramethylsilane (TMS) matrices γ irradiated at 4 or 77 K. The g tensor and the hyperfine coupling tensors of all atoms of the radical were determined from ESR spectral simulation by using 12 CCl4 and the 13C enriched compound: g∥=2.004-5, g1=2.015,(A∥,A⊥) =(24.3,18.3) mT for 13C, (0.9, 0.2) mT for one 35Cl atom, and (A1,A2=A3)=(1.98,0.45) mT for the other three equivalent 35Cl atoms. From these parameters and a consideration on the g anisotropy combined with the optical data, the anion was found to have a predissociating molecular structure (CCl3ṡṡṡCl) ˙- with C3v symmetry, where the unpaired electron occupies A*1γ antibonding orbital. The carbon atom has a large spin density and near sp3 hybridization: ρp=0.62, ρs=0.18, ρp/ρs=3.4, and three Cl atoms and the other Cl atom have the spin densities ρp=0.10 and ρp=0.05, respectively. The species had two optical absorptions at λmax=265 and 370 nm which were assigned to the Eγ-A*1γ and A1γ-A*1γ electronic transitions, respectively. The anion converted to CCl ṡ3 radical by warming to ˜150 K in the TMS matrix. The present results have given unequivocal ESR and optical spectroscopic evidence and support for the assignment of the 370 nm band reported in the radiolyses of organic solutions containing CCl4.

  5. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

    1993-12-01

    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  6. Photoinduced oxidation of sea salt halides by aromatic ketones: a source of halogenated radicals

    Directory of Open Access Journals (Sweden)

    A. Jammoul

    2009-07-01

    Full Text Available The interactions between triplet state benzophenone and halide anion species (Cl, Br and I have been studied by laser flash photolysis (at 355 nm in aqueous solutions at room temperature. The decay of the triplet state of benzophenone was followed at 525 nm. Triplet lifetime measurements gave rate constants, kq (M−1 s, close to diffusion controlled limit for iodide (~8×109 M−1 s, somewhat less for bromide (~3×108 M−1 s and much lower for chloride (<106 M−1 s. The halide (X quenches the triplet state; the resulting product has a transient absorption at 355 nm and a lifetime much longer than that of the benzophenone triplet state, is formed. This transient absorption feature matches those of the corresponding radical anion (X2. We therefore suggest that such reactive quenching is a photosensitized source of halogen in the atmosphere or the driving force for the chemical oxidation of the oceanic surface micro layer.

  7. Radical production in the radiolysis of benzene

    International Nuclear Information System (INIS)

    LaVerne, J.A.; Araos, M.S.

    1998-01-01

    Complete text of publication follows. Benzene is the prototypical aromatic compound and yet the radiation chemistry of the radicals formed in its radiolysis is not well understood. Temporal information on the yield of phenyl radical, the major radical produced in the radiolysis, is important for understanding the radiation chemistry of many other types of aromatic compounds including some polymers. The effects of track structure on the production of phenyl radicals have been examined using iodine-scavenging techniques. The variation of the yields of iodobenzene and the other major molecular products such as biphenyl as a function of iodine concentration gives a good indication of the competition kinetics occurring in particle tracks. Experimental results of the scavenger experiments will be shown and their implications in the radiolysis of condensed hydrocarbons will be discussed

  8. Radical pair formation in γ-irradiated 2-methyltetrahydrofuran rigid solutions of polynitrobenzenes

    International Nuclear Information System (INIS)

    Konishi, S.; Hoshino, M.; Imamura, M.

    1981-01-01

    The γ-irradiated MTHF (2-methyltetrahydrofuran) rigid solutions of mDNB (m-dinitrobenzene) and sTNB (s-trinitrobenzene) showed at 77 K ESR spectra characteristic of triplet species in addition to the spectra of doublet species, whereas no triplet ESR spectra were observed for the mononitrobenzene and o- and p-di-nitrobenzene solutions. The distances of the unpaired spins evaluated from the observed fine structure constants by using a point-dipole approximation are 4.3 and 4.6 A for the mDNB solution and 3.9 and 4.7 A for the sTNB solution. The detection of only the solute anion radicals by the optical absorption spectra of the irradiated solutions and the difference of the rate of formation for the triplet species and the solute anion strongly suggest that the triplet species are ascribed to the solute anion-solvent radical pairs. Such radical pairs are most likely to be formed through the migration of a MTHF cation radical, i.e., so-called hole migration, to a specific site between the two nitro groups on the meta positions of a solute anion followed by the production of a stable solvent radical, which is paired with the solute anion

  9. The nature of the CO{sub 2}{sup −} radical anion in water

    Energy Technology Data Exchange (ETDEWEB)

    Janik, Ireneusz; Tripathi, G. N. R. [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2016-04-21

    The reductive conversion of CO{sub 2} into industrial products (e.g., oxalic acid, formic acid, methanol) can occur via aqueous CO{sub 2}{sup −} as a transient intermediate. While the formation, structure, and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 cm{sup −1}, attributed to the symmetric CO stretch, which is at ∼45 cm{sup −1} higher frequency than in inert matrices. Isotopic substitution at C ({sup 13}CO{sub 2}{sup −}) shifts the frequency downwards by 22 cm{sup −1}, which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 cm{sup −1} band also appears at 742 cm{sup −1} and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO{sub 2}{sup −}(C{sub 2v}/C{sub s}) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (C{sub s}) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO{sub 2}{sup −} moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28 ± 0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical, which has been in contention for decades, as reflected in a wide variation in the reported pK{sub a} (−0

  10. Research concerning ionic and free radical reactions in radiation chemistry. Progress report, September 15, 1976--September 15, 1977

    International Nuclear Information System (INIS)

    Williams, T.F.

    1977-01-01

    Progress is reported on ESR studies of fluorocarbon radicals and intermediate radicals. A detailed study was made of the dimethyl, diethyl, and di-n-propyl carbonates. Studies were continued on hydrogen-atom abstraction reactions at low temperatures with view to evaluating the contribution from quantum-mechanical tunneling. Detection of the transient dimer radical anion of acetonitrile in the upper crystalline phase at -50 0 C is reported. Abstracts of current reports are included on electron attachment to fluorocarbons hydrogen atom abstraction by methyl radicals. EPR spectra of the tetrafluoroethylene radical anion, and addition of tetrafluoroethylene to the tetrafluoroethylene radical anion

  11. Infrared spectroscopy of anionic hydrated fluorobenzenes

    International Nuclear Information System (INIS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-01-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C 6 F 6 - ·H 2 O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules

  12. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  13. Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution

    Science.gov (United States)

    Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.

    2009-11-01

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.

  14. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  15. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT

    Science.gov (United States)

    The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...

  16. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations....

  17. SIMULTANEOUS DTERMINATION OF CHROMATE AND AROMATIC HYDROCARBONS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    Science.gov (United States)

    An analytical method was developed to determine simultaneously, the inorganic anion CrO2-4, and organic aromatic compounds including benzoate, 2-Cl-benzoate, phenol, m-cresol and o-/p-cresol by capillary electrophoresis (CE). Chromate and the aromatics were separated in a relativ...

  18. Reactions of H-radicals with aromatic halogeno compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Lichtscheidl, J.; Getoff, N.

    1979-01-01

    The spectroscopic and kinetic data of the short lived intermediates obtained by the attack of H-radicals on fluoro-, chloro-, bromobenzene, benzylchloride and phenethylchloride in aqueous solutions were studied by pulse radiolysis technique. The first three yield cyclohexadienylradicals (k equals 1-1.5 x 10 9 dm 3 mol -1 s -1 ) with chatacteristic absorption maxima in the region 220-330 nm. In the case of benzylchloride a quantitative abstraction of chlorine by the H-atoms is observed (k = 9.5 x 10 8 dm 3 mol -1 s -1 ) leading to the formation of the benzylradical (Λsub(max)=257, 303, 317.5 nm). The attack of H-atoms on phenethylchloride can occur on the aromatic ring forming also a cyclohexadienylradical (k = 2.0 x 10 9 dm 3 mol -1 s -1 , lambdasub(max)=317, 323 nm) as well as on the side chain (k = 1.5 x 10 8 dm 3 mol -1 s -1 ) yielding H 2 . The intermediates decay according to a second order reaction with k = 2 to 4.6 x 10 9 dm 3 mol -1 s -1 . To elucidate reaction mechanisms, steady state radiolysis experiments on the same systems were performed. (auth.)

  19. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  20. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    Science.gov (United States)

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  1. Zn-Al LAYERED DOUBLE HYDROXIDE PILLARED BY DIFFERENT DICARBOXYLATE ANIONS

    Directory of Open Access Journals (Sweden)

    S. Gago

    2004-12-01

    Full Text Available Zn-Al layered double hydroxides (LDHs intercalated by terephthalate (TPH and biphenyl-4,4'-dicarboxylate (BPH anions have been synthesized by direct co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was 1.8. The products were characterized by powder X-ray diffraction, thermogravimetric analysis, FTIR and FT Raman spectroscopy, and MAS NMR spectroscopy. The basal spacing for the TPH-LDH intercalate was 14.62 Å, indicating that the guest anions stack to form a monolayer with the aromatic rings perpendicular to the host layers. For the LDH intercalate containing BPH anions, a basal spacing of at least 19.2 Å would be expected if the anions adopted an arrangement similar to that for the TPH anions. The observed spacing was 18.24 Å, suggesting that the anions are tilted slightly with respect to the host layers.

  2. Radiolytic reduction of nifurtimose by CO2-· free radicals

    International Nuclear Information System (INIS)

    Filali-Mouhim, A.; Champion, B.; Jore, D.; Ferradini, C.; Hickel, B.

    1991-01-01

    Nifurtimox is an antiparasitic drug often used in the treatment of the Chagas disease. Its therapeutic action seems to involve its monoelectronic reduction leading to a reduced radical capable of providing superoxide anion by reaction with oxygen. The oxidation reduction mechanisms involved in this action have been studied by steady state and pulse radiolysis methods. This study is devoted to the monoelectronic exchanges observed in the absence of air, the reducing radicals being the CO 2 - · anions [fr

  3. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  4. Investigations of structure, bonding, and reactions of radiation-induced free radicals in the solid state using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Hudson, R.L.

    1978-01-01

    Electron spin resonance spectroscopy (ESR) has been used to study the structure, bonding, and reactions of several types of free radicals produced by γ irradiation of solids at 77K. Well-defined spectral patterns and the use of photolysis and annealing treatments assisted the analyses and interpretations. The radical anion BF 3 - was generated and identified unequivocally in a matrix of tetramethylsilane at 77K. Both the ESR data and theoretical calculations support a pyramidal structure with a bond angle of about 110 0 . The present experiments showed that BF 3 - has ESR parameters consistent with those of the isoelectronic radicals CF 3 , NF 3 + , and F 2 NO. γ irradiation of polycrystalline trimethyl borate at 77K gave an ESR spectrum which was assigned to the dimer radical anion [(MeO) 3 B.B(OMe) 3 ] - . Radical anions of dialkyl carbonates were observed for the first time and found to undergo a β-scission reaction to produce alkyl radicals. This free radical reaction is unusual in that it proceeds both thermally and photochemically. For the dimethyl carbonate radical anion, 13 C parameters were obtained from a 13 C enriched sample. The photolysis of trapped radicals in γ irradiated carboxylic esters, RC(O)OR', was studied by ESR spectroscopy and two different reactions were characterized. Two hypervalent silicon radical anions were prepared and examined in SI(OCH 3 ) 4 . The results of the present work thus represent the first complete sets of data on the silicon 3s and 3p spin densities for such species. The first PL 3 - radical anion was prepared by the γ irradiation of crystalline trimethylphosphite, and identified through its photolysis reactions and from the results of radiation chemical experiments

  5. E. s. r. of free radicals in irradiated uracil-. beta. -D-arabinofuranoside

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, R [Oslo Univ. (Norway). Fysisk Institutt; Vaughan, R A

    1976-02-01

    Electron-spin-resonance measurements have been made on single crystals of uracil-..beta..-D-arabinofuranoside, which were irradiated by 4.0 MeV electrons at 77 K. At low temperatures, two radicals have been identified, one attributed to a hydrogen abstraction of 05' in the sugar moiety and the other to a radical anion located on the pyrimidine ring. The former was very unstable and seemed to act as a precursor to other unidentified radical species stable at 77 K. At room temperature, the main resonance was due to hydrogen addition to C5 and was probably produced by protonation of the anion. This same radical was also produced by irradiation at room temperature.

  6. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  7. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  8. Free radicals in dicarboxylic acids: an e.s.r. study of radical conversions in γ-irradiated single crystals of glutaric acid and glutaric-2,2,4,4-d4 acid

    International Nuclear Information System (INIS)

    Bergene, R.; Minegishi, A.; Riesz, P.

    1980-01-01

    The γ-radiation-induced free radicals in single crystals of glutaric acid and glutaric-2,2,4,4-d 4 acid were studied in the temperature range 77-300 K by e.s.r. techniques. At 77 K the decarboxylation radical and the anion are stabilized. At higher temperatures the decarboxylation radical is found to be converted into a hydrogen abstraction radical with an activation energy of 6.3 +- 0.5 kcal/mole for the non-deuterated crystal. This radical is stable at room temperature. The anion seems to be converted to a unidentified intermediate radical which in turn is converted to the σ-acyl radical. An analysis of the g-value anisotropy and of the 13 C hyperfine splitting variation for this radical in the deuterated crystal is consistent with the assigned radical structure. By heat treatment the σ-acyl radical is converted to another form of the hydrogen abstraction radical with an activation energy of 9.6 +- 0.6 kcal/mole in the deuterated crystal. U.V.-light (lambda= 254 nm) transforms one of the room temperature radicals into the other. (author)

  9. Evidence for radical anion formation during liquid secondary ion mass spectrometry analysis of oligonucleotides and synthetic oligomeric analogues: a deconvolution algorithm for molecular ion region clusters.

    Science.gov (United States)

    Laramée, J A; Arbogast, B; Deinzer, M L

    1989-10-01

    It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.

  10. EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.

    Science.gov (United States)

    Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef

    2018-05-18

    We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .

  11. cis-Thioindigo (TI) - a new ligand with accessible radical anion and dianion states. Strong magnetic coupling in the {[TI-(μ2-O),(μ-O)]Cp*Cr}2 dimers.

    Science.gov (United States)

    Konarev, Dmitri V; Khasanov, Salavat S; Shestakov, Alexander F; Fatalov, Alexey M; Batov, Mikhail S; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N

    2017-10-24

    Reaction of decamethylchromocene (Cp* 2 Cr) with thioindigo (TI) yields a coordination complex {[TI-(μ 2 -O), (μ-O)]Cp*Cr} 2 ·C 6 H 14 (1) in which one Cp* ligand in Cp* 2 Cr is substituted by TI. TI adopts cis-conformation in 1 allowing the coordination of both carbonyl groups to chromium. Additionally, one oxygen atom of TI becomes a μ 2 -bridge for two chromium atoms to form {[TI-(μ 2 -O), (μ-O)]Cp*Cr} 2 dimers with a CrCr distance of 3.12 Å. According to magnetic data, diamagnetic TI 2- dianions and two Cr 3+ atoms with a high S = 3/2 spin state are present in a dimer allowing strong antiferromagnetic coupling between two Cr 3+ spins with an exchange interaction of -35.4 K and the decrease of molar magnetic susceptibility below 140 K. Paramagnetic TI˙ - radical anions with the S = 1/2 spin state have also been obtained and studied in crystalline {cryptand[2,2,2](Na + )}(TI˙ - ) (2) salt showing that both radical anion and dianion states are accessible for TI.

  12. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition.

    Science.gov (United States)

    Sinha, Sourab; Rahman, Ramees K; Raj, Abhijeet

    2017-07-26

    Resonantly stabilized radicals, such as propargyl, cyclopentadienyl, benzyl, and indenyl, play a vital role in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) that are soot precursors in engines and flames. Pyrene is considered to be an important PAH, as it is thought to nucleate soot particles, but its formation pathways are not well known. This paper presents a reaction mechanism for the formation of four-ring aromatics, pyrene and fluoranthene, through the combination of benzyl and indenyl radicals. The intermediate species and transition structures involved in the elementary reactions of the mechanism were studied using density functional theory, and the reaction kinetics were evaluated using transition state theory. The barrierless addition of benzyl and indenyl to form the adduct, 1-benzyl-1H-indene, was found to be exothermic with a reaction energy of 204.2 kJ mol -1 . The decomposition of this adduct through H-abstraction and H 2 -loss was studied to determine the possible products. The rate-of-production analysis was conducted to determine the most favourable reactions for pyrene and fluoranthene formation. The premixed laminar flames of toluene, ethylbenzene, and benzene were simulated using a well-validated hydrocarbon fuel mechanism with detailed PAH chemistry after adding the proposed reactions to it. The computed and experimentally observed species profiles were compared to determine the effect of the new reactions for pyrene and fluoranthene formation on their concentration profiles. The role of benzyl and indenyl combination in PAH formation and growth is highlighted.

  13. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  14. Free radicals of an aromatic nature in air samples from iron foundries

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, L M

    1982-01-01

    Free radicals of relatively long life were identified as spin adducts of phenyl-N-tert-butylnitrone. Pyrolysis studies showed the radicals were oxy-radicals. The hyperfine splitting constants of spin adducts of radicals from the pyrolysis in air of benzo(a)pyrene, coal tar pitch, and moulding sand containing hard coal dust were the same as those of the radicals found in foundry air. Since these radicals can bind to DNA, they must be considered when estimating the hazardous effects of polluted air.

  15. Encapsulation of Gibbsite platelets with free radical and controlled radical emulsion polymerization approaches, a small review

    NARCIS (Netherlands)

    Loiko, O.P.; Spoelstra, A.B.; van Herk, A.M.; Meuldijk, J.; Heuts, J.P.A.

    2016-01-01

    Water-borne anisotropic polymer-Gibbsite latex particles were prepared by a conventional and an atom transfer radical polymerisation (ATRP) based starved-feed emulsion polymerisation without any chemical modification of the platelet surface. Anionic co-oligomers, synthesised via ATRP, were used in

  16. Titanium dioxide induced cell damage: A proposed role of the carboxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, Nicholas J.F. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2009-01-15

    Titanium dioxide (TiO{sub 2}) nanoparticles have been shown to be genotoxic to cells exposed to ultraviolet A (UVA) radiation. Using the technique of electron spin resonance (ESR) spin trapping, we have confirmed that the primary damaging species produced on irradiation of TiO{sub 2} nanoparticles is the hydroxyl (OH) radical. We have applied this technique to TiO{sub 2}-treated fish and mammalian cells under in vitro conditions and observed the additional formation of carboxyl radical anions (CO{sub 2}{sup -}) and superoxide radical anions (O{sub 2}{sup -}). This novel finding suggests a hitherto unreported pathway for damage, involving primary generation of OH radicals in the cytoplasm, which react to give CO{sub 2}{sup -} radicals. The latter may then react with cellular oxygen to form O{sub 2}{sup -} and genotoxic hydrogen peroxide (H{sub 2}O{sub 2})

  17. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  18. Potential Superoxide Anion Radical Scavenging Activity of Doum Palm ( Hyphaene thebaica L. Leaves Extract

    Directory of Open Access Journals (Sweden)

    Mohamed M. Al-Azizi

    2008-08-01

    Full Text Available The antioxidant activity of the aqueous ethanolic extract of Doum leaves, Hyphaene thebaica L. (Palmae, was studied. Data obtained showed that the extract scavenged superoxide anion radicals ( IC 50=1602 µg/ml in a dose dependant manner using xanthine/hypoxanthine oxidase assay. Four major flvonoidal compounds were identified by LC/SEI as; Quercetin glucoside , Kaempferol rhamnoglucoside, Dimethyoxyquercetin rhamnoglucoside . While , further in-depth phytochemical investigation of this extract lead to the isolation and identification of fourteen compounds ;their structures were elucidated based upon the interpretation of their spectral data(UV, 1H, 13C NMR and ESI/MS as; 8-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (vitexin 1, 6-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (iso-vitexin 2, quercetin 3-O-β- 4C 1-D-glucopyranoside 3, gallic acid 4, quercetin 7-O-β- 4C 1-D-glucoside 5, luteolin 7-O-β- 4C 1-D-glucoside 6, tricin 5 O-β- 4C 1-D-glucoside 7, 7, 3` dimethoxy quercetin 3-O-[6''-O-α-L-rhamnopyranosyl]-β-D-gluco-pyranoside (Rhamnazin 3-O-rutinoside 8, kaempferol-3-O-[6''-O-α- L-rhamnopyranosyl]-β- D-glucopyranoside (nicotiflorin 9, apigenin 10, luteolin 11, tricin 12, quercetin 13 and kaempferol 14

  19. Five Stereoactive Orbitals on Silicon: Charge and Spin Localization in the n-Si4Me10(-•) Radical Anion by Trigonal Bipyramidalization.

    Science.gov (United States)

    MacLeod, Matthew K; Michl, Josef

    2013-05-16

    RIUMP2/def2-TZVPPD calculations show that in addition to its usual conformation with charge and spin delocalized over the Si backbone, the isolated Si4Me10(-•) radical anion also has isomeric conformations with localized charge and spin. A structure with localization on a terminal Si atom has been examined in detail. In vacuum, it is calculated to lie 11.5 kcal/mol higher in energy than the charge-and-spin delocalized conformation, and in water the difference is as little as 1.6 kcal/mol. According to natural orbital and localized orbital analyses, the charge-and-spin-carrying terminal Si atom uses five stereoactive hybrid orbitals in a trigonal bipyramidal geometry. Four are built mostly from 3s and 3p atomic orbitals (AOs) and are used to attach a Si3(CH3)7 and three CH3 groups, whereas the larger equatorial fifth orbital is constructed from 4s and 4p AOs and acts as a nonbonding (radical) hybrid orbital with an occupancy of about 0.65 e.

  20. Reactions of substituted benzene anions with N and O atoms: Chemistry in Titan’s upper atmosphere and the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe-Chen; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-06-07

    The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.

  1. Reductive Umpolung of Carbonyl Derivatives with Visible-Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α-Amino Radicals and Ketyl Radicals

    KAUST Repository

    Fava, Eleonora; Millet, Anthony; Nakajima, Masaki; Loescher, Sebastian; Rueping, Magnus

    2016-01-01

    Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols. Anilines can be coupled with aldimines or aldehydes in a visible-light-mediated photoredox-catalyzed process. Reductive single electron transfer (SET) umpolung of the carbonyl derivatives leads to the generation of intermediary ketyl and α-amino radical anions, which were used for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols.

  2. Reductive Umpolung of Carbonyl Derivatives with Visible-Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α-Amino Radicals and Ketyl Radicals

    KAUST Repository

    Fava, Eleonora

    2016-05-02

    Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols. Anilines can be coupled with aldimines or aldehydes in a visible-light-mediated photoredox-catalyzed process. Reductive single electron transfer (SET) umpolung of the carbonyl derivatives leads to the generation of intermediary ketyl and α-amino radical anions, which were used for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols.

  3. Formation and determination of perinaphthenyl radical and PCAH in combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Franceschi, A [Univ., Pisa, Italy; Gerbaz, G P; Mangolini, S

    1976-09-01

    The concentration profiles of polycyclic aromatic hydrocarbons (PCAH) and perinaphthenyl radical along a vertical flow reactor have been determined for fuel rich premixed flames of n-heptane with small fractions of other hydrocarbons, methanol, and nitrogen oxide. It has been found that there is a strict relation between the concentrations of the higher molecular weight PCAH, which are the main components of soluble fraction of soot, and the perinaphthenyl radical. The aromatic ring of the fuel supplying the reactor plays the most significant role in the formation of PCAH and perinaphthenyl radical. Furthermore their concentrations increase passing from benzene toluene and, lastly, to mesitylene, because the energy of the C(arom)--C(alif) bond is lower than that of the C(arom)--C(arom) bond. The promoting action of methanol, when added to benzene, in the formation of PCAH and perinaphthenyl radical could be explained by the increased presence of CH/sub 3/ . radicals, which, can overcome the inhibiting action of OH. radicals. The contrary happens when methanol is added to toluene, because CH/sub 3/. coming from alcohol represents only a small fraction of the overall concentration, while the oxidant activity of OH. is prevailing. Finally the strong action of NO in reducing the free radical concentration has been pointed out.

  4. Protonated o-semiquinone radical as a mimetic of the humic acids native radicals: A DFT approach to the molecular structure and EPR properties

    Science.gov (United States)

    Witwicki, Maciej; Jezierska, Julia

    2012-06-01

    Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.

  5. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  6. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    Science.gov (United States)

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  7. The radiation chemistry of poly(arylene ether phosphine oxide)s

    International Nuclear Information System (INIS)

    Hill, D.J.T.; Hopewell, J.L.; O'Donnell, J.H.; Pomery, P.J.

    1995-01-01

    Electron spin resonance spectroscopy has been used to study the radicals which are formed on the gamma radiolysis of selected poly(arylene ether phosphene oxide)s which have been irradiated either at 77 or 303 K. At 77 K both neutral and anionic radicals are formed, but the anionic radicals are unstable above 200 K. Two types of neutral radicals were observed. They were the phenyl and phenoxyl radicals formed by homolytic scission of the backbone ether bonds. 31 P NMR spectroscopy showed that no new structures involving phosphorus were formed, but there was an indication that crosslinking may take place at aromatic rings adjacent to phosphorus atoms. Solution viscosity measurements indicated that the polymers undergo nett chain scission on irradiation, but the nett scission yield is very small. (author)

  8. On the mechanism of activation of copper-catalyzed atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Isse, Abdirisak Ahmed; Bortolamei, Nicola; De Paoli, Patrizia; Gennaro, Armando

    2013-01-01

    The mechanism of activation of atom transfer radical polymerization (ATRP) has been analyzed by investigating the kinetics of dissociative electron transfer (ET) to alkyl halides (RX) in acetonitrile. Using a series of alkyl halides, including both bromides and chlorides, the rate constants of ET (k ET ) to RX by electrogenerated aromatic radical anions (A· − ) acting as outer-sphere donors have been measured and analyzed according to the current theories of dissociative ET. This has shown that the kinetic data fit very well the “sticky” dissociative ET model with the formation of a weak adduct held together by electrostatic interactions. The rate constants of activation, k act , of some alkyl halides, namely chloroacetonitrile, methyl 2-bromopropionate and ethyl chloroacetate, by [Cu I L] + (L = tris(2-dimethylaminoethyl)amine, tris(2-pyridylmethyl)amine, 1,1,4,7,7-pentamethyldiethylenetriamine) have also been measured in the same experimental conditions. Comparisons of the measured k act values with those predicted assuming an outer-sphere ET for the complexes have shown that activation by Cu(I) is 7–10 orders of magnitude faster than required by outer-sphere ET. Therefore, the mechanism of RX activation by Cu(I) complexes used as catalysts in ATRP occurs by an inner-sphere ET or more appropriately by a halogen atom abstraction

  9. Oxidation of caffeine by phosphate radical anion in aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    reactions in our body generate reactive oxygen species mainly comprising free radicals .... caffeine might be acting as a sensitizer to transfer energy to PDP to produce phosphate ... The lifetime of the excited singlet 21 state of caffeine is of the.

  10. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    Directory of Open Access Journals (Sweden)

    Béla Fiser

    Full Text Available Non-reactive, comparative (2 × 1.2 μs molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule and hydroxyl radical (OH(•, guest molecule. From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  11. A Study of Picosecond Dehalogenation of Chlorobenzene Anions in Liquids of Positronium Inhibition Measurements

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O. E.

    1982-01-01

    on intramolecular electron transfer with subsequent dehalogenation of the molecular anion on a picosecond timescale. The divergence in inhibitor efficiency obtained for the chlorobenzenes when dissolved in aromatic solvents compared to the same solutes when dissolved in a saturated alkane appears most probably...

  12. Mechanisms for radiation damage in DNA. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1975-01-01

    A mechanism is proposed for radiation damage to DNA and a series of experiments utilizing electron spin resonance spectrometry to test the proposed mechanism is described. Investigations completed or nearing completion are: studies of electron transfer reactions in dinucleoside phosphates; studies of the anions of 5-nitropyrimidines and their reactions; and studies of protonation reactions at carbon sites in anion radicals of certain model compounds and aromatic amino acids. In the first study, the relative electron affinities of the DNA bases were determined in a model system of the DNA strand. In addition, study of the reactions of these anions showed that the thymine anion is the most reactive of the DNA bases in this model system. In the second study anisotropic and isotropic spectra of the anion radicals of 5-nitropyrimidines were characterized by newly developed computer simulation programs. Several of the anions were found to react to form iminoxy radicals. The third study showed that protonation reactions at carbon sites in anions are reactions which are general for molecules with unsaturated linkages. Thus, this mechanism is of significance to the radiolysis of many biological molecules, including DNA. (U.S.)

  13. Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.

    Science.gov (United States)

    Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar

    2003-12-07

    The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.

  14. Role of free radicals in radiation chemical aging

    Energy Technology Data Exchange (ETDEWEB)

    Greenstock, C L

    1986-01-01

    Ionizing radiation initiates chemical changes in DNA, phospholipid membranes and other critical cell targets, that, if allowed to accumulate unrepaired, may lead to aging and other chronic effects. The chemical effects are free radical mediated, the principal damaging species being radical OH and to a lesser extent O2-anion radical and the molecular product H/sub 2/O/sub 2/. Many compounds can act in combination with ionizing radiation, to amplify the potential oxidative stress. Chemicals, ultra-violet light, lipid peroxides and their breakdown products may increase the extent of acute and chronic radiobiological effects.

  15. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan; Palmer, Liam C.; Jackman, Joshua A.; Olvera de la Cruz, Monica; Cho, Nam-Joon; Stupp, Samuel I. (Nanyang); (NWU)

    2017-06-01

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.

  16. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions

    International Nuclear Information System (INIS)

    Schaefer, K.; Asmus, K.D.

    1980-01-01

    Phosphite radicals HPO 3 - and PO 3 2 -, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO 3 - and PO 3 2 - are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO 2 ) 3 - are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO 3 2 -. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO 5 - . reversible PO 5 2- . + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed

  17. Chain-end modification of living anionic polybutadiene with diphenylethylenes and styrenes

    NARCIS (Netherlands)

    Donkers, E.H.D.; Willemse, R.X.E.; Klumperman, B.

    2005-01-01

    The first step in the transformation of poly(butadienyl)lithium into a macromolecular atom transfer radical polymerization initiator or reversible addition-fragmentation chain transfer agent is the modification of the anionic chain end into a suitable leaving/reinitiating group. We have investigated

  18. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2015-09-01

    Full Text Available Heterogeneous semiconductor photoredox catalysis (SCPC, particularly with TiO2, is evolving to provide radically new synthetic applications. In this review we describe how photoactivated SCPCs can either (i interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of appropriate donors convert to neutral radicals usually by loss of a proton. The most efficient donors for synthetic purposes contain adjacent functional groups such that the neutral radicals are resonance stabilized. Thus, ET from allylic alkenes and enol ethers generated allyl type radicals that reacted with 1,2-diazine or imine co-reactants to yield functionalized hydrazones or benzylanilines. SCPC with tertiary amines enabled electron-deficient alkenes to be alkylated and furoquinolinones to be accessed. Primary amines on their own led to self-reactions involving C–N coupling and, with terminal diamines, cyclic amines were produced. Carboxylic acids were particularly fruitful affording C-centered radicals that alkylated alkenes and took part in tandem addition cyclizations producing chromenopyrroles; decarboxylative homo-dimerizations were also observed. Acceptors initially yielding radical anions included nitroaromatics and aromatic iodides. The latter led to hydrodehalogenations and cyclizations with suitable precursors. Reductive SCPC also enabled electron-deficient alkenes and aromatic aldehydes to be hydrogenated without the need for hydrogen gas.

  19. [Research progress on free radicals in human body].

    Science.gov (United States)

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  20. Positron Spur Reactions with Excess Electrons and Anions in Liquid Organic Mixtures of Electron Acceptors

    DEFF Research Database (Denmark)

    Lévay, B.; Mogensen, O. E.

