WorldWideScience

Sample records for aromatic l-amino acid

  1. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    Science.gov (United States)

    ... features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010 Jul 6;75(1):64-71. doi: ... WNL.0b013e3181e620ae. Epub 2010 May 26. Erratum in: Neurology. 2010 Aug 10;75(6):576. Dosage error ...

  2. Aromatic L-Amino acid decarboxylase deficiency: A new case from Turkey with a novel mutation

    Directory of Open Access Journals (Sweden)

    Kivilcim Gucuyener

    2014-01-01

    Full Text Available Aromatic L-amino acid decarboxylase (AADC, a vitamin B6-requiring enzyme that converts L-dopa to dopamine and 5-hydroxytryptophan to serotonin. Deficiency of this enzyme results in developmental delay, muscular hypotonia, dystonia, involuntary movements, autonomic dysfunction, and oculogyric crises. We now report a 2-year-old Turkish boy with AADC deficiency confirmed by greatly reduced AADC activity in the plasma and by genetic studies. Mutation analysis revealed a homozygous mutation c.208C > T (p. His70Tyr in exon 3 of the AADC gene which has not been described to date.

  3. Production of dopamine by aromatic L-amino acid decarboxylase cells after spinal cord injury

    DEFF Research Database (Denmark)

    Ren, Liqun; Wienecke, Jacob; Hultborn, Hans;

    2016-01-01

    Aromatic L-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin from 5-hydroxytryptophan after spinal cord injury (SCI...... inhibitor (pargyline) co-application, systemic administration of L-dopa resulted in ~ 94% of AADC cells to become DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail....... These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace-amines, and likely contributes to the development of hyperexcitability. These results...

  4. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    Science.gov (United States)

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling. PMID:25956449

  5. A systematic review on aromatic L-amino acid decarboxylase (5-hydroxytryptophan decarboxylase)

    International Nuclear Information System (INIS)

    Aromatic L-amino acid decarboxylase (AADC, EC. 4.1.1.28) with L-5-hydroxytryptophan as a substrate (also called L-5-hydroxytryptophan decarboxylase, 5-HTPDC) decarboxylates L-5-hydroxytryptophan to serotonin (5-HT), an important neurotransmitter that involved in the regulation of neuronal functions, behaviour and emotion of higher animals. As it is an important enzyme, many researchers are now working on its physiological functions and properties and also on its isolation, purification and characterization from mammalian tissues. But up to now no systematic review studies have been done on this enzyme. We made systematic studies on this enzyme in tissues and brains of rats, and human subjects. We also developed highly sensitive assay methods of the enzyme. This new method led us to discover the enzyme in the sera of various animals. We examined the developmental changes of 5-HTPDC in the sera of animals. We discovered an endogenous inhibitor of the enzyme in the monkey blood. The purification of the enzyme were performed by us and other researches from the sera, brains, adrenals, liver and kidneys of mammals. These and other results of up to date research papers on 5-HTPDC have been reviewed in this paper. (author). 71 refs, 10 figs, 14 tabs

  6. Spinal cord hemisection facilitates aromatic L-amino acid decarboxylase cells to produce serotonin in the subchronic but not the chronic phase

    DEFF Research Database (Denmark)

    Azam, Bushra; Wienecke, Jacob; Jensen, Dennis Bo;

    2015-01-01

    Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC) cells to produce...

  7. Current concepts on the physiology and genetics of neurotransmitters-mediating enzyme-aromatic L-amino acid decarboxylase

    International Nuclear Information System (INIS)

    Two most important neurotransmitters, dopamine and serotonin are mediated by the enzyme aromatic L-amino acid decarboxylase (AADC). Because of their importance in the regulation of neuronal functions, behaviour and emotion of higher animals, many researchers are working on this enzyme to elucidate its physiological properties, structure and genetic aspects. We have discovered this enzyme in the mammalian blood, we established sensitive assay methods for the assay of the activities of this enzyme. We have made systematic studies on this enzyme in the tissues and brains of rats, and human subjects. We have found an endogenous inhibitor of this enzyme in the monkey's blood. The amino acid sequences of human AADC has been compared to rat or bovine. A full-length cDNA clone encoding human AADC has been isolated. Very recently the structure of human AADC gene including 5'-flaking region has been characterized and the transcriptional starting point has been determined. The human AADC gene assigned to chromosome 7. Up-to-date research data have shown that AADC is encoded by a single gene. Recently two patients with AADC deficiency were reported. This paper describes the systematic up-to-date review studies on AADC. (author). 62 refs, 5 figs, 8 tabs

  8. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    OpenAIRE

    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha

    2011-01-01

    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  9. Effect of Lathyrus sativus and vitamin C on the status of aromatic L-amino acid decarboxylase and dipeptidyl-aminopeptidase-IV in the central and peripheral tissues and serum of guinea pigs

    International Nuclear Information System (INIS)

    Studies on the effect of Lathyrus Sativus seeds (LLS) on aromatic L-amino acid decarboxylase (AADC) and on dipeptidyl-aminopeptidase-IV (DAP-IV) were carried out in the central and peripheral tissues and serum of LSS-treated and LSS plus vitamin C-treated guinea pigs. The feeding of LSS for 35 days decreased the AADC activity significantly in the brain and peripheral tissues, but the activity was recovered to normal level in the most tissues when vitamin C was added with the LSS. DAP-IV activity decreased in the peripheral tissues when treated with LSS, but the vitamin C administration with LSS did not recover the enzyme activity. The DAP-IV activity did not decrease significantly in any of the brain tissues of the LSS-treated group. (author). 18 refs, 2 tabs

  10. Positron emission tomographic studies on aromatic L-amino acid decarboxylase activity in vivo for L-dopa and 5-hydroxy-L-tryptophan in the monkey brain

    International Nuclear Information System (INIS)

    The regional brain kinetics following 5-hydroxy-L-(β-11 C)tryptophan and L-(β-11 C)DOPA intravenous injection was measured in twelve Rhesus monkeys using positron emission tomography (PET). The radiolabelled compounds were also injected together with various doses of unlabelled 5-hydroxy-L-tryptophan or L-DOPA. The radioactivity accumulated in the striatal region and the rate of increased utilization with time was calculated using a graphical method with back of the brain as a reference region. The rate constants for decarboxylation were 0.0070 ± 0.0007 (S. D) and 0.0121 ± 0.0010 min-1 for 5-hydroxy-L-(β-11 C)tryptophan and L-(β-11 C)DOPA, respectively. After concomitant injection with unlabelled 5-hydroxy-L-tryptophan, the rate constant of 5-hydroxy-L-(β-11 C)tryptophan decreased dose-dependently and a 50 percent reduction was seen with a dose of about 4 mg/kg of unlabelled compound. A decreased utilization rate of L-(β-11 C)DOPA was seen only after simultaneous injection of 30 mg/kg of either L-DOPA or 5-hydroxy-L-tryptophan. This capacity limitation was most likely interpreted as different affinity of the striatal aromatic amino acid decarboxylase for L-DOPA and 5-hydroxy-L-tryptophan, respectively

  11. Free D- and L-amino acids in ventricular cerebrospinal fluid from Alzheimer and normal subjects.

    Science.gov (United States)

    Fisher, G; Lorenzo, N; Abe, H; Fujita, E; Frey, W H; Emory, C; Di Fiore, M M; D' Aniello, A

    1998-01-01

    Free D-Ser, D-Asp and total D-amino acids were significantly higher (p < 0.05) in Alzheimer (AD) ventricular CSF than in normal CSF. There was no significant difference in the total L-amino acids between AD and normal CSF, but L-Gln and L-His were significantly higher (p < 0.05) in AD-CSF. The higher concentrations of these D- and L-amino acids in AD ventricular CSF could reflect the degenerative process that occurs in Alzheimer's brain since ventricular CSF is the repository of amino acids from the brain. PMID:9871505

  12. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    Science.gov (United States)

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p < 0.003). Expression of each enzyme in the striatum was observed for up to 5 months after injection. These data indicate that the delivery of three catecholaminergic synthetic enzymes by a single lentiviral vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients. PMID:12451130

  13. Heterodimeric l-amino acid oxidase enzymes from Egyptian Cerastes cerastes venom: Purification, biochemical characterization and partial amino acid sequencing

    Directory of Open Access Journals (Sweden)

    A.E. El Hakim

    2015-12-01

    Full Text Available Two l-amino acid oxidase enzyme isoforms, Cc-LAAOI and Cc-LAAOII were purified to apparent homogeneity from Cerastes cerastes venom in a sequential two-step chromatographic protocol including; gel filtration and anion exchange chromatography. The native molecular weights of the isoforms were 115 kDa as determined by gel filtration on calibrated Sephacryl S-200 column, while the monomeric molecular weights of the enzymes were, 60, 56 kDa and 60, 53 kDa for LAAOI and LAAOII, respectively. The tryptic peptides of the two isoforms share high sequence homology with other snake venom l-amino acid oxidases. The optimal pH and temperature values of Cc-LAAOI and Cc-LAAOII were 7.8, 50 °C and 7, 60 °C, respectively. The two isoenzymes were thermally stable up to 70 °C. The Km and Vmax values were 0.67 mM, 0.135 μmol/min for LAAOI and 0.82 mM, 0.087 μmol/min for LAAOII. Both isoenzymes displayed high catalytic preference to long-chain, hydrophobic and aromatic amino acids. The Mn2+ ion markedly increased the LAAO activity for both purified isoforms, while Na+, K+, Ca2+, Mg2+ and Ba2+ ions showed a non-significant increase in the enzymatic activity of both isoforms. Furthermore, Zn2+, Ni2+, Co2+, Cu2+ and AL3+ ions markedly inhibited the LAAOI and LAAOII activities. l-Cysteine and reduced glutathione completely inhibited the LAAO activity of both isoenzymes, whereas, β-mercaptoethanol, O-phenanthroline and PMSF completely inhibited the enzymatic activity of LAAOII. Furthermore, iodoacitic acid inhibited the enzymatic activity of LAAOII by 46% and had no effect on the LAAOI activity.

  14. Polarographic study of mixed-ligand complexes of cadmium(II) with L-amino acid and vitamin B5

    International Nuclear Information System (INIS)

    A survey of literature shows that ternary complexes of CdII with L-amino acids and vitamin B5 have not been studied so far. The present communication reports the formation of mixed-ligand complexes of CdII with L-amino acids as primary ligands and vitamin B5 as secondary ligand, studied by polarographic technique. (author)

  15. Computational structural analysis of an anti-l-amino acid antibody and inversion of its stereoselectivity

    OpenAIRE

    Ranieri, Daniel I.; Hofstetter, Heike; Hofstetter, Oliver

    2009-01-01

    The binding site of a monoclonal anti-l-amino acid antibody was modeled using the program SWISS-MODEL. Docking experiments with the enantiomers of phenylalanine revealed that the antibody interacts with l-phenylalanine via hydrogen bonds and hydrophobic contacts, whereas the d-enantiomer is rejected due to steric hindrance. Comparison of the sequences of this antibody and an anti-d-amino acid antibody indicates that both immunoglobulins derived from the same germline progenitor. Substitution ...

  16. Synthesis of optically active dodecaborate-containing L-amino acids for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, Shintaro [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan); Hattori, Yoshihide, E-mail: y0shi_hattori@riast.osakafu-u.ac.jp [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan); Uehara, Kouki; Asano, Tomoyuki [Stella Pharma Corporation, ORIX Kouraibashi Bldg. 5F 3-2-7 Kouraibashi, Chuo-ku, Osaka (Japan); Tanimori, Shinji; Kirihata, Mitsunori [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan)

    2011-12-15

    A convenient and simple synthetic method of dodecaboratethio-L-amino acid, a new class of tumor-seeking boron carrier for BNCT, was accomplished from S-cyanoethylthioundecahydro-closo-dodecaborate (S-cyanoethyl-{sup 10}BSH, [{sup 10}B{sub 12}H{sub 11}]{sup 2-}SCH{sub 2}CH{sub 2}CN) and bromo-L-{alpha}-amino acids by nearly one step S-alkylation. An improved synthesis of S-cyanoethyl-{sup 10}BSH, a key starting compound for S-alkylation, was also performed by Michael addition of {sup 10}BSH with acryronitrile in high yield. Four kinds of new dodecaboratethio-L-amino acids were obtained in optically pure form without the need for any optical resolution.

  17. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F. [Federal Univ. of Parana, Curitiba (Brazil)

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  18. Structure-activity relationship studies of new rifamycins containing l-amino acid esters as inhibitors of bacterial RNA polymerases.

    Science.gov (United States)

    Czerwonka, Dominika; Domagalska, Joanna; Pyta, Krystian; Kubicka, Marcelina M; Pecyna, Paulina; Gajecka, Marzena; Przybylski, Piotr

    2016-06-30

    New rifamycins (1-12) combined with different l-amino acids, containing methyl, ethyl, tert-butyl and benzyl groups at the ester part, via amine linkage, were synthesized and their structures in solution were determined by spectroscopic FT-IR and 1D and 2D NMR methods as well as visualized by DFT calculations. Two types of rifamycin structures were detected in solution: a zwitterionic one with the transferred proton from O(8)H phenol to secondary N(38) atom and a pseudocyclic structure stabilized via formation of intramolecular H-bond within the protonated basic C(3)-substituent. The presence of these rifamycins' structures influenced physico-chemical (logP, solubility) parameters and antibacterial properties. The bulkiness at the ester substituent of new rifamycins containing aromatic l-amino acids was found to be an important factor, besides the solubility, to achieve relatively high antibacterial activity against reference S. epidermidis and reference S. aureus and MRSA strains (MICs 0.016-0.063 μg/mL), comparable to that of rifampicin. SAR for the novel derivatives was discussed in view of the calculated structures of rifamycin-RNAP complexes. PMID:27061985

  19. Snake venom L-amino acid oxidases: an overview on their antitumor effects

    OpenAIRE

    Costa, Tássia R.; Burin, Sandra M; Menaldo, Danilo L; Castro, Fabíola A; Sampaio, Suely V

    2014-01-01

    The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in ...

  20. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors.

    Directory of Open Access Journals (Sweden)

    Shreoshi Pal Choudhuri

    Full Text Available Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5' ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5' monophosphate (IMP. The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex.

  1. Metabotropic glutamate receptors are involved in the detection of IMP and L-amino acids by mouse taste sensory cells.

    Science.gov (United States)

    Pal Choudhuri, S; Delay, R J; Delay, E R

    2016-03-01

    G-protein-coupled receptors are thought to be involved in the detection of umami and L-amino acid taste. These include the heterodimer taste receptor type 1 member 1 (T1r1)+taste receptor type 1 member 3 (T1r3), taste and brain variants of mGluR4 and mGluR1, and calcium sensors. While several studies suggest T1r1+T1r3 is a broadly tuned lLamino acid receptor, little is known about the function of metabotropic glutamate receptors (mGluRs) in L-amino acid taste transduction. Calcium imaging of isolated taste sensory cells (TSCs) of T1r3-GFP and T1r3 knock-out (T1r3 KO) mice was performed using the ratiometric dye Fura 2 AM to investigate the role of different mGluRs in detecting various L-amino acids and inosine 5' monophosphate (IMP). Using agonists selective for various mGluRs such as (RS)-3,5-dihydroxyphenylglycine (DHPG) (an mGluR1 agonist) and L-(+)-2-amino-4-phosphonobutyric acid (l-AP4) (an mGluR4 agonist), we evaluated TSCs to determine if they might respond to these agonists, IMP, and three L-amino acids (monopotassium L-glutamate, L-serine and L-arginine). Additionally, we used selective antagonists against different mGluRs such as (RS)-L-aminoindan-1,5-dicarboxylic acid (AIDA) (an mGluR1 antagonist), and (RS)-α-methylserine-O-phosphate (MSOP) (an mGluR4 antagonist) to determine if they can block responses elicited by these L-amino acids and IMP. We found that L-amino acid- and IMP-responsive cells also responded to each agonist. Antagonists for mGluR4 and mGluR1 significantly blocked the responses elicited by IMP and each of the L-amino acids. Collectively, these data provide evidence for the involvement of taste and brain variants of mGluR1 and mGluR4 in L-amino acid and IMP taste responses in mice, and support the concept that multiple receptors contribute to IMP and L-amino acid taste. PMID:26701297

  2. Helicobacter pylori cagL amino acid polymorphisms and its association with gastroduodenal diseases.

    Science.gov (United States)

    Shukla, Sanket Kumar; Prasad, Kashi Nath; Tripathi, Aparna; Jaiswal, Virendra; Khatoon, Jahanarah; Ghsohal, Uday Chand; Krishnani, Narendra; Husain, Nuzhat

    2013-07-01

    CagL is a pilus protein of Helicobacter pylori that interacts with host cellular α5β1 integrins through its arginine-glycine-aspartate (RGD) motif, guiding proper positioning of the T4SS and translocation of CagA. Deletion or sequence variations of cagL significantly diminished the ability of H. pylori to induce secretion of IL-8 by the host cell. Therefore, this study was undertaken to investigate the association of cagL and its amino acid sequence polymorphisms with gastric cancer (GC), peptic ulcer disease (PUD), and non-ulcer dyspepsia (NUD) as there are no such studies from India. In total, 200 adult patients (NUD 120, PUD 30, GC 50) who underwent an upper gastrointestinal endoscopy were enrolled. H. pylori infection was diagnosed by rapid urease test, culture, histopathology, and PCR. The collected isolates were screened for cagL genotype by PCR and assessed for amino acid sequence polymorphisms using sequence translation. The prevalence of H. pylori infection in study population was 52.5%. Most of the isolates were cagL genopositive (86.6%), and all had RGD motif in their amino acid sequences. D58 and K59 polymorphisms in cagL-genopositive strains were significantly higher in GC patients (P < 0.05). Combined D58K59 polymorphism was associated with higher risk of GC (3.8-fold) when compared to NUD. In conclusion, H. pylori cagL amino acid polymorphisms such as D58K59 are correlated with a higher risk of GC in the Indian population. Further studies are required to know the exact role of particular cagL amino acid polymorphisms in the pathogenicity of H. pylori infection. PMID:22941498

  3. Aldolase as a Chirality Intersection of L-Amino Acids and D-Sugars

    Science.gov (United States)

    Munegumi, Toratane

    2015-06-01

    Aldolase plays an important role in glycolysis and gluconeogenesis to produce D-fructose-1,6-bisphosphate (D-FBP) from dihydroxyacetone phosphate (DHP) and D-glyceraldehyde-3-phosphate (D-GAP). This reaction is stereoselective and retains the D-GAP 2R configuration and yields D-FBP (with the configuration: 3S, 4S, 5R). The 3- and 4-position carbons are the newly formed chiral carbons because the 5-position carbon of D-FBP comes from the 2-position of D-GAP. Although four diastereomeric products, ( 3S, 4R, 5R), ( 3R, 4R, 5R), ( 3R, 4S, 5R), ( 3S, 4S, 5R), are expected in the nonenzymatic reaction, only the ( 3S, 4S, 5R) diastereomer (D-FBP) is obtained. Therefore, the chirality in the 3- and 4-positions is induced by the chirality of the enzyme composed of L-amino acid residues. D-Glucose-6-phosphate (D-G6P), which is generated from D-FBP in the gluconeogenesis pathway, produces D-ribose-5-phosphate (D-R5P) in the pentose phosphate pathway. D-R5P is converted to PRPP (5-phosphoribosyl-α-pyrophosphate), which is used for the de novo synthesis of nucleotides. Ribonucleic acid (RNA) uses the nucleotides as building blocks. The configurations of the 4R-carbon and of the 3S-carbon are retained. The stereochemical structure of RNA is based on 3S as well as 4R (D). The consideration above suggests that aldolase is a key enzyme that determines the 3S configuration in D-R5P. It is thus a chirality intersection between amino acids and sugars, because the sugar chirality is determined by the chiral environment of an L-amino acid protein, aldolase, to produce D-FBP.

  4. Heterodimeric l-amino acid oxidase enzymes from Egyptian Cerastes cerastes venom: Purification, biochemical characterization and partial amino acid sequencing

    OpenAIRE

    A.E. El Hakim; W.H. Salama; M.B. Hamed; Ali, A. A.; N.M. Ibrahim

    2015-01-01

    Two l-amino acid oxidase enzyme isoforms, Cc-LAAOI and Cc-LAAOII were purified to apparent homogeneity from Cerastes cerastes venom in a sequential two-step chromatographic protocol including; gel filtration and anion exchange chromatography. The native molecular weights of the isoforms were 115 kDa as determined by gel filtration on calibrated Sephacryl S-200 column, while the monomeric molecular weights of the enzymes were, 60, 56 kDa and 60, 53 kDa for LAAOI and LAAOII, respectively. The t...

  5. /sup 13/N-labeled L-amino acids for in vivo assessment of local myocardial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, F.J.; Barrio, J.R.; Henze, E.; Schelbert, H.R.; MacDonald, N.S.; Phelps, M.E.; Kuhl, D.E.

    1981-06-01

    The hot cell synthesis of sterile, pyrogen-free /sup 13/N-labeled L-amino acids was accomplished by employing the appropriate immobilized enzymes on a CNBr-activated Sepharose support and using remote, semiautomated systems. The syntheses were completed 6-12 min after cyclotron production of (/sup 13/N)ammonia. Myocardial time-activity curves after intracoronary injection of /sup 13/N-labeled L-amino acids in dogs were triexponential in both normal and ischemic myocardium. Higher retention of /sup 13/N activity was observed in ischemic segments. Positron computed tomography imaging also showed increased uptake of /sup 13/N-labeled L-glutamate and L-alanine in ischemic segments compared with normal myocardium when blood flow corrections were made. Myocardial transaminases are primarily responsible for the observed retention fractions. It suggests the participation of the carbon skeletons of these amino acids in the Krebs cycle.

  6. Synthesis and myocardial kinetics of N-13 and C-11 labeled branched-chain L-amino acids

    International Nuclear Information System (INIS)

    Glutamate dehydrogenase (GDH), immobilized on CNBr-activated Sepharose supports, was used with N-13 ammonia to aminate α-ketoisocaproic acid (KIC), and α-ketoisovaleric acid (KIV) to produce N-13-labeled branched-chain L-amino acids with radiochemical yields ranging from 29% to 35%. From kinetic and practical cosiderations, pH 7.5 to 8.0 was established to be optimal for the synthesis of N-13-labeled branched-chain-L-amino acids. Myocardial time-activity curves in dogs at control, during low-flow ischemia, reperfusion, and after transaminase inhibition following intracoronary bolus injection of the N-13 labeled amino acids were biexponential. Higher retention of N-13 activity was observed in ischemic segments both during low-flow ischemia (29.2%) and reperfusion (23.2%) when compared with controls (20.0%), (n-4). On the other hand, transaminase inhibition decreased residue fractions from 21.0% at control to 13.9% (n=4). The residual activity with L-[1-11C]leucine allows for the calculation of protein synthesis rates

  7. Structural and enzymatic characterization of BacD, an l-amino acid dipeptide ligase from Bacillus subtilis

    OpenAIRE

    Shomura, Yasuhito; Hinokuchi, Emi; Ikeda, Hajime; Senoo, Akihiro; Takahashi, Yuichi; Saito, Jun-ichi; Komori, Hirofumi; Shibata,Naoki; Yonetani, Yoshiyuki; Higuchi, Yoshiki

    2012-01-01

    BacD is an ATP-dependent dipeptide ligase responsible for the biosynthesis of l-alanyl-l-anticapsin, a precursor of an antibiotic produced by Bacillus spp. In contrast to the well-studied and phylogenetically related d-alanine: d-alanine ligase (Ddl), BacD synthesizes dipeptides using l-amino acids as substrates and has a low substrate specificity in vitro. The enzyme is of great interest because of its potential application in industrial protein engineering for the environmentally friendly b...

  8. Mutational and crystallographic analysis of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813: Interconversion between oxidase and monooxygenase activities

    Directory of Open Access Journals (Sweden)

    Daisuke Matsui

    2014-01-01

    Full Text Available In this study, it was shown for the first time that l-amino acid oxidase of Pseudomonas sp. AIU813, renamed as l-amino acid oxidase/monooxygenase (l-AAO/MOG, exhibits l-lysine 2-monooxygenase as well as oxidase activity. l-Lysine oxidase activity of l-AAO/MOG was increased in a p-chloromercuribenzoate (p-CMB concentration-dependent manner to a final level that was five fold higher than that of the non-treated enzyme. In order to explain the effects of modification by the sulfhydryl reagent, saturation mutagenesis studies were carried out on five cysteine residues, and we succeeded in identifying l-AAO/MOG C254I mutant enzyme, which showed five-times higher specific activity of oxidase activity than that of wild type. The monooxygenase activity shown by the C254I variant was decreased significantly. Moreover, we also determined a high-resolution three-dimensional structure of l-AAO/MOG to provide a structural basis for its biochemical characteristics. The key residue for the activity conversion of l-AAO/MOG, Cys-254, is located near the aromatic cage (Trp-418, Phe-473, and Trp-516. Although the location of Cys-254 indicates that it is not directly involved in the substrate binding, the chemical modification by p-CMB or C254I mutation would have a significant impact on the substrate binding via the side chain of Trp-516. It is suggested that a slight difference of the binding position of a substrate can dictate the activity of this type of enzyme as oxidase or monooxygenase.

  9. Stability of antibiotics and amino acids in two synthetic L-amino acid solutions commonly used for total parenteral nutrition in children

    DEFF Research Database (Denmark)

    Colding, H; Andersen, G E

    1978-01-01

    The stability and interaction at 29 degrees C of ampicillin, carbenicillin, gentamicin, and polymyxin B were examined in a common electrolyte solution, invertose darrow, and in two synthetic l-amino acid solutions, one commercial (vamin with fructose; Vitrum) and the other a neonatal preparation...

  10. p38 MAPK is involved in human neutrophil chemotaxis induced by L-amino acid oxidase from Calloselasma rhodosthoma.

    Science.gov (United States)

    Pontes, Adriana S; Setúbal, Sulamita da S; Nery, Neriane Monteiro; da Silva, Francisquinha Souza; da Silva, Silvana D; Fernandes, Carla F C; Stábeli, Rodrigo G; Soares, Andreimar M; Zuliani, Juliana P

    2016-09-01

    The action of LAAO, an L-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, on isolated human neutrophil function was investigated. Cr-LAAO showed no toxicity on neutrophils. Cr-LAAO in its native form induced the neutrophil chemotaxis, suggesting that its primary structure is essential for stimulation the cell. p38 MAPK and PI3K have a role as signaling pathways of CR-LAAO induced chemotaxis. This toxin also induced the production of hydrogen peroxide and stimulated phagocytosis in neutrophils. Furthermore, Cr-LAAO was able to stimulate neutrophils to release IL-6, IL-8, MPO, LTB4 and PGE2. Together, the data showed that the Cr-LAAO triggers relevant proinflammatory events. PMID:27242041

  11. Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingbing [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); College of Food Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018 (China); Mu, Xiaoyu [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-01

    Highlights: • Novel amino acid ionic liquids with pyridinium as cations and L-lysine as anion were synthesized. • These synthesized AAILs have been explored as the ligands coordinated with Zn(II) in CLE-CE system. • The developed CLE-CE method could be used for the enantioseparation of Dns-D, L-amino acids. • The kinetic contents of L-amino acid oxidase were investigated with the proposed CLE-CE system. - Abstract: New kinds of amino acid ionic liquids (AAILs) with pyridinium as cations and L-lysine (L-Lys) as anion have been developed as the available chiral ligands coordinated with Zn(II) in chiral ligand-exchange capillary electrophoresis (CLE-CE). Four kinds of AAILs, including [1-ethylpyridinium][L-lysine], 1-butylpyridinium][L-lysine], [1-hexylpyridinium][L-lysine] and 1-[octylpyridinium][L-lysine], were successfully synthesized and characterized by nuclear magnetic resonance and mass spectrometry. Compared with other AAILs, the best chiral separation of Dns-D, L-amino acids could be achieved when [1-ethylpyridinium][L-lysine] was chosen as the chiral ligand. It has been found that after investigating the influence of key factors on the separation efficiency, such as pH of buffer solution, the ratio of Zn(II) to ligand and complex concentration, eight pairs of Dns-D, L-AAs enantiomers could be baseline separated and three pairs were partly separated under the optimum conditions. The proposed CLE-CE method also exhibited favorable quantitative analysis property of Dns-D, L-Met with good linearity (r{sup 2} = 0.998) and favorable repeatability (RSD ≤ 1.5%). Furthermore, the CLE-CE system was applied in investigating the kinetic contents of L-amino acid oxidase, which implied that the proposed system has the potential in studying the enzymatic reaction mechanism.

  12. l-Amino acid oxidase isolated from Calloselasma rhodostoma snake venom induces cytotoxicity and apoptosis in JAK2V617F-positive cell lines

    Directory of Open Access Journals (Sweden)

    Cristiane Tavares

    2016-06-01

    Full Text Available ABSTRACT BACKGROUND: Myeloproliferative neoplasms are Philadelphia chromosome-negative diseases characterized by hyperproliferation of mature myeloid cells, associated or not with the Janus kinase 2 tyrosine kinase mutation, JAK2V617F. As there is no curative therapy, researchers have been investigating new drugs to treat myeloproliferative neoplasms, including l-amino acid oxidase from Calloselasma rhodostoma snake venom (CR-LAAO, which is a toxin capable of eliciting apoptosis in several tumor cell lines. OBJECTIVE: To evaluate the effects of l-amino acid oxidase from C. rhodostoma snake venom in the apoptotic machinery of JAK2-mutated cell lines. METHODS: The HEL 92.1.7 and SET-2 cell lines were cultured with l-amino acid oxidase and catalase for 12 h at 37 °C in 5% carbon dioxide. The cell viability was assessed by the multi-table tournament method, the level of apoptosis was measured by flow cytometry, and the expression of cysteine-dependent aspartate-specific proteases and cleaved Poly(ADP-ribose polymerase were analyzed by Western blotting. RESULTS: l-Amino acid oxidase from C. rhodostoma snake venom was cytotoxic to HEL 92.1.7 and SET-2 cells (50% inhibitory concentration = 0.15 µg/mL and 1.5 µg/mL, respectively and induced apoptosis in a concentration-dependent manner. Cell treatment with catalase mitigated the l-amino acid oxidase toxicity, indicating that hydrogen peroxide is a key component of its cytotoxic effect.The activated caspases 3 and 8 expression and cleaved PARP in HEL 92.1.7 and SET-2 cells confirmed the apoptosis activation by CR-LAAO. CONCLUSIONS: l-Amino acid oxidase from C. rhodostoma snake venom is a potential antineoplastic agent against HEL 92.1.7 and SET-2 JAK2V617F-positive cells as it activates the extrinsic apoptosis pathway.

  13. Determination of D/L-amino acids by zero needle voltage electrospray ionisation

    DEFF Research Database (Denmark)

    Sørensen, Morten B.; Aaslo, Per; Egsgaard, Helge; Lund, Torben

    2008-01-01

    Ion formation may be made more efficient than in normal electrospray ionization (ESI) for certain classes of compounds, such as the polar amino acids Glu, Asn, His, Ser, Asp, Arg, Tyr and Lys, by adjusting the voltage of a normal ESI interface needle to zero voltage. For aspartic acid (Asp) the...... mechanism related to sonic spray ionization. The utility of the zero needle voltage ESI was illustrated by determining the age of a human tooth by the aspartic acid epimerization method. The procedure involved separating the D- and L-aspartic acid of a tooth extract on a chiral HPLC column and detection by...

  14. Radiometric studies on the oxidation of (U-14C)L-amino acids by drug-susceptible and drug-resistant mycobacteria

    International Nuclear Information System (INIS)

    A radiometric assay system has been used to study oxidation patterns of (U-14C)L-amino acids by drug-susceptible and drug-resistant mycobacteria. Drug-susceptible M. tuberculosis (H37 Rv TMC 102 and Erdman) along with the drug-resistant organism M. tuberculosis (H37 Rv TMC 303), M. bovis, M.avium, M. intracellulare, M. Kansasii and M. chelonei were used. The organisms were inoculated into a sterile reaction system with liquid 7H9 medium and one of the (U-14C)L-amino acids. (M.A.C.)

  15. Syntheses of Macrocyclic Amides from L-Amino Acid Esters by RCM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of succinate-derived macrocyclic amides( 1 ) was synthesized via ring-closing metathesis (RCM) as the key step. The substrate included 12 to 15 members. The metathesis precursors were obtained from the amide coupling of tert-butyl 3-carboxyhex-5-enoate(2) with numerous side-chain alkenylated amino acid esters of general type(3)derived from L-lysine and L-ornithine.

  16. Differences in radiolysis behavior of D,L amino acid in primary stage and thermodynamic equilibrium state

    International Nuclear Information System (INIS)

    If differential interaction of elementary particles with enantiomers of amino acids exists and what role it may play on the origin of life chirality are hitherto not concluded. The controversial experimental results, the poor reproducibility of some positive evidence and the theoretical prediction of the effects which are well below the threshold of experimental observation have spread the pessimistic view. A series of experiments were designed to retest the problem. The obtained data and the careful analysis of the reference data, however, favor the conclusion that there does exist differential interaction of elementary particles with D,L amino acids. The differences are truly trivial in magnitude, but it could be detected when the system is far from equilibrium (the primary stage), by instant measurement as the interaction is still proceeding. If the system is at the thermodynamic equilibrium state, the difference would not be detectable. If an effective amplification is involved, the subtle difference would be enlarged to the extent of formation of macroscopically detectable chirality. So the possibility that the asymmetricity of elementary particles causes the formation of terrestrial excess of one-particular isomer could not be excluded. This view may explain the long disputation and the controversy among reports

  17. Synthesis and biodegradation studies of optically active poly (amide–imide) s based on N, N′-(pyromellitoyl)-bis-l-amino acid

    DEFF Research Database (Denmark)

    Wu, Qiuxiang; Yang, Zhizhou; Yao, Jinshui;

    2015-01-01

    Five new optically active poly(amide–imide)s (PAIs) (PAI3a–PAI3e) were synthesized through the direct polycondensation reaction between chiral N,N′-(pyromellitoyl)-bis-l-amino acids and 4,4′-diaminodiphenyl ether. The resulted polymers were fully characterized by means of Fourier transform infrar...

