WorldWideScience

Sample records for aromatic metal clusters

  1. Tuning aromaticity in trigonal alkaline earth metal clusters and their alkali metal salts.

    Science.gov (United States)

    Jiménez-Halla, J Oscar C; Matito, Eduard; Blancafort, Lluís; Robles, Juvencio; Solà, Miquel

    2009-12-01

    In this work, we analyze the geometry and electronic structure of the [X(n)M(3)](n-2) species (M = Be, Mg, and Ca; X = Li, Na, and K; n = 0, 1, and 2), with special emphasis on the electron delocalization properties and aromaticity of the cyclo-[M(3)](2-) unit. The cyclo-[M(3)](2-) ring is held together through a three-center two-electron bond of sigma-character. Interestingly, the interaction of these small clusters with alkali metals stabilizes the cyclo-[M(3)](2-) ring and leads to a change from sigma-aromaticity in the bound state of the cyclo-[M(3)](2-) to pi-aromaticity in the XM(3) (-) and X(2)M(3) metallic clusters. Our results also show that the aromaticity of the cyclo-[M(3)](2-) unit in the X(2)M(3) metallic clusters depends on the nature of X and M. Moreover, we explored the possibility for tuning the aromaticity by simply moving X perpendicularly to the center of the M(3) ring. The Na(2)Mg(3), Li(2)Mg(3), and X(2)Ca(3) clusters undergo drastic aromaticity alterations when changing the distance from X to the center of the M(3) ring, whereas X(2)Be(3) and K(2)Mg(3) keep its aromaticity relatively constant along this process. (c) 2009 Wiley Periodicals, Inc.

  2. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  3. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  4. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    International Nuclear Information System (INIS)

    Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J.

    2013-01-01

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster

  5. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J., E-mail: Alessandra.Ricca-1@nasa.gov, E-mail: Charles.W.Bauschlicher@nasa.gov [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  6. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  7. Electronic structure of metal clusters

    International Nuclear Information System (INIS)

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  8. A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal ...

    African Journals Online (AJOL)

    A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal Contamination of Fish from Fish Farms. ... Journal of Applied Sciences and Environmental Management ... Polycyclic aromatic hydrocarbons (PAHs) and heavy metals contribute to pollutants in aquaculture facilities and thus need to be further investigated.

  9. Size selected metal clusters

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The Optical Absorption Spectra of Small Silver Clusters (5-11) ... Soft Landing and Fragmentation of Small Clusters Deposited in Noble-Gas Films. Harbich, W.; Fedrigo, S.; Buttet, J. Phys. Rev. B 1998, 58, 7428. CO combustion on supported gold clusters. Arenz M ...

  10. Supersonic bare metal cluster beams

    International Nuclear Information System (INIS)

    Smalley, R.E.

    1991-01-01

    Progress continued this past year on two principal fronts in the study of bare metal clusters: photoelectron spectroscopy of mass selected negative ions, and surface chemisorption of cluster ions levitated in a superconducting magnet as monitored by fourier transform ion cyclotron resonance

  11. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  12. Fission of Polyanionic Metal Clusters

    Science.gov (United States)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  13. Production of metal particles and clusters

    Science.gov (United States)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  14. Metal Triflates for the Production of Aromatics from Lignin.

    Science.gov (United States)

    Deuss, Peter J; Lahive, Ciaran W; Lancefield, Christopher S; Westwood, Nicholas J; Kamer, Paul C J; Barta, Katalin; de Vries, Johannes G

    2016-10-20

    The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy-to-handle metal triflates (M(OTf) x ). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol or methyl aromatics obtained by catalytic decarbonylation. Notably, when the method was ultimately tested on lignin, especially Fe(OTf) 3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polycyclic Aromatic Hydrocarbon and Metal Concentrations in Imported Canned Maize

    OpenAIRE

    Embbey K Ossai; Chukwujindu Maxwell Iwegbue; Elizabeth E. Ajogungbe; Godswill O Tesi

    2014-01-01

    Concentrations and profile of polycyclic aromatic hydrocarbons(PAHs) and metals (Cd, Pb, Ni, Cr, Fe and Mn) were determined in selected brands of canned maize in the Nigeria market with a view to providing information on the hazards associated with the consumption of these products. The measurement of the concentrations of PAHs was carried out by using a gas chromatography equipped with flame ionization detector (GC-FID) after extraction by ultra-sonication with acetone/dichloromethane and cl...

  16. Gas phase reactivity of thermal metal clusters

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.; Harms, A.C.; Leuchtner, R.E.

    1991-01-01

    Reaction kinetics of metal cluster ions under well defined thermal conditions were studied using a flow tube reactor in combination with laser vaporization. Aluminum anions and cations were reacted with oxygen, and several species which are predicted jellium shell closings, were found to have special stability. Metal alloy cluster anions comprised of Al, V and Nb were also seen to react with oxygen. Alloy clusters with an even number of electrons reacted more slowly than odd electron species, and certain clusters appeared to be exceptionally unreactive. Copper cation clusters were observed to associate with carbon monoxide with reactivities that approach bulk behavior at surprisingly small cluster size. These reactions demonstrate how the rate of reaction changes with cluster size. (orig.)

  17. Gas phase reactivity of thermal metal clusters

    Science.gov (United States)

    Castleman, A. W., Jr.; Harms, A. C.; Leuchtner, R. E.

    1991-03-01

    Reaction kinetics of metal cluster ions under well defined thermal conditions were studied using a flow tube reactor in combination with laser vaporization. Aluminum anions and cations were reacted with oxygen, and several species which are predicted jellium shell closings, were found to have special stability. Metal alloy cluster anions comprised of Al, V and Nb were also seen to react with oxygen. Alloy clusters with an even number of electrons reacted more slowly than odd electron species, and certain clusters appeared to be exceptionally unreactive. Copper cation clusters were observed to associate with carbon monoxide with reactivities that approach bulk behavior at surprisingly small cluster size. These reactions demonstrate how the rate of reaction changes with cluster size.

  18. Photometric metal abundances for twenty clusters

    International Nuclear Information System (INIS)

    Jennens, P.A.; Helfer, H.L.

    1975-01-01

    Metal abundances, colour excesses and distance moduli have been determined for individual giant stars, using UBViyz photometry, in NGC 188, 559, 752, 1245, 1342, 1907, 1912, 2099, 5139 (ω cen), 5316, 5617, 5822, 5823, 6067, IC 4651, 6819, 6940, 7142, 7261 and 7789. All six clusters with ages 3 to 8x10 9 yr have metal abundances agreeing with one another; their average value of [Fe/H]=-0.24+-0.05, agrees with the average found for the bright K-giants near the Sun. All six clusters are at least 140pc from the galactic plane. For the younger clusters less than approximately 10 9 yr old, one-third are metal deficient. The very young cluster, NGC 559, is probably very metal weak. (author)

  19. Collective excitations in deformed alkali metal clusters

    International Nuclear Information System (INIS)

    Lipparini, E.; Stringari, S.; Istituto Nazionale di Fisica Nucleare, Povo

    1991-01-01

    A theoretical study of collective excitations in deformed metal clusters is presented. Sum rules are used to study the splittings of the dipole surface plasma resonance originating from the cluster deformation. The vibrating potential model is developed and used to predict the occurrence of a low lying collective mode of orbital magnetic nature. (orig.)

  20. Tug of war between AO-hybridization and aromaticity in dictating structures of Li-doped alkali clusters

    Science.gov (United States)

    Alexandrova, Anastassia N.

    2012-04-01

    Hybridization of atomic orbitals is a widely appreciated phenomenon in organic chemistry. Here, we demonstrate that hybridization also can dramatically impact the shapes of small all-alkali metal clusters, and oppose σ-aromaticity in defining cluster shapes. The valence-iso-electronic LiNa4- and LiK4- clusters adopt different global minimum structures: LiNa4- is a planar C2v (1A1) species distorted from the perfect pentagon, and LiK4- is a planar square D4h (1A1g) species with Li being in the centre. This effect is rooted in the different degrees of the 2s-2p hybridization in Li in response to binding to Na versus K.

  1. Enhanced polarizability of aromatic molecules placed in the vicinity of silver clusters

    International Nuclear Information System (INIS)

    Mayer, A; Schatz, G C

    2009-01-01

    We use a charge-dipole interaction model to study the polarizability of aromatic molecules that are placed between two silver clusters. In particular we examine the enhancement in polarizability induced by the clusters at plasmon-like resonant frequencies of the cluster-molecule-cluster system. The model used for these simulations relies on representation of the atoms by both a net electric charge and a dipole. By relating the time variation of the atomic charges to the currents that flow through the bonds of the structures considered, a least-action principle can be formulated that enables the atomic charges and dipoles to be determined. We consider benzene, naphthalene and anthracene for this study, comparing the polarizability of these aromatic molecules when placed in the middle between two Ag 120 clusters, with their polarizability as isolated molecules. We find that the polarizability of these molecules is enhanced by the clusters, and this increases the electromagnetic coupling between the two clusters. This results in significant red-shifting (by up to 0.8 eV) of the lowest energy optical transition in the cluster-molecule-cluster system compared to plasmon-like excitation in the cluster-cluster system. The resulting resonant polarizability enhancement leads to an electromagnetic enhancement in surface-enhanced Raman scattering of over 10 6 .

  2. Electron scattering on metal clusters and fullerenes

    International Nuclear Information System (INIS)

    Solov'yov, A.V.

    2001-01-01

    This paper gives a survey of physical phenomena manifesting themselves in electron scattering on atomic clusters. The main emphasis is made on electron scattering on fullerenes and metal clusters, however some results are applicable to other types of clusters as well. This work is addressed to theoretical aspects of electron-cluster scattering, however some experimental results are also discussed. It is demonstrated that the electron diffraction plays important role in the formation of both elastic and inelastic electron scattering cross sections. It is elucidated the essential role of the multipole surface and volume plasmon excitations in the formation of electron energy loss spectra on clusters (differential and total, above and below ionization potential) as well as the total inelastic scattering cross sections. Particular attention is paid to the elucidation of the role of the polarization interaction in low energy electron-cluster collisions. This problem is considered for electron attachment to metallic clusters and the plasmon enhanced photon emission. Finally, mechanisms of electron excitation widths formation and relaxation of electron excitations in metal clusters and fullerenes are discussed. (authors)

  3. Extragalactic globular clusters. I. The metallicity calibration

    International Nuclear Information System (INIS)

    Brodie, J.P.; Huchra, J.P.

    1990-01-01

    The ability of absorption-line strength indices, measured from integrated globular cluster spectra, to predict mean cluster metallicity is explored. Statistical criteria, are used to identify the six best indices out of about 20 measured in a large sample of Galactic and M31 cluster spectra. Linear relations between index and metallicity have been derived along with new calibrations of infrared colors (V - K, J - K, and CO) versus Fe/H. Estimates of metallicity from the six spectroscopic index-metallicity relations have been combined in three different ways to identify the most efficient estimator and the minimum bias estimator of Fe/H - the weighted mean. This provides an estimate of Fe/H accurate to about 15 percent. 37 refs

  4. Theoretical study of aromaticity in inorganic tetramer clusters

    Indian Academy of Sciences (India)

    4 . A positive value represents an unbound state or in other words reflects that doubly negatively charged clusters are extremely reactive. In earlier work34 we have shown that similar isoelectronic neutral clusters like Al2Si2, Ga2Si2 have negative energy eigenvalues of the highest occupied molecular orbitals (HOMO), and ...

  5. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  6. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  7. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones

    KAUST Repository

    Ye, Min

    2016-10-01

    A highly regioselective and efficient metal-free hydration of aromatic haloalkynes to alpha-halomethyl ketones using cheap tetrafluoroboric acid as catalyst is described. The protocol is conducted under convenient conditions and affords products in good to excellent yields, with broad substrate scope, including a variety of aromatic alkynyl chlorides, alkynyl bromides, and alkynyl iodides. (C) 2016 Elsevier Ltd. All rights reserved.

  8. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones

    KAUST Repository

    Ye, Min; Wen, Yuelu; Li, Huifang; Fu, Yejuan; Wang, Qinghao

    2016-01-01

    A highly regioselective and efficient metal-free hydration of aromatic haloalkynes to alpha-halomethyl ketones using cheap tetrafluoroboric acid as catalyst is described. The protocol is conducted under convenient conditions and affords products in good to excellent yields, with broad substrate scope, including a variety of aromatic alkynyl chlorides, alkynyl bromides, and alkynyl iodides. (C) 2016 Elsevier Ltd. All rights reserved.

  9. Energetics of charged metal clusters containing vacancies

    Science.gov (United States)

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  10. Metal Triflates for the Production of Aromatics from Lignin

    NARCIS (Netherlands)

    Deuss, Peter J.; Lahive, Ciaran W.; Lancefield, Christopher S.; Westwood, Nicholas J.; Kamer, Paul C. J.; Barta, Katalin; de Vries, Johannes G.

    2016-01-01

    The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology

  11. New projectiles: multicharged metal clusters and biopolymers

    International Nuclear Information System (INIS)

    Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.

    1991-01-01

    Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface(∼100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV

  12. The Raman and vibronic activity of intermolecular vibrations in aromatic-containing complexes and clusters

    International Nuclear Information System (INIS)

    Maxton, P.M.; Schaeffer, M.W.; Ohline, S.M.; Kim, W.; Venturo, V.A.; Felker, P.M.

    1994-01-01

    Theoretical and experimental results pertaining to the excitation of intermolecular vibrations in the Raman and vibronic spectra of aromatic-containing, weakly bound complexes and clusters are reported. The theoretical analysis of intermolecular Raman activity is based on the assumption that the polarizability tensor of a weakly bound species is given by the sum of the polarizability tensors of its constituent monomers. The analysis shows that the van der Waals bending fundamentals in aromatic--rare gas complexes may be expected to be strongly Raman active. More generally, it predicts strong Raman activity for intermolecular vibrations that involve the libration or internal rotation of monomer moieties having appreciable permanent polarizability anisotropies. The vibronic activity of intermolecular vibrations in aromatic-rare gas complexes is analyzed under the assumption that every vibronic band gains its strength from an aromatic-localized transition. It is found that intermolecular vibrational excitations can accompany aromatic-localized vibronic excitations by the usual Franck--Condon mechanism or by a mechanism dependent on the librational amplitude of the aromatic moiety during the course of the pertinent intermolecular vibration. The latter mechanism can impart appreciable intensity to bands that are forbidden by rigid-molecule symmetry selection rules. The applicability of such rules is therefore called into question. Finally, experimental spectra of intermolecular transitions, obtained by mass-selective, ionization-detected stimulated Raman spectroscopies, are reported for benzene--X (X=Ar, --Ar 2 , N 2 , HCl, CO 2 , and --fluorene), fluorobenzene--Ar and --Kr, aniline--Ar, and fluorene--Ar and --Ar 2 . The results support the conclusions of the theoretical analyses and provide further evidence for the value of Raman methods in characterizing intermolecular vibrational level structures

  13. Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem.

    Science.gov (United States)

    Burgos-Núñez, Saudith; Navarro-Frómeta, Amado; Marrugo-Negrete, José; Enamorado-Montes, Germán; Urango-Cárdenas, Iván

    2017-07-15

    The concentrations of polycyclic aromatic hydrocarbons and heavy metals were evaluated in shallow sediments, water, fish and seabird samples from the Cispata Bay, Colombia. The heavy metals concentrations in the sediment was in the following order: Cu>Pb>Hg>Cd. The heavy metal concentration was different (ppolycyclic aromatic hydrocarbons ranged from 7.0-41ngg -1 in sediment, 0.03-0.34ngmL -1 in water samples, 53.24ngg -1 in fish, and 66ngg -1 in seabirds. The high concentrations of heavy metals in seabirds may be explained by their feeding habits. The presence of polycyclic aromatic hydrocarbons in the Cispata Bay may be due to hydrocarbon spills during oil transport at the nearby oil port. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Metallicity Spreads in M31 Globular Clusters

    Science.gov (United States)

    Bridges, Terry

    2003-07-01

    Our recent deep HST photometry of the M31 halo globular cluster {GC} Mayall II, also called G1, has revealed a red-giant branch with a clear spread that we attribute to an intrinsic metallicity dispersion of at least 0.4 dex in [Fe/H]. The only other GC exhibiting such a metallicity dispersion is Omega Centauri, the brightest and most massive Galactic GC, whose range in [Fe/H] is about 0.5 dex. These observations are obviously linked to the fact that both G1 and Omega Cen are bright and massive GC, with potential wells deep enough to keep part of their gas, which might have been recycled, producing a metallicity scatter among cluster stars. These observations dramatically challenge the notion of chemical homogeneity as a defining characteristic of GCs. It is critically important to find out how common this phenomenon is and how it can constrain scenarios/models of GC formation. The obvious targets are other bright and massive GCs, which exist in M31 but not in our Galaxy where Omega Cen is an isolated giant. We propose to acquire, with ACS/HRC, deep imaging of 3 of the brightest M31 GCs for which we have observed velocity dispersion values similar to those observed in G1 and Omega Cen. A sample of GCs with chemical abundance dispersions will provide essential information about their formation mechanism. This would represent a major step for the studies of the origin and evolution of stellar populations.

  15. Molecular growth in clusters of polycyclic aromatic hydrocarbons induced by collisions with ions

    International Nuclear Information System (INIS)

    Delaunay, Rudy

    2016-01-01

    This thesis concerns the experimental study of the interaction between low energy ions (keV range) and neutral isolated molecules or clusters of polycyclic aromatic hydrocarbons (PAH) in the gas phase. The use of ionising radiations on these complex molecular systems of astrophysical interest allowed to highlight processes of statistical fragmentation, corresponding to the redistribution of the energy through the degrees of freedom of the target, and non-statistical fragmentation, linked to binary collisions of the ions on the nuclei of the target. A mechanism of intermolecular growth in clusters of PAH is observed. It is associated to the ultrafast (≤ ps) formation of fragments inside the clusters following binary collisions. The presence of a molecular environment around the fragments formed during the interaction may initiate a process of reactivity between the fragments and the molecules of the clusters. More precisely, the study focusses on the importance of the electronic stopping power SE and the nuclear stopping power SN of the projectile ion. It shows that the molecular growth is enhanced when SN is higher than SE. This can be explained by the fact that the deposit of energy is mainly due to the interaction with the nuclei of the target. The process of growth has been observed for all the molecules of PAH studied during this thesis and also for nitrogenated analogues of the molecule of anthracene. This demonstrates that molecular growth may be efficiently induced by collisions of low energy ions with clusters of PAH. (author) [fr

  16. Globular cluster metallicity scale: evidence from stellar models

    International Nuclear Information System (INIS)

    Demarque, P.; King, C.R.; Diaz, A.

    1982-01-01

    Theoretical giant branches have been constructed to determine their relative positions for metallicities in the range -2.3 0 )/sub 0,g/ based on these models is presented which yields good agreement over the observed range of metallicities for galactic globular clusters and old disk clusters. The metallicity of 47 Tuc and M71 given by this calibration is about -0.8 dex. Subject headings: clusters, globular: stars: abundances: stars: interiors

  17. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  18. Deposition of metal Islands, metal clusters and metal containing single molecules on self-assembled monolayers

    NARCIS (Netherlands)

    Speets, Emiel Adrianus

    2005-01-01

    The central topic of this thesis is the deposition of metals on Self-Assembled Monolayers (SAMs). Metals are deposited in the form of submicron scale islands, nanometer scale clusters, and as supramolecular, organometallic coordination cages. Several SAMs on various substrates were prepared and

  19. Aromatic polyetherketones and polyethersulfones containing 6 group metals

    International Nuclear Information System (INIS)

    Agapov, V.M.; Salazkin, S.N.; Sergeev, V.A.; Komarova, L.I.; Petrovskij, P.V.

    1991-01-01

    Molybdenum- and tungsten-containing polyaryleneetherketones and polyaryleneethersulfones were prepared by the method of chemical modification. Metal content in the polymers constitutes from 0.7 to 12 mass %. The structure of the metal-containing polymers prepared was studied by the methods of 1 H and 13 C NMR and IR spectroscopy. Their properties were analyzed

  20. A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Abhijeet; Sander, Markus; Janardhanan, Vinod; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom)

    2010-03-15

    This paper presents a theoretical study on the physical interaction between polycyclic aromatic hydrocarbons (PAHs) and their clusters of different sizes in laminar premixed flames. Two models are employed for this study: a detailed PAH growth model, referred to as the kinetic Monte Carlo - aromatic site (KMC-ARS) model [Raj et al., Combust. Flame 156 (2009) 896-913]; and a multivariate PAH population balance model, referred to as the PAH - primary particle (PAH-PP) model. Both the models are solved by kinetic Monte Carlo methods. PAH mass spectra are generated using the PAH-PP model, and compared to the experimentally observed spectra for a laminar premixed ethylene flame. The position of the maxima of PAH dimers in the spectra and their concentrations are found to depend strongly on the collision efficiency of PAH coagulation. The variation in the collision efficiency with various flame and PAH parameters is studied to determine the factors on which it may depend. A correlation for the collision efficiency is proposed by comparing the computed and the observed spectra for an ethylene flame. With this correlation, a good agreement between the computed and the observed spectra for a number of laminar premixed ethylene flames is found. (author)

  1. Volume shift and charge instability of simple-metal clusters

    OpenAIRE

    Brajczewska, Marta; Vieira, Armando; Fiolhais, Carlos

    1996-01-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn — Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging

  2. Volume shift and charge instability of simple-metal clusters

    Science.gov (United States)

    Brajczewska, M.; Vieira, A.; Fiolhais, C.; Perdew, J. P.

    1996-12-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn - Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging.

  3. Spectroscopy of electronic transitions in Polycyclic Aromatic Hydrocarbon cations and their clusters

    International Nuclear Information System (INIS)

    Friha, Hela

    2012-01-01

    This thesis is an experimental study of the electronic spectroscopy of cations of Polycyclic Aromatic Hydrocarbons (PAHs) and their aggregates in conditions close to those of the interstellar medium (ISM), i.e. cold and totally isolated in the gas phase. It is related to the astrophysical context of the interstellar medium (ISM), in particular on the question of the possible link between interstellar PAHs and Diffuse Interstellar Bands (DIBs). The purpose of this thesis is to provide laboratory spectra which can be directly compared to the spectra of DIBs. Indeed these bands are the oldest spectroscopy riddle in astrophysics which remained unanswered for nearly 100 years and whose key is still looked for. A special attention is given to the methylated derivatives of PAHs species detected in many interstellar environments, cationic PAH dimers (the simplest PAH clusters). These clusters have been proposed as a model of the very small grains, which contribute to the formation of interstellar PAHs and whose chemical composition remains uncertain. This thesis has been mainly devoted to the determination of the electronic spectra of naphthalene cation monomer (Np + ) and its methylated derivative (2-MeN p + ), as well as the associated homogeneous dimers. The experimental method used is based on the photodissociation of van der Waals complexes PAH + m -Ar n (argon atoms spectators), prepared by UV laser photoionization in a supersonic jet. This technique combines different experimental tools, namely: molecular beam mass spectrometry and laser spectroscopy as well as physical tools such as the handling of clusters VdW PAH + m -Ar n , the detection of photo-fragments, the measurement of photodissociation efficiency. The identification of the fragments by the photodissociation of VdW clusters allowed us to determine the different possible fragmentation channels and especially to obtain the spectra the charge resonance transition and the first allowed transition to locally

  4. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source

    Science.gov (United States)

    Peter, Tilo; Polonskyi, Oleksandr; Gojdka, Björn; Mohammad Ahadi, Amir; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2012-12-01

    We quantitatively assessed the influence of reactive gases on the formation processes of transition metal clusters in a gas aggregation cluster source. A cluster source based on a 2 in. magnetron is used to study the production rate of titanium and cobalt clusters. Argon served as working gas for the DC magnetron discharge, and a small amount of reactive gas (oxygen and nitrogen) is added to promote reactive cluster formation. We found that the cluster production rate depends strongly on the reactive gas concentration for very small amounts of reactive gas (less than 0.1% of total working gas), and no cluster formation takes place in the absence of reactive species. The influence of discharge power, reactive gas concentration, and working gas pressure are investigated using a quartz micro balance in a time resolved manner. The strong influence of reactive gas is explained by a more efficient formation of nucleation seeds for metal-oxide or nitride than for pure metal.

  5. Ruprecht 106 - A young metal-poor Galactic globular cluster

    International Nuclear Information System (INIS)

    Buonanno, R.; Buscema, G.; Fusi Pecci, F.; Richer, H.B.; Fahlman, G.G.

    1990-01-01

    The first CCD photometric survey in the Galactic globular cluster Ruprecht 106 has been performed. The results show that Ruprecht 106 is a metal-poor cluster with (Fe/H) about -2 located at about 25 kpc from the Galactic center. A sizable, high centrally concentrated population of blue stragglers was detected. Significant differences in the positions of the turnoffs in the color-magnitude diagram are found compared to those in metal-poor clusters. The cluster appears younger than other typical metal-poor Galactic globulars by about 4-5 Gyr; if true, this object would represent the first direct proof of the existence of a significant age spread among old, very metal-poor clusters. 51 refs

  6. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  7. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  8. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  9. METALS IN THE ICM: WITNESSES OF CLUSTER FORMATION AND EVOLUTION

    Directory of Open Access Journals (Sweden)

    Lorenzo Lovisari

    2013-12-01

    Full Text Available The baryonic composition of galaxy clusters and groups is dominated by a hot, X-ray emitting Intra-Cluster Medium (ICM. The mean metallicity of the ICM has been found to be roughly 0.3 ÷ 0.5 times the solar value, therefore a large fraction of this gas cannot be of purely primordial origin. Indeed, the distribution and amount of metals in the ICM is a direct consequence of the past history of star formation in the cluster galaxies and of the processes responsible for the injection of enriched material into the ICM. We here shortly summarize the current views on the chemical enrichment, focusing on the observational evidence in terms of metallicity measurements in clusters, spatial metallicity distribution and evolution, and expectations from future missions.

  10. Orbital magnetism and dynamics in alkali metal clusters

    International Nuclear Information System (INIS)

    Nesterenko, V.O.; Kleinig, W.; Souza Cruz, FF. de; Marinelli, J.R.

    2000-01-01

    Two remarkable orbital magnetic resonances, M1 scissor mode and M2 twist mode, are predicted in deformed and spherical metal clusters, respectively. We show that these resonances provide a valuable information about many cluster properties (quadrupole deformation, magnetic susceptibility, single-particle spectrum, etc.)

  11. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    Science.gov (United States)

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  12. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  13. Basic deuteroexchange in complexes of transition metals with nitrogen-containing aromatic heterocycles

    International Nuclear Information System (INIS)

    Tupitsyn, I.F.

    1986-01-01

    A study was made of the kinetics of deuteroexchange in the methyl group in complexes of one metal [nickel(II)] with different methyl-substituted aromatic heterocycles and in isostructural complexes of one ligand (2-methylquinoline) with different central metal atoms (Mn 2+ , Ni 2+ , Cu 2+ , Zn 2+ ). The order in which the structures of the ligands influence the rate of deuteroexchange in the complexes does not correspond qualitatively with the order of increase in the rate of deuteroexchange in the noncoordinated ligands. The rate of deuteroexchange is only weakly influenced by change in the identity of the metal complex former. A deuteroexchange mechanism is proposed and discussed. A structure arising in the course of the exchange process with transfer of electron density from the heterocyclic ligand to the metal ion forms the transition state of the reaction

  14. Basic deuteroexchange in transition metal complexes with nitrogen-containing aromatic heterocycles

    International Nuclear Information System (INIS)

    Tupitsyn, I.F.

    1986-01-01

    Kinetics of deuteroexchange in the methyl group of nitrate complexes of a metal - nickel (2) - with different methyl-substituted aromatic heterocycles and isostructural complexes of a ligand - 2 - methyl quinoline - with different central metal atoms (Mn(2), Ni(2), Cu(2), Zn(2)) is studied. Series for influence of ligand structure on deuteroexchange rate in complexes doesn't correspond qualitatively to series for deuteroexchange rate increase in noncoordinated ligands. Deuteroexchange rate is weakly subjected to influence of exchange in metal-complexing agent. Deuteroexchange mechanism is suggested and discussed. According to this mechanism the structure developed in the course of the exchange process with electron density transfer from the heterocyclic ligand to a metal ion is a transition state of the reaction

  15. Split and Compensated Hyperfine Fields in Magnetic Metal Clusters

    International Nuclear Information System (INIS)

    Nakamura, H.; Chudo, H.; Shiga, M.; Kohara, T.

    2004-01-01

    As prominent characteristics of magnetic metal cluster found in vanadium sulfides, we point out marked separation and compensation of the hyperfine field at the nuclear site; these are in somewhat discordance with the common sense for 3d transition-metal magnets, where the on-site isotropic field, scaling the ordered moment magnitude, is dominant.

  16. Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Sholl, David S.

    2012-01-01

    Metal organic frameworks (MOFs) have experimentally been demonstrated to be capable of supporting isolated transition-metal clusters, but the stability of these clusters with respect to aggregation is unclear. In this letter we use a genetic algorithm together with density functional theory...... calculations to predict the structure of Pd clusters in UiO-66. The cluster sizes examined are far larger than those in any previous modeling studies of metal clusters in MOFs and allow us to test the hypothesis that the physically separated cavities in UiO-66 could stabilize isolated Pd clusters. Our...... calculations show that Pd clusters in UiO-66 are, at best, metastable and will aggregate into connected pore filling structures at equilibrium....

  17. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    International Nuclear Information System (INIS)

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji; Machida, Motoi; Tatsumoto, Hideki

    2007-01-01

    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics

  18. Stability and aromaticity of nH2@B12N12 (n=1–12 clusters

    Directory of Open Access Journals (Sweden)

    Pratim K. Chattaraj

    2011-04-01

    Full Text Available Standard ab initio and density functional calculations are carried out to determine the structure, stability, and reactivity of B12N12 clusters with hydrogen doping. To lend additional support, conceptual DFT-based reactivity descriptors and the associated electronic structure principles are also used. Related cage aromaticity of this B12N12 and nH2@B12N12 are analyzed through the nucleus independent chemical shift values.

  19. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  20. Metal nanostructures: from clusters to nanocatalysis and sensors

    Science.gov (United States)

    Smirnov, B. M.

    2017-12-01

    The properties of metal clusters and nanostructures composed of them are reviewed. Various existing methods for the generation of intense beams of metal clusters and their subsequent conversion into nanostructures are compared. Processes of the flow of a buffer gas with active molecules through a nanostructure are analyzed as a basis of using nanostructures for catalytic applications. The propagation of an electric signal through a nanostructure is studied by analogy with a macroscopic metal. An analysis is given of how a nanostructure changes its resistance as active molecules attach to its surface and are converted into negative ions. These negative ions induce the formation of positively charged vacancies inside the metal conductor and attract the vacancies to together change the resistance of the metal nanostructure. The physical basis is considered for using metal clusters and nanostructures composed of them to create new materials in the form of a porous metal film on the surface of an object. The fundamentals of nanocatalysis are reviewed. Semiconductor conductometric sensors consisting of bound nanoscale grains or fibers acting as a conductor are compared with metal sensors conducting via a percolation cluster, a fractal fiber, or a bunch of interwoven nanofibers formed in superfluid helium. It is shown that sensors on the basis of metal nanostructures are characterized by a higher sensitivity than semiconductor ones, but are not selective. Measurements using metal sensors involve two stages, one of which measures to high precision the attachment rate of active molecules to the sensor conductor, and in the other one the surface of metal nanostructures is cleaned from the attached molecules using a gas discharge plasma (in particular, capillary discharge) with a subsequent chromatography analysis for products of cleaning.

  1. Experimental studies of the chemistry of metal clusters

    International Nuclear Information System (INIS)

    Parks, E.K.; Riley, S.J.

    1988-01-01

    The procedures for studying chemical reactions of metal clusters in a continuous-flow reactor are described, and examples of such studies are given. Experiments to be discussed include kinetics and thermodynamics measurements, and determination of the composition of clusters saturated with various adsorbate reagents. Specific systems to be covered include the reaction of iron clusters with ammonia and with hydrogen, the reaction of nickel clusters with hydrogen and with ammonia, and the reaction of platinum clusters with ethylene. The last two reactions are characterized by complex, multi-step processes that lead to adsorbate decomposition and hydrogen desorption from the clusters. Methods for probing these processes will be discussed. 26 refs., 8 figs

  2. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  3. Self-assembled metal clusters on an alumina nanomesh

    International Nuclear Information System (INIS)

    Buchsbaum, A.

    2012-01-01

    Template mediated growth of metals has attracted much interest due to the remarkable magnetic and catalytic properties of clusters in the nanometer range and provides the opportunity to grow clusters with narrow size distributions. When the Ni3Al(111) surface is exposed to oxygen at elevated temperature a thin oxide film with a well-defined structure and uniform thickness grows and covers the alloy surface completely. The structure of the alumina film has been solved mainly by the help of scanning tunneling microscopy (STM) combined with density functional theory (DFT) calculations. The structure of the approx. 0.5 nm thick oxide film has sixfold symmetry and exhibits holes with a diameter of approx. 400 pm reaching down to the metal substrate at the corners of the (Sqrt(67) x Sqrt(67))R12.2° unit cell. The side length of the unit cell is 4.1 nm. The driving force for the formation of the oxide nanomesh is the reduction of the metal/oxide interface energy by the formation of energetically favorable Al-Ni bonds at the interface. Due to better wetting of metal on metal surfaces than on oxide surfaces, metal atoms prefer to bind to the substrate in the hole, not to the oxide. Therefore the oxide forms a template with a hexagonal 4.1 nm lattice for the growth of well-ordered metal clusters. Nevertheless, the growth of most metal clusters on top of the corner holes is not straightforward. Fe and Co atoms cannot jump into the corner holes due to a barrier for diffusion and nucleate at their second favorable adsorption site. However, Pd atoms trapped in these corner holes reduce the barrier for diffusion and create metallic nucleation sites where Fe as well as Co clusters can nucleate and form a well-ordered hexagonal arrangement on the oxide nanomesh. We have studied these Fe and Co clusters and applied different methods like STM and surface x-ray diffraction (SXRD) to determine the morphology and crystallography of the clusters. For Fe we found cluster growth with

  4. The effect of alkylating agents on model supported metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. (Pittsburgh Univ., PA (USA). Dept. of Chemical and Petroleum Engineering); Oukaci, R. (CERHYD, Algiers (Algeria))

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  5. Low-energy electron collisions with metal clusters: Electron capture and cluster fragmentation

    International Nuclear Information System (INIS)

    Kresin, V.V.; Scheidemann, A.; Knight, W.D.

    1993-01-01

    The authors have carried out the first measurement of absolute cross sections for the interaction between electrons and size-resolved free metal clusters. Integral inelastic scattering cross sections have been determined for electron-Na n cluster collisions in the energy range from 0.1 eV to 30 eV. At energies ≤1 eV, cross sections increase with decreasing impact energies, while at higher energies they remain essentially constant. The dominant processes are electron attachment in the low-energy range, and collision-induced fragmentation at higher energies. The magnitude of electron capture cross sections can be quantitatively explained by the effect of the strong polarization field induced in the cluster by the incident electron. The cross sections are very large, reaching values of hundreds of angstrom 2 ; this is due to the highly polarizable nature of metal clusters. The inelastic interaction range for fragmentation collisions is also found to considerably exceed the cluster radius, again reflecting the long-range character of electron-cluster interactions. The important role played by the polarization interaction represents a bridge between the study of collision processes and the extensive research on cluster response properties. Furthermore, insight into the mechanisms of electron scattering is important for understanding production and detection of cluster ions in mass spectrometry and related processes

  6. STAR CLUSTERS IN M31. II. OLD CLUSTER METALLICITIES AND AGES FROM HECTOSPEC DATA

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Schiavon, Ricardo; Morrison, Heather; Harding, Paul; Rose, James A.

    2011-01-01

    We present new high signal-to-noise spectroscopic data on the M31 globular cluster (GC) system, obtained with the Hectospec multifiber spectrograph on the 6.5 m MMT. More than 300 clusters have been observed at a resolution of 5 A and with a median S/N of 75 per A, providing velocities with a median uncertainty of 6 km s -1 . The primary focus of this paper is the determination of mean cluster metallicities, ages, and reddenings. Metallicities were estimated using a calibration of Lick indices with [Fe/H] provided by Galactic GCs. These match well the metallicities of 24 M31 clusters determined from Hubble Space Telescope color-magnitude diagrams, the differences having an rms of 0.2 dex. The metallicity distribution is not generally bimodal, in strong distinction with the bimodal Galactic globular distribution. Rather, the M31 distribution shows a broad peak, centered at [Fe/H] = -1, possibly with minor peaks at [Fe/H] = -1.4, -0.7, and -0.2, suggesting that the cluster systems of M31 and the Milky Way had different formation histories. Ages for clusters with [Fe/H] > - 1 were determined using the automatic stellar population analysis program EZ A ges. We find no evidence for massive clusters in M31 with intermediate ages, those between 2 and 6 Gyr. Moreover, we find that the mean ages of the old GCs are remarkably constant over about a decade in metallicity (-0.95∼< [Fe/H] ∼<0.0).

  7. Decontamination of metals and polycyclic aromatic hydrocarbons from slag-polluted soil.

    Science.gov (United States)

    Bisone, Sara; Mercier, Guy; Blais, Jean-François

    2013-01-01

    Metallurgy is an industrial activity that is one of the largest contributors to soil contamination by metals. This contamination is often associated with organic compound contamination; however, little research has been aimed at the development of simultaneous processes for decontamination as opposed to treatments to heavy metals or organic compounds alone. This paper presents an efficient process to decontaminate the soils polluted with smelting by-products rich in Cu, Zn and polycyclic aromatic hydrocarbons (PAHs). A simultaneous treatment for metals and PAHs was also tested. The process is mainly based on physical techniques, such as crushing, gravimetric separation and attrition. For the finest particle size fractions, an acid extraction with H2SO4 was used to remove metals. The PAH removal was enhanced by adding surfactant during attrition. The total metal removals varied from 49% to 73% for Cu and from 43% to 63% for Zn, whereas a removal yield of 92% was measured for total PAHs. Finally, a technical-economic evaluation was done for the two processes tested.

  8. Adsorption and Oxidation of Aromatic Amines on Metal(II Hexacyanocobaltate(III Complexes: Implication for Oligomerization of Exotic Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Rachana Sharma

    2017-03-01

    Full Text Available Based on the hypothesis on the presence of double metal cyanides in the primordial oceans, a series of nano-sized metal(II hexacyanocobaltate(III (MHCCo with the general formula: M3[Co(CN6]2•xH2O (where M = Zn, Fe, Ni and Mn has been synthesized. Surface interaction of aromatic amines, namely aniline, 4-chloroaniline, 4-methylaniline and 4-methoxyaniline with MHCCo particles has been carried out at the concentration range of 100–400 μM at pH~7.0. The percentage binding of aromatic amines on MHCCo surface was found to be in the range of 84%–44%. The trend in adsorption was in accordance to the relative basicity of the studied amines. At the experimental pH, amines reacted rapidly with the surface of the iron(II hexacyanocobaltate, producing colored products that were analyzed by Gas Chromatography Mass Spectroscopy (GC-MS. GC-MS analysis of the colored products demonstrated the formation of dimers of the studied aromatic amines. Surface interaction of aromatic amines with MHCCo was studied by Fourier Transform Infrared (FT-IR spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM. The change in amine characteristic frequencies, as observed by FT-IR, suggests that interaction took place through the NH2 group on amines with metal ions of hexacyanocobaltate complexes. FE-SEM studies revealed the adherence of 4-methoxyaniline on zinc hexacyanocobaltate particles surface. We proposed that MHCCo might have been formed under the conditions on primitive Earth and may be regarded as an important candidate for concentrating organic molecules through the adsorption process.

  9. Improvement of activity and stability of Chondroitinase ABC I by introducing an aromatic cluster at the surface of protein.

    Science.gov (United States)

    Shahaboddin, Mohammad Esmaeil; Khajeh, Khosro; Maleki, Monireh; Golestani, Abolfazl

    2017-10-01

    Chondroitinase ABC I (ChABC I) has been shown to depolymerize a variety of glycosaminoglycan substrates and promote regeneration of damaged spinal cord. However, to date, intrathecal delivery methods have been suboptimal largely due to enzyme instability which necessitates repeated administration to the injured loci. Among the aromatic amino acids, tyrosine has been shown to be more effective in creation of stable clusters and further stabilize of the proteins. Bioinformatics approaches have been used to examine the effect of an extra aromatic cluster at the surface of ChABC I. In this study two amino acids i.e., Asn 806 and Gln 810 were mutated to tyrosine and to alanine as negative control. In this way, four variants i.e., N806Y/Q810Y, N806A/Q810Y, N806Y/Q810A and N806A/Q810A were created. The results showed that N806Y/Q810Y mutation improved both activity and thermal stability of the enzyme while Ala substitution reduced the enzyme activity and destabilized it. Structural analysis of mutants showed an increase in intrinsic fluorescence intensity and secondary structure content of N806Y/Q810Y mutant when compared to the wild type enzyme indicating a more rigid structure of this variant. Moreover, the N806Y/Q810Y enzyme displayed a remarkable resistance against trypsin degradation with a half-life (t 1/2 ) of 45.0min versus 32.5min of wild-type. In conclusion, the data revealed that structural features and activity of ChABC I can be improved by introducing appropriate aromatic clusters at the surface of the enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB

    Directory of Open Access Journals (Sweden)

    Pratick Khara

    2014-01-01

    Full Text Available Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.

  11. Mass spectrometric production of heterogeneous metal clusters using Knudsen cell

    Directory of Open Access Journals (Sweden)

    Veljković Filip M.