    1980-01-01

    By means of the positron lifetime technique we have measured positronium (Ps) yields in mixtures of nonpolar liquids with various electron scavengers which bind the electron fairly weakly (1–2 eV) in stable anions. The results are discussed with reference to recent excess electron works, and new...... experiments on anions and excess electrons are proposed. The minimum of the Ps yield versus CS2 concentration curves caused by partly delocalization of electrons on several scavenger molecules, which was observed previously in saturated aliphatic hydrocarbons occurred also in the saturated cyclic hydrocarbon...... cyclohexane, but did not appear in the aromatic benzene. This might be explained by the weak electron acceptor property of aromatics. In the Ps yield versus SF6 concentration curve in hexane a similar minimum appeared as in the CS2 case, probably by the same reason. By adding 0.8 M CS2 to the system...

  1. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    Science.gov (United States)

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Aromatic organosulfates in atmospheric aerosols: synthesis, characterization, and abundance.

    Science.gov (United States)

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J; Surratt, Jason D; Stone1, Elizabeth A

    2014-09-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM 2.5 ) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3-and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 - 90 pg m -3 . Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m -3 , 2-31 pg m -3 , 109 pg m -3 , respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical ( • SO 3 - , m/z 80) and the sulfate radical ( • SO 4 - , m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates may have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

  3. Intramolecular anionic diels-alder reactions of 1-aryl-4-oxahepta-1,6-diyne systems in DMSO.

    Science.gov (United States)

    Kudoh, Takayuki; Mori, Tomoko; Shirahama, Mitsuhito; Yamada, Masashi; Ishikawa, Teruhiko; Saito, Seiki; Kobayashi, Hisayoshi

    2007-04-25

    Base-promoted cycloaddition reactions of 1-aryl- or 1-aryl-7-substituted-4-oxahepta-1,6-diyne systems in DMSO have proven to involve an anionic intramolecular Diels-Alder process taking place even at room temperature in spite of the reaction suffering from temporary disruption of aromaticity. Although initially formed alpha-arylallenide anion can be protonated by DMSO, it can be back to the allenide anion probably because of a small acidity difference between alpha-arylallene and DMSO. The alpha-arylallenide anion in combination with the alpha-aryl substituent can constitute an anionic diene structure that undergoes the intramolecular Diels-Alder reaction involving the C(6)-yne part, a very fast process probably because of the increased HOMO-1 level of the anionic diene, as shown by DFT calculations. Diversified substituted naphthalenes, benzofurans, phenanthrenes, and quinolines, including biaryl architectures, are available from 4-oxahepta-1,6-diynes in a highly expeditious way.

  4. Hydroxyl radical reactivity at the air-ice interface

    Directory of Open Access Journals (Sweden)

    T. F. Kahan

    2010-01-01

    Full Text Available Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at air-ice interfaces, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH anthracene at air-water interfaces, but no loss was observed at air-ice interfaces. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL that exists at air-ice interfaces.

  5. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  6. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Energy Technology Data Exchange (ETDEWEB)

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  7. A highly sensitive and selective fluorescent sensor for detection of sulfide anion based on the steric hindrance effect

    Science.gov (United States)

    Chen, Guanfan; Tang, Mengzhuo; Fu, Xiufang; Cheng, Fenmin; Zou, Xianghua; Wang, Jingpei; Zeng, Rongjin

    2018-01-01

    Sulfide anions are not only generated as a byproduct from industrial processes but also as a crucial kind of element in biological systems. Therefore, fluorescent probes for detecting sulfide anion with sensitive and selective characters are highly popular. In this study, we report a highly sensitive and selective fluorescent sensor M1 for detection of sulfide anion based on the steric hindrance effect, where the recognition unit, dinitrobenzenesulfonate ester group is linked to aromatic ortho-position in the porphyrin, and correspondingly the fluorescence of fluorescein is efficiently quenched. Compared with the sensors with recognition unit linked to the other aromatic positions, the fluorescent sensor M1 has a lower fluorescence background. Furthermore, the corresponding fluorescence responses (F/F0) of M1 for mercapto amino-acid GSH, Hcy and Cys, were all far lower than the relative fluorescence ratio F/F0 values for S2-. It means that M1 is sensitive and selective to detection of S2-, and has an anti-disturbance ability to the biologically-relevant thiols, GSH, Hcy and Cys, and has the prospect of application in the exact detection of sulfide anions in living organisms. This approach offers some useful insights for realizing sensitive and selective fluorescent turn-on sensing in the detection assays for other analytes.

  8. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    International Nuclear Information System (INIS)

    Bisby, R.H.; Tabassum, N.

    1988-01-01

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k 2 ) of (2.2 ± 0.4) x 10 9 M -1 sec -1 . In alkaline solutions the radical deprotonates with a pK of 11.1 ± 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 ± 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10 6 M -1 sec -1 at pH7 and 2.7 x 10 8 M -1 sec -1 at pH 11.3 were obtained. The reaction of O 2 with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed. (author)

  9. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bisby, R H; Tabassum, N

    1988-07-15

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k/sub 2/) of (2.2 +- 0.4) x 10/sup 9/ M/sup -1/ sec/sup -1/. In alkaline solutions the radical deprotonates with a pK of 11.1 +- 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 +- 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10/sup 6/ M/sup -1/ sec/sup -1/ at pH7 and 2.7 x 10/sup 8/ M/sup -1/ sec/sup -1/ at pH 11.3 were obtained. The reaction of O/sub 2/ with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed.

  10. The reaction of astatine with aromatic diazonium compounds

    International Nuclear Information System (INIS)

    Visser, G.W.M.; Diemer, E.L.

    1982-01-01

    Astatine reacts prefrentially with that type of aromatic diazonium salt that decomposes via a radical reaction channel (homolytic breakage of the C-N bond). The dediazonation with p-aminobenzoic acid and p-toluidine as model compounds was investigated through estatin produced in the 209 Bi(α,2n) 211 At reaction. (author)

  11. ESR-spin trapping studies on the interaction between anthraquinone triplets and aromatic compounds

    International Nuclear Information System (INIS)

    Moger, G.; Rockenbauer, A.; Simon, P.

    1980-01-01

    The ESR spin trapping technique was used for the detection of transient C-centered radicals in the photochemical interaction between triplet anthraquinone and aromatic hydroperoxide and alcohol. (author)

  12. The formation of aromatics and PAH's in laminar flames

    International Nuclear Information System (INIS)

    Marinov, N M; Pitz, W J; Westbrook, C K

    1999-01-01

    The formation of aromatics and PAH's is an important problem in combustion. These compounds are believed to contribute to the formation of soot whose emission from diesel engines is regulated widely throughout the industrial world. Additionally, the United States Environmental Protection Agency regulates the emission of many aromatics and PAH species from stationary industrial burners, under the 1990 Clean Air Act Amendments. The above emission regulations have created much interest in understanding how these species are formed in combustion systems. Much previous work has been done on aromatics and PAH's. The work is too extensive to review here, but is reviewed in Reference 1. A few recent developments are highlighted here. McEnally, Pfefferle and coworkers have studied aromatic, PAH and soot formation in a variety of non-premixed flames with hydrocarbon additives[2-4]. They found additives that contain a C5 ring increase the concentration of aromatics and soot[4]. Howard and coworkers have studied the formation of aromatic and PAH's in low pressure, premixed, laminar hydrocarbon flames. They found the cyclopentadienyl radical to be a key species in naphthalene formation in a fuel-rich, benzene/Ar/O2 flame[5

  13. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    Science.gov (United States)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  14. LOW TEMPERATURE FORMATION OF NITROGEN-SUBSTITUTED POLYCYCLIC AROMATIC HYDROCARBONS (PANHs)—BARRIERLESS ROUTES TO DIHYDRO(iso)QUINOLINES

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.; Kaiser, Ralf I. [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Bera, Partha P.; Lee, Timothy J., E-mail: ralfk@hawaii.edu, E-mail: Timothy.J.Lee@nasa.gov [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035 (United States)

    2015-12-20

    Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and therefore at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.

  15. Mulliken-Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    International Nuclear Information System (INIS)

    Rosokha, S.V.; Newton, M.D.; Head-Gordon, M.; Kochi, J.K.

    2006-01-01

    The paramagnetic [1:1] encounter complex (TCNE) 2 -dot is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor (TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE) 2 -dot by its intervalence absorption band at the solvent-dependent wavelength of λ IV ∼1500nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of H DA =1000cm -1 . The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of H DA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy (λ) and the electronic coupling element (H DA ) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes

  16. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  17. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity

    OpenAIRE

    Suvankar Das; Cristiane J. da Silva; Marina de M. Silva; Maria Dayanne de A. Dantas; Ângelo de Fátima; Ana Lúcia T. Góis Ruiz; Cleiton M. da Silva; João Ernesto de Carvalho; Josué C.C. Santos; Isis M. Figueiredo; Edeildo F. da Silva-Júnior; Thiago M. de Aquino; João X. de Araújo-Júnior; Goutam Brahmachari; Luzia Valentina Modolo

    2018-01-01

    Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (·O2−). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to ·O2− scavenger was piperidine...

  18. Quantum Chemical Investigation on the Antioxidant Activity of Neutral and Anionic Forms of Juglone: Metal Chelation and Its Effect on Radical Scavenging Activity

    Directory of Open Access Journals (Sweden)

    Aymard Didier Fouegue Tamafo

    2017-01-01

    Full Text Available The chelation ability of divalent Mg, Ca, Fe, Co, Ni, Cu, Zn, and monovalent Cu ions by neutral and anionic forms of juglone has been investigated at DFT/B3LYP/6-31+G(d,p level of theory in gas and aqueous phases. It is noteworthy that only the 1 : 1 stoichiometry was considered herein. The effects of these metals on the radical scavenging activity of neutral juglone were evaluated via the usual descriptors of hydrogen atom transfer. According to our results, metal chelation by the two forms of juglone was spontaneous and exothermic in both media. Based on the binding energies, Cu(II ion showed the highest affinity for the ligands. QTAIM analyses identified the metal-ligand bonds as intermediate type interactions in all the chelates, except those of Ca and Mg. It was also found that the chelates were better radical scavengers than the ligands. In the gas phase, the scavenging activity of the compounds was found to be governed by direct hydrogen atom transfer, the Co(II chelate being the most reactive. In the aqueous phase also, the sequential proton loss electron transfer was preferred by all the molecules, while the Cu(II chelates were the most reactive.

  19. Tropospheric Degradation of Perfluorinated Aromatics: A Case of Hexafluorobenzene

    Directory of Open Access Journals (Sweden)

    Goran Kovačević

    2015-12-01

    Full Text Available The major tropospheric removal process for hexafluorobenzene is its oxidation by hydroxyl (OH radicals. However, there is no information on the reaction mechanism of this important process. All geometries and energies significant for the tropospheric degradation of hexafluorobenzene were characterized using the MP2/6-311+G(d,p and/or G3 methods. It was found out that the addition of OH radical to hexafluorobenzene proceeds via a prereaction complex. In the prereaction complex the OH radical is almost perpendicular to the aromatic ring and oxygen is pointing to its center. The reaction rate constants for addition of OH radical to hexafluorobenzene were determined for the temperature range 230–330 K, using RRKM theory and corrected G3 energies. For the whole range of environmentally relevant temperatures (230–330 K there is a very good qualitative agreement between the calculated and experimental rate constants. Finally, our results almost perfectly reproduce the unusually weak temperature dependence for OH radical addition to hexafluorobenzene.

  20. Dynamics of gas-phase transient species studied by dissociative photodetachment of molecular anions

    OpenAIRE

    Lu, Zhou

    2007-01-01

    Gas-phase transient species, such as the CH₃CO₂ and HOCO free radicals, play important roles in combustion and environment chemistry. In this thesis work, the dynamics of these two radicals were studied by dissociative photodetachment (DPD) of the negative ions, CH₃CO₂-С and HOCO⁻, respectively. The experiments were carried out with a fast-ion-beam photoelectron-photofragment coincidence (PPC) spectrometer. Mass-selected molecular anions in a fast ion beam were intercepted by a linearly polar...

  1. Benzo-thia-fused [n]Thienoacenequinodimethanes with Small to Moderate Diradical Characters: The Role of Pro-aromaticity versus Anti-aromaticity

    KAUST Repository

    Shi, Xueliang

    2016-01-19

    Open-shell singlet diradicaloids recently have received much attention due to their unique optical, electronic and magnetic properties and promising applications in materials science. Among various diradicaloids, quinoidal π-conjugated molecules have become the prevailing designs. However, there still lacks fundamental understanding on how the fusion mode and pro-aromaticity/anti-aromaticity affect their diradical character and physical properties. In this work, a series of pro-aromatic benzo-thia-fused [n]thienoacenequinodimethanes (Thn-TIPS (n=1-3) and BDTh-TIPS) were synthesized and compared with the previously reported anti-aromatic bisindeno-[n]thienoacenes (Sn-TIPS, n=1-4). The ground-state geometric and electronic structures of these new quinoidal molecules were systematically investigated by X-ray crystallographic analysis, variable temperature NMR, ESR, SQUID, Raman, and electronic absorption spectroscopy, assisted by DFT calculations. It was found that the diradical character index (y0) increased from nearly zero for Th1-TIPS to 2.4% for Th2-TIPS, 18.2% for Th3-TIPS, and 38.2% for BDTh-TIPS, due to the enhanced aromatic stabilization. Consequently, with the extension of molecular size, the one-photon absorption spectra are gradually red-shifted, the two-photon absorption (TPA) cross section values increase, and the singlet excited state lifetimes decrease. By comparison with the corresponding anti-aromatic analogues Sn-TIPS (n=1-3), the pro-aromatic Thn-TIPS (n=1-3) exhibit larger diradical character, longer singlet excited state lifetime and larger TPA cross section value. At the same time, they display distinctively different electronic absorption spectra and improved electrochemical amphotericity. Spectroelectrochemical studies revealed a good linear relationship between the optical energy gaps and the molecular length in the neutral, radical cationic and dicationic forms. Our research work disclosed the significant difference between the pro-aromatic

  2. Benzo-thia-fused [n]Thienoacenequinodimethanes with Small to Moderate Diradical Characters: The Role of Pro-aromaticity versus Anti-aromaticity

    KAUST Repository

    Shi, Xueliang; Quintero, EstefanÍ a; Lee, Sangsu; Jing, Linzhi; Herng, Tun Seng; Zheng, Bin; Huang, Kuo-Wei; Ló pez Navarrete, Juan T.; Ding, Jun; Kim, Dongho; Casado, Juan; Chi, Chunyan

    2016-01-01

    Open-shell singlet diradicaloids recently have received much attention due to their unique optical, electronic and magnetic properties and promising applications in materials science. Among various diradicaloids, quinoidal π-conjugated molecules have become the prevailing designs. However, there still lacks fundamental understanding on how the fusion mode and pro-aromaticity/anti-aromaticity affect their diradical character and physical properties. In this work, a series of pro-aromatic benzo-thia-fused [n]thienoacenequinodimethanes (Thn-TIPS (n=1-3) and BDTh-TIPS) were synthesized and compared with the previously reported anti-aromatic bisindeno-[n]thienoacenes (Sn-TIPS, n=1-4). The ground-state geometric and electronic structures of these new quinoidal molecules were systematically investigated by X-ray crystallographic analysis, variable temperature NMR, ESR, SQUID, Raman, and electronic absorption spectroscopy, assisted by DFT calculations. It was found that the diradical character index (y0) increased from nearly zero for Th1-TIPS to 2.4% for Th2-TIPS, 18.2% for Th3-TIPS, and 38.2% for BDTh-TIPS, due to the enhanced aromatic stabilization. Consequently, with the extension of molecular size, the one-photon absorption spectra are gradually red-shifted, the two-photon absorption (TPA) cross section values increase, and the singlet excited state lifetimes decrease. By comparison with the corresponding anti-aromatic analogues Sn-TIPS (n=1-3), the pro-aromatic Thn-TIPS (n=1-3) exhibit larger diradical character, longer singlet excited state lifetime and larger TPA cross section value. At the same time, they display distinctively different electronic absorption spectra and improved electrochemical amphotericity. Spectroelectrochemical studies revealed a good linear relationship between the optical energy gaps and the molecular length in the neutral, radical cationic and dicationic forms. Our research work disclosed the significant difference between the pro-aromatic

  3. Polyimide-polyether mixed conductors as switchable materials for electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Michot, C; Baril, D; Armand, M [Laboratoire d` Ionique et d` Electrochimie du Solide, ENSEEG, Institut National Polytechnique de Grenoble, Saint-Martin d` Heres (France)

    1995-12-01

    A new family of redox-active polymers have been obtained by polycondensation of {alpha},{omega}-diamino oligopolyethers with various aromatic tetracarboxylic acid anhydrides. The polyether blocks retain the usual cation co-ordination ability leading to solid-state ionic conduction while the relatively large electron affinity of the bis-imide moieties formed in the block polymers allows the reversible formation of stable radical anions ({sup -} and {sup 2-}) in the range 2-2.6 V vs. Li. Either slow-scan or microelectrode voltammetry indicate that the totality of the redox centres in such materials are readily accessible for all polyether spacer lengths tested (6-22 ether fragments), suggesting both a fast electron-exchange mechanism between anion radicals and a tendency for self assembly (stacking) of the planar aromatic groups. When increasing the number of atoms in the aromatic ring, the peak separation became smaller (benzene>naphthalene>perylene), resulting ultimately in simultaneous 2-electrons injection. These materials, due to the high coloration efficiency of the reduced state and their ready processability in thin films are excellent candidate for the realisation of laminated solid-state electrochromic devices

  4. Free radicals from irradiated lyophilized DNA: influence of water of hydration

    International Nuclear Information System (INIS)

    Huettermann, J.; Roehrig, M.; Koehnlein, W.

    1992-01-01

    Lyophilized DNA equilibrated with water vapour at various relative humidities (0-95% H 2 O or D 2 O) was X-irradiated at 77 K and analysed for free radicals by electron paramagnetic resonance (EPR) spectroscopy in the temperature range 77-280 K. Analysis of spectra according to variation in humidity, microwave power and temperature generally yielded a doublet and a triplet spectrum at 77 K. The doublet partially converted into the 5-thymyl radical (TH . ). DNA containing deuterated thymine (dTDNA) revealed that the doublet of ''normal'' DNA should be composed of two similar doublets, one of which should be assigned to the thymine anion, the other possibly the cytosine anion. The triplet signal was more stable and could be related to the guanine cation or its deprotonated successor. Several other patterns were detected among them an allyl radical in highly aquated DNA (95% humidity). Other features occurred either predominantly or exclusively in DNA equilibrated above 66% relative humidity and were ascribed to an influence of the secondary structure. (author)

  5. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  6. Preparation of Acrylamide-based Anionic Polyelectrolytes for Soil Establishment

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2012-12-01

    Full Text Available Synthetic water soluble acrylamide-based polymers have wide range of ap-plications  in  the  feld  of  soil  establishment  and  non-desertifcation.  In  this research, the acrylamide-based anionic polyelectrolytes were prepared by  solution polymerization. The polymerization was carried out using AIBN as a radical initiator and at different degrees of anionic charges ranging between 10% and 30% using sodium hydroxide as hydrolyzing agents. The chemical structure of the  synthetic polymers was studied and confrmed by FTIR technique. The charge density on polymer backbone was determined by titration method. The rheological behavior of polymer solutions was evaluated by Brookfeld viscometer. The results show that the viscosity decreases with increasing the shear rate of solutions. Molecular weights of samples were measured by laser light scattering analyzer. The morphology of the polymer was studied by SEM and the EDX was used for elemental analysis determination. The anionic polymers with 10-30% negative charges were mixed with clay in order to evaluate the soil establishment. The results show that an anionic polyelectro-lyte can make soil particles more cohesive and improve soil physical properties.

  7. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  8. An empirical, quantitative approach to predict the reactivity of some substituted aromatic compounds towards reactive radical species (Cl2-*, Br2-*, *NO2, SO3-*, SO4-*) in aqueous solution.

    Science.gov (United States)

    Minero, Claudio; Maurino, Valter; Pelizzetti, Ezio; Vione, Davide

    2006-07-01

    The Hammett approach, applied to the reaction of various classes of aromatic compounds with the radicals Cl2-*, Br2-*, *NO2, SO3-*, and SO4-* yielded good predictive models, supported by high values of the correlation coefficient r2 in the case of phenols with Cl2-* and of phenolates with *NO2 and SO3-*. Lower but statistically significant correlation coefficients could be obtained for benzoates with Cl2-*, phenolates with Br2-*, and benzoates and anisoles with SO4-*.

  9. A Brief Review on Electro-generated Hydroxyl Radical for Organic Wastewater Mineralization

    Directory of Open Access Journals (Sweden)

    Ervin Nurhayati

    2016-05-01

    Full Text Available Hydroxyl radical is a highly reactive oxidizing agent that can be electrochemically generated on the surface of Boron doped diamond (BDD anode. Once generated, this radical will non-selectively mineralize organic pollutants to carbon dioxide, water and organic anions as the oxidation products. Its application in Advanced Oxidation Process (AOP to degrade nonbiodegradable even the recalcitrant pollutants in wastewater has been increasingly studied and even applied.

  10. Potential repair of free radical adducts of dGMP and dG by a series of reductants. A pulse radiolytic study

    International Nuclear Information System (INIS)

    O'Neill, P.; Chapman, P.W.

    1985-01-01

    Using the technique of pulse radiolysis, it has been demonstrated that the interaction of hydroxyl-radical adducts of dG and dGMP with a series of reductants with different oxidation potentials at pH 7.0-7.4 proceeds via an electron transfer process (k approx. 1.4-34 x 10 8 dm 3 mol -1 s -1 ). The one-electron oxidation of dGMP (dG) by Br2-anion radicals was shown to result in the formation of a species, the properties of which are similar to those of the OH-radical adduct of dGMP with oxidizing properties based upon both spectral and kinetic information. The nature of the dGMP species produced on interaction with Br2-anion radicals to produce specific base damage. The implications of these findings are presented in terms of potential free radical repair of hydroxyl radical damage and of synergistic effects whereby one reductant may be regenerated at the expense of another reductant. (author)

  11. Radical quenching by rosmarinic acid from Lavandula vera MM cell culture.

    Science.gov (United States)

    Kovacheva, Elena; Georgiev, Milen; Pashova, Svetlana; Angelova, Maria; Ilieva, Mladenka

    2006-01-01

    This study was conducted to evaluate the radical scavenging capacities of extracts and preparations from a Lavandula vera MM plant cell culture with different rosmarinic acid content and to compare them with pure rosmarinic and caffeic acids as well. The methods, which were used are superoxide anion and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radicals scavenging assays. Results showed that extracts and preparations from Lavandula vera MM possess strong radical scavengers, as the best both radical scavengers appeared to be the fractions with enriched rosmarinic acid content, obtained after ethylacetate fractioning (47.7% inhibition of superoxide radicals and 14.2 microM 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid equivalents, respectively). These data reveal the possibilities for application of these preparations as antioxidants.

  12. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.).

    Science.gov (United States)

    Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo

    2005-04-06

    Methanol, MeOH/water extracts, infusion, and decoction of Cymbopogon citratus were assessed for free radical scavenging effects measured by the bleaching of the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical, scavenging of the superoxide anion, and inhibition of the enzyme xanthine oxidase (XO) and lipid peroxidation in human erythrocytes. The extracts presented effect in the DPPH and superoxide anion assay, with values ranging between 40 and 68% and 15-32% at 33 and 50 microg/mL, respectively, inhibited lipid peroxidation in erythrocytes by 19-71% at 500 microg/mL and were inactive toward the XO at 50 microg/mL. Isoorientin, isoscoparin, swertiajaponin, isoorientin 2' '-O-rhamnoside, orientin, chlorogenic acid, and caffeic acid were isolated and identified by spectroscopic methods. Isoorientin and orientin presented similar activities toward the DPPH (IC(50): 9-10 microM) and inhibited lipid peroxidation by 70% at 100 microg/mL. Caffeic and chlorogenic acid were active superoxide anion scavengers with IC(50) values of 68.8 and 54.2 microM, respectively, and a strong effect toward DPPH. Caffeic acid inhibited lipid peroxidation by 85% at 100 microg/mL.

  13. DNA Binding Hydroxyl Radical Probes

    OpenAIRE

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different c...

  14. p-Carborane Conjugation in Radical Anions of Cage-Cage and Cage-Phenyl Compounds

    Czech Academy of Sciences Publication Activity Database

    Cook, A. R.; Valášek, Michal; Funston, A. M.; Poliakov, P.; Michl, Josef; Miller, J. R.

    2018-01-01

    Roč. 122, č. 3 (2018), s. 798-810 ISSN 1089-5639 Institutional support: RVO:61388963 Keywords : mixed valence molecules * electron transfer * aromatic hydrocarbons Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016

  15. Cyclohexane/benzene organic glasses and ethylene/styrene copolymers behaviour under ionizing radiations: energy and species transfers between aliphatic and aromatic moieties

    International Nuclear Information System (INIS)

    Ferry, M.

    2008-11-01

    The aim of this study is to understand how aliphatic and aromatic groups interact under ionizing radiations. Three research orientations were explored: the determination of the relative contribution of energy and radical transfers, the determination of the intermolecular and intra-chain relative contribution, and the influence of the repartition of the aliphatic and aromatic units inside the polymer chain. Three systems composed of aromatic and aliphatic units were studied: the cyclohexane/benzene organic glasses (intermolecular reactions), the ethylene/styrene random copolymers (inter-chain and intra-chain reactions) and ethylene/styrene di-blocs copolymers (influence of the repartition of the aliphatic and aromatic units in the material). Considering the results obtained, we have concluded that energy transfers are important in the radiation protection effect of the aliphatic moiety by the aromatic one, although radical transfers are also contributing. Intermolecular transfers are efficient in the solid state and their efficiency seems equivalent to that of the intra-chain ones. Thanks to the use of infrared spectroscopy, we have shown an important effect of radiation sensitization of the aromatic moiety, whatever the irradiation temperature and the system studied: energy transfers to the aromatic moiety are carried out at the detriment of its stability. Finally, the repartition of the aliphatic and aromatic units in the polymer chain is not an important factor in the effects induced by the energy transfers. (author)

  16. Regularities of synthesis and mechanism of polycondensation of aromatic amines

    International Nuclear Information System (INIS)

    Matnishyan, Hagob

    2002-01-01

    Full text.Aniline polymers and its derivatives are widely used in modern electronics, electrical engineering and manufacturing of various appliances. They are used for production of electrical power sources, probes and sensors, composite materials absorbing high frequency radiations, anticorrosion coatings, nonlinear optical devices-such as lasers, cathode ray tubes, photodiodes etc. Such a wide usage of aromatic amine polymers brings up new demands to their structure and properties, which is dependent on conditions of synthesis and forming of the hard phase. The presented article describes regularities and mechanisms of oxidative polycondensation of aromatic amines. Several types of polymers have been synthesized by chemical and electrochemical oxidation of aniline and its chlor-, brom-, iodo-, nitro-, p-substituted derivatives; diphenylamine, benzidine and phenylenediamines in nonwater media. On the basis of kinetic and electrochemical studies and literature analysis we suggested a mechanism of polycondensation of aromatic amines. According to it, oxidation of amines starts with the electron transfer with cation-radical formation on the first stage, which stabilizes in acid environments due to complex formation with initial amine. Dimer formation and further growth of chain takes place upon another electron transfer from formed complex, which results in forming of macromolecules. We also suggested a scheme for obtaining of structures defect in media assisting in deprotonizing of cation radicals and formation of arylamine radical centers. Those processes lead to formation of azo- and diphenyl fragments in the main chain of the polymer and predetermine the possibility of chain disruption. We also considered reactions leading to formation of branched polymers and cyclic structures, such as phenazine in particular. The peculiarity of electrochemical process lies in regulation of concentration of active centres on the positive electrode surface

  17. Multiple free-radical scavenging (MULTIS) capacity in cattle serum.

    Science.gov (United States)

    Sueishi, Yoshimi; Kamogawa, Erisa; Kimura, Anna; Kitahara, Go; Satoh, Hiroyuki; Asanuma, Taketoshi; Oowada, Shigeru

    2017-01-01

    Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile.

  18. Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles via anion oxidation of sodium sulfinate salts.

    Science.gov (United States)

    Rohokale, Rajendra S; Tambe, Shrikant D; Kshirsagar, Umesh A

    2018-01-24

    An eosin Y photoredox catalyzed net redox neutral process for 3-sulfonylindoles via the anionic oxidation of sodium sulfinate salts and its radical cascade cyclization with 2-alkynyl-azidoarenes was developed with visible light as a mediator. The reaction offers metal and oxidant/reductant free, visible light mediated vicinal sulfonamination of alkynes to 2-aryl/alkyl-3-sulfonylindoles and proceeds via the generation of a sulfur-centered radical through direct oxidation of the sulfinate anion by an excited photocatalyst with a reductive quenching cycle. The mild conditions, use of an organic dye as photo-catalyst, bench stability and easily accessible starting materials make the present approach green and attractive.

  19. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2018-06-01

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  20. Theoretical study on effects of curvature of graphene in conjunction with simultaneous anion- and - stacking interactions

    Directory of Open Access Journals (Sweden)

    Pouya Karimi

    2015-12-01

    Full Text Available A graphene sheet (C102H30 has been rolled up by computational quantum chemistry methods to construct single-walled carbon nanotube fragments (SWCNTFs. The anion-π interactions of F- anion together with π-π stacking interactions of benzene on inner face and outer face of the central rings of SWCNTFs have been concurrently investigated. Structural parameters and energy data of the ternary benzene-SWCNTF-F- complexes were considered. Also, effects of charge transfer and aromaticity were estimated to determine how curvature of graphene influences on simultaneous anion-π and π-π stacking interactions.  Results indicate that curvature of graphene leads to structural changes in SWCNTFs which effects on simultaneous interactions of F- anion and benzene with SWCNTFs. Also, results show that although p-p stacking is a weak interaction, but it can impact on order of binding energies in complexes involved both p-p stacking and anion-p interactions. 

  1. Toward Molecular Magnets of Organic Origin via Anion-π Interaction Involving m-Aminyl Diradical: A Theoretical Study

    DEFF Research Database (Denmark)

    Bhattacharya, Debojit; Shil, Suranjan; Misra, Anirban

    2016-01-01

    Here we study a set of novel magnetic organic molecular species with different halide ions (fluoride, chloride, bromide) absorbed ∼2 Å above or below the center of an aromatic π-ring in an m-aminyl diradical. Focus is on the nature of anion-π interaction and its impact on magnetic properties, spe...

  2. Matrix isolation spectroscopic studies of the radical ions of 2,5-diphenyloxazole (Preprint No. RC-15)

    International Nuclear Information System (INIS)

    Wani, A.M.

    1988-02-01

    The radical ions of 2,5-diphenyloxazole (PPO) produced upon γ-irradiation were studied at 77 K in organic glasses by optical absorption spectroscopy. The dependence of absorption spectra on the nature of the matrix, electron and hole scavengers is interpretted and the absorption bands are assigned to the anionic and cationic radical species of PPO. (author). 6 refs

  3. Peculiarities of the photoinitiator-free photopolymerization of pentabrominated and pentafluorinated aromatic acrylates and methacrylates.

    Science.gov (United States)

    Daikos, Olesya; Naumov, Sergej; Knolle, Wolfgang; Heymann, Katja; Scherzer, Tom

    2016-11-30

    Pentabrominated and fluorinated aromatic (meth)acrylates as well as their non-halogenated counterparts have been studied with the aim to avoid conventional photoinitiators and to overcome some negative consequences related to their use. Therefore, RTIR spectroscopy, laser flash photolysis and GC/MS were utilized. Even low concentrations (1 to 5 wt%) of brominated (meth)acrylates in the model varnish lead to initiation of a photopolymerization reaction under exposure to UV light with λ > 300 nm. This is due to the fact that excitation of the aryl moiety leads to the homolysis of bromine-phenyl bonds with a high quantum yield of ∼0.15-0.3. Both, bromine radicals released from either ortho, meta or para position as well as the corresponding tetrabromoaryl radicals, may initiate the polymerization of brominated aromatic (meth)acrylates. In contrast, fluorinated aromatic (meth)acrylates undergo α-cleavage of the carboxyl group (as in the case of non-halogenated aromatic (meth)acrylates), if excitation of the acrylic double bonds is done with UV-C light (λ fluorinated) and 0.16-0.36 (non-halogenated compounds), despite the different pathway of fragmentation. Thus, in all cases the efficiency of initiation is comparable to conventional photoinitiators. Quantum chemical calculations of orbitals involved and of the Gibbs free energy of transients and products support the suggested reaction pathway.