  18. Stability of ampicillin, piperacillin, cefotaxime, netilmicin and amikacin in an L-amino acid solution prepared for total parenteral nutrition of newborn infants

    DEFF Research Database (Denmark)

    Goldstein, K; Colding, H; Andersen, G E

    1988-01-01

    The stability of ampicillin, piperacillin and cefotaxime, alone or in combination with either netilmicin or amikacin, was tested by microbiological methods at 29 degrees C (ampicillin, also at 22 degrees C) in an L-amino acid solution specially prepared for newborn infants. In the case of...

  19. Antibacterial efficacy of recombinant Siganus oramin L-amino acid oxidase expressed in Pichia pastoris.

    Science.gov (United States)

    Li, Ruijun; Li, Anxing

    2014-12-01

    Siganus oraminl-amino acid oxidase is a novel natural protein (named SR-LAAO) isolated from serum of the rabbitfish (S. oramin), which showed antibacterial activity against both Gram-positive and Gram-negative bacteria and had a lethal effect on the parasites Cryptocaryon irritans, Trypanosoma brucei brucei and Ichthyophthirius multifiliis. In order to test whether recombinant SR-LAAO (rSR-LAAO) produced by the eukaryotic expression system also has antimicrobial activity, the yeast Pichia pastoris was used as the expression host to obtain rSR-LAAO in vitro. Crude rSR-LAAO produced by P. pastoris integrated with the SR-LAAO gene had antibacterial activity against both Gram-positive and Gram-negative bacteria as shown by inhibition zone assay of the antibacterial spectrum on agar plates. The average diameter of the inhibition zone of crude rSR-LAAO against the Gram-positive bacteria Staphylococcus aureus and Streptococcus agalactiae was 1.040 ± 0.045 cm and 1.209 ± 0.085 cm, respectively. For the Gram-negative bacteria Aeromonas sobria, Escherichia coli, Vibrio alginolyticus, Vibrio cholera and Photobacterium damselae subsp. piscicida, the average diameter of inhibition zone was 1.291 ± 0.089 cm, 0.943 ± 0.061 cm, 0.756 ± 0.057 cm, 0.834 ± 0.023 cm and 1.211 ± 0.026 cm, respectively. These results were obtained at the logarithmic growth phase of S. agalactiae and A. sobria cell suspensions after incubation with 0.5 mg/mL crude rSR-LAAO for 24 h. The final bacterial growth rate was decreased significantly. The relative inhibition rate can reach 50% compared to crude products from P. pastoris integrated with an empty vector at the same concentration of protein. The antimicrobial activity of crude rSR-LAAO was likely associated with H2O2 formation, because its inhibition zones were disturbed significantly by catalase. Scanning electron microscopy results showed crude rSR-LAAO-treated bacterial surfaces became rough and particles were attached, cell walls were

  20. Purification and antibacterial activities of an L-amino acid oxidase from king cobra (Ophiophagus hannah venom

    Directory of Open Access Journals (Sweden)

    CS Phua

    2012-01-01

    Full Text Available Some constituents of snake venom have been found to display a variety of biological activities. The antibacterial property of snake venom, in particular, has gathered increasing scientific interest due to antibiotic resistance. In the present study, king cobra venom was screened against three strains of Staphylococcus aureus [including methicillin-resistant Staphylococcus aureus (MRSA], three other species of gram-positive bacteria and six gram-negative bacteria. King cobra venom was active against all the 12 bacteria tested, and was most effective against Staphylococcus spp. (S. aureus and S. epidermidis. Subsequently, an antibacterial protein from king cobra venom was purified by gel filtration, anion exchange and heparin chromatography. Mass spectrometry analysis confirmed that the protein was king cobra L-amino acid oxidase (Oh-LAAO. SDS-PAGE showed that the protein has an estimated molecular weight of 68 kDa and 70 kDa under reducing and non-reducing conditions, respectively. The minimum inhibitory concentrations (MIC of Oh-LAAO for all the 12 bacteria were obtained using radial diffusion assay method. Oh-LAAO had the lowest MIC value of 7.5 µg/mL against S. aureus ATCC 25923 and ATCC 29213, MRSA ATCC 43300, and S. epidermidis ATCC 12228. Therefore, the LAAO enzyme from king cobra venom may be useful as an antimicrobial agent.

  1. New optically active poly(amide-imide)s based on N,N '-(pyromellitoyl)-bis-L-amino acid and methylene diphenyl-4,4 '-diisocyanate

    DEFF Research Database (Denmark)

    Tian, Xiaoyu; Yao, Jinshui; Zhang, Xian;

    2014-01-01

    Five new optically active poly(amide-imide)s were synthesized through the direct polycondensation reaction between chiral N,N-(pyromellitoyl)-bis-L-amino acids and methylene diphenyl-4,4-diisocyanate in a medium consisting of N-methyl-2-pyrrolidone (NMP) and xylene. The resulted polymers were ful......,N-dimethyl formamide, dimethyl sulfoxide (DMSO), NMP, sulfuric acid, and para-methyl phenol. Same specific rotations of these polymers in these different solvents were obtained....

  2. Radiosynthesis of [18F]fluorophenyl-L-amino acids by isotopic exchange on carbonyl-activated precursors

    OpenAIRE

    Castillo Meleán, J.

    2011-01-01

    ABSTRACT Aromatic [18F]fluoroamino acids have earlier been developed as promising probes for diagnostics using PET. However, a wider use of these radiofluorinated compounds has been limited due to radiosynthetic constraints. The work here presents an amenable three-step radiosynthesis pathway for the preparation of 2-[18F]fluoro-L-phenylalanine (2-[18F]Fphe), 2-[18F]fluoro-L-tyrosine (2-[18F]Ftyr), 6-[18F]fuoro-L-m-tyrosine (6-[18F]Fmtyr) and 6-[18F]fluoro-L-DOPA (6-[18F]FDOPA). For this, ...

  3. Bordonein-L, a new L-amino acid oxidase from Crotalus durissus terrificus snake venom: isolation, preliminary characterization and enzyme stability

    OpenAIRE

    Bordon, Karla C. F.; Wiezel, Gisele A.; Cabral, Hamilton; Arantes, Eliane C

    2015-01-01

    Background Crotalus durissus terrificus venom (CdtV) is one of the most studied snake venoms in Brazil. Despite presenting several well known proteins, its L-amino acid oxidase (LAAO) has not been studied previously. This study aimed to isolate, characterize and evaluate the enzyme stability of bordonein-L, an LAAO from CdtV. Methods The enzyme was isolated through cation exchange, gel filtration and affinity chromatography, followed by a reversed-phase fast protein liquid chromatography to c...

  4. Comparative analysis of naturally occurring L-amino acid osmolytes and their D-isomers on protection of Escherichia coli against environmental stresses

    Indian Academy of Sciences (India)

    Hanief Md Shahjee; Kakoli Banerjee; Faizan Ahmad

    2002-09-01

    Adaptation to high salinity and low or high temperature is essential for bacteria to survive. Accumulation of exogenous osmolytes is one of the ways that helps bacteria to survive under such extracellular stress. We have analysed the capability of various L-amino acids and their D-isomers to act as osmolytes and thus enable Escherichia coli cells to survive under various stress conditions. E. coli cells were grown in the presence or absence of L- and D-proline, alanine, serine and lysine under salt, heat and cold stresses. Of the various amino acids tested, L-proline, closely followed by L-serine turned out to be highly protective against environmental stresses. L-proline provided excellent protection (95%) against salt stress, followed by cold (60%) and heat (40%) stresses. D-amino acids on the other hand, proved to be highly inhibitory under stress conditions. Thus L-amino acids were found to be growth protectants under stress while their D-isomers were inhibitory during stress as well as normal conditions.

  5. Conformations of helical Aib peptides containing a pair of L-amino acid and D-amino acid.

    Science.gov (United States)

    Demizu, Yosuke; Yabuki, Yu-U; Doi, Mitsunobu; Sato, Yukiko; Tanaka, Masakazu; Kurihara, Masaaki

    2012-07-01

    A pair of L-leucine (L-Leu) and D-leucine (D-Leu) was incorporated into a-aminoisobutyric acid (Aib) peptide segments. Thedominant conformations of four hexapeptides, Boc-L-Leu-Aib-Aib-Aib-Aib-L-Leu-OMe (1a), Boc-D-Leu-Aib-Aib-Aib-Aib-L-Leu-OMe(1b), Boc-Aib-Aib-L-Leu-L-Leu-Aib-Aib-OMe (2a), and Boc-Aib-Aib-D-Leu-L-Leu-Aib-Aib-OMe (2b), were investigated by IR,¹H NMR, CD spectra, and X-ray crystallographic analysis. All peptides 1a,b and 2a,b formed 3₁₀-helical structures in solution. X-ray crystallographic analysis revealed that right-handed (P) 3₁₀-helices were present in 1a and 1b and a mixture of right-handed(P) and left-handed (M) 3₁₀-helices was present in 2b in their crystalline states. PMID:22619002

  6. Expression, purification, crystallization and preliminary X-ray analysis of a novel N-substituted branched-chain l-amino-acid dioxygenase from Burkholderia ambifaria AMMD

    International Nuclear Information System (INIS)

    Diffraction data were collected to a limiting resolution of 2.4 Å from a crystal of selenomethionyl-labelled SadA, an l-amino-acid dioxygenase. Ferrous ion- and α-ketoglutarate-dependent dioxygenase from Burkholderia ambifaria AMMD (SadA) catalyzes the C3-hydroxylation of N-substituted branched-chain l-amino acids, especially N-succinyl-l-leucine, coupled to the conversion of α-ketoglutarate to succinate and CO2. SadA was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method at 293 K. Crystals of selenomethionine-substituted SadA were obtained using a reservoir solution containing PEG 3000 as the precipitant at pH 9.5 and diffracted X-rays to 2.4 Å resolution. The crystal belonged to space group P212121, with unit-cell parameters a = 49.3, b = 70.9, c = 148.2 Å. The calculated Matthews coefficient (VM = 2.1 Å3 Da−1, 41% solvent content) suggested that the crystal contains two molecules per asymmetric unit

  7. Gamma radiation affects the anti-Leishmania activity of Bothrops moojeni venom and correlates with L-amino acid oxidase activity

    International Nuclear Information System (INIS)

    Leishmania causes human disfiguring skin disease in endemic areas of Amazon and North Eastern Brazil. Those parasites present a remarkable resistance to most treatments, except those using toxic antimonial salts. We detected a specific anti-Leishmania activity in snake venoms, using an in vitro promastigote assay. In this report, we analyzed the activity of Bothrops moojeni venom against L. Amazonensis, using whole venom or fractions of L-amino acid oxidase (L-AO). Crude venom of B.moojeni, was fractionated by molecular exclusion chromatography. Activity against promastigotes was detected by respiratory oxidative conversion of MTT in a colorimetric assay and L-AO activity was detected by a colorimetric assay with peroxidase and OPD as revealing reagents. Crude venom was irradiated with 500, 1000, and 2000 Gy in a 60 Co gamma radiation source. The venom had an anti-Leishmania activity of 33 pg/promastigote and the active fraction migrates as 100-150 kDa, close to the size described for L-AOs, and also presented L-AO activity. The radiation reduces both the L-AO and anti-Leishmania activity in a dose dependent effect. Those data suggests the anti-Leishmania activity in this venom is closely related to the L-amino acid oxidase activity and also that radiation could be used as a tool to detect specific activities reduction in water solutions, similarly to observed in dry preparations. (author)

  8. Brain and brain tumor uptake of L-3-[123I]iodo-alpha-methyl tyrosine: competition with natural L-amino acids

    International Nuclear Information System (INIS)

    SPECT studies with L-3-[123I]iodo-alpha-methyl tyrosine (IMT) were carried out in 10 patients with different types of brain tumors--first under fasting conditions (basal) and a week later during intravenous infusion of a mixture of naturally-occurring L-amino acids (AA load). An uptake index (UI) was calculated by dividing tissue count rates by the integral of plasma count rates. The UI decreased by 45.6% ± 15.4% (n = 10, p less than 0.001) for normal brain and by 53.2% ± 14.1% for gliomas (n = 5, p less than 0.01) during AA load compared to basal conditions, while two meningiomas and a metastasis showed only a minor decrease (23.9 ± 5.7%, n.s.). Two pituitary adenomas could not be delineated on the SPECT scans. These data indicate that IMT competes with naturally-occurring L-amino acids for transport into normal brain and gliomas. Transport characteristics of IMT into tumors of nonglial origin appear to be different from those of gliomas. For both types of tumors, it is advisable to perform IMT-SPECT under fasting conditions

  9. Microdialysis with radiometric monitoring of L-[β-11C]DOPA to assess dopaminergic metabolism: effect of inhibitors of L-amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate.

    Science.gov (United States)

    Okada, Maki; Nakao, Ryuji; Hosoi, Rie; Zhang, Ming-Rong; Fukumura, Toshimitsu; Suzuki, Kazutoshi; Inoue, Osamu

    2011-01-01

    The catecholamine, dopamine (DA), is synthesized from 3,4-dihydroxy-L-phenylalanine (L-DOPA) by aromatic L-amino acid decarboxylase (AADC). Dopamine metabolism is regulated by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). To measure dopaminergic metabolism, we used microdialysis with radiometric detection to monitor L-[β-(11)C]DOPA metabolites in the extracellular space of the rat striatum. We also evaluated the effects of AADC, MAO, and COMT inhibitors on metabolite profiles. The major early species measured after administration of L-[β-(11)C]DOPA were [(11)C]3,4-dihydroxyphenylacetic acid ([(11)C]DOPAC) and [(11)C]homovanillic acid ([(11)C]HVA) in a 1:1 ratio, which shifted toward [(11)C]HVA with time. An AADC inhibitor increased the uptake of L-[β-(11)C]DOPA and L-3-O-methyl-[(11)C]DOPA and delayed the accumulation of [(11)C]DOPAC and [(11)C]HVA. The MAO and COMT inhibitors increased the production of [(11)C]3-methoxytyramine and [(11)C]DOPAC, respectively. These results reflect the L-DOPA metabolic pathway, suggesting that this method may be useful for assessing dopaminergic metabolism. PMID:20407462

  10. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.

    Science.gov (United States)

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long

    2016-03-01

    In our previous study, we produced phenylpyruvic acid (PPA) in one step from L-phenylalanine by using an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase (L-AAD) from Proteus mirabilis KCTC2566. However, the PPA titer was low due to the degradation of PPA and low substrate specificity of L-AAD. In this study, metabolic engineering of the L-phenylalanine degradation pathway in E. coli and protein engineering of L-AAD from P. mirabilis were performed to improve the PPA titer. First, three aminotransferase genes were knocked out to block PPA degradation, which increased the PPA titer from 3.3 ± 0.2 to 3.9 ± 0.1 g/L and the substrate conversion ratio to 97.5 %. Next, L-AAD was engineered via error-prone polymerase chain reaction, followed by site-saturation mutation to improve its catalytic performance. The triple mutant D165K/F263M/L336M produced the highest PPA titer of 10.0 ± 0.4 g/L, with a substrate conversion ratio of 100 %, which was 3.0 times that of wild-type L-AAD. Comparative kinetics analysis showed that compared with wild-type L-AAD, the triple mutant had higher substrate-binding affinity and catalytic efficiency. Finally, an optimal fed-batch biotransformation process was developed to achieve a maximal PPA titer of 21 ± 1.8 g/L within 8 h. This study developed a robust whole-cell E. coli biocatalyst for PPA production by integrating metabolic and protein engineering, strategies that may be useful for the construction of other biotransformation biocatalysts. PMID:26552798

  11. Radiosynthesis of [18F]fluorophenyl-L-amino acids by isotopic exchange on carbonyl-activated precursors

    International Nuclear Information System (INIS)

    Aromatic [18F]fluoroamino acids have earlier been developed as promising probes for diagnostics using PET. However, a wider use of these radiofluorinated compounds has been limited due to radiosynthetic constraints. The work here presents an amenable three-step radiosynthesis pathway for the preparation of 2-[18F]fluoro-L-phenylalanine (2-[18F]Fphe), 2-[18F]fluoro-L-tyrosine (2-[18F]Ftyr), 6-[18F]fuoro-L-m-tyrosine (6-[18F]Fmtyr) and 6-[18F]fluoro-L-DOPA (6-[18F]FDOPA). For this, corresponding precursors were 18F-fluorinated by nucleophilic isotopic exchange, followed by either removal of an activating formyl group with Rh(PPh3)3Cl or its conversion by Baeyer-Villiger oxidation, respectively, and subsequent hydrolysis of protecting groups in acidic medium. Two efficient synthetic approaches were developed for the preparation of highly functionalized fluoro-benzaldehydes and -ketones which were used as labeling precursors. The compounds (2S,5S)-tert-butyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carboxylate (1a), (2S,5S)-tert-butyl 5-(5-acetyl-2-fluorobenzyl)-2-tert-butyl-3-methyl-4-oxoimidazolidine-1 -carboxylate (1c), (2S,5S)-benzyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carbo-xylate (1d), 4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thyl)b enzal-dehyde (1e) and 1-(4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thy l)phenyl)ethanone (1f), could be prepared in six steps and overall yields of 41%, 48%, 37%, 27%, and 32%, respectively. (2S,5S)-tert-Butyl 5-(4-(benzyloxy)-2-fluoro-5-formylbenzyl)-2-tert-butyl-3-methyl-4 -oxoimidazolidi ne-1-carboxylate (1b) was prepared in ten steps with an overall yield of 19% while compounds (2S,5S)-tert-butyl 5-(5-(3,5-bis(trifluoromethyl)-benzoyl)-2-fluorobenzyl)-2-tert-butyl-3 -methyl-4-oxoimidazolidine-1-carboxylate (1g) and (2S,5S)-tert-butyl 2-tert-butyl-5-(2-fluoro-5-(2,2,2-trifluoroacetyl)benzyl)-3-methyl

  12. Radiosynthesis of [{sup 18}F]fluorophenyl-L-amino acids by isotopic exchange on carbonyl-activated precursors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Melean, Johnny

    2011-02-01

    Aromatic [{sup 18}F]fluoroamino acids have earlier been developed as promising probes for diagnostics using PET. However, a wider use of these radiofluorinated compounds has been limited due to radiosynthetic constraints. The work here presents an amenable three-step radiosynthesis pathway for the preparation of 2-[{sup 18}F]fluoro-L-phenylalanine (2-[{sup 18}F]Fphe), 2-[{sup 18}F]fluoro-L-tyrosine (2-[{sup 18}F]Ftyr), 6-[{sup 18}F]fuoro-L-m-tyrosine (6-[{sup 18}F]Fmtyr) and 6-[{sup 18}F]fluoro-L-DOPA (6-[{sup 18}F]FDOPA). For this, corresponding precursors were {sup 18}F-fluorinated by nucleophilic isotopic exchange, followed by either removal of an activating formyl group with Rh(PPh{sub 3}){sub 3}Cl or its conversion by Baeyer-Villiger oxidation, respectively, and subsequent hydrolysis of protecting groups in acidic medium. Two efficient synthetic approaches were developed for the preparation of highly functionalized fluoro-benzaldehydes and -ketones which were used as labeling precursors. The compounds (2S,5S)-tert-butyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carboxylate (1a), (2S,5S)-tert-butyl 5-(5-acetyl-2-fluorobenzyl)-2-tert-butyl-3-methyl-4-oxoimidazolidine-1 -carboxylate (1c), (2S,5S)-benzyl 2-tert-butyl-5-(2-fluoro-5-formylbenzyl)-3-methyl-4-oxoimidazolidine-1 -carbo-xylate (1d), 4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thyl)b enzal-dehyde (1e) and 1-(4-fluoro-3-(((2S,5R)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl) me-thy l)phenyl)ethanone (1f), could be prepared in six steps and overall yields of 41%, 48%, 37%, 27%, and 32%, respectively. (2S,5S)-tert-Butyl 5-(4-(benzyloxy)-2-fluoro-5-formylbenzyl)-2-tert-butyl-3-methyl-4 -oxoimidazolidi ne-1-carboxylate (1b) was prepared in ten steps with an overall yield of 19% while compounds (2S,5S)-tert-butyl 5-(5-(3,5-bis(trifluoromethyl)-benzoyl)-2-fluorobenzyl)-2-tert-butyl-3 -methyl-4-oxoimidazolidine-1-carboxylate (1g) and (2S,5S

  13. Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches.

    Science.gov (United States)

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng

    2015-10-01

    Phenylpyruvic acid (PPA) is an important organic acid that has a wide range of applications. In this study, the membrane-bound L-amino acid deaminase (L-AAD) gene from Proteus mirabilis KCTC 2566 was expressed in Escherichia coli BL21(DE3) and then the L-AAD was purified. After that, we used the purified enzyme and the recombinant E. coli whole-cell biocatalyst to produce PPA via a one-step biotransformation from L-phenylalanine. L-AAD was solubilized from the membrane and purified 52-fold with an overall yield of 13 %, which corresponded to a specific activity of 0.94 ± 0.01 μmol PPA min(-1)·mg(-1). Then, the biotransformation conditions for the pure enzyme and the whole-cell biocatalyst were optimized. The maximal production was 2.6 ± 0.1 g·L(-1) (specific activity of 1.02 ± 0.02 μmol PPA min(-1)·mg(-1) protein, 86.7 ± 5 % mass conversion rate, and 1.04 g·L(-1)·h(-1) productivity) and 3.3 ± 0.2 g L(-1) (specific activity of 0.013 ± 0.003 μmol PPA min(-1)·mg(-1) protein, 82.5 ± 4 % mass conversion rate, and 0.55 g·L(-1)·h(-1) productivity) for the pure enzyme and whole-cell biocatalyst, respectively. Comparative studies of the enzymatic and whole-cell biotransformation were performed in terms of specific activity, production, conversion, productivity, stability, need of external cofactors, and recycling. We have developed two eco-friendly and efficient approaches for PPA production. The strategy described herein may aid the biotransformational synthesis of other α-keto acids from their corresponding amino acids. PMID:26109004

  14. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet

    International Nuclear Information System (INIS)

    Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor γ activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions by down-regulating TGFβ1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis

  15. Molecular aggregation in crystalline 1:1 complexes of hydrophobic D- and L-amino acids. I. The L-isoleucine series.

    Science.gov (United States)

    Dalhus; Görbitz

    1999-06-01

    The amino acid L-isoleucine has been cocrystallized with seven selected D-amino acids including D-methionine [L-isoleucine-D-methionine (1/1), C(6)H(13)NO(2).C(5)H(11)NO(2)S, amino-acid side chain R = -CH(2)-CH(2)-S-CH(3)] and a homologous series from D-alanine [L-isoleucine-D-alanine (1/1), C(6)H(13)NO(2).C(3)H(7)NO(2), R = -CH(3)] through D-alpha-aminobutyric acid [L-isoleucine-D-alpha-aminobutyric acid (1/1), C(6)H(13)NO(2).C(4)H(9)NO(2), R = -CH(2)-CH(3)] and D-norvaline [L-isoleucine-D-norvaline (1/1), C(6)H(13)NO(2).C(5)H(11)NO(2), R = -CH(2)-CH(2)-CH(3)] to D-norleucine [L-isoleucine-D-norleucine (1/1), C(6)H(13)NO(2).C(6)H(13)NO(2), R = -CH(2)-CH(2)-CH(2)-CH(3)] with linear side chains, and D-valine [L-isoleucine-D-valine (1/1), C(6)H(13)NO(2).C(5)H(11)NO(2), R = -CH-(CH(3))(2)] and D-leucine [L-isoleucine-D-leucine (1/1), C(6)H(13)NO(2).C(6)H(13)NO(2), R = -CH(2)-CH-(CH(3))(2)] with branched side chains. All the crystal structures are divided into distinct hydrophilic and hydrophobic layers. In the five complexes with amino acids with linear side chains the polar parts of the D- and L-amino acids are related by pseudo-glide-plane symmetry, and four of them have remarkably similar molecular arrangements. The D-valine and D-leucine complexes, on the other hand, are structurally quite different with the polar parts of the D- and L-amino acids related by pseudo-inversion. Differences in the hydrogen-bond pattern in the two molecular arrangements are discussed. PMID:10927385

  16. Vertical Ionization Energies of α-L-Amino Acids as a Function of Their Conformation: an Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Georges Dive

    2004-11-01

    Full Text Available Abstract: Vertical ionization energies (IE as a function of the conformation are determined at the quantum chemistry level for eighteen α-L-amino acids. Geometry optimization of the neutrals are performed within the Density Functional Theory (DFT framework using the hybrid method B3LYP and the 6-31G**(5d basis set. Few comparisons are made with wave-function-based ab initio correlated methods like MP2, QCISD or CCSD. For each amino acid, several conformations are considered that lie in the range 10-15 kJ/mol by reference to the more stable one. Their IE are calculated using the Outer-Valence-Green's-Functions (OVGF method at the neutrals' geometry. Few comparisons are made with MP2 and QCISD IE. It turns out that the OVGF results are satisfactory but an uncertainty relative to the most stable conformer at the B3LYP level persists. Moreover, the value of the IE can largely depend on the conformation due to the fact that the ionized molecular orbitals (MO can change a lot as a function of the nuclear structure.

  17. Export of pre-aged, labile DOM from a central California coastal upwelling system: Insights from D/L amino acids and Δ14C signatures

    Science.gov (United States)

    Walker, B. D.; Shen, Y.; Benner, R. H.; Druffel, E. R. M.

    2014-12-01

    Coastal upwelling zones are among the most productive regions in the world and play a major role in global carbon and nitrogen cycles. Recent research suggests that a substantial fraction of newly fixed organic matter is exported offshore in the form of dissolved organic matter (DOM). However, to date only a few studies have examined DOM composition in the context of production and export from upwelling systems. The ultimate fate and geochemical impact of coastal DOM exported to offshore and mesopelagic ecosystems also remains largely unknown. Between 2007-2009 we conducted a high-resolution biogeochemical time series at the Granite Canyon Marine Pollution Studies Lab in part to evaluate the seasonal production and export of DOM from the Central CA coast. Our previous work demonstrated substantial, albeit disparate, seasonal production of dissolved organic carbon and nitrogen (DOC, DON) - with high DON (and low C:N ratios) produced during upwelling and high DOC produced during summer/fall water column stratification (Walker and McCarthy, 2012). Here we present new total dissolved D/L amino acid (TDAA) and UV-oxidizable DOC radiocarbon (Δ14C) data with the goal of determining the relative sources (heterotrophic vs. autotrophic), bioavailability, microbial processing and 14C-ages of C-rich vs. N-rich DOM exported from this upwelling system. Our results suggest that C-rich DOM produced during water column stratification carries a large microbial signature (i.e. high D/L AA ratios and non-protein AA abundance), whereas N-rich DOM produced during upwelling appears to be fresh, autotrophic DOM (i.e. lowest D/L AA ratios and highest TDAA abundance). DOM Δ14C signatures also did not approximate in situ dissolved inorganic carbon (DIC), and instead were far more negative and highly correlated to water mass density. Together our results indicate a previously unrecognized source of highly labile yet pre-aged DOM potentially impacting offshore and mesopelagic ecosystems.

  18. Action of Bothrops moojeni venom and its L-amino acid oxidase fraction, treated with 60Co gamma rays, in Leishmania spp

    International Nuclear Information System (INIS)

    Bothrops moojeni venom showed an anti leishmania activity in vitro, as determined by a cell viability assay using the reduction of MTT. After venom purification, by chromatography techniques, the fractions with anti leishmania and L-amino acid oxidase activities, eluted in the same positions. The molecular weight of the enzyme was estimated to be 140 kDa by molecular exclusion chromatography, and 69 kDa, by SDS-PAGE, migrating as a single band, with an isoelectric point of 4.8 as determined by isoelectric focusing. The purified LAO from B. moojeni venom, 135-fold more active than crude venom, showed homo dimeric constitution, and was active against Leishmania spp from the New World, with an effective concentration against L(L). amazonensis of 1.80 μg/ml (EC50), L.(V.) panamensis (0.78 |μg/ml) and L.(L.) chagasi (0.63 (μg/ml). Ultrastructural studies of promastigotes affected by LAO demonstrated cell death, with edema in several organelles such as mitochondria and nuclear membrane, before cell disruption and necrosis. The action of LAO was demonstrated to be hydrogen peroxide-dependent. Studies with LLCMK-2 cells, treated with LAO, showed a toxic effect, with an EC50 of 11|μg/ml. Irradiation of LAO with 60Co gamma rays, did not affect its whole oxidative activity, neither detoxified the enzyme. Amastigotes treated with LAO were not affected by its hydrogen peroxide, otherwise, the exogenous product, killed amastigotes with an EC50 of 0.67mM. These data could be of help in the development of alternative therapeutic approaches to the treatment of leishmaniasis. (author)

  19. Molecular aggregation in selected crystalline 1:1 complexes of hydrophobic D- and L-amino acids. IV. The L-phenylalanine series.

    Science.gov (United States)

    Görbitz, Carl Henrik; Rissanen, Kari; Valkonen, Arto; Husabø, Asmund

    2009-06-01

    The amino acid L-phenylalanine has been cocrystallized with D-2-aminobutyric acid, C(9)H(11)NO(2).C(4)H(9)NO(2), D-norvaline, C(9)H(11)NO(2).C(5)H(11)NO(2), and D-methionine, C(9)H(11)NO(2).C(5)H(11)NO(2)S, with linear side chains, as well as with D-leucine, C(9)H(11)NO(2).C(6)H(13)NO(2), D-isoleucine, C(9)H(11)NO(2).C(6)H(13)NO(2), and D-allo-isoleucine, C(9)H(11)NO(2).C(6)H(13)NO(2), with branched side chains. The structures of these 1:1 complexes fall into two classes based on the observed hydrogen-bonding pattern. From a comparison with other L:D complexes involving hydrophobic amino acids and regular racemates, it is shown that the structure-directing properties of phenylalanine closely parallel those of valine and isoleucine but not those of leucine, which shares side-chain branching at C(gamma) with phenylalanine and is normally considered to be the most closely related non-aromatic amino acid. PMID:19498234

  20. The umami taste in pigs: L-amino acid preferences and in vitro recognition by the receptor dimer pT1r1/pT1r3 expressed in porcine taste and non-taste tissues

    OpenAIRE

    Tedó Pérez, Maria Gemma

    2009-01-01

    The present work was divided into three main areas of study, (1) the development of a reliable "in vivo" model for double choice (DOCH) testing in piglets avoiding the isolation time and fasted state of animals to evaluate weaned pig preferences, consumption and appetence under a fed-state for Glycine and several L-amino acids at different concentrations (-in vivo trials- Chapter 1), (2) identifying and characterizing the porcine Tas1r1 and Tas1r3 gene sequences in pigs, to construct a stable...

  1. Synthesis and Antimicrobial Activities of Amides of Chiral Benzyl Ethers of N-Boc Protected Aminols of L-amino acids with Succinic Acid

    International Nuclear Information System (INIS)

    The research work presented in this article describes a synthesis of chiral amides. Chiral benzyl ethers of N-Boc protected aminols reacted with succinic acid using 2,4,6-trichloro-1,3,5-triazine (TCT) as a coupling agent producing chiral amides in high yields. The synthetic amides were investigated for their antifungal and antibacterial activities against different bacterial and fungal strains. All the compounds showed excellent zone of inhibition against the three tested bacterial strains and good to moderate activity against one fungal strain. (author)

  2. Biosynthesis of the Aromatic Amino Acids.

    Science.gov (United States)

    Pittard, James; Yang, Ji

    2008-09-01

    This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon. PMID:26443741

  3. Photoinduced dynamics in protonated aromatic amino acid

    CERN Document Server

    Grégoire, Gilles; Barat, Michel; Fayeton, Jacqueline; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2008-01-01

    UV photoinduced fragmentation of protonated aromatics amino acids have emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  4. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi-Yorimoto, Ayano, E-mail: ayano.takeuchi@astellas.com [Drug Safety Research Labs, Astellas Pharma Inc., Osaka 532-8514 (Japan); Noto, Takahisa [Drug Safety Research Labs, Astellas Pharma Inc., Osaka 532-8514 (Japan); Yamada, Atsushi [Drug Safety Research Division, Astellas Research Technologies Co., Ltd., Osaka 532-8514 (Japan); Miyamae, Yoichi; Oishi, Yuji; Matsumoto, Masahiro [Drug Safety Research Labs, Astellas Pharma Inc., Osaka 532-8514 (Japan)

    2013-05-01

    Nonalcoholic steatohepatitis (NASH) is characterized by combined pathology of steatosis, lobular inflammation, fibrosis, and hepatocellular degeneration, with systemic symptoms of diabetes or hyperlipidemia, all in the absence of alcohol abuse. Given the therapeutic importance and conflicting findings regarding the potential for healing the histopathologic features of NASH in humans, particularly fibrosis, we investigated the reversibility of NASH-related findings in Wistar rats fed a choline-deficient and iron-supplemented L-amino acid-defined (CDAA) diet for 12 weeks, with a recovery period of 7 weeks, during which the diets were switched to a choline-sufficient and iron-supplemented L-amino acid-defined (CSAA) one. Analysis showed that steatosis and inflammation were significantly resolved by the end of the recovery period, along with decreases in AST and ALT activities within 4 weeks. In contrast, fibrosis remained even after the recovery period, to an extent similar to that in continuously CDAA-fed animals. Real-time reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemical investigations revealed that expression of some factors indicating oxidative stress (CYP2E1, 4-HNE, and iNOS) were elevated, whereas catalase and SOD1 were decreased, and a hypoxic state and CD34-positive neovascularization were evident even after the recovery period, although the fibrogenesis pathway by activated α-SMA-positive hepatic stellate cells via TGF-β and TIMPs decreased to the CSAA group level. In conclusion, persistent fibrosis was noted after the recovery period of 7 weeks, possibly due to sustained hypoxia and oxidative stress supposedly caused by capillarization. Otherwise, histopathological features of steatosis and inflammation, as well as serum AST and ALT activities, were recovered. - Highlights: ► NASH-like liver lesions are induced in rats by feeding a CDAA diet. ► Steatosis and lobular inflammation are resolved after switching to a

  5. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation

    International Nuclear Information System (INIS)

    Nonalcoholic steatohepatitis (NASH) is characterized by combined pathology of steatosis, lobular inflammation, fibrosis, and hepatocellular degeneration, with systemic symptoms of diabetes or hyperlipidemia, all in the absence of alcohol abuse. Given the therapeutic importance and conflicting findings regarding the potential for healing the histopathologic features of NASH in humans, particularly fibrosis, we investigated the reversibility of NASH-related findings in Wistar rats fed a choline-deficient and iron-supplemented L-amino acid-defined (CDAA) diet for 12 weeks, with a recovery period of 7 weeks, during which the diets were switched to a choline-sufficient and iron-supplemented L-amino acid-defined (CSAA) one. Analysis showed that steatosis and inflammation were significantly resolved by the end of the recovery period, along with decreases in AST and ALT activities within 4 weeks. In contrast, fibrosis remained even after the recovery period, to an extent similar to that in continuously CDAA-fed animals. Real-time reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemical investigations revealed that expression of some factors indicating oxidative stress (CYP2E1, 4-HNE, and iNOS) were elevated, whereas catalase and SOD1 were decreased, and a hypoxic state and CD34-positive neovascularization were evident even after the recovery period, although the fibrogenesis pathway by activated α-SMA-positive hepatic stellate cells via TGF-β and TIMPs decreased to the CSAA group level. In conclusion, persistent fibrosis was noted after the recovery period of 7 weeks, possibly due to sustained hypoxia and oxidative stress supposedly caused by capillarization. Otherwise, histopathological features of steatosis and inflammation, as well as serum AST and ALT activities, were recovered. - Highlights: ► NASH-like liver lesions are induced in rats by feeding a CDAA diet. ► Steatosis and lobular inflammation are resolved after switching to a

  6. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Science.gov (United States)

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  7. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production.