    2016-01-01

    Full Text Available Knudsen effusion mass spectrometry or high-temperature method of mass spectrometry for decades gives new information about saturated vapor of hardly volatile compounds and it is an important method in the discovery of many new molecules, radicals, ions and clusters present in the gas phase. Since pioneering works until now, this method has been successfully applied to a large number of systems (ores, oxides, ceramics, glass materials, borides, carbides, sulfides, nitrates, metals, fullerenes, etc which led to the establishment of various research branches such as chemistry of clusters. This paper describes the basic principles of Knudsen cell use for both identification of chemical species created in the process of evaporation and determination of their ionization energies. Depending on detected ions intensities and the partial pressure of each gaseous component, as well as on changes in partial pressure with temperature, Knudsen cell mass spectrometry enables the determination of thermodynamic parameters of the tested system. A special attention is paid to its application in the field of small heterogeneous and homogeneous clusters of alkali metals. Furthermore, experimental results for thermodynamic parameters of some clusters, as well as capabilities of non-standard ways of using Knudsen cells in the process of synthesis of new clusters are presented herein. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  12. Even-Odd Differences and Shape Deformation of Metal Clusters

    OpenAIRE

    Hidetoshi, Nishioka; Yoshio, Takahashi; Department of Physics, Konan University; Faculty of General Education, Yamagata University

    1994-01-01

    The relation between even-odd difference of metal cluster and the deformation of equilibrium shape is studied in terms of two different models; (i) tri-axially deformed harmonic oscillator model, (ii) rectangular box model. Having assumed the matter density ρ kept constant for different shapes of a cluster, we can determine the equilibrium shape both for the two models. The enhancement of HOMO-LUMO gap is obtained and it is ascribed to Jahn-Teller effect. Good agreement of the calculated resu...

  13. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  14. Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand

    NARCIS (Netherlands)

    Eijsink, Linda E; Perdriau, Sébastien C P; de Vries, Johannes G; Otten, Edwin

    2016-01-01

    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition

  15. Effect of addition of a second metal in Mo/ZSM-5 catalyst for methane aromatization reaction under elevated pressures

    Czech Academy of Sciences Publication Activity Database

    Fíla, V.; Bernauer, Milan; Bernauer, B.; Sobalík, Zdeněk

    2015-01-01

    Roč. 256, č. 2 (2015), s. 269-275 ISSN 0920-5861 Grant - others:EU 7th Framework Program(XE) NMP3-LA-2009-229183 Institutional support: RVO:61388955 Keywords : methane * aromatization * metal dopants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.312, year: 2015

  16. [Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing].

    Science.gov (United States)

    Xiang, Li; Li, Ying-Xia; Shi, Jiang-Hong; Liu, Jing-Ling

    2010-01-01

    This paper investigated the contamination levels of heavy metal and polycyclic aromatic hydrocarbons (PAHs) in street dusts in different functional areas in urban Beijing. Results show that the mean concentrations of Cd, Hg, Cr, Cu, Ni, Pb and Zn in street dusts in Beijing are 710 ng/g, 307 ng/g, 85.0 microg/g, 78.3 microg/g, 41.1 microg/g, 69.6 microg/g and 248.5 microg/g, respectively, which are significantly lower than those in most cities around the world and Shenyang, Shanghai in China. The mean concentration of Sigma 16PAHs in street dusts in Beijing is 0.398 microg/g, which is also lower than those of Handan, Tianjin and Shanghai. Non-parametric Friedman test demonstrates significant differences of heavy metal contents on street dusts from different functional zones. Street dusts in residential area and parks have lower heavy metal and PAHs concentrations than the street dusts from areas of high traffic density. The concentrations of heavy metals follow the order Zn > Cr > Cu > Pb > Ni > Cd > Hg, which is consistent with the situation in other cities around the world. The geoaccumulation index analysis shows that street dust in urban Beijing is moderately polluted by Cd, Zn and Cu, little polluted by Cr and Pb and practically unpolluted by Ni. The contamination levels of Sigma 16PAHs on street dusts vary greatly in different functional zones with parks little polluted, residential areas moderately to strongly polluted and traffic related areas strongly polluted to extremely polluted. Mass loading of heavy metals and PAHs is largely associated with street dusts of size range < 300 microm. Therefore, the urban sweeping vehicles should update the dust sweeping devices to remove not only the fine particle but also the coarser particles.

  17. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ogut, Serdar [Univ. of Illinois, Chicago, IL (United States)

    2017-09-11

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyes and metal-organic frameworks.

  18. Scattering of ultrashort electromagnetic pulses on metal clusters

    International Nuclear Information System (INIS)

    Astapenko, V. A.; Sakhno, S. V.

    2016-01-01

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  19. Scattering of ultrashort electromagnetic pulses on metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Astapenko, V. A., E-mail: astval@mail.ru; Sakhno, S. V. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-12-15

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  20. Equilibrium studies of ternary systems containing some selected transition metal ions, triazoles and aromatic carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mohamed Magdy; Radalla, Abd-Elatty; Qasem, Fatma; Khaled, Rehab [Beni-Suef University, Beni-Suef (Egypt)

    2014-01-15

    Solution equilibria of the binary and ternary complex systems of the divalent transition metal ions Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+} with 1,2,4-triazole (TRZ), 3-mercapto-1,2,4-triazole (TRZSH), and 3-amino-1,2,4-triazole (TRZAM) and aromatic carboxylic acids (phthalic, anthranilic, salicylic, and 5-sulfosalicylic acid) have been studied pH-metrically at (25.0±0.1) .deg. C, and a constant ionic strength I=1x10{sup -1} mol L{sup -1} NaNO{sub 3} in an aqueous medium. The potentiometric titration curves show that binary and ternary complexes of these ligands are formed in solution. The stability constants of the different binary and ternary complexes formed were calculated on the basis of computer analysis of the titration data. The relative stability of the different ternary complex species is expressed in terms of Δ log K values, log X and R. S.% parameters. The effect of temperature of the medium on both the proton-ligand equilibria for TRZAM and phthalic acid and their metal-ligand equilibria with Cu{sup 2+}, Ni{sup 2+}, and Co{sup 2+} has been studied along with the corresponding thermodynamic parameters. The complexation behavior of ternary complexes is ascertained using conductivity measurements. In addition, the formation of ternary complexes in solution has been confirmed by using UV-visible spectrophotometry.

  1. FURTHER DEFINITION OF THE MASS-METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Cockcroft, Robert; Harris, William E.; Wehner, Elizabeth M. H.; Whitmore, Bradley C.; Rothberg, Barry

    2009-01-01

    We combine the globular cluster (GC) data for 15 brightest cluster galaxies and use this material to trace the mass-metallicity relations (MMRs) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor subpopulation that corresponds to a scaling of heavy-element abundance with cluster mass Z ∼ M 0.30±0.05 . No trend is seen for the metal-rich subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the GC populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the color-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for GC formation in which the MMR is determined by GC self-enrichment during their brief formation period.

  2. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  3. NMR in metal cluster compounds compared to glasses

    International Nuclear Information System (INIS)

    Staveren, M.P.J. van; Brom, H.B.; Jongh, L.J. de; Schmid, G.

    1991-01-01

    The field and temperature dependence of the 31 P nuclear spin lattice relaxation rate in the metal cluster compound Ru 55 (P(t-Bu) 3 ) 12 Cl 20 follows a power law: 1/T 1 ∝ T n B -m , with n = 1.5 ± 0.1 at 3.25 T and n = 1.3 ± 0.1 at 6.45 T; m ≅ 1.4. Such dependences have so far only been observed in inorganic glasses and been attributed to two level systems. The correspondence suggests that the relaxation rate is due to interaction of the P-nuclear moment with electronic spins of stochastically moving charge carriers, which are thought to be responsible for the electrical conductivity through hopping between neigboring cluster molecules. (orig.)

  4. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  5. Electronic structure of vacancies and vacancy clusters in simple metals

    International Nuclear Information System (INIS)

    Manninen, M.; Nieminen, R.M.

    1978-05-01

    The self-consistent density functional approach has been applied in a study of electronic properties of vacancies and vacancy clusters in simple metals. The electron density profiles and potentials have been obtained for spherical voids of varying size. The formation energies and residual resistivities have been calculated for vacancies using both perturbational and variational inclusion of discrete lattice effects. The relation of the void properties to the plane surface ones is studied, and the inadequacy of the jellium-based methods to high-index faces is demonstrated. (author)

  6. Damage clustering in metals: Importance, advances and challenges

    International Nuclear Information System (INIS)

    Nordlund, K.; Sand, A.E.; Granberg, F.; Levo, E.; Djurabekova, F.

    2016-01-01

    The damage produced in metals has traditionally been primarily characterized in terms of the total damage production, which typically is first estimated with the dpa number. As discussed in previous meetings of this CRP, the dpa is not actually very well suited for typical dense metals, since the number it gives is typically about 3 times larger than the number of actual defects produced, and 30 times smaller than the actual number of defects produced. Hence we developed the improved arc-dpa and rpa standards, that give in a simple analytical form a defect number that does correspond well to MD and experimental data. Section 2 summarizes the development of the arc-dpa and rpa standards. In sections 3 and 4 we discuss the role of damage clustering in damage production

  7. Spectra of matrix isolated metal atoms and clusters

    International Nuclear Information System (INIS)

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  8. Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: Application to polycyclic aromatic hydrocarbon clusters

    Science.gov (United States)

    Rapacioli, Mathias; Spiegelman, Fernand; Talbi, Dahbia; Mineva, Tzonka; Goursot, Annick; Heine, Thomas; Seifert, Gotthard

    2009-06-01

    The density functional based tight binding (DFTB) is a semiempirical method derived from the density functional theory (DFT). It inherits therefore its problems in treating van der Waals clusters. A major error comes from dispersion forces, which are poorly described by commonly used DFT functionals, but which can be accounted for by an a posteriori treatment DFT-D. This correction is used for DFTB. The self-consistent charge (SCC) DFTB is built on Mulliken charges which are known to give a poor representation of Coulombic intermolecular potential. We propose to calculate this potential using the class IV/charge model 3 definition of atomic charges. The self-consistent calculation of these charges is introduced in the SCC procedure and corresponding nuclear forces are derived. Benzene dimer is then studied as a benchmark system with this corrected DFTB (c-DFTB-D) method, but also, for comparison, with the DFT-D. Both methods give similar results and are in agreement with references calculations (CCSD(T) and symmetry adapted perturbation theory) calculations. As a first application, pyrene dimer is studied with the c-DFTB-D and DFT-D methods. For coronene clusters, only the c-DFTB-D approach is used, which finds the sandwich configurations to be more stable than the T-shaped ones.

  9. Order and chaos in nuclear and metal cluster deformation

    International Nuclear Information System (INIS)

    Radu, S.

    1995-08-01

    The vast amount of nuclear and metal cluster data indicates that shell structure and deformation are two simultaneous properties. A conflicting situation is therefore encountered as the shell structure, a firm expression of order, is apparently not compatible with the non-integrable nature of the models incorporating deformation. The main issue covered in this thesis is the intricate connection between deformation and chaotic behaviour in deformation models pertinent to nuclear structure and metal cluster physics. It is shown that, at least in some cases, it is possible to reconcile the occurrence of shell structure with non-integrability. The coupling of an axially deformed harmonic oscillator to an axially symmetric octupole term renders the problem non-integrable. The chaotic character of the motion is strongly dependent on the type of deformation, in that a prolate shape shows virtually no chaos, while in an oblate case the motion exhibits fully developed chaos when the octupole term is switched on. Whereas the problem is non-integrable, the quantum mechanical spectrum nevertheless shows some shell structure in the prolate case for particular, yet fairly large octupole strengths; for spherical or oblate deformation the shell structure disappears. This result is explained in terms of classical periodic orbits which are found by employing the 'removal of resonances method'. Particular emphasis is put on the effect of the hexadecapole deformation which is important in fission processes. The combined effect of octupole and hexadecapole deformation leads to important conclusions for the experimental work as a high degree of ambiguity is signaled for the interpretation of data. The ambiguity results from the discovery of a mutual cancellation of the octupole and hexadecapole deformation in prolate superdeformed systems. The phenomenological Nilsson model is treated in a similar way. It is argued that while in nuclei it produces good results for the low-lying levels

  10. Sulphur in the metal poor globular cluster NGC 6397

    Science.gov (United States)

    Koch, A.; Caffau, E.

    2011-10-01

    Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Shijian Zhou

    2018-02-01

    Full Text Available Ordered mesoporous silicas (OMSs attract considerable attention due to their advanced structural properties. However, for the pristine silica materials, the inert property greatly inhibits their catalytic applications. Thus, to contribute to the versatile surface of OMSs, different metal active sites, including acidic/basic sites and redox sites, have been introduced into specific locations (mesoporous channels and framework of OMSs and the metal-functionalized ordered mesoporous silicas (MOMSs show great potential in the catalytic applications. In this review, we first present the categories of metal active sites. Then, the synthesized processes of MOMSs are thoroughly discussed, in which the metal active sites would be introduced with the assistance of organic groups into the specific locations of OMSs. In addition, the structural morphologies of OMSs are elaborated and the catalytic applications of MOMSs in the oxidation of aromatic compounds are illustrated in detail. Finally, the prospects for the future development in this field are proposed.

  12. Catalytic properties of graphene–metal nanoparticle hybrid prepared using an aromatic amino acid as the reducing agent

    International Nuclear Information System (INIS)

    Adhikari, Bimalendu; Banerjee, Arindam

    2013-01-01

    An easy and single step process of making reduced graphene oxide nanosheet from graphene oxide (GO) in water medium has been demonstrated by using a naturally occurring non-proteinaceous amino acid (2,4-dihydroxy phenyl alanine, Dopa) as a new reducing agent and stabilizing agent. This amino acid has also been used to reduce the noble metal salt (AuCl 3 /AgNO 3 ) to produce the corresponding noble metal nanoparticles (MNP) without using any external reducing and stabilizing agents. So, this amino acid has been used to reduce simultaneously GO to RGO and noble metal salts to produce corresponding MNP to form RGO–MNP nanohybrid system in a single step in water medium and also in absence of any external toxic reducing and stabilizing agents. Different techniques UV–Visible absorption spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscopy and others have been used to characterize the reduction of GO to RGO, metal salts to produce corresponding MNPs and the formation of RGO–MNP nanohybrid systems. Moreover, this metal nanoparticle containing RGO–MNP nanohybrid system acts as a potential catalyst for the reduction of aromatic nitro to aromatic amino group. - Graphical abstract: This study demonstrates an easy, single step and eco-friendly method to make RGO and Au/AgNP simultaneously from respective precursors to form a RGO–Au/AgNP nanohybrid system using an aromatic amino acid (2,4-dihydroxy phenyl alanine, Dopa) as a new reducing agent as well as stabilizing agent in water medium. Highlights: ► Synthesis of reduced graphene oxide (RGO) nanosheet using an amino acid. ► The amino acid (Dopa) can reduce noble metal salt (Au 3+ /Ag + ) to metal nanoparticle (MNP). ► Single step and eco-friendly synthesis of RGO-MNP nanohybrid using Dopa. ► Characterization of RGO, MNP and RGO–MNP nanohybrid. ► RGO-MNP nanohybrid acts as a catalyst for the reduction of aromatic nitro

  13. Structure and Mobility of Metal Clusters in MOFs: Au, Pd, and AuPd Clusters in MOF-74

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Walton, Krista S.; Sholl, David S.

    2012-01-01

    is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster......Understanding the adsorption and mobility of metal–organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density...... functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au8, Pd8, and Au4Pd4 we find that the organic part of the MOF...

  14. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    Science.gov (United States)

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  15. The influence of baking fuel on residues of polycyclic aromatic hydrocarbons and heavy metals in bread.

    Science.gov (United States)

    Ahmed, M T; Abdel Hadi el-S; el-Samahy, S; Youssof, K

    2000-12-30

    The influence of fuel type used to bake bread on the spectrum and concentrations of some polycyclic aromatic hydrocarbons and heavy metals in baked bread was assessed. Bread samples were collected from different bakeries operated by either electricity, solar, mazot or solid waste and their residue content of PAHs and heavy metals was assessed. The total concentration of PAHs detected in mazot, solar, solid waste and electricity operated bakeries had an average of 320.6, 158.4, 317.3 and 25.5 microgkg(-1), respectively. Samples collected from mazot, solar and solid waste operated bakeries have had a wide spectrum of PAHs, in comparison to that detected in bread samples collected from electricity operated bakeries. Lead had the highest concentrations in the four groups of bread samples, followed by nickel, while the concentrations of zinc and cadmium were the least. The concentration of lead detected in bread samples produced from mazot, solar, solid waste and electricity fueled bakeries were 1375.5, 1114, 1234, and 257.3 microgkg(-1), respectively. Estimated daily intake of PAHs based on bread consumption were 48.2, 28.5, 80. 1, and 4.8 microg per person per day for bread produced in bakeries using mazot, solar, solid waste and electricity, respectively. Meanwhile, the estimated daily intake of benzo (a) pyrene were 3.69, 2.65, 8.1, and 0.81 microg per person per day for bread sample baked with mazot, solar, solid waste and electricity, respectively. The daily intake of lead, based on bread consumption was 291, 200.5, 222, and 46.31 microg per person per day for bread sample baked with mazot, solar, solid waste and electricity, respectively. The present work has indicated the comparatively high level of daily intake of benzo (a) pyrene and lead in comparison to levels reported from many other countries and those recommended by international regulatory bodies. It is probable that residues detected in bread samples are partially cereal-borne but there is strong

  16. [Sb{sub 4}Au{sub 4}Sb{sub 4}]{sup 2−}: A designer all-metal aromatic sandwich

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wen-Juan; You, Xue-Rui [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); Guo, Jin-Chang [Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000 (China); Li, Da-Zhi, E-mail: hj.zhai@sxu.edu.cn, E-mail: ldz005@126.com [Department of Chemical Engineering, Binzhou University, Binzhou 256603 (China); Wang, Ying-Jin [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000 (China); Sun, Zhong-Ming [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhai, Hua-Jin, E-mail: hj.zhai@sxu.edu.cn, E-mail: ldz005@126.com [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006 (China)

    2016-07-28

    We report on the computational design of an all-metal aromatic sandwich, [Sb{sub 4}Au{sub 4}Sb{sub 4}]{sup 2−}. The triple-layered, square-prismatic sandwich complex is the global minimum of the system from Coalescence Kick and Minima Hopping structural searches. Following a standard, qualitative chemical bonding analysis via canonical molecular orbitals, the sandwich complex can be formally described as [Sb{sub 4}]{sup +}[Au{sub 4}]{sup 4−}[Sb{sub 4}]{sup +}, showing ionic bonding characters with electron transfers in between the Sb{sub 4}/Au{sub 4}/Sb{sub 4} layers. For an in-depth understanding of the system, one needs to go beyond the above picture. Significant Sb → Au donation and Sb ← Au back-donation occur, redistributing electrons from the Sb{sub 4}/Au{sub 4}/Sb{sub 4} layers to the interlayer Sb–Au–Sb edges, which effectively lead to four Sb–Au–Sb three-center two-electron bonds. The complex is a system with 30 valence electrons, excluding the Sb 5s and Au 5d lone-pairs. The two [Sb{sub 4}]{sup +} ligands constitute an unusual three-fold (π and σ) aromatic system with all 22 electrons being delocalized. An energy gap of ∼1.6 eV is predicted for this all-metal sandwich. The complex is a rare example for rational design of cluster compounds and invites forth-coming synthetic efforts.

  17. Contribution of radiation chemistry to the study of metal clusters.

    Science.gov (United States)

    Belloni, J

    1998-11-01

    Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development.

  18. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    KAUST Repository

    Gentile, Francesco

    2014-04-03

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  19. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    KAUST Repository

    Gentile, Francesco; Laura Coluccio, Maria; Candeloro, Patrizio; Barberio, Marianna; Perozziello, Gerardo; Francardi, Marco; Di Fabrizio, Enzo M.

    2014-01-01

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  20. Entrapment of metal clusters in metal-organic framework channels by extended hooks anchored at open metal sites.

    Science.gov (United States)

    Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui

    2013-07-17

    Reported here are the new concept of utilizing open metal sites (OMSs) for architectural pore design and its practical implementation. Specifically, it is shown here that OMSs can be used to run extended hooks (isonicotinates in this work) from the framework walls to the channel centers to effect the capture of single metal ions or clusters, with the concurrent partitioning of the large channel spaces into multiple domains, alteration of the host-guest charge relationship and associated guest-exchange properties, and transfer of OMSs from the walls to the channel centers. The concept of the extended hook, demonstrated here in the multicomponent dual-metal and dual-ligand system, should be generally applicable to a range of framework types.

  1. Magnetic properties of free alkali and transition metal clusters

    International Nuclear Information System (INIS)

    Heer, W. de; Milani, P.; Chatelain, A.

    1991-01-01

    The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10< N<500) show that the paramagnetic alkali clusters always have a nondeflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossing which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases. (orig.)

  2. Plasmon resonances in large noble-metal clusters

    International Nuclear Information System (INIS)

    Soennichsen, C; Franzl, T; Wilk, T; Plessen, G von; Feldmann, J

    2002-01-01

    We investigate the optical properties of spherical gold and silver clusters with diameters of 20 nm and larger. The light scattering spectra of individual clusters are measured using dark-field microscopy, thus avoiding inhomogeneous broadening effects. The dipolar plasmon resonances of the clusters are found to have nearly Lorentzian line shapes. With increasing size we observe polaritonic red-shifts of the plasmon line and increased radiation damping for both gold and silver clusters. Apart from some cluster-to-cluster variations of the plasmon lines, agreement with Mie theory is reasonably good for the gold clusters. However, it is less satisfactory for the silver clusters, possibly due to cluster faceting or chemical effects

  3. Shell structures and chaos in nuclei and large metallic clusters

    International Nuclear Information System (INIS)

    Heiss, W.D.; University of the Witwatersrand, Johannesburg; Nazmitdinov, R.G.; Radu, S.; University of the Witwatersrand, Johannesburg

    1995-01-01

    A reflection-asymmetric deformed oscillator potential is analyzed from the classical and quantum mechanical point of view. The connection between occurrence of shell structures and classical periodic orbits is studied using the ''removal of resonances method'' in a classical analysis. In this approximation, the effective single particle potential becomes separable and the frequencies of the classical trajectories are easily determined. It turns out that the winding numbers calculated in this way are in good agreement with the ones found from the corresponding quantum mechanical spectrum using the particle number dependence of the fluctuating part of the total energy. When the octupole term is switched on it is found that prolate shapes are stable against chaos and can exhibit shells where spherical and oblate cases become chaotic. An attempt is made to explain this difference in the quantum mechanical context by looking at the distribution of exceptional points which results from the matrix structure of the respective Hamiltonians. In a similar way we analyze the modified Nilsson model and discuss its consequences for metallic clusters. (orig.)

  4. Aromatic Polyketide GTRI-02 is a Previously Unidentified Product of the act Gene Cluster in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Wu, Changsheng; Ichinose, Koji; Choi, Young Hae; van Wezel, Gilles P

    2017-07-18

    The biosynthesis of aromatic polyketides derived from type II polyketide synthases (PKSs) is complex, and it is not uncommon that highly similar gene clusters give rise to diverse structural architectures. The act biosynthetic gene cluster (BGC) of the model actinomycete Streptomyces coelicolor A3(2) is an archetypal type II PKS. Here we show that the act BGC also specifies the aromatic polyketide GTRI-02 (1) and propose a mechanism for the biogenesis of its 3,4-dihydronaphthalen-1(2H)-one backbone. Polyketide 1 was also produced by Streptomyces sp. MBT76 after activation of the act-like qin gene cluster by overexpression of the pathway-specific activator. Mining of this strain also identified dehydroxy-GTRI-02 (2), which most likely originated from dehydration of 1 during the isolation process. This work shows that even extensively studied model gene clusters such as act of S. coelicolor can still produce new chemistry, offering new perspectives for drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    Science.gov (United States)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  6. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    Science.gov (United States)

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  7. Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst

    International Nuclear Information System (INIS)

    Kim, Han-Gyu; Yang, Yoon-Cheol; Jeong, Kwang-Eun; Kim, Tae-Wan; Jeong, Soon-Yong; Kim, Chul-Ung; Jhung, Sung Hwa; Lee, Kwan-Young

    2013-01-01

    The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/Al 2 ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption (NH3-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/Al 2 ratio of ZSM-5 is about 50-80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of 437 .deg. C and WHSV of 0.8 h −1

  8. Magnetic behavior of clusters of ferromagnetic transition metals

    DEFF Research Database (Denmark)

    Khanna, S. N.; Linderoth, Søren

    1991-01-01

    The effective magnetic moments of small iron and cobalt clusters have been calculated by assuming that the clusters undergo superparamagnetic relaxation. The effective moments per atom are found to be much below the bulk values, even at low temperatures (100 K). They increase with particle size a...... moments in small clusters compared to bulk as being due to melting of surface spins....

  9. Chemisorption on size-selected metal clusters: activation barriers and chemical reactions for deuterium and aluminum cluster ions

    International Nuclear Information System (INIS)

    Jarrold, M.F.; Bower, J.E.

    1988-01-01

    The authors describe a new approach to investigating chemisorption on size-selected metal clusters. This approach involves investigating the collision-energy dependence of chemisorption using low-energy ion beam techniques. The method provides a direct measure of the activation barrier for chemisorption and in some cases an estimate of the desorption energy as well. They describe the application of this technique to chemisorption of deuterium on size-selected aluminum clusters. The activation barriers increase with cluster size (from a little over 1 eV for Al 10 + to around 2 eV for Al 27 + ) and show significant odd-even oscillations. The activation barriers for the clusters with an odd number of atoms are larger than those for the even-numbered clusters. In addition to chemisorption of deuterium onto the clusters, chemical reactions were observed, often resulting in cluster fragmentation. The main products observed were Al/sub n-1/D + , Al/sub n-2/ + , and Al + for clusters with n + and Al/sub n-1/D + for the larger clusters

  10. Tuning dispersion correction in DFT-D2 for metal-molecule interactions: A tailored reparameterization strategy for the adsorption of aromatic systems on Ag(1 1 1)

    Science.gov (United States)

    Schiavo, Eduardo; Muñoz-García, Ana B.; Barone, Vincenzo; Vittadini, Andrea; Casarin, Maurizio; Forrer, Daniel; Pavone, Michele

    2018-02-01

    Common local and semi-local density functionals poorly describe the molecular physisorption on metal surfaces due to the lack of dispersion interactions. In the last decade, several correction schemes have been proposed to amend this fundamental flaw of Density Functional Theory. Using the prototypical case of aromatic molecules adsorbed on Ag(1 1 1), we discuss the accuracy of different dispersion-correction methods and present a reparameterization strategy for the simple and effective DFT-D2. For the adsorption of different aromatic systems on the same metallic substrate, good results at feasible computational costs are achieved by means of a fitting procedure against MP2 data.

  11. Living Colloidal Metal Particles from Solvated Metal Atoms. Clustering of Metal Atoms in Organic Media 15.

    Science.gov (United States)

    1986-09-23

    attributed to these solutions, especially toward heart disease. And in 1618 Antoni published Panacea Aurea : Auro Potabile 4 which centered on the...probably a slow process (discussed next under the electrophoresis section ). Electrophoresis: Electrophoresis, the movement of charged particles in...electrical properties. Experimental Section Preparation of a Typical Au-Acetone Colloid The metal atom reactor has been described previo sly. 3 9 ’ 5 9 ’ 6 0

  12. Size dependent magnetism of mass selected deposited transition metal clusters

    International Nuclear Information System (INIS)

    Lau, T.

    2002-05-01

    The size dependent magnetic properties of small iron clusters deposited on ultrathin Ni/Cu(100) films have been studied with circularly polarised synchrotron radiation. For X-ray magnetic circular dichroism studies, the magnetic moments of size selected clusters were aligned perpendicular to the sample surface. Exchange coupling of the clusters to the ultrathin Ni/Cu(100) film determines the orientation of their magnetic moments. All clusters are coupled ferromagnetically to the underlayer. With the use of sum rules, orbital and spin magnetic moments as well as their ratios have been extracted from X-ray magnetic circular dichroism spectra. The ratio of orbital to spin magnetic moments varies considerably as a function of cluster size, reflecting the dependence of magnetic properties on cluster size and geometry. These variations can be explained in terms of a strongly size dependent orbital moment. Both orbital and spin magnetic moments are significantly enhanced in small clusters as compared to bulk iron, although this effect is more pronounced for the spin moment. Magnetic properties of deposited clusters are governed by the interplay of cluster specific properties on the one hand and cluster-substrate interactions on the other hand. Size dependent variations of magnetic moments are modified upon contact with the substrate. (orig.)

  13. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.1; monometallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.C.; Sayers, D.A.

    1993-01-01

    The structural information found using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to nanometer scale metallic clusters. (author)

  14. An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics

    Science.gov (United States)

    Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich

    2018-02-01

    A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.

  15. The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films

    International Nuclear Information System (INIS)

    Barborini, E; Bertolini, G; Repetto, P; Leccardi, M; Vinati, S; Corbelli, G; Milani, P

    2010-01-01

    We have studied in situ the evolution of the electrical resistivity of Fe, Pd, Nb, W and Mo cluster-assembled films during their growth by supersonic cluster beam deposition. We observed resistivity of cluster-assembled films several orders of magnitude larger than the bulk, as well as an increase in resistivity by increasing the film thickness in contrast to what was observed for atom-assembled metallic films. This suggests that the nanoscale morphological features typical of ballistic films growth, such as the minimal cluster-cluster interconnection and the evolution of surface roughness with thickness, are responsible for the observed behaviour.

  16. Mass spectrometric probes of metal cluster distributions and metastable ion decay

    International Nuclear Information System (INIS)

    Parks, E.K.; Liu, K.; Cole, S.K.; Riley, S.J.

    1988-01-01

    The study of metal clusters has provided both an opportunity and a challenge to the application of mass spectrometry. These days the most often-used technique for cluster generation - laser vaporization - leads to extensive distributions of cluster sizes, from one to perhaps thousands of atoms, and most studies reported to date use excimer laser ionization and time-of-flight mass spectrometry for cluster detection. Our apparatus is a simple one-stage TOF design employing Wiley-McLauren spatial focusing and a one-meter drift tube. In a second apparatus employing a pulsed valve in the cluster source, we see asymmetric broadening of niobium cluster mass peaks under multiphoton ionization conditions, indicating metastable decay of parent cluster ions. Other studies of niobium clusters have shown no such asymmetric peaks. 2 figs

  17. Energy Characteristics of Small Metal Clusters Containing Vacancies

    Science.gov (United States)

    Reva, V. I.; Pogosov, V. V.

    2018-02-01

    Self-consistent calculations of spatial distributions of electrons, potentials, and energies of dissociation, cohesion, vacancy formation, and electron attachment, as well as the ionization potential of solid Al N , Na N clusters ( N ≥ 254), and clusters containing a vacancy ( N ≥ 12) have been performed using a model of stable jellium. The contribution of a monovacancy to the energy of the cluster, the size dependences of the characteristics, and their asymptotic forms have been considered. The calculations have been performed on the SKIT-3 cluster at the Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine (Rpeak = 7.4 Tflops).

  18. 25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

  19. Properties and origin of the old, metal rich, star cluster, NGC 6791

    OpenAIRE

    Carraro, Giovanni

    2013-01-01

    In this contribution I summarize the unique properties of the old, metal rich, star cluster NGC 6791, with particular emphasis on its population of extreme blue horizontal branch stars. I then conclude providing my personal view on the origin of this fascinating star cluster.

  20. Structure Determination of Anionic Metal Clusters via Infrared Resonance Enhanced Multiple Photon Electron Detachment Spectroscopy

    NARCIS (Netherlands)

    Haertelt, M.; Lapoutre, V. J. F.; Bakker, J. M.; Redlich, B.; Harding, D. J.; Fielicke, A.; Meijer, G.

    2011-01-01

    We report vibrational spectra of anionic metal clusters, measured via electron detachment following resonant absorption of multiple infrared photons. To facilitate the sequential absorption of the required large number of photons, the cluster beam interacts with the infrared radiation inside the

  1. Van der Waals coefficients for alkali metal clusters and their size

    Indian Academy of Sciences (India)

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, ...

  2. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties

    Science.gov (United States)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2017-10-01

    The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi4, NLi5, CLi6, BLI7 and Al12Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability (β ) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV-visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.

  3. Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua

    DEFF Research Database (Denmark)

    Scheibye, Katrine; Weisser, Johan Juhl; Borggaard, Ole K.

    2014-01-01

    Selected metals and polycyclic aromatic hydrocarbons (PAHs) were analyzed in sediment samples from 24 sites in Lake Nicaragua sampled May 2010 to provide a baseline of pollution levels. Cu exceeded the Consensus-Based Sediment Quality Guideline (CBSQG) Threshold Effect Concentrations (TECs) at 21...... showed that the CBSQG TECs were exceeded by naphthalene at five sites. The sum concentrations of the 16 US EPA priority PAHs (∑PAH16) ranged from 0.01mgkg(-1)dw to 0.64mgkg(-1)dw. The highest ∑PAH16 concentration was found upstream in River Mayales and the PAH composition revealed a heavy PAH fraction (e....... This study concluded that areas of Lake Nicaragua represent an important pollution baseline for future studies in this lake and other tropical lakes....

  4. Metallicity Variations in the Type II Globular Cluster NGC 6934

    Science.gov (United States)

    Marino, A. F.; Yong, D.; Milone, A. P.; Piotto, G.; Lundquist, M.; Bedin, L. R.; Chené, A.-N.; Da Costa, G.; Asplund, M.; Jerjen, H.

    2018-06-01

    The Hubble Space Telescope photometric survey of Galactic globular clusters (GCs) has revealed a peculiar “chromosome map” for NGC 6934. In addition to a typical sequence, similar to that observed in Type I GCs, NGC 6934 displays additional stars on the red side, analogous to the anomalous Type II GCs, as defined in our previous work. We present a chemical abundance analysis of four red giants in this GC. Two stars are located on the chromosome map sequence common to all GCs, and another two lie on the additional sequence. We find (i) star-to-star Fe variations, with the two anomalous stars being enriched by ∼0.2 dex. Because of our small-size sample, this difference is at the ∼2.5σ level. (ii) There is no evidence for variations in the slow neutron-capture abundances over Fe, at odds with what is often observed in anomalous Type II GCs, e.g., M 22 and ω Centauri (iii) no large variations in light elements C, O, and Na, compatible with locations of the targets on the lower part of the chromosome map where such variations are not expected. Since the analyzed stars are homogeneous in light elements, the only way to reproduce the photometric splits on the sub-giant (SGB) and the red giant (RGB) branches is to assume that red RGB/faint SGB stars are enhanced in [Fe/H] by ∼0.2. This fact corroborates the spectroscopic evidence of a metallicity variation in NGC 6934. The observed chemical pattern resembles only partially the other Type II GCs, suggesting that NGC 6934 might belong either to a third class of GCs, or be a link between normal Type I and anomalous Type II GCs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and Gemini Telescope at Canada–France–Hawaii Telescope.

  5. Health Risk Assessment for Trace Metals, Polycyclic Aromatic Hydrocarbons and Trihalomethanes in Drinking Water of Cankiri, Turkey

    Directory of Open Access Journals (Sweden)

    Emrah Caylak

    2012-01-01

    Full Text Available Lifetime exposure to trace metals, pesticides, polycyclic aromatic hydrocarbons (PAHs, trihalomethanes (THMs, and the other chemicals in drinking water through ingestion, and dermal contact may pose risks to human health. In this study, drinking water samples were collected from 50 sampling sites from Cankiri and its towns during 2010. The concentrations of all pollutants were analyzed, and then compared with permissible limits set by Turkish and WHO. For health risk assessment of trace metals, chronic daily intakes (CDIs via ingestion and dermal contact, hazard quotient (HQ, and hazard index (HI were calculated by using statistical formulas. For ingestion pathway, the maximum HQ values of As-non cancer in central Cankiri and Kursunlu town were higher than one. Considering dermal adsorption pathway, the mean and maximum HQ values were below one. HI values of As-non cancer in central Cankiri and Kursunlu town were also higher than one. Each trace metal (As-non cancer, B, Cd, Cr, Pb, and Sb of the mean HI values were slightly below unity. Risks of As, PAHs, THMs, and benzene on human health were then evaluated using carcinogenic risk (CR. It is indicated that CRs of As and THMs were also found >10−5 in drinking water of Cankiri might exert potential carcinogenic risk for people. These assessments would point out required drinking water treatment strategy to ensure safety of consumers.

  6. Loadings of polynuclear aromatic compounds and metals to the Athabasca River watershed by oil sands mining and processing

    International Nuclear Information System (INIS)

    Hodson, P.V.

    2010-01-01

    The contribution of oil sands operations to pollution in the Athabasca River has not yet been determined. Wastes from oil sands processes include recycled water, sand, silt, clay, bitumen, and polycyclic aromatic compounds (PAC) and metals. Upgrading processes can also release significant quantities of PAC and heavy metals. This paper discussed a study in which PAC and metals in the snow pack and river water of the Athabasca watershed were assessed. The study showed that the oil sands industry is a significant source of contamination. The equivalent of 600 T of bitumen was observed at sites within 50 km of oil sands upgrading facilities. The strongest contamination signals occurred during the summer months, which suggested that the surface run-off of contaminated water was related to recent oil sands developments. Samples taken from tributaries in watersheds with little or no development indicated that increased concentrations of oil sands related contaminants were not caused by natural erosion. The contaminants may contribute to higher levels of mercury (Hg) and cadmium (Cd) in the flesh of fish and wildlife and increase toxicity to the embryos of spring-spawning fish.

  7. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    International Nuclear Information System (INIS)

    Luther, George W.; Rickard, David T.

    2005-01-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA

  8. Formation of metal clusters in halloysite clay nanotubes

    Science.gov (United States)

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-12-01

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

  9. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    Science.gov (United States)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  10. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  11. Exposure and risk analysis to particulate matter, metals, and polycyclic aromatic hydrocarbon at different workplaces in Argentina.

    Science.gov (United States)

    Colman Lerner, Jorge Esteban; Elordi, Maria Lucila; Orte, Marcos Agustin; Giuliani, Daniela; de Los Angeles Gutierrez, Maria; Sanchez, EricaYanina; Sambeth, Jorge Enrique; Porta, Atilio Andres

    2018-03-01

    In order to estimate air quality at work environments from small and medium-sized enterprises (SMEs), we determined both the concentration of particulate matter (PM 10 and PM 2.5 ) and the presence of polycyclic aromatic hydrocarbons (PAHs), as the heavy metals in the composition of the particulate matter. Three SMEs located in the city of La Plata, Argentina, were selected: an electromechanical repair and car painting center (ERCP), a sewing work room (SWR), and a chemical analysis laboratory (CAL). The results evidenced high levels of PM exceeding the limits allowed by the USEPA and the presence of benzo(k)fluoranthene in all the analyzed sites and benzo(a)pyrene in the most contaminated site (ERCP). Regarding metals, the presence of Cd, Ni, Cu, Pb, and Mn, mainly in the fraction of PM 2.5 , in the same workplace was found. As far as risk assessment at all the workplaces surveyed is concerned, risk values for contracting cancer throughout life for exposed workers (LCR) did not comply with the parameters either of USEPA or of WHO (World Health Organization).

  12. First-principles studies on graphene-supported transition metal clusters

    International Nuclear Information System (INIS)

    Sahoo, Sanjubala; Khanna, Shiv N.; Gruner, Markus E.; Entel, Peter

    2014-01-01

    Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM 13 (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the binding strength of the TM cluster on to the graphene substrate. Among TM 13 clusters, Co 13 is absorbed relatively more strongly on pristine and defective graphene as compared to Fe 13 and Ni 13 clusters. The adsorbed clusters show reduced magnetic moment compared to the free clusters

  13. Computer simulations of small semiconductor and metal clusters

    International Nuclear Information System (INIS)

    Andreoni, W.

    1991-01-01

    A brief survey is presented of recent simulations of small clusters, made with both ab-initio and classical approaches, with particular emphasis on the application of the Car-Parrinello method. The discussion mainly focusses on the structural properties of a variety of materials and on the effects of temperature. (orig.)

  14. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18...

  15. Measuring age differences among globular clusters having similar metallicities - A new method and first results

    International Nuclear Information System (INIS)

    Vandenberg, D.A.; Bolte, M.; Stetson, P.B.

    1990-01-01

    A color-difference technique for estimating the relative ages of globular clusters with similar chemical compositions on the basis of their CM diagrams is described and demonstrated. The theoretical basis and implementation of the procedure are explained, and results for groups of globular clusters with m/H = about -2, -1.6, and -1.3, and for two special cases (Palomar 12 and NGC 5139) are presented in extensive tables and graphs and discussed in detail. It is found that the more metal-deficient globular clusters are nearly coeval (differences less than 0.5 Gyr), whereas the most metal-rich globular clusters exhibit significant age differences (about 2 Gyr). This result is shown to contradict Galactic evolution models postulating halo collapse in less than a few times 100 Myr. 77 refs

  16. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  17. Metallicity in galactic clusters from high signal-to-noise spectroscopy

    International Nuclear Information System (INIS)

    Boesgaard, A.M.

    1989-01-01

    High-quality spectroscopic data on selected F dwarfs in six Galactic clusters are used to determine global (Fe/H) values for the clusters. For the two youngest clusters, Pleiades and Alpha Per, the (Fe/H) values are solar: 0.017 + or - 0.055. The Hyades and Praesepe are slightly metal-enhanced at (Fe/H) = + 0.125 + or - 0.032, even though they are an order of magnitude older than the Pleiades. Coma and the UMa Group at the age of the Hyades are slightly metal-deficient with (Fe/H) = - 0.082 + or - 0.039. The lack of an age-metallicity relationship indicates that the enrichment and mixing in the Galactic disk have not been uniform on time scales less than a billion years. 39 references

  18. Nonequilibrium electron energy-loss kinetics in metal clusters

    CERN Document Server

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  19. Highly Fluorescent Group 13 Metal Complexes with Cyclic, Aromatic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Moore, Evan G.; Raymond, Kenneth N.