  4. METRONIDAZOLE RADICAL ANION FORMATION STUDIED BY MEANS OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Sokolová, Romana; Kolivoška, Viliam; Morovská Turoňová, A.; Ambrová, M.; Híveš, J.

    2011-01-01

    Roč. 76, č. 12 (2011), s. 1607-1617 ISSN 0010-0765 R&D Projects: GA ČR GP203/09/P502; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : radicals * radiopharmaceuticals * electron transfer Subject RIV: CG - Electrochemistry Impact factor: 1.283, year: 2011

  5. Symmetry breaking and spectral considerations of the surprisingly floppy c-C3H radical and the related dipole-bound excited state of c-C3H-

    Science.gov (United States)

    Bassett, Matthew K.; Fortenberry, Ryan C.

    2017-06-01

    The C3H radical is believed to be prevalent throughout the interstellar medium and may be involved in the formation of polycyclic aromatic hydrocarbons. C3H exists as both a linear and a cyclic isomer. The C2 v cyclopropenylidenyl radical isomer was detected in the dark molecular cloud TMC-1, and the linear propenylidenyl radical isomer has been observed in various dark molecular clouds. Even though the c-C3H radical has been classified rotationally, the vibrational frequencies of this seemingly important interstellar molecule have never been directly observed. Established, highly accurate quartic force field methodologies are employed here to compute useful geometrical data, spectroscopic constants, and vibrational frequencies. The computed rotational constants are consistent with the experimental results. Consequently, the three a1 (ν1, ν2, and ν3) and one b1 (ν6) anharmonic vibrational frequencies at 3117.7 cm-1, 1564.3 cm-1, 1198.5 cm-1, and 826.7 cm-1, respectively, are reliable predictions for these, as of yet unseen, observables. Unfortunately, the two b2 fundamentals (ν4 and ν5) cannot be treated adequately in the current approach due to a flat and possible double-well potential described in detail herein. The dipole-bound excited state of the anion suffers from the same issues and may not even be bound. However, the trusted fundamental vibrational frequencies described for the neutral radical should not be affected by this deformity and are the first robustly produced for c-C3H. The insights gained here will also be applicable to other structures containing three-membered bare and exposed carbon rings that are surprisingly floppy in nature.

  6. Formation of radical cations in a model for the metabolism of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Lehner, Andreas F.; Horn, Jamie; Flesher, James W.

    2004-01-01

    To test the hypothesis that electrophilic radical cations are the major ultimate electrophilic and carcinogenic forms of benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), and benzo[a]pyrene (BP), we have focused on a chemical model of metabolism which parallels and duplicates known or potential metabolites of some polycyclic hydrocarbons formed in cells. Studies of this model system show that radical cations are hardly formed, if at all, in the case of BA or DBA but are definitely formed in the cases of the carcinogen BP as well as the non-carcinogenic hydrocarbons, pyrene and perylene. We conclude that the carcinogenicities of BA, DBA, BP, pyrene, and perylene are independent of one-electron oxidation to radical cation intermediates

  7. Insight into the Reaction Mechanism of Graphene Oxide with Oxidative Free Radical

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuejiao; XU Liangyou

    2017-01-01

    Graphene oxide(GO),as an important derivative of graphene,could be considered as a super aromatic molecule decorated with a range of reactive oxygen-containing groups on its surface,which endows graphene high reactivity with other molecules.In our previous work,we demonstrated that GO sheets were cut into small pieces(graphene quantum dots,GQDs) by oxidative free radicals(hydroxyl radical HO or oxygen radical [O]) under UV irradiation.It is notable that reactions involving free radicals are influenced by reaction conditions pronouncedly.However,researches on details about reactions of GO with free radicals have not been reported thus far.In this work,the effects of different factors on the photo-Fenton reaction of GO were studied.It is demonstrated that the reaction rate is closely related to the concentration of free radicals.It is speculated that through the optimization of reaction conditions,the reaction of graphene with free radicals could carry out efficiently for further applications.

  8. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    Directory of Open Access Journals (Sweden)

    Tsuyuka Sugiishi

    2015-12-01

    Full Text Available This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

  9. Anionaromatic neutral tweezers complexes: are they stable in polar solvents?

    Science.gov (United States)

    Sánchez-Lozano, Marta; Otero, Nicolás; Hermida-Ramón, Jose M; Estévez, Carlos M; Mandado, Marcos

    2011-03-17

    The impact of the solvent environment on the stabilization of the complexes formed by fluorine (T-F) and cyanide (T-CN) substituted tweezers with halide anions has been investigated theoretically. The study was carried out using computational methodologies based on density functional theory (DFT) and symmetry adapted perturbation theory (SAPT). Interaction energies were obtained at the M05-2X/6-31+G* level. The obtained results show a large stability of the complexes in solvents with large dielectric constant and prove the suitability of these molecular tweezers as potential hosts for anion recognition in solution. A detailed analysis of the effects of the solvent on the electron withdrawing ability of the substituents and its influence on the complex stability has been performed. In particular, the interaction energy in solution was split up into intermonomer and solvent-complex terms. In turn, the intermonomer interaction energy was partitioned into electrostatic, exchange, and polarization terms. Polar resonance structures in T-CN complexes are favored by polar solvents, giving rise to a stabilization of the intermonomer interaction, the opposite is found for T-F complexes. The solvent-complex energy increases with the polarity of the solvent in T-CN complexes, nonetheless the energy reaches a maximum and then decreases slowly in T-F complexes. An electron density analysis was also performed before and after complexation, providing an explanation to the trends followed by the interaction energies and their different components in solution.

  10. A Supramolecular Sensing Platform for Phosphate Anions and an Anthrax Biomarker in a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2011-10-01

    Full Text Available A supramolecular platform based on self-assembled monolayers (SAMs has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host-guest interactions. The self-assembly of the Eu(III-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Among these analytes, adenosine triphosphate (ATP and pyrophosphate, as well as dipicolinic acid (DPA which is a biomarker for anthrax, showed a strong response. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a multiplexed format that allows a general detection platform for both analyte systems in a single test run with µM and nM detection sensitivity for ATP and DPA, respectively.

  11. On the oxidation of the three-dimensional aromatics [B(12)X(12)](2-) (X=F, Cl, Br, I).

    Science.gov (United States)

    Boeré, René T; Derendorf, Janis; Jenne, Carsten; Kacprzak, Sylwia; Kessler, Mathias; Riebau, Rainer; Riedel, Sebastian; Roemmele, Tracey L; Rühle, Monika; Scherer, Harald; Vent-Schmidt, Thomas; Warneke, Jonas; Weber, Stefan

    2014-04-07

    The perhalogenated closo-dodecaborate dianions [B12 X12 ](2-) (X=H, F, Cl, Br, I) are three-dimensional counterparts to the two-dimensional aromatics C6 X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12 H12 ](2-) and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2 ) yielded the corresponding radical anions [B12 X12 ](⋅-) (X=F, Cl, Br). The presence of radical ions was proven by EPR and UV/Vis spectroscopy and supported by quantum chemical calculations. Use of an excess amount of the oxidizing agent allowed the synthesis of the neutral perhalogenated hypercloso-boranes B12 X12 (X=Cl, Br). These compounds were characterized by single-crystal X-ray diffraction of dark blue B12 Cl12 and [Na(SO2 )6 ][B12 Br12 ]⋅B12 Br12 . Sublimation of the crude reaction products that contained B12 X12 (X=Cl, Br) resulted in pure dark blue B12 Cl12 or decomposition to red B9 Br9 , respectively. The energetics of the oxidation processes in the gas phase were calculated by DFT methods at the PBE0/def2-TZVPP level of theory. They revealed the trend of increasing ionization potentials of the [B12 X12 ](2-) dianions by going from fluorine to bromine as halogen substituent. The oxidation of all [B12 X12 ](2-) dianions was also studied in the gas phase by mass spectrometry in an ion trap. The electrochemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) (X=F, Cl, Br, I) by cyclic and Osteryoung square-wave voltammetry in liquid sulfur dioxide or acetonitrile showed very good agreement with quantum chemical calculations in the gas phase. For [B12 X12 ](2-) (X=F, Cl, Br) the first and second oxidation processes are detected. Whereas the first process is quasi-reversible (with oxidation potentials in the range between +1

  12. The direct aromatization of methane

    Energy Technology Data Exchange (ETDEWEB)

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M. [Altamira Instruments, Pittsburgh, PA (United States)

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  13. Fluorescence quenching of derivatives of anthracene by organic electron donors and acceptors in acetonitrile. Electron and proton transfer mechanism

    Science.gov (United States)

    Mac, Marek; Najbar, Jan; Wirz, Jakob

    1995-03-01

    Fluorescence quenching of anthracene derivatives by organic electron donors (amines) and acceptors was investigated using stationary fluorescence measurements. The dependence of log( kq) on Δ Get shows Rehm-Weller-type behavior. The formation of anion radicals of anthracene, bianthryl, and 9-cyanoanthracene was detected by flash photolysis in systems containing aromatic amines (aniline, 2-bromoaniline, 4-bromoaniline, N,N-dimethylaniline, 4-bromo-N,N-dimethylaniline, N,N-diethylaniline, and 1,4-diazabicyclo[2.2.2]octane). The radical yields decreased and triplet yields increased when bromo derivatives of amines were used as donor quenchers, indicating the heavy-atom effect on spin conversion within radical pairs. The importance of the heavy-atom effect decreased when the energy gap between the charge transfer and molecular triplet states was small. The formation of separated radicals decreased when primary amines were used as quenchers which indicated the existence of an additional path of deactivation of the radical pair. The behavior of amines as quenchers of bianthryl and anthracene is compared with that of inorganic anion quenchers.

  14. Solution Phase Measurement of Both Weak Sigma and C-H---X- Hydrogen Bonding Interactions in Synthetic Anion Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Mr. Orion B. [University of Oregon; Sather, Mr. Aaron C [University of Oregon; Hay, Benjamin [ORNL; Meisner, Mr. Jeffrey S. [University of Oregon; Johnson, Prof. Darren W. [University of Oregon

    2008-01-01

    A series of tripodal receptors preorganize electron-deficient aromatic rings to bind halides in organic solvents using weak sigma anion-to-arene interactions or C-H---X- hydrogen bonds. 1H NMR spectroscopy proves to be a powerful technique for quantifying binding in solution, and determining the interaction motifs, even in cases of weak binding.

  15. Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.

    Science.gov (United States)

    Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping

    2018-04-26

    In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.

  16. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  17. Classical density functional theory & simulations on a coarse-grained model of aromatic ionic liquids.

    Science.gov (United States)

    Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan

    2014-05-14

    A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented.

  18. Abstraction of iodine from aromatic iodides by alkyl radicals: steric and electronic effects.

    Science.gov (United States)

    Dolenc, Darko; Plesnicar, Bozo

    2006-10-13

    Abstraction of the iodine atom from aryl iodides by alkyl radicals takes place in some cases very efficiently despite the unfavorable difference in bond dissociation energies of C-I bonds in alkyl and aryl iodides. The abstraction is most efficient in iodobenzenes, ortho-substituted with bulky groups. The ease of abstraction can be explained by the release of steric strain during the elimination of the iodine atom. The rate of abstraction correlates fairly well with the strain energy, calculated by density functional theory (DFT) and Hartree-Fock (HF) methods as a difference in the total energy of ortho and para isomers. However, besides the steric bulk, the presence of some other functional groups in an ortho substituent also influences the rate. The stabilization of the transition state, resembling a 9-I-2 iodanyl radical, by electron-withdrawing groups seems to explain a positive sign of the Hammett rho value in the radical abstraction of halogen atoms.

  19. Four faces of the interaction between ions and aromatic rings.

    Science.gov (United States)

    Papp, Dóra; Rovó, Petra; Jákli, Imre; Császár, Attila G; Perczel, András

    2017-07-15

    Non-covalent interactions between ions and aromatic rings play an important role in the stabilization of macromolecular complexes; of particular interest are peptides and proteins containing aromatic side chains (Phe, Trp, and Tyr) interacting with negatively (Asp and Glu) and positively (Arg and Lys) charged amino acid residues. The structures of the ion-aromatic-ring complexes are the result of an interaction between the large quadrupole moment of the ring and the charge of the ion. Four attractive interaction types are proposed to be distinguished based on the position of the ion with respect to the plane of the ring: perpendicular cation-π (CP ⊥ ), co-planar cation-π (CP ∥ ), perpendicular anion-π (AP ⊥ ), and co-planar anion-π (AP ∥ ). To understand more than the basic features of these four interaction types, a systematic, high-level quantum chemical study is performed, using the X -  + C 6 H 6 , M +  + C 6 H 6 , X -  + C 6 F 6 , and M +  + C 6 F 6 model systems with X -  = H - , F - , Cl - , HCOO - , CH 3 COO - and M +  = H + , Li + , Na + , NH4+, CH 3 NH3+, whereby C 6 H 6 and C 6 F 6 represent an electron-rich and an electron-deficient π system, respectively. Benchmark-quality interaction energies with small uncertainties, obtained via the so-called focal-point analysis (FPA) technique, are reported for the four interaction types. The computations reveal that the interactions lead to significant stabilization, and that the interaction energy order, given in kcal mol -1 in parentheses, is CP ⊥ (23-37) > AP ⊥ (14-21) > CP ∥ (9-22) > AP ∥ (6-16). A natural bond orbital analysis performed leads to a deeper qualitative understanding of the four interaction types. To facilitate the future quantum chemical characterization of ion-aromatic-ring interactions in large biomolecules, the performance of three density functional theory methods, B3LYP, BHandHLYP, and M06-2X, is tested against the FPA benchmarks

  20. Formation of nitro products from the gas-phase OH radical-initiated reactions of toluene, naphthalene, and biphenyl: effect of NO2 concentration.

    Science.gov (United States)

    Nishino, Noriko; Atkinson, Roger; Arey, Janet

    2008-12-15

    Aromatic hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), are released into the atmosphere principally during incomplete combustion and account for approximately 20% of nonmethane organic compounds in urban air. Reaction with OH radicals is the dominant atmospheric chemical loss process for aromatic hydrocarbons, leading mainly to the formation of an OH-aromatic or OH-PAH adduct which then reacts with O2 and/or NO2. For OH-monocyclic aromatic adducts, reaction with O2 dominates under atmospheric conditions; however, no data are available concerning the relative importance of reactions of OH-PAH adducts with O2 and NO2. We have measured formation yields of 3-nitrotoluene, 1- and 2-nitronaphthalene, and 3-nitrobiphenyl from the OH radical-initiated reactions of toluene, naphthalene, and biphenyl as a function of NO2 concentration. Our data showthatthe OH-aromatic adduct reactions with O2 and NO2 are of equal importance in the atmosphere at NO2 mixing ratios of approximately 3.3 ppmV for toluene, approximately 0.06 ppmV for naphthalene, and approximately 0.6 ppmV for biphenyl. Ambient concentrations of toluene, naphthalene, and biphenyl and their nitrated products measured at a site in the Los Angeles air basin are consistent with our laboratory measurements.

  1. The activity of 3- and 7-hydroxyflavones as scavengers of superoxide radical anion generated from photo-excited riboflavin

    International Nuclear Information System (INIS)

    Montana, P.; Pappano, N.; Debattista, N.; Avila, V.; Posadaz, A.; Bertolotti, S.G.; Garcia, N.A.

    2003-01-01

    The visible-light irradiation of the system Riboflavin plus 3-hydroxyflavone or plus 7-hydroxyflavone, under aerobic conditions, produces a series of competitive processes that depend on the relative concentrations of the pigment and the flavones. The picture comprises photochemical mechanisms that potentially operate in nature. They mainly include the quenching of Rf singlet ( 1 Rf*) and triplet ( 3 Rf*) excited states (with bimolecular rate constants in the order of 10 9 M -1 s -1 ) and superoxide radical anion-mediated reactions. The participation of the oxidative species singlet molecular oxygen was not detected. The overall result shows chemical transformations in both Rf and 3-hydroxyflavone. No experimental evidence was found indicating any chemical reaction involving 7-hydroxyflavone. The fate of the pigment also depends on the amount of the dissolved flavonoid. At 50 mM concentrations of these compounds or higher, practically no photochemistry occurs, owing to the extensive quenching of ( 1 Rf*) When the concentration of the flavones is in the mM range or lower, ( 3 Rf*) is photogenerated. Then, the excited triplet species can be quenched mainly by the flavones through an electron-transfer process, yielding the semireduced pigment. The latter interacts with dissolved oxygen producing O 2 .- , which reacts with both the pigment and 3-hydroxyflavone. In summary, 3-hydroxyflavone and 7-hydroxyflavone participate in the generation of superoxide ion in an Rf-sensitized process, and simultaneously 3-hydroxyflavone constitutes a degradable quencher of the oxidative species. (author)

  2. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  3. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    Science.gov (United States)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  4. Free Br atom and free radical reactions in the radiolysis of 1,2 dibromoethane (DBE) in air free aqueous solutions

    International Nuclear Information System (INIS)

    Lal, Manohar

    1986-01-01

    G(Br - ) have been reported in the free radical degradation of 1,2 DBE in Ar - and N 2 O-saturated solutions. It is clear from the results that a small chain reaction occurs, t-butanol radical reacts with 1,2 DBE to give Br - . At pH 12.3, high (Br - ) are attributed to another chain reaction involving O - radical anion. Dose rate studies confirm the occurrence of chain reaction. (author). 5 refs

  5. The Phenalenyl Free Radical - a Jahn-Teller D3H PAH

    Science.gov (United States)

    O'Connor, G. D.; Troy, T. P.; Roberts, D. A.; Chalyavi, N.; Fückel, B.; Crossley, M. J.; Nauta, K.; Schmidt, T. W.; Stanton, J. F.

    2012-06-01

    After benzene and naphthalene, the smallest polycyclic aromatic hydrocarbon bearing six-membered rings is the threefold-symmetric phenalenyl radical. Despite the fact that it is so fundamental, its electronic spectroscopy has not been rigorously scrutinized, in spite of growing interest in graphene fragments for molecular electronic applications. Here we used complementary laser spectroscopic techniques to probe the jet-cooled phenalenyl radical in vacuo. Its spectrum reveals the interplay between four electronic states that exhibit Jahn-Teller and pseudo-Jahn-Teller (Herzberg-Teller) vibronic coupling. The coupling mechanism has been elucidated by the application of various ab initio quantum-chemical techniques.

  6. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces.

    Science.gov (United States)

    Miros, François N; Zhao, Yingjie; Sargsyan, Gevorg; Pupier, Marion; Besnard, Céline; Beuchat, César; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-02-18

    Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion-π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π-acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π-acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α-protons in the (1) H NMR spectra. The reactivity of these protons on π-acidic surfaces is measured by hydrogen-deuterium (H-D) exchange for 11 different examples, excluding controls. The velocity of H-D exchange increases with π acidity (NDI core substituents: SO2 R>SOR>H>OR>OR/NR2 >SR>NR2 ). The H-D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11-13 atoms). Most importantly, H-D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)-macrocycle is reported). For maximal π acidity, transition-state stabilizations up to -18.8 kJ mol(-1) are obtained for H-D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa =10.9 calculates to a ΔpKa =-5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as "impossible" in biology, the found enolate-π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven-component π-acidity gradient over almost 1 eV demonstrates quantitatively that such important anion-π activities can be expected only from

  7. The role of anions on the indoor air quality; De rol van negatieve ionen op de binnenluchtkwaliteit

    Energy Technology Data Exchange (ETDEWEB)

    Havermans, J. [Afdeling Energie, Comfort en Binnenmilieu, TNO Bouw en Onderzoek, Delft (Netherlands)

    2010-11-15

    Anions may contribute to a more comfortable indoor environment. Even a simple apparatus as a lamp with semi conductor technique produces easily anions. Such ions will react with particles forming agglomerates that will precipitate. Also a reaction with oxygen and moist will result in the formation of a superoxide radical and peroxides. These radicals easily react with e.g. organic volatiles and possible also with spores and allergens. Depending on the concentration of the radicals, these compounds can be deteriorated fully. However, as a potential negative side effect the radicals can produce irritating substances by reaction with chemicals in the air. It is not clear yet if all cleaners, based on ionization, will cause this effect. Therefore more research is needed. [Dutch] Negatieve ionen (anionen) in de lucht kunnen een belangrijke bijdrage leveren aan een comfortabeler binnenmilieu en kunnen op een eenvoudige wijze worden geproduceerd. Bijvoorbeeld met lamp waarbij naast verlichting ook via (smd) halfgeleidertechniek negatieve ionen worden gevormd. Negatieve ionen reageren met deeltjes waardoor deze clusteren en deze uit de binnenlucht worden verwijderd. Ook kunnen ze met zuurstof en vocht reageren, waarbij reactief superoxide en peroxides worden gevormd. Deze radicalen zijn verantwoordelijk voor het verwijderen van bijvoorbeeld ongewenste geuren en mogelijk ook allergenen en schimmels. Ze kunnen ook als negatief bijeffect potentieel irriterende stoffen vormen door reactie met chemicalien in de lucht. Of dit het geval is met alle op ionisatie gebaseerde luchtzuiveringsapparaten dient nader te worden onderzocht.

  8. Partial-depth modulation study of anions and neutrals in low pressure silane plasmas

    International Nuclear Information System (INIS)

    Cozurteille, C.; Dorier, J.L.; Hollenstein, C.; Sansonnens; Howling, A.A.

    1995-10-01

    Partial-depth modulation of the rf power in a capacitive discharge is used to investigate the relative importance of negative ions and neutral radicals for particle formation in low power, low pressure silane plasmas. For less than 85% modulation depth, anions are trapped indefinitely in the plasma and particle formation ensues, whereas the polymerised neutral flux magnitudes and dynamics are independent of the modulation depth and the powder formation. These observations suggest that negative ions could be the particle precursors in plasma conditions where powder appears many seconds after plasma ignition. Microwave interferometry and mass spectrometry were combined to infer an anion density of ≅7.10 9 cm -3 which is approximately twice the free electron density in these modulated plasmas. (author) 6 figs., tabs., refs

  9. Radiation Laboratory quarterly report, January 1, 1977--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-12

    Some of the studies in progress are: distribution of deposited energy around heavy-ion tracks; effect of trapping on the thermalization of electrons in hydrocarbon liquids; effect of field-dependent mobility on escape probability; kinetics of electron scavenging reactions; second-order optical properties of solvated electrons; model molecular orbital studies of the chemisorption of atomic hydrogen and oxygen on aluminum surfaces; calculation of sum rule moments for H/sub 2/O; early events in pulse-irradiated polar liquids; radiation chemical studies of reactions of SO/sub 4//sup -/ radicals with organic compounds; reactions of the phosphate and sulfate radicals with inorganic compounds; pulse radiolysis studies of antioxidants in fatty acid soap aggregates; spectrophotometric pulse radiolytic study of the radicals produced by reduction of cis- and trans-azobenzene; correlation of singlet energies of aromatic hydrocarbons with the rates of protonation of their anion radicals; the association rate of sodium laurylsulfate micelle-monomer equilibrium; transfer of an organic molecule between micelles in an aqueous environment; in-situ photolysis ESR study of some reactions of phosphate radicals; photochemistry of sydnones; differentiation of triplet state and biradical reactions; photoenolization of aromatic ketones; and studies of Ni(III) macrocyclic ligand complexes. (LK)

  10. Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding

    Directory of Open Access Journals (Sweden)

    Steve Scheiner

    2018-05-01

    Full Text Available Tetrel atoms T (T = Si, Ge, Sn, and Pb can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF3 group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF3 group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF3 groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF3+NH2(CH2nNH2SnF3+ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH− binds most strongly: OH− > F− > Cl− > Br− > I−. The binding energy of the larger NO3− and HCO3− anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K+ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.

  11. Rosemary Aromatization of Extra Virgin Olive Oil and Process Optimization Including Antioxidant Potential and Yield

    Directory of Open Access Journals (Sweden)

    Erkan Karacabey

    2016-08-01

    Full Text Available Aromatization of olive oil especially by spices and herbs has been widely used technique throughout the ages in Mediterranean diets. The present study was focused on aromatization of olive oil by rosemary (Rosmarinus officinalis L.. Aromatization process was optimized by response surface methodology as a function of malaxation’s conditions (temperature and time. According to authors’ best knowledge it was first time for examination of oil yield performance with antioxidant potential and pigments under effect of aromatization parameters. For all oil samples, values of the free acidity, peroxide, K232 and K270 as quality parameters fell within the ranges established for the highest quality category “extra virgin oil”. Oil yield (mL oil/kg olive paste changed from 158 to 208 with respect to design parameters. Total phenolic content and free radical scavenging activity as antioxidant potential of olive oil samples were varied in the range of 182.44 – 348.65 mg gallic acid equivalent/kg oil and 28.91 – 88.75 % inhibition of 2,2-Diphenyl-1-picrylhydrazyl-(DPPH•, respectively. Total contents of carotenoid, chlorophyll and pheophytin a as pigments in oil samples were found to be in between 0.09 – 0.48 mg carotenoid/kg oil, 0.11 – 0.96 mg chlorophyll/kg oil, 0.15 – 4.44 mg pheo α/kg oil, respectively. The proposed models for yield, pigments and antioxidant potential responses were found to be good enough for successful prediction of experimental results. Total phenolics, carotenoids and free radical scavenging activity of aromatized olive oil and oil yield were maximized to gather and optimal conditions were determined as 25°C, 84 min, and 2 % (Rosemary/olive paste; w/w.

  12. Energy density functionals from the strong-coupling limit applied to the anions of the He isoelectronic series

    International Nuclear Information System (INIS)

    Mirtschink, André; Gori-Giorgi, Paola; Umrigar, C. J.; Morgan, John D.

    2014-01-01

    Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z − and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results

  13. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  14. Antioxidant activity of melatonin and glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    T. Y. Kuznetsova

    2017-12-01

    Full Text Available Based on the analysis of the results obtained by quantum chemical modeling of interaction between reduced glutathione (GSH and melatonin (MLT molecules with oxygen radicals (•OH and • OOˉ it was found that this interaction occured following the acid-base mechanism, where MLT and GSH acted as a base in respect of •OH, and as acid in respect of •OOˉ. We have carried out the correlation of the results of quantum chemical calculations (density redistribution, energetic characteristics under the interaction of MLT and GSH molecules with •OH and •OOˉ in changing macroscopic properties of the process of electroreduction of free oxygen radicals in the presence of antioxidants (potential and maximal current wave reduction waves. This was a direct experimental macroscale evidence of the results of theoretical modeling at the nanoscale level that pointed to a marked antioxidant activity of glutathione compared with melatonin.

  15. Reduction of lumichrome by the radical anions of CO2 and lipoamide

    International Nuclear Information System (INIS)

    Ahmad, R.; Armstrong, D.A.

    1984-01-01

    The uptake of reducing equivalents of .CO 2 - by lumichrome in spectrophotometric titrations has been re-examined in the light of a recently reported extinction coefficient of 10 500 M -1 cm -1 at pH 6, which is in agreement with 10 270 +- 100 M -1 cm -1 determined here. The average uptake was 1.8 +- 0.1, independent of pH in the range 6.3-9.0. The major product appears to be a dihydro-alloxazine, which can be reoxidized quantitatively to lumichrome by .Br 2 - radicals or by O 2 . As in the case of dihydroflavins, oxidation by O 2 is biphasic. As in the case of flavins, a two electron reduction of lumichrome was also observed with the disulphide monoanion of lipoamide (LS. 2 - ), but that reduction does not go to 100 per cent yield. Contrary to our earlier conclusions, which were based on an erroneous extinction coefficient, the combination of lumichrome radicals (2.LcH→HLc-LcH) was of relatively little (< approx. 20 per cent) importance, and the behaviour of lumichrome on treatment with reducing species was rather similar to that of flavins. (author)

  16. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    Science.gov (United States)

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  17. A study of quasi reversible nitro radical anion from β-nitrostyrene at ...

    Indian Academy of Sciences (India)

    Unknown

    pound 1a nor 1b may be usable as a source of free radicals and hence would not be suitable as thera- peutic agents.23–26 In our study we report that this need not be true as it depends on the type of elec- trode system employed. Evidently, it depends upon the rate of charge transfer and at WICPE it follows slow kinetics.

  18. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  19. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

    Directory of Open Access Journals (Sweden)

    Awatef Ayadi

    2015-08-01

    Full Text Available The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2’-bi(1,3-dithiolylidene]-4-yl-6-((2,4-dinitrophenylhydrazonomethylpyridine (L1 and 5-([2,2’-bi(1,3-dithiolylidene]-4-yl-2-((2,4-dinitrophenylhydrazonomethylpyridine (L2 are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3–H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts.

  20. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  1. Stable Isotope Fractionation Caused by Glycyl Radical Enzymes during Bacterial Degradation of Aromatic Compounds

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Vieth, Andrea; Schink, Bernhard; Meckenstock, Rainer U.

    2004-01-01

    Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors (ɛ) of −1.5 and −3.9‰, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic ɛ (ɛintrinsic) were calculated. A comparison of ɛintrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific ɛ elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of ɛ found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average ɛ if no fractionation factor is available for single compounds. PMID:15128554

  2. Adsorption behaviour of aromatic in different activated carbon: (Frendlich and Langmuir models)

    International Nuclear Information System (INIS)

    Nouri, S.; Haghseresht, F.; Lu, Max

    2001-01-01

    Adsorption behavior of p-Cresol, Benzoic acid and nitrobenzene on the two different activated carbons was carried out at 301 K and at controlled ph conditions. In acidic conditions, well below the pK a of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent on adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular form of the aromatic solute was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher ph values was found to be dependent on the concentration of anionic form of the solutes. All isotherms on the F 100 and S E I were fitted into Langmuir and Freundlich isotherm Equations, respectively to find the relative factors

  3. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  4. Electronic spectrum of 9-methylanthracenium radical cation

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Gerard D.; Schmidt, Timothy W., E-mail: timothy.schmidt@unsw.edu.au [School of Chemistry, UNSW Sydney, New South Wales 2052 (Australia); Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)

    2016-04-21

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm{sup −1} to 44 500 cm{sup −1}. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D{sub 1}←D{sub 0} transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH{sub 2} or CH{sub 3}. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  5. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    Science.gov (United States)

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.

  6. Prevention of alloimmunization by ultraviolet-B irradiation. Inactivation of leukocytes and the generation of active oxygen and radicals

    International Nuclear Information System (INIS)

    Takahashi, Tsuneo; Mogi, Yuko; Sekiguchi, Sadayoshi; Akasaka, Junichi; Kamo, Naoki; Kuwabara, Mikinori.

    1994-01-01

    UV-B irradiation of platelet concentrates (PC) has been tried in several institutes to inactivate leukocytes in PC and prevent alloimmunization on platelet transfusion. However, the mechanism of inactivation of leukocytes contaminating PC has not been fully understood. It is known that UV-B light is absorbed by photosensitizers in cells and produces active oxygen and radicals, such as singlet oxygen, superioxide anions and hydroxyl radicals. These active oxygen or radicals should injure cellular components and this could cause the suppression of cellular functions. In this study, we investigated the relationships among UV-B irradiation, free radical generation and leukocyte inactivation. We found the evidence that active oxygen and radicals were produced in peripheral blood mononuclear cells by UV-B irradiation. UV-B irradiation suppressed the stimulatory function of leukocytes in a mixed lymphocyte reaction (MLR), and the suppression depended on the dosage of UV-B. Even a low dosage of UV-B, 10 J/m 2 , could inhibit the MLR if the irradiated cells were incubated at 37degC for 24 hours before co-culture with responder cells. Treatments of cells with the exogenous singlet oxygen or superoxide anions also caused suppression of the stimulatory function in the MLR, inhibition of capping formation of HLA-DR antigens, and an increase of intracellular free Ca 2+ levels as did the UV-B treatment. These results indicate that the active oxygen or radicals generated in UV-B-irradiated leukocytes could be one of the causes of leukocyte inactivation. (author0

  7. Formation and reactivity of free radicals in 5-hydroxymethyl-2-furaldehyde--the effect on isoprenaline photostability.