    Science.gov (United States)

    Mukherjee, Ashis K; Saviola, Anthony J; Burns, Patrick D; Mackessy, Stephen P

    2015-10-01

    We report the elucidation of a mechanism of apoptosis induction in breast cancer (MCF-7) cells by an L-amino acid oxidase (LAAO), Rusvinoxidase, purified from the venom of Daboia russelii russelii. Peptide mass fingerprinting analysis of Rusvinoxidase, an acidic monomeric glycoprotein with a mass of ~57 kDa, confirmed its identity as snake venom LAAO. The enzymatic activity of Rusvinoxidase was completely abolished after two cycles of freezing and thawing; however, its cytotoxicity toward MCF-7 cells remained unaffected. Dose- and time-dependent induction of apoptosis by Rusvinoxidase on MCF-7 cells was evident from changes in cell morphology, cell membrane integrity, shrinkage of cells and apoptotic body formation accompanied by DNA fragmentation. Rusvinoxidase induced apoptosis in MCF-7 cells by both the extrinsic (death-receptor) and intrinsic (mitochondrial) signaling pathways. The former pathway of apoptosis operated through activation of caspase-8 that subsequently activated caspase-7 but not caspase-3. Rusvinoxidase-induced intrinsic pathway of apoptosis was accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species, followed by a decrease in cellular glutathione content and catalase activity, and down-regulation of expression of anti-apoptotic proteins Bcl-XL and heat-shock proteins (HSP-90 and HSP-70). Rusvinoxidase treatment resulted in increase of the pro-apoptotic protein Bax, subsequently leading to the release of cytochrome c from mitochondria to the cytosol and activating caspase-9, which in turn stimulated effector caspase-7. Rusvinoxidase at a dose of 4 mg/kg was non-toxic in mice, indicating that it may be useful as a model for the development of peptide-based anticancer drugs. PMID:26319994

  8. Selective production of aromatics from alkylfurans over solid acid catalysts

    DEFF Research Database (Denmark)

    Wang, Dong; Dumesic, James A.; Taarning, Esben; Osmundsen, Christian Mårup

    2013-01-01

    resistance to deactivation by carbon deposition than do microporous materials. Results from Raman spectroscopy and the trend of turnover frequency with varying tungsten surface densities for a series of WOx-ZrO2 catalysts are consistent with previous investigations of other acid-catalyzed reactions; this......Solid acid catalysts were studied at temperatures near 523K for the production of benzene, toluene, and p-xylene by the reaction of ethylene with furan, 2-methylfuran, and 2,5-dimethylfuran, respectively, through the combination of cycloaddition and dehydrative aromatization reactions. Catalysts...... containing Brønsted acid and Lewis acid sites (i.e., WOx-ZrO2, niobic acid, zeoliteY, silica-alumina) were more active than catalysts containing predominantly Lewis acid sites (γ-Al2O3, TiO2), which indicates the importance of Brønsted acidity in the production of aromatics. Microporosity is not required for...

  9. Extraction of scandium by aromatic carboxylic acids

    International Nuclear Information System (INIS)

    Extraction of complex compounds af scandium with salicylic, phenyl- and diphenylacetic acids with chloroform solutions of tetraethyldiamideheptylphosphate as a donor-active additive in relation to the pH and reagent concentration has been studied. Extraction of salicylates of some elements (Ta, Nb, Zr, Hf, Mo) by solutions of tetraethyldiamideheptylphosphate in chloroform has been investigated, and the possibility of their extraction separation from scandium is shown

  10. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  11. Aromatic Amino Acids and Related Substances: Chemistry, Biology, Medicine, and Application

    Science.gov (United States)

    On the occasion of the "Transdisciplinary International Conference on Aromatic Amino Acids and Related Substances," the organizing committee honors and thanks the expert participants from many areas of aromatic amino acid (AAA)3 research. In this transdisciplinary meeting, "aromatic paradigms" were ...

  12. Transport of aromatic amino acids by Brevibacterium linens.

    OpenAIRE

    Boyaval, P; Moreira, E; Desmazeaud, M. J.

    1983-01-01

    Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L for...

  13. LIQUID CRYSTALLINE BEHAVIOR OF AROMATIC COPOLYAMIDE IN CONCENTRATED SULPHURIC ACID

    Institute of Scientific and Technical Information of China (English)

    SHAN Guorong; PAN Zhicun; LIU Deshan; ZHOU Qixiang

    1997-01-01

    The liquid crystalline behavior of anisotropic solutions in 100% sulphuric acid of aromatic copolyamide obtained by low-temperature solution copolycondensation of terephthalic acid chloride (TPC), p-phenylene diamine (PPD) and 4, 4'-diamino-diphenylether (DAPE) has been studied by optical microscopy and X-ray diffraction. The effects of inherent viscosity, concentration of copolyamide in sulphuric acid, the content of the third monomer (DAPE) and sequence distribution of copolyamide on the critical concentration,isotropic temperature, phase diagram and texture of liquid crystal were investigated.The schlieren texture was observed and the results of X-ray diffraction indicate that the concentrated solutions of copolyamide exhibit nematic liquid crystalline behavior.

  14. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  15. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana

    OpenAIRE

    Tzin, Vered; Galili, Gad

    2010-01-01

    The aromatic amino acids phenylalanine, tyrosine and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acid metabolic pathway, with chorismate serving as a major branch point intermediate metabolite. Yet, the regu...

  16. Uncatalyzed Condensation Reactions between Aromatic Aldehydes and Thiobarbituric Acid in Water

    Institute of Scientific and Technical Information of China (English)

    Bing Qin YANG; Jun LU; Min TIAN

    2003-01-01

    A series of 5-arylidene thiobarbituric acids were prepared from aromatic aldehydes and thiobarbituric acid in water without catalyst conditions in good yields. The structures were characterized by elemental analysis, IR and 1H NMR spectra.

  17. Sample stacking for determination of aromatic acid impurities by microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Huang, Hsi-Ya; Lin, Yu-Ru; Hsieh, Shih-Huan

    2009-01-19

    In this study, a sample stacking step coupled with microemulsion electrokinetic chromatography (MEEKC) was used to detect and analyze nine aromatic acids (benzoic acid (BA), isophthalic acid (IPA), terephthalic acid (TPA), p-toluic acid (p-TA), 4-carboxylbenzaldehyde (4-CBA), trimesic acid (TSA), trimellitic acid (TMA), o-phthalic acid (OPA), and hemimellitic acid (HMA)) which are common impurities produced during aromatic acid synthesis. First, the presence of both acid and water plugs at the front of the capillary improved the reproducibility in retention time and peak intensity of the tested analytes in the stacking method. Second, the pH and the electrolyte type of acidic plug and sample matrix were found to be the predominant influences on the aromatic acid stacking. The detection limits of these aromatic acids were reduced to the range of 0.00007-0.00032 microg mL(-1) by this optimal sample stacking step. This proposed on-line concentration MEEKC method was able to detect trace levels of aromatic acid impurities in commercial aromatic acid products that were not previously possible by the normal MEEKC method. Furthermore, these results in comparison with our previous studies on sample stacking MEEKC method indicated that all acidic species were concentrated by this simple stacking procedure. The sensitivity enhancement, however, was highly dependent on the types of functional groups present in the structures of analytes, and the enhancement was in the order of first the compounds carrying both carboxy and hydroxy groups (e.g. phenolic acid), followed by carboxylic acid compounds (e.g. aromatic acid), and then phenol compounds (e.g. polyphenol). PMID:19100895

  18. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  19. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  20. Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles.

    Science.gov (United States)

    Matelová, Alena; Huerta-Angeles, Gloria; Šmejkalová, Daniela; Brůnová, Zdislava; Dušek, Jan; Vícha, Robert; Velebný, Vladimír

    2016-10-20

    Novel hydrophobized hyaluronan (HA) derivatives, containing ω-phenylalkanoic acids (ω-PAA, 4-phenylbutyric acid, 6-phenylhexanoic, 8-phenyloctanoic or 11-tolylundecanoic acids) were prepared by esterification. Mixed anhydrides obtained after reaction of the carboxyl acid moiety and benzoyl chloride were found to be active acylating agents, affording hydrophobized HA in good yield and under mild conditions. The reactivity of the aromatic fatty acids towards esterification has decreased with the increasing length of the aliphatic spacer between the aromatic substituent and carboxylic acid moiety. The novel HA derivatives self-assembled from very low concentrations and were found to be non-cytotoxic. The potential use of ω-phenylalkanoic acids grafted-HA towards drug delivery applications was demonstrated by hydrophobic drugs (resveratrol and retinyl palmitate) encapsulation. The drug loading capacity of the novel HA derivatives was significantly improved most likely because of π⋯π interactions between the micelle core and loaded hydrophobic aromatic compound. PMID:27474668

  1. Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japonicum and Rhizobium trifolii.

    OpenAIRE

    Parke, D; Rivelli, M; Ornston, L N

    1985-01-01

    Rhizobia are bacteria well known for their ability to fix nitrogen in symbiosis with leguminous plants. Members of diverse rhizobial species grow at the expense of hydroaromatic and aromatic compounds commonly found in plant cells and plant litter. Using a quantitative capillary assay to measure chemotaxis, we tested the ability of hydroaromatic acids, selected aromatic acids, and their metabolites to serve as chemoattractants for two distantly related rhizobial species, Bradyrhizobium japoni...

  2. The Condensation of Aromatic Aldehydes with Acidic Methylene Compounds in Water

    Institute of Scientific and Technical Information of China (English)

    Da Qing SHI; Jing CHEN; Qi Ya ZHUANG; Xiang Shan WANG; Hong Wen HU

    2003-01-01

    The condensation of aromatic aldehydes with acidic methylene compounds such as malononitrile, methyl cyanoacetate, cyanoacetamide, 5,5-dimethyl-1,3-cyclohexanedione, bartbituric acid and 2-thiobarbituric acid proceeded very efficiently in water in the presence of triethylbenzylammonium chloride (TEBA) and the products were isolated simply by filtration.

  3. Effect of ZSM-5 Acidity on Aromatic Product Selectivity during Upgrading of Pine Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; Magrini, Kimberly A.; Rogers, Allyson K.; Yung, Matthew M.

    2016-07-01

    The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO2-to-Al2O3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form a slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.

  4. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  5. Interactions of aromatic amino acids with heterocyclic ligand: An IR spectroscopic study

    Science.gov (United States)

    Tyunina, E. Yu.; Badelin, V. G.; Tarasova, G. N.

    2015-09-01

    The interactions of L-phenylalanine and L-tryptophan with nicotinic acid and uracyl in an aqueous buffer solution at pH 7.35 were studied by IR spectroscopy. The contributions of various functional groups to the complexation of aromatic amino acids with heterocyclic ligands were determined from the IR spectra of the starting substances and their mixtures.

  6. Action of Bothrops moojeni venom and its L-amino acid oxidase fraction, treated with {sup 60}Co gamma rays, in Leishmania spp; Acao do veneno de Bothrops moojeni e sua fracao L-aminoacido oxidase, submetida ao tratamento com raios gama de {sup 60}Co, em Leishmania spp

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Andre Gustavo Tempone

    1999-07-01

    Bothrops moojeni venom showed an anti leishmania activity in vitro, as determined by a cell viability assay using the reduction of MTT. After venom purification, by chromatography techniques, the fractions with anti leishmania and L-amino acid oxidase activities, eluted in the same positions. The molecular weight of the enzyme was estimated to be 140 kDa by molecular exclusion chromatography, and 69 kDa, by SDS-PAGE, migrating as a single band, with an isoelectric point of 4.8 as determined by isoelectric focusing. The purified LAO from B. moojeni venom, 135-fold more active than crude venom, showed homo dimeric constitution, and was active against Leishmania spp from the New World, with an effective concentration against L(L). amazonensis of 1.80 {mu}g/ml (EC{sub 50}), L.(V.) panamensis (0.78 |{mu}g/ml) and L.(L.) chagasi (0.63 ({mu}g/ml). Ultrastructural studies of promastigotes affected by LAO demonstrated cell death, with edema in several organelles such as mitochondria and nuclear membrane, before cell disruption and necrosis. The action of LAO was demonstrated to be hydrogen peroxide-dependent. Studies with LLCMK-2 cells, treated with LAO, showed a toxic effect, with an EC{sub 50} of 11|{mu}g/ml. Irradiation of LAO with 6{sup 0C}o gamma rays, did not affect its whole oxidative activity, neither detoxified the enzyme. Amastigotes treated with LAO were not affected by its hydrogen peroxide, otherwise, the exogenous product, killed amastigotes with an EC{sub 50} of 0.67mM. These data could be of help in the development of alternative therapeutic approaches to the treatment of leishmaniasis. (author)

  7. Equivalent Isopropanol Concentrations of Aromatic Amino Acids Interactions with Lipid Vesicles.

    Science.gov (United States)

    Johnson, Merrell A; Ray, Bruce D; Wassall, Stephen R; Petrache, Horia I

    2015-08-01

    We show that the interaction of aromatic amino acids with lipid bilayers can be characterized by conventional 1D [Formula: see text]H NMR spectroscopy using reference spectra obtained in isopropanol-d8/D[Formula: see text]O solutions. We demonstrate the utility of this method with three different peptides containing tyrosine, tryptophan, or phenylalanine amino acids in the presence of 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid membranes. In each case, we determine an equivalent isopropanol concentration (EIC) for each hydrogen site of aromatic groups, in essence constructing a map of the chemical environment. These EIC maps provide information on relative affinities of aromatic side chains for either PC or PS bilayers and also inform on amino acid orientation preference when bound to membranes. PMID:25691267

  8. Reusable and Efficient Polystryrene-supported Acidic Ionic Liquid Catalyst for Mononitration of Aromatic Compounds

    International Nuclear Information System (INIS)

    A series of polystyrene-supported 1-(propyl-3-sulfonate)-3-methyl-imidazolium hydrosulfate acidic ionic liquid (PS-[SO3H-PMIM][HSO4]) catalysts were prepared and tested for mononitration of simple aromatics compounds with nitric acid. It was found that the reactivity of the catalysts increased with increasing [SO3HPMIM][HSO4] content. The para-selectivity was not only related to the [SO3H-PMIM][HSO4] content but also the substituent groups in aromatics. A reaction mechanism of nitration over this new catalyst was proposed. The catalytic activity of this catalyst decreased slightly after fifth runs in the synthesis of nitrotoluene

  9. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis

    Directory of Open Access Journals (Sweden)

    Hare Emily E

    2004-08-01

    Full Text Available Abstract Background Aromatic L-amino acid decarboxylase (AADC enzymes catalyze the synthesis of biogenic amines, including the neurotransmitters serotonin and dopamine, throughout the animal kingdom. These neurotransmitters typically perform important functions in both the nervous system and other tissues, as illustrated by the debilitating conditions that arise from their deficiency. Studying the regulation and evolution of AADC genes is therefore desirable to further our understanding of how nervous systems function and evolve. Results In the nematode C. elegans, the bas-1 gene is required for both serotonin and dopamine synthesis, and maps genetically near two AADC-homologous sequences. We show by transformation rescue and sequencing of mutant alleles that bas-1 encodes an AADC enzyme. Expression of a reporter construct in transgenics suggests that the bas-1 gene is expressed, as expected, in identified serotonergic and dopaminergic neurons. The bas-1 gene is one of six AADC-like sequences in the C. elegans genome, including a duplicate that is immediately downstream of the bas-1 gene. Some of the six AADC genes are quite similar to known serotonin- and dopamine-synthetic AADC's from other organisms whereas others are divergent, suggesting previously unidentified functions. In comparing the AADC genes of C. elegans with those of the congeneric C. briggsae, we find only four orthologous AADC genes in C. briggsae. Two C. elegans AADC genes – those most similar to bas-1 – are missing from C. briggsae. Phylogenetic analysis indicates that one or both of these bas-1-like genes were present in the common ancestor of C. elegans and C. briggsae, and were retained in the C. elegans line, but lost in the C. briggsae line. Further analysis of the two bas-1-like genes in C. elegans suggests that they are unlikely to encode functional enzymes, and may be expressed pseudogenes. Conclusions The bas-1 gene of C. elegans encodes a serotonin- and dopamine

  10. Evidence for transport intermediates in aromatic amino acid synthesis of non-green tissues

    International Nuclear Information System (INIS)

    Quinate (QA) is the predominant pre-aromatic compound formed at high rates in leaves of many plants at the early vegetation stage and transported through the phloem. The transfer of 3-dehydroquinate, 3-dehydroshikimate and (SkA) across the plastidial membranes has been evidenced. The question was whether the rate of QA uptake is comparable to that of the 3 SkA-pathway intermediates. To demonstrate this, /U-14C/QA and /U-14C/SkA were applied to Brassica rapa roots. Both compounds were uptaken at considerable rates and incorporated into aromatic amino acids (Phe + Tyr + Trp formation, in nmol/g fresh wt x h: applying 145 μmol QA: 21.2; applying 156 μmol Ska: 31.8). Thus, QA is a possible candidate for transport into non-green tissues for aromatic amino acid synthesis

  11. Evidence for transport intermediates in aromatic amino acid synthesis of non-green tissues

    Energy Technology Data Exchange (ETDEWEB)

    Leuschner, C.; Schultz, G. (Botanisches Institut, Hannover (West Germany))

    1990-05-01

    Quinate (QA) is the predominant pre-aromatic compound formed at high rates in leaves of many plants at the early vegetation stage and transported through the phloem. The transfer of 3-dehydroquinate, 3-dehydroshikimate and (SkA) across the plastidial membranes has been evidenced. The question was whether the rate of QA uptake is comparable to that of the 3 SkA-pathway intermediates. To demonstrate this, /U-{sup 14}C/QA and /U-{sup 14}C/SkA were applied to Brassica rapa roots. Both compounds were uptaken at considerable rates and incorporated into aromatic amino acids (Phe + Tyr + Trp formation, in nmol/g fresh wt x h: applying 145 {mu}mol QA: 21.2; applying 156 {mu}mol Ska: 31.8). Thus, QA is a possible candidate for transport into non-green tissues for aromatic amino acid synthesis.

  12. Metabolism of Aromatic Amino Acids during the Growth Cycle of Batch Suspension Cultures of Catharanthus roseus

    OpenAIRE

    Nagaoka, Noriko; ASHIHARA, Hiroshi

    1988-01-01

    Profiles of the levels and metabolism of aromatic compounds in suspension-cultured cells of Catharanthus roseus during the growth cycle were determined. The level of total protein-amino acids, i.e., sum of the amounts of amino acids in hydrolyzates of proteins, and the level of total phenolic acids increased after transfer of the cells in the stationary phase to fresh Murashige-Skoog medium. The maximum levels of the proteinamino acids and those of the phenolic acids were observed on days 3-5...

  13. Secoiridoids and antifungal aromatic acids from Gentiana algida.

    Science.gov (United States)

    Tan, R X; Wolfender, J L; Ma, W G; Zhang, L X; Hostettmann, K

    1996-01-01

    Fractionation of an aqueous acetone extract of the whole herb of Gentiana algida gave one new [2'-(o,m-dihydroxybenzyl)sweroside] and five known secoiridoids, together with anofinic acid, fomannoxin acid, sitosterol, daucosterol, stigmasterol, oleanolic acid, orientin and gentianose. The structures were determined by spectral methods and a few chemical transformations. Anofinic acid and fomannoxin acid were found to be active against Cladosporium cucumerinum, a plant pathogenic fungus. Preliminary structure-activity studies indicated that the presence of carboxylic moieties in these acids was presumably a precondition for activity, whereas their methyl esters, inactive to the fungus, were active against the human pathogenic yeast Candida albicans. The chemotaxonomic significance of the isolates is discussed briefly. PMID:8588862

  14. Four-component synthesis of 1,3,4-oxadiazole derivatives from N-isocyaniminotriphenylphosphorane, aromatic carboxylic acids, aromatic bis-aldehydes, and secondary amines

    OpenAIRE

    Ramazani, Ali; Karimi, Zahra; SOULDOZI, Ali; AHMADI, Yavar

    2012-01-01

    The 1:1 iminium intermediate generated by the addition of a secondary amine to aromatic bis-aldehydes (isophthalaldehyde and terphthalaldehyde) is trapped by the N-isocyaniminotriphenylphosphorane in the presence of a aromatic carboxylic acid derivative, which leads to the formation of corresponding iminophosphorane intermediate. Then disubstituted 1,3,4-oxadiazole derivatives are formed via intramolecular aza-Wittig reaction of the iminophosphorane intermediates. The reactions were ...

  15. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    Science.gov (United States)

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  16. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    Science.gov (United States)

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  17. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids.

    Science.gov (United States)

    Hesse, Almut; Weller, Michael G

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  18. Studies on the structure of peat humic acid (II). Study on the determination of the aromatic skeletons in peat humic acid by zinc-dust distillation

    Energy Technology Data Exchange (ETDEWEB)

    Oka, H.; Sasaki, M.

    1979-01-01

    In order to determine aromatic skeletons in the chemical structure of peat humic acid, zinc-dust distillation was carried out at 500 C for 2 hours in a stream of hydrogen, and the results compared to those from other substances such as phtholic acid, cumarin, naphthoquinone and ..cap alpha..-lactone. Subsequently, methods for the identification and semi-quantitative determination of polycyclic aromatic hydrocarbons were applied. The total yield of polycyclic hydrocarbon having anthracene, pyrene and perylene rings was 1.9% of the original peat humic acid. However, the yield of aromatic hydrocarbons containing 3 to 5 rings from peat humic acid was approximately equal to those from the other substances. From the results, it is assumed that peat humic acid has no polycyclic ring systems as the aromatic structure, and that the polycyclic aromatic hydrocarbons produced by zinc-dust distillation were formed by a rearrangement and condensation of oxygen containing structures during the reaction.

  19. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids

    Science.gov (United States)

    Reichau, Sebastian; Blackmore, Nicola J.; Jiao, Wanting; Parker, Emily J.

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  20. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    OpenAIRE

    Albert Mas; Jose Manuel Guillamon; Maria Jesus Torija; Gemma Beltran; Cerezo, Ana B; Troncoso, Ana M.; M. Carmen Garcia-Parrilla

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being und...

  1. Regulation of aromatic amino acid biosynthesis in the ribulose monophosphate cycle methylotroph Nocardia sp. 239

    OpenAIRE

    de Boer, L; Vrijbloed, J W; Grobben, G.; Dijkhuizen, L.

    1989-01-01

    The regulation of aromatic amino acid biosynthesis in Nocardia sp. 239 was studied. In cell-free extracts 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase activity was inhibited in a cumulative manner by tryptophan, phenylalanine and tyrosine. Chorismate mutase was inhibited by both phenylalanine and tyrosine, whereas prephenate dehydratase was very sensitive to inhibition by phenylalanine. Tyrosine was a strong activator of the latter enzyme, whereas anthranilate synthase was inhib...

  2. Liquid-phase hydrogenation of aromatic carboxylic acids to cyclohexanecarboxylic ones on heterogeneous catalysts

    International Nuclear Information System (INIS)

    Results of theoratical and experimental studies in the field of liquid-phase hydrogenation of aromatic acids, n-nitrobenzoic in particular, were analyzed and generalized. Directions of hydrogenation on metal sodium, on nickel catalysts, platinum group metals were considered. Applied ruthenium catalysts feature the highest activity and selectivity. It is shown that specific surface of ruthenium and mass specific activity of catalyst increase in the series Ru/SiO2 < Ru/C

  3. Ab initio and density functional theory studies of the structure,gas-phase acidity and aromaticity of tetraselenosquaric acid

    Institute of Scientific and Technical Information of China (English)

    周立新

    2000-01-01

    Results or ab initio selr-consistent-field ( SCF) and denityfunctional theory (DFr) calculations of the gas-phase structure, acidity (free energy of deprotona tion, △G°) and aroma ticity of tetraselenosquaric acid (3, 4-diseleny-3-cyclobutene-1,2-diselenone, H2C4Se4) are reported.The global minimu found on the potenial energy surface of tetraselenosquaric acid presents a planar conformation. The ZZ isomer was found to have the lowest energy among the three planar conformers and the ZZ and ZE is omers are very close in energy. The optimized geometric parameters exhibit a bond length equalization relative to reference compounds, cyclobutanediselenone, and cyclobutenediselenol. The computed aromaic stabilization energy(ASE)by homodesmotic reaction is -77.4 (MP2(fu)/6 - 311 + G* *//RHF/6 - 311 + G* * ) and - 54.8 kJ/mol (B3LYP/6 - 311 + G* * //B3LYP/6 - 311 + G* * ). The aromaticity of tetraselenosquaric acid is indicated by the calculated diamagnetic susceptibility exaltation (A) - 19.13 (CSGT(IGAIM) - RHF/6 - 311 + G**//RHF/6 - 311 + G* * and - 32.91(4π· 10-6 m3/mo l)(CSGT(IGA1M)-B3LYP/6 - 311 + G* *//B3LYP/6 - 311 + G* * ).Thus, tetraselenosquaric acid fulfils the geometric, energetic and magnetic criteria of aromaticity. The calculated gas-phase acidity is △G10(298K) = 1257.7 and △G20(298K) = 1617.1 kJ/mol. Hence, tetraselenosquarc acid is the stronest acid among the three squaric acids (3,4-dihydroxy-3-cyclobutene-1,2-dione, H2C4O4, 3,4-dithiohydroxy-3- cyclobutene-1,2-dithione, H2C4S4, 3,4- diselenyl-3- cyclobutene- 1,2-diselenone, H2C4Se4).

  4. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    Science.gov (United States)

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements. PMID:27281436

  5. Aromatic amino acid activation of signaling pathways in bone marrow mesenchymal stem cells depends on oxygen tension.

    Directory of Open Access Journals (Sweden)

    Mona El Refaey

    Full Text Available The physiologic oxygen pressures inside the bone marrow environment are much lower than what is present in the peripheral circulation, ranging from 1-7%, compared to values as high as 10-13% in the arteries, lungs and liver. Thus, experiments done with bone marrow mesenchymal stem cells (BMMSCs using standard culture conditions may not accurately reflect the true hypoxic bone marrow microenvironment. However, since aging is associated with an increased generation of reactive oxygen species, experiments done under 21%O2 conditions may actually more closely resemble that of the aging bone marrow environment. Aromatic amino acids are known to be natural anti-oxidants. We have previously reported that aromatic amino acids are potent agonists for stimulating increases in intracellular calcium and phospho-c-Raf and in promoting BMMSC differentiation down the osteogenic pathway. Our previous experiments were performed under normoxic conditions. Thus, we next decided to compare a normoxic (21% O2 vs. a hypoxic environment (3% O2 alone or after treatment with aromatic amino acids. Reverse-phase protein arrays showed that 3% O2 itself up-regulated proliferative pathways. Aromatic amino acids had no additional effect on signaling pathways under these conditions. However, under 21%O2 conditions, aromatic amino acids could now significantly increase these proliferative pathways over this "normoxic" baseline. Pharmacologic studies are consistent with the aromatic amino acids activating the extracellular calcium-sensing receptor. The effects of aromatic amino acids on BMMSC function in the 21% O2 environment is consistent with a potential role for these amino acids in an aging environment as functional anti oxidants.

  6. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Kildegaard, Kanchana Rueksomtawin; Li, Mingji;

    2015-01-01

    Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promi...

  7. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    Directory of Open Access Journals (Sweden)

    M. Onciu

    2005-02-01

    Full Text Available Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP and pyridine (Py as bases and N-methyl-2-pyrolidinone (NMP as solvent, at reflux (180-190°C for 8-12 hours.

  8. Fluorescence of complexes of Eu( Ⅱ ) with aromatic carboxylic acid-1, 1O-phenanthroline

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The 1, 10-phenanthroline-aromatic carboxylic acid (benzoic acid and o-phthalic acid) binary and ternary complexes of europium were synthesized. The fluorescence and FT-IR spectroscopy, elemental analysis, UV spectroscopic studies on these complexes were also performed. These complexes can emit strong red fluorescence of Eu( m ) excited by UV light. At the same excited wavelength, the fluorescence spectra of the complexes were also studied. The results indi cated that the fluorescence intensities of ternary complexes are stronger than that of binary complexes. The reason is that phenanthroline has higher electron density and higher orbit scope in the conjugated system and consequently an easier ener gy transfer to the europium ion, which makes the fluorescence intensity of ternary complexes be stronger than that of bi nary complexes.

  9. Biomolecular interactions of emerging two-dimensional materials with aromatic amino acids

    Science.gov (United States)

    Mallineni, Sai Sunil Kumar; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao

    The present work experimentally investigates the interaction of aromatic amino acids, viz., tyrosine, tryptophan, and phenylalanine with novel two-dimensional (2D) materials including graphene (G), graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Consistent with previous theoretical studies, graphene and BN were observed to interact with amino acids through π- π interactions. Furthermore, we found that GO exhibits strong interactions with tryptophan and tyrosine as compared to graphene and BN, which we attribute to the formation of H-bonds between tryptophan and GO as shown theoretically in Ref. 2. On the other hand, phenylalanine did not exhibit much difference in interactions with G, GO, and BN. Clemson Nanomaterials Center, Clemson University, Clemson, SC, USA.

  10. Predicting the Sorption of Aromatic Acids to Noncarbonized and Carbonized Sorbents.

    Science.gov (United States)

    Sigmund, Gabriel; Sun, Huichao; Hofmann, Thilo; Kah, Melanie

    2016-04-01

    Approaches based on the octanol-water partition coefficient are commonly used to describe sorption of neutral organic compounds in environmental systems, but they are not suitable for organic acids, which can dissociate to form anions. We here investigate the applicability of an alternative approach based on the pH-dependent distribution ratio (DOW) to describe sorption of aromatic acids to sorbents representing different degrees of carbonization. Sorption isotherms for four structurally similar acids ((2,4-dichlorophenoxy)acetic acid (2,4-D), 4-chloro-2-15 methylphenoxy)acetic acid (MCPA), 4-(2,4-dichlorophenoxy)butanoic16 acid (2,4-DB), and 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan)) were measured for 15 sorbents: fresh and carbonized wood shavings, pig manure, sewage sludge, carbon nanotubes, and activated carbon. Dissociation greatly affected the sorption of all acids. Sorption coefficients measured in the high pH range indicated that sorption of the anions ranged over several orders of magnitude and should not be neglected. Sorption trends for all sorbates and carbonized sorbents could be very well described by a single regression equation that included DOW of the sorbate and the specific surface area of the sorbent (R(2) > 0.89). PMID:26949216

  11. CATABOLISM OF AROMATIC BIOGENIC AMINES BY 'PSEUDOMONAS AERUGINOSA' PA01 VIA META CLEAVAGE OF HOMOPROTOCATECHUIC ACID (JOURNAL VERSION)

    Science.gov (United States)

    Pseudomonas aruginosa PA01 catabolized the aromatic amines tyramine and octopamine through 4-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid (HPA). Meta ring cleavage was mediated by 3-4-dihydroxyphenylacetate 2,3-dioxygenase (HPADO), producing 2-hydroxy-5-carboxymeth...