    2008-02-11

    The neutral complexes of two ligands based on the 1-oxo-2-hydroxy-isoquinoline (1,2-HOIQO) motif with group 13 metals (Al, Ga, In) show bright blue-violet luminescence in organic solvents. The corresponding transition can be attributed to ligand-centered singlet emission, characterized by a small Stokes shifts of only a few nm combined with lifetimes in the range between 1-3 ns. The fluorescence efficiency is high, with quantum yields of up to 37% in benzene solution. The crystal structure of one of the indium(III) complexes (trigonal space group R-3, a = b = 13.0384(15) {angstrom}, c = 32.870(8) {angstrom}, ? = {beta} = 90{sup o}, {gamma} = 120{sup o}, V = 4839.3(14) {angstrom}{sup 3}, Z = 6) shows a six-coordinate geometry around the indium center which is close to trigonal-prismatic, with a twist angle between the two trigonal faces of 20.7{sup o}. Time-dependent density functional theory (TD-DFT) calculations (Al and Ga: B3LYP/6-31G(d)); In: B3LYP/LANL2DZ of the fac and mer isomers with one of the two ligands indicate that there is no clear preference for either one of the isomeric forms of the metal complexes. In addition, the metal centers do not have a significant influence on the electronic structure, and as a consequence, on the predominant intraligand optical transitions.

  20. Electronic properties of large metal clusters in Jellium and pseudo-jellium models

    International Nuclear Information System (INIS)

    Catara, F.; Van Giai, N.; Chomaz, P.

    1994-08-01

    The energy-density functional approach and jellium-like models are used to examine two important electronic properties of metal (Li, Na, K) clusters: their shell and supershell structures, and the behaviour of plasmon energies with increasing cluster sizes. A comparative study is made between predictions of the usual jellium model and those of the pseudo-jellium model where pseudo-Hamiltonians are used. (authors) 10 figs., 5 tabs., 16 refs

  1. METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, F.; Daddi, E.; Strazzullo, V.; Gobat, R.; Bournaud, F.; Juneau, S.; Zanella, A. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Onodera, M.; Carollo, M. [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Renzini, A. [INAF-Osservatorio Astronomico di Padova Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Arimoto, N., E-mail: francesco.valentino@cea.fr [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States)

    2015-03-10

    We investigate the environmental effect on the metal enrichment of star-forming galaxies (SFGs) in the farthest spectroscopically confirmed and X-ray-detected cluster, CL J1449+0856 at z = 1.99. We combined Hubble Space Telescope/WFC3 G141 slitless spectroscopic data, our thirteen-band photometry, and a recent Subaru/Multi-object InfraRed Camera and Spectrograph (MOIRCS) near-infrared spectroscopic follow-up to constrain the physical properties of SFGs in CL J1449+0856 and in a mass-matched field sample. After a conservative removal of active galactic nuclei, stacking individual MOIRCS spectra of 6 (31) sources in the cluster (field) in the mass range 10 ≤ log(M/M{sub ⊙}) ≤ 11, we find a ∼4σ lower [N ii]/Hα ratio in the cluster than in the field. Stacking a subsample of 16 field galaxies with Hβ and [O iii] in the observed range, we measure an [O iii]/Hβ ratio fully compatible with the cluster value. Converting these ratios into metallicities, we find that the cluster SFGs are up to 0.25 dex poorer in metals than their field counterparts, depending on the adopted calibration. The low metallicity in cluster sources is confirmed using alternative indicators. Furthermore, we observe a significantly higher Hα luminosity and equivalent width in the average cluster spectrum than in the field. This is likely due to the enhanced specific star formation rate; even if lower dust reddening and/or an uncertain environmental dependence on the continuum-to-nebular emission differential reddening may play a role. Our findings might be explained by the accretion of pristine gas around galaxies at z = 2 and from cluster-scale reservoirs, possibly connected with a phase of rapid halo mass assembly at z > 2 and of a high galaxy merging rate.

  2. BVRI CCD photometry of the metal-poor globular cluster M68 (NGC 4590)

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    BVRI photometry of the low metallicity globular cluster M68 (NGC 4590) was obtained with a CCD camera and the 2.2-m ESO telescope. The resulting BV color-magnitude diagrams are compared with the observations of McClure et al. (1987). The observations are also compared with theoretical isochrones, yielding a cluster age of 13 Gyr with a likely external uncertainty of 2 or 3 Gyr. 25 refs

  3. Coaxial triple-layered versus helical Be{sub 6}B{sub 11}{sup -} clusters. Dual structural fluxionality and multifold aromaticity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jin-Chang [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers University, Shanxi (China); Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan (China); Feng, Lin-Yan; Wang, Ying-Jin; Zhai, Hua-Jin [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan (China); Jalife, Said; Vasquez-Espinal, Alejandro; Cabellos, Jose Luis; Pan, Sudip; Merino, Gabriel [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, km 6 Antigua carretera a Progreso, Merida, Yuc. (Mexico)

    2017-08-14

    Two low-lying structures are unveiled for the Be{sub 6}B{sub 11}{sup -} nanocluster system that are virtually isoenergetic. The first, triple-layered cluster has a peripheral B{sub 11} ring as central layer, being sandwiched by two Be{sub 3} rings in a coaxial fashion, albeit with no discernible interlayer Be-Be bonding. The B{sub 11} ring revolves like a flexible chain even at room temperature, gliding freely around the Be{sub 6} prism. At elevated temperatures (1000 K), the Be{sub 6} core itself also rotates; that is, two Be{sub 3} rings undergo relative rotation or twisting with respect to each other. Bonding analyses suggest four-fold (π and σ) aromaticity, offering a dilute and fluxional electron cloud that lubricates the dynamics. The second, helix-type cluster contains a B{sub 11} helical skeleton encompassing a distorted Be{sub 6} prism. It is chiral and is the first nanosystem with a boron helix. Molecular dynamics also shows that at high temperature the helix cluster readily converts into the triple-layered one. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Metal oxide/polyaniline nanocomposites: Cluster size and ...

    Indian Academy of Sciences (India)

    Wintec

    Metal oxide/polyaniline nanocomposites; structural properties; magnetic properties. 1. Introduction ... The powder obtained was ground in a motor and pestle, sonicated in ... Figure 1. XRD of (a) iron oxide nanoparticles and (b) iron oxide/PANI (1 : 0⋅4) composite. .... shape of the particles and the anisotropy energy, as also.

  5. Chemical probes of metal cluster structure--Fe, Co, Ni, and Cu

    International Nuclear Information System (INIS)

    Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.

    1992-01-01

    Chemical reactivity is one of the few methods currently available for investigating the geometrical structure of isolated transition metal clusters. In this paper we summarize what is currently known about the structures of clusters of four transition metals, Fe, Co, Ni, and Cu, in the size range from 13 to 180 atoms. Chemical probes used to determine structural information include reactions with H 2 (D 2 ), H 2 0, NH 3 and N 2 . Measurements at both low coverage and at saturation are discussed

  6. THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Tonini, Chiara

    2013-01-01

    We build a theoretical model to study the origin of the globular cluster metallicity bimodality in the hierarchical galaxy assembly scenario. The model is based on empirical relations such as the galaxy mass-metallicity relation [O/H]-M star as a function of redshift, and on the observed galaxy stellar mass function up to redshift z ∼ 4. We make use of the theoretical merger rates as a function of mass and redshift from the Millennium simulation to build galaxy merger trees. We derive a new galaxy [Fe/H]-M star relation as a function of redshift, and by assuming that globular clusters share the metallicity of their original parent galaxy at the time of their formation, we populate the merger tree with globular clusters. We perform a series of Monte Carlo simulations of the galaxy hierarchical assembly, and study the properties of the final globular cluster population as a function of galaxy mass, assembly and star formation history, and under different assumptions for the evolution of the galaxy mass-metallicity relation. The main results and predictions of the model are the following. (1) The hierarchical clustering scenario naturally predicts a metallicity bimodality in the galaxy globular cluster population, where the metal-rich subpopulation is composed of globular clusters formed in the galaxy main progenitor around redshift z ∼ 2, and the metal-poor subpopulation is composed of clusters accreted from satellites, and formed at redshifts z ∼ 3-4. (2) The model reproduces the observed relations by Peng et al. for the metallicities of the metal-rich and metal-poor globular cluster subpopulations as a function of galaxy mass; the positions of the metal-poor and metal-rich peaks depend exclusively on the evolution of the galaxy mass-metallicity relation and the [O/Fe], both of which can be constrained by this method. In particular, we find that the galaxy [O/Fe] evolves linearly with redshift from a value of ∼0.5 at redshift z ∼ 4 to a value of ∼0.1 at

  7. Proofs of cluster formation and transitions in liquid metals and alloys

    International Nuclear Information System (INIS)

    Filippov, E.S.

    1985-01-01

    Calculational and experimental proofs are presented indicating to existence of clusters in liquid metals and alloys. Systems of liquid alloys both on the base of ferrous metals and non-ferrous metals (Fe-C, Ni-C, Co-C, Fe-Ni, Ni-Mo, Co-Cr, Co-V as well as In-Sn, Bi-Sn, Si-Ge and others) are studied experimentally. It is shown that the general feature of the systems studied is sensitivity of a volume to change in structure, to replacement fcc structure on bcc or to initiation-dissociation of intermetallic compounds AxBy. It is shown that both in pure liquid metals and in their.alloys there are clusters as ordered aggregate of atoms

  8. Atomic structures and covalent-to-metallic transition of lead clusters Pbn (n=2-22)

    International Nuclear Information System (INIS)

    Wang Baolin; Zhao Jijun; Chen Xiaoshuang; Shi Daning; Wang Guanghou

    2005-01-01

    The lowest-energy structures and electronic properties of the lead clusters are studied by density-functional-theory calculations with Becke-Lee-Yang-Parr gradient correction. The lowest-energy structures of Pb n (n=2-22) clusters are determined from a number of structural isomers, which are generated from empirical genetic algorithm simulations. The competition between atom-centered compact structures and layered stacking structures leads to the alternative appearance of the two types of structures as global minimum. The size evolution of geometric and electronic properties from covalent bonding towards bulk metallic behavior in Pb clusters is discussed

  9. Structure of s - p bonded metal clusters with 8, 20 and 40 valence electrons

    International Nuclear Information System (INIS)

    Kumar, V.

    1992-10-01

    From studies on some clusters of metals and semiconductors, there appear some similarities in the structure of clusters with a given number of atoms and having the number of valence electrons corresponding to a shell closing. Here we present results of the atomic and electronic structure of a few other clusters with 20 and 40 valence electrons, namely Sb 4 , Sn 5 and Sb 8 using the density functional molecular dynamics method. We suggest that the similarities in the structure and deviation from them may help to understand bonding characteristics in clusters and its evolution to bulk behaviour. Our results on Sb 8 cluster are preliminary but indicate that above room temperature its structure is two weakly interacting tetrahedra which is in general agreement with the observation of predominently antimony tetramers at T > 300 K. (author). 16 refs, 2 figs

  10. On the role of resonances in photoionization of metal clusters

    International Nuclear Information System (INIS)

    Wopperer, P; Dinh, P M; Suraud, E; Reinhard, P G

    2013-01-01

    We analyze electron emission from irradiated clusters by means of time-dependent density-functional theory (TDDFT) in real time. We focus on photo-electron spectra (PES) which deliver an invaluable tool to explore static and dynamical properties of irradiated species. We discuss, in particular, the role of resonances in the PES once the laser frequency is below the emission threshold which implies multiphoton processes. We show that the resonances in the electronic spectrum lead to the occurrence of several peaks in the PES and also strongly affect the standard scaling relations between ionization and the number of required photons for electronic emission.

  11. Impurity cluster interaction in fcc metals studied by PAC

    International Nuclear Information System (INIS)

    Deicher, M.; Echt, O.; Recknagel, E.; Wichert, T.

    1981-01-01

    A defect configuration of high thermal stability has been observed by PAC in Au, showing the same properties as previously published configuration in Cu and Ni. We prove that these configurations cannot consist of any small defect complex with well-defined size; especially the observed influence of the damaging conditions on the thermal stability of the defects in Au and Cu would contradict such an assumption. It is shown that probe atoms trapped at large clusters of variable size can nevertheless experience a unique electric field gradient, and that in our case intrinsic stacking faults, formed by vacancies, can account for all the measured properties. (orig.)

  12. Accumulation of metals, polycyclic (halogenated) aromatic hydrocarbons, and biocides in zebra mussel and eel from the Rhine and Meuse rivers

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, A.J. [RIZA, Lelystad (Netherlands). Inst. for Inland Water Management and Waste Water Treatment; Pieters, H.; Boer, J. de [DLO-Netherlands Inst. for Fisheries Research, IJmuiden (Netherlands)

    1998-10-01

    Concentrations of heavy metals and various groups of organic microcontaminants were measured in zebra mussel and eel from the Rhine-Meuse basin. Residues in mussel from the Rhine and Meuse were on average 2.3 and 2.9 times higher than in those from the reference location of IJsselmeer. Total body burdens of organic microcontaminants in mussel and eel varied between 0.05 to 0.07 mmol/kg fat weight in six out of seven samples. The largest contribution in mussels and eel came from polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), respectively. Concentrations of bromodiphenyl-ethers, chlorobenzenes, chloronitrobenzenes, chloroterphenyls, and chlorobenzyltoluenes were lower. Total polybrominated biphenyl residues appear lower than total PCB levels. The largest chlorobiocide residues were noted for 4,4{prime}-DDE, toxaphene, trichlorophenylmethane, and {gamma}-hexachlorocyclohexane. An extraordinary high body burden of 1.2 mmol/kg fat weight, largely consisting of acenaphthene, was observed in one sample. Ratios of concentrations in organism fat and dry organic suspended solids varied between 1 and 10 for traditionally monitored organochlorines, independent of the octanol-water partition coefficient. The values did not deviate significantly from a value of about 3.3, expected for equilibrium partitioning of persistent chemicals. Lower values were observed for PAHs and some chloro(nitro)benzenes. Most ratios of concentrations in eel and mussel fat were within the range of 1 to 10, also largely independent of K{sub ow}. Yet, values tended to be higher at K{sub ow} > 10{sup 6}. Ratios below 1 were noted for pentabromodiphenylether, pentachloro(thio)anisol, chlorobenzyltoluenes, and some chloronitrobenzenes, chlorobiphenyls, and chlorobiocides. These field data confirm recent modeling efforts on bioconcentration and biomagnification. For heavy metals, atomic mass explained 67% of the variation in zebra mussel residues.

  13. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T. [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  14. Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sooyoung; Yoon, Suk-Jin, E-mail: sjyoon0691@yonsei.ac.kr [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line index versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.

  15. Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications

    Directory of Open Access Journals (Sweden)

    Chia-Yin Chang

    2017-05-01

    Full Text Available In this work, we have developed an assay for the detection of proteins by functionalized nanomaterials coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS by monitoring the generation of metal cluster ions. We achieved selective detection of three proteins [thrombin, vascular endothelial growth factor-A165 (VEGF-A165, and platelet-derived growth factor-BB (PDGF-BB] by modifying nanoparticles (NPs of three different metals (Au, Ag, and Pt with the corresponding aptamer or antibody in one assay. The Au, Ag, and Pt acted as metal bio-codes for the analysis of thrombin, VEGF-A165, and PDGF-BB, respectively, and a microporous cellulose acetate membrane (CAM served as a medium for an in situ separation of target protein-bound and -unbound NPs. The functionalized metal nanoparticles bound to their specific proteins were subjected to LDI-MS on the CAM. The functional nanoparticles/CAM system can function as a signal transducer and amplifier by transforming the protein concentration into an intense metal cluster ion signal during LDI-MS analysis. This system can selectively detect proteins at picomolar concentrations. Most importantly, the system has great potential for the detection of multiple proteins without any pre-concentration, separation, or purification process because LDI-MS coupled with CAM effectively removes all signals except for those from the metal cluster ions.

  16. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health.

  17. The evoluation of the galactic globular clusters; I Metal abundance calibrations

    International Nuclear Information System (INIS)

    Lee, S.W.; Park, N.K.

    1984-01-01

    Five different calibrations of metal abundances of globular clusters are examined and these are compared with metallicity ranking parameters such as (Sp)sub(c), , Q39 and IR-indices. Except for the calibration *(Fe/H*)sub(H) by the high dispersion echelle analysis, the other calibration scales are correlated with the morphological parameters of red giant branch. In the *(Fe/H*)sub(Hsup(-))scale, the clusters later than approx.F8 have nearly a constant metal abundance, *(Fe/H*)sub(H)approx.-1.05, regardless of morphological characteristics of horizontal branch and red giant branch. By the two fundamental calibration scales of *(Fe/H*)sub(L) (derived by the low dispersion analysis), and *(Fe/H*)sub(delta S) (derived by the spectral analysis of RR Lyrae stars), the globular clusters are divided into the halo clusters with *(Fe/H*)<-1.0 and the disk clusters confined within the galactocentric distance rsub(G)=10 kpc and galactic plane distance absolute z=3 kpc. In this case the abundance gradient is given by d*(Fe/H*)/drsub(G)approx.-0.05kpcsup(-1) and d*(Fe/H*)/d absolute z approx. -0.08 kpcsup(-1) within rsub(G)=20 kpc and absolute z=10 kpc, respectively. According to these characteristics of the spatial distribution of globular clusters, the chemical evolution of the galactic globular clusters can be accounted for by the two-zone (disk-halo) slow collapse model when the *(Fe/H*)sub(Lsup(-)) or *(Fe/H*)sub(DELTA Ssup(-))scale is applied. In the case of *(Fe/H*)sub(Hsup(-))scale, the one-zone fast collapse model is preferred for the evolution of globular clusters. (Author)

  18. Structure-related clustering of gene expression fingerprints of thp-1 cells exposed to smaller polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wan, B; Yarbrough, J W; Schultz, T W

    2008-01-01

    This study was undertaken to test the hypothesis that structurally similar PAHs induce similar gene expression profiles. THP-1 cells were exposed to a series of 12 selected PAHs at 50 microM for 24 hours and gene expressions profiles were analyzed using both unsupervised and supervised methods. Clustering analysis of gene expression profiles revealed that the 12 tested chemicals were grouped into five clusters. Within each cluster, the gene expression profiles are more similar to each other than to the ones outside the cluster. One-methylanthracene and 1-methylfluorene were found to have the most similar profiles; dibenzothiophene and dibenzofuran were found to share common profiles with fluorine. As expression pattern comparisons were expanded, similarity in genomic fingerprint dropped off dramatically. Prediction analysis of microarrays (PAM) based on the clustering pattern generated 49 predictor genes that can be used for sample discrimination. Moreover, a significant analysis of Microarrays (SAM) identified 598 genes being modulated by tested chemicals with a variety of biological processes, such as cell cycle, metabolism, and protein binding and KEGG pathways being significantly (p < 0.05) affected. It is feasible to distinguish structurally different PAHs based on their genomic fingerprints, which are mechanism based.

  19. NEAR-IR PHOTOMETRIC PROPERTIES OF HB, MSTO, AND SGB FOR METAL POOR GALACTIC GLOBULAR CLUSTERS

    Directory of Open Access Journals (Sweden)

    J.-W. Kim

    2007-03-01

    Full Text Available We report photometric features of the HB, MSTO, and SGB for a set of metal-poor Galactic globular clusters on the near-IR CMDs. The magnitude and color of the MSTO and SGB are measured on the fiducial normal points of the CMDs by applying a polynomial fit. The near-IR luminosity functions of horizontal branch stars in the classical second parameter pair M3 and M13 indicate that HB stars in M13 are dominated by hot stars that are rotatively faint in the infrared, whereas HB stars in M3 are brighter than those in M13. The luminosity functions of HB stars in the observed bulge clusters, except for NGC 6717, show a trend that the fainter hot HB stars are dominated in the relatively metal-poor clusters while the relatively metal-rich clusters contain the brighter HB stars. It is suggestive that NGC 6717 would be an extreme example of the second-parameter phenomenon for the bulge globular clusters.

  20. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Science.gov (United States)

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  1. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics

    Science.gov (United States)

    Goswami, Sreetosh; Matula, Adam J.; Rath, Santi P.; Hedström, Svante; Saha, Surajit; Annamalai, Meenakshi; Sengupta, Debabrata; Patra, Abhijeet; Ghosh, Siddhartha; Jani, Hariom; Sarkar, Soumya; Motapothula, Mallikarjuna Rao; Nijhuis, Christian A.; Martin, Jens; Goswami, Sreebrata; Batista, Victor S.; Venkatesan, T.

    2017-12-01

    Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (~350 devices), fast switching (106 s) and scalability (down to ~60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

  2. Processes of conversion of a hot metal particle into aerogel through clusters

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  3. Nonlocality and particle-clustering effects on the optical response of composite materials with metallic nanoparticles

    Science.gov (United States)

    Chen, C. W.; Chung, H. Y.; Chiang, H.-P.; Lu, J. Y.; Chang, R.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical properties of composites with metallic nanoparticles are studied, taking into account the effects due to the nonlocal dielectric response of the metal and the coalescing of the particles to form clusters. An approach based on various effective medium theories is followed, and the modeling results are compared with those from the cases with local response and particles randomly distributed through the host medium. Possible observations of our modeling results are illustrated via a calculation of the transmission of light through a thin film made of these materials. It is found that the nonlocal effects are particularly significant when the particles coalesce, leading to blue-shifted resonances and slightly lower values in the dielectric functions. The dependence of these effects on the volume fraction and fractal dimension of the metal clusters is studied in detail.

  4. Medium-induced change of the optical response of metal clusters in rare-gas matrices

    Science.gov (United States)

    Xuan, Fengyuan; Guet, Claude

    2017-10-01

    Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.

  5. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    International Nuclear Information System (INIS)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  6. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  7. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J. [Instituto de Astrofisica de Andalucia-C.S.I.C., Glorieta de la Astronomia, 18008 Granada (Spain)

    2012-04-20

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10{sup 8}-10{sup 10} M{sub Sun }, located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the

  8. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    International Nuclear Information System (INIS)

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.

    2012-01-01

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10 8 -10 10 M ☉ , located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the properties of the ICM

  9. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, O.; Solar, P.; Kylian, O.; Drabik, M.; Artemenko, A.; Kousal, J.; Hanus, J.; Pesicka, J.; Matolinova, I. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Kolibalova, E. [Tescan, Libusina trida 21, 632 00 Brno (Czech Republic); Slavinska, D. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Biederman, H., E-mail: bieder@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic)

    2012-04-02

    Nanocomposite metal/plasma polymer films have been prepared by simultaneous plasma polymerization using a mixture of Ar/n-hexane and metal cluster beams. A simple compact cluster gas aggregation source is described and characterized with emphasis on the determination of the amount of charged clusters and their size distribution. It is shown that the fraction of neutral, positively and negatively charged nanoclusters leaving the gas aggregation source is largely influenced by used operational conditions. In addition, it is demonstrated that a large portion of Ag clusters is positively charged, especially when higher currents are used for their production. Deposition of nanocomposite Ag/C:H plasma polymer films is described in detail by means of cluster gas aggregation source. Basic characterization of the films is performed using transmission electron microscopy, ultraviolet-visible and Fourier-transform infrared spectroscopies. It is shown that the morphology, structure and optical properties of such prepared nanocomposites differ significantly from the ones fabricated by means of magnetron sputtering of Ag target in Ar/n-hexane mixture.

  10. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  11. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    Energy Technology Data Exchange (ETDEWEB)

    Kamiguchi, Satoshi, E-mail: kamigu@riken.jp [Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Okumura, Kazu [School of Advanced Engineering, Kogakuin University, Nakano-machi, Hachioji City, Tokyo 192-0015 (Japan); Nagashima, Sayoko; Chihara, Teiji [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2015-12-15

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is stored in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.

  12. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, C L; Wang, Q; Li, F W; Li, Y H; Wang, Y M; Dong, C [State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024 (China); Zhang, W; Inoue, A, E-mail: dong@dlut.edu.c [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-01-01

    Bulk metallic glass formations have been explored in Fe-B-Si-Nb alloy system using the so-called atomic cluster line approach in combination with minor alloying guideline. The atomic cluster line refers to a straight line linking binary cluster to the third element in a ternary system. The basic ternary compositions in Fe-B-Si system are determined by the inetersection points of two cluster lines, namely Fe-B cluster to Si and Fe-Si cluster to B, and then further alloyed with 3-5 at. % Nb for enhancing glass forming abilities. BMG rods with a diameter of 3 mm are formed under the case of minor Nb alloying the basic intersecting compositions of Fe{sub 8}B{sub 3}-Si with Fe{sub 12}Si-B and Fe{sub 8}B{sub 2}-Si with Fe{sub 9}Si-B. The BMGs also exhibit high Vickers hardness (H{sub v}) of 1130-1164 and high Young's modulous (E) of 170-180 GPa

  13. Cluster perturbation theory for calculation of electronic properties of ensembles of metal nanoclusters

    Science.gov (United States)

    Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.

    2018-05-01

    The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.

  14. AGES AND METALLICITIES OF CLUSTER GALAXIES IN A779 USING MODIFIED STROeMGREN PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhar, Yuvraj Harsha; Rakos, Karl D.; Hensler, Gerhard; Zeilinger, Werner W. [University of Vienna, Institute of Astronomy, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Odell, Andrew P. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ (United States)

    2012-03-01

    In the quest for the formation and evolution of galaxy clusters, Rakos and co-workers introduced a spectrophotometric method using modified Stroemgren photometry, but with the considerable debate toward the project's abilities, we re-introduce the system by testing for the repeatability of the modified Stroemgren colors and compare them with the Stroemgren colors, and check for the reproducibility of the ages and metallicities (using the Principle Component Analysis (PCA) technique and the GALEV models) for the six common galaxies in all three A779 data sets. As a result, a fair agreement between two filter systems was found to produce similar colors (with a precision of 0.09 mag in (uz - vz), 0.02 mag in (bz - yz), and 0.03 mag in (vz - vz)) and the generated ages and metallicities are also similar (with an uncertainty of 0.36 Gyr and 0.04 dex from PCA and 0.44 Gyr and 0.2 dex using the GALEV models). We infer that the technique is able to relieve the age-metallicity degeneracy by separating the age effects from the metallicity effects, but it is still unable to completely eliminate it. We further extend this paper to re-study the evolution of galaxies in the low mass, dynamically poor A779 cluster (as it was not elaborately analyzed by Rakos and co-workers in their previous work) by correlating the luminosity (mass), density, and radial distance with the estimated age, metallicity, and the star formation history. Our results distinctly show the bimodality of the young, low-mass, metal-poor population with a mean age of 6.7 Gyr ({+-} 0.5 Gyr) and the old, high-mass, metal-rich galaxies with a mean age of 9 Gyr ({+-} 0.5 Gyr). The method also observes the color evolution of the blue cluster galaxies to red (Butcher-Oemler phenomenon), and the downsizing phenomenon. Our analysis shows that modified Stroemgren photometry is very well suited for studying low- and intermediate-z clusters, as it is capable of observing deeper with better spatial resolution at

  15. Linear and nonlinear surface spectroscopy of supported size selected metal clusters and organic adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Thaemer, Martin Georg

    2012-03-08

    The spectroscopic investigation of supported size selected metal clusters over a wide wavelength range plays an important role for understanding their outstanding catalytic properties. The challenge which must be overcome to perform such measurements is the difficult detection of the weak spectroscopic signals from these samples. As a consequence, highly sensitive spectroscopic methods are applied, such as surface Cavity Ringdown Spectroscopy and surface Second Harmonic Generation Spectroscopy. The spectroscopic apparatus developed is shown to have a sensitivity which is high enough to detect sub-monolayer coverages of adsorbates on surfaces. In the measured spectra of small supported silver clusters of the sizes Ag{sub 4}2, Ag{sub 2}1, Ag{sub 9}, and Ag atoms a stepwise transition from particles with purely metallic character to particles with molecule-like properties can be observed within this size range.

  16. Electronic relaxation dynamics of a metal atom deposited on argon cluster

    International Nuclear Information System (INIS)

    Awali, Slim

    2014-01-01

    This thesis is a study on the interaction between electronically excited atomic states and a non-reactive environment. We have theoretically and experimentally studied situations where a metal atom (Ba or K) is placed in a finite size environment (argon cluster). The presence of the medium affects the electronic levels of the atom. On the other side, the excitation of the atom induces a relaxation dynamics of the electronic energy through the deformation of the cluster. The experimental part of this work focuses on two aspects: the spectroscopy and the dynamics. In both cases a first laser electronically excites the metal atom and the second ionizes the excited system. The observable is the photoelectron spectrum recorded after photoionization and possibly information on the photoion which are also produced. This pump/probe technique, with also two lasers, provide the ultrafast dynamic when the lasers pulses used are of ultrashort (60 fs). The use of nanosecond lasers leads to resonance spectroscopic measurement, unresolved temporally, which give information on the position of the energy levels of the studied system. From a theoretical point-of-view, the excited states of M-Ar n were calculated at the ab initio level, using large core pseudo-potential to limit the active electrons of the metal to valence electrons. The study of alkali metals (potassium) is especially well adapted to this method since only one electron is active. The ab-initio calculation and a Monte-Carlo simulation where coupled to optimize the geometry of the KAr n (n = 1-10) cluster when K is in the ground state of the neutral and the ion, or excited in the 4p or 5s state. Calculations were also conducted in collaboration with B. Gervais (CIMAP, Caen) on KAr n clusters having several tens of argon atoms. Absorption spectra were also calculated. From an experimental point-of-view, we were able to characterize the excited states of potassium and barium perturbed by the clusters. In both cases a

  17. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  18. Nature of Bonding in Bowl-Like B36 Cluster Revisited: Concentric (6π+18π) Double Aromaticity and Reason for the Preference of a Hexagonal Hole in a Central Location.

    Science.gov (United States)

    Li, Rui; You, Xue-Rui; Wang, Kang; Zhai, Hua-Jin

    2018-05-04

    The bowl-shaped C 6v B 36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B 36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B 36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B 36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B 36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C 6v B 36 cluster the global minimum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    selection is achieved using an electrostatic quadrupole mass selector. The deposited silver clusters are studied using atomic force microscopy. The height distributions show typical relative standard size deviation of 9-13% for given sizes in the range between 5-23 nm. Thus, the apparatus demonstrates good...... capability in formation of supported size-selected metal nanoparticles with controllable coverage for various practical applications....

  20. Giant metal sputtering yields induced by 20-5000 keV/atom gold clusters

    International Nuclear Information System (INIS)

    Andersen, H.H.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.

    1997-01-01

    Very large non-linear effects have been found in cluster-induced metal sputtering over a broad projectile energy interval for the first time. Recently available cluster beams from tandem accelerators have allowed sputtering yield measurements to be made with Au 1 to Au 5 from 20 keV/atom to 5 MeV/atom. The cluster-sputtering yield maxima were found at the same total energy but not at the same energy/atom as expected. For Au 5 a yield as high as 3000 was reached at 150 keV/atom while the Au 1 yield was only 55 at the same velocity. The Sigmund-Claussen thermal spike theory, which fits published data at low energy, cannot reproduce our extended new data set. (author)

  1. Stability and mobility of defect clusters and dislocation loops in metals

    DEFF Research Database (Denmark)

    Osetsky, Y.N.; Bacon, D.J.; Serra, A.

    2000-01-01

    has been observed in the computer simulation of small vacancy loops in alpha-Fe. In the present paper we summarise results obtained by molecular dynamics simulations of defect clusters and small dislocation loops in alpha-Fe(bcc) and Cu(fcc). The structure and stability of vacancy and interstitial......According to the production bias model, glissile defect clusters and small dislocation loops play an important role in the microstructural evolution during irradiation under cascade damage conditions. The atomic scale computer simulations carried out in recent years have clarified many questions...... loops are reviewed, and the dynamics of glissile clusters assessed. The relevance and importance of these results in establishing a better understanding of the observed differences in the damage accumulation behaviour between bcc and fee metals irradiated under cascade damage conditions are pointed out...

  2. The Next Generation Virgo Cluster Survey (NGVS). XXVI. The Issues of Photometric Age and Metallicity Estimates for Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Powalka, Mathieu; Lançon, Ariane; Duc, Pierre-Alain [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Puzia, Thomas H.; Muñoz, Roberto P.; Zhang, Hongxin [Institute of Astrophysics, Pontificia Universidad Católica de Chile, 7820436 Macul, Santiago (Chile); Peng, Eric W. [Department of Astronomy, Peking University, Beijing 100871 (China); Liu, Chengze [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Blakeslee, John P.; Côté, Patrick; Ferrarese, Laura; Roediger, Joel; Gwyn, S. D. J. [National Research Council of Canada, Herzberg Astronomy and Astrophysics Program, Victoria, BC V9E 2E7 (Canada); Sánchez-Janssen, Rúben [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Durrell, Patrick R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH (United States); Cuillandre, Jean-Charles [AIM Paris Saclay, CNRS/INSU, CEA/Irfu,Université Paris Diderot, Orme des Merisiers, F-91191 Gif sur Yvette cedex (France); Guhathakurta, Puragra [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Hudelot, Patrick, E-mail: mathieu.powalka@astro.unistra.fr [Institut d’Astrophysique de Paris, UMR 7095 CNRS and UPMC, 98bis Bd Arago, F-75014 Paris (France); and others

    2017-08-01

    Large samples of globular clusters (GC) with precise multi-wavelength photometry are becoming increasingly available and can be used to constrain the formation history of galaxies. We present the results of an analysis of Milky Way (MW) and Virgo core GCs based on 5 optical-near-infrared colors and 10 synthetic stellar population models. For the MW GCs, the models tend to agree on photometric ages and metallicities, with values similar to those obtained with previous studies. When used with Virgo core GCs, for which photometry is provided by the Next Generation Virgo cluster Survey (NGVS), the same models generically return younger ages. This is a consequence of the systematic differences observed between the locus occupied by Virgo core GCs and models in panchromatic color space. Only extreme fine-tuning of the adjustable parameters available to us can make the majority of the best-fit ages old. Although we cannot exclude that the formation history of the Virgo core may lead to more conspicuous populations of relatively young GCs than in other environments, we emphasize that the intrinsic properties of the Virgo GCs are likely to differ systematically from those assumed in the models. Thus, the large wavelength coverage and photometric quality of modern GC samples, such as those used here, is not by itself sufficient to better constrain the GC formation histories. Models matching the environment-dependent characteristics of GCs in multi-dimensional color space are needed to improve the situation.

  3. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Usher, Christopher; Forbes, Duncan A. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Strader, Jay, E-mail: brodie@ucolick.org [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-11-10

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  4. Interaction of Model Inhibitor Compounds with Minimalist Cluster Representations of Hydroxyl Terminated Metal Oxide Surfaces

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2018-01-01

    Full Text Available The computational modeling of corrosion inhibitors at the level of molecular interactions has been pursued for decades, and recent developments are allowing increasingly realistic models to be developed for inhibitor–inhibitor, inhibitor–solvent and inhibitor–metal interactions. At the same time, there remains a need for simplistic models to be used for the purpose of screening molecules for proposed inhibitor performance. Herein, we apply a reductionist model for metal surfaces consisting of a metal cation with hydroxide ligands and use quantum chemical modeling to approximate the free energy of adsorption for several imidazoline class candidate corrosion inhibitors. The approximation is made using the binding energy and the partition coefficient. As in some previous work, we consider different methods for incorporating solvent and reference systems for the partition coefficient. We compare the findings from this short study with some previous theoretical work on similar systems. The binding energies for the inhibitors to the metal hydroxide clusters are found to be intermediate to the binding energies calculated in other work for bare metal vs. metal oxide surfaces. The method is applied to copper, iron, aluminum and nickel metal systems.

  5. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    International Nuclear Information System (INIS)

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J.; Usher, Christopher; Forbes, Duncan A.; Strader, Jay

    2012-01-01

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  6. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. III. ON THE DISCREPANCY IN METALLICITY BETWEEN GLOBULAR CLUSTER SYSTEMS AND THEIR PARENT ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Yoon, Suk-Jin; Lee, Sang-Yoon; Cho, Jaeil; Kim, Hak-Sub; Chung, Chul; Kim, Sooyoung; Lee, Young-Wook; Blakeslee, John P.; Peng, Eric W.; Sohn, Sangmo T.

    2011-01-01

    One of the conundrums in extragalactic astronomy is the discrepancy in observed metallicity distribution functions (MDFs) between the two prime stellar components of early-type galaxies—globular clusters (GCs) and halo field stars. This is generally taken as evidence of highly decoupled evolutionary histories between GC systems and their parent galaxies. Here we show, however, that new developments in linking the observed GC colors to their intrinsic metallicities suggest nonlinear color-to-metallicity conversions, which translate observed color distributions into strongly peaked, unimodal MDFs with broad metal-poor tails. Remarkably, the inferred GC MDFs are similar to the MDFs of resolved field stars in nearby elliptical galaxies and those produced by chemical evolution models of galaxies. The GC MDF shape, characterized by a sharp peak with a metal-poor tail, indicates a virtually continuous chemical enrichment with a relatively short timescale. The characteristic shape emerges across three orders of magnitude in the host galaxy mass, suggesting a universal process of chemical enrichment among various GC systems. Given that GCs are bluer than field stars within the same galaxy, it is plausible that the chemical enrichment processes of GCs ceased somewhat earlier than that of the field stellar population, and if so, GCs preferentially trace the major, vigorous mode of star formation events in galactic formation. We further suggest a possible systematic age difference among GC systems, in that the GC systems in more luminous galaxies are older. This is consistent with the downsizing paradigm whereby stars of brighter galaxies, on average, formed earlier than those of dimmer galaxies; this additionally supports the similar nature shared by GCs and field stars. Although the sample used in this study (the Hubble Space Telescope Advanced Camera for Surveys/Wide Field Channel, WFPC2, and WFC3 photometry for the GC systems in the Virgo galaxy cluster) confines our

  7. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  8. A High-precision Trigonometric Parallax to an Ancient Metal-poor Globular Cluster

    Science.gov (United States)

    Brown, T. M.; Casertano, S.; Strader, J.; Riess, A.; VandenBerg, D. A.; Soderblom, D. R.; Kalirai, J.; Salinas, R.

    2018-03-01

    Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), we have obtained a direct trigonometric parallax for the nearest metal-poor globular cluster, NGC 6397. Although trigonometric parallaxes have been previously measured for many nearby open clusters, this is the first parallax for an ancient metal-poor population—one that is used as a fundamental template in many stellar population studies. This high-precision measurement was enabled by the HST/WFC3 spatial-scanning mode, providing hundreds of astrometric measurements for dozens of stars in the cluster and also for Galactic field stars along the same sightline. We find a parallax of 0.418 ± 0.013 ± 0.018 mas (statistical, systematic), corresponding to a true distance modulus of 11.89 ± 0.07 ± 0.09 mag (2.39 ± 0.07 ± 0.10 kpc). The V luminosity at the stellar main-sequence turnoff implies an absolute cluster age of 13.4 ± 0.7 ± 1.2 Gyr. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13817, GO-14336, and GO-14773.

  9. Quantum kinetic theory of metal clusters in an intense electromagnetic field

    Directory of Open Access Journals (Sweden)

    M.Bonitz

    2004-01-01

    Full Text Available A quantum kinetic theory for weakly inhomogeneous charged particle systems is derived within the framework of nonequilibrium Green's functions. The results are of relevance for valence electrons of metal clusters as well as for confined Coulomb systems, such as electrons in quantum dots or ultracold ions in traps and similar systems. To be specific, here we concentrate on the application to metal clusters, but the results are straightforwardly generalized. Therefore, we first give an introduction to the physics of correlated valence electrons of metal clusters in strong electromagnetic fields. After a brief overview on the jellium model and the standard density functional approach to the ground state properties, we focus on the extension of the theory to nonequilibrium. To this end a general gauge-invariant kinetic theory is developed. The results include the equations of motion of the two-time correlation functions, the equation for the Wigner function and an analysis of the spectral function. Here, the concept of an effective quantum potential is introduced which retains the convenient local form of the propagators. This allows us to derive explicit results for the spectral function of electrons in a combined strong electromagnetic field and a weakly inhomogeneous confinement potential.

  10. Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4

    International Nuclear Information System (INIS)

    Malavolta, Luca; Piotto, Giampaolo; Nascimbeni, Valerio; Sneden, Christopher; Milone, Antonino P.; Bedin, Luigi R.

    2014-01-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V ≤ 14.7, we obtain a nearly constant metallicity, ([Fe/H]) = –1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain ([Fe/H]) = –1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions

  11. Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4

    Energy Technology Data Exchange (ETDEWEB)

    Malavolta, Luca; Piotto, Giampaolo; Nascimbeni, Valerio [Dipartimento di Fisica e Astronomia, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Sneden, Christopher [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Milone, Antonino P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bedin, Luigi R., E-mail: luca.malavolta@unipd.it, E-mail: giampaolo.piotto@unipd.it, E-mail: valerio.nascimbeni@unipd.it, E-mail: luigi.bedin@oapd.inaf.it, E-mail: chris@verdi.as.utexas.edu, E-mail: milone@mso.anu.edu.au [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V ≤ 14.7, we obtain a nearly constant metallicity, ([Fe/H]) = –1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain ([Fe/H]) = –1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  12. Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study

    International Nuclear Information System (INIS)

    Blonski, Piotr; Hafner, Juergen

    2011-01-01

    Ab initio density-functional calculations including spin-orbit coupling (SOC) have been performed for Ni and Pd clusters with three to six atoms and for 13-atom clusters of Ni, Pd, and Pt, extending earlier calculations for Pt clusters with up to six atoms (2011 J. Chem. Phys. 134 034107). The geometric and magnetic structures have been optimized for different orientations of the magnetization with respect to the crystallographic axes of the cluster. The magnetic anisotropy energies (MAE) and the anisotropies of spin and orbital moments have been determined. Particular attention has been paid to the correlation between the geometric and magnetic structures. The magnetic point group symmetry of the clusters varies with the direction of the magnetization. Even for a 3d metal such as Ni, the change in the magnetic symmetry leads to small geometric distortions of the cluster structure, which are even more pronounced for the 4d metal Pd. For a 5d metal the SOC is strong enough to change the energetic ordering of the structural isomers. SOC leads to a mixing of the spin states corresponding to the low-energy spin isomers identified in the scalar-relativistic calculations. Spin moments are isotropic only for Ni clusters, but anisotropic for Pd and Pt clusters, orbital moments are anisotropic for the clusters of all three elements. The magnetic anisotropy energies have been calculated. The comparison between MAE and orbital anisotropy invalidates a perturbation analysis of magnetic anisotropy for these small clusters.