    Science.gov (United States)

    Brustugun, Jørgen; Tønnesen, Hanne H; Edge, Ruth; Navaratnam, Suppiah

    2005-05-13

    Solutions of glucose are used as diluents for drugs in various drug infusions. When sterilized by heat small amounts of the substance 5-hydroxymethyl-2-furaldehyde (5-HMF) is produced from glucose. At a hospital ward such infusions may be exposed to irradiation; including UV-light. The photoreactivity of the furaldehyde is investigated. It is shown to photodestabilize the catecholamine isoprenaline. It is shown to be a producer, but also a consumer, of singlet oxygen. The excited triplet, cation and anion radical have been produced by pulse radiolysis and flash photolysis and their absorbance characteristics have been determined. The triplet absorption spectrum showed absorption bands at 320 and 430 nm with molar absorption coefficients of 4700 and 2600 M-1 cm-1, respectively. The anion radical showed absorption bands at 330 and 420 nm with molar absorption coefficients of 2000 and 300 M-1 cm-1, respectively. The cation radical had an absorption band at 320 nm with a molar absorption coefficient of 5000 M-1 cm-1. The quantum yield for the production of singlet oxygen, sensitized by the 5-HMF triplet, was determined to be 0.6, whilst the quantum yield for the triplet formation was 1.0. Aqueous solutions of 5-HMF were found to photoionize to yield the hydrated electron and the cation radical of 5-HMF in a biphotonic process. The influences of pH, buffer and glucose on the formation of transients were evaluated. The reactions between 5-HMF and the solvated electron, the hydroxyl radical and the superoxide were also studied.

  8. Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitution of aromatic fluorides

    Directory of Open Access Journals (Sweden)

    Magnus Liljenberg

    2013-04-01

    Full Text Available A computational approach using density functional theory to compute the energies of the possible σ-complex reaction intermediates, the “σ-complex approach”, has been shown to be very useful in predicting regioselectivity, in electrophilic as well as nucleophilic aromatic substitution. In this article we give a short overview of the background for these investigations and the general requirements for predictive reactivity models for the pharmaceutical industry. We also present new results regarding the reaction rates and regioselectivities in nucleophilic substitution of fluorinated aromatics. They were rationalized by investigating linear correlations between experimental rate constants (k from the literature with a theoretical quantity, which we call the sigma stability (SS. The SS is the energy change associated with formation of the intermediate σ-complex by attachment of the nucleophile to the aromatic ring. The correlations, which include both neutral (NH3 and anionic (MeO− nucleophiles are quite satisfactory (r = 0.93 to r = 0.99, and SS is thus useful for quantifying both global (substrate and local (positional reactivity in SNAr reactions of fluorinated aromatic substrates. A mechanistic analysis shows that the geometric structure of the σ-complex resembles the rate-limiting transition state and that this provides a rationale for the observed correlations between the SS and the reaction rate.

  9. The entry of free radicals into polystyrene latex particles

    International Nuclear Information System (INIS)

    Adams, M.E.; Trau, M.; Gilbert, R.C.; Napper, D.R.

    1988-01-01

    Mechanistic understanding of the processes governing the kinetics of emulsion polymerization has both scientific and technical interest. One component of this process that is poorly understood at present is that of free radical entry into latex particles. Measurements were made of the entry rate coefficient as a function of temperature for free radicals entering polystyrene latex particles in seeded emulsion polymerizations initiated by γ-rays. The activation energy for entry was found to be less than 24 ± 3 kJ mol -1 , consistent with entry being controlled by a physical (e.g. diffusional) rather than a chemical process. Measurement of the entry rate coefficient as a function of the γ-ray dose rate suggested that the factors that determine the entry rate when the primary free radicals are uncharged are similar to those that determine the entry rate for charged free radicals derived from chemical initiation by peroxydisulfate. This result was consistent with measurements of the entry rate coefficient of charged free radicals derived from peroxydisulfate; these data were found to be virtually independent of both the extent of the latex surface coverage by the anionic surfactant sodium dodecyl sulfate and the ionic strength of the continuous phase. The data refute several proposals given in the literature for the rate-determining step for entry, being inconsistent with control by collision of free radicals with the latex particles, surfactant desorption, and an electrostatic barrier arising from the colloidal nature of the entering free radical. The origin of the activation energy for entry remains obscure

  10. A Survey of Aspartate Phenylalanine and Glutamate Phenylalanine Interactions in the Protein Data Bank: Searching for Anion Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek M [ORNL; Harris, Jason B [ORNL; Adams, Rachel M [ORNL; Nguyen, Don [University of Tennessee, Knoxville (UTK); Spires, Jeremy [University of Tennessee, Knoxville (UTK); Howell, Elizabeth E. [University of Tennessee, Knoxville (UTK); Hinde, Robert J [ORNL

    2011-01-01

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242 8249]. To study the role of anion interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe Asp or Glu pairs separated by less than 7 in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura Morokuma energy calculations were performed on roughly 19000 benzene formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (2 to 7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion pairs are found throughout protein structures, in helices as well as strands. Numerous pairs also had nearby cation interactions as well as potential stacking. While more than 1000 structures did not contain an anion pair, the 3134 remaining structures contained approximately 2.6 anion pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  11. DNA Binding Hydroxyl Radical Probes.

    Science.gov (United States)

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  12. Influence of Introduced Substituents on the Anion-selectivity of [14]Tetraazaannulene Complexes.

    Science.gov (United States)

    Moriuchi-Kawakami, Takayo; Obita, Minako; Tsujinaka, Toshiki; Shibutani, Yasuhiko

    2015-01-01

    Nickel(II) complexes of [14]tetraazaannulene derivatives incorporating aromatic rings into their azaannulene framework were synthesized, and the anion-selectivity of the [14]tetraazaannulene nickel complexes 1 - 4 was evaluated by potentiometric measurements with solvent polymeric membrane electrodes. All of the [14]Tetraazaannulene nickel complexes, except 3, were found to exhibit high selectivity for the I(-) ion over the SCN(-) ion, although considerable interference of the ClO4(-) ion was observed in all 1 - 4 complexes. Concerning the anion-selectivities of 1 and 4, the incorporation of naphthalene rings into the azaannulene framework decreased not only the interference of the ClO4(-) ion but also the I(-) ion-selectivity over the SCN(-) ion. Comparison studies between the dibenzotetraaza[14]annulene nickel complexes 1 - 3 indicated that differences in the attached substituents of the [14]tetraazaannulene nickel complexes greatly influenced the ion-selectivity as ionophores. According to our computational results, the ionophoric properties of [14]tetraazaannulene nickel complexes 1 - 4 were influenced by their electrostatic properties rather than their topological properties.

  13. Prediction of (liquid + liquid) equilibrium for binary and ternary systems containing ionic liquids with the bis[(trifluoromethyl)sulfonyl]imide anion using the ASOG method

    International Nuclear Information System (INIS)

    Robles, Pedro A.; Cisternas, Luis A.

    2015-01-01

    Highlights: • ASOG model was used to predict LLE data for ionic liquid systems. • Twenty five binary and seven ternary systems that include the NTf 2 anion were used. • New group interaction parameters were determined. • The results are satisfactory, with rms deviations of about 3%. - Abstract: Ionic liquids are neoteric, environmentally friendly solvents (as they do not produce emissions) composed of large organic cations and relatively small inorganic anions. They have favorable physical properties, such as negligible volatility and a wide range of liquid existence. (Liquid + liquid) equilibrium (LLE) data for systems including ionic liquids, although essential for the design, optimization and operation of separation processes, remain scarce. However, some recent studies have presented ternary LLE data involving several ionic liquids and organic compounds such as alkanes, alkenes, alkanols, ethers and aromatics, as well as water. In this work, the ASOG model for the activity coefficient is used to predict LLE data for 25 binary and 07 ternary systems at 101.3 kPa and several temperatures; all the systems are formed by ionic liquids including the bis[(trifluoromethyl)sulfonyl]imide (NTf 2 ) anion plus alkanes, alkenes, cycloalkanes, alkanols, water, thiophene and aromatics. New group interaction parameters were determined using a modified Simplex method, minimizing a composition-based objective function of experimental data obtained from the literature. The results are satisfactory, with rms deviations of approximately 3%

  14. First examples of intramolecular addition of primary amidyl radicals to olefins

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreault, P.; Drouin, C.; Lessard, J. [Sherbrooke Univ., PQ (Canada). Dept. de Chimie

    2005-07-01

    This paper presents the first examples of radical cyclization involving a primary amidyl radical and a pendant olefin. Amidyl radicals have attracted interest in terms of their structure, reactivity, and ways to generate them. The intramolecular addition of an amidyl radical on a pendant olefin appears to be a powerful synthetic tool for creating nitrogen-containing heterocycles. Although several examples of cyclization involving secondary amidyl radicals are cited in the the literature, there are no examples of a successful cyclization involving a primary amidyl radical. This is because all attempts to prepare the usual radical precursors have failed when applied to olefinic primary amides. This study reveals that N-(phenylthio) derivatives of olefinic primary amides can be easily prepared and that nitrogen heterocycles resulting from their radical cyclization can be obtained in good to very good yields. Four olefinic primary amides were chosen as models for radical cyclization of primary amidyl radicals. They were prepared from the corresponding carboxylic acids via the acid chlorides. Conversion of primary amides into suitable amidyl radical precursors was also examined. The study showed that N-(phenylthio) amides could be easily prepared by following a slightly modified protocol developed by Esker and Newcomb, by reacting the anion of the amide with phenylsulfenyl chloride. In particular, olefinic N-(phenylthio) amides were prepared and used as primary amidyl radical precursors in a reaction with a solution of 2,2'-azobis(isobutyronitrile) in catalytic quantities and tributyltin hydride in benzene. The resulting yields of cyclic products ranged from 63 to 85 per cent. The intent of the study was to demonstrate that it is no longer necessary to prepare an N-protected precursor and then remove the protecting group after cyclization. Further studies are currently underway. 10 refs., 1 tab.

  15. pi-dimerization of pleiadiene radical cations at low temperatures revealed by UV-vis spectroelectrochemistry and quantum theory

    NARCIS (Netherlands)

    van het Goor, Layo; van Duijnen, Piet Th.; Koper, Carola; Jenneskens, Leonardus W.; Havenith, Remco W. A.; Hartl, Frantisek

    2011-01-01

    One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293-263 K only on the subsecond time scale of cyclic

  16. Electron gain and electron loss radicals stabilized on the purine and pyrimidine of a cocrystal exhibiting base-base interstacking: ESR-ENDOR of X-irradiated adenosine:5-bromouracil

    International Nuclear Information System (INIS)

    Kar, L.; Bernhard, W.A.

    1983-01-01

    The predominant free radicals trapped in cocrystals of adenosine:5-bromouracil X-irradiated at 12 0 K were identified by ESR-ENDOR spectroscopy and the radical reactions were followed upon annealing to 480 0 K. The dominant electron abstraction and electron addition products stabilized on the bases at 12 0 K are observed to be the bromouracil π-cation and the adenine π-cation and π-anion. The formation of an anion on bromouracil is inferred from the presence of a radical formed by deuterium addition to C 6 of bromouracil at higher temperatures. Above 40 0 K the bromouracil π-cation appears to decay by recombination and is reduced to undetectable levels at approx.170 0 K. Both adenine π-ions are also observed to decay within the same temperature range. Above 200 0 K hydrogen adducts are stabilized on the bases. Experiments using partially deuterated cocrystals indicate that the H-adducts are formed via both hydrogen addition and protonation of the respective anions. Two hydrogen abstraction radicals stabilized on the sugar residue are detectable at temperatures above 200 0 K, but these may be present at much lower temperatures. The results presented here question the generally accepted hypothesis that, in the presence of purine:pyrimidine stacking interactions, holes are predominantly transferred to the purines while electrns are predominantly transferred to the pyrimidines

  17. The Effect of Nitrogen-Doped ATO Nanotubes on Radical Multiplication of Buffer Media by Visible Light Photocatalysis Rather UV

    Directory of Open Access Journals (Sweden)

    Kan-Hung Hu

    2012-01-01

    Full Text Available The use of TiO2 in photodynamic therapy for the treatment of cancer has generally been studied in cultured cancer cells in serum-containing RPMI 1640 medium under visible light application rather than ultraviolet (UV light. An ordered channel array of N-doped anodic titanium dioxide (ATO has been successfully made for visible light application. ATO nanotubes in the anatase form with a length of 10 μm are more effective than nanotubes of 1.8 μm in length as a photocatalyst for radical multiplication in buffer solution by generating hydroxyl radicals and superoxide radical anions under UV-A exposure. Only the N-doped ATO is applicable to visible light photocatalysis for radical multiplication in RPMI 1640+1% FBS and acrylamide, a free radical carrier.

  18. Radiolytic degradation of gallic acid and its derivatives in aqueous solution

    International Nuclear Information System (INIS)

    Melo, R.; Leal, J.P.; Takacs, E.; Wojnarovits, L.

    2009-01-01

    Polyphenols, like gallic acid (GA) released in the environment in larger amount, by inducing some unwanted oxidations, may constitute environmental hazard: their concentration in wastewater should be controlled. Radiolytic degradation of GA was investigated by pulse radiolysis and final product techniques in dilute aqueous solution. Subsidiary measurements were made with 3,4,5-trimethoxybenzoic acid (TMBA) and 3,4,5-trihydroxy methylbenzoate (MGA). The hydroxyl radical and hydrogen atom intermediates of water radiolysis react with the solute molecules yielding cyclohexadienyl radicals. The radicals formed in GA and MGA solutions in acid/base catalyzed water elimination decay to phenoxyl radicals. This reaction is not observed in TMBA solution. The hydrated electron intermediate of water decomposition adds to the carbonyl oxygen, the anion thus formed protonates on the ring forming cyclohexadienyl radical or on the carbonyl group forming carbonyl centred radical. The GA intermediates formed during reaction with primary water radicals in presence of oxygen transform to non-aromatic molecules, e.g., to aliphatic carboxylic acids.

  19. Radiolytic degradation of gallic acid and its derivatives in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R. [Instituto Tecnologico e Nuclear, UCQR, Estrada Nacional No. 10, Apartado 21, 2686-953, Sacavem (Portugal); Leal, J.P. [Instituto Tecnologico e Nuclear, UCQR, Estrada Nacional No. 10, Apartado 21, 2686-953, Sacavem (Portugal); Centro Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Takacs, E., E-mail: takacs@iki.kfki.hu [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary); Wojnarovits, L. [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary)

    2009-12-30

    Polyphenols, like gallic acid (GA) released in the environment in larger amount, by inducing some unwanted oxidations, may constitute environmental hazard: their concentration in wastewater should be controlled. Radiolytic degradation of GA was investigated by pulse radiolysis and final product techniques in dilute aqueous solution. Subsidiary measurements were made with 3,4,5-trimethoxybenzoic acid (TMBA) and 3,4,5-trihydroxy methylbenzoate (MGA). The hydroxyl radical and hydrogen atom intermediates of water radiolysis react with the solute molecules yielding cyclohexadienyl radicals. The radicals formed in GA and MGA solutions in acid/base catalyzed water elimination decay to phenoxyl radicals. This reaction is not observed in TMBA solution. The hydrated electron intermediate of water decomposition adds to the carbonyl oxygen, the anion thus formed protonates on the ring forming cyclohexadienyl radical or on the carbonyl group forming carbonyl centred radical. The GA intermediates formed during reaction with primary water radicals in presence of oxygen transform to non-aromatic molecules, e.g., to aliphatic carboxylic acids.

  20. Hydrolates from lavender (Lavandula angustifolia)--their chemical composition as well as aromatic, antimicrobial and antioxidant properties.

    Science.gov (United States)

    Prusinowska, Renata; Śmigielski, Krzysztof; Stobiecka, Agnieszka; Kunicka-Styczyńska, Alina

    2016-01-01

    It was shown that the method for obtaining hydrolates from lavender (Lavandula angustifolia) influences the content of active compounds and the aromatic, antimicrobial and antioxidant properties of the hydrolates. The content of volatile organic compounds ranged from 9.12 to 97.23 mg/100 mL of hydrolate. Lavender hydrolate variants showed low antimicrobial activity (from 0% to 0.05%). The radical scavenging activity of DPPH was from 3.6 ± 0.5% to 3.8 ± 0.6% and oxygen radical absorbance capacity (ORAC(FL)) results were from 0 to 266 μM Trolox equivalent, depending on the hydrolate variant.

  1. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.

    Science.gov (United States)

    Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke

    2018-05-15

    Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. New electrochemical oscillator based on the cation-catalyzed reduction of nitroaromatic radical anions

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Pospíšil, Lubomír; Sokolová, Romana; Fanelli, N.

    2009-01-01

    Roč. 54, č. 22 (2009), s. 4991-4996 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400802; GA AV ČR IAA400400505; GA ČR GA203/08/1157; GA MŠk LC510; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : nitroaromatic radical * cationic catalysis * electrochemical impendance * oscillation Subject RIV: CG - Electrochemistry Impact factor: 3.325, year: 2009

  3. Some aspects of radiation-induced free-radical chemistry of biologically important molecules

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1992-01-01

    Biologically relevant material is usually associated with considerable amounts of water. When ionizing radiation interacts with such material one must consider two modes of energy deposition: the direct effect (ionizing radiation is absorbed by the biomolecules) and the indirect effect (ionizing radiation is absorbed by the surrounding water). In the direct effect, radical cations plus electrons, and excited states of the biomolecules are formed. In the indirect effect the water is decomposed resulting in the formation of the water radicals OH,H and e aq - . These reactive intermediates then interact with the biomolecules. When such systems are irradiated oxygen is often present. As a result of this, the radicals formed in the biomolecules by the various routes are converted into the corresponding peroxyl radicals. In certain cases, e.g. with the nucleobases of DNA, radical cations can be produced in dilute aqueous solutions by radiation-generated SO 4 - radicals, and the fate of these nucleobase radical cations studied by pulse radiolysis and product analysis. Attention will be drawn to the fact that frequently some of the reaction products of the radical cations with water are identical to those formed by OH radical attack, but that there are also marked differences. Similarly, protonation of radical anions (formed by the reaction of solvated electrons with the biomolecules) and the reaction of H-atoms with these molecules can lead to radical intermediates with considerably differing characteristics. Our present knowledge of the variety of reactions of the peroxyl radicals occurring in aqueous solutions will be briefly discussed, emphasizing the large variety of HO 2 /O 2 - elimination reactions and pointing to the reversibility of the oxygen addition (RO 2 →R + O 2 ) in some systems recently studied. (author)

  4. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  5. Geminate free radical processes and magnetic field effects

    International Nuclear Information System (INIS)

    Eveson, Robert W.

    2000-01-01

    introduction to the physical properties of simple micelles, the media for the all the magnetic field effect work. Low field effect measurements are then presented as function of micelle size for both anionic and non-ionic micelles, radical pair type and temperature for the benzophenone-surfactant derived radical pair. These are accounted for quantitatively by a simple model for the radical pair motion inside of the micelle. Completing the thesis is a brief comparison of the results with current theories of the low field effect and a discussion on their relevance to biological systems. (author)

  6. A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in the protein data bank: searching for anion-π pairs.

    Science.gov (United States)

    Philip, Vivek; Harris, Jason; Adams, Rachel; Nguyen, Don; Spiers, Jeremy; Baudry, Jerome; Howell, Elizabeth E; Hinde, Robert J

    2011-04-12

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-π pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-π interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe-Asp or -Glu pairs separated by less than 7 Å in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-π pairs are found throughout protein structures, in helices as well as β strands. Numerous pairs also had nearby cation-π interactions as well as potential π-π stacking. While more than 1000 structures did not contain an anion-π pair, the 3134 remaining structures contained approximately 2.6 anion-π pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  7. A Survey of Aspartate-Phenylalanine and Glutamate-Phenylalanine Interactions in the Protein Data Bank: Searching for Anion-pi Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek M [ORNL; Harris, Jason B [ORNL; Adams, Rachel M [ORNL; Nguyen, Don [University of Tennessee; Spiers, Jeremy D [ORNL; Baudry, Jerome Y [ORNL; Howell, Elizabeth E [ORNL; Hinde, Robert J [ORNL

    2011-01-01

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-{pi} pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-{pi} interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe-Asp or -Glu pairs separated by less than 7 {angstrom} in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-{pi} pairs are found throughout protein structures, in helices as well as {beta} strands. Numerous pairs also had nearby cation-{pi} interactions as well as potential {pi}-{pi} stacking. While more than 1000 structures did not contain an anion-{pi} pair, the 3134 remaining structures contained approximately 2.6 anion-{pi} pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  8. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors.

    Science.gov (United States)

    Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira

    2016-12-01

    Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP  >   k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.

  9. Quantum chemical modeling of antioxidant activity of glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    N. V. Solovyova

    2015-04-01

    Full Text Available Following the analysis of the results of quantum chemical simulation of interaction between a GSH molecule and oxygen radicals •ОН and •ООˉ, it was found that it takes place through the acid-base mechanism, where GSH acts as a base towards •ОН, and as an acid towards •ООˉ. The results of quantum chemical calculations (electron density redistribution, energy characteristics were correlated at the time of interaction of a GSH molecule with •ОН and •ООˉ with a change of macroscopic parameters of the process of free oxygen radical electroreduction in the presence of GSH (potential and maximum current of reduction waves, which is a direct experimental macroscale evidence of results of the conducted nanoscale theoretical simulation.

  10. New homo- and heteroleptic derivatives of trivalent ytterbium containing anion-radical 1,4-diazadiene ligands. Synthesis, properties and crystal structure of (C9H7)2Yb[2-MeC6H4NC(Me)C(Me)NC6H4Me-2] and [PhNC(Ph)C(Ph)NPh]3Yb complexes

    International Nuclear Information System (INIS)

    Gudilenkov, I.D.; Fukin, G.K.; Cherkasov, A.V.; Shavyrin, A.S.; Trifonov, A.A.; Larionova, Yu.E.

    2008-01-01

    Reaction of ytterbium bisindenyl complex (C 9 H 7 ) 2 Yb II (THF) 2 (1) with 1,4-diazabutadiene 2-MeC 6 H 4 N=C(Me)-C(Me)=NC 6 H 4 Me-2 ( Me DAD) is accompanied by the oxidation of metal atom until trivalent state and results in the formation of paramagnetic compound of metallocenes type (C 9 H 7 ) 2 Yb III ( Me DAD -. ) (3) containing 1,4-diazabutadiene anion-radical. Structure of complex 3 is ascertained by the X-ray structure analysis. Reactions of bisindenyl (1) and bisfluorenyl (C 13 H 9 ) 2 Yb II (THF) 2 (2) derivatives of bivalent ytterbium with 1,4-diazabutadiene PhN=C(Ph)-C(Ph)=NPh ( Ph DAD) (at 1:2 molar ratio of reagents) proceed with the complete break of Yb-C bonds, oxidation of ytterbium atom until trivalent state, and result in the formation of homoligand complex ( Ph DAD -. ) 3 Yb (6) containing three anion-radical 1,4-diazadiene ligands. Complex 6 was also prepared by the exchange reaction of YbCl 3 with Ph DAD -. K + (1:3) in THF. Complex 6 is characterized by the X-ray structure analysis [ru

  11. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    Science.gov (United States)

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  12. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.

    Science.gov (United States)

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G

    2016-05-17

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).

  13. Photochemistry and reactivity of the phenyl radical-water system: a matrix isolation and computational study.

    Science.gov (United States)

    Mardyukov, Artur; Crespo-Otero, Rachel; Sanchez-Garcia, Elsa; Sander, Wolfram

    2010-08-02

    The reaction of the phenyl radical 1 with water has been investigated by using matrix isolation spectroscopy and quantum chemical calculations. The primary thermal product of the reaction between 1 and water is a weakly bound complex stabilized by an OH...pi interaction. This complex is photolabile, and visible-light irradiation (lambda>420 nm) results in hydrogen atom transfer from water to radical 1 and the formation of a highly labile complex between benzene and the OH radical. This complex is stable under the conditions of matrix isolation, however, continuous irradiation with lambda>420 nm light results in the complete destruction of the aromatic system and formation of an acylic unsaturated ketene. The mechanisms of all reaction steps are discussed in the light of ab initio and DFT calculations.

  14. Reactivity of glycyl-amino acids toward hydroxyl radical in neutral aqueous solutions

    International Nuclear Information System (INIS)

    Masuda, Takahiro; Iwashita, Naomi; Shinohara, Hiroyuki; Kondo, Masaharu

    1978-01-01

    Rate constants for reactions of hydroxyl radicals with several glycyl-amino acids were determined by a competition method using p-nitrosodimethylailine as a reference compound. For glycyl-aliphatic amino acids, the enhancement of reactivity was observed as compared with the corresponding free amino acids. The reactivity was explained qualitatively in terms of partial reactivities assigned to each C-H bond of the dipeptides. For glycyl-aromatic amino acids, the rate constants were found to be almost equal to those of the corresponding free amino acids. The reactivity of a protein toward hydroxyl radical was well understood by summation of the rate constants, corrected by steric factors, of amino acid residues located on surface of the protein. The enhanced reactivity of the aliphatic peptides was interpreted in terms of the difference in interaction energy between NH 2 - and NH 3 + -forms of an aliphatic amino acid, which was calculated for the system including glycine and hydroxyl radical according to CNDO/2 method. (auth.)

  15. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1981-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in nonpolar solvents (cyclohexane, carbon tetrachloride, n-butyl chloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations (k about 10 11 l mol -1 s -1 ). These cations dimerize in a diffusion-controlled reaction (k approximately 10 10 l mol -1 s -1 ). The next step of chain-growth is slower by 3 to 4 orders of magnitude. Furthermore, in carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of the radical cations with the solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The established reaction mechanism shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  16. Effects of solution P H on the adsorption of aromatic compounds from aqueous solutions by activated carbon

    International Nuclear Information System (INIS)

    Nouri, S.; Haghseresht, F.; Lu, M.

    2002-01-01

    Absorption of p-Cresol, Benzoic acid and Nitro Benzene by activated carbon from dilute aqueous solutions was carried out under controlled ph conditions at 310 k. In acidic conditions, well below the pK a of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent of adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular forms of the aromatic solutes was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher P H values was found to be dependent on the concentration of anionic form of the solutes. All isotherms were fitted into Freundlich Isotherm Equations

  17. Proton and hydride affinities in excited states: magnitude reversals in proton and hydride affinities between the lowest singlet and triplet states of annulenyl and benzannulenyl anions and cations

    DEFF Research Database (Denmark)

    Rosenberg, Martin; Ottosson, Henrik; Kilså, Kristine

    2010-01-01

    electron counting rules for aromaticity in the two states. Using quantum chemical calculations at the G3(MP2)//(U)B3LYP/6-311+G(d,p) level we have examined the validity of this hypothesis for eight proton and eight hydride addition reactions of anions and cations, respectively, of annulenyl...

  18. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    Science.gov (United States)

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  19. Cyclopropenyl Anions: Carbon Tunneling or Diradical Formation? A Contest between Jahn-Teller and Hund.

    Science.gov (United States)

    Kozuch, Sebastian

    2015-07-14

    The π bond shifting (automerization) by carbon tunneling of cyclopropenyl anions was computationally analyzed by the small curvature tunneling methodology. Similar to other antiaromatic cases, the process is hindered by substituents departing from planarity, since these groups must be realigned along with the π bond shifting. With hydrogens as substituents the tunneling is extremely fast, in a case of both heavy and light atom tunneling. But, with more massive substituents (such as Me and F), and especially with longer groups (such as CN), the tunneling probability is reduced or even virtually canceled. The automerization of triphenylcyclopropyl anion by tunneling was supposed to be impossible due to the high mass of the phenyl groups. However, it was found that the ground state of this species is actually a D3h aromatic triplet, a single-well system that cannot undergo automerization. For this and other systems with π acceptor groups, the superposition of states that generates the second-order Jahn-Teller distortion is diminished, and by Hund's rule, the triplet results in the ground state.

  20. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  1. Distribution of free radical products among the bases of x-irradiated DNA model systems: an ESR study

    International Nuclear Information System (INIS)

    Spalletta, R.A.

    1984-01-01

    Exposure of solid state DNA to ionizing radiation results in an ESR spectrum that has been attributed to a nonstoichiometric distribution of free radicals among the bases. At low temperatures radical cations appear to be stabilized on the purines while radical anions are stabilized on the pyrimidines. This distribution could arise from at least two different mechanisms. The first, charge transfer, involves the transfer of electrons and/or holes between stacked bases. In the second, saturation asymmetry, the free radical distribution arises from differences in the dose saturation characteristics of individual bases. The present study addresses the relative importance of charge transfer versus saturation asymmetry in the production of these population differences. Radicals formed by dissolving irradiated polycrystalline pyrimidines in aqueous solutions containing NtB or PBN spin traps were analyzed using ESR. The relative importance of the two free radical production and distribution mechanisms was assessed using DNA model systems. Saturation asymmetry plays a significant role in determining the free radical population while charge transfer was unambiguously observed in only one, the complex of dAMP and TMP. The results demonstrate that any quantitative analysis of charge transfer must take saturation asymmetry into account

  2. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  3. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    Science.gov (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  4. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures

    International Nuclear Information System (INIS)

    Thompson, Rodney W.; Valentine, Holly L.; Valentine, William M.

    2003-01-01

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H 2 S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H 2 S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H 2 S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H 2 S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  5. The properties and Roles of Resonance-Stabilized Radicals in Photochemical Pathways in Titan's Atmosphere

    Science.gov (United States)

    Sebree, Joshua A.; Kidwell, Nathan; Zwier, Timothy

    2010-11-01

    In recent years, the Cassini satellite has been providing details about the composition of Titan's atmosphere. Recent data has shown the existence of polycyclic aromatic hydrocarbons (PAHs) at higher altitudes than previously expected including masses tentatively ascribed to naphthalene and anthracene. The formation of indene (C9H9) and naphthalene (C10H8), the simplest PAHs, and their derivatives are of great interest as similar mechanisms may lead to the formation of larger fused-ring systems. In recent years it has been proposed that resonance-stabilized radicals (RSRs) may play an important role as intermediates along these pathways. RSRs gain extra stability by delocalizing the unpaired electron through a neighboring conjugated π-system. Because of this extra stability, RSRs are able to build up in concentration, allowing for the creation of larger, more complex systems through their recombination with other RSRs. Mass-selective UV-visible spectra of two RSRs, phenylallyl and benzylallenyl radicals, have been recorded under jet-cooled conditions. These two radicals, while sharing the same radical conjugation, have unique properties. The roles these radicals may play in the formation of fused ring systems will be discussed along with recent photochemical results on reaction pathways starting from benzylallene through the benzylallenyl radical.

  6. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    International Nuclear Information System (INIS)

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M.

    1991-01-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.)

  7. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  8. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    Science.gov (United States)

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  9. Nitroxyl-mediated oxidation of lignin and polycarboxylated products

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Rafiee, Mohammad

    2018-02-27

    Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers or oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.

  10. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  11. The scavenging of free radical and oxygen species activities and hydration capacity of collagen hydrolysates from walleye pollock ( Theragra chalcogramma) skin

    Science.gov (United States)

    Zhuang, Yongliang; Li, Bafang; Zhao, Xue

    2009-06-01

    Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock ( Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.

  12. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  13. ESR studies of radiation induced radical products from linoleic acid and linolenic acid and the radioprotective effect by α-tocopherol

    International Nuclear Information System (INIS)

    Zhu Younan; Tu Tiecheng; Dong Jirong; Zhang Jiashan; Li Nianyun

    1993-01-01

    Primary radicals from the γ-radiolysis of air-saturated linoleic acid and linolenic acid at 77 K, and the subsequent secondary radicals appeared during the course of variable temperature elevation were investigated by ESR. The ESR spectrum from samples irradiated and observed at 77 K shows the presence of the radical anion doublet arise from the electron adducts of the carboxy groups and the poorly resolved broad singlet results from some carbon-centered radicals. Annealing to approximately 125 K which allows for molecular oxygen migration results in the formation of peroxyl radicals. At 247 K, the ESR spectrum is a multi-line pattern which is attributable to structure of the α-carbon radical superimposed on the pentadienyl radicals. The ESR spectra from linoleic acid-α-tocopherol and linolenic acid-α-tocopherol binary systems irradiated at 77 K and recorded at 140 K or 215 K revealed the characteristic similarity to that from α-tocopherol alone, no trace of ESR signal from either peroxyl or the composite pattern from superposition of pentadienyl radical and α-carbon radicals can be found out. Therefore α-tocopherol has exerted radioprotection effect on peroxidation of linoleic acid and linolenic acid

  14. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide

    International Nuclear Information System (INIS)

    Salter-Blanc, Alexandra J.; Lyon, Molly A.; Science University, Portland, OR; Ness, Stuart C.; Science University, Portland, OR; Tratnyek, Paul G.; Science University, Portland, OR

    2016-01-01

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2 ) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ − ), pK a s of the amines, and energies of the highest occupied molecular orbital (E HOMO )] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox )]. The selection of calculated descriptors (pK a ), E HOMO , and E ox ) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).