  12. Polycyclic Aromatic Acids Are Primary Metabolites of Alkyl-PAHs-A Case Study with Nereis diversicolor.

    Science.gov (United States)

    Malmquist, Linus M V; Selck, Henriette; Jørgensen, Kåre B; Christensen, Jan H

    2015-05-01

    Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl-PAHs primarily forms polycyclic aromatic acids (PAAs). We generalize this to other alkyl-PAHs, based on literature and the present study of the metabolism of 1-methylphenanthrene, 3,6-dimethylphenanthrene, and 1-, 2-, 3-, and 6-methylchrysene related to their unsubstituted parent PAHs. Also, we observed that body burdens and production of PAAs was related to the position of the methyl group, showing the same isomer specific preferences as for microbial degradation of alkyl-PAHs. We detected a high production of PAAs, and larger metabolism of alkyl-PAHs than their unsubstituted parent PAHs. We therefore propose that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments. PMID:25827176

  13. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives.

    Science.gov (United States)

    Yan, Zheng; Li, Chunyang; Zhang, Lixia; Liu, Qin; Ou, Shiyi; Zeng, Xiaoxiong

    2016-02-10

    The enzymatic acylation of anthocyanin from black rice with aromatic acid methyl esters as acyl donors and Candida antarctica lipase B was carried out under reduced pressure. The highest conversion of 91% was obtained with benzoic acid methyl ester as acyl donor; cyanidin 3-(6″-benzoyl)-glucoside, cyanidin 3-(6″-salicyloyl)-glucoside, and cyanidin 3-(6″-cinnamoyl)-glucoside were successfully synthesized. This is the first report on the enzymatic acylation of anthocyanin from black rice with methyl aromatic esters as acyl donors and lipase as biocatalyst. Furthermore, the acylation with aromatic carboxylic acids enhanced both the thermostability and light resistivity of anthocyanin. In particular, cyanidin 3-(6″-cinnamoyl)-glucoside was the most stable among the three acylated anthocyanins synthesized. PMID:26766135

  14. THERMODYNAMIC STUDY ON ADSORPTION OF AROMATIC SULFONIC ACIDS ONTO MACROPOROUS WEAK BASE ANION EXCHANGER FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Chao Long; Quan-xing Zhang; Ai-min Li; Jin-long Chen

    2004-01-01

    The adsorption equilibrium isotherms of three aromatic sulfonic acid compounds, 2-naphthalenesulfonic acid, ptoluenesulfonic acid and p-chlorobenzenesulfonic acid, from aqueous solutions by macroporous weak base anion exchanger within the temperature range of 293 K-313 K were obtained. Several isotherm equations were correlated with the equilibrium data, and the experimental data was found to fit the three-parameter Redlich-Peterson equation best within the entire range of concentrations. The study showed that the hydrophobicity of solute has distinct influence on adsorption capacity of the anion exchanger for the aromatic sulfonic acid. Moreover, estimations of the isosteric enthalpy, free energy,and entropy change of adsorption were also reported. The positive isosteric enthalpy and entropy change for adsorption indicate an endothermic and entropy driven process in the present study.

  15. Photoionization of aromatic amino acid at different pH values

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The photoioization of aromatic amino acid in solutions of different pH values were investigated by 248 nm laser flash photolysis. The results showed that the photoionizations of tyrosine and tryptophan were affected by pH value of solution, but phenylalanine was not. The ionization was in favor of monophotonic process at high pH value and of biphotonic process at low pH value. The mechanisms of pH effect on photoionization of tyrosine and tryptophan were the deprotonation of phenolic hydroxyl group and the deprotonation of>NH on the indole ring respectively. Our results explain the discrepancy of values for the yield of hydrated electron obtained by other investigators.

  16. New Lipophilic Piceatannol Derivatives Exhibiting Antioxidant Activity Prepared by Aromatic Hydroxylation with 2-Iodoxybenzoic Acid (IBX

    Directory of Open Access Journals (Sweden)

    Roberta Bernini

    2009-11-01

    Full Text Available Piceatannol (E-3,5,3’,4’-tetrahydroxystilbene is a phytoalexin synthesized in grapes in response to stress conditions. It exhibits strong antioxidant and antileukaemic activities due to the presence of the catechol moiety. To modify some physical properties like solubility, and miscibility in non-aqueous media some new previously unreported piceatannol derivatives having lipophilic chains on the A-ring were prepared in good yields by a simple and efficient procedure. The key step was a chemo- and regioselective aromatic hydroxylation with 2-iodoxybenzoic acid (IBX. The new compounds showed antioxidant activity and seemed promising for possible applications as multifunctional emulsifiers in food, cosmetic and pharmaceutical fields.

  17. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  18. Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.

    Science.gov (United States)

    Nohr, Daniel; Franz, Sophie; Rodriguez, Ryan; Paulus, Bernd; Essen, Lars-Oliver; Weber, Stefan; Schleicher, Erik

    2016-07-26

    The cryptochrome/photolyase protein family possesses a conserved triad of tryptophans that may act as a molecular wire to transport electrons from the protein surface to the FAD cofactor for activation and/or signaling-state formation. Members from the animal (and animal-like) cryptochrome subclade use this process in a light-induced fashion in a number of exciting responses, such as the (re-)setting of circadian rhythms or magnetoreception; however, electron-transfer pathways have not been explored in detail yet. Therefore, we present an in-depth time-resolved optical and electron-paramagnetic resonance spectroscopic study of two cryptochromes from Chlamydomonas reinhardtii and Drosophila melanogaster. The results do not only reveal the existence of a fourth, more distant aromatic amino acid that serves as a terminal electron donor in both proteins, but also show that a tyrosine is able to fulfill this very role in Chlamydomonas reinhardtii cryptochrome. Additionally, exchange of the respective fourth aromatic amino acid to redox-inactive phenylalanines still leads to light-induced radical pair formation; however, the lifetimes of these species are drastically reduced from the ms- to the μs-range. The results presented in this study open up a new chapter, to our knowledge, in the diversity of electron-transfer pathways in cryptochromes. Moreover, they could explain unique functions of animal cryptochromes, in particular their potential roles in magnetoreception because magnetic-field effects of light-induced radical pairs strongly depend on distance and orientation parameters. PMID:27463133

  19. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong;

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...... of a wide range of aryl ketones in good yields and in short reaction times with minimum amounts of waste...

  20. Preparation and Evaluation of Aromatic Amine-Epoxidized Sunflower Free Fatty Acid Adducts As Corrosion Inhibitors in Curable Varnishes

    International Nuclear Information System (INIS)

    Five aromatic amines [o-, m- and p- Toluidine (o-T, m-T and p-T), p- anizidine (p-A) and p- chloroaniline (p-ClA)] were reacted with epoxidized sunflower free fatty acid (ESFA) under severe conditions of inert atmosphere and high temperature. The produced adducts were characterized physically, chemically and by IR spectroscopic analysis. Acid value and oxiran content of the prepared adducts were determined to confirm the participation of carboxylic groups and epoxy groups respectively in the reaction of ESFA with aromatic amines. The prepared adducts of (o-T-ESFA, m-T-ESFA, p-T-ESFA, p-A-ESFA and p-ClA-ESFA) were evaluated as corrosion inhibitors of mild steel in epoxy acrylate oligomer formulations curable by electron beam irradiation. Different concentrations of the prepared aromatic adducts were added in varnish formulations. Physical and mechanical measurements were carried out, in addition to corrosion resistance tests and weight loss of coated steel panels. The efficiency of adducts in varnishes formulation were determined, in which it was found that, the varnish formulations containing the prepared aromatic amine adducts could protect steel from corrosion. Superior corrosion inhibition efficiency was found for the varnish formula containing 0.6% p-A-ESFA adduct. The corrosion inhibition efficiency of the prepared aromatic amine in epoxy acrylate oligomer varnishes follows the order: p-A-ESFA > p-T-ESFA > m-T-ESFA > o-T-ESFA > p-ClA-ESFA

  1. Enhancing Muconic Acid Production from Glucose and Lignin-Derived Aromatic Compounds via Increased Protocatechuate Decarboxylase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-12-01

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCA decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. This study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.

  2. Polycyclic aromatic acids are primary metabolites of alkyl-PAHs - a case study with Nereis diversicolor

    DEFF Research Database (Denmark)

    Malmquist, Linus Mattias Valdemar; Selck, Henriette; Jørgensen, Kåre Bredeli; Christensen, Jan H.

    2015-01-01

    Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl......-PAHs primarily forms polycyclic aromatic acids (PAAs). We generalize this to other alkyl-PAHs, based on literature and the present study of the metabolism of 1-methylphenanthrene, 3,6-dimethylphenanthrene, and 1-, 2-, 3-, and 6-methylchrysene related to their unsubstituted parent PAHs. Also, we observed that...

  3. Regiospecific tritium labeling of aromatic acids, amides, amines and heterocyclics using homogeneous rhodium trichloride and ruthenium acetylacetonate catalysts

    International Nuclear Information System (INIS)

    Homogeneous rhodium trichloride has been found to promote ortho-tritiation with high regioselectivity in a wide range of aromatic carboxylic acids, amides and aralkylamines. Less successful results were obtained using o-chlorobenzoic and o-anisic acids where some decomposition was seen, and in acids and amides of the phenolic type, where a degree of electrophilic exchange accompanies the ortho-exchange. The same catalyst has also been used to regiospecifically label a number of heterocyclics. In the course of investigations with other metal complexes ruthenium acetylacetonate has been identified as an excellent promoter of ortho-exchange in benzoic acids. (author)

  4. Contribution of carbohydrate and amino acids to the formation of aromatic structure of synthetic melanoidin (model sedimentary humic substance). A study using 13C-labeled glucose

    International Nuclear Information System (INIS)

    As a part of study to elucidate the source of aromatic structure in sedimentary humic substances (SHS), we synthesized melanoidins (a model SHS) from 13C-labeled glucose and non-labeled amino acids and examined how glucose and amino acids are involved in the formation of their aromatic structures. The synthesized melanoidin was oxidized by alkaline perman ganate and benzenecarboxylic acids in their degradation products were analyzed by Chemical Ionization-GC/MS. The results indicate that aromatic structures are formed in melanoidin as a result of both selfcondensation of glucose and a reaction between glucose and amino acids. (author)

  5. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    Science.gov (United States)

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding. PMID:26836017

  6. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    Science.gov (United States)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that

  7. The antifungal eugenol perturbs dual aromatic and branched-chain amino acid permeases in the cytoplasmic membrane of yeast.

    Directory of Open Access Journals (Sweden)

    Emad Darvishi

    Full Text Available Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targets for eugenol include pathways involved in biosynthesis and transport of aromatic and branched-chain amino acids. Follow-up analyses showed inhibitory effects of eugenol on amino acid permeases in the yeast cytoplasmic membrane. Furthermore, phenotypic suppression analysis revealed that eugenol interferes with two permeases, Tat1p and Gap1p, which are both involved in dual transport of aromatic and branched-chain amino acids through the yeast cytoplasmic membrane. Perturbation of cytoplasmic permeases represents a novel antifungal target and may explain previous observations that exposure to eugenol results in leakage of cell contents. Eugenol exposure may also contribute to amino acid starvation and thus holds promise as an anticancer therapeutic drug. Finally, this study provides further evidence of the usefulness of the yeast Gene Deletion Array approach in uncovering the mode of action of natural health products.

  8. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

    Science.gov (United States)

    Rodriguez, Angelica; Kildegaard, Kanchana R; Li, Mingji; Borodina, Irina; Nielsen, Jens

    2015-09-01

    Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites, such as polyphenols, flavonoids, and some polyketides. Here we developed a p-coumaric acid-overproducing Saccharomyces cerevisiae platform strain. First, we reduced by-product formation by knocking out phenylpyruvate decarboxylase ARO10 and pyruvate decarboxylase PDC5. Second, different versions of feedback-resistant DAHP synthase and chorismate mutase were overexpressed. Finally, we identified shikimate kinase as another important flux-controlling step in the aromatic amino acid pathway by overexpressing enzymes from Escherichia coli, homologous to the pentafunctional enzyme Aro1p and to the bifunctional chorismate synthase-flavin reductase Aro2p. The highest titer of p-coumaric acid of 1.93 ± 0.26 g L(-1) was obtained, when overexpressing tyrosine ammonia-lyase TAL from Flavobacterium johnsoniaeu, DAHP synthase ARO4(K229L), chorismate mutase ARO7(G141S) and E. coli shikimate kinase II (aroL) in Δpdc5Δaro10 strain background. To our knowledge this is the highest reported titer of an aromatic compound produced by yeast. The developed S. cerevisiae strain represents an attractive platform host for production of p-coumaric-acid derived secondary metabolites, such as flavonoids, polyphenols, and polyketides. PMID:26292030

  9. Using spin labels to study molecular processes in soils: Covalent binding of aromatic amines to humic acids of soils

    Science.gov (United States)

    Aleksandrova, O. N.; Kholodov, V. A.; Perminova, I. V.

    2015-08-01

    Interactions of aliphatic and aromatic amines with soil and humic acids isolated from it are studied by means of spin labels and electron paramagnetic resonance (EPR) spectroscopy. Nitroxyl radicals containing amino groups are used as spin labels. It is found experimentally that aromatic amines are instantaneously converted to the bound state. It is shown that the microareas of their incorporation are characterized by a significant delay in the reduction of the nitroxyl fragment of spin-label molecules, indicating the formation of condensed structures typical of an oxidative binding mechanism. It is concluded that aliphatic amines do not bind to humic acids. It is noted that the studied process allows elucidating the formation of bound xenobiotic residues in soils.

  10. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Arao, Tomohito, E-mail: arao@affrc.go.jp [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Maejima, Yuji; Baba, Koji [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan)

    2011-10-15

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. - Highlights: > Pot experiments using agricultural soil contaminated with aromatic arsenicals (AAs). > Methylphenylarsinic acid (MPAA) was the most abundant AA in rice and soybean. > MPAA concentration in rice grains was dramatically reduced via 0.2% AC amendment. > MPAA concentration in soybean seeds was also reduced via 0.2% AC amendment. > AC amendment effectively reduced AAs in rice and soybean. - Activated charcoal amendment to soil contaminated with diphenylarsinic acid reduced aromatic arsenicals in rice and soybean.

  11. Study on the Retention Behavior of Aromatic Carboxylic and Sulfonic acid on a New Anion Exchange Column

    Institute of Scientific and Technical Information of China (English)

    SHI,Ya-Li; CAI,Ya-Qi; MOU,Shi-Fen

    2008-01-01

    Ion chromatography (IC) has gradually developed into a preferred method for the determination of inorganic anions. And in recent years some low molecular aliphatic acid can be also separated in the ion exchange column with the development of stationary phase. But for the determination of aromatic ionic compounds there are some problems. The aromatic anions show enhanced retention due to interaction with the π electrons of the aromatic backbone. Although the addition of an organic modifier can alleviate the difficulty, it is not the ultimate solution.IonPac AS20 column was developed using a unique polymer bonding technology and its substrate coating is aliphatic backbone. The polymer is completely free of any π electron-containing substituents in the AS20 column. In this paper, the retention behavior of aromatic carboxylic and sulfonic acid on two hydroxide-selective columns,IonPac AS11-HC, AS16, and the new column AS20 was also studied. The result showed that the retentions of ten compounds on three columns were different with each other because of their different column characteristics.Among them 4-chlorobenzene sulfonic acid, 3,5-dihydric benzoic acid and salicylic acid obviously exhibited the weakest retention on the IonPac AS20. It was showed that π-π bond function between anion and stationary phases was weakened in AS20 column because its polymer was completely free of any π electron-containing substituents.So in this paper the AS20 was selected as an analytical column to separate ten aromatic ionic compounds, fumaric acid with conjugate bond included. The retention behavior, separation of the ten compounds and effect of temperature on their retention in the anion-exchange column AS20 (2 mm) were studied. The result showed that those compounds could be separated with each other when running in gradient program and the organic modifier was unnecessary during the separation. So it is showed that AS20 column can be used as a separating column because its

  12. Aromatic Amino Acid Mutagenesis at the Substrate Binding Pocket of Yarrowia lipolytica Lipase Lip2 Affects Its Activity and Thermostability

    OpenAIRE

    Guilong Wang; Zimin Liu; Li Xu; Yunjun Yan

    2014-01-01

    The lipase2 from Yarrowia lipolytica (YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F...

  13. Triple-helical collagen hydrogels via covalent aromatic functionalization with 1,3-Phenylenediacetic acid

    Science.gov (United States)

    Tronci, Giuseppe; Doyle, Amanda; Russell, Stephen J.; Wood, David J.

    2016-01-01

    Chemical crosslinking of collagen is a general strategy to reproduce macroscale tissue properties in physiological environment. However, simultaneous control of protein conformation, material properties and biofunctionality is highly challenging with current synthetic strategies. Consequently, the potentially-diverse clinical applications of collagen-based biomaterials cannot be fully realised. In order to establish defined biomacromolecular systems for mineralised tissue applications, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) and investigated at the molecular, macroscopic and functional levels. Preserved triple helix conformation was observed in obtained covalent networks via ATR-FTIR (AIII/A1450 ~ 1) and WAXS, while network crosslinking degree (C: 87-99 mol.-%) could be adjusted based on specific reaction conditions. Decreased swelling ratio (SR: 823-1285 wt.-%) and increased thermo-mechanical (Td: 80-88 °C; E: 28-35 kPa; σmax: 6-8 kPa; εb: 53-58 %) properties were observed compared to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls, likely related to the intermolecular covalent incorporation of the aromatic segment. Ph-crosslinked hydrogels displayed nearly intact material integrity and only a slight mass decrease (MR: 5-11 wt. %) following 1-week incubation in either PBS or simulated body fluid (SBF), in contrast to EDC-crosslinked collagen (MR: 33-58 wt. %). Furthermore, FTIR, SEM and EDS revealed deposition of a calcium-phosphate phase on SBF-retrieved samples, whereby an increased calcium phosphate ratio (Ca/P: 0.84-1.41) was observed in hydrogels with higher Ph content. 72-hour material extracts were well tolerated by L929 mouse fibroblasts, whereby cell confluence and metabolic activity (MTS assay) were comparable to those of cells cultured in cell culture medium (positive control). In light of their controlled structure-function properties, these biocompatible collagen hydrogels represent attractive

  14. Catalytic properties of graphene–metal nanoparticle hybrid prepared using an aromatic amino acid as the reducing agent

    International Nuclear Information System (INIS)

    An easy and single step process of making reduced graphene oxide nanosheet from graphene oxide (GO) in water medium has been demonstrated by using a naturally occurring non-proteinaceous amino acid (2,4-dihydroxy phenyl alanine, Dopa) as a new reducing agent and stabilizing agent. This amino acid has also been used to reduce the noble metal salt (AuCl3/AgNO3) to produce the corresponding noble metal nanoparticles (MNP) without using any external reducing and stabilizing agents. So, this amino acid has been used to reduce simultaneously GO to RGO and noble metal salts to produce corresponding MNP to form RGO–MNP nanohybrid system in a single step in water medium and also in absence of any external toxic reducing and stabilizing agents. Different techniques UV–Visible absorption spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscopy and others have been used to characterize the reduction of GO to RGO, metal salts to produce corresponding MNPs and the formation of RGO–MNP nanohybrid systems. Moreover, this metal nanoparticle containing RGO–MNP nanohybrid system acts as a potential catalyst for the reduction of aromatic nitro to aromatic amino group. - Graphical abstract: This study demonstrates an easy, single step and eco-friendly method to make RGO and Au/AgNP simultaneously from respective precursors to form a RGO–Au/AgNP nanohybrid system using an aromatic amino acid (2,4-dihydroxy phenyl alanine, Dopa) as a new reducing agent as well as stabilizing agent in water medium. Highlights: ► Synthesis of reduced graphene oxide (RGO) nanosheet using an amino acid. ► The amino acid (Dopa) can reduce noble metal salt (Au3+/Ag+) to metal nanoparticle (MNP). ► Single step and eco-friendly synthesis of RGO-MNP nanohybrid using Dopa. ► Characterization of RGO, MNP and RGO–MNP nanohybrid. ► RGO-MNP nanohybrid acts as a catalyst for the reduction of aromatic nitro

  15. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY.

    Science.gov (United States)

    Luu, Rita A; Kootstra, Joshua D; Nesteryuk, Vasyl; Brunton, Ceanne N; Parales, Juanito V; Ditty, Jayna L; Parales, Rebecca E

    2015-04-01

    Aromatic and hydroaromatic compounds that are metabolized through the β-ketoadipate catabolic pathway serve as chemoattractants for Pseudomonas putida F1. A screen of P. putida F1 mutants, each lacking one of the genes encoding the 18 putative methyl-accepting chemotaxis proteins (MCPs), revealed that pcaY encodes the MCP required for metabolism-independent chemotaxis to vanillate, vanillin, 4-hydroxybenzoate, benzoate, protocatechuate, quinate, shikimate, as well as 10 substituted benzoates that do not serve as growth substrates for P. putida F1. Chemotaxis was induced during growth on aromatic compounds, and an analysis of a pcaY-lacZ fusion revealed that pcaY is expressed in the presence of β-ketoadipate, a common intermediate in the pathway. pcaY expression also required the transcriptional activator PcaR, indicating that pcaY is a member of the pca regulon, which includes three unlinked gene clusters that encode five enzymes required for the conversion of 4-hydroxybenzoate to tricarboxylic acid cycle intermediates as well as the major facilitator superfamily transport protein PcaK. The 4-hydroxybenzoate permease PcaK was shown to modulate the chemotactic response by facilitating the uptake of 4-hydroxybenzoate, which leads to the accumulation of β-ketoadipate, thereby increasing pcaY expression. The results show that chemotaxis, transport and metabolism of aromatic compounds are intimately linked in P. putida. PMID:25582673

  16. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Sujin; Lee, Kyusung; Bae, Sang-Jeong; Hahn, Ji-Sook

    2015-03-01

    A wide range of promoters with different strengths and regulatory mechanisms are valuable tools in metabolic engineering and synthetic biology. While there are many constitutive promoters available, the number of inducible promoters is still limited for pathway engineering in Saccharomyces cerevisiae. Here, we constructed aromatic amino-acid-inducible promoters based on the binding sites of Aro80 transcription factor, which is involved in the catabolism of aromatic amino acids through transcriptional activation of ARO9 and ARO10 genes in response to aromatic amino acids. A dynamic range of tryptophan-inducible promoter strengths can be obtained by modulating the number of Aro80 binding sites, plasmid copy numbers, and tryptophan concentrations. Using low and high copy number plasmid vectors and different tryptophan concentrations, a 29-fold range of fluorescence intensities of enhanced green fluorescent protein (EGFP) reporter could be achieved from a synthetic U4C ARO9 promoter, which is composed of four repeats of Aro80 binding half site (CCG) and ARO9 core promoter element. The U4C ARO9 promoter was applied to express alsS and alsD genes from Bacillus subtilis for acetoin production in S. cerevisiae, resulting in a gradual increase in acetoin titers depending on tryptophan concentrations. Furthermore, we demonstrated that γ-aminobutyrate (GABA)-inducible UGA4 promoter, regulated by Uga3, can also be used in metabolic engineering as a dose-dependent inducible promoter. The wide range of controllable expression levels provided by these tryptophan- and GABA-inducible promoters might contribute to fine-tuning gene expression levels and timing for the optimization of pathways in metabolic engineering. PMID:25573467

  17. Preliminary Study on Purification and Identification of Aromatic Acid Amino L-Dopa From Malaysia Freshwater Green Mussel Byssus

    International Nuclear Information System (INIS)

    L-DOPA (L-3, 4-dihydroxyphenylalanine) is a type of aromatic amino acid which can be detected by using acidic extraction and purification method involving adhesive byssus green mussel protein. The main objective of this study is to identify and purify the aromatic amino acid L-DOPA via the utilization of gel Sephadex G-200 filtration chromatography based on two types of acidic and basic mobile phase solution. The crushing and homogenizing for adhesive byssus green mussel were conducted using a mortar and a pestle with the aid of liquid nitrogen. The samples that had been crushed were then mixed and dissolved in perchloric acid 0.7 %, 1.0 % and 1.5 % (v/ v) (pre-treatment) prior to the extraction process. The extraction was carried out by centrifuging the extracts at 11,000 rpm for about 10 mins and at a temperature of 10 degree Celsius to obtain supernatant S1. The supernatant was mixed with acetone and sulphuric acid and centrifuged for the second time to produce a pellet and then it was dissolved in the respective mobile phase solutions prior to purification process. Purification was later performed using two mobile phase solutions which were acetic acid 5 % (v/ v) and NaOH 1 M. The absorbance (abs) value of each purified protein extract fractions was collected and analysed at 214 nm to 400 nm with the help of UV-spectrophotometer. The highest abs value was selected for identification and verification of amino acid L-DOPA in the purified solution. Verification was carried out by utilizing high performance liquid chromatography (HPLC) and thin layer chromatography (TLC). The results showed that the use of 0.7 % (v/ v) perchloric acid and 5 % (v/ v) acetic acid for pre-treatment process and mobile phase solution of purification process respectively, yielded the highest effluent abs profile at a wavelength of 260 nm. TLC analysis proved the existence of several important amino acids besides L-DOPA which were tyrosine and phenylalanine after 78 hrs of collection of

  18. Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter.

    OpenAIRE

    Wehrmann, A; Morakkabati, S; Krämer, R; Sahm, H; Eggeling, L

    1995-01-01

    An initially nonclonable DNA locus close to a gene of L-lysine biosynthesis in Corynebacterium glutamicum was analyzed in detail. Its stepwise cloning and its functional identification by monitoring the amino acid uptakes of defined mutants, together with mechanistic studies, identified the corresponding structure as aroP, the general aromatic amino acid uptake system.

  19. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.

    Science.gov (United States)

    Romagnoli, Gabriele; Knijnenburg, Theo A; Liti, Gianni; Louis, Edward J; Pronk, Jack T; Daran, Jean-Marc

    2015-01-01

    Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products. PMID:24733517

  20. Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids.

    Science.gov (United States)

    Subbalakshmi, Chilukuri; Manorama, Sunkara V; Nagaraj, Ramakrishnan

    2012-05-01

    The morphology of structures formed by the self-assembly of short N-terminal t-butyloxycarbonyl (Boc) and C-terminal methyl ester (OMe) protected and Boc-deprotected hydrophobic peptide esters was investigated. We have observed that Boc-protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc-Ile-Ile-OMe, Boc-Phe-Phe-Phe-Ile-Ile-OMe and Boc-Trp-Ile-Ile-OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc-Leu-Ile-Ile-OMe and H-Leu-Ile-Ile-OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self-assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well-defined tertiary structures, upon removal of the Boc group, only H-Phe-Phe-Phe-Ile-Ile-OMe had the ability to adopt β-structure. Our results indicate that hydrophobic interaction is a very important determinant for self-assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self-assembly. PMID:22431418

  1. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    Science.gov (United States)

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  2. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    Science.gov (United States)

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  3. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    Science.gov (United States)

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs. PMID:25107664

  4. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube.

    Science.gov (United States)

    Rajesh, Chinagandham; Majumder, Chiranjib; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2009-03-28

    In this study we have investigated the interaction of phenylalanine (Phe), histidine (His), tyrosine (Tyr), and tryptophan (Tryp) molecules with graphene and single walled carbon nanotubes (CNTs) with an aim to understand the effect of curvature on the non-covalent interaction. The calculations are performed using density functional theory and the Moller-Plesset second-order perturbation theory (MP2) within linear combination of atomic orbitals-molecular orbital (LCAO-MO) approach. Using these methods, the equilibrium configurations of these complexes were found to be very similar, i.e., the aromatic rings of the amino acids prefer to orient in parallel with respect to the plane of the substrates, which bears the signature of weak pi-pi interactions. The binding strength follows the trend: Hisaromatic motifs of the amino acids. Remarkably, we find excellent correlation between the polarizability and the strength of the interaction; the higher the polarizability, greater is the binding strength. Moreover, we have analyzed the electronic densities of state spectrum before and after adsorption of the amino acid moieties. The results reveal that the Fermi level of the free CNT is red-shifted by the adsorption of the amino acids and the degree of shift is consistent with the trend in polarizability of these molecules. PMID:19334893

  5. Design, Synthesis, EPR-Studies and Conformational Bias of Novel Spin-Labeled DCC-Analogues for the Highly Regioselective Labeling of Aliphatic and Aromatic Carboxylic Acids.

    Science.gov (United States)

    Gölz, Jan Philipp; NejatyJahromy, Yaser; Bauer, Mirko; Muhammad, Ashraf; Schnakenburg, Gregor; Grimme, Stefan; Schiemann, Olav; Menche, Dirk

    2016-07-01

    Novel types of spin-labeled N,N'-dicyclohexylcarbodiimides (DCC) are reported that bear a 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) residue on one side and different aromatic and aliphatic cyclohexyl analogues on the other side of the diimide core. These readily available novel reagents add efficiently to aliphatic and aromatic carboxylic acids, forming two possible spin-labeled amide derivatives with different radical distances of the resulting amide. The addition of aromatic DCC analogues proceeds with excellent selectivity, giving amides where the carboxylic acid is exclusively connected to the aromatic residue, while little or no selectivity was observed for the aliphatic congeners. The usefulness of these adducts in structural studies was demonstrated by EPR (electron paramagnetic resonance) measurements of biradical adducts of biphenyl-4,4'-dicarboxylic acids. These analyses also reveal high degrees of conformational bias for aromatic DCC derivatives, which further underlines the powerfulness of these novel reagents. This observation was further corroborated by quantum chemical calculations, giving a detailed understanding of the structural dynamics, while detailed information on the solid state structure of all novel reagents was obtained by X-ray structure analyses. PMID:27272435

  6. Synthesis and characterizations of degradable aliphatic-aromatic copolyesters from lactic acid, dimethyl terephthalate and diol: Effects of diol type and monomer feed ratio

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Lactic acid-based aliphatic/aromatic copolyesters are synthesized to incorporate the degradability of polylactic acid and good mechanical properties of aromatic species by using polycondensation of lactic acid (LA, dimethyl terephthalate (DMT, and various diols. Effects of diol lengths and comonomer feed ratios on structure and properties of the resulting copolymers are investigated. Three types of diols with different methylene lengths are employed, i.e., ethylene glycol (EG, 1,3-propanediol (PD and 1,4-butanediol (BD. LA/DMT/diol feed ratios of 2:1:2, 1:1:2, and 1:2:4 are used in each diol system. It is found that types of the diols play an important role in the properties of the copolyester, where an increase in diol length results in an increase in the copolymers molecular weight, and a decrease in Tg, Tm and crystallinity, when a constant monomer feed ratio is employed. Monomer feed ratio also has a significant effect on properties of the copolymers, where an increase in the aromatic content leads to formation of copolymers with higher molecular weight, longer aromatic block sequence and high aromatic to aliphatic ratio in the chain structure. These, in turn, lead to an increase in Tg, Tm, crystallinity and thermal stability of the copolymer samples, and a reduction in their solubility.

  7. Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric water and in the absence of light: Identification of intermediates and reaction pathways.

    Science.gov (United States)

    Santos, Patrícia S M; Domingues, M Rosário M; Duarte, Armando C

    2016-07-01

    A previous work showed that the night period is important for the occurrence of Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric waters, which originate new chromophoric compounds apparently more complex than the precursors, although the chemical transformations involved in the process are still unknown. In this work were identified by gas chromatography-mass spectrometry (GC-MS) and by electrospray mass spectrometry (ESI-MS) the organic intermediate compounds formed during the Fenton-like oxidation of three aromatic acids from biomass burning (benzoic, 4-hydroxybenzoic and 3,5-dihydroxybenzoic acids), the same compounds evaluated in the previous study, in water and in the absence of light, which in turns allows to disclose the chemical reaction pathways involved. The oxidation intermediate compounds found for benzoic acid were 2-hydroxybenzoic, 3-hydroxybenzoic, 4-hydroxybenzoic, 2,3-dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. The oxidation intermediates for 4-hydroxybenzoic acid were 3,4-hydroxybenzoic acid and hydroquinone, while for 3,5-dihydroxybenzoic acid were 2,4,6-trihydroxybenzoic and 3,4,5-trihydroxybenzoic acids, and tetrahydroxybenzene. The results suggested that the hydroxylation of the three small aromatic acids is the main step of Fenton-like oxidation in atmospheric waters during the night, and that the occurrence of decarboxylation is also an important step during the oxidation of the 4-dihydroxybenzoic and 3,5-dihydroxybenzoic acids. In addition, it is important to highlight that the compounds produced are also small aromatic compounds with potential adverse effects on the environment, besides becoming available for further chemical reactions in atmospheric waters. PMID:27088537

  8. Characterization of novel perylene diimides containing aromatic amino acid side chains

    Science.gov (United States)

    Farooqi, Mohammed J.; Penick, Mark A.; Burch, Jessica; Negrete, George R.; Brancaleon, Lorenzo

    2016-01-01

    Perylene diimide derivatives have attracted initial interest as industrial dyes. Recently, much attention has been focused on their strong π- π stacks resulting from the large PDI aromatic core. These PDI stacks have distinct optical properties, and provide informative models that could mimic light-harvesting systems and initial charge transfer typical of photosynthetic systems. The absorption property of PDI derivatives may be tuned from visible to near-infrared region by peripheral substitution. We have studied a new class of PDI derivatives with aryl substituents derived from the side chains of aromatic aminoacids (Tyrosine, Tryptophan and Phenylalanine). We have investigated their absorption and the fluorescence properties in a set of organic solvents and established their different tendencies to aggregate in solution despite their solubility. Most aggregation appears to be unordered. One PDI analogue (the one formed from Tyr) in Methanol, however, appears to form J-type aggregates. Based on our results the compounds appear to be promising for future investigations regarding the interaction of these dyes with biomolecules.

  9. Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia.