  13. Electronic and magnetic properties of 3d transition metal-doped strontium clusters: Prospective magnetic superatoms

    International Nuclear Information System (INIS)

    Chauhan, Vikas; Sen, Prasenjit

    2013-01-01

    Highlights: • Structural, electronic and magnetic properties of TM-Sr clusters are studied using DFT methods. • CrSr 9 and MnSr 10 have enhanced stability in the CrSr n and MnSrn series. • These two clusters behave as magnetic superatoms. • A qualitative understanding of the magnetic coupling between two superatom units is offered. • Reactivity of these superatoms to molecular oxygen also studied. - Abstract: Structural, electronic and magnetic properties of 3d transition metal doped strontium clusters are studied using first-principles electronic structure methods based on density functional theory. Clusters with enhanced kinetic and thermodynamic stability are identified by studying their hardness, second order energy difference and adiabatic spin excitation energy. CrSr 9 and MnSr 10 are found to have enhanced stability. They retain their structural identities in assemblies, and are classified as magnetic superatoms. A qualitative understanding of the magnetic coupling between two cluster units is arrived at. Reactivity of these superatoms with O 2 molecule is also studied. Prospects for using these magnetic superatoms in applications are discussed

  14. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    International Nuclear Information System (INIS)

    Liu Xuan; Ito, Haruhiko; Torikai, Eiko

    2012-01-01

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  15. Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation

    Directory of Open Access Journals (Sweden)

    Hikaru Iwami

    2017-01-01

    Full Text Available Lanthanoid metal-organic frameworks (Ln-MOFs can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III and Tb(III ions, work as isolated quantum magnets when they have magnetic anisotropy. In this work, using 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB as a ligand, two new Ln-MOFs, [Dy(TATB(DMF2] (1 and [Tb(TATB(DMF2] (2, were obtained. The Ln-MOFs contain Ln dinuclear clusters as secondary building units, and 1 underwent slow magnetic relaxation similar to single-molecule magnets.

  16. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  17. Spectra of globular clusters in the Sombrero galaxy: evidence for spectroscopic metallicity bimodality

    Science.gov (United States)

    Alves-Brito, Alan; Hau, George K. T.; Forbes, Duncan A.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.; Rhode, Katherine L.

    2011-11-01

    We present a large sample of over 200 integrated-light spectra of confirmed globular clusters (GCs) associated with the Sombrero (M104) galaxy taken with the Deep Imaging Multi-Object Spectrograph (DEIMOS) instrument on the Keck telescope. A significant fraction of the spectra have signal-to-noise ratio levels high enough to allow measurements of GC metallicities using the method of Brodie & Huchra. We find a distribution of spectroscopic metallicities in the range -2.2 < [Fe/H] < +0.1 that is bimodal, with peaks at [Fe/H]˜-1.4 and -0.6. Thus, the GC system of the Sombrero galaxy, like a few other galaxies now studied in detail, reveals a bimodal spectroscopic metallicity distribution supporting the long-held belief that colour bimodality reflects two metallicity subpopulations. This further suggests that the transformation from optical colour to metallicity for old stellar populations, such as GCs, is not strongly non-linear. We also explore the radial and magnitude distribution with metallicity for GC subpopulations but small number statistics prevent any clear trends in these distributions. Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  18. Clustered atom-replaced structure in single-crystal-like metal oxide

    Science.gov (United States)

    Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi

    2018-06-01

    By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.

  19. Self-consistent meta-generalized gradient approximation study of adsorption of aromatic molecules on noble metal surfaces

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Madsen, Georg Kent Hellerup; Hammer, Bjørk

    2011-01-01

    aromatic molecules considered. The adsorption of pentacene is studied on Au, Ag, and Cu surfaces. In agreement with experiment, the adsorption energies are found to increase with decreasing nobleness, but the dependency is underestimated. We point out how the kinetic energy density can discriminate between...

  20. Influence of a transition metal atom on the geometry and electronic structure of Mg and Mg-H clusters

    International Nuclear Information System (INIS)

    Siretskiy, M.Yu.; Shelyapina, M.G.; Fruchart, D.; Miraglia, S.; Skryabina, N.E.

    2009-01-01

    We report on the study of (MgH 2 ) n + M complexes (M = Ti or Ni) carried out within the framework of the cluster density functional theory (DFT) method. The influence of such transition metal atoms on the cluster geometry and electronic structure is discussed considering the stability of MgH 2 hydride.

  1. Assessment and source identification of pollution risk for touristic ports: Heavy metals and polycyclic aromatic hydrocarbons in sediments of 4 marinas of the Apulia region (Italy).

    Science.gov (United States)

    Mali, Matilda; Dell'Anna, Maria Michela; Mastrorilli, Piero; Damiani, Leonardo; Piccinni, Alberto Ferruccio

    2017-01-30

    The Apulia region in Italy has the longest Adriatic coastline; thus, maritime tourism is the driving force for its economic development. Pollution risk for four representative touristic ports of the region was assessed by determining the concentrations of 10 metals, 16 polycyclic aromatic hydrocarbons (PAHs) congeners, and the main nutrients. The cumulative mean Effects Range-Median quotient (mERMq) was used to assess the hazard degree, while the distribution patterns and content ratios of different PAH sediment concentrations were investigated to identify the pollution sources. Principal component analyses indicated an anomalous pollution trend for one of the small touristic ports assessed; this trend emerged from contamination by heavy metals and PAHs to a larger extent than expected, considering the main activity in this port, especially in its inner basin. The reason of this anomaly is thought to be the hydrodynamic and/or other stress factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles.

    Science.gov (United States)

    Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong

    2017-03-03

    Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Major signal suppression from metal ion clusters in SFC/ESI-MS - Cause and effects.

    Science.gov (United States)

    Haglind, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E

    2018-05-01

    The widening application area of SFC-MS with polar analytes and water-containing samples facilitates the use of quick and simple sample preparation techniques such as "dilute and shoot" and protein precipitation. This has also introduced new polar interfering components such as alkali metal ions naturally abundant in e.g. blood plasma and urine, which have shown to be retained using screening conditions in SFC/ESI-TOF-MS and causing areas of major ion suppression. Analytes co-eluting with these clusters will have a decreased signal intensity, which might have a major effect on both quantification and identification. When investigating the composition of the alkali metal clusters using accurate mass and isotopic pattern, it could be concluded that they were previously not described in the literature. Using NaCl and KCl standards and different chromatographic conditions, varying e.g. column and modifier, the clusters proved to be formed from the alkali metal ions in combination with the alcohol modifier and make-up solvent. Their compositions were [(XOCH 3 ) n  + X] + , [(XOH) n  + X] + , [(X 2 CO 3 ) n  + X] + and [(XOOCOCH 3 ) n  + X] + for X = Na + or K + in ESI+. In ESI-, the clusters depended more on modifier, with [(XCl) n  + Cl] - and [(XOCH 3 ) n  + OCH 3 ] - mainly formed in pure methanol and [(XOOCH) n  + OOCH] - when 20 mM NH 4 Fa was added. To prevent the formation of the clusters by avoiding methanol as modifier might be difficult, as this is a widely used modifier providing good solubility when analyzing polar compounds in SFC. A sample preparation with e.g. LLE would remove the alkali ions, however also introducing a time consuming and discriminating step into the method. Since the alkali metal ions were retained and affected by chromatographic adjustments as e.g. mobile phase modifications, a way to avoid them could therefore be chromatographic tuning, when analyzing samples containing them. Copyright © 2018 Elsevier

  4. π-face donation from the aromatic N-substituent of N-heterocyclic carbene ligands to metal and its role in catalysis

    KAUST Repository

    Credendino, Raffaele

    2012-05-16

    In this work, we calculate the redox potential in a series of Ir and Ru complexes bearing a N-heterocyclic carbene (NHC) ligand presenting different Y groups in the para position of the aromatic N-substituent. The calculated redox potentials excellently correlate with the experimental ΔE 1/2 potentials, offering a handle to rationalize the experimental findings. Analysis of the HOMO of the complexes before oxidation suggests that electron-donating Y groups destabilize the metal centered HOMO. Energy decomposition of the metal-NHC interaction indicates that electron-donating Y groups reinforce this interaction in the oxidized complexes. Analysis of the electron density in the reduced and oxidized states of representative complexes indicates a clear donation from the C ipso of the N-substituents to an empty d orbital on the metal. In case of the Ru complexes, this mechanism involves the Ru-alkylidene moiety. All of these results suggest that electron-donating Y groups render the aromatic N-substituent able to donate more density to electron-deficient metals through the C ipso atom. This conclusion suggests that electron-donating Y groups could stabilize higher oxidation states during catalysis. To test this hypothesis, we investigated the effect of differently donating Y groups in model reactions of Ru-catalyzed olefin metathesis and Pd-catalyzed C-C cross-coupling. Consistent with the experimental results, calculations indicate an easier reaction pathway if the N-substituent of the NHC ligand presents an electron-donating Y group. © 2012 American Chemical Society.

  5. INSIGHTS INTO PRE-ENRICHMENT OF STAR CLUSTERS AND SELF-ENRICHMENT OF DWARF GALAXIES FROM THEIR INTRINSIC METALLICITY DISPERSIONS

    International Nuclear Information System (INIS)

    Leaman, Ryan

    2012-01-01

    Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity Z-bar and intrinsic spread in metallicity σ(Z) 2 . A plot of σ(Z) 2 versus Z-bar shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model, where the star cluster and dwarf galaxy behavior in the σ(Z) 2 - Z-bar diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the enriched regions. The inhomogeneity of the self-enrichment sets the slope for the observed dwarf galaxy σ(Z) 2 - Z-bar correlation. The offset of the star cluster sequence from that of the dwarf galaxies is due to pre-enrichment, and the slope of the star cluster sequence represents the remnant signature of the self-enriched history of their host galaxies. The offset can be used to separate star clusters from dwarf galaxies without a priori knowledge of their luminosity or dynamical mass. The application of the inhomogeneous model to the σ(Z) 2 - Z-bar relationship provides a numerical formalism to connect the self-enrichment and pre-enrichment between star clusters and dwarf galaxies using physically motivated chemical enrichment parameters. Therefore we suggest that the σ(Z) 2 - Z-bar relationship can provide insight into what drives the efficiency of star formation and chemical evolution in galaxies, and is an important prediction for galaxy simulation models to reproduce.

  6. Slow Cooling in Low Metallicity Clouds: An Origin of Globular Cluster Bimodality?

    Science.gov (United States)

    Fernandez, Ricardo; Bryan, Greg L.

    2018-05-01

    We explore the relative role of small-scale fragmentation and global collapse in low-metallicity clouds, pointing out that in such clouds the cooling time may be longer than the dynamical time, allowing the cloud to collapse globally before it can fragment. This, we suggest, may help to explain the formation of the low-metallicity globular cluster population, since such dense stellar systems need a large amount of gas to be collected in a small region (without significant feedback during the collapse). To explore this further, we carry out numerical simulations of low-metallicity Bonner-Ebert stable gas clouds, demonstrating that there exists a critical metallicity (between 0.001 and 0.01 Z⊙) below which the cloud collapses globally without fragmentation. We also run simulations including a background radiative heating source, showing that this can also produce clouds that do not fragment, and that the critical metallicity - which can exceed the no-radiation case - increases with the heating rate.

  7. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  8. Chemical study of the metal-rich globular cluster NGC 5927

    Science.gov (United States)

    Mura-Guzmán, A.; Villanova, S.; Muñoz, C.; Tang, B.

    2018-03-01

    Globular clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us to which Galactic structure (disc, bulge, halo or extragalactic) the cluster belongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the thick disc. We present abundance analysis based on high-resolution spectra of seven giant stars. The data were obtained using Fibre Large Array Multi Element Spectrograph/Ultraviolet Echelle Spectrograph (UVES) spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal objective of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H] = -0.47 ± 0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [α/Fe] = 0.25 ± 0.08. Iron-peak elements show no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.

  9. Collective-field-corrected strong field approximation for laser-irradiated metal clusters

    International Nuclear Information System (INIS)

    Keil, Th; Bauer, D

    2014-01-01

    The strong field approximation (SFA) formulated in terms of so-called ‘quantum orbits’ led to much insight into intense-laser driven ionization dynamics. In plain SFA, the emitted electron is treated as a free electron in the laser field alone. However, with improving experimental techniques and more advanced numerical simulations, it becomes more and more obvious that the plain SFA misses interesting effects even on a qualitative level. Examples are holographic side lobes, the low-energy structure, radial patterns in photoelectron spectra at low kinetic energies and strongly rotated angular distributions. For this reason, increasing efforts have been recently devoted to Coulomb corrections of the SFA. In the current paper, we follow a similar line but consider ionization of metal clusters. It is known that photoelectrons from clusters can be much more energetic than those emitted from atoms or small molecules, especially if the Mie resonance of the expanding cluster is evoked. We develop a SFA that takes the collective field inside the cluster via the simple rigid-sphere model into account. Our approach is based on field-corrected quantum orbits so that the acceleration process (or any other spectral feature of interest) can be investigated in detail. (paper)

  10. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1980-01-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (Δm=3/sup m/.60), the CTIO 4-m telescope (Δm=6/sup m/.83), and the ESO 3.6-m telescope (Δm=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V) 0 =0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood [Astrophys. J. 159, 605 (1970)] and the isochrones of Demarque and McClure [(1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199], we deduce the cluster's age to be 14.5( +- 4.0) x 10 9 yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution

  11. Tuning the magnetic properties of deposited transition metal clusters by decoration

    Energy Technology Data Exchange (ETDEWEB)

    Minar, Jan; Bornemann, S.; Ebert, H. [Dept. Chemie, LMU, Butenandtstr. 5-13, 81377 Muenchen (Germany); Staunton, J.B. [Department of Physics, University of Warwick (United Kingdom); Rusponi, S.; Brunne, H. [EPF Lausanne (Switzerland)

    2008-07-01

    Using the fully relativistic version of the KKR-method for electronic structure calculations within local spin density functional theory (LSDA) the magnetic properties of Fe, Co and Ni clusters deposited on the Pt(111) surface have been investigated. Of central interest are the role of spin-orbit coupling as it influences the spontaneous formation and orientation of magnetic moments and gives rise amongst others to the occurrence of orbital magnetic moments, the magnetic anisotropy energy (MAE) and magnetic circular dichroism in X-ray absorption (XMCD). Our systematic investigations of different clusters and nanostructures aim to reveal the mutual relationship among their spin-orbit induced properties. In addition they show how their various magnetic properties depend on the structural properties and chemical composition of the studied system. For large two-dimensional clusters we focussed especially on the dependency of the MAE on decoration with another transition metal. Our results are in qualitative agreement with recent experimental findings. We resolved the MAE contributions for inequivalent cluster atoms and will discuss the effect of the induced MAE within the Pt substrate.

  12. An updated survey of globular clusters in M 31. III. A spectroscopic metallicity scale for the Revised Bologna Catalog

    Science.gov (United States)

    Galleti, S.; Bellazzini, M.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    2009-12-01

    Aims. We present a new homogeneous set of metallicity estimates based on Lick indices for the old globular clusters of the M 31 galaxy. The final aim is to add homogeneous spectroscopic metallicities to as many entries as possible of the Revised Bologna Catalog of M 31 clusters, by reporting Lick index measurements from any source (literature, new observations, etc.) on the same scale. Methods: New empirical relations of [Fe/H] as a function of [MgFe] and Mg2 indices are based on the well-studied galactic globular clusters, complemented with theoretical model predictions for -0.2≤ [Fe/H]≤ +0.5. Lick indices for M 31 clusters from various literature sources (225 clusters) and from new observations by our team (71 clusters) have been transformed into the Trager et al. system, yielding new metallicity estimates for 245 globular clusters of M 31. Results: Our values are in good agreement with recent estimates based on detailed spectral fitting and with those obtained from color magnitude diagrams of clusters imaged with the Hubble Space Telescope. The typical uncertainty on individual estimates is ≃±0.25 dex, as resulted from the comparison with metallicities derived from color magnitude diagrams of individual clusters. Conclusions: The metallicity distribution of M 31 globular cluster is briefly discussed and compared with that of the Milky Way. Simple parametric statistical tests suggest that the distribution is probably not unimodal. The strong correlation between metallicity and kinematics found in previous studies is confirmed. The most metal-rich GCs tend to be packed into the center of the system and to cluster tightly around the galactic rotation curve defined by the HI disk, while the velocity dispersion about the curve increases with decreasing metallicity. However, also the clusters with [Fe/H]<-1.0 display a clear rotation pattern, at odds with their Milky Way counterparts. Based on observations made at La Palma, at the Spanish Observatorio del Roque

  13. Synthesis and characterization of αzirconium (IV) hydrogenphosphate containing metallic copper clusters

    International Nuclear Information System (INIS)

    Souza, Alexilda Oliveira de; Rangel, Maria do Carmo; Alves, Oswaldo Luiz

    2005-01-01

    The α-zirconium (IV) hydrogenphosphate (α-ZrP) has received great attention in the last years due to its properties like ion exchange, intercalation, ionic conductivity and catalytic activity. This work reports a method to produce metallic copper clusters on α-ZrP to be used as catalysts in petrochemical processes. It was found that the solids were non-crystalline regardless of the uptake of copper and the reduction. The specific surface area increased as a consequence of the increase of the interlayer distance to accept the copper ions between the layers. During the reduction, big clusters of copper (0,5-11μ) with different sizes and shapes were produced. (author)

  14. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  15. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  16. Atmospheric Parameters and Metallicities for 2191 Stars in the Globular Cluster M4

    Science.gov (United States)

    Malavolta, Luca; Sneden, Christopher; Piotto, Giampaolo; Milone, Antonino P.; Bedin, Luigi R.; Nascimbeni, Valerio

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V 14.7, we obtain lang[Fe/H]rang = -1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  17. Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

    OpenAIRE

    Ahmed, Ejaz

    2011-01-01

    Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 i...

  18. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu

    2018-04-01

    In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing

    KAUST Repository

    Tromp, Karin

    2012-02-01

    A full-scale remediation facility including a detention basin and a wetland was tested for retention of heavy metals and Poly-Aromatic Hydrocarbons (PAHs) from water drained from a motorway in The Netherlands. The facility consisted of a detention basin, a vertical-flow reed bed and a final groundwater infiltration bed. Water samples were taken of road water, detention basin influent and wetland effluent. By using automated sampling, we were able to obtain reliable concentration averages per 4-week period during 18 months. The system retained the PAHs very well, with retention efficiencies of 90-95%. While environmental standards for these substances were surpassed in the road water, this was never the case after passage through the system. For the metals the situation was more complicated. All metals studied (Cu, Zn, Pb, Cd and Ni) had concentrations frequently surpassing environmental standards in the road water. After passage through the system, most metal concentrations were lower than the standards, except for Cu and Zn. There was a dramatic effect of de-icing salts on the concentrations of Cu, Zn, Cd and Ni, in the effluent leaving the system. For Cu, the concentrations even became higher than they had ever been in the road water. It is advised to let the road water bypass the facility during de-icing periods. © 2011 Elsevier B.V.

  20. Ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in sediments of rivers Niger and Benue confluence, Lokoja, Central Nigeria.

    Science.gov (United States)

    Ekere, Nwachukwu; Yakubu, Newman; Ihedioha, Janefrances

    2017-08-01

    The concentrations of six heavy metals (HMs) and 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) in sediment samples of the confluence of rivers Niger and Benue were investigated. The ecological risk assessment of the contaminants was carried out. The results showed that the sediment samples were heavily polluted with iron and moderately polluted with Cd while other metals posed no pollution problem when compared with USEPA sediment quality guidelines. Only six out of the 16 priority PAHs were detected in the samples, and source apportionment of the PAHs indicated that they are of pyrogenic origin. The ∑PAHs in the samples were lower than many of similar studies and were of no pollution risk. The ecological risk assessment result of the heavy metals showed that the sediments were of considerable risk due majorly to Cd levels. The HM concentration results statistically showed significant difference between seasons at probability value (P metals into three different components according to sources. The levels of HMS and PAHs detected in the sediments were correlated for source identification, and the correlation showed that the majority of the pollutants were mainly from anthropogenic sources. There is increasing level of anthropogenic activities at the vicinity of the confluence due to urbanization which may call for periodic monitoring of the sediment quality.

  1. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Zhang, Wangzhen [Institute of Industrial Health, Wuhan Iron & Steel (Group) Corporation, Wuhan 430070, China. (China); Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Guo, Huan, E-mail: ghuan5011@hust.edu.cn [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-07-15

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P{sub interaction}≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8

  2. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    International Nuclear Information System (INIS)

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei; Zhang, Wangzhen; Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun; Guo, Huan

    2015-01-01

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P interaction ≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8-OHd

  3. A new method for measuring metallicities of young super star clusters

    International Nuclear Information System (INIS)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Davies, Ben; Bastian, Nate; Bergemann, Maria; Plez, Bertrand; Evans, Chris; Patrick, Lee; Schinnerer, Eva

    2014-01-01

    We demonstrate how the metallicities of young super star clusters (SSC) can be measured using novel spectroscopic techniques in the J-band. The near-infrared flux of SSCs older than ∼6 Myr is dominated by tens to hundreds of red supergiant stars. Our technique is designed to harness the integrated light of that population and produces accurate metallicities for new observations in galaxies above (M83) and below (NGC 6946) solar metallicity. In M83 we find [Z] = +0.28 ± 0.14 dex using a moderate resolution (R ∼ 3500) J-band spectrum and in NGC 6496 we report [Z] = -0.32 ± 0.20 dex from a low resolution spectrum of R ∼ 1800. Recently commissioned low resolution multiplexed spectrographs on the Very Large Telescope (KMOS) and Keck (MOSFIRE) will allow accurate measurements of SSC metallicities across the disks of star-forming galaxies up to distances of 70 Mpc with single night observation campaigns using the method presented in this paper.

  4. Electronic structures and water reactivity of mixed metal sulfide cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Arjun; Raghavachari, Krishnan [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2014-08-21

    The electronic structures and chemical reactivity of the mixed metal sulfide cluster anion (MoWS{sub 4}{sup −}) have been investigated with density functional theory. Our study reveals the presence of two almost isoenergetic structural isomers, both containing two bridging sulfur atoms in a quartet state. However, the arrangement of the terminal sulfur atoms is different in the two isomers. In one isomer, the two metals are in the same oxidation state (each attached to one terminal S). In the second isomer, the two metals are in different oxidation states (with W in the higher oxidation state attached to both terminal S). The reactivity of water with the two lowest energy isomers has also been studied, with an emphasis on pathways leading to H{sub 2} release. The reactive behavior of the two isomers is different though the overall barriers in both systems are small. The origin of the differences are analyzed and discussed. The reaction pathways and barriers are compared with the corresponding behavior of monometallic sulfides (Mo{sub 2}S{sub 4}{sup −} and W{sub 2}S{sub 4}{sup −}) as well as mixed metal oxides (MoWO{sub 4}{sup −})

  5. Relaxation processes in optically excites metal clusters; Relaxationsprozesse in optisch angeregten Metallclustern

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, J.

    2007-08-10

    The present work is concerned with the dynamics of optically excited metal clusters in the gas phase. Small mass-selected gold and tungsten cluster anions (Au{sup -}{sub n}, n=5-8, 14, 20 and W{sup -}{sub n}, n=3-14) are studied using femtosecond time-resolved photoelectron spectroscopy. Depending on the electronic structure in the valence region as well as on the optical excitation energy fundamentally different relaxation processes are observed. In small gold cluster anions excited with 1.56 eV an isolated electronically excited state is populated. The time-dependent measurements are strongly sizedependent and open insights into photoinduced geometry changes of the nuclear framework. Oscillatory vibrational wavepacket motion in Au{sup -}{sub 5}, an extremely longlived ({tau} >90 ns) electronically excited state in Au{sup -}{sub 6} as well as photoinduced melting in Au{sup -}{sub 7} and Au{sup -}{sub 8} is monitored in real time. By increasing the OPTICAL excitation energy to 3.12 eV a completely different scenario is observed. A multitude of electronically excited states can be reached upon optical excitation and as a consequence electronic relaxation processes that take place on a time scale of 1 ps are dominating. This is shown for Au{sup -}{sub 7}, Au{sup -}{sub 14} and Au{sup -}{sub 20}. Compared to gold clusters, tungsten clusters are characterized by a significantly higher electronic density of states in the valence region. Therefore electronic relaxation processes are much more likely and take place on a significantly faster time scale. The fast electronic relaxation processes are distinguished from pure vibrational relaxation. It is shown that already in the four atomic tungsten cluster W{sup -}{sub 4} electronic relaxation processes take place on a time scale of 30 fs. In all investigated tungsten cluster anions (W{sup -}{sub n}, n=3-14) an equilibrium between electronic and vibrational system is reached within around 1 ps after optical excitation which

  6. Vapor-Phase Hydrodeoxygenation of Guaiacol to Aromatics over Pt/HBeta: Identification of the Role of Acid Sites and Metal Sites on the Reaction Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei [Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 P.R. China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Peng, Bo [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Zhu, Xinli [Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 P.R. China

    2018-02-05

    Hydrodeoxygenation of guaiacol, a phenolic compound derived from lignin fraction of biomass, over a Pt/HBeta catalyst at 350 °C and atmospheric pressure produces benzene, toluene, xylenes, and C9+ aromatics with yield of 42%, 29%, 12%, and 5%, respectively. Reaction pathways for conversion of two functional groups (hydroxyl and methoxyl) over the bifunctional catalyst were studied. Both guaiacol and intermediate products (catechol and cyclopentanone) were fed onto zeolite HBeta and Pt/SiO2 to identify the individual role of acid site and metal site. Acid sites (mainly Brønsted acid site, BAS) catalyze transalkylation and dehydroxylation reactions in sequence, producing phenol, cresols and xylenols as the major products at high conversion. Pt sites catalyze demethylation reaction resulting in catechol as the primary product, which can either be deoxygenated to phenol followed by phenol to benzene, or decarbonylated to cyclopentanone and further to butane. The close proximity of Pt and BAS in bifunctional Pt/HBeta enables both transalkylation and deoxygenation reactions with inhibited demethylation and decarbonylation reactions, producing aromatics as major final products with a total yield > 85%. Both activity and stability of bifunctional Pt/HBeta during hydrodeoxygenation of guaiacol is improved compared to HBeta and Pt/SiO2. The addition of water to the feed further improves the activity and stability via hydrolysis of O-CH3 bond of guaiacol on BAS and removing coke around Pt.

  7. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  8. Open cluster Dolidze 25: Stellar parameters and the metallicity in the Galactic anticentre

    Science.gov (United States)

    Negueruela, I.; Simón-Díaz, S.; Lorenzo, J.; Castro, N.; Herrero, A.

    2015-12-01

    Context. The young open cluster Dolidze 25, in the direction of the Galactic anticentre, has been attributed a very low metallicity, with typical abundances between -0.5 and -0.7 dex below solar. Aims: We intend to derive accurate cluster parameters and accurate stellar abundances for some of its members. Methods: We have obtained a large sample of intermediate- and high-resolution spectra for stars in and around Dolidze 25. We used the fastwind code to generate stellar atmosphere models to fit the observed spectra. We derive stellar parameters for a large number of OB stars in the area, and abundances of oxygen and silicon for a number of stars with spectral types around B0. Results: We measure low abundances in stars of Dolidze 25. For the three stars with spectral types around B0, we find 0.3 dex (Si) and 0.5 dex (O) below the values typical in the solar neighbourhood. These values, even though not as low as those given previously, confirm Dolidze 25 and the surrounding H ii region Sh2-284 as the most metal-poor star-forming environment known in the Milky Way. We derive a distance 4.5 ± 0.3 kpc to the cluster (rG ≈ 12.3 kpc). The cluster cannot be older than ~3 Myr, and likely is not much younger. One star in its immediate vicinity, sharing the same distance, has Si and O abundances at most 0.15 dex below solar. Conclusions: The low abundances measured in Dolidze 25 are compatible with currently accepted values for the slope of the Galactic metallicity gradient, if we take into account that variations of at least ±0.15 dex are observed at a given radius. The area traditionally identified as Dolidze 25 is only a small part of a much larger star-forming region that comprises the whole dust shell associated with Sh2-284 and very likely several other smaller H ii regions in its vicinity. Based on observations made with the Nordic Optical Telescope, the Mercator Telescope, and the telescopes of the Isaac Newton Group.

  9. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    Science.gov (United States)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  10. Theoretical study of electronic and dynamic properties of simple metal clusters in jellium model

    International Nuclear Information System (INIS)

    El-Amine Madjet, M.

    1994-01-01

    We have studied the electronic properties of alkali-metal clusters in various theoretical approximations and in the framework of the spherical jellium model. We have investigated the ground state properties of alkali clusters both in the LDA (local density approximation) and in HF (Hartree-Fock) theory. We have compared the LDA predictions of the ground state properties to predictions obtained within the HF theory. Such a comparison permitted us to check the validity of the local density functional theory in describing the ground state of a finite fermion system. For the study of collective dipolar excitations in clusters, we have considered an electromagnetic excitation. We have investigated the collective modes in the following approximations: random phase approximation (RPA), time-dependent local-density approximation (TDLDA) and the sum-rules approach. An assessment of the approximation for the continuum state within the RPA is made by comparing with TDLDA calculations for the static and dynamic electronic properties. The comparative study that we have done on the exchange-correlation effects on the electronic and optical properties have shown that the discrepancies with measured data are due mostly to the jellium approximation for the ionic background. (author). 69 refs., 30 figs., 18 tabs

  11. Density-functional theory study of ionic inhomogeneity in metal clusters using SC-ISJM

    Science.gov (United States)

    Payami, Mahmoud; Mahmoodi, Tahereh

    2017-12-01

    In this work we have applied the recently formulated self-compressed inhomogeneous stabilized jellium model [51] to describe the equilibrium electronic and geometric properties of atomic-closed-shell simple metal clusters of AlN (N = 13, 19, 43, 55, 79, 87, 135, 141), NaN, and CsN (N = 9, 15, 27, 51, 59, 65, 89, 113). To validate the results, we have also performed first-principles pseudo-potential calculations and used them as our reference. In the model, we have considered two regions consisting of ;surface; and ;inner; ones, the border separating them being sharp. This generalization makes possible to decouple the relaxations of different parts of the system. The results show that the present model correctly predicts the size reductions seen in most of the clusters. It also predicts increase in size of some clusters, as observed from first-principles results. Moreover, the changes in inter-layer distances, being as contractions or expansions, are in good agreement with the atomic simulation results. For a more realistic description of the properties, it is possible to improve the method of choosing the surface thicknesses or generalize the model to include more regions than just two.

  12. Homochiral coordination polymers with helixes and metal clusters based on lactate derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhong-Xuan, E-mail: xuzhongxuan4201@163.com [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); Ma, Yu-Lu [School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Lv, Guo-ling [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China)

    2017-05-15

    Utilizing the lactic acid derivatives (R)-4-(1-carboxyethoxy)benzoic acid (denoted: (R)-H{sub 2}CBA) and (S)-4-(1-carboxyethoxy)benzoic acid (denoted: (S)-H{sub 2}CBA)as chiral linkers to self-assemble with 4, 4′-bipyridine (denoted: BIP) and Cd(II) ions, a couple of three-dimensional homochiral coordination polymers, namely [Cd{sub 3}((R)-CBA){sub 3} (BIP){sub 2}(H{sub 2}O)]·xGuest (1-D) and [Cd{sub 3}((S)-CBA){sub 3}(BIP){sub 2}(H{sub 2}O)]·xGuest (1-L), have been synthesized under solvothermal reaction condition. Single crystal X-ray diffraction analysis reveals the two complexes contain single helical chains based on enantiopure ligands and cadmium clusters. Moreover, some physical characteristics such as PXRD, thermal stability, solid-state circular dichroism (CD) and luminescent were also investigated. - Graphical abstract: Utilizing enantiomeric lactic acid derivatives (R)-H{sub 2}CBA and (S)-H{sub 2}CBA to assemble with Cd{sup 2+} ions and ancillary BIP ligands, a couple of 3D homochiral coordination polymers with metal clusters and helical chains have been prepared by hydrothermal reaction. - Highlights: • Chiral lactic acid derivative. • Enantiomeric coordination polymer. • Helical chain. • Trinuclear cadmium cluster.

  13. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  15. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  16. Blood trace metals in a sporadic amyotrophic lateral sclerosis geographical cluster.

    Science.gov (United States)

    De Benedetti, Stefano; Lucchini, Giorgio; Del Bò, Cristian; Deon, Valeria; Marocchi, Alessandro; Penco, Silvana; Lunetta, Christian; Gianazza, Elisabetta; Bonomi, Francesco; Iametti, Stefania

    2017-06-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disorder with unknown etiology, in which genetic and environmental factors interplay to determine the onset and the course of the disease. Exposure to toxic metals has been proposed to be involved in the etiology of the disease either through a direct damage or by promoting oxidative stress. In this study we evaluated the concentration of a panel of metals in serum and whole blood of a small group of sporadic patients, all living in a defined geographical area, for which acid mine drainage has been reported. ALS prevalence in this area is higher than in the rest of Italy. Results were analyzed with software based on artificial neural networks. High concentrations of metals (in particular Se, Mn and Al) were associated with the disease group. Arsenic serum concentration resulted lower in ALS patients, but it positively correlated with disease duration. Comet assay was performed to evaluate endogenous DNA damage that resulted not different between patients and controls. Up to now only few studies considered geographically well-defined clusters of ALS patients. Common geographical origin among patients and controls gave us the chance to perform metallomic investigations under comparable conditions of environmental exposure. Elaboration of these data with software based on machine learning processes has the potential to be extremely useful to gain a comprehensive view of the complex interactions eventually leading to disease, even in a small number of subjects.

  17. Assessment of PM10 and heavy metals concentration in a Ceramic Cluster (NE Spain)

    Science.gov (United States)

    Belen Vicente, Ana; Pardo, Francisco; Sanfeliu, Teofilo; Bech, Joan

    2013-04-01

    Environmental pollution control is one of the most important goals in pollution risk assessment today. The aim of this study is conducting a retrospective view of the evolution of particulate matter (PM10) and heavy metals (As, Cd, Ni and Pb) at different localities in the Spanish cluster ceramic in the period between January 2007 and December 2011. The study area is in the province of Castellón. This province is a strategical area in the framework of European Union Pollution control. Approximately 80% of European ceramic tiles and ceramic frits manufacturers are concentrated in two areas, forming the so-called "Ceramics Clusters"; one is in Modena (Italy) and the other in Castellón (Spain). In this kind of areas, there are a lot of pollutants from this industry that represent an important contribution to soil contamination so it is necessary to control the air quality in them. These atmospheric particles are deposited in the ground through both dry and wet deposition. Soil is a major sink for heavy metals released into the environment. The level of pollution of soils by heavy metals depends on the retention capacity of the soil, especially on physical-chemical properties (mineralogy, grain size, organic matter) affecting soil particle surfaces and also on the chemical properties of the metal. The most direct consequences on the ground of air pollutants are acidification, salinization and the pollutions that can cause heavy metals as components of suspended particulate matter. For this purpose the levels of PM10 in ambient air and the corresponding annual and weekly trend were calculated. The results of the study show that the PM10 and heavy metals concentrations are below the limit values recommended by European Union Legislation for the protection of human health and ecosystems in the study period. There is an important reduction of them from 2009 in all control stations due to the economic crisis. References Moral, R., Gilkes, R.J., Jordán, M.M., 2005

  18. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    Science.gov (United States)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  19. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO -- a phenomenon related to defects?

    International Nuclear Information System (INIS)

    Arenholz, Elke; Zhou, S.; Potzger, K.; Talut, G.; Reuther, H.; Kuepper, K.; Grenzer, J.; Xu, Q.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.

    2008-01-01

    We investigated ZnO(0001) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction

  20. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO: a phenomenon related to defects?

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K; Talut, G; Reuther, H; Kuepper, K; Grenzer, J; Xu Qingyu; Muecklich, A; Helm, M; Fassbender, J; Arenholz, E

    2008-01-01

    We investigated ZnO(0 0 0 1) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction

  1. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  2. Low Metallicities and Old Ages for Three Ultra-diffuse Galaxies in the Coma Cluster

    Science.gov (United States)

    Gu, Meng; Conroy, Charlie; Law, David; van Dokkum, Pieter; Yan, Renbin; Wake, David; Bundy, Kevin; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Drory, Niv; Grabowski, Kathleen; Masters, Karen; Pan, Kaike; Parejko, John; Weijmans, Anne-Marie; Zhang, Kai

    2018-05-01

    A large population of ultra-diffuse galaxies (UDGs) was recently discovered in the Coma cluster. Here we present optical spectra of three such UDGs, DF 7, DF 44, and DF 17, which have central surface brightnesses of μ g ≈ 24.4–25.1 mag arcsec‑2. The spectra were acquired as part of an ancillary program within the SDSS-IV MaNGA Survey. We stacked 19 fibers in the central regions from larger integral field units (IFUs) per source. With over 13.5 hr of on-source integration, we achieved a mean signal-to-noise ratio in the optical of 9.5 Å‑1, 7.9 Å‑1, and 5.0 Å‑1, respectively, for DF 7, DF 44, and DF 17. Stellar population models applied to these spectra enable measurements of recession velocities, ages, and metallicities. The recession velocities of DF 7, DF 44, and DF 17 are {6599}-25+40 km s‑1, {6402}-39+41 km s‑1, and {8315}-43+43 km s‑1, spectroscopically confirming that all of them reside in the Coma cluster. The stellar populations of these three galaxies are old and metal-poor, with ages of {7.9}-2.5+3.6 Gyr, {8.9}-3.3+4.3 Gyr, and {9.1}-5.5+3.9 Gyr, and iron abundances of [Fe/H] -{1.0}-0.4+0.3, -{1.3}-0.4+0.4, and -{0.8}-0.5+0.5, respectively. Their stellar masses are (3–6) × 108 M ⊙. The UDGs in our sample are as old or older than galaxies at similar stellar mass or velocity dispersion (only DF 44 has an independently measured dispersion). They all follow the well-established stellar mass–stellar metallicity relation, while DF 44 lies below the velocity dispersion-metallicity relation. These results, combined with the fact that UDGs are unusually large for their stellar masses, suggest that stellar mass plays a more important role in setting stellar population properties for these galaxies than either size or surface brightness.

  3. THE SPITZER SPECTROSCOPIC SURVEY OF THE SMALL MAGELLANIC CLOUD (S{sup 4}MC): PROBING THE PHYSICAL STATE OF POLYCYCLIC AROMATIC HYDROCARBONS IN A LOW-METALLICITY ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Karin M. [Max Planck Institut fuer Astronomie, D-69117 Heidelberg (Germany); Bolatto, Alberto D. [Department of Astronomy and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Bot, Caroline [Universite de Strasbourg, Observatoire Astronomique de Strasbourg, F-67000 Strasbourg (France); Draine, B. T. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ingalls, James G. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Israel, Frank P.; Tielens, A. G. G. M. [Sterrewacht Leiden, Leiden University, 2300 RA Leiden (Netherlands); Jackson, James M. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65213 (United States); Rubio, Monica [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Simon, Joshua D. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Smith, J. D. T. [Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43603 (United States); Stanimirovic, Snezana [Department of Astronomy, University of Wisconsin, Madison, Madison, WI 53703 (United States); Van Loon, Jacco Th., E-mail: sandstrom@mpia.de [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2012-01-01

    We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC (S{sup 4}MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 {mu}m features relative to the 11.3 {mu}m feature and weak 8.6 and 17.0 {mu}m features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted toward smaller PAHs cannot be the result of processing in the interstellar medium, but instead reflects differences in the formation of PAHs at low metallicity. Finally, we discuss the implications of our observations for our understanding of the PAH life-cycle in low-metallicity galaxies-namely that the observed deficit of PAHs may be a consequence of PAHs forming with smaller average sizes and therefore being more susceptible to destruction under typical interstellar medium conditions.

  4. THE SPITZER SPECTROSCOPIC SURVEY OF THE SMALL MAGELLANIC CLOUD (S4MC): PROBING THE PHYSICAL STATE OF POLYCYCLIC AROMATIC HYDROCARBONS IN A LOW-METALLICITY ENVIRONMENT

    International Nuclear Information System (INIS)

    Sandstrom, Karin M.; Bolatto, Alberto D.; Bot, Caroline; Draine, B. T.; Ingalls, James G.; Israel, Frank P.; Tielens, A. G. G. M.; Jackson, James M.; Leroy, Adam K.; Li, Aigen; Rubio, Mónica; Simon, Joshua D.; Smith, J. D. T.; Stanimirović, Snežana; Van Loon, Jacco Th.

    2012-01-01

    We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC (S 4 MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 μm features relative to the 11.3 μm feature and weak 8.6 and 17.0 μm features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted toward smaller PAHs cannot be the result of processing in the interstellar medium, but instead reflects differences in the formation of PAHs at low metallicity. Finally, we discuss the implications of our observations for our understanding of the PAH life-cycle in low-metallicity galaxies—namely that the observed deficit of PAHs may be a consequence of PAHs forming with smaller average sizes and therefore being more susceptible to destruction under typical interstellar medium conditions.

  5. Liquid-liquid phase separation and cluster formation at deposition of metals under inhomogeneous magnetic field

    Science.gov (United States)

    Gorobets, O. Yu; Gorobets, Yu I.; Rospotniuk, V. P.; Grebinaha, V. I.; Kyba, A. A.

    2017-10-01

    The formation and dynamic of expansion and deformation of the liquid-liquid interface of an electrolyte at deposition of metals at the surface of the magnetized steel ball is considered in this paper. The electrochemical processes were investigated in an external magnetic field directed at an arbitrary angle to the force of gravity. These processes are accompanied by the formation of effectively paramagnetic clusters of electrochemical products - magnions. Tyndall effect was used for detection of the presence of magnions near the magnetized steel electrode in a solution. The shape of the interface separating the regions with different concentration of magnions, i.e. different magnetic susceptibilities, was described theoretically based on the equation of hydrostatic equilibrium which takes into account magnetic, hydrostatic and osmotic pressures.