  15. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    International Nuclear Information System (INIS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-01-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4–47.2 kJ mol −1 ) are low and also the Gibbs free energies have high negative values ((−27.4) to (−5.9) kJ mol −1 ). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate. - Highlights: • Attack of • OH to aniline, phenol, fenuron, monuron, diuron was studied by DFT. • Ortho-para directing is suggested with –NH 2 , –OH and –NHCON(CH 3 ) 2 groups. • • OH addition to the ring gives hydroxycyclohexadienyl radical. • Attack at C-Cl leads to • OH/Cl substitution without cyclohexadienyl intermediate.

  16. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.

    Science.gov (United States)

    Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho

    2018-03-06

    Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To

  17. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.

    2007-01-01

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  18. Porphyrin Co(III-Nitrene Radical Mediated Pathway for Synthesis of o-Aminoazobenzenes

    Directory of Open Access Journals (Sweden)

    Monalisa Goswami

    2018-05-01

    Full Text Available Azobenzenes are versatile compounds with a range of applications, including dyes and pigments, food additives, indicators, radical reaction initiators, molecular switches, etc. In this context, we report a general method for synthesizing o-aminoazobenzenes using the commercially available cobalt(II tetraphenyl porphyrin [CoII(TPP]. The net reaction is a formal dimerization of two phenyl azides with concomitant loss of two molecules of dinitrogen. The most commonly used methodology to synthesize azobenzenes is based on the initial diazotization of an aromatic primary amine at low temperatures, which then reacts with an electron rich aromatic nucleophile. As such, this limits the synthesis of azobenzenes with an amine functionality. In contrast, the method we report here relies heavily on the o-amine moiety and retains it in the product. The reaction is metal catalyzed and proceeds through a porphyrin Co(III-nitrene radical intermediate, which is known to form on activation of organic azides at the cobalt center. The synthesized o-aminoazobenzenes are bathochromatically shifted, as compared to azobenzenes without amine substituents. Based on the crystal structure of one of the products, strong H-bonding between the N-atom of the azo functionality and the H of the NH2 substituent is shown to stabilize the trans isomeric form of the product. The NH2 substituents offers possibilities for further functionalization of the synthesized azo compounds.

  19. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity

    Directory of Open Access Journals (Sweden)

    Suvankar Das

    2018-01-01

    Full Text Available Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH and the anion radical superoxide (·O2−. The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to ·O2− scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb and GI50 for several human cancer cell was observed.

  20. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An EPR study of positive hole transfer and trapping in irradiated frozen solutions containing aromatic traps

    International Nuclear Information System (INIS)

    Egorov, A.V.; Zezin, A.A.; Feldman, V.I.

    2002-01-01

    Complete text of publication follows. Processes of positive hole migration and trapping are of basic significance for understanding of the primary events in the radiation chemistry of solid molecular systems. Specific interest is concerned with the case, when ionization energies of 'hole traps' are rather close, so one may expect 'fine tuning' effects resulting from variations in conformation, weak interactions, molecular packing, etc. In this contribution we report the results of EPR study of formation of radical cations in irradiated frozen halocarbon solutions containing aromatic molecules of different structure. Using the 'two-trap' model made it possible to obtain an evidence for efficient long-range trap-to-trap positive hole transfer between alkyl benzene molecules with close ionization energies distributed in the matrices with high ionization potentials. The distance of transfer was found to be 2-4 nm. In the case of frozen solutions containing ethylbenzene and toluene, it was found that the efficiency and direction of hole transfer was controlled by the conformation of ethylbenzene radical cation. The study of positive hole localization in 'bridged' diphenyls of Ph(CH 2 ) n Ph type revealed that the structure of radical cations of these species was affected by local environment (type of halocarbon matrix) and the conformational flexibility of 'bridge'. In summary, we may conclude that migration and localization of positive hole in rigid systems containing aromatic 'traps' is quite sensitive to rather subtle effects. This conclusion may be of common significance for the radiation chemistry of systems with physical dispersion of the traps of similar chemical structure (e.g. macromolecules, adsorbed molecules, etc.)

  2. From small aromatic molecules to functional nanostructured carbon by pulsed laser-induced photochemical stitching

    Directory of Open Access Journals (Sweden)

    R. R. Gokhale

    2012-06-01

    Full Text Available A novel route employing UV laser pulses (KrF Excimer, 248 nm to cleave small aromatic molecules and stitch the generated free radicals into functional nanostructured forms of carbon is introduced. The process differs distinctly from any strategies wherein the aromatic rings are broken in the primary process. It is demonstrated that this pulsed laser-induced photochemical stitching (PLPS process when applied to routine laboratory solvents (or toxic chemical wastes when discarded Chlorobenzene and o-Dichlorobenzene yields Carbon Nanospheres (CNSs comprising of graphene-like sheets assembled in onion-like configurations. This room temperature process implemented under normal laboratory conditions is versatile and clearly applicable to the whole family of haloaromatic compounds without and with additions of precursors or other nanomaterials. We further bring out its applicability for synthesis of metal-oxide based carbon nanocomposites.

  3. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    Science.gov (United States)

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.

  4. Some redox chemistry of HPO2-. and .PO32- radicals. A pulse radiolysis study

    International Nuclear Information System (INIS)

    Packer, J.E.; Anderson, R.F.

    1990-01-01

    The HO . radical oxidises hypophosphite and phosphite anions to HPO 2 -. and . PO 3 2- respectively, but Br 2 -. and N 3 . do not. The rates of oxidation of HPO 2 -. by a series of oxidising agents of known one electron redox potentials decrease with decreasing potential while the corresponding rates for oxidation of . PO 3 2- remain close to the diffusion controlled limit. . PO 3 2- will oxidise cysteine but HPO 2 -. does not. . PO 3 2- did not oxidise ABTS, ascorbate, or the anion of the vitamin E analogue, trolox. It reduced traces of TMPD +. in TMPD rather than oxidising the substrate. The one electron redox potentials for oxidation and reduction of . PO 3 2- are calculated in light of recently published redox data on penicillamine. (author)

  5. The structure and properties of free radicals: An electron spin resonance study of radiation damage to nucleic acid and protein components and to some sulfur-substituted derivitives

    International Nuclear Information System (INIS)

    Sagstuen, E.

    1979-01-01

    When cellular systems are exposed to ionizing radiation the long-term effects may range from minor disturbances to such dramatic changes as mutations and cell death. The processes leading to these macroscopical injuries are primarily confined at the molecular level. In all models aimed at a description of the action of radiation at the molecular level the formation of free radicals (which are species containing unpaired electrons) is a central concept. The technique of ESR spectroscopy is uniquely suited to study free radicals, as it is based on resonance absorption of energy by unpaired electrons in a magnetic field. ESR spectroscopy makes it possible to detect free radicals and, in some cases, to identify them. In order to study free radicals by ESR it is necessary to build up a sufficient number of unpaired spins in the sample (approximately 10 11 or more, depending on the shape of the resonance). This may be different techniques have been used to trap the induced radicals or to attain a sufficient steady state concentration level. A procedure which seems to contain a large amount of information is to irradiate at low temperatures, and, by subsequent heat-treatment of the sample to study the reactions and fate of the induced radicals. In this thesis single crystal studies of aromatic amino acids and pyrimidine derivitives together with some substituted purine derivitives are presented, and the results are discussed in relation to the present knowledge about radical formation in these classes of compounds. Single crystal studies of some sulfur-containing aromatic compounds have been presented with the purpose of shedding light on the electronic structure of sulfur-centred radicals. (JIW)

  6. Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria linn (Fabaceae

    Directory of Open Access Journals (Sweden)

    Sakthivel Srinivasan

    2016-04-01

    Full Text Available The objective of this study was to evaluate the free radical scavenging potential and high performance thin layer chromatography (HPTLC fingerprinting of Indigofera tinctoria (I. tinctoria. Phytochemical analysis was carried out using standard methods, and free radical scavenging activity of the plant was determined using 2,2-diphenyl-1-picrylhydrazy (DPPH, nitric oxide (NO and superoxide anion (O2− radical scavenging capacities. HPTLC plate was kept in CAMAG TLC Scanner 3 and the Rf values at fingerprint data were recorded by WINCATS software. Aqueous extract of I. tinctoria reliably showed the total phenolics (267.2±2.42 mg/g, flavonoids (75.43±3.36 mg/g and antioxidants (349.11±8.04 mg/g. The extract was found to have DPPH (52.08%, NO (23.12% and O2− (26.79% scavenging activities at the concentration of 250 μg/mL and the results were statistically significant compared with ascorbic acid standard (p<0.05. HPTLC results confirmed that the extract contained several potential active components such as phenols, flavonoids, saponins and terpenoids as the slides revealed multi-colored bands of varying intensities. This study confirmed that the plant had multipotential antioxidant and free radicals scavenging activities.

  7. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  8. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    Science.gov (United States)

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO(-)).

    Science.gov (United States)

    Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas

    2016-02-21

    A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.

  10. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    Science.gov (United States)

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  11. New fluorescent probes of the hydroxyl radical: characterisation and modelization of the reactivity of coumarin derivatives with HO

    International Nuclear Information System (INIS)

    Louit, G.

    2005-10-01

    The hydroxyl radical is involved in a wide range of different fields, from oxidative stress to atmospheric chemistry. In addition to the study of oxidative damage in biological media, the hydroxyl radical detection allows to perform a dosimetry when it is produced by ionising radiation. The aims of this work have been double: - to improve the detection of the hydroxyl radical by the design of new probes - to improve knowledge on the reactive pathways in which the hydroxyl radical is involved. We have studied the coumarin molecule, as well as 6 derivatives that we have synthesised, as fluorescent probes of the hydroxyl radical. Firstly, fluorescence spectroscopy and HPLC chromatography have allowed the evaluation of the sensibility and selectivity of detection of the probes. Consequently to this study, two applications have been developed, concerning the determination of rate constants by competition kinetics and bidimensional dosimetry. Secondly, we have studied the reactivity of the hydroxyl radical through the regioselectivity of its addition on the aromatic cycle. This problem was addressed by the combined use of experimental methods such as time resolved kinetics and HPLC along with interpretation from classical and ab initio modelization. (author)

  12. Radical fashion and radical fashion innovation

    NARCIS (Netherlands)

    Zhang, D.; Benedetto, Di A.C.

    2010-01-01

    This is a study of the related concepts of radical fashion and radical fashion innovation. Radical fashions are defined here as those that may never enter the market at all, and exist primarily on runway shows, in exhibitions and in publicity; by contrast, radical fashion innovations may be very

  13. Free radicals in chemical carcinogenesis.

    Science.gov (United States)

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  14. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, β''-(DODHT)2TaF6

    Science.gov (United States)

    Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.

    2008-10-01

    Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.

  15. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  16. Investigation of molecular mechanisms in photodynamic action and radiobiology with nanosecond flash photolysis and pulse radiolysis. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Grossweiner, L.I.

    1975-01-01

    Initial mechanisms in the UV photooxidation of aromatic amino acids are being investigated with laser flash photolysis at 265 nm in connection with enzyme inactivation. Aqueous tryptophan (Trp) is photoionized by an efficient monophotonic process, followed by a hitherto unreported pseudo-first order recombination competing with bimolecular e - /sub aq/ decay and electron scavengers. Measurements of the photoionization quantum efficiency, the aromatic radical extinction coefficients, and the electron decay kinetics are reported. The flash photolysis of N-formylkynurenine (FK) has been studied in connection with its role in ''internal'' photodynamic action in bovine carbonic anhydrase (BCA). The triplet state of FK oxidizes Trp to the radical formed also by UV photolysis, leading to the FK semiquinone which reacts with oxygen to produce O 2 - . The same FK semiquinone species is formed by radiolytic reduction by e - /sub aq/ and CO 2 - . A parallel radiolysis study on BCA using radical anions as probes of specific residues has shown that the zinc atom protects against the inactivating attack of e - /sub aq/ and CO 2 - . Evidence for sensitive aromatic residues in BCA has been found with this technique. Photodynamic damage to biological membranes is being studied with spin label ESR methods. New work is reported on damage to unsaturated lipids sensitized by Eosin based on changes in the temperature-dependence of the spin label rotational correlation time. Preliminary results with diploid yeast membranes (Saccharomyces cerevisiae) show a loosening of the structure accompanying photodynamic inactivation. (U.S.)

  17. Generation of counter ion radical (Br2(•-)) and its reactions in water-in-oil (CTAB or CPB)/n-butanol/cyclohexane/water) microemulsion.

    Science.gov (United States)

    Guleria, Apurav; Singh, Ajay K; Sarkar, Sisir K; Mukherjee, Tulsi; Adhikari, Soumyakanti

    2011-09-15

    Herein we report the generation of counterion radicals and their reactions in quaternary water-in-oil microemulsion. Hydrated electrons in the microemulsion CTAB/H(2)O/n-butanol/cyclohexane have a remarkably short half-life (∼1 μs) and lower yield as compared to that in the pure water system. Electrons are solvated in two regions: one is the water core and other the interface; however, the electrons in the water core have a shorter half-life than those in the interface. The decay of the solvated electrons in the interface is found to be water content dependent and it has been interpreted in terms of increased interfacial fluidity with the increase in water content of the microemulsion. Interestingly another species, dibromide radical anion (Br(2)(•-)) in CTAB and CPB microemulsions have been observed after the electron beam irradiation. Assuming that the extinction coefficient of the radicals is the same as that in the aqueous solution, the yields of the radicals per 100 eV are 0.29 and 0.48 for the Br(2)(•-) radical in CTAB and CPB containing microemulsions (W(0) = 40), respectively, under N(2)O saturated conditions. Further, we intended to study electron transfer reactions, which occur at and through the interface. The reaction of the Br(2)(•-) radical anion with ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] has been studied to generate the ABTS radical in the water core, and further, its reaction has been investigated with the water-insoluble molecule vitamin E (tocopherol) and water-soluble vitamin C (ascorbic acid). In the present study, we were able to show that, even for molecules which are completely insoluble in water, ABTS scavenging assay is possible by pulse radiolysis technique. Furthermore, these results show that it is possible to follow the reaction of the hydrated inorganic radical with solutes dissolved in the organic phase in a microemulsion without use of a phase transfer catalyst. © 2011 American Chemical Society

  18. Aromatic chemical feedstocks from coal

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G

    1982-06-01

    Liquid byproducts of coal carbonization meet some 25% of the world demand for aromatic chemicals, currently at approx. 30 million t/a, in particular 15% of the demand for benzene and over 95% of the demand for condensed aromatics and heteroaromatics. Industrial processing of the aromatic byproducts of coal pressure gasification is carried out to only a minor extent. Other methods that may be employed in future to obtain carbochemical aromatic compounds are solvolysis and supercritical gas extraction, the catalytic liquid-phase hydrogenation and hydropyrolysis of coal, which also permit recovery of benzene and homologues, phenols, and condensed and partially hydrogenated aromatics, and the synthesis of aromatics using methanol as the key compound. As with the present means of obtaining aromatic chemicals from coal, the processes that may in the future be applied on an industrial scale to obtain pure aromatics will only be economically feasible if linked with the manufacture of other mass products and combined with the present production of carbochemical aromatics.

  19. Aromatic raw materials from coal

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G

    1982-06-01

    Liquid byproducts of coal carbonization meet some 25% of the world demand for aromatic chemicals, currently at approx. 30 million t/a, in particular 15% of the demand for benzene and over 95% of the demand for condensed aromatics and heteroaromatics. Industrial processing of the aromatic byproducts of coal pressure gasification is carried out to only a minor extent. Other methods that may be employed in future to obtain carbochemical aromatic compounds are solvolysis and supercritical gas extraction, the catalytic liquid-phase hydrogenation and hydropyrolysis of coal, which also permit recovery of benzene and homologues, phenols, and condensed and partially hydrogenated aromatics, and the synthesis of aromatics using methanol as the key compound. As with the present means of obtaining aromatic chemicals from coal, the processes that may in future be applied on an industrial scale to obtain pure aromatics will only be economically feasible if linked with the manufacture of other mass products and combined with the present production of carbochemical aromatics. (In German)

  20. Supramolecular Chemistry of Environmentally Relevant Anions

    International Nuclear Information System (INIS)

    Bowman-James, Kristin; Moyer, B.A.; Sessler, Jonathan L.

    2003-01-01

    The goal of this project is the development of highly selective extractants for anions targeting important and timely problems of critical interest to the EMSP mission. In particular, sulfate poses a special problem in cleaning up the Hanford waste tanks in that it interferes with vitrification, but available technologies for sulfate removal are limited. The basic chemical aspects of anion receptor design of functional pH independent systems as well as design of separations strategies for selective and efficient removal of targeted anions have been probed. Key findings include: (1) some of the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate from acidic, nitrate-containing aqueous media. Receptor design, structural influences on anion binding affinities, and findings from liquid-liquid extraction studies will be discussed

  1. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  2. Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development

    International Nuclear Information System (INIS)

    Perera, Frederica; Phillips, David H.; Wang, Ya; Roen, Emily; Herbstman, Julie; Rauh, Virginia; Wang, Shuang; Tang, Deliang

    2015-01-01

    Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum of PAH/aromatic-DNA adducts was measured using the 32 P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood Polycyclic Aromatic

  3. Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Frederica, E-mail: fpp1@columbia.edu [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Columbia Center for Children' s Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Phillips, David H. [Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King' s College London, Franklin-Wilkins Building, London SE1 9NH (United Kingdom); Wang, Ya [Columbia Center for Children' s Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Roen, Emily; Herbstman, Julie [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Columbia Center for Children' s Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Rauh, Virginia [Columbia Center for Children' s Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); The Heilbrunn Department of Population and Family Health, Columbia University, 60 Haven Avenue, New York, NY 10032 (United States); Wang, Shuang [Columbia Center for Children' s Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Tang, Deliang [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States); Columbia Center for Children' s Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032 (United States)

    2015-10-15

    Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum of PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood Polycyclic

  4. Isotope effect study of κ-(BEDT-TTF)2Cu(NCS)2: Labeling in the anion

    International Nuclear Information System (INIS)

    Kini, A.M.; Wang, H.H.; Schlueter, J.A.

    1995-01-01

    Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors' laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C double-bond C and Csingle bondS stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in κ-(ET) 2 Cu(NCS) 2 , there exist two competing isotope effects--a normal mass effect, i.e., lowering of T c upon isotopic labeling, when the ET molecular mass is increased by concurrent 13 C and 34 S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of κ-(ET) 2 Cu(NCS) 2 is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with 13 C and 15 N isotopes

  5. Novel Profluorescent Nitroxides for Monitoring Alkyl Radical Reactions During Radiation Degradation

    International Nuclear Information System (INIS)

    George, G.

    2006-01-01

    Hindered amine stabilizers (HAS) are effective at retarding the photo-oxidative and high energy radiation degradation of PP and in certain circumstances, also thermo-oxidative degradation. The effectiveness of HAS as retarders of oxidation relies on the oxidation of the N-C bond by polymer hydroperoxide, ROOH, to form the nitroxyl group -NO which is the scavenger of polymer alkyl radicals, R. This reaction, which produces the alkoxy amine: -NO-R, must be competitive with the reaction of R with oxygen (which gives the chain-carrying peroxy radical, RO 2 ) if this stabilization mechanism is to be important in the inhibition of radiation-induced oxidative degradation of polyolefins by HAS. The rate of this reaction is high and in solution the rate coefficient is from 1 to 9x10 8 l mol - 1 s - 1. The efficient radical trapping by nitroxides has been widely employed in spin-trapping studies by electron spin resonance (esr) spectroscopy]. In addition to the hindered piperidine structure of commercial HAS, more rigid aromatic systems have been studied that are more stable to oxidative degradation and are more efficient at scavenging alkyl radicals. One such family is the iso-indoline nitroxide system, TMDBIO, shown below which, as it contains the phenanthrene fluorophore, is termed phenanthrene nitroxide. This nitroxide only becomes fluorescent when it reacts with alkyl radicals or is reduced and is termed profluorescent. TMDBIO has a vanishingly small fluorescence quantum yield (φ∼10 - 4) due to the enhanced intersystem crossing from the first excited singlet state to the ground state due to electron exchange interactions of the nitroxyl radical. When the nitroxide traps an alkyl radical, R, the resulting alkoxy amine is fluorescent (φ∼10 - 1) and the emission intensity is a measure of the number of reactions that have occurred. This property may be exploited by using quantitative fluorescence spectroscopy to follow the reaction of the nitroxide with alkyl radicals

  6. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  7. Radiolysis of nucleosides in aqueous solutions: base liberation by the base attack mechanism

    International Nuclear Information System (INIS)

    Fujita, S.

    1984-01-01

    On the radiolysis of uridine and some other nucleosides in aqueous solution, a pH-dependent liberation of uracil or the corresponding base was found. e - sub(aq) and HOsup(anion radicals) 2 gave no freed bases, although many oxidizing radicals, including OH, Clsup(anion radicals) 2 , Brsup(anion radicals) 2 , (CNS)sup(anion radicals) 2 and SOsup(anion radicals) 4 , did cause the release of unaltered bases, depending on the pH of the solutions. The base yields were generally high at pH >= 11, with the exception of SOsup(anion radicals) 4 , which gave a rather high yield of uracil (from uridine) even in the pH region of - , present at high pH as the dissociated form of OH, may act partly as an oxidizing radical. A plausible mechanism of 3 1 -radical formation is discussed. (author)

  8. Substrate specific hydrolysis of aromatic and aromatic-aliphatic esters in orchid tissue cultures

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available We found that tissue cultures of higher plants were able, similarly as microorganisms, to transform low-molecular-weight chemical compounds. In tissue cultures of orchids (Cymbidium 'Saint Pierre' and Dendrobium phalaenopsis acetates of phenols and aromatic-aliphatic alcohols were hydrolyzed, whereas methyl esters of aromatic and aromatic-aliphatic acids did not undergo this reaction. Acetates of racemic aromatic-aliphatic alcohols were hydrolyzed with distinct enantiospecificity.

  9. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaowei; Fagiani, Matias R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Gewinner, Sandy; Schöllkopf, Wieland [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Asmis, Knut R., E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim, E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin (Germany)

    2016-06-28

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D{sub 2}-tagged AlO{sub 1-4}{sup −} and Al{sub 2}O{sub 3-6}{sup −} are measured in the region from 400 to 1200 cm{sup −1}. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al{sub 2}O{sub 3-6}{sup −} anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO{sub 3}{sup −}. Terminal Al–O stretching modes are found between 1140 and 960 cm{sup −1}. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm{sup −1}) and lower energies (850-570 cm{sup −1}), respectively. Four modes in-between 910 and 530 cm{sup −1} represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al–(O){sub 2}–Al ring.

  10. Experimental and theoretical study of 2,6-difluorophenylnitrene, its radical cation, and their rearrangement products in argon matrices.

    Science.gov (United States)

    Carra, Claudio; Nussbaum, Rafael; Bally, Thomas

    2006-06-12

    2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.

  11. Prediction of activation energies for aromatic oxidation by cytochrome P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Ryde, Ulf; Olsen, Lars

    2008-01-01

    We have estimated the activation energy for aromatic oxidation by compound I in cytochrome P450 for a diverse set of 17 substrates using state-of-the-art density functional theory (B3LYP) with large basis sets. The activation energies vary from 60 to 87 kJ/mol. We then test if these results can...... be reproduced by computationally less demanding methods. The best methods (a B3LYP calculation of the activation energy of a methoxy-radical model or a partial least-squares model of the semiempirical AM1 bond dissociation energies and spin densities of the tetrahedral intermediate for both a hydroxyl...

  12. Parsing of the free energy of aromatic-aromatic stacking interactions in solution

    Energy Technology Data Exchange (ETDEWEB)

    Kostjukov, Viktor V.; Khomytova, Nina M. [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine); Hernandez Santiago, Adrian A.; Tavera, Anna-Maria Cervantes; Alvarado, Julieta Salas [Faculty of Chemical Sciences, Autonomous University of Puebla, Puebla (Mexico); Evstigneev, Maxim P., E-mail: max_evstigneev@mail.ru [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine)

    2011-10-15

    Graphical abstract: Highlights: > A protocol for decomposition of the free energy of aromatic stacking is developed. > The factors stabilizing/destabilizing stacking of aromatic molecules are defined. > Hydrophobic contribution is found to be dominant. - Abstract: We report an analysis of the energetics of aromatic-aromatic stacking interactions for 39 non-covalent reactions of self- and hetero-association of 12 aromatic molecules with different structures and charge states. A protocol for computation of the contributions to the total energy from various energetic terms has been developed and the results are consistent with experiment in 92% of all the systems studied. It is found that the contributions from hydrogen bonds and entropic factors are always unfavorable, whereas contributions from van-der-Waals, electrostatic and/or hydrophobic effects may lead to stabilizing or destabilizing factors depending on the system studied. The analysis carried out in this work provides an answer to the questions 'What forces stabilize/destabilize the stacking of aromatic molecules in aqueous-salt solution and what are their relative importance?'

  13. Parsing of the free energy of aromatic-aromatic stacking interactions in solution

    International Nuclear Information System (INIS)

    Kostjukov, Viktor V.; Khomytova, Nina M.; Hernandez Santiago, Adrian A.; Tavera, Anna-Maria Cervantes; Alvarado, Julieta Salas; Evstigneev, Maxim P.

    2011-01-01

    Graphical abstract: Highlights: → A protocol for decomposition of the free energy of aromatic stacking is developed. → The factors stabilizing/destabilizing stacking of aromatic molecules are defined. → Hydrophobic contribution is found to be dominant. - Abstract: We report an analysis of the energetics of aromatic-aromatic stacking interactions for 39 non-covalent reactions of self- and hetero-association of 12 aromatic molecules with different structures and charge states. A protocol for computation of the contributions to the total energy from various energetic terms has been developed and the results are consistent with experiment in 92% of all the systems studied. It is found that the contributions from hydrogen bonds and entropic factors are always unfavorable, whereas contributions from van-der-Waals, electrostatic and/or hydrophobic effects may lead to stabilizing or destabilizing factors depending on the system studied. The analysis carried out in this work provides an answer to the questions 'What forces stabilize/destabilize the stacking of aromatic molecules in aqueous-salt solution and what are their relative importance?'

  14. Formation and transformations of radicals in frozen aqueous solutions of components of nucleic acids and H3PO4

    International Nuclear Information System (INIS)

    Minkhadzhidinova, D.R.; Chefranova, O.A.; Sharpatyj, V.A.

    1977-01-01

    Radiolysis of frozen aqueous solutions of 6-16 M H 3 PO 4 and 5 M NaH 2 PO 4 was studied, as well as radiolysis of these systems in the presence of nitrous bases and glucose. In aqueous solutions of H 3 PO 4 and NaH 2 PO 4 irradiated at 77 K, two groups of radicals formed as a result of interaction of the oxidative component of radiolysis of water with phosphate ions were identified. Their photolytic properties were studied. Primary products of radiolysis of the nitrous bases in phosphoric- acid solutions are anion- and cation-radicals. The molal absorption coefficients of the particles were determined

  15. Free Radicals and Extrinsic Skin Aging

    Directory of Open Access Journals (Sweden)

    Borut Poljšak

    2012-01-01

    Full Text Available Human skin is constantly directly exposed to the air, solar radiation, environmental pollutants, or other mechanical and chemical insults, which are capable of inducing the generation of free radicals as well as reactive oxygen species (ROS of our own metabolism. Extrinsic skin damage develops due to several factors: ionizing radiation, severe physical and psychological stress, alcohol intake, poor nutrition, overeating, environmental pollution, and exposure to UV radiation (UVR. It is estimated that among all these environmental factors, UVR contributes up to 80%. UV-induced generation of ROS in the skin develops oxidative stress, when their formation exceeds the antioxidant defence ability of the target cell. The primary mechanism by which UVR initiates molecular responses in human skin is via photochemical generation of ROS mainly formation of superoxide anion (O2−•, hydrogen peroxide (H2O2, hydroxyl radical (OH•, and singlet oxygen (1O2. The only protection of our skin is in its endogenous protection (melanin and enzymatic antioxidants and antioxidants we consume from the food (vitamin A, C, E, etc.. The most important strategy to reduce the risk of sun UVR damage is to avoid the sun exposure and the use of sunscreens. The next step is the use of exogenous antioxidants orally or by topical application and interventions in preventing oxidative stress and in enhanced DNA repair.

  16. Radical reactions in vivo - an overview

    International Nuclear Information System (INIS)

    Saran, M.; Bors, W.

    1990-01-01

    Generation of radicals in vivo depends on metabolic activities. The reactions are usually influenced by (i) the presence and concentration of oxygen, (ii) the availability of transition metals (effects of binding and compartimentalization), (iii) the level of reductants and antioxidants (e.g. nutritional effects). The effects of radicals are thought to be due to (i) membrane damage (affecting passive or active transport through altered fluidity/function interrelationships, intercellular messenging through modifications in the synthesis of prostaglandins and leukotrienes); (ii) protein damage (e.g. affecting membrane transporters, channel proteins, receptor or regulatory proteins, immunomodulators); (iii) damage to DNA. Defense mechanisms consist of (i) prevention of the 'spreading' of primary damage by low molecular weight antioxidants (e.g. vitamin E, GSH, vitamin C, β-carotene, uric acid); (ii) prevention or limitation of 'secondary' damage by enzymes (e.g. GSH-peroxidase, catalase, superoxide dismutase, DT-diaphorase) and/or chelators; (iii) repair processes, e.g. lipid degradation/membrane repair enzymes (phospholipases, peroxidases, some transferases and reductases), protein disposal or repair enzymes (proteases, GSSG-reductase), DNA degradation or repair enzymes (exonucleases III, endonucleases III and IV, glycosylases, polymerases). Recent hypotheses on a messenging function of the superoxide anion O 2 - are discussed and possible implications of cross-reactions between O 2 - and nitric oxide (endothelium-derived relaxing factor EDRF) are shortly mentioned. (orig.)

  17. Free radical formation in deoxyguanosine-5'-monophosphate γ-irradiated in frozen solution. A computer-assisted analysis of temperature-dependent ESR spectra

    International Nuclear Information System (INIS)

    Gregoli, S.; Olast, M.; Bertinchamps, A.

    1977-01-01

    Deoxyguanosine-5'-monophosphate (dGMP) was γ-irradiated at 77 K in frozen aqueous solution and then annealed in a stepwise fashion up to the melting point. During this process, the primary radicals formed in DGMP at 77 K are progressively converted into secondary radical species. This is observed as changes in the spectrum intensity and conformation. Computer-assisted analysis of these temperature-dependent spectra permitted us to identify the transient radical species involved and to draw up single-radical concentration kinetics vs temperature. The radiation chemical behavior of dGMP was found to be quite similar to that of dAMP, investigated previously. In both these purine derivatives, radical anions are converted into radicals of H-addition to C-8, and radical cations are converted into radicals of OH-addition to the same position. In dGMP, however, the cationic channel is only induced under certain experimental conditions (alkaline pH, presence of electron scavengers). At neutral pH, G + radicals are quite stable and finally become deactivated without being converted into secondary GOH radicals. Specific deuterium substitution at carbon C-8, and irradiation in H 2 O or in D 2 O, confirmed that both H + and OH - attachments do occur at C-8, and that both the H + and OH - groups come from the aqueous medium

  18. Engineering Aromatic-Aromatic Interactions To Nucleate Folding in Intrinsically Disordered Regions of Proteins.

    Science.gov (United States)

    Balakrishnan, Swati; Sarma, Siddhartha P

    2017-08-22

    Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b 5 . Structural changes from disorder to order due to aromatic interactions in two variants of the protein, viz., WF-cytb5 and FF-cytb5, result in significant long-range secondary and tertiary structure. The results show that 54 and 52% of the residues in WF-cytb5 and FF-cytb5, respectively, occupy ordered regions versus 26% in apo-cytochrome b 5 . The interactions between the aromatic groups are offset-stacked and edge-to-face for the Trp-Phe and Phe-Phe mutants, respectively. Urea denaturation studies indicate that both mutants have a C m higher than that of apo-cytochrome b 5 and are more stable to chaotropic agents than apo-cytochrome b 5 . The introduction of these aromatic residues also results in "trimer" interactions with existing aromatic groups, reaffirming the selectivity of the aromatic interactions. These studies provide insights into the aromatic interactions that drive disorder-to-order transitions in intrinsically disordered regions of proteins and will aid in de novo protein design beyond small peptide scaffolds.