    Science.gov (United States)

    Eremina, Natalia; Paschke, Albrecht; Mazlova, Elena A; Schüürmann, Gerrit

    2016-03-01

    The purpose of this study was to investigate the levels of polychlorinated biphenyl (PCB), phthalic acid esters (PAE), polycyclic aromatic hydrocarbons (PAH) and organochlorine substances (OCP) in the Moscow River water. Some studies have reported the occurrence of these substances in the soil of the Moscow region; however, no study has yet established an overview for these compounds in the Moscow River water. In this study the Moscow River water contamination with PAEs, PAHs and OCPs was determined. Obtained results were associated with the resident area located on the river bank, and the possible contamination sources were considered. The obtained data were compared with the data on the contamination of the different world-wide rivers. This research indicates the further study necessity of the Moscow region to cover more contaminated sites and environmental compartments. PMID:26807987

  10. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    Science.gov (United States)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  11. Aromaticity driven interfacial synthetic strategy for porous platinum nanostructure: An efficient electrocatalyst for methanol and formic acid oxidation

    International Nuclear Information System (INIS)

    Highlights: • A new surfactant free synthetic approach for porous platinum nanostructures. • The reduction process is aromaticity driven interfacial synthetic technique. • Two morphologically important Pt nanostructures were synthesized in two different reaction conditions. • Increasing the reaction temperature leads to the assembly of smaller size Pt nuclei to form porous platinum nanochanins (Pt NCs) with higher surface area. • Pt NCs exhibit better catalytic activity and also the stability for methanol and formic acid electrooxidation compared to platinum nanoflowers (synthesized under normal UV irradiation), Pt NPs and commercial Pt/C. - Abstract: Herein, template or surfactant free synthesis of porous platinum nanostructures has been reported from a liquid–liquid interfacial synthetic technique. Here the progress of the Pt4+ reduction has been governed by an aromaticity driven pathway of 2,4 dihydropyridine ester (DHPE) in dichloromethane (DCM). Thus morphologically two different Pt nanostructures at the liquid-liquid interface are evolved depending upon the imposed reaction conditions (UV irradiation or mild heat). Comparative methanol oxidation reaction (MOR) in basic condition illustrates that porous platinum nanochains (Pt NCs), synthesized under heat, show 14.63 and 1.43 times higher mass activity than platinum nanoparticles (Pt NPs) and platinum nanoflowers (Pt NFs), synthesized under UV irradiation. Furthermore Pt NCs exhibit remarkable catalytic stability for MOR and also superior catalytic efficiency for formic acid oxidation (FAOR) leaving aside CO poisoning. The assembly of Pt nanowires generates porous Pt NCs which provide the oppertunity for better utilization of expensive Pt in electrocatalysis in terms of its higher mass activity and stability compared to even commercial Pt/C catalyst. Thus our proposed synthetic procedure for naked and porous platinum nanostructure foretells its practical fuel cell application

  12. Aromatic Amino Acid Mutagenesis at the Substrate Binding Pocket of Yarrowia lipolytica Lipase Lip2 Affects Its Activity and Thermostability

    Directory of Open Access Journals (Sweden)

    Guilong Wang

    2014-01-01

    Full Text Available The lipase2 from Yarrowia lipolytica (YLLip2 is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100 with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM to introduce aromatic amino acid mutations. Two mutants (V94W and I100F were created. The enzymatic properties of the mutant lipases were detected and compared with the wild-type. The activities of mutant enzymes dropped to some extent towards p-nitrophenyl palmitate (pNPC16 and their optimum temperature was 35°C, which was 5°C lower than that of the wild-type. However, the thermostability of I100F increased 22.44% after incubation for 1 h at 40°C and its optimum substrate shifted from p-nitrophenyl laurate (pNPC12 to p-nitrophenyl caprate (pNPC10. The above results demonstrated that the two substituted amino acid residuals have close relationship with such enzymatic properties as thermostability and substrate selectivity.

  13. Sulfamic acid: An efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free

    Institute of Scientific and Technical Information of China (English)

    Amin Rostami; Firoz Ahmad-Jangi

    2011-01-01

    Aromatic aldehydes undergo crossed-aldol condensation with ketones in the presence of catalytic amount of sulfamic acid (SA) to afford the corresponding α,β-unsaturated aldol products under solvent-free conditions in good to high yields at 45-80 ℃.

  14. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    Science.gov (United States)

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid. PMID:23107679

  15. Decreased serum essential and aromatic amino acids in patients with chronic pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Krystian; Adrych; Marian; Smoczynski; Magdalena; Stojek; Tomasz; Sledzinski; Ewa; Slominska; Elzbieta; Goyke; Ryszard; Tomasz; Smolenski; Julian; Swierczynski

    2010-01-01

    AIM:To investigate the influence of chronic pancreatitis(CP) on serum concentrations of amino acids.METHODS:Thirty-five male patients with alcoholic CP and 21 healthy male subjects were examined.Serum concentrations of amino acids were assayed by ionpair high-performance liquid chromatography with mass detection.RESULTS:Serum glutamate concentration was increased in CP patients as compared to controls.In contrast,serum concentrations of glutamine,histidine,tyrosine,proline,tryptophan and threonine were sign...

  16. Water-Soluble Poly(p-aryleneethynylene)s: A Sensor Array Discriminates Aromatic Carboxylic Acids.

    Science.gov (United States)

    Han, Jinsong; Wang, Benhua; Bender, Markus; Seehafer, Kai; Bunz, Uwe H F

    2016-08-10

    A chemical tongue consisting of 11 elements (four poly(p-aryleneethynylene)s (PAE) at pH 7 and pH 13, and seven electrostatic complexes formed from oppositely charged poly(p-aryleneethynylene)s at pH 7) discriminate 21 benzoic and phenylacetic acid derivatives in aqueous solution. The mechanism of discrimination is the fluorescence modulation of the PAEs, leading to quenching or fluorescence turn-on. The PAEs alone at both pH values and the tongue, consisting of the complexes only, discriminate the 21 acids with 92% (PAEs at pH 7), 95% (PAEs at pH 13), and 99% (complexes at pH 7) reliability after linear discriminant analysis (LDA). A sensor field with all 14 elements, according to LDA, discriminates all of the 21 acids with 100% accuracy. PMID:27415439

  17. Acyl Radicals from Aromatic Carboxylic Acids by Means of Visible-Light Photoredox Catalysis

    OpenAIRE

    Bergonzini, Giulia; Cassani, Carlo; Wallentin, Carl-Johan

    2015-01-01

    Simple and abundant carboxylic acids have been used as acyl radical precursor by means of visible-light photoredox catalysis. By the transient generation of a reactive anhydride intermediate, this redox-neutral approach offers a mild and rapid entry to high-value heterocyclic compounds without the need of UV irradiation, high temperature, high CO pressure, tin reagents, or peroxides.

  18. Application of HPLC capacity coefficients to characterize the sorption of polycyclic aromatic compounds to humic acid

    DEFF Research Database (Denmark)

    Nielsen, T.; Helweg, C.; Siigur, K.;

    1997-01-01

    The sorption coefficients to humic acid of 46 PAC having a wide range in polarity were compared with the capacity coefficients of the PAC to a non-polar HPLC column material (ODS) and a polar one (Diol). It is shown that polar interactions contribute to the sorption of polar PAC in addition to the...

  19. Copper Complexes of Nicotinic-Aromatic Carboxylic Acids as Superoxide Dismutase Mimetics

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2008-12-01

    Full Text Available Nicotinic acid (also known as vitamin B3 is a dietary element essential for physiological and antihyperlipidemic functions. This study reports the synthesis of novel mixed ligand complexes of copper with nicotinic and other select carboxylic acids (phthalic, salicylic and anthranilic acids. The tested copper complexes exhibited superoxide dismutase (SOD mimetic activity and antimicrobial activity against Bacillus subtilis ATCC 6633, with a minimum inhibition concentration of 256 μg/mL. Copper complex of nicotinic-phthalic acids (CuNA/Ph was the most potent with a SOD mimetic activity of IC50 34.42 μM. The SOD activities were observed to correlate well with the theoretical parameters as calculated using density functional theory (DFT at the B3LYP/LANL2DZ level of theory. Interestingly, the SOD activity of the copper complex CuNA/Ph was positively correlated with the electron affinity (EA value. The two quantum chemical parameters, highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, were shown to be appropriate for understanding the mechanism of the metal complexes as their calculated energies show good correlation with the SOD activity. Moreover, copper complex with the highest SOD activity were shown to possess the lowest HOMO energy. These findings demonstrate a great potential for the development of value-added metallovitamin-based therapeutics.

  20. Postprandial Levels of Branch Chained and Aromatic Amino Acids Associate with Fasting Glycaemia.

    Science.gov (United States)

    Ottosson, Filip; Ericson, Ulrika; Almgren, Peter; Nilsson, Jeanette; Magnusson, Martin; Fernandez, Céline; Melander, Olle

    2016-01-01

    High fasting plasma concentrations of isoleucine, phenylalanine, and tyrosine have been associated with increased risk of hyperglycaemia and incidence of type 2 diabetes. Whether these associations are diet or metabolism driven is unknown. We examined how the dietary protein source affects the postprandial circulating profile of these three diabetes associated amino acids (DMAAs) and tested whether the postprandial DMAA profiles are associated with fasting glycaemia. We used a crossover design with twenty-one healthy individuals and four different isocaloric test meals, containing proteins from different dietary sources (dairy, fish, meat, and plants). Analysis of the postprandial DMAAs concentrations was performed using targeted mass spectrometry. A DMAA score was defined as the sum of all the three amino acid concentrations. The postprandial area under the curve (AUC) of all the three amino acids and the DMAA score was significantly greater after intake of the meal with dairy protein compared to intake of the three other meals. The postprandial AUC for the DMAA score and all the three amino acids strongly associated with fasting glucose level and insulin resistance. This indicates the importance of the postprandial kinetics and metabolism of DMAAs in understanding the overall association between DMAAs and glycaemia. PMID:27274867

  1. Two new Zn(II) coordination polymers based on mixed pipemidic acid and flexible aromatic dicarboxylic acid ligands: Syntheses, crystal structures and luminescent properties

    Science.gov (United States)

    Jia, Yanxia; Zhou, Pingping

    2016-09-01

    Two new Zn(II) coordination polymers, namely [Zn(4,4‧-sdb) (HPPA)]n (1) and [Zn(2,2‧-bpdc)0.5(PPA)]n (2) (4,4‧-H2sdb = 4,4‧-sulfonyldibenzoate, 2,2‧-H2bpdc = 2,2‧-biphenyldicarboxylic acid, HPPA = pipemidic acid) were successfully obtained under hydrothermal conditions. These two compounds were further characterized by single-crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction (PXRD) analyses and IR spectra. Compound 1 features a 1D chain structure, which further extended into a 3D supramolecular framework via intermolecular hydrogen bonds and weak van der Waals interactions, and compound 2 features a 3D framework with 6-connected α-Po-type topology. The structural regulation for these two compounds was successfully achieved by changing the flexible aromatic dicarboxylic acid ligand. Moreover, the thermal stabilities and luminescent properties for these two compounds were also investigated.

  2. Studies on intracellular transport in the rat exocrine pancreas. I. Inhibition by aromatic amino acids in vitro.

    Science.gov (United States)

    Bieger, W; Kern, H F

    1975-09-18

    In vitro incubation of rat pancreatic lobules in the presence of 10 mM concentrations of 2 natural (phenylalanine, tryptophane) and 2 modified aromatic amino acids (p-fluorophenylalanine, p-chlorophenylalanine) induces paracrystal formation in the cisternal space of the rough endoplasmic reticulum and in the acinar lumen. Aggregation of secretory material in transitional elements of the rough endoplasmic reticulum suggests tubular connection to the Golgi complex. Paracrystal formation is correlated with a disturbance of the three major phases in the secretory process of the exocrine cell. Incorporation of radioactive amino acids into proteins is inhibited by 10 mM concentrations of phenylalanine and tryptophane by 20 and 50% respectively and by p-chlorophenylalanine at 1 and 10 mM concentrations by 50 and 75%. The inhibition of protein synthesis is not due to a reduced intracellular concentration of radioactive precursor amino acids. Intracellular transport of newly synthesized proteins as studied by a radioassay for zymogen discharge and by cell fractionation is similarly inhibited by phenylalanine, tryptophane and p-chlorophenylalanine at 10 mM concentrarions (20, 30, and 40% respectively). Discharge of zymogens as measured by the secretion of amylase stimulated with 5 X 10(-6) M carbamylcholine is reduced by 20% if 10 mM concentrations of phenylalanine, tryptophane or p-chlorophenylalanine are present in the medium. Paracrystals were isolated by differential centrifugation and their protein content compared with isolated zymogen granules. On sodium dodecylsulfate gel electrophoresis paracrystalline proteins show the same electrophoretic pattern as the content of zymogen granules. PMID:809912

  3. High levels of aromatic amino acids in gastric juice during the early stages of gastric cancer progression.

    Directory of Open Access Journals (Sweden)

    Kai Deng

    Full Text Available BACKGROUND: Early-stage gastric cancer is mostly asymptomatic and can easily be missed easily by conventional gastroscopy. Currently, there are no useful biomarkers for the early detection of gastric cancer, and their identification of biomarkers is urgently needed. METHODS: Gastric juice was obtained from 185 subjects that were divided into three groups: non-neoplastic gastric disease (NGD, advanced gastric cancer and early gastric cancer (EGC. The levels of aromatic amino acids in the gastric juice were quantitated using high-performance liquid chromatography. RESULTS: The median values (25th to 75th percentile of tyrosine, phenylalanine and tryptophan in the gastric juice were 3.8 (1.7-7.5 µg/ml, 5.3 (2.3-9.9 µg/ml and 1.0 (0.4-2.8 µg/ml in NGD; 19.4 (5.8-72.4 µg/ml, 24.6 (11.5-73.7 µg/ml and 8.3 (2.1-28.0 µg/ml in EGC. Higher levels of tyrosine, phenylalanine and tryptophan in the gastric juice were observed in individuals of EGC groups compared those of the NGD group (NGD vs. EGC, P<0.0001. For the detection of EGC, the areas under the receiver operating characteristic curves (AUCs of each biomarker were as follows: tyrosine, 0.790 [95% confidence interval (CI, 0.703-0.877]; phenylalanine, 0.831 (95% CI, 0.750-0.911; and tryptophan, 0.819 (95% CI, 0.739-0.900. The sensitivity and specificity of phenylalanine were 75.5% and 81.4%, respectively, for detection of EGC. A multiple logistic regression analysis showed that high levels of aromatic amino acids in the gastric juice were associated with gastric cancer (adjusted β coefficients ranged from 1.801 to 4.414, P<0.001. CONCLUSION: Increased levels of tyrosine, phenylalanine and tryptophan in the gastric juice samples were detected in the early phase of gastric carcinogenesis. Thus, tyrosine, phenylalanine and tryptophan in gastric juice could be used as biomarkers for the early detection of gastric cancer. A gastric juice analysis is an efficient, economical and convenient method for

  4. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Elstone, Fisal D; Niciforovic, Ana P; Galpin, Jason D; Yang, Runying; Kurata, Harley T; Ahern, Christopher A

    2014-01-01

    largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The......Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain...... functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the...

  5. Radiation-induced crosslinking between poly(deoxyadenylic-deoxythymidylic acid) and tripeptides containing aromatic residues

    International Nuclear Information System (INIS)

    OH radical-induced covalent peptide-nucleotide adducts have been isolated by reverse-phase chromatography from the enzymic hydrolyzates of gamma-ray irradiated solutions containing double-stranded poly(deoxyadenylic-deoxythymidylic acid) and one of the tripeptides, lysyl-tryptophyl-lysine or lysyl-tyrosyl-lysine. Numerous compounds were formed, resulting presumably from different modes of radical addition. All isomers appeared to have the same general structure peptide-d(ApTpA), based mostly on double-labelling experiments of bases and phosphate groups in DNA. The major adduct fraction obtained from Lys-Trp-Lys and poly(dA-dT) was purified to homogeneity by sequential reverse-phase and ion-exchange chromatography, and characterized spectrally. The pattern of acid and alkaline hydrolysis suggests that thymine is the site of peptide-nucleotide binding in this particular adduct fraction. (author)

  6. Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the Acid-Catalyzed Depolymerization of Lignin

    NARCIS (Netherlands)

    Deuss, Peter J.; Scott, Martin; Tran, Fanny; Westwood, Nicholas J.; De Vries, Johannes G.; Barta, Katalin

    2015-01-01

    Conversion of lignin into well-defined aromatic chemicals is a highly attractive goal but is often hampered by recondensation of the formed fragments, especially in acidolysis. Here, we describe new strategies that markedly suppress such undesired pathways to result in diverse aromatic compounds pre

  7. Ascorbic acid enhances the accumulation of polycyclic aromatic hydrocarbons (PAHs in roots of tall fescue (Festuca arundinacea Schreb..

    Directory of Open Access Journals (Sweden)

    Yanzheng Gao

    Full Text Available Plant contamination by polycyclic aromatic hydrocarbons (PAHs is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA significantly reduced the activities of peroxidase (POD and polyphenol oxidase (PPO, thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.. POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP, phenanthrene (PHE and anthracene (ANT. The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality.

  8. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.

    Directory of Open Access Journals (Sweden)

    Yun-An Chen

    Full Text Available Mercury (Hg is a serious environmental pollution threat to the planet. The accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. To gain more insight into the cellular response to Hg, we performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Moreover, Hg stress upregulated several genes involved in aromatic amino acids (Phe and Trp and increased the level of free Phe and Trp content. Exogenous application of Phe and Trp to rice roots enhanced tolerance to Hg and effectively reduced Hg-induced production of reactive oxygen species. Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the Hg-responsive genes we identified may be helpful for better understanding the mechanisms of Hg in plants.

  9. Photochemistry of aromatic ketones in sodium dodecyl sulphate micelles in the presence of unsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    DEJAN Z. MARKOVIC

    2004-02-01

    Full Text Available Laser-flash photolysis has been employed to characterize the behaviour of the free radicals created in the photochemical reaction of benzophenone (BZP, as well as of its lipoidal derivative, benzophenone-4-heptyl-4’-pentanoic acid (BHPA, with chosen unsaturated fatty acids in sodium dodecyl sulphate micelles. The calculated rate constants were used to study the “cage effect”, i.e., the recombination of the created radical-pairs (BZP, BHPA ketyl radical - lipid radical inside the highly limited space of the SDS micelles. The “cage effect” appears to be the dominant event inside SDS micelles, dependent on the structure of both the reactants-precursors. The fractions of the initially created radical-pairs which escape the “cage effect” and exit into the surrounding aqueous phase do not exceed 16 %. This fact is of enormous importance for the self-control of the pathogenic process of lipid peroxidation.

  10. The effect of sorption on the degradation of aromatic acids and bases

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound's binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  11. The effect of sorption on the degradation of aromatic acids and bases

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound`s binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  12. Computational Study on the Acid Catalyzed Reactions of Fluorine-Containing 2,4-Dialkoxy-3,4-dihydro-2H-pyrans with Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Norio Ota

    2012-02-01

    Full Text Available The reaction of 2,4-diethoxy-6-trifluoromethyl-3,4-dihydro-2H-pyran (1 with aromatic compounds in refluxing acetonitrile in the presence of p-toluenesulfonic acid gave the mixture of 4-aryl-2-trifluoromethyl-4H-pyrans (3 and 6-aryl-1,1,1-trifluorohexa-3,5-dien-2-ones (4. In contrast, the same reaction carried out in trifluoroacetic acid at ambient temperature afforded 4-aryl-2-ethoxy-6-trifluoromethyl-3,4-dihydro-2H-pyrans (2 selectively. These two types of reactions giving quite different products under each condition were studied on the basis of DFT calculations. Moreover, the proposed mechanism for the reaction of 5-trifluoroacetyl-6-trifluoromethyl-3,4-dihydro-2H-pyran (5 with aromatic compounds affording butadiene derivatives (6 exclusively was also discussed based on the calculations and comparison with the reactivity of pyrylium intermediate (7.

  13. Electrochemical-Voltammetry Behavior of Several Aromatic Aldehydes in Acid Solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The electrochemical-voltammetry behavior of vanillin, heliotropin, anisaldehyde on the surface ofPt, Au electrodes in acid solution has been studied by means of the electrochemical cyclic voltammetry method. I was found that the electrochemical processes of them are irreversible on both Pt and Au elec-trodes. The electrochemical activity of vanillin is stronger than heliotropin's and heliotropin's is stronger than, anisaldehyde's on Pt electrode. While the electrochemical activity of anisaldehyde is stronger than heliotropin's and vanillin's is the weakest on Au. The results indicate that when they are used as additives for electroplating, they must be consumptive, and it will improve the leveling ability of plating solution and brightness of the deposition layer.

  14. Triple-helical collagen hydrogels via covalent aromatic functionalization with 1,3-Phenylenediacetic acid

    CERN Document Server

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2013-01-01

    Chemical crosslinking of collagen is a general strategy to reproduce macroscale tissue properties in physiological environment. However, simultaneous control of protein conformation, material properties and biofunctionality is highly challenging with current synthetic strategies. Consequently, the potentially-diverse clinical applications of collagen-based biomaterials cannot be fully realised. In order to establish defined biomacromolecular systems for mineralised tissue applications, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) and investigated at the molecular, macroscopic and functional levels. Preserved triple helix conformation was observed in obtained covalent networks via ATR-FTIR and WAXS, while network crosslinking degree could be adjusted based on specific reaction conditions. Decreased swelling ratio and increased thermo-mechanical properties were observed compared to state of-the-art carbodiimide (EDC)-crosslinked collagen controls, likely related to the intermolecular ...

  15. Knoevenagel condensation of α,β-unsaturated aromatic aldehydes with barbituric acid under non-catalytic and solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An efficient route for the synthesis of 5-(arylpropenylidine)-2,4,6-pyrimidinetrione 3 from an appropriate α,β-unsaturated aromatic aldehydes 1 and barbituric acid 2 under both non-catalytic and solvent-free microwave irradiation conditions was described. In this way, a range of biologically important compounds 3 was obtained in good to excellent yields (86-98 %) in a very short reaction time (30-80 s).

  16. Self-assembly of monolayers of aromatic carboxylic acid molecules on silver and copper modified gold surfaces at the liquid-solid interface

    OpenAIRE

    Aitchison, Hannah

    2015-01-01

    Exploiting coordination bonding of aromatic carboxylic acids at metal surfaces, this thesis explores new directions in the design and application of self-assembled monolayers (SAMs). The SAMs are investigated using a multi-technique approach comprising of a complementary combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, the X-ray standing wave technique (XSW) was used to ...

  17. VO(acac)2 catalyzed condensation of o-phenylenediamine with aromatic carboxylic acids/aldehydes under microwave radiation affording benzimidazoles

    Institute of Scientific and Technical Information of China (English)

    Madhudeepa Dey; Krishnajyoti Deb; Siddhartha Sankar Dhar

    2011-01-01

    Vanadyl acetylacetonate, VO(acac)2, has been found to be very effective catalyst for synthesis of a variety of benzimidazoles under solvent-free condition. The methodology involves the exposure of a mixture of o-phenylenediamine and a selected aromatic carboxylic acid/aldehyde to microwave radiation without the use of any solvent or supporting agents. The benzimidazoles were obtained in quick time with high yields.

  18. Polyethylene Glycols as Efficient Media for Decarboxylative Nitration of α,β-Unsaturated Aromatic Carboxylic Acids by Ceric Ammonium Nitrate in Acetonitrile Medium: A Kinetic and Mechanistic Study

    OpenAIRE

    K.Ramesh; S. Shylaja; K. C. Rajanna; P. Giridhar Reddy; P. K. Saiprakash

    2013-01-01

    Polyethylene glycols (PEGs) were found to be efficient media for decarboxylative nitration of α,β-unsaturated aromatic carboxylic acids by ceric ammonium nitrate (CAN) in acetonitrile to give β-nitrostyrene derivatives. Kinetics of the reaction exhibited second order kinetics with a first order dependence on [CAN] and [substrate]. Reactions were too sluggish to be studied in the absence of PEG; therefore detailed kinetics were not taken up. Reaction times were reduced from 24 hrs to few hours...

  19. One-pot synthesis of fully substituted 1,3,4-oxadiazole derivatives from aromatic carboxylic acids, cyclobutanone and N-isocyaniminotriphenylphosphorane

    OpenAIRE

    HOLAGH, Mohsen VALIZADEH; MAHARRAMOV, Abel Mohammadali oglu

    2012-01-01

    Reactions of N-isocyaniminotriphenylphosphorane with cyclobutanone in the presence of aromatic (or heteroaromatic) carboxylic acids proceeded smoothly at room temperature and in neutral conditions to afford sterically congested 1-(5-aryl-1,3,4-oxadiazol-2-yl)- 1-cyclobutanol derivatives in high yields. The reaction proceeded smoothly and cleanly under mild conditions and no side reactions were observed. The structures of the products were deduced from their IR, 1HNMR, and 13CNMR spec...

  20. [Neurochemical study of effects of the new anxiolytic drugs afobazol and ladasten on the synthesis and metabolism of monoamines and their metabolites in the brain structures of Wistar rat on the model of monoamine synthesis blockade induced by aromatic amino acid decarboxylase inhibitor NSD-1015].

    Science.gov (United States)

    Davydova, A I; Klodt, P M; Kudrin, V S; Kuznetsova, E A; Narkevich, V B

    2010-03-01

    Results of a neurochemical study of the effects of the new anxiolytic drugs afobazole and ladasten on the synthesis and metabolism of monoamines and their metabolites determined by HPLC on the model of monoamine synthesis blockade induced by NSD-1015 (aromatic L-amino acid decarboxylase) in the brain structures of Wistar rats are reported. A decrease in the levels of DOPAC in hypothalamus and HVA in striatum after afobazole injection may be evidence of an inhibitory action of this drug on the activity of monoamine oxidase (MAO-A), which is the main enzyme involved in dopamine biodegradation. Afobazole was also found to increase the content of serotonin (5-HT) as well as its precursor (5-OTP) and its main metabolite (5-HIAA) in hypothalamus by up to 50, 60 and 50%, respectively, which confirms a hypothesis that this anxiolytic drug can modulate the activity of tryptophan hydroxylase (5-OTP synthesis enzyme). In contrast to afobazole, ladasten demonstrated the ability to increase the level of L-DOPA (a dopamine precursor) in virtually all functional structures of the brain (except for hippocamp), which may support the hypothesis suggestion concerning a predominant action of this drug on the activity of tyrosine hydroxylase. Ladasten exhibited selectivity with respect to the dopaminergic system and affected only parameters of the dopamine metabolism, in particular, by increasing the HVA content in nucleus accumbens and decreasing it in the hypothalamus. The drug also affected the dopamine turnover parameters, producing an increase in both HVA/dopamine ratio in nucleus accumbens and DOPAC/dopamine ratio in hippocamp. PMID:20408420

  1. Evaluation of Aromatic Boronic Acids as Ligands for Measuring Diabetes Markers on Carbon Nanotube Field-Effect Transistors

    OpenAIRE

    Steingrimur Stefansson; Lára A. Stefansson; Suk-won Chung; Kevin Ko; Hena H. Kwon; Saeyoung Nate Ahn

    2012-01-01

    Biomolecular detections performed on carbon nanotube field-effect transistors (CNT-FETs) frequently use reactive pyrenes as an anchor to tether bioactive ligands to the hydrophobic nanotubes. In this paper, we explore the possibility of directly using bioactive aromatic compounds themselves as CNT-FET ligands. This would be an efficient way to functionalize CNT-FETs since many aromatic compounds bind avidly to nanotubes, and it would also ensure that ligand-binding molecules would be brought ...

  2. Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes

    Directory of Open Access Journals (Sweden)

    Kundu Kshama

    2014-01-01

    Full Text Available (±-Camphor-10-sulfonic acid (CSA catalyzed condensation of 2-naphthol with both aliphatic/aromatic aldehydes at 80°C yielded 14-alkyl/aryl-dibenzoxanthenes as the sole product in high yields. However, the same condensation with benzaldehyde at 25°C afforded a mixture of intermediate 1,1-bis-(2-hydroxynaphthylphenylmethane and 14-phenyl-dibenzoxanthene while the condensation with aliphatic aldehydes at 25°C furnished the corresponding 14-alkyl-dibenzoxanthenes as the sole product. Moreover, condensation of 2-naphthol with aromatic/aliphatic aldehydes with low catalyst loading (2 mol% was greatly accelerated under microwave irradiation to afford the corresponding 14-aryl/alkyl-dibenzoxanthenes as the sole product in high yields.

  3. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    Science.gov (United States)

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (

  4. Auxiliary aromatic-acid effect on the structures of a series of ZnII coordination polymers: Syntheses, crystal structures, and photoluminescence properties

    International Nuclear Information System (INIS)

    Five novel ZnII-(pyridyl)imidazole derivative coordination polymers, [Zn(L)2] (1), [Zn2(μ3-OH)L(m-BDC)] (2), [Zn2(μ3-OH)L(p-BDC)].H2O (3), [Zn2L(BTC)(H2O)].2.5H2O (4) and [Zn3.5(μ3-OH)L2(BTEC)(H2O)].H2O (5) (L=4-((2-(pyridine-2-yl)-1H-imidazol-1-yl)methyl)benzoic acid, p-H2BDC=1,4-benzenedicarboxylic acid, m-H2BDC=1,3-benzenedicarboxylic acid, H3BTC=1,3,5-benzenetricarboxylic acid, H4BTEC=1,2,4,5-benzenetetracarboxylic acid), were successfully synthesized under hydrothermal conditions through varying auxiliary aromatic-acid ligands and structurally characterized by X-ray crystallography. Compound 1 exhibits a 1D chain linked via double L bridges. Compound 2 features a well-known pcu topology with bent dicarboxylate ligand (m-H2BDC) as an auxiliary ligand, while 3 displays a bcu network with linear dicarboxylate ligand (p-H2BDC) as an auxiliary ligand. The structure of compound 4 is a novel 3D (3,5)-connected network with (4.62)(4.64.82.10.122) topology. It is interesting that compound 5 shows an intricate (3,4,8)-connected framework with (4.62)(42.63.8)(42.64)(42.618.7.86.10) topology. In addition, their infrared spectra (IR), X-ray powder diffraction (XPRD) and photoluminescent properties were also investigated in detail. - Graphical abstract: Five novel ZnII-organic architectures have been hydrothermally synthesized through varying auxiliary aromatic-acid ligands and characterized by X-ray diffraction, the photoluminescence properties of compounds 1-5 were studied.

  5. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    Science.gov (United States)

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. PMID:26529362

  6. Determination of aromatic and sulfur-containing amino acids, peptides, and proteins using high-performance liquid chromatography with photolytic electrochemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Lin; Krull, I.S. (Northeastern Univ., Boston, MA (USA))

    1990-12-01

    Aromatic amino acids, sulfur-containing amino acids, peptides containing such constituents, and proteins can now be detected in high-performance liquid chromatography by the use of on-line, postcolumn, continuous photolytic derivatization with electrochemical (HPLC-h{nu}-EC) detection. The overall approach is a very simple, reproducible, rapid, and fully automatable approach for the determination of certain amino acids, peptides, and proteins with excellent selectivity, sensitivity, and linearities of response. Dual-electrode response ratios, lamp-on/lamp-off behavior, and chromatographic capacity factors all contribute to the enhanced selectivity of the overall HPLC-h{nu}-EC determination for these particular classes of bioorganics and biopolymers. The analytical figures of merit, chromatography detection, and method validation approaches have all be optimally derived and demonstrated reproducible. Applications of the basic methodology to real-world samples are demonstrated and validated.

  7. Chemical design of pH-sensitive nanovalves on the outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid

    Science.gov (United States)

    Roik, N. V.; Belyakova, L. A.

    2014-07-01

    Mesoporous silicas with hexagonally arranged pore channels were synthesized in water-ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N‧-(N‧-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequent delivery at pH=6.86 and pH=1.00. It was found that N-[N‧-(N‧-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels.

  8. Advanced model compounds for understanding acid catalyzed lignin depolymerization : identification of renewable aromatics and a lignin-derived solvent

    NARCIS (Netherlands)

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-01-01

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the use of lignin streams directly, poses significant analytical challenge

  9. Polyimidazoles via aromatic nucleophilic displacement

    Science.gov (United States)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1992-01-01

    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  10. Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions.

    Science.gov (United States)

    Tang, Sheng; Lee, Hian Kee

    2013-08-01

    Three types of magnesium-aluminum layered double hydroxides were synthesized and employed as solid-phase extraction (SPE) sorbents to extract several aromatic acids (protocatechuic acid, mandelic acid, phthalic acid, benzoic acid, and salicylic acid) from aqueous samples. An interesting feature of these sorbents is that they dissolve when the pH of the solution is lower than 4. Thus, the analyte elution step, as needed in conventional sorbent-based extraction, was obviated by dissolving the sorbent in acid after extraction and separation from the sample solution. The extract was then directly injected into a high-performance liquid chromatography-ultraviolet detection system for analysis. In the key adsorption process, both dispersive SPE and co-precipitation extraction with the sorbents were conducted and experimental parameters such as pH, temperature, and extraction time were optimized. The results showed that both extraction methods provided low limits of detection (0.03-1.47 μg/L) and good linearity (r(2) > 0.9903). The optimized extraction conditions were applied to human urine and sports drink samples. This new and interesting extraction approach was demonstrated to be a fast and efficient procedure for the extraction of organic anions from aqueous samples. PMID:23855757

  11. Chemical design of pH-sensitive nanovalves on the outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid

    International Nuclear Information System (INIS)

    Mesoporous silicas with hexagonally arranged pore channels were synthesized in water–ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequent delivery at pH=6.86 and pH=1.00. It was found that N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels. - Graphical abstract: Blocking of pores with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups at pH=6.86 for storage of ABA and opening of pore entrances at pH=1.00 for unhindered ABA liberation. - Highlights: • Modification of MCM-41 with N-[N -(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups. • Study of release ability of synthesized silica carriers in relation to amino acid. • Controlled blocking and opening of pores by amino groups at pH change were performed. • Retention of amino acid at pH=6.86 and its liberation at pH=1.00 was proved

  12. Chemical design of pH-sensitive nanovalves on the outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.

    2014-07-01

    Mesoporous silicas with hexagonally arranged pore channels were synthesized in water–ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequent delivery at pH=6.86 and pH=1.00. It was found that N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels. - Graphical abstract: Blocking of pores with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups at pH=6.86 for storage of ABA and opening of pore entrances at pH=1.00 for unhindered ABA liberation. - Highlights: • Modification of MCM-41 with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups. • Study of release ability of synthesized silica carriers in relation to amino acid. • Controlled blocking and opening of pores by amino groups at pH change were performed. • Retention of amino acid at pH=6.86 and its liberation at pH=1.00 was proved.