  6. Assessment of Heavy Metal Pollution in Macrophytes, Water and Sediment of a Tropical Wetland System Using Hierarchical Cluster Analysis Technique

    OpenAIRE

    , N. Kumar J.I.; , M. Das; , R. Mukherji; , R.N. Kumar

    2011-01-01

    Heavy metal pollution in aquatic ecosystems is becoming a global phenomenon because these metals are indestructible and most of them have toxic effects on living organisms. Most of the fresh water bodies all over the world are getting contaminated thus declining their suitability. Therefore, monitoring and assessment of such freshwater systems has become an environmental concern. This study aims to elucidate the useful role of the cluster analysis to assess the relationship and interdependenc...

  7. LIGHT-ELEMENT ABUNDANCE VARIATIONS AT LOW METALLICITY: THE GLOBULAR CLUSTER NGC 5466

    International Nuclear Information System (INIS)

    Shetrone, Matthew; Martell, Sarah L.; Wilkerson, Rachel; Adams, Joshua; Siegel, Michael H.; Smith, Graeme H.; Bond, Howard E.

    2010-01-01

    We present low-resolution (R ≅850) spectra for 67 asymptotic giant branch (AGB), horizontal branch, and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7 m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s -1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band-strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken for five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function 'bump' on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances.

  8. High performance liquid chromatography of substituted aromatics with the metal-organic framework MIL-100(Fe): Mechanism analysis and model-based prediction.

    Science.gov (United States)

    Qin, Weiwei; Silvestre, Martin Eduardo; Li, Yongli; Franzreb, Matthias

    2016-02-05

    Metal-organic framework (MOF) MIL-100(Fe) with well-defined thickness was homogenously coated onto the outer surface of magnetic microparticles via a liquid-phase epitaxy method. The as-synthesized MIL-100(Fe) was used as stationary phase for high-performance liquid chromatography (HPLC) and separations of two groups of mixed aromatic hydrocarbons (toluene, styrene and p-xylene; acetanilide, 2-nirtoaniline and 1-naphthylamine) using methanol/water as mobile phase were performed to evaluate its performance. Increasing water content of the mobile phase composition can greatly improve the separations on the expense of a longer elution time. Stepwise elution significantly shortens the elution time of acetanilide, 2-nirtoaniline and 1-naphthylamine mixtures, while still achieving a baseline separation. Combining the experimental results and in-depth modeling using a recently developed chromatographic software (ChromX), adsorption equilibrium parameters, including the affinities and maximum capacities, for each analyte toward the MIL-100(Fe) are obtained. In addition, the pore diffusivity of aromatic hydrocarbons within MIL-100(Fe) was determined to be 5×10(-12)m(2)s(-1). While the affinities of MIL-100(Fe) toward the analyte molecules differs much, the maximum capacities of the analytes are in a narrow range with q*MOFmax,toluene=3.55molL(-1), q*MOFmax,styrene or p-xylene=3.53molL(-1), and q*MOFmax,anilines=3.12molL(-1) corresponding to approximately 842 toluene and 838 styrene or p-xylene, and 740 aniline molecules per MIL-100(Fe) unit cell, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuan, E-mail: liu.x.ad@m.titech.ac.jp; Ito, Haruhiko [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Torikai, Eiko [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi (Japan)

    2012-08-15

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li{sub n}, Na{sub n}, K{sub n}, Rb{sub n}, and Cs{sub n} with n = 2-8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  10. Effects of Carbonyl Bond and Metal Cluster Dissociation and Evaporation Rates on Predictions of Nanotube Production in HiPco

    Science.gov (United States)

    Scott, Carl D.; Smalley, Richard E.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNT) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the co-formation of CO2. It is shown that the production of CO2 is significantly greater for FeCO due to its lower bond energy as compared with that ofNiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  11. Towards new molecular superconductors: a first study of alkali metal reduced aromatic cryptands as 'pseudo-fullerides'

    International Nuclear Information System (INIS)

    Demol, F.; Sauvage, F.X.; Devos, A.; De Backer, M.G.

    1999-01-01

    The search for new molecular superconductors based upon concepts derived from the interpretation of alkali fullerides superconductivity led to the study of an aromatic cryptand (IHIC) considered as 'pseudo-fullerene'. New solids made of IHIC mono or di-reduced by potassium, rubidium and cesium were investigated. Low field microwave absorption (LFMA) signals appeared at 20 K for IHIC-Rb and IHIC-K (1:1), although these observations could not be confirmed by AC susceptibility or SQUID magnetometry. IR spectroscopy was used to probe the integrity of the final solid. EPR spectra consisted of a single symmetric line, combination of a Gaussian and of a Lorentzian lineshape, down to 4.2 K. However, the paramagnetic contribution of the reduced molecular species was too high to allow the observation of any transition at low temperature. Although two samples had a semiconductor like conductivity behavior as a function of temperature at high temperature, no indication of the presence of conduction electrons could be observed on the EPR spectrum. The LFMA measurements obtained can be considered as hints of superconductivity, thus opening the route towards new materials. (orig.)

  12. Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2

    DEFF Research Database (Denmark)

    Schulz, H.; Madler, L.; Strobel, R.

    2005-01-01

    Rapid quenching during flame spray synthesis of Pt/TiO2 (0-10 Wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt)cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen ad...

  13. Investigating the synthesis of ligated metal clusters in solution using a flow reactor and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Olivares, Astrid; Laskin, Julia; Johnson, Grant E

    2014-09-18

    The scalable synthesis of ligated subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic, and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth, and postreduction etching are still not well understood. Herein, we demonstrate a prototype temperature-controlled flow reactor for qualitatively studying cluster formation in solution at steady-state conditions. Employing this technique, methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand, and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with a known length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates, and products synthesized in real time was characterized qualitatively using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged organometallic complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged organometallic complexes while reducing the abundance of triply charged species. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of batch reduction synthesis in solution.

  14. A new family of Ln₇ clusters with an ideal D(3h) metal-centered trigonal prismatic geometry, and SMM and photoluminescence behaviors.

    Science.gov (United States)

    Mazarakioti, Eleni C; Poole, Katye M; Cunha-Silva, Luis; Christou, George; Stamatatos, Theocharis C

    2014-08-14

    The first use of the flexible Schiff base ligand N-salicylidene-2-aminocyclohexanol in metal cluster chemistry has afforded a new family of Ln7 clusters with ideal D(3h) point group symmetry and metal-centered trigonal prismatic topology; solid-state and solution studies revealed SMM and photoluminescence behaviors.

  15. Depressed height gain of children associated with intrauterine exposure to polycyclic aromatic hydrocarbons (PAH) and heavy metals: the cohort prospective study.

    Science.gov (United States)

    Jedrychowski, Wiesław A; Perera, Frederica P; Majewska, Renata; Mrozek-Budzyn, Dorota; Mroz, Elżbieta; Roen, Emily L; Sowa, Agata; Jacek, Ryszard

    2015-01-01

    Fetal exposure to environmental toxicants may program the development of children and have long-lasting health impacts. The study tested the hypothesis that depressed height gain in childhood is associated with prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead and mercury). The study sample comprised 379 children born to non-smoking mothers among whom a total of 2011 height measurements were carried out over the 9-year follow-up period. Prenatal airborne PAH exposure was assessed by personal air monitoring of the mother in the second trimester of pregnancy and heavy metals were measured in cord blood. At the age of 3 residential air monitoring was done to evaluate the level of airborne PAH, and at the age 5 the levels of heavy metals were measured in capillary blood. The effect estimates of prenatal PAH exposure on height growth over the follow-up were adjusted in the General Estimated Equation (GEE) models for a wide set of relevant covariates. Prenatal exposure to airborne PAH showed a significant negative association with height growth, which was significantly decreased by 1.1cm at PAH level above 34.7 ng/m(3) (coeff.=-1.07, p=0.040). While prenatal lead exposure was not significantly associated with height restriction, the effect of mercury was inversely related to cord blood mercury concentration above 1.2 μg/L (coeff.=-1.21, p=0.020), The observed negative impact of prenatal PAH exposure on height gain in childhood was mainly mediated by shorter birth length related to maternal PAH exposure during pregnancy. The height gain deficit associated with prenatal mercury exposure was not seen at birth, but the height growth was significantly slower at later age. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) atomic nuclei, (2) metal clusters

    International Nuclear Information System (INIS)

    Nesterenko, V.O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)

  17. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms

    International Nuclear Information System (INIS)

    Çakır, D; Gülseren, O

    2012-01-01

    We have systematically investigated the growth behavior and stability of small stoichiometric (TiO 2 ) n (n = 1-10) clusters as well as their structural, electronic and magnetic properties by using the first-principles plane wave pseudopotential method within density functional theory. In order to find out the ground state geometries, a large number of initial cluster structures for each n has been searched via total energy calculations. Generally, the ground state structures for the case of n = 1-9 clusters have at least one monovalent O atom, which only binds to a single Ti atom. However, the most stable structure of the n = 10 cluster does not have any monovalent O atom. On the other hand, Ti atoms are at least fourfold coordinated for the ground state structures for n ≥ 4 clusters. Our calculations have revealed that clusters prefer to form three-dimensional structures. Furthermore, all these stoichiometric clusters have nonmagnetic ground state. The formation energy and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for the most stable structure of (TiO 2 ) n clusters for each n have also been calculated. The formation energy and hence the stability increases as the cluster size grows. In addition, the interactions between the ground state structure of the (TiO 2 ) n cluster and a single water molecule have been studied. The binding energy (E b ) of the H 2 O molecule exhibits an oscillatory behavior with the size of the clusters. A single water molecule preferably binds to the cluster Ti atom through its oxygen atom, resulting an average binding energy of 1.1 eV. We have also reported the interaction of the selected clusters (n = 3, 4, 10) with multiple water molecules. We have found that additional water molecules lead to a decrease in the binding energy of these molecules to the (TiO 2 ) n clusters. Finally, the adsorption of transition metal (TM) atoms (V, Co and Pt) on the n = 10 cluster has been

  18. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    Science.gov (United States)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  19. Super-solar Metallicity Stars in the Galactic Center Nuclear Star Cluster: Unusual Sc, V, and Y Abundances

    Science.gov (United States)

    Do, Tuan; Kerzendorf, Wolfgang; Konopacky, Quinn; Marcinik, Joseph M.; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.

    2018-03-01

    We present adaptive-optics assisted near-infrared high-spectral-resolution observations of late-type giants in the nuclear star cluster of the Milky Way. The metallicity and elemental abundance measurements of these stars offer us an opportunity to understand the formation and evolution of the nuclear star cluster. In addition, their proximity to the supermassive black hole (∼0.5 pc) offers a unique probe of the star formation and chemical enrichment in this extreme environment. We observed two stars identified by medium spectral-resolution observations as potentially having very high metallicities. We use spectral-template fitting with the PHOENIX grid and Bayesian inference to simultaneously constrain the overall metallicity, [M/H], alpha-element abundance [α/Fe], effective temperature, and surface gravity of these stars. We find that one of the stars has very high metallicity ([M/H] > 0.6) and the other is slightly above solar metallicity. Both Galactic center stars have lines from scandium (Sc), vanadium (V), and yttrium (Y) that are much stronger than allowed by the PHOENIX grid. We find, using the spectral synthesis code Spectroscopy Made Easy, that [Sc/Fe] may be an order of magnitude above solar. For comparison, we also observed an empirical calibrator in NGC 6791, the highest metallicity cluster known ([M/H] ∼ 0.4). Most lines are well matched between the calibrator and the Galactic center stars, except for Sc, V, and Y, which confirms that their abundances must be anomalously high in these stars. These unusual abundances, which may be a unique signature of nuclear star clusters, offer an opportunity to test models of chemical enrichment in this region.

  20. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  1. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang

    2013-10-16

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho{sub x}M{sub 3-x}N rate at C{sub 80} (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The {sup 13}C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho{sub x}M{sub 3-x}N from Sc to Lu and further to Y. The LnSc{sub 2}N rate at C{sub 80} (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by {sup 13}C and {sup 45}Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ{sup PC} and δ{sup con

  2. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    International Nuclear Information System (INIS)

    Zhang, Yang

    2013-01-01

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho x M 3-x N rate at C 80 (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The 13 C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho x M 3-x N from Sc to Lu and further to Y. The LnSc 2 N rate at C 80 (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by 13 C and 45 Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ PC and δ con from δ para was achieved by the primary 13 C and 45 Sc NMR analysis of LnSc 2 N rate at C 80 (I). The

  3. Evidence for the direct ejection of clusters from non-metallic solids during laser vaporization

    International Nuclear Information System (INIS)

    Bloomfield, L.A.; Yang, Y.A.; Xia, P.; Junkin, A.L.

    1991-01-01

    This paper reports on the formation of molecular scale particles or clusters of alkali halides and semiconductors during laser vaporization of solids. By measuring the abundances of cluster ions produced in several different source configurations, the authors have determined that clusters are ejected directly from the source sample and do not need to grow from atomic or molecular vapor. Using samples of mixed alkali halide powders, the authors have found that unalloyed clusters are easily produced in a source that prevents growth from occurring after the clusters leave the sample surface. However, melting the sample or encouraging growth after vaporization lead to the production of alloyed cluster species. The sizes of the ejected clusters are initially random, but the population spectrum quickly becomes structured as hot, unstable-sized clusters decay into smaller particles. In carbon, large clusters with odd number of atoms decay almost immediately. The hot even clusters also decay, but much more slowly. The longest lived clusters are the magic C 50 and C 60 fullerenes. The mass spectrum of large carbon clusters evolves in time from structureless, to only the even clusters, to primarily C 50 and C 60 . If cluster growth is encouraged, the odd clusters reappear and the population spectrum again becomes relatively structureless

  4. Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin

    2018-05-25

    A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.

  5. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rachwał, Marzena; Magiera, Tadeusz; Wawer, Małgorzata

    2015-11-01

    Application of integrated magnetic, geochemical and mineralogical methods for qualitative and quantitative assessment of forest topsoils exposed to the industrial emissions was the objective of this manuscript. Volume magnetic susceptibility (κ) in three areas of southern Poland close to the coke and metallurgical plants was measured directly in the field. Representative topsoil samples were collected for further chemical and mineralogical analyses. Topsoil magnetic susceptibility in the studied areas depended mainly on the content of technogenic magnetic particles (TMPs) and decreased downwind at increasing distance from the emitters. In the vicinity of coking plants a high amount of polycyclic aromatic hydrocarbons (PAHs) was observed, especially the most carcinogenic ones with four- and five-member rings. No significant concentration of TMPs (estimated on the base of κ values) and heavy metals (HM) was observed in area where the coke plant was the only pollution source. In areas with both coke and metallurgical industry, higher amounts of TMPs, PAHs and HM were detected. Morphological and mineralogical analyses of TMPs separated from contaminated soil samples revealed their high heterogeneity in respect of morphology, grain size, mineral and chemical constitution. Pollution load index and toxicity equivalent concentration of PAHs used for soil quality assessment indicated its high level of pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan Balasubramanian

    2009-07-18

    methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the

  7. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    International Nuclear Information System (INIS)

    Balasubramanian, Krishnan

    2009-01-01

    methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au 3 was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH 2 could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH 2 back to Au and H 2 . We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf 3 , Nb 2 + etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the environmental management of high

  8. Three-dimensional aromatic networks.

    Science.gov (United States)

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  9. THE MASS-METALLICITY RELATION OF GLOBULAR CLUSTERS IN THE CONTEXT OF NONLINEAR COLOR-METALLICTY RELATIONS

    International Nuclear Information System (INIS)

    Blakeslee, John P.; Cantiello, Michele; Peng, Eric W.

    2010-01-01

    Two recent empirical developments in the study of extragalactic globular cluster (GC) populations are the color-magnitude relation of the blue GCs (the 'blue tilt') and the nonlinearity of the dependence of optical GC colors on metallicity. The color-magnitude relation, interpreted as a mass-metallicity relation, is thought to be a consequence of self-enrichment. Nonlinear color-metallicity relations have been shown to produce bimodal color distributions from unimodal metallicity distributions. We simulate GC populations including both a mass-metallicity scaling relation and nonlinear color-metallicity relations motivated by theory and observations. Depending on the assumed range of metallicities and the width of the GC luminosity function (GCLF), we find that the simulated populations can have bimodal color distributions with a 'blue tilt' similar to observations, even though the metallicity distribution appears unimodal. The models that produce these features have the relatively high mean GC metallicities and nearly equal blue and red peaks characteristic of giant elliptical galaxies. The blue tilt is less apparent in the models with metallicities typical of dwarf ellipticals; the narrower GCLF in these galaxies has an even bigger effect in reducing the significance of their color-magnitude slopes. We critically examine the evidence for nonlinearity versus bimodal metallicities as explanations for the characteristic double-peaked color histograms of giant ellipticals and conclude that the question remains open. We discuss the prospects for further theoretical and observational progress in constraining the models presented here and for uncovering the true metallicity distributions of extragalactic GC systems.

  10. Aromatic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Das, D. K., E-mail: gour.netai@gmail.com [Department of Metallurgical and Material Science Engineering, National Institute of Technology Durgapur-713209, West Bengal (India); Sahoo, S., E-mail: sukadevsahoo@yahoo.com [Department of Physics, National Institute of Technology Durgapur-713209, West Bengal (India)

    2016-04-13

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  11. Aromatic graphene

    International Nuclear Information System (INIS)

    Das, D. K.; Sahoo, S.

    2016-01-01

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  12. Radiation clusters formation and evolution in FCC metals at low-temperature neutron irradiation up to small damage fluences

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Shcherbakov, E.N.; Asiptsov, O.I.; Skryabin, L.A.; Portnykh, I.A.

    2006-01-01

    Methods of transmission electron microscopy and precision size measurements are used to study the formation of radiation-induced clusters in FCC metals (Ni, Pt, austenitic steels EhI-844, ChS-68) irradiated with fast neutron (E>0.1 MeV) fluences from 7 x 10 21 up to 3.5 x 10 22 m -2 at a temperature of 310 K. Using statistical thermodynamic methods the process of radiation clusters formation and evolution is described quantitatively. The change in the concentration of point defects under irradiation as well as size variations of irradiated specimens on annealing are calculated [ru

  13. Variable stars in metal-rich globular clusters. IV. Long-period variables in NGC 6496

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamad A. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Layden, Andrew C.; Guldenschuh, Katherine A. [Physics and Astronomy Department, Bowling Green State University, Bowling Green, OH 43403 (United States); Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Welch, Douglas L., E-mail: mabbas@ari.uni-heidelberg.de, E-mail: laydena@bgsu.edu [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8 S 4M1 (Canada)

    2015-02-01

    We present VI-band photometry for stars in the metal-rich globular cluster NGC 6496. Our time-series data were cadenced to search for long-period variables (LPVs) over a span of nearly two years, and our variability search yielded the discovery of 13 new variable stars, of which 6 are LPVs, 2 are suspected LPVs, and 5 are short-period eclipsing binaries. An additional star was found in the ASAS database, and we clarify its type and period. We argue that all of the eclipsing binaries are field stars, while five to six of the LPVs are members of NGC 6496. We compare the period–luminosity distribution of these LPVs with those of LPVs in the Large Magellanic Cloud and 47 Tucanae, and with theoretical pulsation models. We also present a VI color–magnitude diagram, display the evolutionary states of the variables, and match isochrones to determine a reddening of E(B−V)= 0.21±0.02 mag and apparent distance modulus of 15.60±0.15 mag.

  14. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Science.gov (United States)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  15. Stellar Population Properties of Ultracompact Dwarfs in M87: A Mass–Metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

    Science.gov (United States)

    Zhang, Hong-Xin; Puzia, Thomas H.; Peng, Eric W.; Liu, Chengze; Côté, Patrick; Ferrarese, Laura; Duc, Pierre-Alain; Eigenthaler, Paul; Lim, Sungsoon; Lançon, Ariane; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Ruben; Taylor, Matthew A.; Yu, Jincheng

    2018-05-01

    We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses ≳ 106 M ⊙ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages ≳ 8 Gyr and [α/Fe] ≃ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [α/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the stellar nuclei of dwarf elliptical galaxies (dEs) in the Virgo cluster. The UCDs exhibit a positive mass–metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses ≳ 108 M ⊙. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset toward higher metallicities for given stellar masses. The difference between the mass–metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.

  16. Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils of different land uses in Erbil metropolis, Kurdistan Region, Iraq.

    Science.gov (United States)

    Amjadian, Keyvan; Sacchi, Elisa; Rastegari Mehr, Meisam

    2016-11-01

    Urban soil contamination is a growing concern for the potential health impact on the increasing number of people living in these areas. In this study, the concentration, the distribution, the contamination levels, and the role of land use were investigated in Erbil metropolis, the capital of Iraqi Kurdistan. A total of 74 soil samples were collected, treated, and analyzed for their physicochemical properties, and for 7 heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) and 16 PAH contents. High concentrations, especially of Cd, Cu Pb, and Zn, were found. The Geoaccumulation index (I geo ), along with correlation coefficients and principal component analysis (PCA) showed that Cd, Cu, Pb, and Zn have similar behaviors and spatial distribution patterns. Heavy traffic density mainly contributed to the high concentrations of these metals. The total concentration of ∑PAHs ranged from 24.26 to 6129.14 ng/g with a mean of 2296.1 ng/g. The PAH pattern was dominated by 4- and 5-ring PAHs, while diagnostic ratios and PCA indicated that the main sources of PAHs were pyrogenic. The toxic equivalent (TEQ) values ranged from 3.26 to 362.84 ng/g, with higher values in central parts of the city. A statistically significant difference in As, Cd, Cu, Pb, Zn, and ∑PAH concentrations between different land uses was observed. The highest As concentrations were found in agricultural areas while roadside, commercial, and industrial areas had the highest Cd, Cu, Pb, Zn, and ∑PAH contents.

  17. [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal-Organic Frameworks.

    Science.gov (United States)

    Yuan, Shuai; Qin, Jun-Sheng; Xu, Hai-Qun; Su, Jie; Rossi, Daniel; Chen, Yuanping; Zhang, Liangliang; Lollar, Christina; Wang, Qi; Jiang, Hai-Long; Son, Dong Hee; Xu, Hongyi; Huang, Zhehao; Zou, Xiaodong; Zhou, Hong-Cai

    2018-01-24

    Metal-organic frameworks (MOFs) based on Ti-oxo clusters (Ti-MOFs) represent a naturally self-assembled superlattice of TiO 2 nanoparticles separated by designable organic linkers as antenna chromophores, epitomizing a promising platform for solar energy conversion. However, despite the vast, diverse, and well-developed Ti-cluster chemistry, only a scarce number of Ti-MOFs have been documented. The synthetic conditions of most Ti-based clusters are incompatible with those required for MOF crystallization, which has severely limited the development of Ti-MOFs. This challenge has been met herein by the discovery of the [Ti 8 Zr 2 O 12 (COO) 16 ] cluster as a nearly ideal building unit for photoactive MOFs. A family of isoreticular photoactive MOFs were assembled, and their orbital alignments were fine-tuned by rational functionalization of organic linkers under computational guidance. These MOFs demonstrate high porosity, excellent chemical stability, tunable photoresponse, and good activity toward photocatalytic hydrogen evolution reactions. The discovery of the [Ti 8 Zr 2 O 12 (COO) 16 ] cluster and the facile construction of photoactive MOFs from this cluster shall pave the way for the development of future Ti-MOF-based photocatalysts.

  18. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    OpenAIRE

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, St?phane; Ohashi, Naoki

    2016-01-01

    Abstract The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth ...

  19. On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927

    Science.gov (United States)

    D’Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V. F.; Elgueta, S. S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall’Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R. P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C. E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J. L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.

    2018-03-01

    We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91–1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = ‑0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = ‑ 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ± 0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. Based on spectra collected with the WINERED spectrograph available as a visitor instrument at the ESO New Technology Telescope (NTT), La Silla, Chile (ESO Proposal: 098.D-0878(A), PI: G. Bono).

  20. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites

    International Nuclear Information System (INIS)

    Hong, Soon-Jik; Kim, Hong-Moule; Huh, Dae; Suryanarayana, C.; Chun, Byong Sun

    2003-01-01

    Al 2024-SiC metal matrix composite (MMC) powders produced by centrifugal atomization were hot extruded to investigate the effect of clustering on their mechanical properties. Fracture toughness and tension tests were conducted on specimens reinforced with different volume fractions of SiC. A model was proposed to suggest that the strength of the MMCs could be estimated from the load transfer model approach that takes into consideration the extent of clustering. This model has been successful in predicting the experimentally observed strength and fracture toughness values of the Al 2024-SiC MMCs. On the basis of experimental observations, it is suggested that the strength of particulate-reinforced MMCs may be calculated from the relation: σ y =σ m V m +σ r (V r -V c )-σ r V c , where σ and V represent the yield strength and volume fraction, respectively, and the subscripts m, r, and c represent the matrix, reinforcement, and clusters, respectively

  1. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    International Nuclear Information System (INIS)

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-01-01

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  2. Microbial transformation of chlorinated aromatics in sediments

    NARCIS (Netherlands)

    Beurskens, J.E.M.

    1995-01-01

    Numerous contaminants like heavy metals, polycyclic aromatic hydrocarbons (PAHs), chlorinated benzenes (CBs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo- p -dioxins (PCDDs) and polychlorinated furans (PCDFs) are detected in the major rivers in the

  3. Mixed-metal cluster chemistry. 28. Core enlargement of tungsten-iridium clusters with alkynyl, ethyndiyl, and butadiyndiyl reagents.

    Science.gov (United States)

    Dalton, Gulliver T; Viau, Lydie; Waterman, Susan M; Humphrey, Mark G; Bruce, Michael I; Low, Paul J; Roberts, Rachel L; Willis, Anthony C; Koutsantonis, George A; Skelton, Brian W; White, Allan H

    2005-05-02

    Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.

  4. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs and Polychlorinated Biphenyls (PCBs

    Directory of Open Access Journals (Sweden)

    Grazia Marina eQuero

    2015-10-01

    Full Text Available Prokaryotes in coastal sediments are fundamental players in the ecosystem functioning and regulate processes relevant in the global biogeochemical cycles. Nevertheless, knowledge on benthic microbial diversity patterns across spatial scales, or as function to anthropogenic influence, is still limited. We investigated the microbial diversity in two of the most chemically polluted sites along the coast of Italy. One site is the Po River Prodelta (Northern Adriatic Sea, which receives contaminant discharge from one of the largest rivers in Europe. The other site, the Mar Piccolo of Taranto (Ionian Sea, is a chronically-polluted area due to steel production plants, oil refineries, and intense maritime traffic. We collected sediments from 30 stations along gradients of contamination, and studied prokaryotic diversity using Illumina sequencing of amplicons of a 16S rDNA gene fragment. The main sediment variables and the concentration of eleven metals, PCBs and PAHs were measured. Chemical analyses confirmed the high contamination in both sites, with concentrations of PCBs particularly high and often exceeding the sediment guidelines. The analysis of more than 3 millions 16S rDNA sequences showed that richness decreased with higher contamination levels. Multivariate analyses showed that contaminants significantly shaped community composition. Assemblages differed significantly between the two sites, but showed wide within-site variations related with spatial gradients in the chemical contamination, and the presence of a core set of OTUs shared by the two geographically distant sites. A larger importance of PCB-degrading taxa was observed in the Mar Piccolo, suggesting their potential selection in this historically-polluted site. Our results indicate that sediment contamination by multiple contaminants significantly alter benthic prokaryotic diversity in coastal areas, and suggests considering the potential contribution of the resident microbes to

  5. Mass-spectrometric study of ion clustering in alkali-metal hydroxide vapor: cluster-ion energy and structural characteristics

    International Nuclear Information System (INIS)

    Kudin, L.S.; Butman, M.F.; Krasnov, K.S.

    1986-01-01

    Various positive and negative ions have been recorded in the equilibrium vapors from alkali-metal hydroxides: M/sup +/-/, OH - , O - , MO - , MOH - , and X/sup +/-/ (MOH)/sub n/, where X = M/sup +/-/, OH - , n = 1-6. The equilibrium constants have been measured for X/sup +/-/(MOH)/sub n/ = x/sup +/-/ + nMOH(k), n = 1-3, and the enthalpies of reaction have been determined, from which the enthalpies of formation and dissociation energies of X/sup +/-/ (MOH)/sub n/ have been calculated. The relative stabilities of the ions in the series from Na to Cs are examined

  6. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples

    International Nuclear Information System (INIS)

    Wei, Songbo; Lin, Wei; Xu, Jianqiao; Wang, Ying; Liu, Shuqin; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2017-01-01

    In this contribution, it was discovered that even distribution of a metal-organic framework (MOF) [e.g. copper 1,4-benzenedicarboxylate (CBDC)] within polymeric matrixes (e.g. polyimide) resulted in a high-efficient coating material on the surface of a stainless steel wire (SSW). Consequently, a home-made solid phase microextraction (SPME) fiber was fabricated for fast determination of target analytes in real water samples. Scanning electron microscope images indicated that the coating possessed homogenously porous surface. Coupled with gas chromatography-mass spectrometry (GC-MS) and direct immersion SPME (DI-SPME) technique, the fiber was evaluated through the analysis of five polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Under optimized extraction and desorption conditions, the established method based on the home-made fiber exhibited good repeatability (4.2–12.7%, n = 6) and reproducibility (0.9–11.7%, n = 3), low limits of detection (LODs, 0.11–2.10 ng L"−"1), low limits of quantification (LOQs, 0.36–6.99 ng L"−"1) and wide linear ranges (20–5000 ng L"−"1). Eventually, the method was proven applicable in the determination of PAHs in real samples, as the recoveries were in a satisfactory range (81.7–116%). - Highlights: • A homogenously porous CBDC@polyimide-coated fiber was fabricated and characterized. • The fiber exhibited highly desired extraction performance towards PAHs. • The fiber was employed for the determination of PAHs in real aqueous samples.

  7. Multi-contamination (heavy metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) of littoral sediments and the associated ecological risk assessment in a large lake in France (Lake Bourget).

    Science.gov (United States)

    Lécrivain, Nathalie; Aurenche, Vincent; Cottin, Nathalie; Frossard, Victor; Clément, Bernard

    2018-04-01

    The lake littoral sediment is exposed to a large array of contaminants that can exhibit significant spatial variability and challenge our ability to assess contamination at lake scale. In this study, littoral sediment contamination was characterized among ten different sites in a large peri-alpine lake (Lake Bourget) regarding three groups of contaminants: 6 heavy metals, 15 polycyclic aromatic hydrocarbons and 7 polychlorinated biphenyls. The contamination profiles significantly varied among sites and differed from those previously reported for the deepest zone of the lake. An integrative approach including chemical and biological analyses was conducted to relate site contamination to ecological risk. The chemical approach consisted in mean PEC quotient calculation (average of the ratios of the contaminants concentration to their corresponding Probable Effect Concentration values) and revealed a low and heterogeneous toxicity of the contaminant mixture along the littoral. Biological analysis including both laboratory (microcosm assays) and in situ (Acetylcholine Esterase (AChE) and Glutathione S-Transferase (GST) activity measurements) experiments highlighted significant differences among sites both in the field and in laboratory assays suggesting a spatial variation of the biota response to contamination. Linear regressions were performed between mean PEC quotients and biological results to assess whether littoral ecological risk was explained by the contamination profiles. The results highly depended on the study benthic or pelagic compartment. Regarding autochthonous Corbicula fluminea, no significant relationship between mean PEC quotients and biomarker activity was found while a significant increase in AChE was observed on autochthonous chironomids, suggesting different stress among benthic organisms. Both AChE and GST in caged pelagic Daphnia magna showed a significant positive relationship with mean PEC quotients. This study underlines the importance of

  8. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Songbo; Lin, Wei; Xu, Jianqiao [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Ying [School of Pharmacy, Guiyang Medical University, Guiyang 550004 (China); Liu, Shuqin; Zhu, Fang [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yuan, E-mail: yliu@shou.edu.cn [College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306 (China); Ouyang, Gangfeng, E-mail: cesoygf@mail.sysu.edu.cn [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-08

    In this contribution, it was discovered that even distribution of a metal-organic framework (MOF) [e.g. copper 1,4-benzenedicarboxylate (CBDC)] within polymeric matrixes (e.g. polyimide) resulted in a high-efficient coating material on the surface of a stainless steel wire (SSW). Consequently, a home-made solid phase microextraction (SPME) fiber was fabricated for fast determination of target analytes in real water samples. Scanning electron microscope images indicated that the coating possessed homogenously porous surface. Coupled with gas chromatography-mass spectrometry (GC-MS) and direct immersion SPME (DI-SPME) technique, the fiber was evaluated through the analysis of five polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Under optimized extraction and desorption conditions, the established method based on the home-made fiber exhibited good repeatability (4.2–12.7%, n = 6) and reproducibility (0.9–11.7%, n = 3), low limits of detection (LODs, 0.11–2.10 ng L{sup −1}), low limits of quantification (LOQs, 0.36–6.99 ng L{sup −1}) and wide linear ranges (20–5000 ng L{sup −1}). Eventually, the method was proven applicable in the determination of PAHs in real samples, as the recoveries were in a satisfactory range (81.7–116%). - Highlights: • A homogenously porous CBDC@polyimide-coated fiber was fabricated and characterized. • The fiber exhibited highly desired extraction performance towards PAHs. • The fiber was employed for the determination of PAHs in real aqueous samples.

  9. SMC west halo: a slice of the galaxy that is being tidally stripped?. Star clusters trace age and metallicity gradients

    Science.gov (United States)

    Dias, B.; Kerber, L.; Barbuy, B.; Bica, E.; Ortolani, S.

    2016-06-01

    Context. The evolution and structure of the Magellanic Clouds is currently under debate. The classical scenario in which both the Large and Small Magellanic Clouds (LMC, SMC) are orbiting the Milky Way has been challenged by an alternative in which the LMC and SMC are in their first close passage to our Galaxy. The clouds are close enough to us to allow spatially resolved observation of their stars, and detailed studies of stellar populations in the galaxies are expected to be able to constrain the proposed scenarios. In particular, the west halo (WH) of the SMC was recently characterized with radial trends in age and metallicity that indicate tidal disruption. Aims: We intend to increase the sample of star clusters in the west halo of the SMC with homogeneous age, metallicity, and distance derivations to allow a better determination of age and metallicity gradients in this region. Positions are compared with the orbital plane of the SMC from models. Methods: Comparisons of observed and synthetic V(B-V) colour-magnitude diagrams were used to derive age, metallicity, distance, and reddening for star clusters in the SMC west halo. Observations were carried out using the 4.1 m SOAR telescope. Photometric completeness was determined through artificial star tests, and the members were selected by statistical comparison with a control field. Results: We derived an age of 1.23 ± 0.07 Gyr and [Fe/H] = -0.87 ± 0.07 for the reference cluster NGC 152, compatible with literature parameters. Age and metallicity gradients are confirmed in the WH: 2.6 ± 0.6 Gyr/° and -0.19 ± 0.09 dex/°, respectively. The age-metallicity relation for the WH has a low dispersion in metallicity and is compatible with a burst model of chemical enrichment. All WH clusters seem to follow the same stellar distribution predicted by dynamical models, with the exception of AM-3, which should belong to the counter-bridge. Brück 6 is the youngest cluster in our sample. It is only 130 ± 40 Myr old and

  10. Structural, electronic, and magnetic properties of 3D metal trioxide and tetraoxide superhalogen cluster-doped monolayer BN

    International Nuclear Information System (INIS)

    Meng, Jingjing; Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2016-01-01

    The structural, electronic, and magnetic properties of monolayer BN doped with 3D metal trioxide and tetraoxide superhalogen clusters are investigated using first-principle calculations. TMO_3_(_4_)-doped monolayer BN exhibits a low negative formation energy, whereas TM atoms embedded in monolayer BN show a high positive formation energy. TMO_3_(_4_) clusters are embedded more easily in monolayer BN than TM atoms. Compared with TMO_3-doped structures, TMO_4-doped structures have a higher structural stability because of their higher binding energies. Given their low negative formation energies, TMO_4-doped structures are more favored for specific applications than TMO_3-doped structures and TM atom-doped structures. Large magnetic moments per supercell and significant ferromagnetic couplings between a TM atom and neighboring B and N atoms on the BN layer were observed in all TMO_4-doped structures, except for TiO_4-doped structures. - Highlights: • TMO_3_(_4_) superhalogen clusters incorporated into monolayer BN were investigated. • TMO_3_(_4_) clusters are embedded more easily in monolayer BN than TM atoms. • TMO_4-doped structures are more favored for specific applications. • Large magnetic moments were observed in TMO_4-doped structures. • The band gap was sensitively dependent on the doped clusters.

  11. Voltage-dependent cluster expansion for electrified solid-liquid interfaces: Application to the electrochemical deposition of transition metals

    Science.gov (United States)

    Weitzner, Stephen E.; Dabo, Ismaila

    2017-11-01

    The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.

  12. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.; Moser, Matthew L.; Tian, Xiaojuan; Zhang, Xixiang; Al-Hadeethi, Yas Fadel; Haddon, Robert C.

    2014-01-01

    , and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some

  13. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    Science.gov (United States)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  14. [Electronic and structural properties of individual nanometer-size supported metallic clusters

    International Nuclear Information System (INIS)

    Reifenberger, R.

    1993-01-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained

  15. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, R.

    1993-09-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained.

  16. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    CERN Document Server

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  17. Insights into magnetic interactions in a monodisperse Gd{sub 12}Fe{sub 14} metal cluster

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiu-Ying; Zhang, Hui; Liu, Pengxin; Du, Ming-Hao; Han, Ying-Zi; Wei, Rong-Jia; Kong, Xiang-Jian; Long, La-Sheng; Zheng, Lan-Sun [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Lab. of Physical Chemistry of Solid Surface and Dept. of Chemistry, College of Chemistry and Chemical Engineering, Xiamen Univ. (China); Wang, Zhenxing; Ouyang, Zhong-Wen [Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan (China); Zhuang, Gui-Lin [College of Chemcal Engineering, Zhejiang University of Technology, Hangzhou (China)

    2017-09-11

    The largest Ln-Fe metal cluster [Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16}(H{sub 2} O){sub 8}].(CH{sub 3}COO){sub 2}(CH{sub 3}CN){sub 2}.(H{sub 2}O){sub 20} (1) and the core-shell monodisperse metal cluster of 1 a rate at SiO{sub 2} (1 a=[Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16} (H{sub 2}O){sub 8}]{sup 2+}) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a rate at SiO{sub 2} reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe{sup 3+} ions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Irradiation characteristics of metal-cluster-complex ions containing diverse multi-elements with large mass differences

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Kondou, Kouji; Teranishi, Yoshikazu; Nonaka, Hidehiko; Saito, Naoaki; Fujimoto, Toshiyuki; Kurokawa, Akira; Ichimura, Shingo; Tomita, Mitsuhiro

    2007-01-01

    Tetrairidium dodecacarbonyl, Ir 4 (CO) 12 , is a metal cluster complex which has a molecular weight of 1104.9. Using a metal-cluster-complex ion source, the interaction between Ir 4 (CO) n + ions (n=0-12) and silicon substrates was studied at a beam energy ranging from 2keV to 10keV at normal incidence. By adjusting Wien-filter voltage, the influence of CO ligands was investigated. Experimental results showed that sputtering yield of silicon bombarded with Ir 4 (CO) n + ions at 10keV decreased with the number of CO ligands. In the case of 2keV, deposition tended to be suppressed by removing CO ligands from the impinging cluster ions. The influence of CO ligands was explained by considering changes in surface properties caused by the irradiation of Ir 4 (CO) n + ions. It was also found that the bombardment with Ir 4 (CO) 7 + ions at 2.5keV caused deposition on silicon target

  19. Metal Substitution in Keggin-Type Tridecameric Aluminum-Oxo-Hydroxy Clusters.

    Science.gov (United States)

    Parker, Wallace O'Neil; Millini, Roberto; Kiricsi, Imre

    1997-02-12

    The species resulting from a typical preparation for metal-substituted hybrids of the Keggin tridecamer, Al 13 or [AlO 4 Al 12 (OH) 24 (OH 2 ) 12 ] 7+ , were examined by performing 27 Al NMR on the solutions during aging and by studying the precipitated sulfate salts via solid state 27 Al NMR and powder X-ray diffraction (XRD). Aqueous mixtures (0.25 mol L -1 ) of AlCl 3 and another metal ion (M), in a 12:1 mole ratio (Al:M), where M = Fe 3+ , Zn 2+ , Ga 3+ , In 3+ , Sn 2+ , La 3+ , and Bi 3+ , were subjected to forced hydrolysis by addition of NaOH (1.0 mol L -1 ) until OH/(Al + M) = 2.25, and the kinetics of Al 13 formation and disappearance with aging at 80 °C was monitored by 27 Al NMR spectroscopy. Al 13 units polymerize on aging with an apparent rate constant (k) of 4.8(8) × 10 -2 h -1 to form a species referred to as AlP 2 . Only the solutions containing Ga 3+ and Sn 2+ exhibited faster Al 13 conversion rates. GaAl 12 forms quickly at 80 °C (k = 0.54 h -1 ) and is more stable than AlP 2 . Sn 2+ apparently promotes AlP 2 formation (k = 0.38 h -1 ). XRD and solid state NMR reveal that only the Ga hybrid can be prepared by this method. No hybrid formation was evidenced using M = Mg 2+ , Fe 3+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , In 3+ , La 3+ , or Ce 3+ at 25 °C or M = Co 2+ or La 3+ under reflux conditions. Isostructural (cubic symmetry) single crystals were obtained for the sulfate salts of Al 13 and GaAl 12 . Single-crystal XRD analysis of these two polyoxocations provides the first rigorous comparison between them and shows they have very similar structures. The main crystallographic data for Al 13 and GaAl 12 are as follows:  Na[AlO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 ·10H 2 O, cubic, F4̄3m, a = 17.856(2) Å, Z = 4; Na[GaO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 ·10H 2 O, cubic, F4̄3m, a = 17.869(3) Å, Z = 4. Thus, the greater thermal stability of GaAl 12 cannot be rationalized in terms of the overall geometric considerations, as suggested by

  20. Quantum molecular dynamics: Numerical methods and physical study of the structure, thermodynamics, stability and fragmentation of sodium metallic clusters

    International Nuclear Information System (INIS)

    Blaise, Philippe

    1998-01-01

    The aim of this thesis is to study metallic sodium clusters by numerical simulation. We have developed two ab initio molecular dynamics programs within the formalism of density functional theory. The first is based on the semi-classical extended Thomas-Fermi approach. We use a real-space grid and a Car-Parrinello-like scheme. The computational cost is O(N), and we have built a pseudopotential that speeds up the calculations. By neglecting quantum shell effects, we are able to study a very large set of clusters. We show that sodium cluster energies fit well a liquid drop formula, by adjusting a few parameters. We have investigated breathing modes, surface oscillations and the net charge density. We have shown that the surface energy varies strongly with temperature, and that clusters have a lower melting point than bulk material. We have calculated fission barriers by a constraint method. The second program is based on the quantum Kohn-Sham approach. We use a real-space grid, and combine a generalized Broyden scheme for assuring self-consistency with an iterative Davidson-Lanczos algorithm for solving the Eigen-problem. The cost of the method is much higher. First of all, we have calculated some stable structures for small clusters and their energetics. We obtained very good agreement with previous works. Then, we have investigated highly charged cluster dynamics. We have identified a chaotic fission process. For high fissility systems, we observe a multi-fragmentation dynamics and we find preferential emission of monomers on a characteristic time scale less than a pico-second. This has been simulated for the first time, with the help of our adaptive grid method which follows each fragment as they move apart during the fragmentation. (author)

  1. Clustering of nucleosides in the presence of alkali metals: Biologically relevant quartets of guanosine, deoxyguanosine and uridine observed by ESI-MS/MS.