  19. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M. (Eindhoven Univ. of Technology (Netherlands))

    1990-01-31

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed.

  20. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    International Nuclear Information System (INIS)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M.

    1990-01-01

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed

  1. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad; Mohammed, Omar F.; Aly, Shawkat M.; Alarousu, Erkki

    2016-01-01

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  2. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  3. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals

    KAUST Repository

    Zeng, Zebing

    2015-01-01

    © 2015 The Royal Society of Chemistry. Aromaticity is an important concept to understand the stability and physical properties of π-conjugated molecules. Recent studies on pro-aromatic and anti-aromatic molecules revealed their irresistible tendency to become diradicals in the ground state. Diradical character thus becomes another very important concept and it is fundamentally correlated to the physical (optical, electronic and magnetic) properties and chemical reactivity of most of the organic optoelectronic materials. Molecules with distinctive diradical character show unique properties which are very different from those of traditional closed-shell π-conjugated systems, and thus they have many potential applications in organic electronics, spintronics, non-linear optics and energy storage. This critical review first introduces the fundamental electronic structure of Kekulé diradicals within the concepts of anti-aromaticity and pro-aromaticity in the context of Hückel aromaticity and diradical character. Then recent research studies on various stable/persistent diradicaloids based on pro-aromatic and anti-aromatic compounds are summarized and discussed with regard to their synthetic chemistry, physical properties, structure-property relationships and potential material applications. A summary and personal perspective is given at the end.

  4. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  5. Micrococcus radiodurans surface exonuclease. Dimer to monomer conversion by ionizing radiation-generated aqueous free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R E.J.

    1980-01-01

    Micrococcus radiodurans possesses an exonuclease firmly bound to a middle cell wall membrane layer. Aqueous OH/sup -/ radicals generated chemically or by ionizing radiation cause the immediate release of this enzyme into the surrounding medium. The enzyme is located in a hydrophobic site and can also be released by aqueous n-butanol. When extracted by this solvent it is a non-covalently linked dimer and has a molecular weight of 260,000 as determined by gel filtration. When released by radiation generated OH/sup -/ radicals, the enzyme initially appears in solution as the dimer but is rapidly split by further aqueous radical attack into two 130,000 molecular weight subunits. Hydroxyl radicals are most effective but reducing radicals are also able to monomerize the enzyme. Only the released dimer enzyme is subject to free radical monomerization. Bound dimer enzyme is not split prior to release. No detectable loss of activity or change in catalytic properties accompanies the free radical cleavage of the enzyme. Both subunits of the dimer enzyme possess a tightly bound metal ion (probably Ca/sup 2 +/) required for activity. The monomer but not the dimer enzyme will bind to an anion exchanger. The monomer is susceptible to loss of its metal ion, and consequent inactivation, when exposed to the exchanger in the absence of Ca/sup 2 +/. Besides providing information on some of the immediate non-lethal effects of ionizing radiation, the behavior of this enzyme system demonstrates a potential cellular mechanism by which internally or externally generated free radicals could be utilized by the cell to control various enzymic reactions.

  6. Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton.

    Science.gov (United States)

    Villegas-Guzman, Paola; Hofer, Florian; Silva-Agredo, Javier; Torres-Palma, Ricardo A

    2017-12-01

    Taking ciprofloxacin (CIP) as a fluoroquinolone antibiotic model, this work explores the role of common anions (sulfate, nitrate, and chloride) during the application of photoelectro-Fenton (PEF) at natural pH to degrade this type of compound in water. The system was composed of an IrO 2 anode, Ti, or gas diffusion electrode (GDE) as cathode, Fe 2+ , and UV (254 nm). To determine the implications of these anions, the degradation pathway and efficiency of the PEF sub-processes (UV photolysis, anodic oxidation, and electro-Fenton at natural pH) were studied in the individual presence of the anions. The results highlight that degradation routes and kinetics are strongly dependent on electrolytes. When chloride and nitrate ions were present, indirect electro-chemical oxidation was identified by electro-generated HOCl and nitrogenated oxidative species, respectively. Additionally, direct photolysis and direct oxidation at the anode surface were identified as degradation routes. As a consequence of the different pathways, six primary CIP by-products were identified. Therefore, a scheme was proposed representing the pathways involved in the degradation of CIP when submitted to PEF in water with chloride, nitrate, and sulfate ions, showing the complexity of this process. Promoted by individual and synergistic actions of this process, the PEF system leads to a complete elimination of CIP with total removal of antibiotic activity against Staphylococcus aureus and Escherichia coli, and significant mineralization. Finally, the role of the anions was tested in seawater containing CIP, in which the positive contributions of the anions were partially suppressed by its OH radical scavenger action. The findings are of interest for the understanding of the degradation of antibiotics via the PEF process in different matrices containing sulfate, nitrate, and chloride ions.

  7. Spin-trapping and ESR studies of the direct photolysis of aromatic amino acids, dipeptides, tripeptides and polypeptides in aqueous solutions-II. Tyrosine and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lion, Y; Kuwabara, M; Riesz, P [National Cancer Inst., Bethesda, MD (USA)

    1982-01-01

    The UV-photolysis of peptides containing tyrosine (Tyr) was investigated in aqueous solutions at room temperature at 220 and 265 nm. The short-lived free radicals formed during photolysis were spin-trapped by t-nitrosobutane and identified by electron spin resonance. For N-acetyl-and N-formyl-L-Tyr and for peptides containing L-Tyr as the middle residue, photolysis at 265 nm under neutral conditions produced mainly spin-adducts due to the scission between the alpha carbon and the methylene group attached to the aromatic ring, while at 220 nm decarboxylation radicals were spin-trapped. Photolysis of di- and tripeptides at 275 nm in alkaline solutions predominantly generated deamination radicals. The radicals produced in the photolysis of the oxidized A chain of insulin were tentatively characterized by comparison with the results for di- and tripeptides.

  8. The next generation fuel cells: anion exchange membrane fuel cells (AEMFC)

    International Nuclear Information System (INIS)

    Tauqir, A.; Zahoor, S.

    2013-01-01

    Many environmentally friendly alternatives (solar, wind, hydroelectric, and geothermal power) can only be used in particular environments. In contrast, fuel cells can have near-zero emissions, are quiet and efficient, and can work in any environment where the temperature is lower than the cell's operating temperature. Among various types of fuel cells, the AEMFC is the most recent one and has advantages such as excellent performance compared to other candidate fuel cells due to its active O/sub 2/ electrode kinetics and flexibility to use a wide range of electro-catalysts such as silver and nickels contrary to expensive one (Platinum) required for proton exchange membrane fuel cell (PEMFC). Anion exchange membrane (AEM) is a crucial part in AEMFC, determining durability and electrochemical performances of membrane electrode assembly (MEA). The role of an AEM is to conduct hydroxyl ions from cathode to anode. If this conduction is not sufficiently high and selective, the corresponding fuel cell will not find any practical application. One of the major problems associated with AEMFC is much lower conductivities of anion compare to proton conductivity in PEMFCs, even upon similar working condition. Thus AEMs is only practical, if it is chemically and mechanically stable against severe basic operation conditions and highly hydroxyl ions conductive. The conventional AEMs based on animated aliphatic and aromatic hydrocarbon or even fluorinated polymers tend to be attacked by hydroxyl ions, causing the degradation during operation is strongly basic conditions. (author)

  9. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang

    2018-03-13

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  10. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang; Fei, Zhuping; Lin, Yen-Hung; Martin, Jaime; Tuna, Floriana; Anthopoulos, Thomas D.; Heeney, Martin

    2018-01-01

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  11. THE POSSIBLE INTERSTELLAR ANION CH2CN–: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS

    International Nuclear Information System (INIS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Crawford, T. Daniel

    2013-01-01

    The A 1 B 1 ⇽ X-tilde 1 A' excitation into the dipole-bound state of the cyanomethyl anion (CH 2 CN – ) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X-tilde 1 A' CH 2 CN – in order to assist in laboratory studies and astronomical observations.

  12. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    Science.gov (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    The A\\ ^1B_1 \\leftarrow \\tilde{X}\\ ^1A^{\\prime } excitation into the dipole-bound state of the cyanomethyl anion (CH2CN-) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for \\tilde{X}\\ ^1A^{\\prime } CH2CN- in order to assist in laboratory studies and astronomical observations.

  13. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices

    International Nuclear Information System (INIS)

    Rawal, Avinash; Muddeshwar, Manohar; Biswas, Saibal

    2004-01-01

    The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO 2 )]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O2-), hydroxyl radicals (OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO - ) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of γ-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage

  14. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Science.gov (United States)

    Tarabanko, Valery E.; Tarabanko, Nikolay

    2017-01-01

    This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301

  15. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  16. Experimental study and kinetic modeling of the thermal degradation of aromatic volatile organic compounds (benzene, toluene and xylene-para) in methane flames; Etude experimentale et modelisation cinetique de la degradation thermique des composes organiques volatils aromatiques benzenes, toluene et para-xylene dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, L.

    2001-02-01

    This study treats of the thermal degradation of a family of aromatic volatile organic compounds (VOCs) in laminar premixed methane flames at low pressure. The experimental influence of benzene, toluene and xylene-para on the structure of a reference methane flame has been studied. The molar fraction profiles of the stable and reactive, aliphatic, aromatic and cyclic species have been established by the coupling of the molecular beam sampling/mass spectroscopy technique with the gas chromatography/mass spectroscopy technique. Temperature profiles have been measured using a covered thermocouple. A detailed kinetic mechanism of oxidation of these compounds in flame conditions has been developed. Different available sub-mechanisms have been used as references: the GDF-Kin 1.0 model for the oxidation of methane and the models of Tan and Franck (1996) and of Lindstedt and Maurice (1996) in the case of benzene and toluene. In the case of para-xylene, a model has been developed because no mechanisms was available in the literature. These different mechanisms have been refined, completed or adjusted by comparing the experimental results with those obtained by kinetic modeling. The complete kinetic mechanism, comprising 156 chemical species involved in 1072 reactions allows to reproduce all the experimental observations in a satisfactory manner. The kinetic analysis of reactions velocity has permitted to determine oxidation kinetic schemes for benzene, toluene, xylene-para and for the cyclopentadienyl radical, main species at the origin of the rupture of the aromatic cycle. Reactions of recombination with the methyl radicals formed during methane oxidation, of the different aromatic or aliphatic radicals created during the oxidation of aromatics, play an important role and lead to the formation of several aromatic pollutants (ethyl-benzene for instance) or aliphatic pollutants (butadiene or penta-diene for instance) in flames. (J.S.)

  17. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  18. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  19. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review

    International Nuclear Information System (INIS)

    Xue Weiling; Warshawsky, David

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic compounds (HACs) constitute a major class of chemical carcinogens present in the environment. These compounds require activation to electrophilic metabolites to exert their mutagenic or carcinogenic effects. There are three principal pathways currently proposed for metabolic activation of PAH and HAC: the pathway via bay region dihydrodiol epoxide by cytochrome P450 enzymes (CYPs), the pathway via radical cation by one-electron oxidation, and the ortho-quinone pathway by dihydrodiol dehydrogenase (DD). In addition to these major pathways, a brief description of a minor metabolic activation pathway, sulfonation, for PAHs that contain a primary benzylic alcoholic group or secondary hydroxyl group(s) is included in this review. The DNA damages caused through the reactive metabolites of PAH/HAC are described involving the DNA covalent binding to form stable or depurinating adducts, the formation of apurinic sites, and the oxidative damage. The review emphasizes the chemical/biochemical reactions involved in the metabolic processes and the chemical structures of metabolites and DNA adducts

  20. Novel Easy Preparations of Some Aromatic Iodine(I, III, and V Reagents, Widely Applied in Modern Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Lech Skulski

    2003-01-01

    Full Text Available We report our novel (or considerably improved methods for the synthesis of aromatic iodides, (dichloroiodoarenes, (diacetoxyiodoarenes, [bis(trifluoroacetoxy-iodo]arenes, iodylarenes and diaryliodonium salts, as well as some facile, oxidative anion metatheses in crude diaryliodonium or tetraalkylammonium halides and, for comparison, potassium halides. All our formerly published papers were discussed and explained in our review “Organic Iodine(I, III, and V Chemistry: 10 Years of Development at the Medical University of Warsaw, Poland” (1990-2000 [1]. Our newest results are discussed below.

  1. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Behnsen, Julia G.

    2007-01-01

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t 1/2 = 1,6 . 10 7 a), Tc-99 (t 1/2 = 2,1 . 10 5 a), and Se-79 (t 1/2 = 6,5 . 10 4 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO - 4 > I - > NO - 3 > Cl - > SO 2- 4 > SeO 2- 3 . This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  2. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and Their Ions. 7; Phenazine, a Dual Substituted Polycyclic Aromatic Nitrogen Heterocycle

    Science.gov (United States)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2004-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.

  3. Double-layer effects and distance dependence of electron transfer in reduction of nitro aromatic radical anions

    Czech Academy of Sciences Publication Activity Database

    Mořkovská, Petra; Hromadová, Magdaléna; Pospíšil, Lubomír; Giannarelli, S.

    2006-01-01

    Roč. 22, č. 4 (2006), s. 1896-1902 ISSN 0743-7463 R&D Projects: GA ČR GA203/03/0821; GA AV ČR IAA400400505; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : mercury-acetonitrile interface * aprotic-solvents * transfer kinetics Subject RIV: CG - Electrochemistry Impact factor: 3.902, year: 2006

  4. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  5. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  6. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    Science.gov (United States)

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Synthesis and Utilization of Trialkylammonium-Substituted Cyclodextrins as Water-Soluble Chiral NMR Solvating Agents for Anionic Compounds.

    Science.gov (United States)

    Dowey, Alison E; Puentes, Cira Mollings; Carey-Hatch, Mira; Sandridge, Keyana L; Krishna, Nikhil B; Wenzel, Thomas J

    2016-04-01

    Cationic trialkylammonium-substituted α-, β-, and γ-cyclodextrins containing trimethyl-, triethyl-, and tri-n-propylammonium substituent groups were synthesized and analyzed for utility as water-soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3-chloro-2-hydroxypropyl)trimethyl-, triethyl-, and tri-n-propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α-, β-, and γ-cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The (1) H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2-hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C-2 position was racemic. In several cases, the larger triethyl or tri-n-propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. © 2016 Wiley Periodicals, Inc.

  8. Theoretical studies of the structures and local aromaticity of conjugated polycyclic hydrocarbons using three aromatic indices

    Science.gov (United States)

    Sakai, Shogo; Kita, Yuki

    2013-07-01

    The structures and local aromaticity of some conjugated polycyclic hydrocarbons (from the butadienoid, acene, and phenylene series) are studied using ab initio MO and density functional methods. The aromaticities of the molecules are estimated using three indices: the nucleus-independent chemical shift (NICS), the harmonic oscillator model of aromaticity (HOMA), and the index of deviation from aromaticity (IDA). Assessment of the relationships between the structures and the aromatic indices shows that the IDA values correspond best to the characteristics of the conjugated polycyclic hydrocarbon structures.

  9. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture

    NARCIS (Netherlands)

    Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    Ionic liquids can replace conventional solvents in aromatic/aliphatic extractions, if they have higher aromatic distribution coefficients and higher or similar aromatic/aliphatic selectivities. Also physical properties, such as density and viscosity, must be taken into account if a solvent is

  10. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    Science.gov (United States)

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  13. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  14. Oxygen uptake during the γ-irradiation of fatty acids

    International Nuclear Information System (INIS)

    Metwally, M.M.K.; Moore, J.S.

    1987-01-01

    The radiation-induced oxidation of saturated and unsaturated fatty acids in aqueous solutions has been estimated by measurement of the continuous uptake of oxygen using an oxygen electrode. Chain reactions, initiated by HO radicals, are easily identified to be occurring in the case of unsaturated fatty acids. Other mild oxidation agents, namely (SCN)2 -anion radicals, Br 2 - anion radicals and N 3 -anion radicals, are also found to be capable of oxidizing the polyunsaturated fatty acids. Evidence is presented the O 2- anion radicals may also initiate peroxidation. The oxidation of the polyunsaturated fatty acids is dependent on dose rate, fatty acid concentration, temperature and the presence of antioxidant and other protective agents. Kinetic studies of the reaction of (SCN)2 - anion radicals and Br 2 - anion radicals with linoleic and linolenic acids have been carried out using pulse radiolysis. The bimolecular rate constants for both radical species with the lipids are approx 10 7 mol-? 1 dm 3 s -1 , below their critical micelle concentrations, and decrease at higher concentrations due to micelle formation. (author)

  15. Aromater i drikkevand

    DEFF Research Database (Denmark)

    Nyeland, B. A.; Hansen, A. B.

    DMU har den 10. Juni 1997 afholdt en præstationsprøvning: Aromater i drikkevand. Der deltog 21 laboratorier i præstationsprøvningen. Prøvningen omfattede 6 vandige prøver og 6 ampuller indeholdende 6 aromater. Laboratorierne spikede de tilsendte vandprøver med indholdet fra ampullerne...

  16. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  17. Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts.

    Science.gov (United States)

    Royer, Mariana; Diouf, Papa Niokhor; Stevanovic, Tatjana

    2011-09-01

    The crude ethanol and water extracts of different red maple (Acer rubrum L.) tissues: whole branches (WB), wood of branches (BW), bark of branches (BB), stem bark (SB) and whole twigs (T), were examined in order to determine their phenolic contents as well as their radical scavenging capacities. The total phenols (TP), total extractable tanins (TET) and non-precipitable phenols (NPP), were determined by combination of spectrophotometric and precipitation methods, while total flavonoids, hydroxy cinanmic acids and proanthocyanidins were determined spectrophotometrically. The radical scavenging activities of the extracts were determined against five reactive oxygen species (ROS): superoxide anion (O(2)(·-)), hydroxyl radical (HO(·)), peroxyl radical (ROO(·)), hypochlorite ion (ClO(-)), and hydrogen peroxide (H(2)O(2)) and one reactive nitrogen species (RNS): nitric oxide (NO). The extracts of stem bark were significantly more efficient (exhibiting the highest antioxidant efficiencies, AE) than the other studied extracts against all ROS (at p<0.05, Duncan statistical tests), except against NO. The correlation coefficients determined between total phenolic (TP) content and antiradical efficiencies were R(2)=0.12 for O(2)(·-); R(2)=0.29 for HO(·); R(2)=0.40 for H(2)O(2); R(2)=0.86 for ROO(·); R(2)=0.03 for NO(·) and R(2)=0.73 for ClO(-). Our results indicate potential utilisation of extracts as natural antioxidants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The nature of resonance in allyl ions and radical.

    Science.gov (United States)

    Linares, Mathieu; Humbel, Stéphane; Braïda, Benoît

    2008-12-18

    A recent valence bond scheme based on Lewis structures, the valence bond BOND (VBB) method (BOND: Breathing Orbitals Naturally Delocalized) method (Linares, M.; Braida, B.; Humbel, S. J. Phys. Chem. A 2006, 110, 2505-2509), is applied to explore the nature of resonance in allyl systems. Whereas allyl radical is correctly described by the resonance between the two traditional Lewis structures, a third "long-bonded" structure, which apparently creates a pi bond between the two distant carbon atoms, appears to plays an important role in allyl ions description. The similar vertical resonance energy (VRE) for both allyl ions is rather moderate (approximately 37 kcal/mol) in the two-structure description but is significantly enhanced when the long-bonded structure is included into the VBB wave function (by up to 20 kcal/mol). The allyl radical is much less resonant and is correctly described by the traditional two-structure picture. The development of VBB Lewis structures into "pure" valence bond determinants enlightens the role of the third structure in the description of allyl ions. The existence of a long bond between the two distant carbon atoms is clearly ruled out. Charge equilibration effect is shown to be a minor factor. The third structure is finally attributed to one- and three-electron bonding character revealed in the pi systems of the cation and anion, respectively. This makes these systems two surprising examples of odd electron bonding within a singlet state. Last, the two-structure description of allyl radical is improved by addition of missing ionic structures.

  19. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  20. On the Importance of Nonbonding Donor-Acceptor Interactions Involving PO2. Radicals: An ab Initio Study.

    Science.gov (United States)

    Bauzá, Antonio; Frontera, Antonio

    2017-08-18

    In this study, several σ-type and π-hole bonding complexes between PO 2 . radicals and electron-rich entities have been optimized at the RI-MP2/aug-cc-pVQZ level of theory. We have used Cl - , Br - , I - anions, and ethene, ethyne, HCN, HF, and H 2 O as Lewis bases. In addition, we have performed natural bond orbital (NBO) and Mulliken spin density analyses, highlighting the donor-acceptor nature of the interaction. Moreover, an interesting retro-donation from the single electron lone pair of the PO 2 . radical to the Lewis base also contributes to the stabilization of the complexes studied herein. Finally, the Bader's atoms-in-molecules (AIM) analysis of several complexes has been performed to further characterize the interactions discussed herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Direct synthesis of ligand-based radicals by the addition of bipyridine to chromium(II) compounds.

    Science.gov (United States)

    Zhou, Wen; Desnoyer, Addison N; Bailey, James A; Patrick, Brian O; Smith, Kevin M

    2013-03-04

    The reaction of 2,2'-bipyridine (bpy) with monomeric chromium(II) precursors was used to prepare the S = 1 complexes Cr(tBu-acac)2(bpy) (1) and (η(5)-Cp)(η(1)-Cp)Cr(bpy) (3), as well as the S = 2 compound Cr[N(SiMe3)2]2(bpy) (4). The crystallographically determined bond lengths indicate that the bpy ligands in 1 and 3 are best regarded as radical anions, while 4 shows no structural evidence for electron transfer from Cr(II) to the neutral bpy ligand.

  2. Product study of 1-adamantyl and 1-bicyclo[2.2.2]octyl radicals in hydrocarbon solvents. An unusually large hydrogen isotope effect

    International Nuclear Information System (INIS)

    Engel, P.S.; Chae, W.K.; Baughman, S.A.; Marschke, G.E.; Lewis, E.S.; Timberlake, J.W.; Luedtke, A.E.

    1983-01-01

    1-Adamantyl (ada.) and 1-bicyclo[2.2.2]octyl (bo.) radicals have been generated by photolysis of the corresponding azoalkanes in various hydrocarbon solvents. Both radicals abstract hydrogen readily from saturated hydrocarbons and they add to aromatic rings much faster than tert-butyl. does. Despite its reactivity, ada. is remarkably selective in hydrogen atom abstraction, preferring a benzylic hydrogen 25:1 over a cyclohexane hydrogen. The effect of solvent viscosity indicates that formation of the radical dimers biada and bibo occurs in the solvent cage. The most striking result of this work is a deuterium isotope effect of 25 for hydrogen transfer from cyclohexane to ada. at 65 0 C. Steric compression in the transition state is postulated to cause an unusually large tunnel correction and hence a large k/sub H//k/sub D/. 6 tables

  3. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  4. Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization.

    Science.gov (United States)

    Jia, Hanzhong; Zhao, Song; Nulaji, Gulimire; Tao, Kelin; Wang, Fu; Sharma, Virender K; Wang, Chuanyi

    2017-06-06

    This study presents the existence of environmentally persistent free radicals (EPFRs) in soils of past coking sites, mainly contaminated by polycyclic aromatic hydrocarbons (PAHs). Measurements of EPFRs were conducted by electron paramagnetic resonance (EPR) technique with numerous soil samples, which were collected from different distances (0-1000 m) and different depths (0-30 cm) of three contaminant sources. EPR signals with ∼3 × 10 17 radicals/g of the soil samples were obtained, which are very similar to that generated in PAHs contaminated clays, that is, g = 2.0028-2.0036. Concentrations of PAHs and soil components were determined to understand their role in producing EPFRs. PAHs, clay, and iron predominately contributed to generating EPRFs. Meanwhile, organic matter negatively influenced the production of EPRFs. The effects of environmental factors (moisture and oxic/anoxic) were also studied to probe the persistency of EPFRs under various simulated conditions. The EPFRs are stable under relatively dry and oxic conditions. Under anoxic conditions without O 2 and H 2 O, the spin densities decrease initially, followed by gradual increase before attaining constant values in two months period time. The present work implies that continuous formation of EPFRs induced by PAHs is largely responsible for the presence of relatively stable radicals in soils of coking sites.

  5. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Science.gov (United States)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  6. Theoretical study of X⁻ · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH₂ and AsH₂): noncovalently electron-withdrawing effects on anion-arene interactions.

    Science.gov (United States)

    Chen, Yishan; Yao, Lifeng

    2014-01-01

    The ternary complexes X(-) · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH2 and AsH2) have been investigated by MP2 calculations to understand the noncovalently electron-withdrawing effects on anion-arene interactions. The results indicate that in binary complexes (1 · X(-)), both weak σ-type and anion-π complexes can be formed for Cl(-) and Br(-), but only anion-π complex can be formed for I(-). Moreover, the hydrogen-bonding complex is the global minimum for all three halides in binary complexes. However, in ternary complexes, anion-π complex become unstable and only σ complex can retain in many cases for Cl(-) and Br(-). Anion-π complex keeps stable only when YF = HF. In contrast with binary complexes, σ complex become the global minimum for Cl(-) and Br(-) in ternary complexes. These changes in binding mode and strength are consistent with the results of covalently electron-withdrawing effects. However, in contrast with the covalently electron-withdrawing substituents, Cl(-) and Br(-) can attack the aromatic carbon atom to form a strong σ complex when the noncovalently electron-withdrawing effect is induced by halogen bonding. The binding behavior for I(-) is different from that for Cl(-) and Br(-) in two aspects. First, the anion-π complex for I(-) can also keep stable when the noncovalent interaction is halogen bonding. Second, the anion-π complex for I(-) is the global minimum when it can retain as a stable structure.

  7. Role of macrophages and oxygen radicals in IgA induced lung injury in the rat

    International Nuclear Information System (INIS)

    Johnson, K.J.; Ward, P.A.; Kunkel, R.G.; Wilson, B.S.

    1986-01-01

    Acute lung injury in the rat has been induced by the instillation of affinity-purified mouse monoclonal IgA antibody with specific reactivity to dinitrophenol (DNP) coupled to albumin. This model of lung injury requires an intact complement system but not neutrophils, and evidence suggests that pulmonary macrophages are the critical effector cell. Macrophages retrievable from the lungs of the IgA immune complex treated rats are considerably increased in number as compared to control animals which received only the antibody. In addition these cells show evidence of activation in vivo with greater spontaneous generation of the superoxide anion (O 2 - ) as well as significantly enhanced O 2 - response in the presence of a second stimulus. Inhibition studies in vivo suggest that the lung injury is mediated by oxygen radical generation by the pulmonary macrophages. Pretreatment of rats with superoxide dismutase (SOD), catalase, the iron chelator deferoxamine or the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) all markedly suppressed the development of the lung injury. In summary, these studies suggest that IgA immune complex injury in the rat lung is mediated by oxygen radical formation from pulmonary macrophages

  8. Free radical formation in single crystals of 9-methyladenine X-irradiated at 10 K. An electron paramagnetic resonance and electron nuclear double resonance study

    International Nuclear Information System (INIS)

    Hole, E.O.; Sagstuen, E.; Nelson, W.H.

    1995-01-01

    Single crystals of 9-methyladenine were X-irradiated at 10 K and at 65 K and were studied using K-band EPR, ENDOR and field-swept ENDOR (FSE) techniques in the temperature range 10 K to 290 K. Three major radicals are stabilized in 9-methyladenine at 10 K. These are: MA1, the adenine anion, probably protonated at N3; MA2, the species formed by net hydrogen abstraction from the 9-methyl group; and MA3, the radical formed by net hydrogen addition to C8 of the adenine moiety. Radical MA1 decayed at about 80 K, possibly into the C2 H adduct (MA4). The other two species (MA2, MA3) were stable at room temperature. A fifth radical species was clearly present in the EPR spectra at 10 K but was not detectable by ENDOR. This species, which decayed above 200 K (possibly into MA3), remains unidentified. The radical population at room temperature is as described by previous authors. The mechanisms for radical formation in 9-methyladenine are discussed in light of the hydrogen bonding scheme and molecular stacking interactions. 32 refs., 4 figs., 2 tabs

  9. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  10. Inhibition of platelet aggregation and in vitro free radical scavenging activity of dried fruiting bodies of Pleurotus eous.

    Science.gov (United States)

    Suseem, S R; Saral, Mary

    2015-07-01

    To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.

  11. Copolymer-grafted silica phase from a cation-anion monomer pair for enhanced separation in reversed-phase liquid chromatography.

    Science.gov (United States)

    Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka

    2014-05-01

    This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.

  12. Noncomparative scaling of aromaticity through electron itinerancy

    International Nuclear Information System (INIS)

    Paul, Satadal; Goswami, Tamal; Misra, Anirban

    2015-01-01

    Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of π-electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of π-electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized π-electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry

  13. Three-dimensional aromatic networks.

    Science.gov (United States)

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  14. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Irradiation effects on properties of reverse osmosis membrane based on cross-linked aromatic polyamide

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Yanagi, Tadashi; Uemura, Tadahiro.

    1994-01-01

    In order to develop a membrane suitable for reverse osmotic condensation of radioactive liquid wastes, a new cross-linked aromatic polyamide composite reverse osmosis membrane (ROM) was irradiated in water or in wet system, and its mechanical and some thermal properties, and the separation performance for inorganic salt were investigated. A membrane was degraded by irradiation more severely in wet system than in dry system, probably due to the reaction with OH-radicals. In the separation performance for NaCl, the salt rejection of the membrane was kept over 88% until irradiation reached 2MGy, maintaining about 90% of its original water flux. (author)

  16. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum

    Science.gov (United States)

    Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; Shirota, Hideaki

    2018-05-01

    In this study, we investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3-200 cm-1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf2]- salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr]+, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm]+, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr]+, 1-benzyl-3-methylimidazolium [BzMIm]+, and N-benzylpyridinium [BzPy]+ cations. The aim of this study is to better understand the effects of aromaticity in the cations' constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf2] is different from that of other ILs. While [CHxmMPyrr][NTf2] shows spectral changes with temperature in the low-frequency region below 50 cm-1, the other ILs also show spectral changes in the high-frequency region above 80 cm-1 (above 50 cm-1 in the case of [BzMPyrr][NTf2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.

  17. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    International Nuclear Information System (INIS)

    Bauschlicher, Charles W. Jr.; Ricca, Alessandra

    2013-01-01

    The loss of one hydrogen from C 96 H 24 does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare

  18. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    Science.gov (United States)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  19. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu; Aly, Shawkat Mohammede; Usman, Anwar; Parida, Manas R.; Del Gobbo, Silvano; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  20. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  1. Bonding Properties of a Novel Inorganometallic Complex, Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) (iPr-DAB = N,N'-Diisopropyl-1,4-diaza-1,3-butadiene), and its Stable Radical-Anion, Studied by UV-Vis, IR, and EPR Spectroscopy, (Spectro-) Electrochemistry, and Density Functional Calculations.

    Science.gov (United States)

    Aarnts, Maxim P.; Wilms, Maikel P.; Peelen, Karin; Fraanje, Jan; Goubitz, Kees; Hartl, Frantisek; Stufkens, Derk J.; Baerends, Evert Jan; Vlcek, Antonín

    1996-09-11

    Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) Å, b = 13.902(3) Å, c = 19.643(2) Å, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) Å(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.

  2. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-01-01

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange

  3. Evidences of extracellular abiotic degradation of hexadecane through free radical mechanism induced by the secreted phenazine compounds of P. aeruginosa NY3.

    Science.gov (United States)

    Nie, Hongyun; Nie, Maiqian; Wang, Lei; Diwu, Zhenjun; Xiao, Ting; Qiao, Qi; Wang, Yan; Jiang, Xin

    2018-03-02

    The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O 2 - ), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment. Copyright © 2018. Published by Elsevier Ltd.

  4. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  5. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.

    Science.gov (United States)

    Keith, John A; Carter, Emily A

    2012-09-11

    Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.