  13. Beta-ketoadipic acid and muconolactone production from a lignin-related aromatic compound through the protocatechuate 3,4-metabolic pathway.

    Science.gov (United States)

    Okamura-Abe, Yuriko; Abe, Tomokuni; Nishimura, Kei; Kawata, Yasutaka; Sato-Izawa, Kanna; Otsuka, Yuichiro; Nakamura, Masaya; Kajita, Shinya; Masai, Eiji; Sonoki, Tomonori; Katayama, Yoshihiro

    2016-06-01

    In this work, the effects of PcaJ (beta-ketoadipate:succinyl-coenzyme A transferase)- and PcaD (beta-ketoadipate enol-lactone hydrolase)-inactivation on protocatechuic acid metabolism in Pseudomonas putida KT2440 were evaluated. Beta-ketoadipic acid was produced from protocatechuic acid by the inactivation of PcaJ as expected; however, a portion of the produced beta-ketoadipic acid was converted to levulinic acid through a purification step consisting of extraction from the culture and recrystallization. On the other hand, muconolactone was purified from the culture of the PcaD-inactivated mutant of KT2440, although beta-ketoadipate enol-lactone was supposed to be produced because it is the substrate of PcaD. Under aerobic conditions, it has been reported that lignin-related aromatics are metabolized through PCA 2,3- or 3,4- or 4,5-ring cleavage pathways, and muconolactone is an intermediate observed in the metabolism of catechol, not protocatechuic acid. Our results will provide a prospective route to produce muconolactone with a high yield through the protocatechuate-3,4-metabolic pathway. PMID:26723258

  14. Synthesis and characterization of heat-resistant and soluble poly(amide-imide)s from unsymmetrical dicarboxylic acid containing 2-(triphenyl phosphoranylidene) moiety and various aromatic diamines

    Indian Academy of Sciences (India)

    Seema Agrawal; Anudeep Kumar Narula

    2015-04-01

    An unsymmetrical and non-coplaner heterocyclic phosphorus containing dicarboxylic acid monomer, (DCA-3) is successfully synthesized with high purity. A series of novel aromatic poly(amide-imide)s having ether or/sulphur or/fluorine or/phosphorus containing phenyl moieties in their backbone are then prepared via a direct phosphorylation polycondensation of synthesized dicarboxylic acid with various aromatic diamines. Chemical structures of DCA-3 as well as resulting polymers are confirmed by FT-IR, NMR spectroscopic techniques and elemental analysis. These polymers are readily soluble in a variety of aprotic polar solvents such as NMP, DMSO, DMAc and DMF, etc. UV spectra showed that all poy(amide-imide)s films exhibit high optical transparency. In addition, the glass transition temperatures (Tg) of these polymers were determined by differential scanning calorimetry and found in the range 271–346°C. Furthermore, thermogravimetric analysis of these polymers showed good thermal stability, 10% weight loss at temperature in excess of 538°C and char yield at 700°C in nitrogen ranging from 68 to 79%. From wide-angle X-ray diffraction experiments, all polymers showed amorphous behaviour.

  15. The Antifungal Eugenol Perturbs Dual Aromatic and Branched-Chain Amino Acid Permeases in the Cytoplasmic Membrane of Yeast

    OpenAIRE

    Emad Darvishi; Mansoor Omidi; Ali Akbar Shahnejat Bushehri; Ashkan Golshani; Smith, Myron L.

    2013-01-01

    Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s) remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targe...

  16. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen.

    Science.gov (United States)

    Luo, Jingyang; Chen, Yinguang; Feng, Leiyu

    2016-07-01

    Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid. PMID:27267805

  17. A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids

    OpenAIRE

    Navab, Mohamad; Ruchala, Piotr; Alan J Waring; Lehrer, Robert I.; Hama, Susan; Hough, Greg; Palgunachari, Mayakonda N.; Anantharamaiah, G.M.; Fogelman, Alan M.

    2009-01-01

    Administered subcutaneously, D-4F or L-4F are equally efficacious, but only D-4F is orally efficacious because of digestion of L-4F by gut proteases. Orally administering niclosamide (a chlorinated salicylanilide used as a molluscicide, antihelminthic, and lampricide) in temporal proximity to oral L-4F (but not niclosamide alone) in apoE null mice resulted in significant improvement (P < 0.001) in the HDL-inflammatory index (HII), which measures the ability of HDL to inhibit LDL-induced monoc...

  18. Side-chain dynamics of two aromatic amino acids in pancreatic phospholipase A2 as studied by deuterium nuclear magnetic resonance

    International Nuclear Information System (INIS)

    The flexibility of individual amino acid side chains of pancreatic phospholipase A2 in aqueous and micellar solutions was studied with deuterium nuclear magnetic resonance (2H NMR). Bovine pancreatic phospholipase A2 was selectively deuterated at the aromatic ring systems of Trp-3 and Phe-5 and porcine pancreatic phospholipase A2 at Trp-3 only. Solid-state 2H NMR spectra of the lyophilized enzymes exhibited quadrupole splittings on the order of 130 kHz, indicating almost complete immobilization of the aromatic ring systems. Exposure to a water-saturated atmosphere did not remove these steric constraints. However, side-chain mobility could be induced for the tryptophyl residue of the bovine enzyme by dissolving this enzyme in aqueous buffer or micellar solution whereas the phenyl ring always remained immobile and served as a probe for the protein's overall rotation. Typical correlation times for the tryptophyl and phenyl aromatic ring systems in aqueous solution were 7 ps and 13 ns (at 20 degrees C), respectively. The correlation time of the phenyl ring was longer than expected for the monomeric protein (approximately 6 ns), suggesting some aggregation of the protein at the high concentrations used for the NMR measurements. Addition of a micellar solution of oleoylphosphocholine had no influence on the motional freedom of the tryptophyl residue but approximately doubled the correlation time of the phenyl ring, indicating an increase of the effective volume of the tumbling particle due to lipid-protein interaction. A different behavior was observed for the Trp-3 residue of porcine phospholipase A2

  19. Silver-Ion Solid Phase Extraction Separation of Classical, Aromatic, Oxidized, and Heteroatomic Naphthenic Acids from Oil Sands Process-Affected Water.

    Science.gov (United States)

    Huang, Rongfu; Chen, Yuan; Gamal El-Din, Mohamed

    2016-06-21

    The separation of classical, aromatic, oxidized, and heteroatomic (sulfur-containing) naphthenic acid (NA) species from unprocessed and ozone-treated oil sands process-affected water (OSPW) was performed using silver-ion (Ag-ion) solid phase extraction (SPE) without the requirement of pre-methylation for NAs. OSPW samples before SPE and SPE fractions were characterized using ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry (UPLC-IM-TOFMS) to corroborate the separation of distinct NA species. The mass spectrum identification applied a mass tolerance of ±1.5 mDa due to the mass errors of NAs were measured within this range, allowing the identification of O2S-NAs from O2-NAs. Moreover, separated NA species facilitated the tandem mass spectrometry (MS/MS) characterization of NA compounds due to the removal of matrix and a simplified composition. MS/MS results showed that classical, aromatic, oxidized, and sulfur-containing NA compounds were eluted into individual SPE fractions. Overall results indicated that the separation of NA species using Ag-ion SPE is a valuable method for extracting individual NA species that are of great interest for environmental toxicology and wastewater treatment research, to conduct species-specific studies. Furthermore, the separated NA species on the milligram level could be widely used as the standard materials for environmental monitoring of NAs from various contamination sites. PMID:27183033

  20. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Marie Stiborová

    2014-06-01

    Full Text Available This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI, to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(PH:quinone oxidoreductase (NQO1 and cytochromes P450 (CYP 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs and sulfotransferases (SULTs to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals. For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction.

  1. Sequential determination of metabolites involved in the biosynthesis of aromatic amino acids after ultrasound-assisted extraction from plants and reverse LC separation.

    Science.gov (United States)

    Alcaide-Molina, Miguel; Priego-Capote, Feliciano; Luque de Castro, María Dolores

    2013-02-15

    A dual method is proposed for the determination of metabolites involved in the shikimate pathway which are biomarkers of the effects of glyphosate action on plants exposed to this herbicide. Extraction of the target metabolites (phenylalanine, tryptophan, tyrosine and shikimic acid) from a wheat model plant was accelerated by ultrasound energy. After centrifugation and micro-filtration, 1 μL of extract was injected into the chromatograph in an isocratic regime for 4 min to determine shikimate by absorption at 254 nm. In the mean time, a 130 μL aliquot of extract was subjected to derivatization with o-phthaldialdehyde and 2-mercaptoethanol for 1 min, the reaction stopped and 1 μL of the solution chromatographied in a gradient regime prior to laser-induced fluorescence detection of the derivatized amino acids. The characterization of the dual method provided limits of detection around 0.03 μg mL(-1) for the aromatic amino acids and 1.52 μg mL(-1) for shikimate, whereas the limits of quantitation ranged between 0.084 and 0.093 μg mL(-1) for amino acids and was of 4.56 μg mL(-1) for shikimate. The suitability of the method was checked by application to Triticum aestivum (wheat) plants grown under controlled conditions, sprayed with different doses of glyphosate and collected at different times after exposition to the herbicide. PMID:23598041

  2. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    Science.gov (United States)

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects. PMID:27392152

  3. Polyethylene Glycols as Efficient Media for Decarboxylative Nitration of α,β-Unsaturated Aromatic Carboxylic Acids by Ceric Ammonium Nitrate in Acetonitrile Medium: A Kinetic and Mechanistic Study

    Directory of Open Access Journals (Sweden)

    K. Ramesh

    2013-01-01

    Full Text Available Polyethylene glycols (PEGs were found to be efficient media for decarboxylative nitration of α,β-unsaturated aromatic carboxylic acids by ceric ammonium nitrate (CAN in acetonitrile to give β-nitrostyrene derivatives. Kinetics of the reaction exhibited second order kinetics with a first order dependence on [CAN] and [substrate]. Reactions were too sluggish to be studied in the absence of PEG; therefore detailed kinetics were not taken up. Reaction times were reduced from 24 hrs to few hours. The catalytic activity was found to be in the increasing order PEG-300 > PEG-400 > PEG-600 > PEG-200. Mechanism of PEG-mediated reactions was explained by Menger-Portnoy's scheme as applied in micellar kinetics.

  4. Formation of C═C bond via knoevenagel reaction between aromatic aldehyde and barbituric acid at liquid/HOPG and vapor/HOPG interfaces.

    Science.gov (United States)

    Geng, Yanfang; Dai, Hongliang; Chang, Shaoqing; Hu, Fangyun; Zeng, Qingdao; Wang, Chen

    2015-03-01

    Controlling chemical reactions on surface is of great importance to constructing self-assembled covalent nanostructures. Herein, Knoevenagel reaction between aromatic aldehyde compound 2,5-di(5-aldehyde-2-thienyl)-1,4-dioctyloxybenzene (PT2) and barbituric acid (BA) has been successfully performed for the first time at liquid/HOPG interface and vapor/HOPG interface. The resulting surface nanostructures and the formation of C═C bond are recorded through scanning tunneling microscopy (STM), and confirmed by attenuated total reflectance Fourier-transform infrared (ATR/FT-IR) spectrometer and UV-vis absorption. The obtained results reveal that Knoevenagel condensation reaction can efficiently occur at both interfaces. This surface reaction would be an important step toward further reaction to produce innovative conjugated nanomaterial on the surface. PMID:25664650

  5. Substrate specific hydrolysis of aromatic and aromatic-aliphatic esters in orchid tissue cultures

    OpenAIRE

    Agnieszka Mironowicz; Krystyna Kukułczanka; Antoni Siewiński

    2014-01-01

    We found that tissue cultures of higher plants were able, similarly as microorganisms, to transform low-molecular-weight chemical compounds. In tissue cultures of orchids (Cymbidium 'Saint Pierre' and Dendrobium phalaenopsis) acetates of phenols and aromatic-aliphatic alcohols were hydrolyzed, whereas methyl esters of aromatic and aromatic-aliphatic acids did not undergo this reaction. Acetates of racemic aromatic-aliphatic alcohols were hydrolyzed with distinct enantiospecificity.

  6. Direct quantitative analysis of aromatic amino acids in human plasma by four-way calibration using intrinsic fluorescence: exploration of third-order advantages.

    Science.gov (United States)

    Kang, Chao; Wu, Hai-Long; Xie, Li-Xia; Xiang, Shou-Xia; Yu, Ru-Qin

    2014-05-01

    A novel intrinsic fluorescence method for the direct determination of l-phenylalanine, l-tyrosine, and l-tryptophan in human plasma is presented. By using fluorescence excitation-emission-pH-sample data array in combination with four-way calibration method based on the quadrilinear component model, the proposed approach successfully achieved quantitative analysis of the aromatic amino acids in human plasma, even in the presence of an unknown, uncalibrated serious interferent. It needs little preparation, uses the "mathematical separation" instead of "analytical separation", what makes it fast and environmentally friendly. Satisfactory results have been achieved for calibration set, validation set, and prediction set. The ranges for phenylalanine, tyrosine, and tryptophan are 2.0 × 10(3)-20.0 × 10(3), 50.0-500.0, and 20.0-200.0 ng mL(-1) respectively. Average spike recoveries (mean ± standard deviation) are 93.3 ± 7.7%, 104.3 ± 6.6%, and 99.5 ± 9.0% respectively. The real concentrations in human plasma are 10.2 ± 0.3, 6.6 ± 0.1, and 5.3 ± 0.1 μg mL(-1) respectively, which are consistent with the results obtained by LC-MS/MS method and reference values. In addition, we explored the third-order advantages through the real four-way array; it has shown that higher resolving power is one of the main advantages of higher-order tensor calibration method. These results demonstrated that the proposed method is sensitive, accurate, and efficient for direct quantitative analysis of aromatic amino acids in human plasma. PMID:24720998

  7. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Can, Mustafa [Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiğli, Izmir (Turkey); Havare, Ali Kemal [Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin (Turkey); Aydın, Hasan; Yagmurcukardes, Nesli [Izmir Institute of Technology, Material Science and Engineering, Izmir (Turkey); Demic, Serafettin [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey); Icli, Sıddık [Ege University, Solar Energy Institute, Izmir (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  8. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  9. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    Science.gov (United States)

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts. PMID:24910972

  10. Structure and photoluminescence property of complexes of aromatic carboxylic acid-functionalized polysulfone with Eu(Ⅲ) and Tb(Ⅲ)

    International Nuclear Information System (INIS)

    With chloromethylated polysulfone as starting substance, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polysulfone (PSF) via polymer reactions, obtaining two kinds of aromatic carboxyl acid-functionalized polysulfone, PSFNA and PSFBA. Subsequently, the luminescent binary and ternary polymer-rare earth complexes of Eu(Ⅲ) and Tb(Ⅲ) were prepared through coordination reactions, respectively, with PSFNA and PSFBA as macromolecule ligands and with 1,10-phenanthroline (Phen) and 4,4′-bipyridine (Bipy) as small-molecule co-ligands. This work focuses on investigating the relationship between structure and photoluminescence property of these complexes. The experimental results indicate that the macromolecule ligands PSFNA and PSFBA can strongly sensitize the fluorescence emissions of Eu3+ ion or Tb3+ ion, and the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions. The fluorescence emission of the binary complex PSF–(NA)3–Eu(Ⅲ) is stronger than that PSF–(BA)3–Eu(Ⅲ), suggesting the bonded ligand NA has stronger sensitization action for Eu3+ ion than ligand BA; The binary complex PSF–(BA)3–Tb(Ⅲ) emit very strong characteristic fluorescence of Tb3+ ion, displaying that ligand BA can strongly sensitize Tb3+ ion, whereas PSF–(NA)3–Tb(Ⅲ) does not emit the characteristic fluorescence of Tb3+ ion, showing that the bonded ligand NA does not sensitize Tb3+ ion. The fluorescence intensity of the ternary complexes is stronger than that of the binary complexes in the same series. The solid films of these complexes also emit the strong characteristic fluorescence of Eu3+ ion or Tb3+ ion. - Highlights: • We prepared two kinds of aromatic carboxyl acid-functionalized polysulfone, PSFNA and PSFBA via polymer reaction. • Various binary and ternary luminescent polymer-rare earth complexes of Eu(Ⅲ) and Tb (Ⅲ) were obtained. • The relationship between structure and

  11. Aromatic graphene

    Science.gov (United States)

    Das, D. K.; Sahoo, S.

    2016-04-01

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  12. Route to Renewable PET: Reaction Pathways and Energetics of Diels–Alder and Dehydrative Aromatization Reactions Between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves

    OpenAIRE

    Pacheco, Joshua J.; Labinger, Jay A.; Alex L Sessions; Davis, Mark E.

    2015-01-01

    Silica molecular sieves that have the zeolite beta topology and contain framework Lewis acid centers (e.g., Zr-β, Sn-β) are useful catalysts in the Diels–Alder and dehydrative aromatization reactions between ethylene and various renewable furans for the production of biobased terephthalic acid precursors. Here, the main side products in the synthesis of methyl 4-(methoxymethyl)benzene carboxylate that are obtained by reacting ethylene with methyl 5-(methoxymethyl)-furan-2-carboxylate are iden...

  13. Stereoselective analysis of D and L dansyl amino acids as the mixed chelate copper(II) complexes by HPLC.

    Science.gov (United States)

    Lam, S

    1984-09-01

    This paper reviews the mixed chelation approach to resolution of the optical isomers of D and L dansyl amino acids by high performance liquid chromatography. The use of eluants containing Cu(II) complexes of L-proline, L-arginine, L-histidine, and L-histidine methyl ester effected the separation of many D and L amino acids, including those with aliphatic, polar, and aromatic substituents. The mechanism of separation, which is based on the preferential ternary complex formation of the analyte amino acid and the chiral chelate with Cu(II) in the mobile phase, is discussed. The stereoselectivity depends mainly on the different steric interactions between the alkyl side chains of the amino acid analytes and the chiral ligands coordinating around Cu(II), although such parameters as pH, temperature, organic modifier, and concentration of the chiral additive also affect the chromatographic separation. Among the chiral ligands studied, L-histidine methyl ester is unique in that it possesses both achiral selectivity for the dansyl amino acids and chiral selectivity for the respective D and L enantiomers. With a mobile phase gradient of acetonitrile in a buffer containing Cu(II) L-histidine methyl ester complex, a stereoselective procedure was devised for the analysis of D and L amino acid enantiomers, achieving the separation that the current amino acid analyzer could not perform. Finally, the use of the mixed chelation approach in two biomedical studies is described. In the first application, the histidine methyl ester gradient was adapted for analyzing amino acids in cerebrospinal fluid; in the second, an L-aspartame Cu(II) complex eluant was developed for measuring the urine concentration of D and L pipecolic acid (piperidine-2-carboxylic acid), a metabolite of lysine. PMID:6490790

  14. Volatile aromatic hydrocarbons and dicarboxylic acid concentrations in air at an urban site in the Southwestern US

    Science.gov (United States)

    Tran, Ngoc K.; Steinberg, Spencer M.; Johnson, Brian J.

    Concentrations of benzene, toluene, ethylbenzene, o-xylene, and m- and p-xylene were measured at an urban sampling site in Las Vegas, NV by sorbent sampling followed by thermal desorption and determination by GC-PID. Simultaneously, measurements of oxalic, malonic, succinic, and adipic acids were made at the same site by collection on quartz filters, extraction, esterification, and determination by GC-FID. For the period from April 7, 1997 to June 11, 1997, 201 sets of hydrocarbon measurements and 99 sets of acid measurements were made. Additional measurements of dicarboxylic acids were made on samples that represented potential direct sources, e.g. green plants and road dust. Correlations between the hydrocarbon and CO concentrations (measured by the Clark County Health District at a nearby site) were highly significant and a strong negative correlation of hydrocarbon concentration with ozone concentration (also from the county site) was observed under quiescent atmospheric conditions. In general, dicarboxylic acid concentrations were well correlated with one another (with the exception of adipic acid) but not well correlated with hydrocarbon, CO, and ozone concentrations. Multiple sources and complex formation processes are indicated for the dicarboxylic acids.

  15. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan [Institute of Zoology, National Taiwan University, Taipei, Taiwan (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, National Taiwan University, Taipei, Taiwan (China); Department of Life Science, National Taiwan University, Taipei, Taiwan (China)

    2013-08-02

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis.

  16. pH and ionic strength effects on the binding constant between a nitrogen-containing polycyclic aromatic compound and humic acid.

    Science.gov (United States)

    Chang, Kuei-Chen; Lee, Chon-Lin; Hsieh, Ping-Chieh; Brimblecombe, Peter; Kao, Shu-Min

    2015-09-01

    Polycyclic aromatic compounds (PACs) are widespread environmental pollutants with a high potential to act as human carcinogens and mutagens. The behavior of PACs is significantly affected by their interactions with dissolved organic matter (DOM), such as their transport, solubility, bioavailability, and bioaccumulation in the aquatic environment. Being a basic PAC, benzo(h)quinoline (BQ) is the dominant species, as the solution's pH value is higher than BQ's pK a (pK a of BQ = 4.2). In contrast, benzo(h)quinolinium (BQH(+)) is the major species, as the solution's pH value is lower than its pK a. The binding constant (K DOC), measured by fluorescence quenching, between BQ/BQH(+) and Leonardite humic acid (LHA) would decrease 70 to 95 % and 20 to 90 % when increasing the ionic strength in acidic and neutral to basic conditions, respectively. The results can be attributed to the added cation (Na(+) and Mg(2+)), which forms a bridge with LHA and enhances the intramolecular reaction among these functional groups, therefore inducing the coiling up within the LHA molecule. In addition, the decrease of the K DOC with added MgCl2/MgSO4 (75-95 %) is higher than that with added NaCl/Na2SO4 (20-75 %), indicating that the K DOC was affected by the charge density of cations. The fluorescence intensity of BQH(+) in the absence of LHA (F 0) was found to decay only in the acidic solution with Cl(-), suggesting that Cl(-) might be a heavy atom serving as a quencher in an acidic solution. PMID:25940463

  17. Aromatic substitution in the gas phase. On the mechanism of the dehalogenation reactions of halobenzenes and dihalobengenes promoted by gaseous Bronsted acids

    International Nuclear Information System (INIS)

    The attack of CH5+ and C2H5+ ions, obtained in the dilute gas state from the γ radiolysis of methane, on halo- and dihalobenzenes causes extensive dehalogenation via two distinct channels, leading respectively to protodehalogenated and methyldehalogenated products, whose relative rate depends primarily on the nature of the leaving halogen. Kinetic and mass spectrometric evidences suggest that direct attack of the Bronsted acid to the halogen substituent leads to formation of the correspondent arylium cation, via hydrogen halide elimination, at a rate which decreases in the order F much greater than Cl equal to or greater than Br. The subsequent electrophilic attack of the arylium cations on CH4, the bulk constituent of the system, yields methylated arenium ions, and eventually the observed methyldehalogenated products. On the other hand, attack of the Bronsted acid to the aromatic ring of halobenzenes promotes protodehalogenation, at a rate increasing in the order F much less than Cl < Br. Direct comparison of the rates of the two dehalogenation processes has been obtained from the study of dihalobenzenes containing different halogens. Furthermore, isolation of a mixture of m- and p-xylene among the dehalogenation products of p-fluorotoluene has provided direct evidence for the isomerization of the p-tolyl cation formed from the attack of the gaseous Bronsted acid to the n-type center of the substrate and/or of the xylenium ion formed from the attack of the tolyl ion to methane. The present results, and supporting mass spectrometric evidence, underline the typical ambident behavior of halobenzenes toward charged electprophiles, and allow a unified interpretation of the dehalogention processes promoted by different Bronsted acids. The gas-phase reactivity of halobenzenes is compared with their behavior in similar processes occuring in solution

  18. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, ·OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because ·OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  19. Identification and functional characterization of a novel low affinity aromatic-preferring amino acid transporter (arpAT). One of the few proteins silenced during primate evolution.

    Science.gov (United States)

    Fernández, Esperanza; Torrents, David; Zorzano, Antonio; Palacín, Manuel; Chillarón, Josep

    2005-05-13

    We have identified in silico arpAT, a gene encoding a new member of the LSHAT family, and cloned it from kidney. Co-expression of arpAT with the heavy subunits rBAT or 4F2hc elicited a sodium-independent alanine transport activity in HeLa cells. L-tyrosine, l-3,4-dihydroxyphenylalanine (L-DOPA), L-glutamine, L-serine, L-cystine, and L-arginine were also transported. Kinetic and cis-inhibition studies showed a K(m) = 1.59 +/- 0.24 mM for L-alanine or IC50 in the millimolar range for most amino acids, except L-proline, glycine, anionic and D-amino acids, which were not inhibitory. L-DOPA and L-tyrosine were the most effective competitive inhibitors of L-alanine transport, with IC50 values of 272.2 +/- 57.1 and 716.3 +/- 112.4 microM, respectively. In the small intestine, arpAT mRNA was located at the enterocytes, in a decreasing gradient from the crypts to the tip of the villi. It was also expressed in neurons from different brain areas. Finally, we show that while the arpAT gene is conserved in rat, dog, and chicken, it has become silenced in humans and chimpanzee. Actually, it has been recently reported that it is one of the 33 recently inactivated genes in the human lineage. The evolutionary implications of the silencing process and the roles of arpAT in transport of L-DOPA in the brain and in aromatic amino acid absorption are discussed. PMID:15757906

  20. Concerted effects in the reaction of ·OH radicals with aromatics. Radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Complete text of publication follows. Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, OH radicals preferentially add to the 3- and 5-positions that are, respectively, ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition to the para position. Because ·OH radical is a strong electrophile this difference suggests that addition of ·OH to the ortho position is enhanced as a result of the hydrogen bonding in salicylic acid. Similarly, addition to the 6-position is discriminated against

  1. New silver(I) coordination polymers constructed from pyrazine derivatives and aromatic carboxylic acids: Syntheses, structures and photoluminescence

    Science.gov (United States)

    Zhang, Ting; Huang, Hua-Qi; Mei, Hong-Xin; Wang, Dan-Feng; Wang, Xiao-Xiang; Huang, Rong-Bin; Zheng, Lan-Sun

    2015-11-01

    Five one-dimensional to three-dimensional coordination polymers have been synthesized by 2-chlorobenzoic acid (HL1), 2-nitrobenzoic acid (HL2), o-toluic acid (HL3), 2,3,5-trimethylpyrazine (tpyz) and 2,3,5,6-tetramethylpyrazine (mpyz) in the presence of NH3·H2O in mixed solvents systems, namely, {Ag4(tpyz)2(L1)4}n (1), {Ag2(tpyz) (L2)2}n (2), {Ag2(tpyz) (L3)2}n (3), {Ag2(mpyz) (L1)2}n (4), {Ag(mpyz) (L2) (H2O)}n (5). All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Compound 1 shows a 3D framework. The tpyz ligand links 1D chain which was connected by silver atom and L1 anion into 3D framework. Compounds 2 and 4 possess a similar 2D network with (4, 4) topology. Complex 3 also exhibits a two-dimensional structure. There is a 1D silver chain in 3, which is the main difference from 2 and 4. So, 3 shows three-connected (4 8, 3) topology. For 5, only one oxygen of L2 coordinated to Ag(I) ions. The L2 anions were arranged in both sides of the chain, which was connected by silver atoms and mpyz ligands. Then, the uncoordinated carboxylate oxygen with coordinated water 1molecule oxygen through the hydrogen bond made the resultant structure to a 3D framework. Complexes 1-5 spanning from one-dimensional chains to three-dimensional framework suggest that carboxylates and the kinds of pyrazine derivatives play significant roles in the formation of such coordination architectures. The photoluminescence and thermogravimetric analysis (TGA) of the complexes were also investigated.

  2. A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism.

    Science.gov (United States)

    Hazelwood, Lucie A; Tai, Siew Leng; Boer, Viktor M; de Winde, Johannes H; Pronk, Jack T; Daran, Jean Marc

    2006-09-01

    Saccharomyces cerevisiae can use a broad range of compounds as sole nitrogen source. Many amino acids, such as leucine, tyrosine, phenylalanine and methionine, are utilized through the Ehrlich pathway. The fusel acids and alcohols produced from this pathway, along with their derived esters, are important contributors to beer and wine flavor. It is unknown how these compounds are exported from the cell. Analysis of nitrogen-source-dependent transcript profiles via microarray analysis of glucose-limited, aerobic chemostat cultures revealed a common upregulation of PDR12 in cultures grown with leucine, methionine or phenylalanine as sole nitrogen source. PDR12 encodes an ABC transporter involved in weak-organic-acid resistance, which has hitherto been studied in the context of resistance to exogenous organic acids. The hypothesis that PDR12 is involved in export of natural products of amino acid catabolism was evaluated by analyzing the phenotype of null mutants in PDR12 or in WAR1, its positive transcriptional regulator. The hypersensitivity of the pdr12Delta and war1Delta strains for some of these compounds indicates that Pdr12p is involved in export of the fusel acids, but not the fusel alcohols derived from leucine, isoleucine, valine, phenylalanine and tryptophan. PMID:16911515

  3. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China

    Institute of Scientific and Technical Information of China (English)

    Lifei Zhang; Liang Dong; Lijun Ren; Shuangxin Shi; Li Zhou; Ting Zhang; Yeru Huang

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated.Fourteen surface water samples were collected in June 2010.Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry.Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L,respectively.Fluoranthene,naphthalene,pyrene,phenanthrene,di-2-ethylhexyl phthalate,and di-n-butyl phthalate were the most abundant compounds in the samples.The water samples were moderately Polluted with benzo[a]pyrene according to China's environmental quality standard for surface water.The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake,Wuxi City and the western section of Yangchenghu Lake.Potential sources of Pollution at S7 were petroleum combustion and the plastics industry,and at Yangchenghu Lake were petroleum combustion and domestic waste.Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines.There were no obvious sources of pollution for the other water samples.These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  4. First hyperpolarizability of the natural aromatic amino acids tryptophan, tyrosine, and phenylalanine and the tripeptide lysine-tryptophan-lysine determined by hyper-Rayleigh scattering.

    Science.gov (United States)

    Duboisset, J; Matar, G; Russier-Antoine, I; Benichou, E; Bachelier, G; Jonin, Ch; Ficheux, D; Besson, F; Brevet, P F

    2010-11-01

    We report the first hyperpolarizability of tryptophan (Trp) and tyrosine (Tyr) and an upper limit for that of phenylalanine (Phe), three natural aromatic amino acids. The measurements were performed with hyper-Rayleigh scattering in an aqueous Tris buffer solution at a pH of 8.5 and 150 mM salt concentration with a fundamental wavelength of 780 nm. A value of (4.7 ± 0.7) × 10(-30) esu is found for Trp and (4.1 ± 0.7) × 10(-30) esu for Tyr whereas the upper limit of 1.4 × 10(-30) esu is found for that of Phe due to its limited solubility. The influence of the presence of lysine (Lys) in close vicinity of Trp is investigated with a measurement of the first hyperpolarizabilty of Trp in an excess of Lys and compared to the first hyperpolarizability obtained for the tripeptide Lys-Trp-Lys. The clear decrease of the values measured in these two cases indicates that the first hyperpolarizabilty of Trp is very sensitive to its local environment. PMID:20939548

  5. Effect of 1,10-phenanthroline aromaticity in carboxylic acids:1H NMR spectroscopy, GIAO calculations and thermodynamic properties

    Science.gov (United States)

    Machado, Camila M. B.; Santos, Vanessa F. C.; Belarmino, Marcia K. D. L.; França, José A. A.; Moura, Gustavo L. C.; Lima, Nathalia B. D.

    2016-08-01

    Hydrogen bonding represents a class of chemical interactions, which are directly responsible for several physical properties, such as: energetic stabilities, boiling points, vibrational modes, bond lengths, etc. In this article, we examine from the point of view of 1H NMR spectroscopy and GIAO calculations, the effects associated with the process of formation of the hydrogen bonds as they appear in the chemical shifts of the acidic hydrogens in the complexes between nitrogenated compounds, PHEN, BIPY and DIBIPY, and carboxylic acids, HOOCH, HOOCCH3 and HOOCC6H5. All computational simulations were performed using the quantum chemical methods B3LYP/6-31++G(d,p) and ωB97X-D/def2-TZVP. The 1H NMR spectroscopy results showed that, in both cases, the hydrogen nucleus of the OH group is the most affected in the process of hydrogen bond formation. For the complexes involving PHEN we observed that the hydrogen nucleus is more strongly shielded when compared with this signal in the corresponding complexes involving BIPY and DIBIPY.

  6. Aromatic oligoamides with a rare ortho-connectivity

    DEFF Research Database (Denmark)

    Hjelmgaard, T.; Nielsen, John

    2013-01-01

    Even though aromatic oligoamides composed of aromatic amino acids in a "one-way sequence" attract ever increasing research interest, backbones connected through ortho-linked aromatics remain rare. Herein, we present the first synthesis and study of N-alkylated ortho-aminomethyl- benzamides termed...

  7. Chiral recognition between lactic acid derivatives and an aromatic alcohol in a supersonic expansion: electronic and vibrational spectroscopy.