    Science.gov (United States)

    Aggerholm, Tenna; Nanita, Sergio C; Koch, Kim J; Cooks, R Graham

    2003-01-01

    Electrospray ionization (ESI) mass spectra of nucleosides, recorded in the presence of alkali metals, display alkali metal ion-bound quartets and other clusters that may have implications for understanding non-covalent interactions in DNA and RNA. The tetramers of guanosine and deoxyguanosine and also their metaclusters (clusters of clusters), cationized by alkali metals, were observed as unusually abundant magic number clusters. The observation of these species in the gas phase parallels previous condensed-phase studies, which show that guanine derivatives can form quartets and metaclusters of quartets in solution in the presence of metal cations. This parallel behavior and also internal evidence suggest that bonding in the guanosine tetramers involves the bases rather than the sugar units. The nucleobases thymine and uracil are known to form magic number pentameric adducts with K+, Cs+ and NH4+ in the gas phase. In sharp contrast, we now show that the nucleosides uridine and deoxythymidine do not form the pentameric clusters characteristic of the corresponding bases. More subtle effects of the sugars are evident in the fact that adenosine and cytidine form numerous higher order clusters with alkali metals, whereas deoxyadenosine and deoxycytidine show no clustering. It is suggested that hydrogen bonding between the bases in the tetramers of dG and rG are the dominant interactions in the clusters, hence changing the ribose group to deoxyribose (and vice versa) generally has little effect. However, the additional hydroxyl group of RNA nucleosides enhances the non-selective formation of higher-order aggregates for adenosine and cytidine and results in the lack of highly stable magic number clusters. Some clusters are the result of aggregation in the course of ionization (ESI) whereas others appear to be intrinsic to the solution being examined. Copyright 2003 John Wiley & Sons, Ltd.

  2. The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances

    Science.gov (United States)

    Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.

    2018-03-01

    Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.

  3. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    Science.gov (United States)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-18

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  4. Solvation of carbonaceous molecules by para-H{sub 2} and ortho-D{sub 2} clusters. I. Polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, F., E-mail: florent.calvo@univ-grenoble-alpes.fr [Univ. Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble (France); Yurtsever, E. [Koç University, Rumelifeneriyolu, Sariyer, Istanbul 34450 (Turkey)

    2016-06-14

    This work theoretically examines the progressive coating of planar polycyclic aromatic hydrocarbon (PAH) molecules ranging from benzene to circumcoronene (C{sub 54}H{sub 18}) by para-hydrogen and ortho-deuterium. The coarse-grained Silvera-Goldman potential has been extended to model the interactions between hydrogen molecules and individual atoms of the PAH and parametrized against quantum chemical calculations for benzene-H{sub 2}. Path-integral molecular dynamics simulations at 2 K were performed for increasingly large amounts of hydrogen coating the PAH up to the first solvation shell and beyond. From the simulations, various properties were determined such as the size of the first shell and its thickness as well as the solvation energy. The degree of delocalization was notably quantified from an energy landscape perspective, by monitoring the fluctuations among inherent structures sampled by the trajectories. Our results generally demonstrate a high degree of localization owing to relatively strong interactions between hydrogen and the PAH, and qualitatively minor isotopic effects. In the limit of large hydrogen amounts, the shell size and solvation energy both follow approximate linear relations with the numbers of carbon and hydrogen in the PAH.

  5. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se [Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg (Sweden); Kotzias, Bernhard [Airbus DS, Department Mechanical Engineering, D28199 Bremen (Germany)

    2016-04-15

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) and H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  6. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    International Nuclear Information System (INIS)

    Holmlid, Leif; Kotzias, Bernhard

    2016-01-01

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H_2_N(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H_4(0) and H_3(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H_2_N(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  7. Coulomb frustration of the multiphoton ionization of metallic clusters under intense EUV FEL evidenced by ion spectrometry

    International Nuclear Information System (INIS)

    Mazza, T; Devetta, M; Milani, P; Motomura, K; Liu, X-J; Fukuzawa, H; Yamada, A; Nagaya, K; Iwayama, H; Sugishima, A; Mizoguchi, Y; Saito, N; Coreno, M; Nagasono, M; Tono, K; Togashi, T; Kimura, H; Okunishi, M; Fennel, Th; Senba, Y

    2015-01-01

    Free electron laser light sources delivering high intensity pulses of short wavelength radiation are opening novel possibilities for the investigation of matter at the nanoscale and for the discovery and understanding of new physical processes occurring at the exotic transient states they make accessible. Strong ionization of atomic constituents of a nano-sized sample is a representative example of such processes and the understanding of ionization dynamics is crucial for a realistic description of the experiments. We report here on multiple ionization experiments on free clusters of titanium, a high cohesive energy metal. The time of flight ion spectra reveal a saturation of the cluster ionization at ∼10 16 photons per pulse per cm 2 . Our results also show a clear lack of any explosion process, opposite to what is observed for a rare-gas cluster under similar conditions. A simple and generalized multi-step ionization model including Coulomb frustration of the photoemission process effectively reproduces with a good agreement the main features of the experimental observation and points to an interpretation of the data involving a substantial energy deposition into the cluster through electronic system heating upon scattering events within photoemission. (paper)

  8. Quantum size correction to the work function and the centroid of excess charge in positively ionized simple metal clusters

    Directory of Open Access Journals (Sweden)

    M. Payami

    2003-12-01

    Full Text Available  In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different values . For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes in the framework of local spin-density approximation and stabilized jellium model (SJM as well as simple jellium model (JM with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere.

  9. Quantum size correction to the work function and centroid of excess charge in positively ionized simple metal clusters

    International Nuclear Information System (INIS)

    Payami, M.

    2004-01-01

    In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere

  10. Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Zenin, Volodymyr

    2018-01-01

    Deposition of size-selected copper and silver nanoparticles (NPs) on polymers using cluster beam technique is studied. It is shown that ratio of particle embedment in the film can be controlled by simple thermal annealing. Combining electron beam lithography, cluster beam deposition, and heat...... with required configurations which can be applied for wave-guiding, resonators, in sensor technologies, and surface enhanced Raman scattering....

  11. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Science.gov (United States)

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  12. Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals

    International Nuclear Information System (INIS)

    Xu Donghua; Wirth, Brian D.; Li Meimei; Kirk, Marquis A.

    2012-01-01

    We present a combinatorial approach that integrates state-of-the-art transmission electron microscopy (TEM) in situ irradiation experiments and high-performance computing techniques to study irradiation defect dynamics in metals. Here, we have studied the evolution of visible defect clusters in nanometer-thick molybdenum foils under 1 MeV krypton ion irradiation at 80 °C through both cluster dynamics modeling and in situ TEM experiments. The experimental details are reported elsewhere; we focus here on the details of model construction and comparing the model with the experiments. The model incorporates continuous production of point defects and/or small clusters, and the accompanying interactions, which include clustering, recombination and loss to the surfaces that result from the diffusion of the mobile defects. To account for the strong surface effect in thin TEM foils, the model includes one-dimensional spatial dependence along the foil depth, and explicitly treats the surfaces as black sinks. The rich amount of data (cluster number density and size distribution at a variety of foil thickness, irradiation dose and dose rate) offered by the advanced in situ experiments has allowed close comparisons with computer modeling and permitted significant validation and optimization of the model in terms of both physical model construct (damage production mode, identities of mobile defects) and parameterization (diffusivities of mobile defects). The optimized model exhibits good qualitative and quantitative agreement with the in situ TEM experiments. The combinatorial approach is expected to bring a unique opportunity for the study of radiation damage in structural materials.

  13. Electronic and magnetic properties of 3d-metal trioxides superhalogen cluster-doped monolayer MoS2: A first-principles study

    International Nuclear Information System (INIS)

    Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2014-01-01

    Utilizing first-principle calculations, the structural, electronic, and magnetic properties of monolayer MoS 2 doped with 3d transition-metal (TM) atoms and 3d-metal trioxides (TMO 3 ) superhalogen clusters are investigated. 3d-metal TMO 3 superhalogen cluster-doped monolayers MoS 2 almost have negative formation energies except CoO 3 and NiO 3 doped monolayer MoS 2 , which are much lower than those of 3d TM-doped structures. 3d-metal TMO 3 superhalogen clusters are more easily embedded in monolayer MoS 2 than 3d-metal atoms. MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic, and the total magnetic moments are approximately 1.0, 2.0, 3.0, and 4.0 μB per supercell, respectively. MnO 3 and FeO 3 incorporated into monolayer MoS 2 become semiconductors, whereas CoO 3 and NiO 3 incorporated into monolayer MoS 2 become half-metallic. Our studies demonstrate that the half-metallic ferromagnetic nature of 3d-metal TMO 3 superhalogen clusters-doped monolayer MoS 2 has a great potential for MoS 2 -based spintronic device applications. -- Highlights: •TMO 3 superhalogen clusters incorporated into monolayer MoS 2 were investigated. •TMO 3 doped structures have much lower formation energies than TM doped structures. •TMO 3 cluster-doped MoS 2 are thermodynamically favored. •Significant charge transfers between O atoms and Mo atoms in TMO 3 doped structures. •MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic.

  14. Scattering of neutral metal clusters: Long-range interactions and response properties

    International Nuclear Information System (INIS)

    Kresin, V.V.; Scheidemann, A.

    1993-01-01

    The absolute integral cross sections for low-energy collisions of neutral sodium clusters Na n (n=2--40) with atoms and molecules (Ar, N 2 , O 2 , and halogens) have been measured. The cross sections are found to be exceptionally large (up to thousands of square angstroms), showing the dominant role of long-range intermolecular interactions. Elastic scattering proceeding under the influence of the van der Waals force, and a reaction channel involving electron transfer can successfully describe the measurements. The strength of the van der Waals potential is defined by such cluster response properties as the electric polarizability and the frequency of the giant dipole resonance. The reactive electron-jump channel, in turn, is described by the ''harpooning'' mechanism which is sensitive to the cluster ionization potential. Employing parameters taken from spectroscopic studies of alkali clusters, we obtain good agreement with the observed cross sections. This provides a direct connection between beam scattering experiments and studies of cluster electromagnetic response properties

  15. On the applicability of deformed jellium model to the description of metal clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Matveentsev, Anton; Solov'yov, Ilia

    2003-01-01

    -density approximation deformed jellium model we have calculated the binding energies per atom, ionization potentials, deformation parameters and the optimized values of the Wigner-Seitz radii for neutral and singly charged sodium clusters with the number of atoms $N0$. These characteristics are compared...... shape deformations in the formation cluster properties and the quite reasonable level of applicability of the deformed jellium model.......This work is devoted to the elucidation the applicability of jellium model to the description of alkali cluster properties on the basis of comparison the jellium model results with those derived from experiment and within ab initio theoretical framework. On the basis of the Hartree-Fock and local...

  16. PrB{sub 7}{sup -}. A praseodymium-doped boron cluster with a Pr{sup II} center coordinated by a doubly aromatic planar η{sup 7}-B{sub 7}{sup 3-} ligand

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Teng-Teng; Jian, Tian; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States); Li, Wan-Lu; Chen, Xin; Li, Jun [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing (China)

    2017-06-06

    The structure and bonding of a Pr-doped boron cluster (PrB{sub 7}{sup -}) are investigated using photoelectron spectroscopy and quantum chemistry. The adiabatic electron detachment energy of PrB{sub 7}{sup -} is found to be low [1.47(8) eV]. A large energy gap is observed between the first and second detachment features, indicating a highly stable neutral PrB{sub 7}. Global minimum searches and comparison between experiment and theory show that PrB{sub 7}{sup -} has a half-sandwich structure with C{sub 6v} symmetry. Chemical bonding analyses show that PrB{sub 7}{sup -} can be viewed as a Pr{sup II}[η{sup 7}-B{sub 7}{sup 3-}] complex with three unpaired electrons, corresponding to a Pr (4f{sup 2}6s{sup 1}) open-shell configuration. Upon detachment of the 6s electron, the neutral PrB{sub 7} cluster is a highly stable Pr{sup III}[η{sup 7}-B{sub 7}{sup 3-}] complex with Pr in its favorite +3 oxidation state. The B{sub 7}{sup 3-} ligand is found to be highly stable and doubly aromatic with six delocalized π and six delocalized σ electrons and should exist for a series of lanthanide M{sup III}[η{sup 7}-B{sub 7}{sup 3-}] complexes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Metal cluster cation reactions: Carbon monoxide association to Cu + n ions

    Science.gov (United States)

    Leuchtner, R. E.; Harms, A. C.; Castleman, A. W., Jr.

    1990-06-01

    Copper cluster cations (Cu+n,n=1-14) were produced in a laser vaporization/flow tube apparatus and equilibrated to room temperature. The association rate constants of carbon monoxide onto these ions were measured; low-pressure, termolecular behavior was observed for the smaller species while for clusters greater than Cu+7, the longer lifetimes due to the increased number of degrees of freedom leads to pressure independence (>0.3 Torr) of the effective bimolecular rates. Unimolecular decay theory (RRKM) is used to explain the overall trend and when intrinsic surface site reactivity is taken into account, excellent agreement with measured reactivity is obtained.

  18. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    Science.gov (United States)

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki

    2016-01-01

    The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters.

  19. Density functional study of structural and catalytic properties of free and supported metal nano cluster; Dichtefunktionalstudie der strukturellen und katalytischen Eigenschaften freier und getraegerter Metallnanocluster

    Energy Technology Data Exchange (ETDEWEB)

    Huber, B.

    2007-04-11

    The structural and catalytic properties of metal clusters were determined in the framework of density functional theory. The first part of this work investigates the electronic and geometrical structure of sodium clusters with up to 309 atoms. The ground-state structures of the clusters are determined and the corresponding electronic density of states is compared to experimental photoelectron spectras. The excellent agreement to the experimental results indicates that the correct growth motive of the sodium clusters was found. Small clusters from Na{sup -}{sub 20} to Na{sup -}{sub 42} prefer pentagonal and icosahedral structures with anti-Mackay overlayers, while clusters larger than Na{sup -}{sub 50} prefer icosahedral structures with Mackay overlayers. Clusters between the closed-shell Mackay Clusters often exhibit a twist deformation with respect to the regular Mackay positions. The second part of this work investigates the catalytic properties of free and supported palladium clusters. For both cases the oxidation of small Pd{sub N} clusters (N {<=} 9) was studied. It turned out that MgO supported Pd-clusters dissociate oxygen with a significant lower reaction energy than free clusters or supported systems with particles consisting of several thousands of atoms. The reaction with oxygen transforms the non-crystalline Pd-clusters into crystalline Pd{sub x}O{sub y} nano-oxide clusters that are in epitaxy with the underlying support. Simulations of the CO oxidation on the Pd{sub x}O{sub y} cluster predict a low-temperature reaction mechanism. By calculating the electronic density of states and CO stretch frequencies, different ways of verifying the results experimentally are discussed. (orig.)

  20. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  1. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework.

    Science.gov (United States)

    Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei; Sanchez-Sanchez, Maricruz; Ortuño, Manuel A; Pahls, Dale R; Fulton, John L; Camaioni, Donald M; Li, Zhanyong; Ray, Debmalya; Mehdi, B Layla; Browning, Nigel D; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gagliardi, Laura; Lercher, Johannes A

    2017-08-02

    Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu + and ∼85% Cu 2+ . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu 2+ to Cu + . The products, methanol, dimethyl ether, and CO 2 , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

  2. New insights into the origin and evolution of the old, metal-rich open cluster NGC 6791

    Science.gov (United States)

    Martinez-Medina, Luis A.; Gieles, Mark; Pichardo, Barbara; Peimbert, Antonio

    2018-02-01

    NGC 6791 is one of the most studied open clusters, it is massive (˜5000 M⊙), located at the solar circle, old (˜8 Gyr) and yet the most metal-rich cluster ([Fe/H] ≃ 0.4) known in the Milky Way. By performing an orbital analysis within a Galactic model including spiral arms and a bar, we found that it is plausible that NGC 6791 formed in the inner thin disc or in the bulge, and later displaced by radial migration to its current orbit. We apply different tools to simulate NGC 6791, including direct N-body summation in time-varying potentials, to test its survivability when going through different Galactic environments. In order to survive the 8-Gyr journey moving on a migrating orbit, NGC 6791 must have been more massive, M0 ≥ 5 × 104 M⊙, when formed. We find independent confirmation of this initial mass in the stellar mass function, which is observed to be flat; this can only be explained if the average tidal field strength experienced by the cluster is stronger than what it is at its current orbit. Therefore, the birth place and journeys of NGC 6791 are imprinted in its chemical composition, in its mass-loss and in its flat stellar mass function, supporting its origin in the inner thin disc or in the bulge.

  3. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence of any inducer. Therefore, in order to enhance the laccase production by Trametes velutina 5930 and make better use of this fungus in the field of environmental biotechnology, the regulation of laccase production and laccase gene expression in Trametes velutina 5930 were investigated in this study. Different metal ions such as Cu(2+ and Fe(2+ could stimulate the laccase synthesis and laccase gene transcription in Trametes velutina 5930. Some aromatic compounds structurally related to lignin, such as tannic acid, syringic acid, cinnamic acid, gallic acid and guaiacol, could also enhance the level of laccase activity and laccase gene transcription. We also found that there existed a positive synergistic effect of aromatic compound and metal ion on the laccase production and laccase gene transcription in Trametes velutina 5930. Taken together, our study may contribute to the improvement of laccase productivity by Trametes velutina 5930.

  4. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds.

    Science.gov (United States)

    Yang, Yang; Wei, Fuxiang; Zhuo, Rui; Fan, Fangfang; Liu, Huahua; Zhang, Chen; Ma, Li; Jiang, Mulan; Zhang, Xiaoyu

    2013-01-01

    Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence of any inducer. Therefore, in order to enhance the laccase production by Trametes velutina 5930 and make better use of this fungus in the field of environmental biotechnology, the regulation of laccase production and laccase gene expression in Trametes velutina 5930 were investigated in this study. Different metal ions such as Cu(2+) and Fe(2+) could stimulate the laccase synthesis and laccase gene transcription in Trametes velutina 5930. Some aromatic compounds structurally related to lignin, such as tannic acid, syringic acid, cinnamic acid, gallic acid and guaiacol, could also enhance the level of laccase activity and laccase gene transcription. We also found that there existed a positive synergistic effect of aromatic compound and metal ion on the laccase production and laccase gene transcription in Trametes velutina 5930. Taken together, our study may contribute to the improvement of laccase productivity by Trametes velutina 5930.

  5. Communication: IR spectroscopy of neutral transition metal clusters through thermionic emission

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Haertelt, M.; Meijer, G.; Fielicke, A.; Bakker, J. M.

    2013-01-01

    The resonant multiple photon excitation of neutral niobium clusters using tunable infrared (IR) radiation leads to thermionic emission. By measuring the mass-resolved ionization yield as a function of IR wavenumber species selective IR spectra are obtained for Nb-n (n = 5-20) over the 200-350 cm(-1)

  6. Chemical Bonding of Transition-Metal Co13 Clusters with Graphene.

    Science.gov (United States)

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2015-12-01

    We carried out density functional calculations to study the adsorption of Co13 clusters on graphene. Several free isomers were deposited at different positions with respect to the hexagonal lattice nodes, allowing us to study even the hcp 2d isomer, which was recently obtained as the most stable one. Surprisingly, the Co13 clusters attached to graphene prefer icosahedron-like structures in which the low-lying isomer is much distorted; in such structures, they are linked with more bonds than those reported in previous works. For any isomer, the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfer between graphene and the clusters is small enough to conclude that the Co-graphene binding is not ionic-like but chemical. Besides, the same order of stability among the different isomers on doped graphene is kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Non-Linear Optically Active Metal Clusters in Nanoscaled Systems Including Self-Assembled Organic Films

    DEFF Research Database (Denmark)

    Balzer, Frank; Jett, S. D.; Rubahn, Horst-Günter

    2000-01-01

    are initially monitored in ultrahigh vacuum by comparison of calculated with measured polarization-dependent extinction spectra. We find that at low surface temperatures (150 K) the cluster growth is very similar to growth directly on insulating substrates. With increasing surface temperature the size...

  8. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  9. Radial velocities and metallicities from infrared Ca ii triplet spectroscopy of open clusters. II. Berkeley 23, King 1, NGC 559, NGC 6603, and NGC 7245

    Science.gov (United States)

    Carrera, R.; Casamiquela, L.; Ospina, N.; Balaguer-Núñez, L.; Jordi, C.; Monteagudo, L.

    2015-06-01

    Context. Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R ~ 8000) in the infrared region Ca ii triplet lines (~8500 Å) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5 m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca ii lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain ⟨Vr⟩ = 48.6 ± 3.4, -58.4 ± 6.8, 26.0 ± 4.3, and -65.3 ± 3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603, and NGC 7245, respectively. We found [ Fe/H ] = -0.25 ± 0.14 and -0.15 ± 0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has low metallicity, [ Fe/H ] = -0.42 ± 0.13, which is similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived high metallicity ([ Fe/H ] = +0.43 ± 0.15) for NGC 6603, which places this system among the most metal-rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members. Based on observations made with the 2.5 m Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the

  10. Collision induced fragmentation dynamics of small metallic clusters; Dynamique de fragmentation induite par collision de petits agregats metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Picard, Y

    1999-04-15

    The goal of this work is the complete analysis of the fragmentation of alkali clusters (Na{sub n}{sup +} (n < 10), NaK{sup +} and K{sub 2}{sup +}) induced by collision with light atomic (He) or molecular (H{sub 2}) targets. The main point is to study how the energy is transmitted to the cluster during the collision and how this energy is shared among the various degrees of freedom of the system and leads to its fragmentation. Two types of interactions govern the collision induced dissociation processes: on one hand, the electronic mechanisms where the target perturbs the electronic cloud and brings the molecule into a dissociative state, and on the other hand, the impulsive mechanisms where the momentum transferred to the atomic cores leads to the rotational-vibrational dissociation of the molecule. The experimental procedure is based on the measurement of the velocity vectors of the outgoing fragments detected in coincidence. This allows to reconstruct the full kinematics of the fragmentation and to separate and characterize for the first time the two types of interactions. The two basic mechanisms of collision induced dissociation are then clearly resolved for the diatomic molecule Na{sub 2}{sup +}. For the heteronuclear molecular ion NaK{sup +}, it is shown that the dissociation process is due to a combination of electronic and impulsive mechanisms in some of the dissociation pathways. The extension to the study of metallic clusters Na{sub n}{sup +} (n < 10) fragmentation shows the role and the relative importance of the electronic and impulsive mechanisms and their evolution with the cluster size. The complete analysis of Na{sub 3}{sup +} multi-fragmentation is also presented. (author)

  11. Cluster harvesting by successive reduction of a metal halide with a nonconventional reduction agent: a benefit for the exploration of metal-rich halide systems.

    Science.gov (United States)

    Ströbele, Markus; Mos, Agnieszka; Meyer, Hans-Jürgen

    2013-06-17

    The preparation of thermally labile compounds is a great temptation in chemistry which requires a careful selection of reaction media and reaction conditions. With a new scanning technique denoted here as Cluster Harvesting, a whole series of metal halide compounds is detected by differential thermal analysis (DTA) in fused silica tubes and structurally characterized by X-ray powder diffraction. Experiments of the reduction of tungsten hexahalides with elemental antimony and iron are presented. A cascade of six compounds is identified during the reduction with antimony, and five compounds or phases are monitored following the reduction with iron. The crystal structure of Fe2W2Cl10 is reported, and two other phases in the Fe-W-Cl system are discussed.

  12. Validity of the classical monte carlo method to model the magnetic properties of a large transition-metal cluster: Mn19.

    Science.gov (United States)

    Lima, Nicola; Caneschi, Andrea; Gatteschi, Dante; Kritikos, Mikael; Westin, L Gunnar

    2006-03-20

    The susceptibility of the large transition-metal cluster [Mn19O12(MOE)14(MOEH)10].MOEH (MOE = OC2H2O-CH3) has been fitted through classical Monte Carlo simulation, and an estimation of the exchange coupling constants has been done. With these results, it has been possible to perform a full-matrix diagonalization of the cluster core, which was used to provide information on the nature of the low-lying levels.

  13. Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); M.U.E.T, S.Z.A.B, Campus Khairpur Mir' s, Sindh (Pakistan); Shuai, Yong, E-mail: shuaiyong1978@gmail.com [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping; Hassan, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2017-03-31

    Highlights: • First-principles calculations are performed for TMO{sub 3} cluster-doped and TM atoms adsorbed at three O atoms-doped graphene. • Significant magnetic coupling behavior is observed between TM atoms and neighboring C and O atoms for both cases. • The direction of charge transfer is always from monolayer graphene to TMO{sub 3} clusters incorporated into graphene. • TiO{sub 3} and VO{sub 3} doped structures display dilute magnetic semiconductor behavior. • Five different orbitals (d{sub xy}, d{sub yz}, d{sub z}{sup 2}, d{sub xz} and d{sub x}{sup 2}{sub -y}{sup 2}) of 3d TM atoms give rise to magnetic moments for both cases. - Abstract: We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO{sub 3} halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO{sub 3} halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO{sub 3} doped graphene layer, the bond length between C−O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO{sub 3} and VO{sub 3} substitution, system exhibits semiconductor properties. Interestingly, TiO{sub 3}-substituted system shows dilute magnetic semiconductor behavior with 2.00 μ{sub B} magnetic moment. On the other hand, the substitution of CoO{sub 3}, CrO{sub 3}, FeO{sub 3} and MnO{sub 3} induced 1.015 μ{sub B}, 2

  14. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  15. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  16. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions

    Science.gov (United States)

    Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian

    2018-03-01

    An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.

  17. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakasuji, Toshiki, E-mail: t-nakasuji@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Morishita, Kazunori [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Ruan, Xiaoyong [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2017-02-15

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  18. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    International Nuclear Information System (INIS)

    Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong

    2017-01-01

    Highlights: • Monte-Carlo simulations were performed to investigate the nucleation process of copper-vacancy clusters in Fe. • Nucleation paths were obtained as a function of temperature and the damage rate. - Abstract: A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP’s composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  19. VizieR Online Data Catalog: Ages and metallicities for M31 star clusters (Fan+, 2016)

    Science.gov (United States)

    Fan, Z.; de Grijs, R.; Chen, B.; Jiang, L.; Bian, F.; Li, Z.

    2017-05-01

    We have selected 22 confirmed M31 globular clusters from Peacock et al. 2010 (Cat. J/MNRAS/402/803). Spectroscopic observations were carried out with the 6.5m MMT/Red Channel Spectrograph from 2010 October 31 to 2010 November 2 and on 2011 November 4. The telescope is located on Mt. Hopkins in Arizona (USA) at an altitude of 2581m. The exposure times used ranged from 480-1800s, depending on the cluster brightness. The median seeing was ~0.98'' and we adopted a slit aperture of 0.75''*180''. The CCD's size is 450*1032 pixels2. It is characterized by a gain of 1.3e- ADU-1, with a readout noise of 3.5e-. A grating with 600l/mm with a blaze 1st/4800 was used. The spectral resolution was R=960 for a slit of 1'' and a central wavelength of 4701Å; the dispersion was 1.63Å/pixel. (7 data files).

  20. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3.

    Science.gov (United States)

    Sanchez, Sergio I; Menard, Laurent D; Bram, Ariella; Kang, Joo H; Small, Matthew W; Nuzzo, Ralph G; Frenkel, Anatoly I

    2009-05-27

    The structural dynamics-cluster size and adsorbate-dependent thermal behaviors of the metal-metal (M-M) bond distances and interatomic order-of Pt nanoclusters supported on a gamma-Al(2)O(3) are described. Data from scanning transmission electron microscopy (STEM) and X-ray absorption spectroscopy (XAS) studies reveal that these materials possess a dramatically nonbulklike nature. Under an inert atmosphere small, subnanometer Pt/gamma-Al(2)O(3) clusters exhibit marked relaxations of the M-M bond distances, negative thermal expansion (NTE) with an average linear thermal expansion coefficient alpha = (-2.4 +/- 0.4) x 10(-5) K(-1), large static disorder and dynamical bond (interatomic) disorder that is poorly modeled within the constraints of classical theory. The data further demonstrate a significant temperature-dependence to the electronic structure of the Pt clusters, thereby suggesting the necessity of an active model to describe the cluster/support interactions mediating the cluster's dynamical structure. The quantitative dependences of these nonbulklike behaviors on cluster size (0.9 to 2.9 nm), ambient atmosphere (He, 4% H(2) in He or 20% O(2) in He) and support identity (gamma-Al(2)O(3) or carbon black) are systematically investigated. We show that the nonbulk structural, electronic and dynamical perturbations are most dramatically evidenced for the smallest clusters. The adsorption of hydrogen on the clusters leads to an increase of the Pt-Pt bondlengths (due to a lifting of the surface relaxation) and significant attenuation of the disorder present in the system. Oxidation of these same clusters has the opposite effect, leading to an increase in Pt-Pt bond strain and subsequent enhancement in nonbulklike thermal properties. The structural and electronic properties of Pt nanoclusters supported on carbon black contrast markedly with those of the Pt/gamma-Al(2)O(3) samples in that neither NTE nor comparable levels of atomic disorder are observed. The Pt

  1. Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring

    Science.gov (United States)

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2015-12-01

    An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.

  2. MASS-TO-LIGHT RATIOS FOR M31 GLOBULAR CLUSTERS: AGE DATING AND A SURPRISING METALLICITY TREND

    International Nuclear Information System (INIS)

    Strader, Jay; Huchra, John P.; Smith, Graeme H.; Brodie, Jean P.; Larsen, Soeren

    2009-01-01

    We have obtained velocity dispersions from Keck high-resolution integrated spectroscopy of 10 M31 globular clusters (GCs), including three candidate intermediate-age GCs. We show that these candidates have the same V-band mass-to-light (M/L V ) ratios as the other GCs, implying that they are likely to be old. We also find a trend of derived velocity dispersion with wavelength, but cannot distinguish between a systematic error and a physical effect. Our new measurements are combined with photometric and spectroscopic data from the literature in a re-analysis of all M31 GC M/L V values. In a combined sample of 27 GCs, we show that the metal-rich GCs have lower M/L V than the metal-poor GCs, in conflict with predictions from stellar population models. Fragmentary data for other galaxies support this observation. The M31 GC fundamental plane is extremely tight, and we follow up an earlier suggestion by Djorgovski to show that the fundamental plane can be used to estimate accurate distances (potentially 10% or better).

  3. Structure and binding of molecular clusters of trivalent metal halides in an ionic model

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Pastore, G.; Tosi, M.P.

    1997-10-01

    A model of ionic interactions first proposed for the molecular monomers of alkaline earth dihalides (G. Galli and M. P. Tosi, N. Ciemento D 4,413 (1984)) is used in a systematic study of the structure and binding of monomeric and dimeric units of Al, Fe ad Ga chlorides, bromides and iodides. Ionized states obtained by stripping or adding a halogen ion are considered in addition to neutral states. The main motivation for this work comes from recent studies of liquid structure in several of these systems by neutron and X-ray diffraction and Raman scattering. Main attention is consequently given in the present calculations to (i) bond lengths and bond angles in isolated clusters as precursors of local structures in melts, and (ii) stability of local structures against fluctuations into ionized states. The results are discussed in comparison with the available experimental data as well as with the results from Hartree-Fock and density functional calculations. (author)

  4. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    International Nuclear Information System (INIS)

    Souza, Fabio A. L. de; Jorge, Francisco E.

    2013-01-01

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  5. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fabio A. L. de; Jorge, Francisco E., E-mail: jorge@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil)

    2013-07-15

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  6. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    Science.gov (United States)

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  7. Structure and nature of the metal-support interface: characterization of iridium clusters on magnesium oxide by extended x-ray absorption fine structure spectroscopy

    NARCIS (Netherlands)

    Zon, van F.B.M.; Maloney, S.D.; Gates, B.C.; Koningsberger, D.C.

    1993-01-01

    X-ray absorption spectroscopy was used to characterize the metal-support interface in catalysts consisting of very small Ir clusters of nearly uniform nuclearity on the surface of MgO powder. [Ir4(CO)12] on MgO was converted in high yield into [HIr4(CO)11]- and sep. into [Ir6(CO)15]2-. EXAFS data

  8. AN AROMATIC INVENTORY OF THE LOCAL VOLUME

    International Nuclear Information System (INIS)

    Marble, A. R.; Engelbracht, C. W.; Block, M.; Van Zee, L.; Dale, D. A.; Cohen, S. A.; Schuster, M. D.; Smith, J. D. T.; Gordon, K. D.; Wu, Y.; Lee, J. C.; Kennicutt, R. C.; Skillman, E. D.; Johnson, L. C.; Calzetti, D.; Lee, H.

    2010-01-01

    Using infrared photometry from the Spitzer Space Telescope, we perform the first inventory of aromatic feature emission (also commonly referred to as polycyclic aromatic hydrocarbon emission) for a statistically complete sample of star-forming galaxies in the local volume. The photometric methodology involved is calibrated and demonstrated to recover the aromatic fraction of the Infrared Array Camera 8 μm flux with a standard deviation of 6% for a training set of 40 SINGS galaxies (ranging from stellar to dust dominated) with both suitable mid-infrared Spitzer Infrared Spectrograph spectra and equivalent photometry. A potential factor of 2 improvement could be realized with suitable 5.5 μm and 10 μm photometry, such as what may be provided in the future by the James Webb Space Telescope. The resulting technique is then applied to mid-infrared photometry for the 258 galaxies from the Local Volume Legacy (LVL) survey, a large sample dominated in number by low-luminosity dwarf galaxies for which obtaining comparable mid-infrared spectroscopy is not feasible. We find the total LVL luminosity due to five strong aromatic features in the 8 μm complex to be 2.47 x 10 10 L sun with a mean volume density of 8.8 x 10 6 L sun Mpc -3 . Twenty-four of the LVL galaxies, corresponding to a luminosity cut at M B = -18.22, account for 90% of the aromatic luminosity. Using oxygen abundances compiled from the literature for 129 of the 258 LVL galaxies, we find a correlation between metallicity and the aromatic-to-total infrared emission ratio but not the aromatic-to-total 8 μm dust emission ratio. A possible explanation is that metallicity plays a role in the abundance of aromatic molecules relative to the total dust content, but other factors, such as star formation and/or the local radiation field, affect the excitation of those molecules.

  9. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  10. [Dynamic study of small metallic clusters]; Estudio Dinamico de Pequenos Agregados Metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M.J. [Valladolid Univ. (Spain). Dept. de Fisica Teorica; Jellinek, J. [Argonne National Lab., IL (United States)

    1995-12-31

    We present a brief introduction to computer simulation techniques (particularly to classical molecular dynamics) and their application to the study of the thermodynamic properties of a material system. The basic concepts are illustrated in the study of structural and energetic properties such as the liquid-solid transition and the fragmentation of small clusters of nickel. [Espanol] Presentamos una breve introducci{acute o}n de las t{acute e}cnicas de simulaci{acute o}n por ordenador (en particular de la Din{acute a}mica Molecular cl{acute a}sica) y de su aplicaci{acute o}n al estudio de las propiedades termodin{acute a}micas de un sistema material. Los conceptos b{acute a}sicos se ilustran en el estudio de las propieades estructurales y energ{acute e}ticas, as{acute i} como de la transici{acute o}n de fase s{acute o}lido-l{acute i}quido y de las fragmentaciones de peque{tilde n}os agregados de n{acute i}quel.

  11. Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons ...

    African Journals Online (AJOL)

    Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Heavy Metal in Crude Oil from Gokana Area, Rivers State, Nigeria. ... Considerable caution should be applied in exploration, exposure and distribution of the crude oil through protected and well maintained pipelines to avoid the possible ...

  12. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation - Arizona, New Mexico, and Utah, USA.

    Science.gov (United States)

    Hoover, Joseph H; Coker, Eric; Barney, Yolanda; Shuey, Chris; Lewis, Johnnye

    2018-08-15

    Contaminant mixtures are identified regularly in public and private drinking water supplies throughout the United States; however, the complex and often correlated nature of mixtures makes identification of relevant combinations challenging. This study employed a Bayesian clustering method to identify subgroups of water sources with similar metal and metalloid profiles. Additionally, a spatial scan statistic assessed spatial clustering of these subgroups and a human health metric was applied to investigate potential for human toxicity. These methods were applied to a dataset comprised of metal and metalloid measurements from unregulated water sources located on the Navajo Nation, in the southwest United States. Results indicated distinct subgroups of water sources with similar contaminant profiles and that some of these subgroups were spatially clustered. Several profiles had metal and metalloid concentrations that may have potential for human toxicity including arsenic, uranium, lead, manganese, and selenium. This approach may be useful for identifying mixtures in water sources, spatially evaluating the clusters, and help inform toxicological research investigating mixtures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Gaussian free field in the background of correlated random clusters, formed by metallic nanoparticles

    Science.gov (United States)

    Cheraghalizadeh, Jafar; Najafi, Morteza N.; Mohammadzadeh, Hossein

    2018-05-01

    The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T - T c . The fractal dimension of iso-potential lines ( D f ), the exponent of the distribution function of the gyration radius ( τ r ), and the loop lengths ( τ l ), and also the exponent of the loop Green function x l change in terms of T - T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f ( T) - D f ( T c ) 1/√ ξ( T), in which ξ( T) is the spin correlation length in the Ising model.

  14. Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy

    International Nuclear Information System (INIS)

    Zheng, Ce

    2015-01-01

    ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides would improve manufacturing and mechanical properties of these ODS steels, with a strong economic impact for their industrialization. To experimentally study these mechanisms, an analytical approach by ion implantation is used, to control various parameters of synthesis of these precipitates as the temperature and concentration. This study demonstrated the feasibility of this method and concerned the behaviour of alloys models (based on aluminium oxide) under thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room temperature. Transmission electron microscopy observations showed that the nano-oxides appear in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. The mobility of implanted elements is caused by the defects created during ion implantation, allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are composed of aluminium and oxygen, and also chromium. The high-resolution experiments show that their crystallographic structure is that of a non-equilibrium compound of aluminium oxide (cubic γ-Al 2 O 3 type). The heat treatment performed after implantation induces the growth of the nano-sized oxides, and a phase change that tends to balance to the equilibrium structure (hexagonal α-Al 2 O 3 type). These results on model alloys are fully applicable to industrial materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the obtained experimental results

  15. The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

    Science.gov (United States)

    Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open star clusters allow us to derive both the radial metallicity distribution and its evolution over time. Aims: In this paper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current interstellar medium metallicity. Methods: We used the products of the Gaia-ESO Survey analysis of 12 young regions (age ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A70

  16. Aromater i drikkevand

    DEFF Research Database (Denmark)

    Nyeland, B. A.; Hansen, A. B.

    DMU har den 10. Juni 1997 afholdt en præstationsprøvning: Aromater i drikkevand. Der deltog 21 laboratorier i præstationsprøvningen. Prøvningen omfattede 6 vandige prøver og 6 ampuller indeholdende 6 aromater. Laboratorierne spikede de tilsendte vandprøver med indholdet fra ampullerne...

  17. Comparison of single-use and reusable metal laryngoscope blades for orotracheal intubation during rapid sequence induction of anesthesia: a multicenter cluster randomized study.

    Science.gov (United States)

    Amour, Julien; Le Manach, Yannick Le; Borel, Marie; Lenfant, François; Nicolas-Robin, Armelle; Carillion, Aude; Ripart, Jacques; Riou, Bruno; Langeron, Olivier

    2010-02-01

    Single-use metal laryngoscope blades are cheaper and carry a lower risk of infection than reusable metal blades. The authors compared single-use and reusable metal blades during rapid sequence induction of anesthesia in a multicenter cluster randomized trial. One thousand seventy-two adult patients undergoing general anesthesia under emergency conditions and requiring rapid sequence induction were randomly assigned on a weekly basis to either single-use or reusable metal blades (cluster randomization). After induction, a 60-s period was allowed to complete intubation. In the case of failed intubation, a second attempt was performed using the opposite type of blade. The primary endpoint was the rate of failed intubation, and the secondary endpoints were the incidence of complications (oxygen desaturation, lung aspiration, and/or oropharynx trauma) and the Cormack and Lehane score. Both groups were similar in their main characteristics, including the risk factors for difficult intubation. The rate of failed intubation was significantly decreased with single-use metal blades at the first attempt compared with reusable blades (2.8 vs. 5.4%, P < 0.05). In addition, the proportion of grades III and IV in Cormack and Lehane score were also significantly decreased with single-use metal blades (6 vs. 10%, P < 0.05). The global complication rate did not reach statistical significance, although the same trend was noted (6.8% vs. 11.5%, P = not significant). An investigator survey and a measure of illumination pointed that illumination might have been responsible for this result. The single-use metal blade was more efficient than a reusable metal blade in rapid sequence induction of anesthesia.