  6. Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies

    Directory of Open Access Journals (Sweden)

    A. Mouithys-Mickalad

    1997-01-01

    Full Text Available Sphingolipids inhibit the activation of the neutrophil (PMN NADPH oxidase by protein kinase C pathway. By electron spin resonance spectroscopy (ESR and chemiluminescence (CL, we studied the effects of sphingosine (SPN and ceramide analogues on phorbol 12-myristate 13-acetate (PMA, 5 × 10-7M stimulated PMN (6 × 106 cells. By ESR with spin trapping (100 mM DMPO: 5,5-dimethyl-1-pyrroline-Noxide, we showed that SPN (5 to 8 × 10-6M, C2-ceramide (N-acetyl SPN and C6-ceramide (N-hexanoyl SPN at the final concentration of 2 × 10-5 and 2 × 10-4M inhibit the production of free radicals by stimulated PMN. The ESR spectrum of stimulated PMN was that of DMPO-superoxide anion spin adduct. Inhibition by 5 × 10-6M SPN was equivalent to that of 30 U/ml SOD. SPN (5 to 8 × 10-6M has no effect on in vitro systems generating superoxide anion (xanthine 50 mM/xanthine oxidase 110 mU/ml or hydroxyl radical (Fenton reaction: 88 mM H2O2, 0.01 mM Fe2+ and 0.01 mM EDTA. SPN and N-acetyl SPN also inhibited the CL of PMA stimulated PMN in a dose dependent manner (from 2 × 10-6 to 10-5M, but N-hexanoyl SPN was less active (from 2 × 10-5 to 2 × 10-4M. These effects were compared with those of known PMN inhibitors, superoxide dismutase, catalase and azide. SPN was a better inhibitor compared with these agents. The complete inhibition by SPN of ESR signal and CL of stimulated PMN confirms that this compound or one of its metabolites act at the level of NADPH-oxidase, the key enzyme responsible for production of oxygen-derived free radicals.

  7. Peculiarities of the free radical processes in rat liver mitochondria under toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2016-04-01

    Full Text Available The rate of superoxide anion radical, hydroxyl radical and hydrogen peroxide generation, the level of oxidative modification of mitochondrial proteins in the liver of rats with toxic hepatitis was investigated on the background of alimentary protein deficiency. We did not find significant increases of the intensity of free radical processes in liver mitochondria of rats maintained on the protein-deficient ration. The most significant intensification of free radical processes in liver mitochondria is observed under the conditions of toxic hepatitis, induced on the background of alimentary protein deprivation. Under these conditions the aggravation of all studied forms of reactive oxygen species generation was observed in liver mitochondria. The generation rates were increased as follows: O2 – by 1.7 times, Н2О2 – by 1.5 times, •ОН – practically double on the background of accumulation of oxidized mitochondria-derived proteins. The established changes in thiol groups’ redox status of respiratory chain proteins insoluble in 0.05 M sodium-phosphate buffer (pH 11.5, and changes of their carbonyl derivatives content may be considered as one of the regulatory factors of mitochondrial energy-generating function.

  8. THE INFRARED SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS WITH FIVE- AND SEVEN-MEMBERED FUSED RING DEFECTS

    International Nuclear Information System (INIS)

    Ricca, Alessandra; Bauschlicher, Charles W. Jr; Allamandola, Louis J.

    2011-01-01

    Polycyclic aromatic hydrocarbon (PAH) growth and destruction are thought to proceed via the occasional incorporation of five- and seven-membered fused ring defects in the hexagonal carbon skeleton. Using density functional theory, this paper investigates the effect such five- and seven-membered fused ring defects have on the infrared spectra of ovalene, circumovalene, and circumcircumovalene. The defects make only small changes to the overall infrared (IR) spectra, both in the mid-IR and in the far-IR, of these species. In addition to small shifts in the positions of the bands between the PAHs with and without defects, the most common effect of the defects is to increase the number of bands. Except for an anion with the Stone-Wales defect, all of the species studied have the C-C stretching band at 6.3 μm or at longer wavelengths, the position in Classes B and C astronomical PAH spectra. In the case of the Stone-Wales anion, the band falls at 6.20 μm, suggesting that further study of defects is probably worthwhile, as some PAHs with defects might be important in those sources (Class A) that show a C-C stretching band that falls near 6.2 μm.

  9. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    Science.gov (United States)

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to

  10. Hydroxyl-radical-induced oxidation of cyclic dipeptides: Reactions of free peptide radicals and their peroxyl radicals

    International Nuclear Information System (INIS)

    Mieden, O.J.

    1989-01-01

    In the course of this study investigations were carried out into the reactions of hydroxyl radicals and hydrogen atoms with cyclic dipeptides as well as the subsequent reactions of peptide radicals and their peroxyl radicals in aqueous solution. The radiolysis products formed in the absence and presence of oxygen or transient metal complexes were characterized and determined on a quantitative basis. The linking of information from product analyses to the kinetic data for transient species obtained by time-resolving UV/VIS and conductivity measurements (pulse radiolysis) as well as computer-assisted simulations of individual events during the reaction permitted an evaluation of the mechanisms underlying the various processes and an identification of interim products with short life-times, which did or did not belong to the group of radicals. Through the characterization of key reactions of radicals and peroxyl radicals of this substance class a major advance has been made towards a better understanding of the role of radicals in the peptide compound and the mechanisms involved in indirect radiation effects on long-chain peptides and proteins. (orig.) [de

  11. Interactions of coffee and bread crust melanoidins with hydroxycinnamic and hydroxybenzoic acids in aqueous radical environment.

    Science.gov (United States)

    Çelik, Ecem Evrim; Rubio, Jose Manuel Amigo; Andersen, Mogens Larsen; Gökmen, Vural

    2018-06-01

    The interactions of coffee and bread crust melanoidins with hydroxycinnamic and hydroxybenzoic acids (HCA/HBA) containing different numbers of -OH and -OCH₃ groups localized at different positions on the aromatic ring were investigated. By doing so, mechanism of the interactions was intended to be explained with a structural approach. Experimental studies were carried out in DPPH radical medium. Chemometric methods were used for experimental design and multivariate data analysis. Area under the curve (AUC) values calculated from the plots of time versus inhibition (%) for coffee and bread crust melanoidins and HCA/HBA derivatives were ranged between 6532 ± 97-19,106 ± 85, 3997 ± 102-7565 ± 159 and - 1678 ± 81-22,486 ± 119, respectively. Synergistic interactions were revealed for both coffee and bread crust melanoidins and HCA/HBA derivatives. The significance of the concentrations of coffee and bread crust melanoidins on radical scavenging activity was clearly centered from the scores plots obtained via Principal component analysis (PCA). Phases of radical scavenging reactions were also revealed from the loadings plots. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A radical approach to radical innovation

    NARCIS (Netherlands)

    D. Deichmann (Dirk); J.C.M. van den Ende (Jan)

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  13. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system size.

    Science.gov (United States)

    Veljković, Dušan Ž

    2018-03-01

    Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions

    Science.gov (United States)

    Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik

    1997-12-01

    Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.

  15. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum.

    Science.gov (United States)

    Ahmad, Sohail; AbdEl-Salam, Naser M; Ullah, Riaz

    2016-01-01

    The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm). Plant extracts displayed noteworthy radical scavenging activities at all concentrations (25-225 μg/mL). Notable activities were recorded by crude, chloroform and ethyl acetate extracts up to 88.27% at 225 μg/mL concentration. Compounds functional groups were examined by Fourier transform infrared spectroscopic studies. Alkanes, alkenes, alkyl halides, amines, carboxylic acids, amides, esters, alcohols, phenols, nitrocompounds, and aromatic compounds were identified by FTIR analysis. Thin layer chromatography bioautography was carried out for all plant extracts. Different bands were separated by various solvent systems. The results of the current study justify the use of Heliotropium bacciferum in traditional remedial herbal medicines.

  16. Radicalization In Pakistan And The Spread Of Radical Islam In Pakistan

    Directory of Open Access Journals (Sweden)

    Bahir ahmad

    2015-08-01

    Full Text Available ABSTRACT It is pertinent to mention that radicalism is not intrinsic to Islam and radical interpretations of the religion or for that matter may occur within any way of life and religion Saikal 2003 and yet the question remains as to why Muslims in certain geographical regions have more radical approaches towards their religion and also that what are the causes of such radicalization. Becoming a radical Muslim is not even a matter of a day nor is it a sudden process. There are several reasons behind making a person radical peaceful angry smiling or tolerant. For knowing the reason behind radicalization or radicals persons one has to understand the causes. Tracing these causes is one of the ways to eliminate such behavior. The first step in the elimination of the radical sentiments in a person is to develop peace in his personality Fair Malhotra amp Shapiro 2010. The chapter which has been addressed here is going to shed light on the roots and symptoms of the radicalism. There will be a brief discussion on how the roots of radicalism can be traced and can be eliminated. The assessment and discussion will be conducted on the parameters of the economy media politics and theology from social cultural point of view. According to the analysis of Ahrari 2000 political factor is one of the major and direct factors which have resulted in causing of the radicalism. These factors however intertwine with one another. Radical actions cannot take place only because of the political factors.

  17. Metal-Oxide Film Conversions Involving Large Anions

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C. [The University of Western Ontario, Chemistry Department, 1151 Richmond St., N6A 5B7, London, Ontario (Canada)

    2008-07-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I{sup -}, Br{sup -}, S{sup 2-}). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag{sub 2}O to (1) AgI and (2) AgBr. (authors)

  18. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C.

    2008-01-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I - , Br - , S 2- ). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag 2 O to (1) AgI and (2) AgBr. (authors)

  19. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  20. Solution and gas phase evidence of anion binding through the secondary bonding interactions of a bidentate bis-antimony(iii) anion receptor.

    Science.gov (United States)

    Qiu, J; Song, B; Li, X; Cozzolino, A F

    2017-12-20

    The solution and gas phase halide binding to a bis-antimony(iii) anion receptor was studied. This new class of anion receptors utilizes the strong Sb-centered secondary bonding interactions (SBIs) that are formed opposite to the polar Sb-O primary bond. 1 H NMR titration data were fitted statistically to binding models and solution-phase binding energetics were extracted, while the formation of anion-to-receptor complexes was observed using ESI-MS. Density functional theory calculations suggest that their affinity towards binding halide anions is mitigated by the strong explicit solvation effect in DMSO, which gives insights into future designs that circumvent direct solvent binding and are anticipated to yield tighter and perhaps more selectivity in anion binding.

  1. Photoinduced electron transfer involving eosin-tryptophan conjugates. Long-lived radical pair states for systems incorporating aromatic amino acid side chains

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. II; Farahat, C.W.; Oh, C. (Boston Univ., MA (United States))

    1994-07-14

    The electron-transfer photochemistry of the covalent derivatives of the dye eosin, in which the xanthene dye is covalently attached to the amino acid L-tryptophan via the thiohydantoin derivative, the tryptophan dipeptide, and an ethyl ester derivative, has been investigated. The singlet excited state of the dye is significantly quenched on attachment of the aromatic amino acid residue. Dye triplet states are also intercepted through intramolecular interaction of excited dye and amino acid pendants. Flash photolysis experiments verify that this interaction involves electron transfer from the indole side chains of tryptophan. Rate constants for electron transfer are discussed in terms of the distance relationships for the eosin chromophore and aromatic redox sites on peptide derivatives, the pathway for [sigma]-[pi] through-bond interaction between redox sites, and the multiplicity and state of protonation for electron-transfer intermediates. Selected electron-transfer photoreactions were studied under conditions of binding of the peptide derivatives in a high molecular weight, water-soluble, globular polymer, poly(vinyl-2-pyrrolidinone). 28 refs., 4 figs., 1 tab.

  2. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  3. The chemistry of molecular anions in circumstellar sources

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino [LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon (France); Cernicharo, José [Departamento de Astrofísica, CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, 28850 Madrid (Spain); Guélin, Michel [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d' Héres (France)

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  4. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

    Science.gov (United States)

    Kaur, Balwinder; Erdmann, Cristiane Andreia; Daniëls, Mathias; Dehaen, Wim; Rafiński, Zbigniew; Radecka, Hanna; Radecki, Jerzy

    2017-12-05

    In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl - , SO 4 2- , and Br - ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl - . The selectivity sequence found for both systems was Cl - > SO 4 2- > Br - . The high selectivity of Cl - anions can be attributed to the higher binding constant of Cl - with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl - was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl - anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl - anions was demonstrated using the artificial matrix mimicking human serum.

  5. Pulse radiolysis study on several fluoroquinolones

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Peng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Yao Side [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li Haixia; Song Xiyu; Liu Yancheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Wang Wenfeng, E-mail: wangwenfeng@sinap.ac.c [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2011-04-15

    Reactions of several fluoroquinolones (FQs), including enoxacin, norfloxacin, and ciprofloxacin, with various reactive species such as e{sub aq}{sup -}, N{sup {center_dot}}{sub 3}, and {sup {center_dot}O}H are investigated by pulse radiolysis techniques. The FQ radical anions formed in the reactions of FQs with e{sub aq}{sup -} could either be protonated or deprotonated, and the absorption of FQ radical anions was located around 370 nm. The absorption of the neutral radicals produced in the protonation, and the radical dianions produced in the deprotonation of FQ radical anions were located in the 500-750 nm region. The FQ radical cations formed in the reactions of FQs with N{sub 3}{sup {center_dot}} showed an absorption band around 360 nm. Due to the strong bleaching below 350 nm, the absorption maxima ({lambda}{sub max}) of FQ radical anions, and the {lambda}{sub max} of FQ radical cations were not confirmed. The absorption of the FQ radical anions and cations was clearly pH dependent. Under neutral conditions, the reaction rate constants of FQs with e{sub aq}{sup -} and {sup {center_dot}O}H, which are diffusion controlled, were determined.

  6. One-pot synthesis of 4′-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling

    Directory of Open Access Journals (Sweden)

    Roman Yu. Peshkov

    2016-07-01

    Full Text Available A convenient one-pot approach to alkylcyanobiaryls is described. The method is based on biaryl cross-coupling between the sodium salt of the terephthalonitrile dianion and a neutral aromatic nitrile in liquid ammonia, and successive alkylation of the long-lived anionic intermediate with alkyl bromides. The reaction is compatible with benzonitriles that contain methyl, methoxy and phenyl groups, fluorine atoms, and a 1-cyanonaphthalene residue. The variety of ω-substituted alkyl bromides, including an extra bromine atom, a double bond, cyano and ester groups, as well as a 1,3-dioxane fragment are suitable as alkylation reagents.

  7. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames

    KAUST Repository

    Moshammer, Kai

    2016-10-17

    This paper is concerned with the formation of one- and two-ring aromatic species in near atmospheric-pressure opposed-flow diffusion flames of 1,3-butadiene (1,3-CH). The chemical structures of two different 1,3-CH/Ar-O/Ar flames were explored using flame-sampling molecular-beam mass spectrometry with both electron and single-photon ionization. We provide mole fraction profiles of 47 components as function of distance from the fuel outlet and compare them to chemically detailed modeling results. To this end, the hierarchically developed model described by Seidel et al. [16] has been updated to accurately comprise the chemistry of 1,3-butadiene. Generally a very good agreement is observed between the experimental and modeling data, allowing for a meaningful reaction path analysis. With regard to the formation of aromatic species up to naphthalene, it was essential to improve the fulvene and the C chemistry description in the mechanism. In particular, benzene is found to be formed mainly via fulvene through the reactions of the CH isomers with CH The n-CH radical reacts with CH forming 1,3-pentadiene (CH), which is subsequently oxidized to form the naphthalene precursor cyclopentadienyl (CH). Oxidation of naphthalene is predicted to be a contributor to the formation of phenylacetylene (CH), indicating that consumption reactions can be of similar importance as molecular growth reactions.

  8. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames

    KAUST Repository

    Moshammer, Kai; Seidel, Lars; Wang, Yu; Selim, Hatem; Sarathy, Mani; Mauss, Fabian; Hansen, Nils

    2016-01-01

    This paper is concerned with the formation of one- and two-ring aromatic species in near atmospheric-pressure opposed-flow diffusion flames of 1,3-butadiene (1,3-CH). The chemical structures of two different 1,3-CH/Ar-O/Ar flames were explored using flame-sampling molecular-beam mass spectrometry with both electron and single-photon ionization. We provide mole fraction profiles of 47 components as function of distance from the fuel outlet and compare them to chemically detailed modeling results. To this end, the hierarchically developed model described by Seidel et al. [16] has been updated to accurately comprise the chemistry of 1,3-butadiene. Generally a very good agreement is observed between the experimental and modeling data, allowing for a meaningful reaction path analysis. With regard to the formation of aromatic species up to naphthalene, it was essential to improve the fulvene and the C chemistry description in the mechanism. In particular, benzene is found to be formed mainly via fulvene through the reactions of the CH isomers with CH The n-CH radical reacts with CH forming 1,3-pentadiene (CH), which is subsequently oxidized to form the naphthalene precursor cyclopentadienyl (CH). Oxidation of naphthalene is predicted to be a contributor to the formation of phenylacetylene (CH), indicating that consumption reactions can be of similar importance as molecular growth reactions.

  9. Pulse shape discrimination in non-aromatic plastics

    Energy Technology Data Exchange (ETDEWEB)

    Paul Martinez, H.; Pawelczak, Iwona; Glenn, Andrew M.; Leslie Carman, M.; Zaitseva, Natalia; Payne, Stephen

    2015-01-21

    Recently it has been demonstrated that plastic scintillators have the ability to distinguish neutrons from gamma rays by way of pulse shape discrimination (PSD). This discovery has lead to new materials and new capabilities. Here we report our work with the effects of aromatic, non-aromatic, and mixed aromatic/non-aromatic matrices have on the performance of PSD plastic scintillators.

  10. The roles of anion and solvent transport during the redox switching process at a poly(butyl viologen) film studied by an EQCM

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Yu.; Liao, Chun-Hao [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Ho, Kuo-Chuan [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617 (China)

    2008-02-15

    In this study, three electrolytes (KCl, LiCl, and KNO{sub 3}, each at 0.5 M in aqueous solution) were chosen to study the ion and solvent effect on the redox performance of poly(butyl viologen) (PBV) thin-films between its di-cation and radical-cation state, which is referred as its first redox couple. Before considering the role of ionic transport on the redox process, the exchange between ferrocyanide and anion should be completed. Since the deposition solution of PBV contains potassium ferrocyanide, the residual ferrocyanides inside the films would be exchanged by smaller anions from the bulk solution during the redox reaction of PBV. From cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) results, the exchange was almost complete around 50 cycles when scanning the potential within its first redox range. After completion of the exchange process, the transfer would reach a steady state. At 50 cycles, the EQCM results suggested that the transport involves anions and water only for both being extracted upon reduction and being inserted upon oxidation. Therefore, we could obtain the molar fluxes of Cl{sup -}, NO{sub 3}{sup -}, and water. Besides, the average numbers of accompanying water were calculated to be about 24.8 per Cl{sup -} and 14.2 per NO{sub 3}{sup -} upon redox switching process. The instantaneous water to anion molar ratios at any potential were also obtained for Cl{sup -} and NO{sub 3}{sup -}. (author)

  11. γ-Ray radiolysis and theoretical study on radical ions of star-shaped oligofluorenes having a truxene or isotruxene as a core

    International Nuclear Information System (INIS)

    Fujitsuka, Mamoru; Tojo, Sachiko; Yang, Jye-Shane; Majima, Tetsuro

    2013-01-01

    Highlights: ► Radiolysis provides absorption spectra of radical ions of star-shaped oligofluorenes. ► Absorption spectroscopic properties depend on oligomer size extensively. ► TDDFT provides reasonable assignments to the visible and near-IR absorption bands. ► Extensive charge delocalization was indicated by planarization of oligomers. - Abstract: Poly- and oligofluorenes have been intensively studied for years, because of their excellent properties as photo- and electro-functional materials. Especially, star-shaped oligofluorenes as two-dimensional oligomers are interesting materials for wide researchers. To understand their electronic properties in charged states, absorption spectra of radical cation and radical anion of star-shaped oligomers with varied size were investigated by means of γ-ray radiolysis. The absorption spectra of their radical ions ranged from the visible to near-IR regions were successfully obtained. By using the theoretical calculation, the observed peaks were assigned. It is indicated that the transition between HOMO and LUMO of the original neutral state plays a significant role in the visible region. Furthermore, it is indicated that the star-shaped oligofluorenes tend to take a planar structure upon oxidation and reduction

  12. Neutral anion receptors: design and application

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1998-01-01

    After the development of synthetic cation receptors in the late 1960s, only in the past decade has work started on the development of synthetic neutral anion receptors. Combination and preorganization of different anion binding groups, like amides, urea moieties, or Lewis acidic metal centers lead

  13. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matasovic, Brunislav [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia); Bonifacic, Marija, E-mail: bonifacic@irb.h [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia)

    2011-06-15

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals {sup {center_dot}C}O{sub 2}{sup -}, {sup {center_dot}C}H{sub 2}OH, {sup {center_dot}C}H(CH{sub 3})OH, and {sup {center_dot}C}H(CH{sub 3})O{sup -} have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production {sup 60}Co {gamma}-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U{sup {center_dot}} radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U{sup {center_dot}} radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of {alpha}-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism (). Thus, while both {sup {center_dot}C}H{sub 2}OH and {sup {center_dot}C}H(CH{sub 3})OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm{sup -3} concentrations, pH 7, brought about chain debromination to occur in the case of {sup {center_dot}C}H(CH{sub 3})OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of {alpha}-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U{sup {center_dot}} radicals have been estimated to amount to about {>=}85 and 1200 dm{sup 3} mol{sup -1} s{sup -1

  14. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    Science.gov (United States)

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  15. Radical Rearrangement Chemistry in Ultraviolet Photodissociation of Iodotyrosine Systems: Insights from Metastable Dissociation, Infrared Ion Spectroscopy, and Reaction Pathway Calculations.

    Science.gov (United States)

    Ranka, Karnamohit; Zhao, Ning; Yu, Long; Stanton, John F; Polfer, Nicolas C

    2018-05-29

    We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these. Graphical Abstract.

  16. New anion-exchange polymers for improved separations

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-01-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials

  17. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    Science.gov (United States)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  18. A computational study of anion-modulated cation-π interactions.

    Science.gov (United States)

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  19. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  20. Final Programme and Abstracts. COST Action CM0603 Free Radicals in Chemical Biology (CHEMBIORADICAL) Joint Working Group

    International Nuclear Information System (INIS)

    2008-01-01

    The main objective of the Action is to promote a chemical biology approach for the investigation of free radical pathways. Chemical reactivity and molecular libraries are the start of a multidisciplinary research context 'from small molecules to large systems', culminating in the biological complexity. The Action aims at improving communication and exchange among neighbouring scientific fields, such as chemistry with several domains of life sciences, specifically addressing the real barrier consisting of specialist language and tools. Four working groups address the formation, reactivity and fate of free radicals involving bio-molecules, such as unsaturated lipids, aromatic-, cyclic- and sulphur-containing amino acid residues, sugar and base moieties of nucleic acids. Tasks concern the role of free radicals in normal cell metabolism and in damages, defining structural and functional modifications, in the framework of physiologically and pathologically related processes relevant to human quality of life and health. In the programme are involved 19 universities and research institutions from nearly all European countries. The research programme of the group has been carried and is still continued based on close bilateral collaboration with many foreign laboratories from Europe, USA (Notre Dame Radiation Laboratory) and Chile

  1. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    International Nuclear Information System (INIS)

    Rajagopal, Appavu; Deepa, Mohan; Govindaraju, Munisamy

    2016-01-01

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”

  2. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Appavu; Deepa, Mohan [Molecular Biophysics Unit, Indian Institute of Sciences-Bangalore, Karnataka (India); Govindaraju, Munisamy [Bio-Spatial Technology Research Unit, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India)

    2016-02-26

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  3. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  4. Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction

    International Nuclear Information System (INIS)

    Chen, S.Y.; Huang, S.W.; Chiang, P.N.; Liu, J.C.; Kuan, W.H.; Huang, J.H.; Hung, J.T.; Tzou, Y.M.; Chen, C.C.; Wang, M.K.

    2011-01-01

    Highlights: ► Low molecular weights (M w ) of HA bear more polar and aromatic C in its structure. ► The polar sites of HA dominate the photo-reduction of Cr(VI). ► Low M w of HA exhibits greater photochemical efficiency for Cr(VI) reduction. ► Cr(VI) adsorption on HA is indiscernible, particularly on the small M w of HA. ► Upon Cr(VI) reduction by HA, most of Cr(III) are released into the solution. - Abstract: Humic acids (HA) strongly affect the fate of trace metals in soils and aquatic environments. One of the remarkable properties of HA is its ability to reduce Cr(VI), an extremely toxic anion. However, it is unclear which HA components are involved in Cr(VI) reduction and possess the photo-induced properties. In this study, an ultrafiltration technique was used to fractionate HAs into four fractions of different nominal molecular weights (M w ): >100, 50–100, 10–50 and w HA was enriched with polar and aromatic domains. These polar, including polar C in aliphatic region, and aromatic groups were the major sites for Cr(VI) reduction because they disappeared rapidly upon interaction with Cr(VI). As a result, low M w of HA exhibited greater efficiency of Cr(VI) reduction. Light induced the rapid transfer of electrons between chromate-phenol/carboxyl ester, or the formation of peroxide radicals or H 2 O 2 through the ready decay of peroxy radicals associated with polar substituents, explained the rapid scavenging of Cr(VI) on polar and aromatic groups of HAs under illumination.

  5. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  6. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  7. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  8. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advances towards aromatic oligoamide foldamers

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Plesner, Malene; Dissing, Mette Marie

    2014-01-01

    We have efficiently synthesized 36 arylopeptoid dimers with ortho-, meta-, and para-substituted aromatic backbones and tert-butyl or phenyl side chains. The dimers were synthesized by using a "submonomer method" on solid phase, by applying a simplified common set of reaction conditions. X......-ray crystallographic analysis of two of these dimers disclosed that the tert-butyl side chain invokes a cis amide conformation with a comparatively more closely packed structure of the surrounding aromatic backbone while the phenyl side chain results in a trans amide conformation with a more open, extended structure...... of the surrounding aromatic backbone. Investigation of the X-ray structures of two arylopeptoid dimers disclosed that the tert-butyl side chain invokes a cis amide conformation with a closely packed structure of the surrounding aromatic backbone while the phenyl side chain results in a trans amide conformation...

  10. Anion Gap Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... https://medlineplus.gov/labtests/aniongapbloodtest.html Anion Gap Blood Test To use the sharing features on this page, please enable JavaScript. What is an Anion Gap Blood Test? An anion gap blood test is a way ...

  11. Salts of Dodecamethylcarba-closo-dodecaborate(-) Anion, CB11Me12-, and the Radical Dodecamethylcarba-closo-dodecaboranyl, CB11Me12

    Czech Academy of Sciences Publication Activity Database

    Clayton, J. R.; King, B. T.; Zharov, I.; Fete, M. G.; Volkis, V.; Douvris, C.; Valášek, Michal; Michl, Josef

    2010-01-01

    Roč. 35, - (2010), s. 56-63 ISSN 0073-8077 Grant - others:NSF(US) CHE0446688; NSF(US) CHE0848477 Institutional research plan: CEZ:AV0Z40550506 Keywords : boron clusters * methylation * stable free radical Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources

    Science.gov (United States)

    Waring, Michael S.; Wells, J. Raymond

    2015-04-01

    Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.

  13. Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates

    Directory of Open Access Journals (Sweden)

    Martin Krátký

    2016-02-01

    Full Text Available Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thiocarbamates were investigated using Ellman’s method for their ability to inhibit acetylcholinesterase (AChE and butyrylcholinesterase (BChE. O-Aromatic (thiocarbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thiocarbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenylcarbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM, while 2-(phenylcarbamoylphenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM. Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.

  14. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  15. Electron affinities, molecular structures, and thermochemistry of the fluorine, chlorine and bromine substituted methyl radicals

    Science.gov (United States)

    Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III

    Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron

  16. The gecko visual pigment: the anion hypsochromic effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1991-01-01

    The 521-pigment in the retina of the Tokay gecko (Gekko gekko) readily responds to particular physical and chemical changes in its environment. When solubilized in chloride deficient state the addition of Class I anions (Cl-, Br-) induces a bathochromic shift of the absorption spectrum. Class II anions (NO3-, IO3-, N3-, OCN-, SCN-, SeCN-, N(CN)2-), which exhibit ambidental properties, cause an hypsochromic shift. Class III anions (F-, I-, NO2-, CN-, AsO3-, SO2(4-), S2O2(3-) have no spectral effect on the 521-pigment. Cations appear to have no influence on the pigment absorption and Class I anions prevent or reverse the hypsochromic shift caused by Class II anions. It is suggested that the spectral displacements reflect specific changes in the opsin conformation, which alter the immediate (dipolar) environment of the retinal chromophore. The protein conformation seems to promote excited-state processes most in the native 521-pigment state and least in the presence of Class II anions. This in turn suggests that the photosensitivity of the 521-pigment is controlled by the excited rather than by the ground-state properties of the pigment.

  17. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  18. Dehydroabiethylamine acetate as metal-containing anion precipitant

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Borisov, V.A.

    1979-01-01

    The precipitation is studied of vanadate, tungstate-, molybdate- and chromate-ions by dehydroabiethylamine acetate. The degree of precipitation of metal-bearing anions is a function of the anion and of pH of the treated solutions. There exists a predetermined value of pH for each anion, at which the content of metal-bearing anion in the ultra-filtrate is at a minimum. For vanadate-ions, this pH is 5.0; for tungstate-ions, 3.0; for molybdate-ions, 4.0; for chrommate-ions, 8.0. The heats of solution of methavanadate, paratungstate, paramolybdate and dehydroabiethylamine chromate, calculated in accordance with the Vant-Hoff equation, range between 3.5 and 8.3 kJ/mole; free energy varies between 45.8 and 137.5 kJ/mole; and entropy varies between 110 and 371 J/degree mole

  19. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  20. Complexes with charge transfer and ion-radical salts in catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, O V [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1978-01-01

    Considered are the data experimentally proving formation of complexes with charge transfer as intermediate complexes in homogeneous and heterogeneous catalysis. Catalytic activity correlations with charge transfer energy (and in heterogeneous catalysis with width of semiconductor forbidden band can be useful while selection of catalysts (MoO/sub 3//MgO; V/sub 2/O/sub 5//MgO; MoO/sub 3//Al/sub 2/O/sub 3/; V/sub 2/O/sub 5//Al/sub 2/O/sub 3/). A review of papers on catalytic activity of the previously prepared complexes with charge transfer and ion-radical salts is given. The use of alkali metal complexes with aromatic compounds showed their high activity in hydrogenation reactions and proved principle possibility of activation of hydrogen and hydrocarbons by the systems which do not contain transfer metals.

  1. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  2. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  3. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  4. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  5. THE POSSIBLE INTERSTELLAR ANION CH{sub 2}CN{sup -}: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fortenberry, Ryan C.; Lee, Timothy J. [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Crawford, T. Daniel, E-mail: Ryan.C.Fortenberry@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov [Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 (United States)

    2013-01-10

    The A {sup 1}B{sub 1} Leftwards-Open-Headed-Arrow X-tilde{sup 1}A' excitation into the dipole-bound state of the cyanomethyl anion (CH{sub 2}CN{sup -}) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X-tilde{sup 1} A' CH{sub 2}CN{sup -} in order to assist in laboratory studies and astronomical observations.

  6. Guest Editorial: Processes of Radicalization and De-Radicalization

    Directory of Open Access Journals (Sweden)

    Donatella Della Porta

    2012-05-01

    Full Text Available The study of radicalization and de-radicalization, understood as processes leading towards the increased or decreased use of political violence, is central to the question of how political violence emerges, how it can be prevented, and how it can be contained. The focus section of this issue of the International Journal of Conflict and Violence addresses radicalization and de-radicalization, seeking to develop a more comprehensive understanding of the processes, dynamics, and mechanisms involved and taking an interdisciplinary approach to overcome the fragmentation into separate disciplines and focus areas. Contributions by Pénélope Larzillière, Felix Heiduk, Bill Kissane, Hank Johnston, Christian Davenport and Cyanne Loyle, Veronique Dudouet, and Lasse Lindekilde address repressive settings, legitimacy, institutional aspects, organizational outcomes, and dynamics in Europe, Asia, Africa, and North and South America.