    Science.gov (United States)

    Seurre, N; Le Barbu-Debus, K; Lahmani, F; Zehnacker, A; Borho, N; Suhm, M A

    2006-02-28

    Jet-cooled diastereoisomeric complexes formed between a chiral probe, (+/-)-2-naphthyl-1-ethanol, and chiral lactic acid derivatives have been characterised by laser-induced fluorescence and IR fluorescence-dip spectroscopy. Complexes with non chiral alpha-hydroxyesters and chiral beta-hydroxyesters have also been studied for the sake of comparison. DFT calculations have been performed to assist in the analysis of the vibrational spectra and the determination of the structures. The observed 1 : 1 complexes correspond to the addition of the hydroxy group of the chromophore on the oxygen atom of the hydroxy in alpha-position relative to the ester function. Moreover, (+/-)-methyl lactate and (+/-)-ethyl lactate complexes with (+/-)-2-naphthyl-1-ethanol show an enantioselectivity in the size of the formed adducts: while fluorescent 1 : 1 complexes are the most abundant species observed when mixing (S)-2-naphthyl-1-ethanol with (R)-methyl or ethyl lactate, they are absent in the case of the SS mixture, which only shows 1 : 2 adducts. This property has been related to steric hindrance brought by the methyl group on the hydroxy-bearing carbon atom. PMID:16482344

  8. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    Science.gov (United States)

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-01

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group. PMID:26861768

  9. Acid-labile protein-adducted heterocyclic aromatic amines in human blood are not viable biomarkers of dietary exposure: A systematic study.

    Science.gov (United States)

    Cooper, Kevin M; Brennan, Sarah F; Woodside, Jayne V; Cantwell, Marie; Guo, Xiaoxiao; Mooney, Mark; Elliott, Christopher T; Cuskelly, Geraldine J

    2016-05-01

    Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of protein-rich foods. HCA residues adducted to blood proteins have been postulated as biomarkers of HCA exposure. However, the viability of quantifying HCAs following hydrolytic release from adducts in vivo and correlation with dietary intake are unproven. To definitively assess the potential of labile HCA-protein adducts as biomarkers, a highly sensitive UPLC-MS/MS method was validated for four major HCAs: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx). Limits of detection were 1-5 pg/ml plasma and recoveries 91-115%. Efficacy of hydrolysis was demonstrated by HCA-protein adducts synthesised in vitro. Plasma and 7-day food diaries were collected from 122 fasting adults consuming their habitual diets. Estimated HCA intakes ranged from 0 to 2.5 mg/day. An extensive range of hydrolysis conditions was examined for release of adducted HCAs in plasma. HCA was detected in only one sample (PhIP, 9.7 pg/ml), demonstrating conclusively for the first time that acid-labile HCA adducts do not reflect dietary HCA intake and are present at such low concentrations that they are not feasible biomarkers of exposure. Identification of biomarkers remains important. The search should concentrate on stabilised HCA-peptide markers and use of untargeted proteomic and metabolomic approaches. PMID:26993956

  10. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  11. The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency.

    Science.gov (United States)

    Montioli, Riccardo; Paiardini, Alessandro; Kurian, Manju A; Dindo, Mirco; Rossignoli, Giada; Heales, Simon J R; Pope, Simon; Voltattorni, Carla Borri; Bertoldi, Mariarita

    2016-06-01

    We report here a clinical case of a patient with a novel mutation (Arg347→Gly) in the gene encoding aromatic amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified recombinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have carried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic loop (residues 328-339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K exhibit about 13-, 97-, and 345-fold kcat decrease compared to the wild-type AADC, respectively. However, unlike F103L, the R347G, R347K and R347Q mutants as well as the D345A variant appear to be more defective in catalysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant, share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the active site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Following the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed. PMID:26994895

  12. Structural description of aromatic core in residue fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.C.; Sun, W.F.; Fang, X.C.; Guan, M.H. [Fushun Research Inst. of Petroleum and Petrochemicals, Fushun, Liaoning (China)

    2008-07-01

    The chemical structures of a polycyclic aromatic core in Oman residue fractions was examined using proton nuclear magnetic resonance spectroscopy (1H-NMR), synchronous fluorescence spectrometry (SFS) and ruthenium ions catalyzed oxidation (RICO). It was important to understand the aromatic core structure in heavy oil fractions, including aromatic rings system size and condensed type. The types and content of benzenepolycarboxylic acids disclosed the condensed types of aromatic rings in core. Biphenyl fraction (BIPH), cata-condensed fraction (CATA), peri-condensed fraction (PERI) and condensed index (BCI) were calculated by benzenepolycarboxylic acids. The results from 1H-NMR showed that about 3.2 aromatic rings were in the aromatics core, 5.6 rings were in the resins unit, and 8.2 rings were in the asphaltenes unit. This paper also described the aromatic rings distribution of residue fractions as determined by SFS. The type and content of benzenepolycarboxylic acids from RICO of residue fractions suggested the condensed mode of rings in the aromatic core. The most cata-condensed type aromatic structures were in aromatics, the whole peri-condensed type were in asphaltenes, while the dominant peri-condensed type, as well as some quantity of cata-condensed type structures existed together in resins. Aromatics, resins and asphaltenes were given likely structural models based on results from this study. 8 refs., 3 tabs., 7 figs.

  13. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  14. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  15. Computer-aided discovery of aromatic L-α-amino acids as agonists of the orphan G protein-coupled receptor GPR139

    DEFF Research Database (Denmark)

    Ísberg, Vignir; Andersen, Kirsten Bayer; Bisig, Christoph;

    2014-01-01

    GPR139 is an orphan G protein-coupled receptor expressed mainly in the central nervous system. We developed a pharmacophore model based on known GPR139 surrogate agonists which led us to propose aromatic-containing dipeptides as potential ligands. Upon testing, the dipeptides demonstrated agonism...

  16. Efecto del antiveneno botrópico sobre las actividades de fosfolipasa a2, l-aminoácido oxidasa y hialuronidasa de los venenos de serpientes peruanas

    OpenAIRE

    Julio Cesar Mendoza; Fanny Lazo; Liliana Yarlequé; Nora Cecilia Ruiz; Armando Yarlequé; Silvia Pessah; Vicky Flores; César Bonilla

    2008-01-01

    Las serpientes Bothrops sp. causan el mayor número de casos de ofidismo en el Perú, su veneno contiene enzimas que participan en la difusión de la ponzoña, así como en sus efectos miotóxicos, edemáticos y de alteración en la agregación plaquetaria. Objetivos. Evaluar el efecto del antiveneno botrópico polivalente al estado líquido producido por el Instituto Nacional de Salud (INS) sobre la fosfolipasa A2 (PLA2), L-aminoácido oxidasa (LAO) y hialuronidasa (HA) de los venenos de B. atrox, B. ba...

  17. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Science.gov (United States)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  18. Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    Science.gov (United States)

    Svensson, J. Peter; Quirós Pesudo, Laia; McRee, Siobhan K.; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D.

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised. PMID:24040048

  19. Cross-aldol Condensation of Cycloalkanones and Aromatic Aldehydes in the Presence of Nanoporous Silica-based Sulfonic Acid (SiO2-Pr-SO3H) under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    MOHAMMADI ZIARANI Ghodsi; BADIEI Alireza; ABBASI Alireza; FARAHANI Zahra

    2009-01-01

    The aromatic aldehydes underwent cross aldol condensation with cycloalkanones in the presence of a catalytic amount of nanoporous silica-based sulfonic acid (SiO2-Pr-SO3H) under solvent-free conditions to afford the corresponding a,a'-bis(substituted benzylidene)cycloalkanones in excellent yields with short reaction time without any side reactions.This method is very general,simple and environmentally friendly in contrast with other existing methods.SiO2-Pr-SO3H was proved to be an efficient heterogeneous solid acid catalyst,which could be easily handled and removed from the reaction mixture by simple filtration,and also recovered and reused without loss of reactivity.

  20. Analysis of heterocyclic aromatic amines.

    Science.gov (United States)

    Murkovic, M

    2007-09-01

    Heterocyclic aromatic amines are formed in protein and amino acid-rich foods at temperatures above 150 degrees C. Of more than twenty heterocyclic aromatic amines identified ten have been shown to have carcinogenic potential. As nutritional hazards, their reliable determination in prepared food, their uptake and elimination in living organisms, including humans, and assessment of associated risks are important food-safety issues. The concentration in foods is normally in the low ng g(-1) range, which poses a challenge to the analytical chemist. Because of the complex nature of food matrixes, clean-up and enrichment of the extracts are also complex, usually involving both cation-exchange (propylsulfonic acid silica gel, PRS) and reversed-phase purification. The application of novel solid-phase extraction cartridges with a wettable apolar phase combined with cation-exchange characteristics simplified this process--both the polar and apolar heterocyclic aromatic amines were recovered in one fraction. Copper phthalocyanine trisulfonate bonded to cotton ("blue cotton") or rayon, and molecular imprinted polymers have also been successfully used for one-step sample clean-up. For analysis of the heterocyclic aromatic amines, liquid chromatography with base-deactivated reversed-phase columns has been used, and, recently, semi-micro and capillary columns have been introduced. The photometric, fluorimetric, or electrochemical detectors used previously have been replaced by mass spectrometers. Increased specificity and sub-ppb sensitivities have been achieved by the use of the selected-reaction-monitoring mode of detection of advanced MS instrumentation, for example the triple quadrupole and Q-TOF instrument combination. Gas chromatography, also with mass-selective detection, has been used for specific applications; the extra derivatization step needed for volatilization has been balanced by the higher chromatographic resolution. PMID:17546447

  1. Gas chromatographic determination of D- and L-amino acids produced by cyanobacteria on Chirasil-Val after derivatization with pentafluoropropyl chloroformate

    Czech Academy of Sciences Publication Activity Database

    Zahradníčková, Helena; Hušek, Petr; Šimek, Petr; Hartwich, Petr; Maršálek, B.; Holoubek, I.

    2007-01-01

    Roč. 1, č. 3 (2007), s. 161-162. ISSN 1336-7242. [Zjazd Chemikov /59./. 02.09.2007-06.09.2007, Vysoké Tatry , Tatranské Matliare] R&D Projects: GA ČR GA303/06/1674 Institutional research plan: CEZ:AV0Z50070508 Keywords : GC analysis Subject RIV: CE - Biochemistry

  2. Copolymerizations of chiral phenylacetylenes having an L-amino alcohol residue and an achiral phenylacetylene having a dodecyl group, used as gas separation membranes

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Three novel polyphenylacetylene gas separation membranes were synthesized. • The copolymers adopted one-handed helical conformations. • The separation selectivity factor of CO2/N2 was 17.9. • The CO2 permeability coefficient of CO2/N2 was 77 Barrers. - Abstract: Three chiral phenylacetylenes having an L-amino alcohol residue and two hydroxymethyl groups and an achiral phenylacetylene having two hydroxyl groups and a dodecyl group were copolymerized by using an achiral catalyst ((nbd)Rh+[η6-(C6H5)B−(C6H5)3]) (nbd = norbornadiene) to produce copolymers with Mw of 0.5 × 104–15.2 × 104. The copolymers exhibited the Cotton effect at wavelengths assignable to the main chain, indicating that the copolymers adopted one-handed helical conformations. Self-supporting membranes of the resulting copolymers were prepared by the solution casting method. We measured the gas permeabilities (CO2/N2, CO2/CH4) of the copolymer membranes. The separation selectivity factor of CO2/N2 was 17.9, and the CO2 permeability coefficient of CO2/N2 was 77 Barrers

  3. Synthesis and characterization of new optically active copoly(amid-imide)s based on N-phthalimido-L-aspartic acid and aromatic diamines

    Institute of Scientific and Technical Information of China (English)

    Khalil; Faghihi; Hamidreza; Alimohammadi

    2010-01-01

    In this article,six new optically active copoly(amide-imide)s(10a-f) were synthesized through the direct polycondensation reaction of N-phthalimido-L-aspartic acid(4) with 1,5-diamino naphthalene(8),3,4-diamino benzophenone(9) in the presence of therphthahc acid(7),fumaric acid(6) and adipic acid(5) as a second diacid in a medium consisting of N-methyl-2-pyrrolidone,triphenyl phosphite, calcium chloride and pyridine.The resulting copolymers were fully characterized by means of FT-IR spectroscopy,elementa...

  4. Superconductivity in aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc’s) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors

  5. 碳基固体酸催化剂上溶剂上条件下酮和芳香醛交叉羟醛缩合反应%Carbon-Based Solid Acid as an Efficient and Reusable Catalyst for Cross-Aldol Condensation of Ketones with Aromatic Aldehydes under Solvent-Free Conditions

    Institute of Scientific and Technical Information of China (English)

    Abbas ZALI; Kamal GHANI; Arash SHOKROLAHI; Mohammad Hossein KESHAVARZ

    2008-01-01

    Aromatic aldehydes undergo cross-aldol condensation with ketones in the presence of carbon-based solid acid under solvent-free conditions to afford the corresponding α,β-unsaturated aldol products in excellent yields. The catalyst is reusable several times without any decrease in the yield of the reactions.

  6. Efficient one-pot, four-component synthesis of N,N-dibenzyl-N-{1-[5-(3-aryl-1,3,4-oxadiazol-2-yl]cyclobutyl}amine derivatives from the reaction of (isocyanoiminotriphenylphosphorane, dibenzylamine, an aromatic carboxylic acid and cyclobutanone

    Directory of Open Access Journals (Sweden)

    Shajari Nahid

    2012-01-01

    Full Text Available Four-component reaction of cyclobutanone, dibenzylamine and (Nisocyanimino triphenylphosphorane in the presence of aromatic carboxylic acids proceed smoothly at room temperature and under neutral conditions to afford N,N-dibenzyl-N-{1-[5-(3-aryl-1,3,4-oxadiazol-2-yl]cyclobutyl}amine derivatives in high yields.

  7. Efficient one-pot, four-component synthesis of N,N-dibenzyl-N-{1-[5-(3-aryl)-1,3,4-oxadiazol-2-yl]cyclobutyl}amine derivatives from the reaction of (isocyanoimino)triphenylphosphorane, dibenzylamine, an aromatic carboxylic acid and cyclobutanone

    OpenAIRE

    Shajari Nahid; Kazemizadeh Reza Ali; Ramazani Ali

    2012-01-01

    Four-component reaction of cyclobutanone, dibenzylamine and (Nisocyanimino) triphenylphosphorane in the presence of aromatic carboxylic acids proceed smoothly at room temperature and under neutral conditions to afford N,N-dibenzyl-N-{1-[5-(3-aryl)-1,3,4-oxadiazol-2-yl]cyclobutyl}amine derivatives in high yields.

  8. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    Science.gov (United States)

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources. PMID:27116971

  9. Transition Metal–α-Amino Acid Complexes with Antibiotic Activity against Mycobacterium spp.

    OpenAIRE

    Karpin, George W.; Merola, Joseph S.; Joseph O. Falkinham

    2013-01-01

    Synthetic iridium-, rhodium-, and ruthenium-amino acid complexes with hydrophobic l-amino acids have antibiotic activity against Mycobacterium spp., including Mycobacterium bovis BCG and the rapidly growing species Mycobacterium abscessus and Mycobacterium chelonae. Concentrations of transition metal-amino acid complexes demonstrating hemolysis or cytotoxicity were 10- to 25-fold higher than were the MICs.

  10. β-Puromycin selection of modified ribosomes for in vitro incorporation of β-amino acids.

    Science.gov (United States)

    Dedkova, Larisa M; Fahmi, Nour Eddine; Paul, Rakesh; del Rosario, Melissa; Zhang, Liqiang; Chen, Shengxi; Feder, Glen; Hecht, Sidney M

    2012-01-10

    Ribosomally mediated protein biosynthesis is limited to α-L-amino acids. A strong bias against β-L-amino acids precludes their incorporation into proteins in vivo and also in vitro in the presence of misacylated β-aminoacyl-tRNAs. Nonetheless, earlier studies provide some evidence that analogues of aminoacyl-tRNAs bearing β-amino acids can be accommodated in the ribosomal A-site. Both functional and X-ray crystallographic data make it clear that the exclusion of β-L-amino acids as participants in protein synthesis is a consequence of the architecture of the ribosomal peptidyltransferase center (PTC). To enable the reorganization of ribosomal PTC architecture through mutagenesis of 23S rRNA, a library of modified ribosomes having modifications in two regions of the 23S rRNA (2057-2063 and 2496-2507 or 2582-2588) was prepared. A dual selection procedure was used to obtain a set of modified ribosomes able to carry out protein synthesis in the presence β-L-amino acids and to provide evidence for the utilization of such amino acids, in addition to α-L-amino acids. β-Puromycin, a putative mimetic for β-aminoacyl-tRNAs, was used to select modified ribosome variants having altered PTC architectures, thus potentially enabling incorporation of β-L-amino acids. Eight types of modified ribosomes altered within the PTC have been selected by monitoring improved sensitivity to β-puromycin in vivo. Two of the modified ribosomes, having 2057AGCGUGA2063 and 2502UGGCAG2507 or 2502AGCCAG2507, were able to suppress UAG codons in E. coli dihydrofolate reductase (DHFR) and scorpion Opisthorcanthus madagascariensis peptide IsCT mRNAs in the presence of β-alanyl-tRNA(CUA). PMID:22145951

  11. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  12. Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8

    Czech Academy of Sciences Publication Activity Database

    Jenčová, V.; Strnad, Hynek; Chodora, Zdeněk; Ulbrich, Pavel; Vlček, Čestmír; Hickey, W. J.; Pačes, Václav

    2008-01-01

    Roč. 159, č. 2 (2008), s. 118-127. ISSN 0923-2508 R&D Projects: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : megaplasmid * haloaromatic acid * catabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.055, year: 2008

  13. 基于乙酸为溶剂和催化剂的芳乙酮Mannich反应%Mannich Reaction of Aromatic Ketones Based on Acetic Acid as Solvent and Catalyst

    Institute of Scientific and Technical Information of China (English)

    卜辉娟; 张静; 穆博帅; 李媛

    2014-01-01

    Mannich reaction is one of the most important methods for preparation ofβ-amino ketones and alde-hydes and α,β-unsaturated carbonyl compounds, as well as one of the most important basic reaction types in organic chemistry and it is widely applied as a key step in the synthesis of numerous pharmaceuticals and natu-ral products. However, during the synthesis of 1-aryl acrylic ketone 2 by the Mannich reaction of aromatic ke-tones, formaldehyde and secondary amine using acetic acid as solvent and catalyst, the Mannich base and ex-pectedα,β-unsaturated ketones 2 were not obtained and another kind of compounds 3 , 2-aryl formyl allyl ace-tate were obtained in moderate to good yields(65%-73%) . The structure of compounds 3 was confirmed by 1 H NMR, 13 C NMR, HRMS and IR spectra. The reasons of producing compounds 3 were studied and the re-sults suggested that the special structure of aromatic ketones and excess acetic acid in reaction are responsible for the exceptional Mannich reaction. In addition, the reaction mechanism was postulated.%采用乙酸作溶剂和催化剂,将芳乙酮与甲醛和二级胺进行Mannich反应及热解反应,并未得到预期的Mannich碱或α,β-不饱和酮(2),而是以较高产率(65%~73%)生成了乙酸(2-芳甲酰基)烯丙酯(3a~3o)。通过核磁共振波谱、高分辨质谱和红外光谱表征了化合物3a~3o的结构,研究了此“异常”反应的发生条件,并提出了可能的反应机理。结果表明,芳乙酮的特殊结构及反应中过量的乙酸是产生化合物3a~3o的决定因素。

  14. Efecto del antiveneno botrópico sobre las actividades de fosfolipasa a2, l-aminoácido oxidasa y hialuronidasa de los venenos de serpientes peruanas

    Directory of Open Access Journals (Sweden)

    Julio Cesar Mendoza

    2008-04-01

    Full Text Available Las serpientes Bothrops sp. causan el mayor número de casos de ofidismo en el Perú, su veneno contiene enzimas que participan en la difusión de la ponzoña, así como en sus efectos miotóxicos, edemáticos y de alteración en la agregación plaquetaria. Objetivos. Evaluar el efecto del antiveneno botrópico polivalente al estado líquido producido por el Instituto Nacional de Salud (INS sobre la fosfolipasa A2 (PLA2, L-aminoácido oxidasa (LAO y hialuronidasa (HA de los venenos de B. atrox, B. barnetti, B. brazili y B. pictus. Materiales y métodos. La PLA2 fue determinada por el retardo en el tiempo de coagulación de una emulsión lipoproteica al 45%, LAO usando Lleucina como substrato en presencia de O-dianisidina y HA empleando ácido hialurónico y el reactivo turbidimétrico BCTA, se usó para cada enzima ½, 1 y 2 dosis del antiveneno al estado natural o calentado a 37 °C durante cinco días ensayados por triplicado. Resultados. HA fue la enzima más neutralizada por el antiveneno, todos los venenos con excepción de B. brazili fueron totalmente inhibidos a cualquier dosis. Para LAO se tuvieron valores de inhibición de 68 a 100% usando dos dosis del antiveneno, mientras que PLA2 fue la menos inhibida (70 a 80% a dos dosis. Con el antiveneno calentado se registró una disminución del efecto inhibitorio encontrado inicialmente. Conclusiones. La medición de la HA podría servir como indicador in vitro de la potencia del antiveneno, el antiveneno producido por el INS guarda las condiciones in vitro de inhibición de tres de las principales actividades de los venenos de serpientes peruanas.

  15. Potential contribution of common aromatic plants for vitamin C dietary intake

    OpenAIRE

    Carvalho-Costa, Denise; Albuquerque, T.G.; Costa, H. S.; Castilho, Maria Conceição; Ramos, Fernando; Machado, Ana V.; Sanches-Silva, Ana

    2015-01-01

    Aromatic plants have been used in cooking and in folk medicine for centuries. However, in the last few years aromatic plants have received particular attention due to their simple and efficient contribution to decrease salt daily intake. The present study evaluated the two biologically active forms of vitamin C, L-ascorbic acid and dehydroascorbic acid, by high performance liquid chromatography coupled with diode array detector (HPLC-DAD). Fresh aromatic plants were acquired in local su...

  16. Aromatic compounds from three Brazilian Lauraceae species

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Andrea Nastri de Luca; Batista Junior, Joao Marcos; Lopez, Silvia Noeli; Furlan, Maysa; Cavalheiro, Alberto Jose; Silva, Dulce Helena Siqueira; Bolzani, Vanderlan da Silva [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Nunomura, Sergio Massayoshi [Instituto Nacional de Pesquisa da Amazonia (INPA), Manaus, AM (Brazil). Dept. de Produtos Naturais; Yoshida, Massayoshi [Centro de Biotecnologia da Amazonia, Manaus, AM (Brazil)

    2010-07-01

    Phytochemical investigations on three Brazilian Lauraceae species from the Cerrado region of Sao Paulo State, Ocotea corymbosa (Meins) Mez., O. elegans Mez. and Persea pyrifolia Nees and Mart. ex Nees resulted in the isolation of flavonoids, an ester of the 4-O-E-caffeoylquinic acid, an aromatic sesquiterpene besides furofuran lignans. This is the first chemical study on the leaves of Ocotea elegans and O. corymbosa as well as the first report of non-volatile compounds from Persea pyrifolia. (author)

  17. Aromatic compounds from three Brazilian Lauraceae species

    International Nuclear Information System (INIS)

    Phytochemical investigations on three Brazilian Lauraceae species from the Cerrado region of Sao Paulo State, Ocotea corymbosa (Meins) Mez., O. elegans Mez. and Persea pyrifolia Nees and Mart. ex Nees resulted in the isolation of flavonoids, an ester of the 4-O-E-caffeoylquinic acid, an aromatic sesquiterpene besides furofuran lignans. This is the first chemical study on the leaves of Ocotea elegans and O. corymbosa as well as the first report of non-volatile compounds from Persea pyrifolia. (author)

  18. SYNTHESIS AND CHARACTERIZATION OF OPTICALLY ACTIVE POLY(AMIDE-IMIDE)S BASED ON [N,N'-(4,4'-CARBONYLDIPHTALOYL)-BIS-L-AMINO DIACID]S AND 1,5-BIS(4-AMINOPHENYL)PENTA-1,4-DIEN-3-ONE

    Institute of Scientific and Technical Information of China (English)

    Khalil Faghihi; Akram Feyzi

    2012-01-01

    Six dicarboxylic acids 3a-3f were synthesized by the reaction of 3,3',4,4'-benzophenonetetracarboxylic dianhydride 1 with L-aminoacids 2a-2f in a solution of glacial acetic acid/pyridine (Py) at refluxing temperature.Then six new poly(amide-imide)s PAIs were synthesized from the direct polycondensation reaction of [N,N'-(4,4'-carbonyldiphtaloyl)-bis-L-amino diacid]s with 1,5-bis(4-aminophenyl)penta-1,4-dien-3-one (APPD).The polymerization reactions produced a series of new optically active PAIs with high yield and good inherent viscosity.Also these PAIs are optically active and soluble in various organic solvents.These resulting new polymers can be used in column chromatography for the separation of enantiomeric mixtures.The resulted polymers were fully characterized by means of FTIR and 1H-NMR spectroscopy,elemental analyses,inherent viscosity measurements,solubility tests and thermogravimetric analysis (TGA).

  19. Aromatic molecules as spintronic devices

    International Nuclear Information System (INIS)

    In this paper, we study the spin-dependent electron transport through aromatic molecular chains attached to two semi-infinite leads. We model this system taking into account different geometrical configurations which are all characterized by a tight binding Hamiltonian. Based on the Green's function approach with a Landauer formalism, we find spin-dependent transport in short aromatic molecules by applying external magnetic fields. Additionally, we find that the magnetoresistance of aromatic molecules can reach different values, which are dependent on the variations in the applied magnetic field, length of the molecules, and the interactions between the contacts and the aromatic molecule

  20. Disease: H01161 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available decarboxylase (AADC) deficiency is an autosomal recessive disorders of monoamine neurotransmitter metabolism, clinical...arma R, De Vivo DC Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognos

  1. Drug: D01653 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 53.gif Inhibitor [decarboxylase], Antiparkinsonian Peripheral aromatic L-amino acid decarboxylase inhibitors...tophan metabolism map07057 Antiparkinsonian agents Target-based classification of drugs [BR:br08310] Enzymes

  2. Degradation of aromatic compounds in plants grown under aseptic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mithaishvili, T.; Ugrekhelidze, D.; Tsereteli, B.; Sadunishvili, T.; Kvesitadze, G. [Durmishidze Inst. of Biochemistry and Biotechnology, Academy of Sciences of Georgia, Tbilisi (Georgia); Scalla, R. [Lab. des Xenobiotiques, INRA, Toulouse (France)

    2005-02-01

    The aim of the work is to investigate the ability of higher plants to absorb and detoxify environmental pollutants - aromatic compounds via aromatic ring cleavage. Transformation of {sup 14}C specifically labelled benzene derivatives, [1-6-{sup 14}C]-nitrobenzene, [1-6-{sup 14}C]-aniline, [1-{sup 14}C]- and [7-{sup 14}C]-benzoic acid, in axenic seedlings of maize (Zea mays L.), kidney bean (Phaseolus vulgaris L.), pea (Pisum sativum L.) and pumpkin (Cucurbita pepo L.) were studied. After penetration in plants, the above xenobiotics are transformed by oxidative or reductive reactions, conjugation with cell endogenous compounds, and binding to biopolymers. The initial stage of oxidative degradation consists in hydroxylation reactions. The aromatic ring can then be cleaved and degraded into organic acids of the Krebs cycle. Ring cleavage is accompanied by {sup 14}CO{sub 2} evolution. Aromatic ring cleavage in plants has thus been demonstrated for different xenobiotics carrying different substitutions on their benzene ring. Conjugation with low molecular peptides is the main pathway of aromatic xenobiotics detoxification. Peptide conjugates are formed both by the initial xenobiotics (except nitrobenzene) and by intermediate transformation products. The chemical nature of the radioactive fragment and the amino acid composition of peptides participating in conjugation were identified. (orig.)

  3. "Carbo-aromaticity" and novel carbo-aromatic compounds.

    Science.gov (United States)

    Cocq, Kévin; Lepetit, Christine; Maraval, Valérie; Chauvin, Remi

    2015-09-21

    While the concept of aromaticity is being more and more precisely delineated, the category of "aromatic compounds" is being more and more expanded. This is illustrated by an introductory highlight of the various types of "aromaticity" previously invoked, and by a focus on the recently proposed "aromatic character" of the "two-membered rings" of the acetylene and butatriene molecules. This serves as a general foundation for the definition of "carbo-aromaticity", the relevance of which is surveyed through recent results in the synthetic, physical, and theoretical chemistry of carbo-mers and in particular macrocyclic-polycyclic representatives constituting a natural family of "novel aromatic compounds". With respect to their parent molecules, carbo-mers are constitutionally defined as "carbon-enriched", and can also be functionally regarded as "π-electron-enriched". This is exemplified by recent experimental and theoretical results on functional, aromatic, rigid, σ,π-macrocyclic carbo-benzene archetypes of various substitution patterns, with emphasis on the quadrupolar pattern. For the purpose of comparison, several types of non-aromatic references of carbo-benzenes are then considered, i.e. freely rotating σ,π-acyclic carbo-n-butadienes and flexible σ-cyclic, π-acyclic carbo-cyclohexadienes, and to "pro-aromatic" congeners, i.e. rigid σ,π-macrocyclic carbo-quinoids. It is shown that functional carbo-mers are entering the field of "molecular materials" for properties such as linear or nonlinear optical properties (e.g. dichromism and two-photon absorption) and single molecule conductivity. Since total or partial carbo-mers of aromatic carbon-allotropes of infinite size such as graphene (graphynes and graphdiynes) and graphite ("graphitynes") have long been addressed at the theoretical or conceptual level, recent predictive advances on the electrical, optical and mechanical properties of such carbo-materials are surveyed. Very preliminary experimental results

  4. Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components

    Science.gov (United States)

    Groen, Joost; Deamer, David W.; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C6-C10 fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane.

  5. Aromatization of Propane over Element-Alumosilicate Catalysts with ZSM-5 Structure

    Science.gov (United States)

    Vosmerikova, L. N.; Volynkina, A. N.; Vosmerikov, A. V.

    2014-08-01

    A method of hydrothermal crystallization of alkaline alumosilicagels is used to manufacture element-alumosilicates with ZSM-5 structure. Their physicochemical and acid properties are investigated and their catalytic activity in the course of propane conversion to aromatic hydrocarbons is determined. The Ga-alumosilicate is found to be the most efficient zeolite catalyst for propane aromatization.

  6. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  7. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  8. Iminolactones as Tools for Inversion of the Absolute Configuration of alpha-Amino Acids and as Inhibitors of Cancer Cell Proliferation

    DEFF Research Database (Denmark)

    Jensen, Christina Mernøe; Chow, Hsiao-Qing; Chen, Ming;

    2016-01-01

    underwent condensation with the ketone to form iminolactones. Esters of (1S,2S,5S)-2-hydroxypinan-3-one with both D- and L--amino acids were partially epimerized at the -carbon atom to give a diasteromeric ester mixture. Only iminolactones of the L-amino acid were formed after cyclization of (1S,2S,5S)-2...

  9. Aromatic compounds from three Brazilian Lauraceae species

    Directory of Open Access Journals (Sweden)

    Andrea Nastri de Luca Batista

    2010-01-01

    Full Text Available Phytochemical investigations on three Brazilian Lauraceae species from the Cerrado region of São Paulo State, Ocotea corymbosa (Meins Mez., O. elegans Mez. and Persea pyrifolia Nees & Mart. ex Nees resulted in the isolation of flavonoids, an ester of the 4-O-E-caffeoylquinic acid, an aromatic sesquiterpene besides furofuran lignans. This is the first chemical study on the leaves of Ocotea elegans and O. corymbosa as well as the first report of non-volatile compounds from Persea pyrifolia.

  10. Correlation Study on Sweetness of Amino Acid with Different Configurations and Quantum Chemical Parameters

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Ling; GU Jun; QIU Guang-Min

    2006-01-01

    Quantum chemical parameters of 10 amino acids with D- and L-configurations were firstly calculated with semi-empirical AM1 method. Furthermore, the relationship between mole- cular structures of D-, L-amino acids and their sweetness were observed. The results show that upon different configurations of amino acids, the sweetness is relative with their formation heat, dipole moment, energy gap of frontier orbital and other parameters. The formation heats of the same amino acids possessing D- and L-configurations are different except glycine. The algebraic value of D- amino acid is generally larger than that of corresponding L-configuration with only one except of tyrosine. The dipole moment of D-amino acid is generally larger than that of corresponding L-amino acid except tyrosine and lysine. The lowest unoccupied orbital energy (ELUMO) of D-amino acid is higher than that of corresponding L-configuration except phenylalanine. △E of D-amino acid is larger than that of L-amino acid except histidine, phenylalanine and lysine. The larger gap will have advantage for its matching with frontier orbital energy of human protein acceptor, which strengthens the interaction between D-amino acid and sweet taste acceptor. Besides, the changing rules of these parameters are generally identical.

  11. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  12. Enzymatic Conversion of Aromatic Compounds Obtained from Crop Residues

    Science.gov (United States)

    Biomass obtained from crop residues and the related processing wastes typically contain minor amounts of aromatic compounds such as ferulic and p-coumaric acids. These compounds occur as esters and ethers associated with plant cell wall structures and as components of lignin. These compounds exhibit...