  18. Influence of stacking fault energies on the size distribution and character of defect clusters formed by collision cascades in face-centered cubic metals

    Directory of Open Access Journals (Sweden)

    Y. Yang

    2016-12-01

    Full Text Available Molecular dynamics simulations are performed to evaluate the influence of the stacking fault energy (SFE as a single variable parameter on defect formation by collision cascades in face-centered cubic metals. The simulations are performed for energies of a primary knock-on atom (EPKA up to 50keV at 100K by using six sets of the recently developed embedded atom method–type potentials. Neither the number of residual defects nor their clustering behavior is found to be affected by the SFE, except for the mean size of the vacancy clusters at EPKA=50keV. The mean size increases as the SFE decreases because of the enhanced formation of large vacancy clusters, which prefer to have stacking faults inside them. On the other hand, the ratio of glissile self-interstitial atom (SIA clusters decreases as the SFE increases. At higher SFEs, both the number of Frank loops and number of perfect loops tend to decrease; instead, three-dimensional irregular clusters with higher densities appear, most of which are sessile. The effect of SFE on the number of Frank loops becomes apparent only at a high EPKA of 50keV, where comparably large SIA clusters can be formed with a higher density.

  19. Inhibition of the WNT/β-catenin pathway by fine particulate matter in haze: Roles of metals and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Lee, Kang-Yun; Cao, Jun-Ji; Lee, Chii-Hong; Hsiao, Ta-Chih; Yeh, Chi-Tai; Huynh, Thanh-Tuan; Han, Yong-Ming; Li, Xiang-Dong; Chuang, Kai-Jen; Tian, Linwei; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2015-05-01

    Air pollution might have a great impact on pulmonary health, but biological evidence in response to particulate matter less than 2.5 μm in size (PM2.5) has been lacking. Physicochemical characterization of haze PM2.5 collected from Beijing, Xian and Hong Kong was performed. Biological pathways were identified by proteomic profiling in mouse lungs, suggesting that WNT/β-catenin is important in the response to haze PM2.5. Suppression of β-catenin levels, activation of caspase-3 and alveolar destruction, as well as IL-6, TNF-α and IFN-γ production, were observed in the lungs. The inhibition of β-catenin, TCF4 and cyclin D1 was observed in vitro in response to haze PM2.5. The inhibition of WNT/β-catenin signaling, apoptosis-related results (caspase-3 and alveolar destruction), and inflammation, particularly including caspase-3 and alveolar destruction, were more highly associated with polycyclic aromatic hydrocarbons in haze PM2.5. In conclusion, decreased WNT/β-catenin expression modulated by haze PM2.5 could be involved in alveolar destruction and inflammation during haze episodes.

  20. Electronic structure and geometries of small compound metal clusters: Progress report, August 1, 1987-July 31, 1988

    International Nuclear Information System (INIS)

    Jena, P.; Rao, B.K.; Khanna, S.N.

    1988-04-01

    Our research during this reporting period has focused on studying electronic structure and properties of both gas-phase clusters and clusters as models of crystals and defects. We have also concentrated on developing new theoretical techniques that can allow us to study large clusters in a computationally effective manner. Following is a summary of results

  1. Electronic structure and geometries of small compound metal clusters: Progress report, August 1, 1988--July 31, 1989

    International Nuclear Information System (INIS)

    Jena, P.; Rao, B.K.; Khanna, S.N.

    1989-04-01

    Our research during this reporting period has focused on the following two aspects of cluster research. Electronic structure and stability of charged clusters and studies of evolution of magnetic properties with increasing cluster size. Following is a summary of our results

  2. π-face donation from the aromatic N-substituent of N-heterocyclic carbene ligands to metal and its role in catalysis

    KAUST Repository

    Credendino, Raffaele; Falivene, Laura; Cavallo, Luigi

    2012-01-01

    excellently correlate with the experimental ΔE 1/2 potentials, offering a handle to rationalize the experimental findings. Analysis of the HOMO of the complexes before oxidation suggests that electron-donating Y groups destabilize the metal centered HOMO

  3. Aromatic hydrocarbon production via eucalyptus urophylla pyrolysis over several metal modified ZSM-5 catalysts – an analysis by py-GC/MS

    Science.gov (United States)

    Metal modified HZSM-5 catalysts were prepared by ion exchange of NH4ZSM-5 (SIO2/Al2O3 = 23) using gallium, molybdenum, nickel and zinc, and their combinations thereof. The prepared catalysts were used to evaluate catalytic pyrolysis for the conversion of Eucalyptus urophylla to fuels and chemicals, ...

  4. Synthesis and characterization of near-IR absorbing metal-free and zinc(II phthalocyanines modified with aromatic azo groups

    Directory of Open Access Journals (Sweden)

    Mukaddes Özçeşmeci

    2015-05-01

    Full Text Available Metal-free and zinc(II phthalocyanine complexes bearing peripheral (E-4-((2-hydroxynaphthalen-1-yldiazenyl units have been synthesized. Novel phthalonitrile derivative required for the preparation of phthalocyanine complexes was prepared by coupling 4-aminophthalonitrile and 2-naphthol. The structures of these new compounds were characterized by using elemental analyses, proton nuclear magnetic resonance, fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, fluorescence spectroscopy and mass spectrometry. In the UV-Vis spectra a broad absorption band appears for phthalocyanine complexes at around 450–500 nm resulting from azo-group introduced onto the phthalocyanine ring. The photophysical properties of metal-free and zinc(II phthalocyanines were studied in tetrahydrofuran.

  5. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunjiang, E-mail: zhaocj_nercita@163.com [National Engineering Research Center for Information Technology in Agriculture, Beijing 100097 (China); Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097 (China); Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture, Beijing100097 (China); Wu, Huarui, E-mail: wuhrnercita@163.com [National Engineering Research Center for Information Technology in Agriculture, Beijing 100097 (China); Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097 (China); Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture, Beijing100097 (China)

    2017-03-31

    Highlights: • PNG can be acted as micro-sensor for monitoring heavy metal in agriculture. • The most favorable adsorption site of Pd atom or cluster on PNG is the vacancy site. • The Pd atom or cluster enhance the reactivity of PNG toward Hg and AsH{sub 3} adsorption. • The efficiency of a sorbent can be tuned by tailoring the ε{sub d} of adsorbed metals. - Abstract: Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pd{sub n} (n = 1–6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH{sub 3} adsorption on PNG. The adsorption ability of Hg on Pd{sub n} decorated PNG is found to be related to the d-band center (ε{sub d}) of the Pd{sub n}, in which the closer ε{sub d} of Pd{sub n} to the Fermi level, the higher adsorption strength for Hg on Pd{sub n} decorated PNG. Moreover, the charge transfer between Pd{sub n} and arsenic may constitute arsenic adsorption on Pd{sub n} decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring ε{sub d} of adsorbed metals.

  6. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    International Nuclear Information System (INIS)

    Zhao, Chunjiang; Wu, Huarui

    2017-01-01

    Highlights: • PNG can be acted as micro-sensor for monitoring heavy metal in agriculture. • The most favorable adsorption site of Pd atom or cluster on PNG is the vacancy site. • The Pd atom or cluster enhance the reactivity of PNG toward Hg and AsH_3 adsorption. • The efficiency of a sorbent can be tuned by tailoring the ε_d of adsorbed metals. - Abstract: Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pd_n (n = 1–6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH_3 adsorption on PNG. The adsorption ability of Hg on Pd_n decorated PNG is found to be related to the d-band center (ε_d) of the Pd_n, in which the closer ε_d of Pd_n to the Fermi level, the higher adsorption strength for Hg on Pd_n decorated PNG. Moreover, the charge transfer between Pd_n and arsenic may constitute arsenic adsorption on Pd_n decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring ε_d of adsorbed metals.

  7. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  8. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field

    Science.gov (United States)

    Boucerredj, N.; Beggas, K.

    2016-10-01

    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  9. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  10. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO{sub 2} by radiolytic method

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Marek [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk (Poland); Nadolna, Joanna, E-mail: joanna.nadolna@ug.edu.pl [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland); Gołąbiewska, Anna [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Mazierski, Paweł [Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland); Klimczuk, Tomasz [Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk (Poland); Remita, Hynd [Laboratoire de Chimie Physique, CNRS-UMR 8000, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); CNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay (France); Zaleska-Medynska, Adriana [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland)

    2016-08-15

    Highlights: • Pd-Pt decorated TiO{sub 2} shows the highest activity under visible light among all. • Concurrent addition of metal precursors results in rise of BNPs size and Vis-activity. • Subsequent addition of metal precursors enhances UV–vis stability of modified TiO{sub 2}. • Superoxide radicals are responsible for pollutants degradation over BNPs-TiO{sub 2}. - Abstract: TiO{sub 2} (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV–vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (λ > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO{sub 2} co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15–30 nm) on TiO{sub 2} surface and enhances the Vis-induced activity of Ag/Pd-TiO{sub 2} up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV–vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for

  11. Study on Concentration of Particulate Matter with Diameter Less than 10 Microns, Heavy Metals and Polycyclic Aromatic Hydrocarbons Related to PM2.5 in the Ambient Air of Sina Hospital District

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2014-03-01

    Full Text Available Background:In recent decades, extensive studies have shown a number of short and long-term health effects of particle matters. In addition to particle matters, polycyclic aromatic hydrocarbons (PAHs and heavy metals in airborne particles due to their mutagenic and carcinogenic properties are considered major air pollutants. So, the aim of this study was to evaluate the concentration of PM2.5particulate, 7heavy metal concentrations and 13 PAHs compound associated with fine particles (PM2.5-boud PAHs in the district of Sina hospital, Tehran. Methods: This cross-sectional study was carried out in air of Sina Hospital district in Tehran. Concentrations of fine particulate matter (PM2.5 were determined by gravimetric. Also heavy metal concentrations in samples after digestion were determined with ICP-AES instrument through injection. Then the PAHs compounds from each sample were extracted by ultrasonic method. After this step, extracted sample was injected for analysis by GC-MS and concentration of each compound was read. Results: The daily average concentration of PM2.5 during the study was 41.19 µg/m3.Concentration values for zinc, lead, cadmium, chromium, nickel and arsenic, were 92/69, 05/38, 2/18, 24/4, 19/4 and 34/1 ng/m3 respectively but mercury not found in this study. Average concentrations of PAHs compounds have been variable from0.07 ng/m3 for Chrysene to 1.21ng/m3 for Dibenzo(ahanthracene. Conclusion: In this study, the daily average of PM2.5 concentrations was above the Iranian National PM, WHO (25 µg/m3 and EPA (35 µg/m3 standards established for PM2.5 particles. Heavy metal concentrations in this study were lower than values reported in previous studies in Tehran. The highest concentrations among PAHs compounds belonging toIndeo(cd 1,2,3pyren, Dibenzo(ah anthracene, Benzo (B flouranthin and Benzo (Kflouranthin that all of these compounds are related to vehicle emissions.

  12. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  13. Sorptive extraction using polydimethylsiloxane/metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin

    2014-08-22

    In this work, metal-organic frameworks (MOFs, Al-MIL-53-NH₂) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metal-organic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH₂)-coated stir bars were prepared by the sol-gel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n=7) within one batch and from 6.2% to 16.9% (n=6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good RSDs (n=7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N=3) of the developed method for the target PAHs were found to be in the range of 0.05-2.94 ng/L. The developed method was successfully applied to the analysis of PAHs in Yangtze River and East Lake water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E.

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  15. Deuteration of benzen derivatives and condensed aromatics

    International Nuclear Information System (INIS)

    Ichikawa, Masaru.

    1970-01-01

    A process for the deuteration of aromatic compounds (benzene derivatives having one or more cyano, halogeno, nitro or other electron attractive groups, and condensed ring aromatics) is provided. The process comprises reducing said aromatic compound with an alkali metal (preferably K, Rb or Cs) in a solvent (dimethoxyethane, tetrahydrofuran, etc.) to provide an electron-acceptor-donor complex, which is followed by introducing gaseous deuterium into the solution. The deuteration takes place selectively at the position of highest electron density in accordance with nature of the substituent, regardless of steric hindrance. The process is applicable to a wide variety of aromatics to give deuterated compounds in high yields. In one example, 5x10 -3 mole of anthracene (An) was reacted with 2g of metallic potassium in 80cc of dimethoxyethane in a N 2 atmosphere. Into the resulting solution of An=2K + was introduced D 2 gas (30 cmHg) at 25 0 C. After decomposition with air and washing with alcohol, the precipitate was recrystallized from benzene. Yield of recovered AN: more than 90%. Yield of deuteration: 100%. Position of deuteration: 9 and 10 (revealed by NMR and mass spectroscopy). (Kaichi, S.)

  16. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.; Bekyarova, Elena B.; Wang, Qingxiao; Al-Hadeethi, Yas Fadel; Zhang, Xixiang; Al-Agel, Faisel; Al-Marzouki, Fahad M.; Yaghmour, Saud Jamil; Haddon, Robert C.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were

  17. Influence of clusters in melt on the subsequent glass-formation and crystallization of Fe–Si–B metallic glasses

    Directory of Open Access Journals (Sweden)

    Shaoxiong Zhou

    2015-04-01

    Full Text Available The liquid structure of seven representative Fe–Si–B alloys has been investigated by ab initio molecular dynamics simulation focusing on the role of clusters in terms of glass-forming ability (GFA and crystallization. It is demonstrated that the type of primary phase precipitated from amorphous state under heat treatment is determined by the relative fraction and role of various clusters in melt. The alloy melt shows higher stability and resultantly larger GFA when there is no dominant cluster or several clusters coexist, which explains the different GFAs and crystallization processes at various ratios of Si and B in the Fe–Si–B system. The close correlation among clusters, crystalline phase and GFA is also studied.

  18. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin; Lee, Young-Wook

    2013-01-01

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced by observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.

  19. Large stability and high catalytic activities of sub-nm metal (0) clusters: implications into the nucleation and growth theory.

    Science.gov (United States)

    Piñeiro, Yolanda; Buceta, David; Calvo, Javier; Huseyinova, Shahana; Cuerva, Miguel; Pérez, Ángel; Domínguez, Blanca; López-Quintela, M Arturo

    2015-07-01

    Clusters are stable catalytic species, which are produced during the synthesis of nanoparticles (NPs). Their existence contradicts the thermodynamic principles used to explain the formation of NPs by the classical nucleation and growth theories (NGTs). Using chemical and electrochemical methods we will show that depending on the experimental conditions one can produce either Ag clusters or Ag NPs. Moreover, using already prepared Ag clusters one can observe the disappearance of the usual induction period observed for the kinetics of NP formation, indicating that clusters catalyze the formation of NPs. Taking these data together with some previous examples of cluster-catalyzed anisotropic growth, we derived a qualitative approach to include the catalytic activities of clusters into the formation of NPs, which is incorporated into the NGT. Some qualitative conclusions about the main experimental parameters, which affect the formation of clusters versus NPs, as well as the catalytic mechanism versus the non-catalytic one, are also described. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Quantum-Size Dependence of the Energy for Vacancy Formation in Charged Small Metal Clusters. Drop Model

    Science.gov (United States)

    Pogosov, V. V.; Reva, V. I.

    2018-04-01

    Self-consistent computations of the monovacancy formation energy are performed for Na N , Mg N , and Al N (12 < N ≤ 168) spherical clusters in the drop model for stable jelly. Scenarios of the Schottky vacancy formation and "bubble vacancy blowing" are considered. It is shown that the asymptotic behavior of the size dependences of the energy for the vacancy formation by these two mechanisms is different and the difference between the characteristics of a charged and neutral cluster is entirely determined by the difference between the ionization potentials of clusters and the energies of electron attachment to them.

  1. Microbial transformation of chlorinated aromatics in sediments

    OpenAIRE

    Beurskens, J.E.M.

    1995-01-01

    Numerous contaminants like heavy metals, polycyclic aromatic hydrocarbons (PAHs), chlorinated benzenes (CBs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo- p -dioxins (PCDDs) and polychlorinated furans (PCDFs) are detected in the major rivers in the Netherlands. These contaminants have relatively low aqueous solubilities and bind substantially to the suspended solids in river water. Due to decreasing stream velocities in the downstream stretches of a...

  2. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  3. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions.

    Science.gov (United States)

    Rocío-Bautista, Priscilla; Pino, Verónica; Ayala, Juan H; Pasán, Jorge; Ruiz-Pérez, Catalina; Afonso, Ana M

    2016-03-04

    A hybrid material composed by the metal-organic framework (MOF) HKUST-1 and Fe3O4 magnetic nanoparticles (MNPs) has been synthetized in a quite simple manner, characterized, and used in a magnetic-assisted dispersive micro-solid-phase extraction (M-d-μSPE) method in combination with ultra-high-performance liquid chromatography (UHPLC) and fluorescence detection (FD). The application was devoted to the determination of 8 heavy polycyclic aromatic hydrocarbons (PAHs) in different aqueous samples, specifically tap water, wastewaters, and fruit tea infusion samples. The overall M-d-μSPE-UHPLC-FD method was optimized and validated. The method is characterized by: its simplicity in both the preparation of the hybrid material (simple mixing) and the magnetic-assisted approach (∼10min extraction time), the use of low sorbent amounts (20mg of HKUST-1 and 5mg of Fe3O4 MNPs), and the low organic solvent consumption in the overall M-d-μSPE-UHPLC-FD method (1.5mL of acetonitrile in the M-d-μSPE method and 2.8mL of acetonitrile in the UHPLC-FD run). The resulting method has high sensitivity, with LODs down to 0.8ngL(-1); adequate intermediate precision, with relative standard deviation values (RSD) always lower than 6.3% (being the range 5.9-9.0% in tap water for a spiked level of 45ngL(-1), 6.1-14% in wastewaters for a spiked level of 45ngL(-1), and 7.2-17% in fruit tea infusion samples for a spiked level of 45ngL(-1)); and adequate relative recoveries, with average values of 82% in tap water, and 94% and 75% in wastewater and fruit tea infusion samples, respectively, if using the proper matrix-matched calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Merchant Boesgaard, Ann; Lum, Michael G. [Institute for Astronomy, University of Hawai' i at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Deliyannis, Constantine P., E-mail: boes@ifa.hawaii.edu, E-mail: mikelum@ifa.hawaii.edu, E-mail: cdeliyan@indiana.edu [Department of Astronomy, Indiana University 727 East 3rd Street, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  5. The role of electron localization in the atomic structure of transition-metal 13-atom clusters: the example of Co13, Rh13, and Hf13.

    Science.gov (United States)

    Piotrowski, Maurício J; Piquini, Paulo; Cândido, Ladir; Da Silva, Juarez L F

    2011-10-14

    The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation--LDA) and semilocal (generalized gradient approximation--GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA+U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA+U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.

  6. A semiempirical self-consistent CNDO/2M scheme for calculation of clusters simulating active sites on transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Korsunov, V A; Chuvylkin, N D; Zhidomirov, G M; Kazanskii, V B

    1978-09-01

    The developed CNDO/2M scheme, which allows for the presence of up to five different ''end quasi-atoms'' in a cluster, was implemented in a FORTRAN program and tested in calculation of ScO, ScF, and MnO/sub 4/- systems and of model clusters HOX(OH)/sub 3/ and HOXO/sub 3/ for X = Si and Ti. The calculation results showed that the CNDO/2M scheme is well-suited for qualitative quantum-chemical analysis of intermediate para- and diamagnetic oxygen containing complexes involved in heterogeneous processes catalyzed by TM oxides.

  7. THE SUPERNOVA DELAY TIME DISTRIBUTION IN GALAXY CLUSTERS AND IMPLICATIONS FOR TYPE-Ia PROGENITORS AND METAL ENRICHMENT

    International Nuclear Information System (INIS)

    Maoz, Dan; Sharon, Keren; Avishay Gal-Yam

    2010-01-01

    Knowledge of the supernova (SN) delay time distribution (DTD)-the SN rate versus time that would follow a hypothetical brief burst of star formation-can shed light on SN progenitors and physics, as well as on the timescales of chemical enrichment in different environments. We compile recent measurements of the Type-Ia SN (SN Ia) rate in galaxy clusters at redshifts from z = 0 out to z = 1.45, just 2 Gyr after cluster star formation at z ∼ 3. We review the plausible range for the observed total iron-to-stellar mass ratio in clusters, based on the latest data and analyses, and use it to constrain the time-integrated number of SN Ia events in clusters. With these data, we recover the DTD of SNe Ia in cluster environments. The DTD is sharply peaked at the shortest time-delay interval we probe, 0Gyr -1.2±0.3 from t = 400 Myr to a Hubble time can satisfy both constraints. Shallower power laws such as t -1/2 cannot, assuming a single DTD, and a single star formation burst (either brief or extended) at high z. This implies that 50%-85% of SNe Ia explode within 1 Gyr of star formation. DTDs from double-degenerate (DD) models, which generically have ∼t -1 shapes over a wide range of timescales, match the data, but only if their predictions are scaled up by factors of 5-10. Single-degenerate (SD) DTDs always give poor fits to the data, due to a lack of delayed SNe and overall low numbers of SNe. The observations can also be reproduced with a combination of two SN Ia populations-a prompt SD population of SNe Ia that explodes within a few Gyr of star formation, and produces about 60% of the iron mass in clusters, and a DD population that contributes the events seen at z < 1.5. An alternative scenario of a single, prompt, SN Ia population, but a composite star formation history in clusters, consisting of a burst at high z, followed by a constant star formation rate, can reproduce the SN rates, but is at odds with direct measurements of star formation in clusters at 0 < z

  8. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    Science.gov (United States)

    Lai, King C.; Liu, Da-Jiang; Evans, James W.

    2017-12-01

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN˜ N-β with β =3 /2 . However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N mediated diffusion with small β 2 for N =Np+1 and Np+2 also for moderate sizes 9 ≤N ≤O (102) ; (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲β analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.

  9. Hubble Space Telescope-NICMOS Observations of M31'S Metal-Rich Globular Clusters and Their Surrounding Fields. I. Techniques

    Science.gov (United States)

    Stephens, Andrew W.; Frogel, Jay A.; Freedman, Wendy; Gallart, Carme; Jablonka, Pascale; Ortolani, Sergio; Renzini, Alvio; Rich, R. Michael; Davies, Roger

    2001-05-01

    Astronomers are always anxious to push their observations to the limit-basing results on objects at the detection threshold, spectral features barely stronger than the noise, or photometry in very crowded regions. In this paper we present a careful analysis of photometry in crowded regions and show how image blending affects the results and interpretation of such data. Although this analysis is specifically for our NICMOS observations in M31, the techniques we develop can be applied to any imaging data taken in crowded fields; we show how the effects of image blending will limit even the Next Generation Space Telescope. We have obtained HST-NICMOS observations of five of M31's most metal-rich globular clusters. These data allow photometry of individual stars in the clusters and their surrounding fields. However, to achieve our goals-obtain accurate luminosity functions to compare with their Galactic counterparts, determine metallicities from the slope of the giant branch, identify long-period variables, and estimate ages from the AGB tip luminosity-we must be able to disentangle the true properties of the population from the observational effects associated with measurements made in very crowded fields. We thus use three different techniques to analyze the effects of crowding on our data, including the insertion of artificial stars (traditional completeness tests) and the creation of completely artificial clusters. These computer simulations are used to derive threshold- and critical-blending radii for each cluster, which determine how close to the cluster center reliable photometry can be achieved. The simulations also allow us to quantify and correct for the effects of blending on the slope and width of the RGB at different surface brightness levels. We then use these results to estimate the limits blending will place on future space-based observations. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science

  10. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry.

    Science.gov (United States)

    Müller, Achim; Gouzerh, Pierre

    2012-11-21

    Following Nature's lessons, today chemists can cross the boundary of the small molecule world to construct multifunctional and highly complex molecular nano-objects up to protein size and even cell-like nanosystems showing responsive sensing. Impressive examples emerge from studies of the solutions of some oxoanions of the early transition metals especially under reducing conditions which enable the controlled linking of metal-oxide building blocks. The latter are available from constitutional dynamic libraries, thus providing the option to generate multifunctional unique nanoscale molecular systems with exquisite architectures, which even opens the way towards adaptive and evolutive (Darwinian) chemistry. The present review presents the first comprehensive report of current knowledge (including synthesis aspects not discussed before) regarding the related giant metal-oxide clusters mainly of the type {Mo(57)M'(6)} (M' = Fe(III), V(IV)) (torus structure), {M(72)M'(30)} (M = Mo, M' = V(IV), Cr(III), Fe(III), Mo(V)), {M(72)Mo(60)} (M = Mo, W) (Keplerates), {Mo(154)}, {Mo(176)}, {Mo(248)} ("big wheels"), and {Mo(368)} ("blue lemon") - all having the important transferable pentagonal {(M)M(5)} groups in common. These discoveries expanded the frontiers of inorganic chemistry to the mesoscopic world, while there is probably no collection of discrete inorganic compounds which offers such a versatile chemistry and the option to study new phenomena of interdisciplinary interest. The variety of different properties of the sphere- and wheel-type metal-oxide-based clusters can directly be related to their unique architectures: The spherical Keplerate-type capsules having 20 crown-ether-type pores and tunable internal functionalities allow the investigation of confined matter as well as that of sphere-surface-supramolecular and encapsulation chemistry - including related new aspects of the biologically important hydrophobic effects - but also of nanoscale ion transport and

  11. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  12. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    International Nuclear Information System (INIS)

    Lai, King C.; Liu, Da-Jiang; Evans, James W.

    2017-01-01

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2 ); the same also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2 ); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2 ) to N = O(10 3 ); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.

  13. Aromaticity of benzene in condensed phases. A case of a benzene-water system

    Science.gov (United States)

    Zborowski, Krzysztof K.

    2014-05-01

    A theoretical Density Functional Theory study was performed for a benzene molecule in water cages. Two DFT functionals (B3LYP and BLYP) were employed. The optimized geometries of the studied clusters were used to calculate the aromaticity of benzene in a condensed phase using the aromaticity indices: HOMA, NICS, PDI, and H. The results were compared with aromaticity of a single benzene molecule in the gas phase and in the solvent environment provided by the PCM continuum model. It is argued that high aromaticity of benzene in the gas phase is retained in the water environment.

  14. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  15. The effects of polycyclic aromatic hydrocarbons and heavy metals on terrestrial annelids in urban soils O efeito de hidrocarbonetos aromáticos policíclicos e metais pesados em anelídeos terrestres de solos urbanos

    Directory of Open Access Journals (Sweden)

    Pižl Václav

    2009-08-01

    Full Text Available The effect of soil contamination by polycyclic aromatic hydrocarbons (PAH and heavy metals on earthworms and enchytraeids was studied in urban parks, in Brno, Czech Republic. In spring and autumn 2007, annelids were collected and soil samples taken in lawns along transects, at three different distances (1, 5 and 30 m from streets with heavy traffic. In both seasons, two parks with two transects each were sampled. Earthworms were collected using the electrical octet method. Enchytraeids were extracted by the wet funnel method from soil cores. All collected annelids were counted and identified. Basic chemical parameters and concentrations of 16 PAH, Cd, Cu, Pb, and Zn were analysed from soil from each sampling point. PAH concentrations were rather low, decreasing with the distance from the street in spring but not in autumn. Heavy metal concentrations did not decrease significantly with increasing distance. Annelid densities did not significantly differ between distances, although there was a trend of increase in the number of earthworms with increasing distance. There were no significant correlations between soil content of PAH or heavy metals and earthworm or enchytraeid densities. Earthworm density and biomass were negatively correlated with soil pH; and enchytraeid density was positively correlated with soil phosphorus.O efeito da contaminação do solo por hidrocarbonetos aromáticos policíclicos (PAH e metais pesados em minhocas e enquitreídeos foi estudado em parques urbanos, em Brno, República Tcheca. Na primavera e outono de 2007, os anelídeos foram coletados, e amostras de solo foram retiradas de gramados ao longo de transectos, em três diferentes distâncias (1, 5 e 30 m de ruas com muito tráfego. Nas duas estações, foram amostrados dois parques com dois transectos cada um. As minhocas com uso do método do octeto elétrico, e os enquitreídeos foram extraídos das amostras de solo pelo método do funil úmido. Todos os anel

  16. Environmental forensic principals for sources allocation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    O'Sullivan, G.; Martin, E.; Sandau, C.D.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) are organic compounds which include only carbon and hydrogen with a fused ring structure containing at least two six-sided benzene rings but may also contain additional fused rings that are not six-sided. The environmental forensic principals for sources allocation of PAHs were examined in this presentation. Specifically, the presentation addressed the structure and physiochemical properties of PAHs; sources and sinks; fate and behaviour; analytical techniques; conventional source identification techniques; and toxic equivalent fingerprinting. It presented a case study where residents had been allegedly exposed to dioxins, PAHs and metals released from a railroad tie treatment plant. The classification of PAHs is governed by thermodynamic properties such as biogenic, petrogenic, and pyrogenic properties. A number of techniques were completed, including chemical fingerprinting; molecular diagnostic ratios; cluster analysis; principal component analysis; and TEF fingerprinting. These techniques have shown that suspected impacted sites do not all share similar PAH signatures indicating the potential for various sources. Several sites shared similar signatures to background locations. tabs., figs

  17. Density functional study of photoabsorption in metallic clusters using an exchange-correlation potential with correct long-range behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M.B. [Dpto. de Matematicas y Computacion, Universidad de Burgos, Burgos (Spain); Balbas, L.C. [Dpto. de Fisica Teorica, Universidad de Valladolid, Valladolid (Spain)

    2002-06-17

    The atomic exchange-correlation (xc) potential with the correct -1/r asymptotic behaviour constructed by Parr and Ghosh (Parr R G and Ghosh S K 1995 Phys. Rev. A 51 3564) is adapted here to study, within time density functional theory, the linear response to external fields of (i) neutral and charged sodium clusters, and (ii) doped clusters of the type Na{sub n}Pb (n=4, 6, 16). The resulting photoabsorption cross sections are compared to experimental results, when available, and to results from previous calculations using local and non-local xc functionals. The calculated static polarizabilities and plasmon frequencies are closer to the experimental values than previous results. (author)

  18. The origin and orbit of the old, metal-rich, open cluster NGC 6791. Insights from kinematics

    Czech Academy of Sciences Publication Activity Database

    Jílková, L.; Carraro, G.; Jungwiert, Bruno; Minchev, I.

    2012-01-01

    Roč. 541, April (2012), A64/1-A64/11 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014; GA ČR GD205/08/H005 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxy * kinematics and dynamics * open clusters and associations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  19. Copper Sensing Function of Drosophila Metal-Responsive Transcription Factor-1 Is Mediated By a Tetranuclear Cu(I) Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Hua, H.; Balamurugan, K.; Kong, X.; Zhang, L.; George, G.N.; Georgiev, O.; Schaffner, W.; Giedroc, D.P.

    2009-05-12

    Drosophila melanogaster MTF-1 (dMTF-1) is a copper-responsive transcriptional activator that mediates resistance to Cu, as well as Zn and Cd. Here, we characterize a novel cysteine-rich domain which is crucial for sensing excess intracellular copper by dMTF-1. Transgenic flies expressing mutant dMTF-1 containing alanine substitutions of two, four or six cysteine residues within the sequence {sup 547}CNCTNCKCDQTKSCHGGDC{sup 565} are significantly or completely impaired in their ability to protect flies from copper toxicity and fail to up-regulate MtnA (metallothionein) expression in response to excess Cu. In contrast, these flies exhibit wild-type survival in response to copper deprivation thus revealing that the cysteine cluster domain is required only for sensing Cu load by dMTF-1. Parallel studies show that the isolated cysteine cluster domain is required to protect a copper-sensitive S. cerevisiae ace1 strain from copper toxicity. Cu(I) ligation by a Cys-rich domain peptide fragment drives the cooperative assembly of a polydentate [Cu{sub 4}-S{sub 6}] cage structure, characterized by a core of trigonally S{sub 3} coordinated Cu(I) ions bound by bridging thiolate ligands. While reminiscent of Cu{sub 4}-L{sub 6} (L = ligand) tetranuclear clusters in copper regulatory transcription factors of yeast, the absence of significant sequence homology is consistent with convergent evolution of a sensing strategy particularly well suited for Cu(I).

  20. Regulation of FoxO transcription factors by environmental NO(x). Influence of metal ions and polycyclic aromatic hydrocarbons; Regulation von FoxO-Transkriptionsfaktoren durch Umweltnoxen. Einfluss von Metallionen und polyzyklischen aromatischen Kohlenwasserstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Anna

    2009-12-15

    FoxO transcription factors are crucial modulators of various cellular processes, controlling the expression of target genes such as those coding for manganese superoxide dismutase (MnSOD) and selenoprotein P (SeP), thereby supporting defense against oxidative stress. Environmental stimuli such as heavy metal ions and polycyclic aromatic hydrocarbons (PAH) modulate signaling pathways both by interaction with proteins or by inducing the generation of reactive oxygen species (ROS). Exposure of hepatoma cells to nickel ions at subcytotoxic doses did not translate into modulation of FoxO activity despite an activation of the Ser/Thr-kinase Akt. The cellular response to nickel ions under these conditions is most likely independent of the formation of ROS, since there were no increased levels of glutathione disulfide detectable. FoxO activity was then found to be modulated in response to exposure of cells to PAH or the tryptophan photoproduct FICZ. Both PAH and FICZ caused an increased activity of a FoxO-responsive promoter construct as well as of glucose 6-phosphatase promoter activity. In contrast, the activities of promoters of genes coding for MnSOD or SeP were decreased in response to exposure to the PAH 3-methylcholanthrene (3-MC). In line with the promoter effects, 3-MC also decreased steady-state levels of SeP mRNA. The response of the SeP promoter to 3-MC was abrogated by point mutations introduced at the two identified FoxO binding elements of the SeP promoter, implying that interaction of FoxO proteins with these sites is essential for the downregulation of promoter activity. In addition to FoxO activity being modulated by xenobiotics, it was then demonstrated that FoxO expression was also modulated by exposure of cells to PAH or FICZ. FoxO4 mRNA levels were downregulated in hepatoma cells exposed to 3-MC or FICZ. Similarly, insulin treatment caused a downregulation of mRNA levels of FoxO 1a, 3a and 4 in hepatoma cells. (orig.)

  1. Mononuclear Clusterfullerene Single-Molecule Magnet Containing Strained Fused-Pentagons Stabilized by a Nearly Linear Metal Cyanide Cluster

    DEFF Research Database (Denmark)

    Liu, Fupin; Wang, Song; Gao, Cong Li

    2017-01-01

    Fused-pentagons results in an increase of local steric strain according to the isolated pentagon rule (IPR), and for all reported non-IPR clusterfullerenes multiple (two or three) metals are required to stabilize the strained fused-pentagons, making it difficult to access the single-atom properti...... (SMM)....

  2. Electronic Effects on Room-Temperature, Gas-Phase C-H Bond Activations by Cluster Oxides and Metal Carbides: The Methane Challenge.

    Science.gov (United States)

    Schwarz, Helmut; Shaik, Sason; Li, Jilai

    2017-12-06

    This Perspective discusses a story of one molecule (methane), a few metal-oxide cationic clusters (MOCCs), dopants, metal-carbide cations, oriented-electric fields (OEFs), and a dizzying mechanistic landscape of methane activation! One mechanism is hydrogen atom transfer (HAT), which occurs whenever the MOCC possesses a localized oxyl radical (M-O • ). Whenever the radical is delocalized, e.g., in [MgO] n •+ the HAT barrier increases due to the penalty of radical localization. Adding a dopant (Ga 2 O 3 ) to [MgO] 2 •+ localizes the radical and HAT transpires. Whenever the radical is located on the metal centers as in [Al 2 O 2 ] •+ the mechanism crosses over to proton-coupled electron transfer (PCET), wherein the positive Al center acts as a Lewis acid that coordinates the methane molecule, while one of the bridging oxygen atoms abstracts a proton, and the negatively charged CH 3 moiety relocates to the metal fragment. We provide a diagnostic plot of barriers vs reactants' distortion energies, which allows the chemist to distinguish HAT from PCET. Thus, doping of [MgO] 2 •+ by Al 2 O 3 enables HAT and PCET to compete. Similarly, [ZnO] •+ activates methane by PCET generating many products. Adding a CH 3 CN ligand to form [(CH 3 CN)ZnO] •+ leads to a single HAT product. The CH 3 CN dipole acts as an OEF that switches off PCET. [MC] + cations (M = Au, Cu) act by different mechanisms, dictated by the M + -C bond covalence. For example, Cu + , which bonds the carbon atom mostly electrostatically, performs coupling of C to methane to yield ethylene, in a single almost barrier-free step, with an unprecedented atomic choreography catalyzed by the OEF of Cu + .

  3. Metallic behavior and negative differential resistance properties of (InAs)n (n = 2 − 4) molecule cluster junctions via a combined non–equilibrium Green's function and density functional theory study

    International Nuclear Information System (INIS)

    Wang, Qi; Li, Rong; Xu, Yuanlan; Zhang, Jianbing; Miao, Xiangshui; Zhang, Daoli

    2014-01-01

    In this present work, the geometric structures and electronic transport properties of (InAs) n (n = 2, 3, 4) molecule cluster junctions are comparatively investigated using NEGF combined with DFT. Results indicate that all (InAs) n molecule cluster junctions present metallic behavior at the low applied biases ([−2V, 2V]), while NDR appears at a certain high bias range. Our calculation shows that the current of (InAs) 4 molecule cluster–based junction is almost the largest at any bias. The mechanisms of the current–voltage characteristics of all the three molecule cluster junctions are proposed.

  4. Theoretical perspective on structural, electronic and magnetic properties of 3d metal tetraoxide clusters embedded into single and di-vacancy graphene

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Mehran University of Engineering and Technology, S.Z.A.B, Campus Khairpur Mir' s, Sindh (Pakistan); Shuai, Yong, E-mail: shuaiyong@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping; Muhammad, Hassan [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2017-06-30

    Highlights: • First-principles calculations are performed for TMO{sub 4} cluster-doped SV and DV monolayer graphene structures. • Ferromagnetism coupling behavior between TM atoms and neighboring C and O atoms was observed for all structural models. • The direction of charge transfer is always from graphene layer to TMO{sub 4} clusters. • CrO{sub 4} and MnO{sub 4} doped SV graphene systems display dilute magnetic semiconductor (DMS) behavior in their spin down channel. • CoO{sub 4}, CrO{sub 4}, FeO{sub 4} and MnO{sub 4} doped DV graphene systems exhibit DMS behavior in their spin up channel. - Abstract: Structural, electronic and magnetic properties of 3d transition metal tetraoxide TMO{sub 4} superhalogen clusters doped single vacancy (SV) and divacancy (DV) monolayer graphene have been studied using first-principles calculations. We found that in both cases of TMO{sub 4} cluster substitution, all the impurity atoms are tightly bonded with graphene, having significant formation energy and large charge transfer occurs from graphene to TMO{sub 4} clusters. CrO{sub 4} and MnO{sub 4} substituted SV graphene structures exhibit dilute magnetic semiconductor behavior in their spin down channel with 2.15 μ{sub B} and 3.51 μ{sub B} magnetic moment, respectively. However, CoO{sub 4}, FeO{sub 4}, TiO{sub 4} and NiO{sub 4} substitution into SV graphene, leads to Fermi level shifting to conduction band, thereby causing the Dirac cone to move into valence band and a band gap appears at high symmetric K-point. Interestingly, CoO{sub 4}, CrO{sub 4}, FeO{sub 4} and MnO{sub 4} substituted DV graphene structures exhibit dilute magnetic semiconductor behavior in their spin up channel with 1.74 μ{sub B}, 3.27 μ{sub B}, 3.09 μ{sub B} and 1.99 μ{sub B} magnetic moment, respectively. Detailed analysis of density of states (DOS) plots show that d orbitals of 3d TM atoms should be responsible for inducing magnetic moments in graphene. We believe that our results are

  5. Fano-induced spontaneous emission enhancement of molecule placed in a cluster of asymmetrically-arranged metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q., E-mail: khai.lequang@hoasen.edu.vn [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh (Viet Nam); Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Bai, Jing [Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Nguyen, H.P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States)

    2016-05-15

    We demonstrate that plasmonic Fano resonance significantly boosts spontaneous emission rate of a single emitter, e.g. atom, molecule and quantum dot, over a moderately broad emission spectrum. An emission enhancement of up to 140 times compared to the system with no external inclusion at tunable frequencies is achieved, providing a new complementary enhancement mechanism. Fano resonance is induced in clusters of four asymmetric-arranged nanoparticles with ultra-small inter-particle gaps. It is shown to play a dominant role in light-emitting enhancement, mediated by combined localized surface plasmon resonances.

  6. Dissolved Massive Metal-rich Globular Clusters Can Cause the Range of UV Upturn Strengths Found among Early-type Galaxies

    Science.gov (United States)

    Goudfrooij, Paul

    2018-04-01

    I discuss a scenario in which the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is primarily due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs), which subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central giant elliptical galaxy in the Virgo cluster of galaxies. Data taken from the literature reveal a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parameterization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that the observed correlation between UV upturn strength and GC specific frequency can be explained by variations in the characteristic truncation mass {{ \\mathcal M }}{{c}} such that {{ \\mathcal M }}{{c}} increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in massive galactic spheroids. With this in mind, I predict that future studies will find that [N/Fe] decreases with increasing galactocentric radius in massive ETGs, and that such gradients have the largest amplitudes in ETGs with the strongest UV upturns.