  7. Converting lignin to aromatics: step by step

    NARCIS (Netherlands)

    Strassberger, Z.I.

    2014-01-01

    Lignin, the glue that holds trees together, is the most abundant natural resource of aromatics. In that respect, it is a far more advanced resource than crude oil. This is because lignin already contains the aromatic functional groups. Thus, catalytic conversion of lignin to high-value aromatics is

  8. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    International Nuclear Information System (INIS)

    Cha, I.; Hashimoto, K.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N.

    2014-01-01

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion

  9. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Cha, I. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Hashimoto, K. [Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Fujiki, K. [Department of Environmental Science, Niigata Institute of Technology, 1719, Fujihashi, Kashiwazaki, Niigata 945-1195 (Japan); Yamauchi, T. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Tsubokawa, N., E-mail: ntsuboka@eng.niigata-u.ac.jp [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan)

    2014-02-14

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion.

  10. EPR and Fluorescence Spectroscopy in the Photodegradation Study of Arabian and Colombian Crude Oils

    Directory of Open Access Journals (Sweden)

    Carmen L. B. Guedes

    2006-01-01

    W/m2. The reduction in the linewidth of the free radical of 9.8% in Arabian oil and 18.5% in Colombian oil, as well as the decrease in radical numbers, indicated photochemical degradation, especially in Colombian oil. The linewidth narrowing corresponding to free radicals in the irradiated oils occurred due to the rearrangement among radicals and aromatic carbon consumption. The irradiated oils showed a reduction in the relative intensity of fluorescence of the aromatics with high molecular mass, polar aromatics, and asphaltene. The fluorescent fraction was reduced by 61% in Arabian oil and 72% in Colombian oil, corresponding to photochemical degradation of crude oil aromatic compounds.

  11. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, M; Satoh, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kamigaito, M, E-mail: kamigait@apchem.nagoya-u.ac.j

    2009-08-01

    The metal-catalyzed radical addition reaction can be evolved into two different polymerization mechanisms, i.e.; chain- and step-growth polymerizations, while both the polymerizations are based on the same metal-catalyzed radical formation reaction. The former is a widely employed metal-catalyzed living radical polymerization or atom transfer radical polymerization of common vinyl monomers, and the latter is a novel metal-catalyzed radical polyaddition of designed monomer with an unconjugated C=C double bond and a reactive C-Cl bond in one molecule. The simultaneous ruthenium-catalyzed living radical polymerization of methyl acrylate and radical polyaddition of 3-butenyl 2-chloropropionate was achieved with Ru(Cp*)Cl(PPh{sub 3}){sub 2} to afford the controlled polymers, in which the homopolymer segments with the controlled chain length were connected by the ester linkage.

  12. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    Science.gov (United States)

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  13. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  14. Oxidative capacity of the Mexico City atmosphere – Part 1: A radical source perspective

    Directory of Open Access Journals (Sweden)

    R. Volkamer

    2010-07-01

    Full Text Available A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA. During spring of 2003 (MCMA-2003 field campaign an extensive set of measurements was collected to quantify time-resolved ROx (sum of OH, HO2, RO2 radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1 was constrained by measurements of (1 concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO, formaldehyde (HCHO, ozone (O3, glyoxal (CHOCHO, and other oxygenated volatile organic compounds (OVOCs; (2 respective photolysis-frequencies (J-values; (3 concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated and oxidants, i.e., OH- and NO3 radicals, O3; and (4 NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; the MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals.

    Daytime radical production is found to be about 10–25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 photolysis each about 20%; O3/alkene reactions and HONO photolysis each about 12%, other sources <3%. Nitryl chloride photolysis could potentially contribute ~15% additional radicals, while NO2* + water makes – if any – a very small contribution (~2%. The peak radical production of ~7.5 107 molec cm−3 s−1 is

  15. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, {beta}''-(DODHT){sub 2}TaF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, H; Oshio, H; Yasuzuka, S [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Higa, M; Kondo, R; Kagoshima, S [Department of Basic Science, University of Tokyo, Tokyo 153-8902 (Japan); Nakao, A; Sawa, H [Photon Factory, Institute of Material Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Murata, K [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan)], E-mail: nishikaw@chem.tsukuba.ac.jp

    2008-10-15

    Physical properties of isostructural {beta}''-(DODHT){sub 2}X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF{sub 6}, AsF{sub 6}, and SbF{sub 6}] at ambient pressure have been compared. The insulating phase of {beta}''-(DODHT){sub 2}PF{sub 6} salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of {beta}''-(DODHT){sub 2}SbF{sub 6} salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF{sub 6} salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, {beta}''-(DODHT){sub 2}TaF{sub 6}, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of {beta}''-(DODHT){sub 2}SbF{sub 6} salt.

  16. Application of PhSCF2CF2SiMe3 as a Tandem Anion and Radical Tetrafluoroethylene Equivalent: Fluoride-Catalyzed Addition to N-Substituted Cyclic Imides Followed by Radical Cyclization

    Czech Academy of Sciences Publication Activity Database

    Chernykh, Yana; Opekar, Stanislav; Klepetářová, Blanka; Beier, Petr

    2012-01-01

    Roč. 23, č. 8 (2012), s. 1187-1190 ISSN 0936-5214 R&D Projects: GA ČR GAP207/11/0421 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleophilic addition * radical reaction * fluorine * heterocycles * imides Subject RIV: CC - Organic Chemistry Impact factor: 2.655, year: 2012

  17. The microbial degradation of polycyclic aromatic hydrocarbons in soils and sediments. Der mikrobielle Abbau polyzyklischer aromatischer Kohlenwasserstoffe (PAK) in Boeden und Sedimenten: Mineralisierung, Metabolitenbildung und Entstehung gebundener Rueckstaende

    Energy Technology Data Exchange (ETDEWEB)

    Mahro, B; Kaestner, M [Technische Univ. Hamburg-Harburg (Germany). Arbeitsbereich Biotechnologie 2

    1993-02-01

    The microbial degradation of polycylic aromatic hydrocarbons in soils and sediments: mineralization, metabolite excretion and the formation of bound residues microorganisms degrade polycyclic aromatic hydrocarbons (PAH) via three different metabolic pathways: mineralization, cometabolic oxidation or an unspecific triggering of radical reactions. As a result of these microbial transformation processes PAH may be converted to CO[sub 2] and biomass or partially oxidized metabolites. The possible fate of these presumed metabolites in the soil matrix is analyzed. It is pointed out that the formation of humus bound residues, stimulated by microbial exoenzyme activities, may contribute to significant extent to the disappearance of PAHs in soils and sediments. The relevance of this fact for the biological remediation of contaminated soils is discussed. (orig.).

  18. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum

    Directory of Open Access Journals (Sweden)

    Sohail Ahmad

    2016-01-01

    Full Text Available The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm. Plant extracts displayed noteworthy radical scavenging activities at all concentrations (25–225 μg/mL. Notable activities were recorded by crude, chloroform and ethyl acetate extracts up to 88.27% at 225 μg/mL concentration. Compounds functional groups were examined by Fourier transform infrared spectroscopic studies. Alkanes, alkenes, alkyl halides, amines, carboxylic acids, amides, esters, alcohols, phenols, nitrocompounds, and aromatic compounds were identified by FTIR analysis. Thin layer chromatography bioautography was carried out for all plant extracts. Different bands were separated by various solvent systems. The results of the current study justify the use of Heliotropium bacciferum in traditional remedial herbal medicines.

  19. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

    KAUST Repository

    González-Gaya, Belén

    2016-05-16

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 10 2 -10 3 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr -1, around 15% of the oceanic CO2 uptake. © 2016 Macmillan Publishers Limited.

  20. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  1. Direct and ketone-sensitized photoconversion of 1-nitro-9,10-anthraquinone to 1-amino-9,10-anthraquinone mediated by donor radicals

    International Nuclear Information System (INIS)

    Goerner, Helmut; Gruen, Henry

    2010-01-01

    The full photoreduction of 1-nitro-2-R-9,10-anthraquinone (R = H: N1, methyl: N2) was studied in benzene, acetonitrile and acetonitrile-water mixtures in the presence of 2-propanol and triethylamine (TEA). The major photoproduct is the fluorescing 1-amino-2-R-AQ (A1, A2). The quantum yield of full reduction increases with the donor concentration, approaching Φ NH 2 =0.1. The intermediates involved are assigned on the basis of spectral and kinetic characteristics. The short-lived triplet state (≤20 ns) of N2 can be intercepted by 2-propanol or TEA, thereby forming the spectroscopically hidden donor radicals and the nitroAQ radicals which absorb at 400 and 540 nm; the latter band is due to the radical anion. The triplet state of N1 was not observed at room temperature, but the radical properties and decay in the nitrosoAQ are similar for N1 and N2. For donors in lower concentrations Φ NH 2 is strongly increased in the presence of benzophenone, acetophenone or acetone, approaching 0.22. The results under direct and sensitized conditions are compared and major dependences and the effects of mixtures of acetonitrile with water are outlined.

  2. Direct and ketone-sensitized photoconversion of 1-nitro-9,10-anthraquinone to 1-amino-9,10-anthraquinone mediated by donor radicals

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, Helmut, E-mail: goerner@mpi-muelheim.mpg.de [Max-Planck-Institut fuer Bioanorganische Chemie, D-45413 Muelheim an der Ruhr (Germany); Gruen, Henry [Max-Planck-Institut fuer Bioanorganische Chemie, D-45413 Muelheim an der Ruhr (Germany)

    2010-02-18

    The full photoreduction of 1-nitro-2-R-9,10-anthraquinone (R = H: N1, methyl: N2) was studied in benzene, acetonitrile and acetonitrile-water mixtures in the presence of 2-propanol and triethylamine (TEA). The major photoproduct is the fluorescing 1-amino-2-R-AQ (A1, A2). The quantum yield of full reduction increases with the donor concentration, approaching {Phi}{sub NH{sub 2}}=0.1. The intermediates involved are assigned on the basis of spectral and kinetic characteristics. The short-lived triplet state ({<=}20 ns) of N2 can be intercepted by 2-propanol or TEA, thereby forming the spectroscopically hidden donor radicals and the nitroAQ radicals which absorb at 400 and 540 nm; the latter band is due to the radical anion. The triplet state of N1 was not observed at room temperature, but the radical properties and decay in the nitrosoAQ are similar for N1 and N2. For donors in lower concentrations {Phi}{sub NH{sub 2}} is strongly increased in the presence of benzophenone, acetophenone or acetone, approaching 0.22. The results under direct and sensitized conditions are compared and major dependences and the effects of mixtures of acetonitrile with water are outlined.

  3. Oxidative stress in chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, H.

    1986-05-01

    The toxic effect of compounds which undergo redox cycling enzymatic one-electron reduction are reviewed. First of all, the enzymatic reduction of these compounds leads to reactive intermediates, mainly radicals which react with oxygen, whereby superoxide anion radicals are formed. Further oxygen metabolites are hydrogen peroxide, singlet oxygen and hydroxyl radicals. The role of these oxygen metabolites in toxicity is discussed. The occurrence of lipid peroxidation during redox cycling of quinonoide compounds, e.g., adriamycin, and the possible relationship to their toxicity is critically evaluated. It is shown that iron ions play a crucial role in lipid peroxidation induced by redox cycling compounds. DNA damage by metal chelates, e.g., bleomycin, is discussed on the basis of findings that enzymatic redox cycling of a bleomycin-iron complex has been observed. The involvement of hydroxyl radicals in bleomycin-induced DNA damage occurring during redox cycling in cell nuclei is claimed. Redox cycling of other substances, e.g., aromatic amines, is discussed in relation to carcinogenesis. Other chemical groups, e.g., nitroaromatic compounds, hydroxylamines and azo compounds are included. Other targets for oxygen radical attack, e.g., proteins, are also dealt with. It is concluded that oxygen radical formation by redox cycling may be a critical event in toxic effects of several compounds if the protective mechanisms of cells are overwhelmed.

  4. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  5. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal; Li, Jianguo; Shaikh, Abdul Rajjak; Rajagopalan, Raj

    2011-01-01

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP's indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine's preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine's interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  6. Picosecond absorption studies of photoinduced charge separation in polyelectrolyte bound aromatic chromophores

    Science.gov (United States)

    Shand, M. A.; Rodgers, M. A. J.; Webber, S. E.

    1991-02-01

    Picosecond absorption studies of photoinduced electron transfer between aromatic chromophores bound to polymethacrylic acid (P) and methylviologen (MV 2+ have been carried out in aqueous solution. The diphenylanthracene copolymer/viologen system at pH 2.8 shows the corresponding redox products DPA + rad and MV + rad arising from the singlet state of DPA with a forward rate constant of electron transfer of 2.6 × 10 9 s -1. At pH 9.0 the quenching of the S 1 state of DPA occurs with no charge separated products being observed. The pyrene copolymer shows no evidence of charge separated products at any pH in the range 2.8-9.0. It is proposed that the differences in the radical pair kinetics arise from differences in the degree of binding of the ground state complexes formed by the donor and acceptor species.

  7. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  8. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  9. Radical-induced generation of small silver particles in SPEEK/PVA polymer films and solutions: UV-Vis, EPR, and FT-IR studies.

    Science.gov (United States)

    Korchev, A S; Konovalova, T; Cammarata, V; Kispert, L; Slaten, L; Mills, G

    2006-01-03

    The present study is centered on the processes involved in the photochemical generation of nanometer-sized Ag particles via illumination at 350 nm of aqueous solutions and cross linked films containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol). Optical and electron paramagnetic resonance experiments, including electron nuclear double resonance data, proved conclusively that the photogenerated chromophore exhibiting a band with lambda(max) = 565 nm is an alpha-hydroxy aromatic (ketyl) radical of the polymeric ketone. This reducing species was produced by illumination of either solutions or films, but the radical lifetime extended from minutes in the fluid phase to hours in the solid. Direct evidence is presented that this long-lived chromophore reduces Ag(I), Cu(II), and Au(III) ions in solution. A rate constant of k = 1.4 x 10(3) M(-)(1) s(-)(1) was obtained for the reduction of Ag(+) by the ketyl radical from the post-irradiation formation of Ag crystallites. FTIR results confirmed that the photoprocess yielding polymeric ketyl radicals involves a reaction between the macromolecules. The photochemical oxidation of the polymeric alcohol, as well as the formation of light-absorbing macromolecular products and polyols, indicates that the sulfonated polyketone experienced transformations similar to those encountered during illumination of the benzophenone/2-propanol system.

  10. When hydroquinone meets methoxy radical: Hydrogen abstraction reaction from the viewpoint of interacting quantum atoms.

    Science.gov (United States)

    Petković, Milena; Nakarada, Đura; Etinski, Mihajlo

    2018-05-25

    Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Photoredox Generated Radicals in Csp2-Csp3 Bond Construction

    Science.gov (United States)

    Primer, David Neal

    The routine application of Csp3-hybridized nucleophiles in cross-coupling has been an ongoing pursuit in the agrochemical, pharmaceutical, and materials science industries for over 40 years. Unfortunately, despite numerous attempts to circumvent the problems associated with alkyl nucleophiles, application of these reagents in transition metal-catalyzed C-C bond-forming reactions has remained largely restricted. In recent years, many chemists have noted the lack of reliable, turnkey reactions that exist for the installation of Csp3-hybridized centers--reactions that would be useful for delivering molecules with enhanced three-dimensional topology and altered chemical properties. As such, a general method for alkyl nucleophile activation in cross-coupling would offer access to a host of compounds inaccessible by other means. From a mechanistic standpoint, the continued failure of alkylmetallics is inherent to the high energy intermediates associated with a traditional transmetalation. To overcome this problem, we have pioneered an alternate, single-electron pathway involving 1) initial oxidation of an alkylmetallic reagent, 2) oxidative alkyl radical capture at a metal center, and 3) subsequent reduction of the metal center to return its initial oxidation state. This series of steps constitutes a formal transmetalation that avoids the energy-demanding steps that plague a traditional anionic approach. Under this enabling paradigm, a host of alkyl precursors (alkyl-trifluoroborates and -silicates) have been generally used in cross-coupling for the first time. In summary, the synergistic use of an Ir photoredox catalyst and a Ni cross-coupling catalyst to mediate the cross-coupling of (hetero)aryl bromides with diverse alkyl radical precursors will be discussed. Methods for coupling various trifluoroborate classes (alpha-alkoxy, alpha-trifluoromethyl, secondary and tertiary alkyl) will be covered, focusing on their complementarity to traditional protocols. Finally, a

  12. Comprehensive characterization of natural organic matter by MALDI- and ESI-Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Cao, Dong; Huang, Huogao; Hu, Ming; Cui, Lin; Geng, Fanglan; Rao, Ziyu; Niu, Hongyun; Cai, Yaqi; Kang, Yuehui

    2015-01-01

    molecules identified by MALDI may be aromatic or condensed aromatic compounds with special groups which are liable to absorb electron from other molecules to generate free radical anions during MALDI ionization

  13. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Perera, Ajith [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Department of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  14. Anion effect on the retention of recoil atom of coordination crystalline compounds

    International Nuclear Information System (INIS)

    Dimotakis, P.N.; Papadopoulos, B.P.

    1980-01-01

    The anion effect of various cobaltic crystalline compounds - having the same cation and differing in anion -on the retention of neutron activated central cobalt atom has been studied. The cation was trans-dichloro(bis)ethylenediamine cobalt(III) and the anions were simple spherical anions (Cl - , Br - , I - ), planar anions (NO 3 - ), trigonal pyramidal anions (ClO 3 - , BrO 3 - ), tetrahedral anions (SO 4 2- , CrO 4 2- , MnO 4 - ) and linear anions (SCN - ). The cobalt-60 activity after reactor irradiation either in simple Co 2+ cation or in cobaltic complex cation determined the retention values. In all irradiations at ordinary temperature and at liquid nitrogen temperature the results showed an effect of the different anions, depending on the geometry, volume and charge, on the recombination of the recoil cobalt with the ligands in the coordination sphere. (author)

  15. Some redox chemistry of HPO sub 2 sup -. and sup. PO sub 3 sup 2- radicals. A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Packer, J.E. (Brunel Univ., Uxbridge (UK). Dept. of Biochemistry); Anderson, R.F. (Mount Vernon Hospital, Northwood (UK). Gray Lab.)

    1990-01-01

    The HO{sup .} radical oxidises hypophosphite and phosphite anions to HPO{sub 2}{sup -.} and {sup .}PO{sub 3}{sup 2-} respectively, but Br{sub 2}{sup -.} and N{sub 3}{sup .} do not. The rates of oxidation of HPO{sub 2}{sup -.} by a series of oxidising agents of known one electron redox potentials decrease with decreasing potential while the corresponding rates for oxidation of {sup .}PO{sub 3}{sup 2-} remain close to the diffusion controlled limit. {sup .}PO{sub 3}{sup 2-} will oxidise cysteine but HPO{sub 2}{sup -.} does not. {sup .}PO{sub 3}{sup 2-} did not oxidise ABTS, ascorbate, or the anion of the vitamin E analogue, trolox. It reduced traces of TMPD{sup +.} in TMPD rather than oxidising the substrate. The one electron redox potentials for oxidation and reduction of {sup .}PO{sub 3}{sup 2-} are calculated in light of recently published redox data on penicillamine. (author).

  16. Radical Change by Entrepreneurial Design

    National Research Council Canada - National Science Library

    Roberts, Nancy C

    1998-01-01

    .... How radical change in public policy has occurred in the past is then documented. We find examples of radical change by chance, radical change by consensus, radical change by learning, and radical change by entrepreneurial design...

  17. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  18. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  19. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    Science.gov (United States)

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.

  20. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation

    KAUST Repository

    Zhang, Tao

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. © 2014 American Chemical Society.

  1. Fate of the nitro anion radical of pesticide bifenox in nin-aqueros systems. Double-layer effects in tetraalkylammonium solutions

    Czech Academy of Sciences Publication Activity Database

    Mořkovská, Petra; Hromadová, Magdaléna; Pospíšil, Lubomír; Giannarelli, S.

    2005-01-01

    Roč. 1, č. 1 (2005), s. 138-139 ISSN 1336-7242. [Zjazd chemických spoločností /57./. 04.09.2005-08.09.2005, Tatranské Matliare] R&D Projects: GA ČR GA203/03/0821; GA AV ČR IAA400400505; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : free radicals * electron transfer kinetics * electrochemistry Subject RIV: CG - Electrochemistry

  2. Measurements of free radicals in a megacity during the Clean Air for London Project

    Science.gov (United States)

    Heard, Dwayne; Whalley, Lisa; Stone, Daniel; Clancy, Noel; Lee, James; Kleffman, Jorg; Laufs, Sebastian; Bandy, Brian

    2013-04-01

    Free radicals control the photo-oxidative chemistry of the atmosphere, being responsible for the transformation of primary emissions into secondary pollutants such as NO2, O3, multifunctional species and particulates. Here we present measurements of OH, HO2 and RO2 radicals and OH reactivity recorded at North Kensington, Central London, during two Intensive Operational Periods (IOPs) of the Clear Air for London (Clearflo) project in the summer and winter of 2012. OH and HO2 were measured using laser-induced fluorescence (LIF) spectroscopy at low pressure (the FAGE technique), and RO2 was measured using the recently developed ROXLIF technique, which utilises an external flow-reactor interfaced to FAGE, and which is able to discriminate between HO2 and organic peroxy radicals. Through control of reagent gases we are further able to provide a separate measurement of those RO2 species which are known to give an interference for HO2 measurements (namely alkene, aromatic and large-chain alkane derived RO2). OH reactivity was measured using laser-flash photolysis combined with FAGE. Low concentrations of radicals were observed during the winter IOP, with mixing ratios of [OH] ~ 0.04 pptv, [HO2] ~ 0.4 pptv, and [RO2] ~ 1.6 pptv at noon, all displaying a negative correlation with NO. The photolysis of O3 and subsequent reaction of O(1D) with H2O vapour was only a minor contribution to radical production in winter, with photolysis of HONO a major radical source. The summer IOP coincided with the London Olympic Games, with a number of pollution events, with ozone peaking at 100 ppbv (exceeding EU air quality directives) and elevated radical concentrations (peak [OH] ~ 0.14 pptv, [HO2] ~ 4 pptv, [RO2] ~ 6.4 pptv) being observed. The net rate of ozone production was calculated from radical observations and agreed well with measured ozone production, suggesting that advection/dilution by continental air-masses was not playing a significant role in determining ozone

  3. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  4. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  5. The games radicals play : special issue on free radicals and radical ions

    OpenAIRE

    Walton, J.C.; Williams, F.

    2015-01-01

    Chemistry and Physics have aptly been described as “most excellent children of Intellect and Art” [1]. Both these “children” engage with many playthings, and molecules rank as one of their first favorites, especially radicals, which are amongst the most lively and exciting. Checking out radicals dancing to the music of entropy round their potential energy ballrooms is surely both entertaining and enlightening. Radicals’ old favorite convolutions are noteworthy, but the new styles, modes and a...

  6. Survey of benzene and aromatics in Canadian Gasoline - 1994

    International Nuclear Information System (INIS)

    Tushingham, M.

    1996-01-01

    A comprehensive database of the benzene and aromatics levels of gasoline produced in or imported into Canada during 1994, was presented. Environment Canada conducted a survey that requested refineries and importers to report quarterly on benzene and aromatics levels in gasoline. Benzene, which has been declared toxic by the Canadian Environmental Protection Act, is found in gasoline and is formed during the combustion of the aromatic components of gasoline. It was shown that benzene and aromatics levels differ regionally and seasonally. There are also variations in benzene levels between batches of gasoline produced at any one refinery. This report listed the responses to the benzene/aromatics survey. It also described the analytical procedures used to measure benzene and aromatics levels in gasoline, and provided guidelines for reporting gasoline benzene and total aromatics data. 7 tabs., 21 figs

  7. Pu Anion Exchange Process Intensification

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.

    2017-01-01

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  8. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  9. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  10. Effects of arginine on multimodal anion exchange chromatography.

    Science.gov (United States)

    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi

    2015-12-01

    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Environmentally Persistent Free Radical (EPFRs) - Ambient Air Particulates, Soils and Fate of Some Pollutants

    Science.gov (United States)

    Lomnicki, S. M.

    2017-12-01

    Environmentally Persistent Free Radicals (EPFRs) are relatively recently discovered species that are present on ambient air particulates. Their origin is typically associated with the combustion borne PM, where in the cool zone of the combustion process aromatic precursors react with the metal centers of particulates forming surface-organic complex with radical characteristics. EPFRs have been found to be sufficiently resistant to be emitted from the combustion sources and persist in the ambient air on particulates. Their inhalation has been associated with severe health effects, and potentially are one of the major agents contributing the epidemiological risks of PM exposure. Interestingly, EPFRs can be formed not only at the elevated temperatures but also in ambient conditions, where the contact of precursor molecules with transition metal (but not only) domains can result in adsorbate complexes. In fact, EPFRs have been detected in the contaminated soils, or during the oil spill incidents. It is very likely, that the interaction of some molecules released to the air can result in the formation of EPFRs on the ambient air particulates in atmospheric conditions. These species can be a natural degradation by-products that lead to the formation of oxygenated organics in ambient atmosphere.

  12. Inhibition of nuclear waste solutions containing multiple aggressive anions

    International Nuclear Information System (INIS)

    Congdon, J.W.

    1987-01-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans, supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions, however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion. 10 refs., 5 figs., 2 tabs

  13. Bicyclic Baird-type aromaticity

    Science.gov (United States)

    Cha, Won-Young; Kim, Taeyeon; Ghosh, Arindam; Zhang, Zhan; Ke, Xian-Sheng; Ali, Rashid; Lynch, Vincent M.; Jung, Jieun; Kim, Woojae; Lee, Sangsu; Fukuzumi, Shunichi; Park, Jung Su; Sessler, Jonathan L.; Chandrashekar, Tavarekere K.; Kim, Dongho

    2017-12-01

    Classic formulations of aromaticity have long been associated with topologically planar conjugated macrocyclic systems. The theoretical possibility of so-called bicycloaromaticity was noted early on. However, it has yet to be demonstrated by experiment in a simple synthetic organic molecule. Conjugated organic systems are attractive for studying the effect of structure on electronic features. This is because, in principle, they can be modified readily through dedicated synthesis. As such, they can provide useful frameworks for testing by experiment with fundamental insights provided by theory. Here we detail the synthesis and characterization of two purely organic non-planar dithienothiophene-bridged [34]octaphyrins that permit access to two different aromatic forms as a function of the oxidation state. In their neutral forms, these congeneric systems contain competing 26 and 34 π-electronic circuits. When subject to two-electron oxidation, electronically mixed [4n+1]/[4n+1] triplet biradical species in the ground state are obtained that display global aromaticity in accord with Baird's rule.

  14. Vertical detachment energies of anionic thymidine: Microhydration effects.

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F

    2010-10-14

    Density functional theory has been employed to investigate microhydration effects on the vertical detachment energy (VDE) of the thymidine anion by considering the various structures of its monohydrates. Structures were located using a random searching procedure. Among 14 distinct structures of the anionic thymidine monohydrate, the low-energy structures, in general, have the water molecule bound to the thymine base unit. The negative charge developed on the thymine moiety increases the strength of the intermolecular hydrogen bonding between the water and base units. The computed VDE values of the thymidine monohydrate anions are predicted to range from 0.67 to 1.60 eV and the lowest-energy structure has a VDE of 1.32 eV. The VDEs of the monohydrates of the thymidine anion, where the N(1)[Single Bond]H hydrogen of thymine has been replaced by a 2(')-deoxyribose ring, are greater by ∼0.30 eV, compared to those of the monohydrates of the thymine anion. The results of the present study are in excellent agreement with the accompanying experimental results of Bowen and co-workers [J. Chem. Phys. 133, 144304 (2010)].

  15. Copper(I) coordination compounds with closododecaborate anion

    International Nuclear Information System (INIS)

    Malinina, E.A.; Drozdova, V.V.; Mustyatsa, V.N.; Goeva, L.V.; Polyakova, I.N.; Votinova, N.A.; Zhizhin, K.Yu.; Kuznetsov, N.T.

    2006-01-01

    Cu(I) Complexes with closo-dodecaborate anion Cat[CuB 12 H 12 ], where Cat= Cs + , Ph 4 P + , Ph 4 As + , R x NH 4-x + (R=Me, Et, Pr, Bu, X=3-4) are synthesized. Synthesis of complexes was conducted in the copper(II) salt-salt of dodecaborate anion-sulfur dioxide (sodium sulfite) system. Structure of the complex [Cu 2 (NCCH 3 ) 4 B 12 H 12 ] assigned by X-ray structural analysis discloses that B 12 H 12 2- anion enters into the inner sphere of metal-complexing agent, and connection of closo-borate ligand with the metal is caused by the formation of three-centric metal-hydrogen-boron bonds [ru

  16. One-electron reduction reactions with enzymes in solution

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Redpath, J.L.; Adams, G.E.

    1976-01-01

    At pH 8 and above, hydrated electrons react with ribonuclease lysozyme and α-chymotrypsin to form transient products whose spectra resemble, but are not identical to, those for the RSSR - radical anion already known for simple disulphides. Assuming a value for the extinction coefficient similar to that for RSSR - in simple disulphides, only a fraction of the hydrated electrons are shown to react with the disulphide bridges: the remainder react at other sites in the protein molecule, such as histidine, tyrosine and, in lysozyme, tryptophan residues, giving rise to comparatively weak optical absorptions between 300 and 400 nm. This has been substantiated by studying the reaction of e - sub(aq) with subtilisin Novo (an enzyme which does not contain disulphide bridges), with enzymes in which the sulphur bridges have been oxidised and with some amino acid derivatives. On lowering the pH of the solution the intensity of the RSSR - absorption diminishes as the protonated histidine residues become the favoured reaction sites. In acid solutions (pH 2 to 3) the transient optical absoptions observed are due to reactions of hydrogen atoms with the aromatic amino acids tyrosine, tryptophan and phenylalanine. The CO - 2 radical anion is only observed to transfer an electron to disulphide groups in ribonuclease, although the effect of repeated pulsing shows that some reaction must occur elsewhere in the protein molecule. In acid solutions, protonation of the electron adduct appears to produce the RSSRH. radical, whose spectrum has a maximum at 340 nm. (author)

  17. Intramolecular transformation of thiyl radicals to α-aminoalkyl radicals: 'ab initio' calculations on homocystein

    International Nuclear Information System (INIS)

    Chhun, S.; Berges, J.; Bleton, V.; Abedinzadeh, Z.

    2000-01-01

    One-electron oxidation of thiols by oxidizing radicals leads to the formation of thiyl radical and carbon-centered radicals. It has been shown experimentally that in the absence of oxygen, the thiyl radicals derived from certain thiols of biological interest such as glutathion, cysteine and homocysteine decay rapidly by intramolecular rearrangement reactions into the carbon-centered radical. In the present work we have investigated theoretically the structure and the stability of thiyl and carbon-centered radicals of homocysteine in order to check the possibility of this rearrangement. (author)

  18. Unusual structures of MgF5- superhalogen anion

    Science.gov (United States)

    Anusiewicz, Iwona; Skurski, Piotr

    2007-05-01

    The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.

  19. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  20. Diphenylphosphino Styrene-Containing Homopolymers: Influence of Alkylation and Mobile Anions on Physical Properties.

    Science.gov (United States)

    Jangu, Chainika; Schultz, Alison R; Wall, Candace E; Esker, Alan R; Long, Timothy E

    2016-07-01

    Conventional free radical polymerization and post-alkylation of 4-diphenylphosphino styrene (DPPS) generate a new class of high-molecular-weight phosphonium-containing homopolymers with tunable thermal, viscoelastic, and wetting properties. Post-alkylation and subsequent anion exchange provide an effective method for tuning Tg values and thermal stability as a function of alkyl chain length and counteranion selection (X(-) , BF4 (-) , TfO(-) , and Tf2 N(-) ). Rheological characterization facilitates the generation of time-temperature-superposition (TTS) pseudomaster curves and subsequent analysis of frequency sweeps at various temperatures reveals two relaxation modes corresponding to long-range segmental motion and the onset of viscous flow. Contact angle measurements reveal the influence of counteranion selection on wetting properties, revealing increased contact angles for homopolymers containing nucleophilic counteranions. These investigations provide fundamental insight into phosphonium-containing polymers, aiming to guide future research and applications involving electro-active polymeric devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.