  7. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sellaiyan, S.; Uedono, A. [University of Tsukuba, Division of Applied Physics, Tsukuba, Ibaraki (Japan); Sivaji, K.; Janet Priscilla, S. [University of Madras, Department of Nuclear Physics, Chennai (India); Sivasankari, J. [Anna University, Department of Physics, Chennai (India); Selvalakshmi, T. [National Institute of Technology, Nanomaterials Laboratory, Department of Physics, Tiruchirappalli (India)

    2016-10-15

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F{sub 2} {sup 2+} and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F{sub 2} {sup 2+} to F{sup +} and this F{sup +} is converted into F centers at 416 nm. (orig.)

  8. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Science.gov (United States)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-10-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.

  9. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-01-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F_2 "2"+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F_2 "2"+ to F"+ and this F"+ is converted into F centers at 416 nm. (orig.)

  10. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uhlik, Filip [Charles Univ., Prague (Czech Republic); Moucka, Filip [Purkinje Univ. (Czech Republic); Nezbeda, Ivo [Purkinje Univ. (Czech Republic); Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Chialvo, Ariel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-16

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.

  11. N-Heterocyclic Carbene Coinage Metal Complexes of the Germanium-Rich Metalloid Clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3

    Directory of Open Access Journals (Sweden)

    Felix S. Geitner

    2017-07-01

    Full Text Available We report on the synthesis of novel coinage metal NHC (N-heterocyclic carbene compounds of the germanium-rich metalloid clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3. NHCDippCu{η3Ge9R3} with R = Si(iPr3 (1 represents a less bulky silyl group-substituted derivative of the known analogous compounds with R = Si(iBu3 or Si(TMS3. The coordination of the [NHCDippCu]+ moiety to the cluster unit occurs via one triangular face of the tri-capped trigonal prismatic [Ge9] cluster. Furthermore, a series of novel Zintl cluster coinage metal NHC compounds of the type (NHCM2{η3Ge9RI2} (RI = Si(TMS3 M = Cu, Ag and Au; NHC = NHCDipp or NHCMes is presented. These novel compounds represent a new class of neutral dinuclear Zintl cluster coinage metal NHC compounds, which are obtained either by the stepwise reaction of a suspension of K12Ge17 with Si(TMS3Cl and the coinage metal carbene complexes NHCMCl (M = Cu, Ag, Au, or via a homogenous reaction using the preformed bis-silylated cluster K2[Ge9(Si(TMS32] and the corresponding NHCMCl (M = Cu, Ag, Au complex. The molecular structures of NHCDippCu{η3Ge9(Si(iPr33} (1 and (NHCDippCu2{η3-Ge9(Si(TMS32} (2 were determined by single crystal X-ray diffraction methods. In 2, the coordination of the [NHCDippCu]+ moieties to the cluster unit takes place via both open triangular faces of the [Ge9] entity. Furthermore, all compounds were characterized by means of NMR spectroscopy (1H, 13C, 29Si and ESI-MS.

  12. Analogs of solid nanoparticles as precursors of aromatic hydrocarbons

    Science.gov (United States)

    Gadallah, K. A. K.; Mutschke, H.; Jäger, C.

    2013-06-01

    Context. Aromatic =CH and C=C vibrational bands have been observed within shocked interstellar regions, indicating the presence of aromatic emission carriers such as PAHs, which may have been created from adjacent molecular cloud material by interaction with a shock front. Aims: We investigate the evolution of the aromatic =CH and C=C vibrational modes at 3.3 and 6.2 μm wavelength in heated HAC materials, PAHs and mixed PAHs and HACs, respectively, aiming at an explanation of the evolution of carbonaceous dust grains in the shocked regions. Methods: Materials used in these analogs (HAC and PAH materials) were prepared by the laser ablation and the laser pyrolysis methods, respectively. The transmission electron microscopy (TEM) in high-resolution mode was used as an analytical technique to characterize the aromatic layers in HACs. Spectroscopic analysis was prformed in the mid-IR range. Results: A remarkable destruction of aliphatic structures in HACs has been observed with the thermal processing, while aromatic structures become dominating by increasing the diameters of the graphene layers. The aromatic bands at 3.3 and 6.2 μm, observed in the laboratory spectra of PAHs and of the combination of the PAHs and HAC materials, are also clearly observed in the spectrum of the heated HACs. These bands agree with those of aromatic bands observed in astronomical observations. Conclusions: Aromatization of HACs could be a pre-stage in the decomposition process of hydrocarbons that form PAH-clusters in such hot interstellar medium.

  13. Aromatic chemical feedstocks from coal

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G

    1982-06-01

    Liquid byproducts of coal carbonization meet some 25% of the world demand for aromatic chemicals, currently at approx. 30 million t/a, in particular 15% of the demand for benzene and over 95% of the demand for condensed aromatics and heteroaromatics. Industrial processing of the aromatic byproducts of coal pressure gasification is carried out to only a minor extent. Other methods that may be employed in future to obtain carbochemical aromatic compounds are solvolysis and supercritical gas extraction, the catalytic liquid-phase hydrogenation and hydropyrolysis of coal, which also permit recovery of benzene and homologues, phenols, and condensed and partially hydrogenated aromatics, and the synthesis of aromatics using methanol as the key compound. As with the present means of obtaining aromatic chemicals from coal, the processes that may in the future be applied on an industrial scale to obtain pure aromatics will only be economically feasible if linked with the manufacture of other mass products and combined with the present production of carbochemical aromatics.

  14. Aromatic raw materials from coal

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G

    1982-06-01

    Liquid byproducts of coal carbonization meet some 25% of the world demand for aromatic chemicals, currently at approx. 30 million t/a, in particular 15% of the demand for benzene and over 95% of the demand for condensed aromatics and heteroaromatics. Industrial processing of the aromatic byproducts of coal pressure gasification is carried out to only a minor extent. Other methods that may be employed in future to obtain carbochemical aromatic compounds are solvolysis and supercritical gas extraction, the catalytic liquid-phase hydrogenation and hydropyrolysis of coal, which also permit recovery of benzene and homologues, phenols, and condensed and partially hydrogenated aromatics, and the synthesis of aromatics using methanol as the key compound. As with the present means of obtaining aromatic chemicals from coal, the processes that may in future be applied on an industrial scale to obtain pure aromatics will only be economically feasible if linked with the manufacture of other mass products and combined with the present production of carbochemical aromatics. (In German)

  15. AGRONOMIC OPTIMIZATION FOR PHYTOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS

    Science.gov (United States)

    Phytoremediation is a low-cost method of using plants to degrade, volatilize or sequester organic and metal pollutants that has been used in efforts to remediate sites contaminated with polycyclic aromatic hydrocarbon (PAH) refinery wastes. Non-native plant species aggressivel...

  16. Evolution of the Stellar Mass–Metallicity Relation. I. Galaxies in the z ∼ 0.4 Cluster Cl0024

    Science.gov (United States)

    Leethochawalit, Nicha; Kirby, Evan N.; Moran, Sean M.; Ellis, Richard S.; Treu, Tommaso

    2018-03-01

    We present the stellar mass–stellar metallicity relationship (MZR) in the galaxy cluster Cl0024+1654 at z ∼ 0.4 using full-spectrum stellar population synthesis modeling of individual quiescent galaxies. The lower limit of our stellar mass range is M * = 109.7 M ⊙, the lowest galaxy mass at which individual stellar metallicity has been measured beyond the local universe. We report a detection of an evolution of the stellar MZR with observed redshift at 0.037 ± 0.007 dex per Gyr, consistent with the predictions from hydrodynamical simulations. Additionally, we find that the evolution of the stellar MZR with observed redshift can be explained by an evolution of the stellar MZR with the formation time of galaxies, i.e., when the single stellar population (SSP)-equivalent ages of galaxies are taken into account. This behavior is consistent with stars forming out of gas that also has an MZR with a normalization that decreases with redshift. Lastly, we find that over the observed mass range, the MZR can be described by a linear function with a shallow slope ([{Fe}/{{H}}]\\propto (0.16+/- 0.03){log}{M}* ). The slope suggests that galaxy feedback, in terms of mass-loading factor, might be mass-independent over the observed mass and redshift range.

  17. From simple rings to one-dimensional channels with calix[8]arenes, water clusters, and alkali metal ions

    OpenAIRE

    Bergougnant, Rémi D.; Robin, Adeline Y.; Fromm, Katharina M.

    2007-01-01

    The macrocycle 4-tert-butylcalix[8]arene (L) was reacted with alkali metal carbonates (Li₂CO₃, Na₂CO₃, K₂CO₃, Rb₂CO₃, and Cs₂CO₃) at the interface of a biphasic THF/water system. Needle-like crystals with a general formula [Ax(4-tert-butylcalix[8]arene-xH)(THF)y(H₂O)z] (with A=Li, Na, K, Rb, Cs, x=1, 2, y=4, 5, 8, and z=6, 7) were thereby obtained. The solid state structures were investigated by X-ray diffraction of single crystals and by TGA measurements. They do not appear to be maintained ...

  18. Structure and bonding in clusters

    International Nuclear Information System (INIS)

    Kumar, V.

    1991-10-01

    We review here the recent progress made in the understanding of the electronic and atomic structure of small clusters of s-p bonded materials using the density functional molecular dynamics technique within the local density approximation. Starting with a brief description of the method, results are presented for alkali metal clusters, clusters of divalent metals such as Mg and Be which show a transition from van der Waals or weak chemical bonding to metallic behaviour as the cluster size grows and clusters of Al, Sn and Sb. In the case of semiconductors, we discuss results for Si, Ge and GaAs clusters. Clusters of other materials such as P, C, S, and Se are also briefly discussed. From these and other available results we suggest the possibility of unique structures for the magic clusters. (author). 69 refs, 7 figs, 1 tab

  19. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis.

    Science.gov (United States)

    Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana

    2015-06-01

    The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.

  20. A cluster of pediatric metallic mercury exposure cases treated with meso-2,3-dimercaptosuccinic acid (DMSA)

    Science.gov (United States)

    Forman, J; Moline, J; Cernichiari, E; Sayegh, S; Torres, J C; Landrigan, M M; Hudson, J; Adel, H N; Landrigan, P J

    2000-06-01

    Nine children and their mother were exposed to vapors of metallic mercury. The source of the exposure appears to have been a 6-oz vial of mercury taken from a neighbor's home. The neighbor reportedly operated a business preparing mercury-filled amulets for practitioners of the Afro-Caribbean religion Santeria. At diagnosis, urinary mercury levels in the children ranged from 61 to 1,213 microg/g creatinine, with a geometric mean of 214.3 microg/m creatinine. All of the children were asymptomatic. To prevent development of neurotoxicity, we treated the children with oral meso-2,3-dimercaptosuccinic acid (DMSA). During chelation, the geometric mean urine level rose initially by 268% to 573.2 microg mercury/g creatinine (p<0.0005). At the 6-week follow-up examination after treatment, the geometric mean urine mercury level had fallen to 102.1 microg/g creatinine, which was 17.8% of the geometric mean level observed during treatment (p<0.0005) and 47.6% of the original baseline level (p<0.001). Thus, oral chelation with DMSA produced a significant mercury diuresis in these children. We observed no adverse side effects of treatment. DMSA appears to be an effective and safe chelating agent for treatment of pediatric overexposure to metallic mercury.

  1. Activity relationships for aromatic crown ethers

    International Nuclear Information System (INIS)

    Wilson, Mark James

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities from molecular modelling and this rational has been applied to the study of proton ionisable and lariating crown ethers. The incorporation of crown ethers into polyamic acid and polyimide frameworks has also been investigated, where the resulting materials have been found to exhibit unusual cation binding and uptake properties. These results imply that the combination of the crown ethers' macrocycle and adjacent carboxylic acid residues, from the polyamic acids, are conducive to effective cationic binding. NMR measurements, in conjunction with molecular modelling, have been used to explore the geometry changes encountered as the crown ether goes from it's uncomplexed to its complexed state. The energy requirement for these geometry changes has subsequently been used to examine the cation selectivity of these materials. The electronic charge changes associated with the complexation have also been investigated and correlated with the theoretical results. (author)

  2. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    Science.gov (United States)

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  3. Van der Waals potentials between metal clusters and helium atoms obtained with density functional theory and linear response methods

    International Nuclear Information System (INIS)

    Liebrecht, M.

    2014-01-01

    The importance of van der Waals interactions in many diverse research fields such as, e. g., polymer science, nano--materials, structural biology, surface science and condensed matter physics created a high demand for efficient and accurate methods that can describe van der Waals interactions from first principles. These methods should be able to deal with large and complex systems to predict functions and properties of materials that are technologically and biologically relevant. Van der Waals interactions arise due to quantum mechanical correlation effects and finding appropriate models an numerical techniques to describe this type of interaction is still an ongoing challenge in electronic structure and condensed matter theory. This thesis introduces a new variational approach to obtain intermolecular interaction potentials between clusters and helium atoms by means of density functional theory and linear response methods. It scales almost linearly with the number of electrons and can therefore be applied to much larger systems than standard quantum chemistry techniques. The main focus of this work is the development of an ab-initio method to account for London dispersion forces, which are purely attractive and dominate the interaction of non--polar atoms and molecules at large distances. (author) [de

  4. Mo{sub 2}B{sub 4}O{sub 9} - connecting borate and metal-cluster chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Martin K.; Huppertz, Hubert [Institut fuer Allgemeine, Anorganische und Theoretische Chemie, Universitaet Innsbruck (Austria); Janka, Oliver; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Benndorf, Christopher [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institut fuer Mineralogie, Kristallographie und Materialwissenschaften, Universitaet Leipzig (Germany); Oliveira, Marcos de Jr. [Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos (Brazil); Eckert, Hellmut [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos (Brazil); Pielnhofer, Florian; Tragl, Amadeus-Samuel [Institut fuer Anorganische Chemie, Universitaet Regensburg (Germany); Weihrich, Richard [Institut fuer Materials Resource Management, Universitaet Augsburg (Germany); Joachim, Bastian [Institut fuer Mineralogie und Petrographie, Universitaet Innsbruck (Austria); Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2017-06-01

    We report on the first thoroughly characterized molybdenum borate, which was synthesized in a high-pressure/high-temperature experiment at 12.3 GPa/1300 C using a Walker-type multianvil apparatus. Mo{sub 2}B{sub 4}O{sub 9} incorporates tetrahedral molybdenum clusters into an anionic borate crystal structure - a structural motif that has never been observed before in the wide field of borate crystal chemistry. The six bonding molecular orbitals of the [Mo{sub 4}] tetrahedron are completely filled with 12 electrons, which are fully delocalized over the four molybdenum atoms. This finding is in agreement with the results of the magnetic measurements, which confirmed the diamagnetic character of Mo{sub 2}B{sub 4}O{sub 9}. The two four-coordinated boron sites can be differentiated in the {sup 11}B MAS-NMR spectrum because of the strongly different degrees of local distortions. Experimentally obtained IR and Raman bands were assigned to vibrational modes based on DFT calculations. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  6. Catalytic aromatization of methane.

    Science.gov (United States)

    Spivey, James J; Hutchings, Graham

    2014-02-07

    Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.

  7. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation

    KAUST Repository

    Minenkov, Yury

    2017-03-07

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (<2 kcal mol-1) for some reactions of Na, Mg, Ca, Sr, Ba and Pb, while for a few reactions of Ca and Ba deviations up to 40 kcal mol-1 have been obtained. Large errors are both due to artificial mixing of the core (sub-valence) orbitals of metals and the valence orbitals of oxygen and halogens in the molecular orbitals treated as core, and due to neglecting core-core and core-valence correlation effects. These large errors are reduced to a few kcal mol-1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol-1, indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.

  8. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    Science.gov (United States)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  9. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation.

    Science.gov (United States)

    Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A; Neese, Frank; Cavallo, Luigi

    2017-04-05

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (correlation effects. These large errors are reduced to a few kcal mol -1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol -1 , indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.

  10. Semiconductor color-center structure and excitation spectra: Equation-of-motion coupled-cluster description of vacancy and transition-metal defect photoluminescence

    Science.gov (United States)

    Lutz, Jesse J.; Duan, Xiaofeng F.; Burggraf, Larry W.

    2018-03-01

    Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered.

  11. Co2 and Co3 Mixed Cluster Secondary Building Unit Approach toward a Three-Dimensional Metal-Organic Framework with Permanent Porosity

    Directory of Open Access Journals (Sweden)

    Meng-Yao Chao

    2018-03-01

    Full Text Available Large and permanent porosity is the primary concern when designing metal-organic frameworks (MOFs for specific applications, such as catalysis and drug delivery. In this article, we report a MOF Co11(BTB6(NO34(DEF2(H2O14 (1, H3BTB = 1,3,5-tris(4-carboxyphenylbenzene; DEF = N,N-diethylformamide via a mixed cluster secondary building unit (SBU approach. MOF 1 is sustained by a rare combination of a linear trinuclear Co3 and two types of dinuclear Co2 SBUs in a 1:2:2 ratio. These SBUs are bridged by BTB ligands to yield a three-dimensional (3D non-interpenetrated MOF as a result of the less effective packing due to the geometrically contrasting SBUs. The guest-free framework of 1 has an estimated density of 0.469 g cm−3 and exhibits a potential solvent accessible void of 69.6% of the total cell volume. The activated sample of 1 exhibits an estimated Brunauer-Emmett-Teller (BET surface area of 155 m2 g−1 and is capable of CO2 uptake of 58.61 cm3 g−1 (2.63 mmol g−1, 11.6 wt % at standard temperature and pressure in a reversible manner at 195 K, showcasing its permanent porosity.

  12. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    OpenAIRE

    Jović, Branislav; Nikolić, Aleksandar; Petrović, Slobodan

    2012-01-01

    The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA) have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are...

  13. Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.

    Science.gov (United States)

    Hein, Samuel J; Lehnherr, Dan; Arslan, Hasan; J Uribe-Romo, Fernando; Dichtel, William R

    2017-11-21

    Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl

  14. Advances towards aromatic oligoamide foldamers

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Plesner, Malene; Dissing, Mette Marie

    2014-01-01

    We have efficiently synthesized 36 arylopeptoid dimers with ortho-, meta-, and para-substituted aromatic backbones and tert-butyl or phenyl side chains. The dimers were synthesized by using a "submonomer method" on solid phase, by applying a simplified common set of reaction conditions. X......-ray crystallographic analysis of two of these dimers disclosed that the tert-butyl side chain invokes a cis amide conformation with a comparatively more closely packed structure of the surrounding aromatic backbone while the phenyl side chain results in a trans amide conformation with a more open, extended structure...... of the surrounding aromatic backbone. Investigation of the X-ray structures of two arylopeptoid dimers disclosed that the tert-butyl side chain invokes a cis amide conformation with a closely packed structure of the surrounding aromatic backbone while the phenyl side chain results in a trans amide conformation...

  15. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  16. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Zhao, Changpo [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Luo, Yupeng [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Liu, Chunsheng, E-mail: liuchunshengidid@126.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Kyzas, George Z. [Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Luo, Yin [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhao, Dongye [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); An, Shuqing [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhu, Hailiang, E-mail: zhuhl@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD{sub Mn} in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community.

  17. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    International Nuclear Information System (INIS)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z.; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-01-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD Mn in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community

  18. Classification of Malaysia aromatic rice using multivariate statistical analysis

    International Nuclear Information System (INIS)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-01-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties

  19. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia); Omar, O. [Malaysian Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor (Malaysia)

    2015-05-15

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  20. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Science.gov (United States)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-05-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  1. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  2. Nitric Oxide Reduction by Carbon Monoxide over Supported Hexaruthenium Cluster Catalysts. 1. The Active Site Structure That Depends on Supporting Metal Oxide and Catalytic Reaction Conditions.

    Science.gov (United States)

    Minato, Taketoshi; Izumi, Yasuo; Aika, Ken-Ichi; Ishiguro, Atsushi; Nakajima, Takayuki; Wakatsuki, Yasuo

    2003-08-28

    Ruthenium site structures supported on metal oxide surfaces were designed by reacting organometallic Ru cluster [Ru6C(CO)16](2-) or [Ru6(CO)18](2-) with various metal oxides, TiO2, Al2O3, MgO, and SiO2. The surface Ru site structure, formed under various catalyst preparation and reaction conditions, was investigated by the Ru K-edge extended X-ray absorption fine structure (EXAFS). Samples of [Ru6C(CO)16](2-)/TiO2(anatase) and [Ru6C(CO)16](2-)/TiO2(rutile) were found to retain the original Ru6C framework when heated in the presence of NO (2.0 kPa) or NO (2.0 kPa) + CO (2.0 kPa) at 423 K, i.e., catalytic reaction conditions for NO decomposition. At 523 K, the Ru-Ru bonds of the Ru6C framework were cleaved by the attack of NO. In contrast, the Ru site became spontaneously dispersed over TiO2 (anatase). When being supported over TiO2 (mesoporous), MgO, or Al2O3, the Ru6C framework split into fragments in gaseous NO or NO + CO even at 423 K. The Ru6 framework of [Ru6(CO)18](2-) was found to break easily into smaller ensembles in the presence of NO and/or CO at 423 K on support. Taking into consideration the realistic environments in which these catalysts will be used, we also examined the effect of water and oxygen. When water was introduced to the sample [Ru6C(CO)16](2-)/TiO2(anatase) at 423 K, it did not have any effects on the stabilized Ru6C framework structure. In the presence of oxygen gas, however, the Ru hexanuclear structure decomposed into isolated Ru cations bound to surface oxygen atoms of TiO2 (anatase).

  3. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    Energy Technology Data Exchange (ETDEWEB)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B

  4. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  5. Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus

    NARCIS (Netherlands)

    Lange, de H.J.; Sperber, V.; Peeters, E.T.H.M.

    2006-01-01

    Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of

  6. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  7. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    International Nuclear Information System (INIS)

    Rajagopal, Appavu; Deepa, Mohan; Govindaraju, Munisamy

    2016-01-01

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”

  8. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Appavu; Deepa, Mohan [Molecular Biophysics Unit, Indian Institute of Sciences-Bangalore, Karnataka (India); Govindaraju, Munisamy [Bio-Spatial Technology Research Unit, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India)

    2016-02-26

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  9. Polarizability effect in metallic clusters

    Indian Academy of Sciences (India)

    significance of which has been emphasized by some authors [11,16-19]. The electrons are used as a ... The shell structures provide one to eliminate fragmentation contribution from the higher mass ... Accounting for theoretical studies [16–19] ...

  10. Supported quantum clusters of silver as enhanced catalysts for reduction

    Directory of Open Access Journals (Sweden)

    Leelavathi Annamalai

    2011-01-01

    Full Text Available Abstract Quantum clusters (QCs of silver such as Ag7(H2MSA7, Ag8(H2MSA8 (H2MSA, mercaptosuccinic acid were synthesized by the interfacial etching of Ag nanoparticle precursors and were loaded on metal oxide supports to prepare active catalysts. The supported clusters were characterized using high resolution transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and laser desorption ionization mass spectrometry. We used the conversion of nitro group to amino group as a model reaction to study the catalytic reduction activity of the QCs. Various aromatic nitro compounds, namely, 3-nitrophenol (3-np, 4-nitrophenol (4-np, 3-nitroaniline (3-na, and 4-nitroaniline (4-na were used as substrates. Products were confirmed using UV-visible spectroscopy and electrospray ionization mass spectrometry. The supported QCs remained active and were reused several times after separation. The rate constant suggested that the reaction followed pseudo-first-order kinetics. The turn-over frequency was 1.87 s-1 per cluster for the reduction of 4-np at 35°C. Among the substrates investigated, the kinetics followed the order, SiO2 > TiO2 > Fe2O3 > Al2O3.

  11. On the calculation of the energies of dissociation, cohesion, vacancy formation, electron attachment, and the ionization potential of small metallic clusters containing a monovacancy

    Science.gov (United States)

    Pogosov, V. V.; Reva, V. I.

    2017-09-01

    In terms of the model of stable jellium, self-consistent calculations of spatial distributions of electrons and potentials, as well as of energies of dissociation, cohesion, vacancy formation, electron attachment, and ionization potentials of solid clusters of Mg N , Li N (with N ≤ 254 ) and of clusters containing a vacancy ( N ≥ 12) have been performed. The contribution of a monovacancy to the energy of the cluster and size dependences of its characteristics and of asymptotics have been discussed. Calculations have been performed using a SKIT-3 cluster at Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine (Rpeak = 7.4 Tflops).

  12. Detection of chlorinated aromatic compounds

    Science.gov (United States)

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  13. Electroless metal plating of plastics

    Science.gov (United States)

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  14. Particle coagulation in molten metal based on three-dimensional analysis of cluster by x-ray micro-computer tomography (CT)

    International Nuclear Information System (INIS)

    Li, Tao; Shimasaki, Shin-ichi; Taniguchi, Shoji; Narita, Shunsuke; Uesugi, Kentaro

    2013-01-01

    Particle coagulation plays a key role in steel refining process to remove inclusions. Many research works focus on the behaviors of particle coagulation. To reveal its mechanism water model experiments have been performed by some researchers including the authors' group. In this paper, experiments of particle coagulation were carried out with molten Al including SiC particles in a mechanically agitated crucible with two baffles. Particle coagulation and formation of clusters were observed on the microscopy images of as-polished samples. Three-dimensional (3D) analysis of the clusters in solidified Al was implemented by X-ray micro CT available at SPring-8. The methods to distinguish clusters on two-dimensional (2D) cross-sectional images were discussed, which were established in the previous works by the present authors' group. The characteristics of the 3D SiC clusters and their 2D cross-sections were analyzed. The statistical ranges of the parameters for 2D clusters were used as criterions to distinguish the clusters on 2D microscopy images from the as-polished samples. The kinetics of SiC particle coagulation was studied by the measured cluster number density and size using our program to distinguish cluster in 2D cross-sectional images according to 3D information (DC-2D-3D). The calculated and experimental results of the SiC particle coagulation in molten Al agree well with each other. (author)

  15. Design and capabilities of an experimental setup based on magnetron sputtering for formation and deposition of size-selected metal clusters on ultra-clean surfaces

    DEFF Research Database (Denmark)

    Hartmann, Hannes; Popok, Vladimir; Barke, Ingo

    2012-01-01

    The design and performance of an experimental setup utilizing a magnetron sputtering source for production of beams of ionized size-selected clusters for deposition in ultra-high vacuum is described. For the case of copper cluster formation the influence of different source parameters is studied...

  16. Fused aromatic thienopyrazines: structure, properties and function

    KAUST Repository

    Mondal, Rajib; Ko, Sangwon; Bao, Zhenan

    2010-01-01

    Recent development of a fused aromatic thieno[3.4-b]pyrazine system and their application in optoelectronic devices are reviewed. Introduction of a fused aromatic unit followed by side chain engineering, dramatically enhanced the charge carrier

  17. Organic superalkalis with closed-shell structure and aromaticity

    Science.gov (United States)

    Srivastava, Ambrish Kumar

    2018-06-01

    Benzene (C6H6) and polycyclic hydrocarbons such as naphthalene (C10H8), anthracene (C14H10) and coronene (C24H12) are well known aromatic organic compounds. We study the substitution of Li replacing all H-atoms in these hydrocarbons using density functional method. The vertical ionisation energy of such lithiated species, i.e. C6Li6, C10Li8, C14Li10 and C24Li12 ranges 4.24-4.50 eV, which is lower than the ionisation energy (IE) of Li atom. Thus, these species may behave as superalkalis due to their lower IE than alkali metal. However, these lithiated species possess planar and closed-shell structure, unlike typical superalkalis. Furthermore, all Li-substituted species are aromatic although their degree of aromaticity is reduced as compared to corresponding hydrocarbon analogues. We have further explored the structure of C6Li6 as star-like, unlike its inorganic analogue B3N3Li6, which appears as fan-like structure. We have also demonstrated that the interaction of C6Li6 with a superhalogen (such as BF4) is similar to that of a typical superalkali (such as OLi3). This may further suggest that the proposed lithiated species may form a new class of closed-shell organic superalkalis with aromaticity.

  18. Palladium-catalysed electrophilic aromatic C-H fluorination

    Science.gov (United States)

    Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias

    2018-02-01

    Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.

  19. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  20. Converting lignin to aromatics: step by step

    NARCIS (Netherlands)

    Strassberger, Z.I.

    2014-01-01

    Lignin, the glue that holds trees together, is the most abundant natural resource of aromatics. In that respect, it is a far more advanced resource than crude oil. This is because lignin already contains the aromatic functional groups. Thus, catalytic conversion of lignin to high-value aromatics is

  1. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers

    Directory of Open Access Journals (Sweden)

    Saba Jasim Aljumaili

    2018-01-01

    Full Text Available Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak with 3 released varieties as a control using the 32 simple sequence repeat (SSR markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon’s information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (He of 0.60 and mean Nei’s gene diversity index of 0.36. The dendrogram based on UPGMA and Nei’s genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816 from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.

  2. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers.

    Science.gov (United States)

    Jasim Aljumaili, Saba; Rafii, M Y; Latif, M A; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index ( I ) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity ( H e ) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.

  3. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers

    Science.gov (United States)

    Jasim Aljumaili, Saba; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (He) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development. PMID:29736396

  4. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    Science.gov (United States)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cluster management.

    Science.gov (United States)

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  6. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation

    KAUST Repository

    Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A.; Neese, Frank; Cavallo, Luigi

    2017-01-01

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes

  7. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  8. Metalloid Aluminum Clusters with Fluorine

    Science.gov (United States)

    2016-12-01

    metal clusters containing Al4 units. The Al4 was evaluated when attached to an alkaline or transitional metals, namely Na, Li, Be, Cu and Zn. Mandado...i i i n r r r   and therefore the dimensionality goes as 3 3N . This changes the problem to a many one electron problem. Recall that

  9. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  10. Cluster Headache

    Science.gov (United States)

    ... a role. Unlike migraine and tension headache, cluster headache generally isn't associated with triggers, such as foods, hormonal changes or stress. Once a cluster period begins, however, drinking alcohol ...

  11. Cluster Headache

    OpenAIRE

    Pearce, Iris

    1985-01-01

    Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...

  12. Categorias Cluster

    OpenAIRE

    Queiroz, Dayane Andrade

    2015-01-01

    Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triang...

  13. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  14. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  15. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  16. Horticultural cluster

    OpenAIRE

    SHERSTIUK S.V.; POSYLAYEVA K.I.

    2013-01-01

    In the article there are the theoretical and methodological approaches to the nature and existence of the cluster. The cluster differences from other kinds of cooperative and integration associations. Was develop by scientific-practical recommendations for forming a competitive horticultur cluster.

  17. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Science.gov (United States)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, V.; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, A.; Hellén, H.; Laakso, L.; Hakola, H.

    2014-07-01

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol, which affect human health, crop production and regional climate. Measurements of aromatic hydrocarbons were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (> 10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anticyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for 1 year. Samples were collected twice a week for 2 h during daytime and 2 h during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median (mean) total aromatic hydrocarbon concentrations ranged between 0.01 (0.011) and 3.1 (3.2) ppb. Benzene levels did not exceed the local air quality standard limit, i.e. annual mean of 1.6 ppb. Toluene was the most abundant compound, with an annual median (mean) concentration of 0.63 (0.89) ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found, and no distinct seasonal patterns were

  18. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. II. A TEST ON THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY USING THE u-BAND COLORS: THE CASE OF M87 (NGC 4486)

    International Nuclear Information System (INIS)

    Yoon, Suk-Jin; Lee, Sang-Yoon; Kim, Hak-Sub; Cho, Jaeil; Chung, Chul; Sohn, Sangmo T.; Blakeslee, John P.

    2011-01-01

    The optical color distributions of globular clusters (GCs) in most large elliptical galaxies are bimodal. Based on the assumed linear relationship between GC colors and their metallicities, the bimodality has been taken as evidence of two GC subsystems with different metallicities in each galaxy and has led to a number of theories in the context of galaxy formation. More recent observations and modeling of GCs, however, suggests that the color-metallicity relations (CMRs) are inflected, and thus colors likely trace metallicities in a nonlinear manner. The nonlinearity could produce bimodal color distributions from a broad underlying metallicity spread, even if it is unimodal. Despite the far-reaching implications, whether CMRs are nonlinear and whether the nonlinearity indeed causes the color bimodality are still open questions. Given that the spectroscopic refinement of CMRs is still very challenging, we here propose a new photometric technique to probe the possible nonlinear nature of CMRs. In essence, a color distribution of GCs is a 'projected' distribution of their metallicities. Since the form of CMRs hinges on which color is used, the shape of color distributions varies depending significantly on the colors. Among other optical colors, the u-band related colors (e.g., u – g and u – z) are theoretically predicted to exhibit significantly less inflected CMRs than other preferred CMRs (e.g., for g – z). As a case study, we performed the Hubble Space Telescope (HST)/WFPC2 archival u-band photometry for the M87 (NGC 4486) GC system with confirmed color bimodality. We show that the u-band color distributions are significantly different from that of g – z and consistent with our model predictions. With more u-band measurements, this method will support or rule out the nonlinear CMR scenario for the origin of GC color bimodality with high confidence. The HST/WFC3 observations in F336W for nearby large elliptical galaxies are highly anticipated in this regard.

  19. The direct aromatization of methane

    Energy Technology Data Exchange (ETDEWEB)

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M. [Altamira Instruments, Pittsburgh, PA (United States)

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  20. Bicyclic Baird-type aromaticity

    Science.gov (United States)

    Cha, Won-Young; Kim, Taeyeon; Ghosh, Arindam; Zhang, Zhan; Ke, Xian-Sheng; Ali, Rashid; Lynch, Vincent M.; Jung, Jieun; Kim, Woojae; Lee, Sangsu; Fukuzumi, Shunichi; Park, Jung Su; Sessler, Jonathan L.; Chandrashekar, Tavarekere K.; Kim, Dongho

    2017-12-01

    Classic formulations of aromaticity have long been associated with topologically planar conjugated macrocyclic systems. The theoretical possibility of so-called bicycloaromaticity was noted early on. However, it has yet to be demonstrated by experiment in a simple synthetic organic molecule. Conjugated organic systems are attractive for studying the effect of structure on electronic features. This is because, in principle, they can be modified readily through dedicated synthesis. As such, they can provide useful frameworks for testing by experiment with fundamental insights provided by theory. Here we detail the synthesis and characterization of two purely organic non-planar dithienothiophene-bridged [34]octaphyrins that permit access to two different aromatic forms as a function of the oxidation state. In their neutral forms, these congeneric systems contain competing 26 and 34 π-electronic circuits. When subject to two-electron oxidation, electronically mixed [4n+1]/[4n+1] triplet biradical species in the ground state are obtained that display global aromaticity in accord with Baird's rule.

  1. An Investigation of Electronic Structure and Aromaticity in Medium-Sized Nanoclusters of Gold-Doped Germanium

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Li

    2012-01-01

    Full Text Available The electronic property and aromaticity of endohedrally doped and clusters are investigated using the density-functional theory (DFT within the hybrid B3LYP method. The calculated results reveal that the two clusters have high thermodynamic stability reflected by reaction energy. At the same time, it could be hoped that their high stability may arise from the closed-shell spherical aromaticity with eight -electrons satisfying the counting rule with . A popular nucleus-independent chemical shifts (NICSs calculation on basis of magnetic shieldings is also performed to confirm the aromaticity of the three-dimensional nanoclusters with largely negative NICS values. In addition, the electronic features and chemical bonding of the two clusters are analyzed with the help of the density of states (DOS and electron localization function (ELF, and the majority of Ge–Ge bonds on the cage show more covalent characters.

  2. Synthesis, structure characterization and biological studies on a new aromatic hydrazone, 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-2,2-dimethyl-1,3-dioxane-4,6-dione, and its transition metal complexes

    Science.gov (United States)

    Kumar, Shubha S.; Biju, S.; Sadasivan, V.

    2018-03-01

    A new aromatic hydrazone 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-2,2-dimethyl-1,3-dioxane-4,6-dione has been synthesized by Japp-Klingemann reaction from diazotized 4-aminoantipyrine and Meldrum's acid. A few 3d-metal ion complexes of this hydrazone were synthesized. The compound and its complexes were characterized by UV-Visible, 1H NMR, ESR, Mass spectral, molar conductance and magnetic susceptibility measurements. The compound was found to exist in hydrazone form in solid state and solution from SXRD and 1H NMR study. The influence of pH on the molecule was studied and found that it shows azo/enol-hydrazone tautomerism in solution. This molecule act as a univalent tridentate ligand and the complexes were assigned to have a 1:2 stoichiometry (M:L). The antioxidant properties of the compounds were explored by DPPH assay and found that the ligand possesses better free radical scavenging effect than the complexes. Antimicrobial activities of these compounds were investigated and were found to be active.

  3. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.

    Science.gov (United States)

    Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho

    2018-03-06

    Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To

  4. Noncomparative scaling of aromaticity through electron itinerancy

    International Nuclear Information System (INIS)

    Paul, Satadal; Goswami, Tamal; Misra, Anirban

    2015-01-01

    Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of π-electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of π-electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized π-electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry

  5. Cluster Matters

    DEFF Research Database (Denmark)

    Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha

    2018-01-01

    sell their products successfully in international markets, but there is also an increasingly large consumer base within India. Indeed, Indian industrial clusters have contributed to a substantial part of this growth process, and there are several hundred registered clusters within the country...... of this handbook, which focuses on the role of CSR in MSMEs. Hence we contribute to the literature on CSR in industrial clusters and specifically CSR in Indian industrial clusters by investigating the drivers of CSR in India’s industrial clusters....

  6. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M C

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  7. Interaction of intense laser fields with metal clusters. Energy absorpion by scattering processes; Wechselwirkung von intensiven Laserfeldern mit Metallclustern. Energieabsorption durch Streuprozesse

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, Joerg

    2010-02-23

    The present thesis aims at the theoretical description of laser-cluster interactions by means of semiclassical simulations, using small sodium clusters as model systems. In particular, the dynamics of ionization and electron emission is analyzed. To this end a model has been developed, which takes the density- and temperature dependence of electron-electron scattering cross sections within the nanoplasma into account. Furthermore the possibility of resonant excitation with few-cycle-pulses and control of the electron emission by means of the carrier-envelope-phase is investigated. (orig.)

  8. Metal-ligand interactions

    Science.gov (United States)

    Ervin, Kent M.

    Experimental studies of the interactions of small transition-metal cluster anions with carbonyl ligands are reviewed and compared with neutral and cationic clusters. Under thermal conditions, the reaction rates of transition-metal clusters with carbon monoxide are measured as a function of cluster size. Saturation limits for carbon monoxide addition can be related to the geometric structures of the clusters. Both energy-resolved threshold collision-induced dissociation experiments and time-resolved photodissociation experiments are used to measure metal-carbonyl binding energies. For platinum and palladium trimer anions, the carbonyl binding energies are assigned to different geometric binding sites. Platinum and palladium cluster anions catalyse the oxidation of carbon monoxide to carbon dioxide in a full catalytic cycle at thermal energies.

  9. Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes

    Science.gov (United States)

    Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng

    2016-06-01

    Combined Photoelectron Spectroscopy (PES) and theoretical calculations have found that anion boron clusters (Bn-) are planar and quasi-planar up to B25-. Recent works show that anion pure boron clusters continued to be planar at B27-,B30-,B35- and B36-. B35- and B36- provide the first experimental evidence for the viability of the two-dimensional (2D) boron sheets (Borophene). The 2D to three-dimensional (3D) transitions are shown to happen at B40-,B39- and B28-, which possess cage-like structures. These fullerene-like boron cage clusters are named as Borospherene. Recently, borophenes or similar structures are claimed to be synthesized by several groups. Following an electronic design principle, a series of transition-metal-doped boron clusters (M©Bn-, n=8-10) are found to possess the monocyclic wheel structures. Meanwhile, CoB12- and RhB12- are revealed to adopt half-sandwich-type structures with the quasi-planar B12 moiety similar to the B12- cluster. Very lately, we show that the CoB16- cluster possesses a highly symmetric Cobalt-centered drum-like structure, with a new record of coordination number at 16. Here we report the CoB18- cluster to possess a unique planar structure, in which the Co atom is doped into the network of a planar boron cluster. PES reveals that the CoB18- cluster is a highly stable electronic system with the first adiabatic detachment energy (ADE) at 4.0 eV. Global minimum searches along with high-level quantum calculations show the global minimum for CoB18- is perfectly planar and closed shell (1A1) with C2v symmetry. The Co atom is bonded with 7 boron atoms in the closest coordination shell and the other 11 boron atoms in the outer coordination shell. The calculated vertical detachment energy (VDE) values match quite well with our experimental results. Chemical bonding analysis by the Adaptive Natural Density Partitioning (AdNDP) method shows the CoB18- cluster is π-aromatic with four 4-centered-2-electron (4c-2e) π bonds and one 19

  10. Anomalous properties of technetium clusters

    International Nuclear Information System (INIS)

    Kryuchkov, S.V.

    1985-01-01

    On the basis of critical evaluation of literature data in the field of chemistry of technetium cluster compounds with ligands of a weak field a conclusion is made on specific, ''anomalous'' properties of technetium cluster complexes which consist in an increased ability of the given element to the formation of a series of binuclear and multinuclear clusters, similar in composition and structure and easily transforming in each other. The majority of technetium clusters unlike similar compounds of other elements are paramagnetic with one unpaired electron on ''metallic'' MO of loosening type. All theoretical conceptions known today on the electronic structure of technetium clusters are considered. It is pointed out, that the best results in the explanation of ''anomalous'' properties of technetium clusters can be obtained in the framework of nonempirical methods of self-consistent field taking into account configuration interactions. It is also shown, that certain properties of technetium clusters can be explained on the basis of qualitative model of Coulomb repulsion of metal atoms in clusters. The conclusion is made, that technetium position in the Periodic table, as well as recently detected technetium property to the decrease of effective charge on its atoms during M-M bond formation promote a high ability of the element to cluster formation both with weak field ligands and with strong field one

  11. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jović Branislav

    2012-01-01

    Full Text Available The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are in good agreement with conclusions of other spectroscopic and thermodynamic analysis.

  12. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, l