  13. A Facile Solid-Phase Route to Renewable Aromatic Chemicals from Biobased Furanics.

    Science.gov (United States)

    Thiyagarajan, Shanmugam; Genuino, Homer C; van der Waal, Jan C; de Jong, Ed; Weckhuysen, Bert M; van Haveren, Jacco; Bruijnincx, Pieter C A; van Es, Daan S

    2016-01-22

    Renewable aromatics can be conveniently synthesized from furanics by introducing an intermediate hydrogenation step in the Diels-Alder (DA) aromatization route, to effectively block retro-DA activity. Aromatization of the hydrogenated DA adducts requires tandem catalysis, using a metal-based dehydrogenation catalyst and solid acid dehydration catalyst in toluene. Herein it is demonstrated that the hydrogenated DA adducts can instead be conveniently converted into renewable aromatics with up to 80% selectivity in a solid-phase reaction with shorter reaction times using only an acidic zeolite, that is, without solvent or dehydrogenation catalyst. Hydrogenated adducts from diene/dienophile combinations of (methylated) furans with maleic anhydride are efficiently converted into renewable aromatics with this new route. The zeolite H-Y was found to perform the best and can be easily reused after calcination. PMID:26684008

  14. A Review of Salam Phase Transition in Protein Amino Acids: Implication for Biomolecular Homochirality

    OpenAIRE

    Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis arou...

  15. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    Science.gov (United States)

    Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  16. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440

    OpenAIRE

    Molina‐Henares, M. Antonia; García‐Salamanca, Adela; Molina‐Henares, A. Jesús; De La Torre, Jesús; Herrera, M?? Carmen; Ramos, Juan L.; Duque, Estrella

    2008-01-01

    Summary Pseudomonas putida KT2440 is a non‐pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini‐Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional o...

  17. Synthesis and Characterization of Aliphatic-Aromatic Hyperbranched Polyesters

    Institute of Scientific and Technical Information of China (English)

    唐黎明; 张晓龙; 邱藤; 刘德山

    2002-01-01

    Hyperbranched polymers possess special architectures and have potential applications in various areas. In this study, two AB2 monomers, dipropyl 5-(hydroxyethoxy) isophthalate (I) and 5-hydroxyethoxyisophthaic acid (II), were prepared. By bulk polycondensation of each monomer, two aliphatic-aromatic hyperbranched polyesters were prepared and characterized by 1H-nuclear magnetic resonance (1H-NMR), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and scanning electron microscopy (SEM). Compared with all-aromatic hyperbranched polyesters, the prepared polymers showed lower glass transition temperatures in connection with the moderate decrease in their decomposition temperatures.

  18. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  19. Micropropagation of different aromatic plants

    OpenAIRE

    Koleva Gudeva, Liljana; Iljovska Tusev, Jasmina; Trajkova, Fidanka

    2014-01-01

    Aromatic plants have been used for centuries as species, natural flavor, raw material for essential-oil industry and other purposes. Micropropagation has advantage over conventional propagation because of high multiplication rate, but it depends on the performance of the starting material, media composition, phytohormones and environmental factors. In this study, aromatic plants as peppermint (Menta piperita L.) and Menta sp., rosemary (Rosmarinus sp.), rocket (Eruca sativa Mill.), coriand...

  20. SYNTHESIS OF AN EPOXY-TERMINATED HYPERBRANCHED AROMATIC POLYESTER

    Institute of Scientific and Technical Information of China (English)

    Xia Wang; W.J. Feast

    2002-01-01

    An epoxy-terminated hyperbranched aromatic polyester (P3) was synthesized from a hyperbranched aromaticpolyester containing carboxylic acid end groups (P1), which was derived from the condensation polymerization of the AB2monomer, 5-acetoxyisophthalic acid. Polymer P1 was converted into the polymeric acid chloride by reaction with thionylchloride. The acid chloride was reacted with ethanol and glycidol to form a poly(ethyl ester) (P2) and an epoxy terminatedmaterial (P3), respectively. The reaction conditions in each step of these processes had to be controlled very carefully toavoid unwanted cross-linking reactions. The characterization of products and intermediates, including molecular weightdistributions and thermal properties, are reported.

  1. Environmental Remediation: Removal of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nkansah, Marian Asantewah

    2012-11-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic compounds. They are contaminants that are resistant to degradation and can remain in the environment for long periods due to their high degree of conjugation, and aromaticity. PAHs are present in industrial effluents as products of incomplete combustion processes of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures of these PAHs, and their transport and refining process can also result in the release of PAHs. It is therefore prudent that such effluents are treated before discharge into the environment. In this project, different approaches to the treatment of PAHs have been investigated. Hydrous pyrolysis has been explored as a potential technique for degrading PAHs in water using anthracene as a model compound. The experiments were performed under different conditions of temperature, substrate, redox systems and durations. The conditions include oxidising systems comprising pure water, hydrogen peroxide and Nafion-SiO2 solid catalyst in water; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts to assess a range of reactivities. Products observed in GCMS analysis of the extract from the water phase include anthrone, anthraquinone, xanthone and multiple hydro-anthracene derivatives (Paper I). In addition a modified version of the Nafion-SiO2 solid catalyst in water oxidising system was tested; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts were adopted for the conversion of a mixture of anthracene, fluorene and fluoranthene. The rate of conversion in the mixture was high as compared to that of only anthracene (Paper II). Also the use of LECA (Lightweight expanded clay aggregates) as an adsorbent (Paper III) for PAHs (phenanthrene, fluoranthene and pyrene) removal from water has been.(Author)

  2. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  3. Uptake of 3-[125I]iodo-α-methyl-L-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs

    International Nuclear Information System (INIS)

    Introduction: We examined 3-[123I]iodo-α-methyl-L-tyrosine ([123I]IMT) uptake and inhibition by amino acids and amino acid-like drugs in the human DLD-1 colon cancer cell line, to discuss correlation between the inhibition effect and structure. Methods: Expression of relevant neutral amino acid transporters was examined by real-time PCR with DLD-1 cells. The time course of [125I]IMT uptake, contributions of transport systems, concentration dependence and inhibition effects by amino acids and amino acid-like drugs (1 mM) on [125I]IMT uptake were examined. Results: Expression of system L (4F2hc, LAT1 and LAT2), system A (ATA1, ATA2) and system ASC (ASCT1) was strongly detected; system L (LAT3, LAT4) and MCT8 were weakly detected; and B0AT was not detected. [125I]IMT uptake in DLD-1 cells involved Na+-independent system L primarily and Na+-dependent system(s). Uptake of [125I]IMT in Na+-free buffer followed Michaelis-Menten kinetics, with a Km of 78 μM and Vmax of 333 pmol/106 cells per minute. Neutral D- and L-amino acids with branched or aromatic large side chains inhibited [125I]IMT uptake. Tyrosine analogues, tryptophan analogues, L-phenylalanine and p-halogeno-L-phenylalanines, and gamma amino acids [including 3,4-dihydroxy-L-phenylalanine (L-DOPA), DL-threo-β-(3,4-dihydroxyphenyl)serine (DOPS), 4-[bis(2-chloroethyl)amino]-L-phenylalanine and 1-(aminomethyl)-cyclohexaneacetic acid] strongly inhibited [125I]IMT uptake, but L-tyrosine methyl ester and R(+)/S(-)-baclofen weakly inhibited uptake. The substrates of system ASC and A did not inhibit [125I]IMT uptake except L-serine and D/L-cysteine. Conclusions: [125I]IMT uptake in DLD-1 cells involves mostly LAT1 and its substrates' (including amino acid-like drugs derived from tyrosine, tryptophan and phenylalanine) affinity to transport via LAT1. Whether transport of gamma amino acid analogues is involved in LAT1 depends on the structure of the group corresponding to the amino acid residue. Beta-hydroxylation may

  4. Uptake of 3-[{sup 125}I]iodo-{alpha}-methyl-L-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs

    Energy Technology Data Exchange (ETDEWEB)

    Shikano, Naoto [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan)], E-mail: sikano@ipu.ac.jp; Ogura, Masato [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Okudaira, Hiroyuki [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan); Nakajima, Syuichi; Kotani, Takashi [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kobayashi, Masato [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan); Nakazawa, Shinya [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Baba, Takeshi; Yamaguchi, Naoto [Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kubota, Nobuo [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Iwamura, Yukio [Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kawai, Keiichi [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan)

    2010-02-15

    Introduction: We examined 3-[{sup 123}I]iodo-{alpha}-methyl-L-tyrosine ([{sup 123}I]IMT) uptake and inhibition by amino acids and amino acid-like drugs in the human DLD-1 colon cancer cell line, to discuss correlation between the inhibition effect and structure. Methods: Expression of relevant neutral amino acid transporters was examined by real-time PCR with DLD-1 cells. The time course of [{sup 125}I]IMT uptake, contributions of transport systems, concentration dependence and inhibition effects by amino acids and amino acid-like drugs (1 mM) on [{sup 125}I]IMT uptake were examined. Results: Expression of system L (4F2hc, LAT1 and LAT2), system A (ATA1, ATA2) and system ASC (ASCT1) was strongly detected; system L (LAT3, LAT4) and MCT8 were weakly detected; and B{sup 0}AT was not detected. [{sup 125}I]IMT uptake in DLD-1 cells involved Na{sup +}-independent system L primarily and Na{sup +}-dependent system(s). Uptake of [{sup 125}I]IMT in Na{sup +}-free buffer followed Michaelis-Menten kinetics, with a K{sub m} of 78 {mu}M and V{sub max} of 333 pmol/10{sup 6} cells per minute. Neutral D- and L-amino acids with branched or aromatic large side chains inhibited [{sup 125}I]IMT uptake. Tyrosine analogues, tryptophan analogues, L-phenylalanine and p-halogeno-L-phenylalanines, and gamma amino acids [including 3,4-dihydroxy-L-phenylalanine (L-DOPA), DL-threo-{beta}-(3,4-dihydroxyphenyl)serine (DOPS), 4-[bis(2-chloroethyl)amino]-L-phenylalanine and 1-(aminomethyl)-cyclohexaneacetic acid] strongly inhibited [{sup 125}I]IMT uptake, but L-tyrosine methyl ester and R(+)/S(-)-baclofen weakly inhibited uptake. The substrates of system ASC and A did not inhibit [{sup 125}I]IMT uptake except L-serine and D/L-cysteine. Conclusions: [{sup 125}I]IMT uptake in DLD-1 cells involves mostly LAT1 and its substrates' (including amino acid-like drugs derived from tyrosine, tryptophan and phenylalanine) affinity to transport via LAT1. Whether transport of gamma amino acid analogues is

  5. Ligand-exchange chromatographic separation of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles on a chelating silica gel loaded with palladium (II) or silver (I) cations

    Energy Technology Data Exchange (ETDEWEB)

    Pyell, U.; Schober, S.; Stork, G. [Fachbereich Chemie der Philipps-Universitaet Marburg (Germany)

    1997-12-01

    2-Amino-1-cyclopentene-1-dithiocarboxylic acid silica gel (ACDA-SG) loaded with Ag(I) or Pd(II) ions has been examined for the group fractionation of polycyclic aromatic sulfur heterocycles (PASH) from polycyclic aromatic hydrocarbons (PAH) via ligand-exchange chromatography in the normal phase mode. It is shown that metal loading has a great impact on the selectivity of ACDA-SG for PASH and PAH. Pd(II) loaded ACDA-SG proved to be suitable for the group isolation of PASH from the aromatic fractions of petroleum mixtures (number of condensed rings{<=}3). (orig.) With 3 figs., 2 tabs., 14 refs.

  6. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  7. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Appavu; Deepa, Mohan [Molecular Biophysics Unit, Indian Institute of Sciences-Bangalore, Karnataka (India); Govindaraju, Munisamy [Bio-Spatial Technology Research Unit, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India)

    2016-02-26

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  8. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    International Nuclear Information System (INIS)

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”

  9. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    Directory of Open Access Journals (Sweden)

    Rajagopal Appavu

    2016-03-01

    Full Text Available While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  10. Production of alkyl-aromatics from light oxygenates over zeolite catalysts for bio-oil refining

    Science.gov (United States)

    Hoang, Trung Q.

    Upgrading of light oxygenates derived from biomass conversion, such as propanal and glycerol, to more valuable aromatics for biofuels has been demonstrated on zeolite catalysts. Aromatics with a high ratio of C 9/(C8+C7) and little benzene are produced at much higher yield from oxygenates than from olefins at mild conditions over HZSM-5. It is proposed that C9 aromatics are predominantly produced via acid-catalyzed aldol condensation. This reaction pathway is different from the pathway of propylene and other hydrocarbon aromatization that occurs via a hydrocarbon pool at more severe conditions with major aromatic products C6 and C7. In fact, investigation on the effect of crystallite size HZSM-5 has shown a higher ratio of C9/(C8+C 7) aromatics on small crystallite. This is due to faster removal of products from the shorter diffusion path length. As a result, a longer catalyst lifetime, less isomerization, and less cracking were observed on small crystallites. Beside crystallite size, pore geometry of zeolites was also found to significantly affect aromatic production for both conversion of propanal and glycerol. It is shown that the structure of the HZSM-22, with a one-dimensional and narrower channel system, restricts the formation of aromatics. In contrast, a higher yield of aromatic products is observed over HZSM-5 with its three-dimensional channel system. By increasing channel dimension and connectivity of the channels, increasing catalyst activity was also observed due to more accessible acid sites. It was also found that glycerol is highly active for dehydration on zeolites to produce high yields of acrolein (propenal), a high value chemical. To maximize aromatics from glycerol conversion, HZSM-5 and HY were found to be effective. A two-bed reactor of Pd/ZnO and HZSM-5 was used to first deoxygenate/hydrogenate glycerol over Pd/ZnO to intermediate oxygenates that can further aromatize on HZSM-5. The end results are very promising with significant improvement

  11. Advances towards aromatic oligoamide foldamers

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Plesner, Malene; Dissing, Mette Marie; Andersen, Jeanette Marker; Frydenvang, Karla Andrea; Nielsen, John

    2014-01-01

    We have efficiently synthesized 36 arylopeptoid dimers with ortho-, meta-, and para-substituted aromatic backbones and tert-butyl or phenyl side chains. The dimers were synthesized by using a "submonomer method" on solid phase, by applying a simplified common set of reaction conditions. X......-ray crystallographic analysis of two of these dimers disclosed that the tert-butyl side chain invokes a cis amide conformation with a comparatively more closely packed structure of the surrounding aromatic backbone while the phenyl side chain results in a trans amide conformation with a more open, extended structure...... conformation with a more open, extended structure of the surrounding aromatic backbone. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  12. Purificación y caracterización de la l-amino ácido oxidasa del veneno de la serpiente Bothrops brazili "jergón shushupe"

    Directory of Open Access Journals (Sweden)

    Christian Solís

    2014-06-01

    Full Text Available Se ha purificado y caracterizado parcialmente la L-aminoácido oxidasa de la serpiente Bothrops brazili. El aislamiento se realizó usando técnicas cromatográficas en Sephadex G-100 y CM-Sephadex C-50, utilizando como eluyente buffer acetato de amonio 0,1M pH 6. La enzima fue purificada 29,3 veces con un rendimiento de 30,9%. Usando electroforesis en gel de poliacrilamida con dodecil sulfato de sodio (PAGE-SDS en condiciones reductoras y no reductoras, así como las técnicas de inmunodifusión e inmunoelectroforesis, se demostró la presencia de una sola banda proteica. La enzima fue caracterizada como una glicoproteína ácida con un peso molecular de 125,7 kd formada por dos subunidades de 59,9 kd unidas por enlaces débiles, con un pH óptimo entre 7,5 y 9, dependiendo del aminoácido usado como substrato; siendo termoestable hasta los 550 C y lábil a pH alcalino. Asimismo, los ensayos por el método del cilindro en placa de Grove demostraron el efecto antibacteriano de la proteína aislada en cepas estandarizadas de Staphylococcus aureus, Vibrio cholerae y Streptococcus faecalis.

  13. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Torren R. [Univ. of Massachusetts, Amherst, MA (United States); Cheng, Yu-Ting [Univ. of Massachusetts, Amherst, MA (United States); Jae, Jungho [Univ. of Massachusetts, Amherst, MA (United States); Huber, George W. [Univ. of Massachusetts, Amherst, MA (United States)

    2011-10-26

    Catalytic fast pyrolysis of pine wood sawdust and furan (a model biomass compound) with ZSM-5 based catalysts was studied with three different reactors: a bench scale bubbling fluidized bed reactor, a fixed bed reactor and a semi-batch pyroprobe reactor. The highest aromatic yield from sawdust of 14% carbon in the fluidized bed reactor was obtained at low biomass weight hourly space velocities (less than 0.5 h-1) and high temperature (600 °C). Olefins (primarily ethylene and propylene) were also produced with a carbon yield of 5.4% carbon. The biomass weight hourly space velocity and the reactor temperature can be used to control both aromatic yield and selectivity. At low biomass WHSV the more valuable monocyclic aromatics are produced and the formation of less valuable polycyclic aromatics is inhibited. Lowering the reaction temperature also results in more valuable monocyclic aromatics. The olefins produced during the reaction can be recycled to the reactor to produce additional aromatics. Propylene is more reactive than ethylene. Co-feeding propylene to the reactor results in a higher aromatic yield in both continuous reactors and higher conversion of the intermediate furan in the fixed bed reactor. When olefins are recycled aromatic yields from wood of 20% carbon can be obtained. After ten reaction–regeneration cycles there were metal impurities deposited on the catalyst, however, the acid sites on the zeolite are not affected. Of the three reactors tested the batch pyroprobe reactor yielded the most aromatics, however, the aromatic product is largely naphthalene. The continuous reactors produce less naphthalene and the sum of aromatics plus olefin products is higher than the pyroprobe reactor.

  14. Survey of Recent Innovations in Aromatic Rice

    OpenAIRE

    Napasintuwong, Orachos

    2012-01-01

    This paper provides situations of aromatic rice demand, and international standards. The history and recent developments of traditional and evolved aromatic rice varieties, namely Basmati rice and Jasmine rice, are reviewed. The emerging aromatic rice innovations from developed countries such as the U.S. and other Asian countries generate a threat to these traditional aromatic rice producers such as India, Pakistan, and Thailand. Under WTO Trade Related Aspects of Intellectual Property Rights...

  15. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    Science.gov (United States)

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs. PMID:26521219

  16. Aromatic constituents in fresh leaves of Lingtou Dancong Tea induced by drought stress

    Institute of Scientific and Technical Information of China (English)

    CAO Panrong; LIU Chunyan; LIU Kebin

    2007-01-01

    The effect of different degrees of drought stress on the aromatic constituents and their relative contents in fresh leaves ofLingtou Dancong tea plants was studied in this paper.The results showed that drought stress could evidently increase the kinds of aromatic components in the fresh leaves.The largest number of kinds(58)of the aromatic constituents was detected when soil relative water content was 53.90% among all the designed treatments,while the lowest number was found under a soil relative water content of 99.75%.The total amount of relative contents of 17 kinds of aromatic components such as linalool etc.,increased with drought stress,whereas 12 kinds of aromatic components such as tetradecanoic acid etc.,decreased with drought stress. Linalool,linalool oxide,tetradecane, 10-methylnonadecane, and dodecanal showed high contents under the soil relative water content of 53.90%;Cyclohexane,1-hexadecene,and 1tricosanolonly were induced in the soil relative water content of 53.90% and 29.25%;while drought stress could inhibit the synthesis of constituents of 7 kinds such as nonanedioic acid monomethyl ester,etc.Different degrees of drought stress could induce various kinds of aromatic constituents,and the number of aromatic constituents induced in fresh leaves increased with the strengthening of drought stress.

  17. [Methanogenic destruction of (amino)aromatic compounds by anaerobic microbial communities].

    Science.gov (United States)

    Lin'kova, Iu V; D'iakonova, A T; Gladchenko, M A; Kaliuzhnyĭ, S A; Kotova, I B; Stams, A; Netrusov, A I

    2011-01-01

    Destruction of a number of aromatic substrates by anaerobic microbial communities was studied. Active methanogenic microbial communities decomposing aminoaromatic acids and azo dyes into CH4 and CO2 were isolated. Products of primary conversion were found to be 2-hydroxybenzyl and benzyl alcohols gradually transforming into benzoate. It was shown that isolated microbial communities are capable of converting the initial substrates--benzyl alcohol, benzoate, salicylic acid, and golden yellow azo dye--into biogas without a lag-phase but with different velocities. Aromatic and linear intermediates of biodestruction of aromatic amines by obtained enrichment cultures were determined for the first time. Selective effect of aromatic substrates on a microbial community that was expressed in decrease in diversity and gradual change of dominant morphotypes was revealed. PMID:22232897

  18. Aromatic Interactions Promote Self-association of Collagen Triple-helical Peptides to Higher Order Structures

    OpenAIRE

    Kar, Karunakar; Ibrar, Sajjad; Nanda, Vikas; Getz, Todd M; Kunapuli, Satya P.; Brodsky, Barbara

    2009-01-01

    Aromatic residues are relatively rare within the collagen triple-helix, but they appear to play a specialized role in higher order structure and function. The role of aromatic amino acids in the self-assembly of triple-helical peptides was investigated in terms of the kinetics of self-association, the nature of aggregated species formed, and the ability of these species to activate platelet aggregation. The presence of aromatic residues on both ends of a type IV collagen model peptide is obse...

  19. Radiation-induced crosslinking and degradation of aromatic polyamides

    International Nuclear Information System (INIS)

    Changes in the intrinsic viscosity of four aromatic polyamides of meta- and para-phthalic acids and meta-and para-phenylendiamines caused by γ60Co radiation were studied. It was found that the irradiation of those polyamides in the absence of air results in their crosslinking, while in the presence of air their degradation is observed. The extent of the intrinsic viscosity variation depends remarkably on the symmetry of the chains and the content of amorphous fraction. (author)

  20. Green Synthesis of Benzylated Aromatics Using Iron Loaded Mesoporous Materials

    OpenAIRE

    Preethi, Muthuraj Esther Leena; Revathi, Shanmugam; Sivakumar, Thiripuranthagan

    2008-01-01

    Syntheses of benzylated aromatics like diphenylmethane and its derivatives by the condensation of benzene or toluene or o-xylene with benzylchloride or 4-methylbenzylchloride in the presence of a catalytic amount of various iron loaded mesoporous solid acid catalysts such as Fe/Al-MCM-41 (Si/Al=25), Fe/Al-MCM-41 (Si/Al=50) and Fe/Al-MCM-41 (Si/Al=100) are reported.

  1. Alternatives to control microbiological cheese defects: use of aromatic plants

    OpenAIRE

    LIBRÁN CUERVAS-MONS, CELIA MARÍA

    2013-01-01

    ALTERNATIVES TO CONTROL MICROBIOLOGICAL CHEESE DEFECTS: USE OF AROMATIC PLANTS 1. Introduction Cheeses are traditionally affected by microbiological spoilage that leads to great economic loss. On the one hand, bacteria such as coliforms or butyric acid are some of the responsible for early and late cheese blowing, respectively (COGAN, 2011; GARDE et al., 2011). These are two cheese paste defects characterised by the internal presence of numerous and odorous holes (MCSWEENEY, 2007; MULLA...

  2. Biological production of hydroxylated aromatics: Optimization strategies for Pseudomonas putida S12

    OpenAIRE

    A. Verhoef

    2010-01-01

    To replace environmentally unfriendly petrochemical production processes, the demand for bio-based production of organic chemicals is increasing. This thesis focuses on the biological production of hydroxylated aromatics from renewable substrates by engineered P. putida S12 including several cases of strain improvement. Chapter 2 describes the construction of a P. putida S12 strain that produces p-hydroxybenzoate via the aromatic amino acid tyrosine. Previous research on biosynthesis of aroma...

  3. Re/HZSM-5: a new catalyst for ethane aromatization with improved stability

    DEFF Research Database (Denmark)

    Krogh, Anne; Hansen, Thomas W.; Christensen, Claus Hviid;

    2003-01-01

    Rhenium-impregnated HZSM-5 is found to be a promising catalyst for ethane aromatization. The Re–HZSM-5 catalyst deactivates significantly slower than well-known ethane aromatization Zn–HZSM-5 catalyst. Product selectivities for the two catalysts are similar, indicating that the shape selectivity ...... and acid-function of the zeolite are the determining factors, and the metal function is only responsible for the activation of ethane by dehydrogenation to ethylene....

  4. Abilities of some higher plants to hydrolyze the acetates of phenols and aromatic-aliphatic alcohols

    OpenAIRE

    Agnieszka Mironowicz; Krystyna Kromer; Paweł Pawłowicz; Antoni Siewiński

    2014-01-01

    In the biotransformations carried out under the same conditions, the whole intact plants of Spirodela punctata, Nephrolepis exaltata, Cyrtomium falcatum, Nephrolepis cordifolia and the suspension cultures of Helianthus tuberosus, Daucus carota and Petunia hybrida hydrolyze (partially or totally) the ester bonds of the acetates of phenols and aromatic-aliphatic alcohols and also the menthyl acetate. Nevertheless, the methyl esters of aromatic acids, structurally similar to the former substrate...

  5. Stacking and energetic contribution of aromatic islands at the binding interface of antibody proteins

    OpenAIRE

    Wu, Di; Sun, Jing; Xu, Tianlei; Wang, Shuning; Li, Guoqing; Li, Yixue; Cao, Zhiwei

    2010-01-01

    Background The enrichment and importance of some aromatic residues, such as Tyr and Trp, have been widely noticed at the binding interfaces of antibodies from many experimental and statistical results, some of which were even identified as “hot spots” contributing significantly greater to the binding affinity than other amino acids. However, how these aromatic residues influence the immune binding still deserves further investigation. A large-scale examination was done regarding the local spa...

  6. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wear, J.E. Jr.

    1993-05-01

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  7. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers.

    Science.gov (United States)

    Fujita, Tomoya; Nguyen, Hieu Duc; Ito, Takashi; Zhou, Shengmin; Osada, Lisa; Tateyama, Seiji; Kaneko, Tatsuo; Takaya, Naoki

    2013-10-01

    Aromatic polymers include novel and extant functional materials although none has been produced from biotic building blocks derived from primary biomass glucose. Here we screened microbial aromatic metabolites, engineered bacterial metabolism and fermented the aromatic lactic acid derivative β-phenyllactic acid (PhLA). We expressed the Wickerhamia fluorescens gene (pprA) encoding a phenylpyruvate reductase in Escherichia coli strains producing high levels of phenylalanine, and fermented optically pure (>99.9 %) D-PhLA. Replacing pprA with bacterial ldhA encoding lactate dehydrogenase generated L-PhLA, indicating that the produced enzymes converted phenylpyruvate, which is an intermediate of phenylalanine synthesis, to these chiral PhLAs. Glucose was converted under optimized fermentation conditions to yield 29 g/l D-PhLA, which was purified from fermentation broth. The product satisfied the laboratory-scale chemical synthesis of poly(D-PhLA) with M w 28,000 and allowed initial physiochemical characterization. Poly(D-PhLA) absorbed near ultraviolet light, and has the same potential as all other biomass-derived aromatic bioplastics of phenylated derivatives of poly(lactic acid). This approach to screening and fermenting aromatic monomers from glucose exploits a new era of bio-based aromatic polymer design and will contribute to petroleum conservation and carbon dioxide fixation. PMID:23949992

  8. Synthesis of aromatic glycoconjugates. Building blocks for the construction of combinatorial glycopeptide libraries

    Directory of Open Access Journals (Sweden)

    Markus Nörrlinger

    2014-10-01

    Full Text Available New aromatic glycoconjugate building blocks based on the trifunctional 3-aminomethyl-5-aminobenzoic acid backbone and sugars linked to the backbone by a malonyl moiety were prepared via peptide coupling. The orthogonally protected glycoconjugates, bearing an acetyl-protected glycoside, were converted into their corresponding acids which are suitable building blocks for combinatorial glycopeptide synthesis.

  9. Enantioselective Pinacol Coupling of Aromatic Aldehydes Mediated by TiCl4(THF)2/Zn with Tartaric Ester

    Institute of Scientific and Technical Information of China (English)

    LI You-Gui李有桂; JIANG Chen江辰; ZHAO Jun赵俊; TIAN Qing-Shan田青杉; YOU Tian-Pa尤田耙

    2004-01-01

    Asymmetric pinacol coupling of aromatic aldehydes mediated by low valent titanium complexes of chiral ligands derived from natural tartaric acid provided corresponding pinacols in good yields with excellent diastereoselectivities and moderate enantioselectivities.

  10. Nucleophilic fluorination of aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  11. Biodegradation of Polycyclic Aromatic Hydrocarbons

    OpenAIRE

    DEMİR, İsmail; DEMİRBAĞ, Zihni

    1999-01-01

    Polycylic aromatic hydrocarbons (PAHs), such as petroleum and petroleum derivatives, are widespread organic pollutants entering the environment, chiefly, through oil spills and incomplete combustion of fossil fuels. Since most PAHs are persist in the environment for a long period of time and bioaccumulate, they cause environmental pollution and effect biological equilibrium dramatically. Biodegradation of some PAHs by microorganisms has been biochemically and genetically investigated. Ge...

  12. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    Science.gov (United States)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  13. Deuterated polycyclic aromatic hydrocarbons: Revisited

    CERN Document Server

    Doney, Kirstin D; Mori, Tamami; Onaka, Takashi; Tielens, A G G M

    2016-01-01

    The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {\\mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {\\mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case o...

  14. The direct aromatization of methane

    Energy Technology Data Exchange (ETDEWEB)

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M. [Altamira Instruments, Pittsburgh, PA (United States)

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  15. Noncomparative scaling of aromaticity through electron itinerancy

    International Nuclear Information System (INIS)

    Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of π-electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of π-electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized π-electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry

  16. Aromatic products from reaction of lignin model compounds with UV-alkaline peroxide

    International Nuclear Information System (INIS)

    A series of guaiacyl and syringyl lignin model compounds and their methylated analogues were reacted with alkaline hydrogen peroxide while irradiating with UV light at 254 nm. The aromatic products obtained were investigated by gas chromatography-mass spectrometry (GC-MS). Guaiacol, syringol and veratrol gave no detectable aromatic products. However, syringol methyl ether gave small amounts of aromatic products, resulting from ring substitution and methoxyl displacement by hydroxyl radicals. Reaction of vanillin and syringaldehyde gave the Dakin reaction products, methoxy-1,4-hydroquinones, while reaction of their methyl ethers yielded benzoic acids. Acetoguaiacone, acetosyringone and their methyl ethers afforded several hydroxylated aromatic products, but no aromatic products were identified in the reaction mixtures from guaiacylpropane and syringylpropane. In contrast, veratrylpropane gave a mixture from which 17 aromatic hydroxylated compounds were identified. It is concluded that for phenolic lignin model compounds, particularly those possessing electrondonating aromatic ring substituents, ring-cleavage reactions involving superoxide radical anions are dominant, whereas for non-phenolic lignin models, hydroxylation reactions through attack of hydroxyl radicals prevail

  17. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.

    Science.gov (United States)

    Karishma, M; Trivedi, Vikas D; Choudhary, Alpa; Mhatre, Akanksha; Kambli, Pranita; Desai, Jinal; Phale, Prashant S

    2015-10-01

    Soil isolates Pseudomonas putida CSV86, Pseudomonas aeruginosa PP4 and Pseudomonas sp. C5pp degrade naphthalene, phthalate isomers and carbaryl, respectively. Strain CSV86 displayed a diauxic growth pattern on phenylpropanoid compounds (veratraldehyde, ferulic acid, vanillin or vanillic acid) plus glucose with a distinct second lag-phase. The glucose concentration in the medium remained constant with higher cell respiration rates on aromatics and maximum protocatechuate 3,4-dioxygenase activity in the first log-phase, which gradually decreased in the second log-phase with concomitant depletion of the glucose. In strains PP4 and C5pp, growth profile and metabolic studies suggest that glucose is utilized in the first log-phase with the repression of utilization of aromatics (phthalate or carbaryl). All three strains utilize benzoate via the catechol 'ortho' ring-cleavage pathway. On benzoate plus glucose, strain CSV86 showed preference for benzoate over glucose in contrast to strains PP4 and C5pp. Additionally, organic acids like succinate were preferred over aromatics in strains PP4 and C5pp, whereas strain CSV86 co-metabolizes them. Preferential utilization of aromatics over glucose and co-metabolism of organic acids and aromatics are found to be unique properties of P. putida CSV86 as compared with strains PP4 and C5pp and this property of strain CSV86 can be exploited for effective bioremediation. PMID:26316546

  18. Quantum transport through aromatic molecules

    International Nuclear Information System (INIS)

    In this paper, we study the electronic transport properties through aromatic molecules connected to two semi-infinite leads. The molecules are in different geometrical configurations including arrays. Using a nearest neighbor tight-binding approach, the transport properties are analyzed into a Green's function technique within a real-space renormalization scheme. We calculate the transmission probability and the Current-Voltage characteristics as a function of a molecule-leads coupling parameter. Our results show different transport regimes for these systems, exhibiting metal-semiconductor-insulator transitions and the possibility to employ them in molecular devices

  19. Optimizing the Production of Renewable Aromatics via Crop Oil Catalytic Cracking

    Directory of Open Access Journals (Sweden)

    Clancy Kadrmas

    2015-04-01

    Full Text Available While HZSM-5 catalytic cracking of crop oil toward aromatics have been well documented, this work adds to this body of knowledge with a full acid byproduct analysis that provides improved mass balance closure along with a design of experiment optimization of reaction conditions. Fatty acids are an inevitable byproduct when converting any triglyceride oil, but are most often overlooked; despite the impact fatty acids have on downstream processing. Acid analysis verified that only short chain fatty acids, mainly acetic acid, were present in low quantities when all feed oil was reacted. When relatively high fatty acid amounts were present, these were mainly uncracked C16 and C18 fatty acids. Optimization is a balance of aromatics formation vs. unwanted gas products, coke and residual fatty acids. A design of experiments approach was used to provide insight into where the optimal reaction conditions reside for HZSM-5 facilitated reactions. These conditions can then form the basis for further development into a commercially viable process for the production of renewable aromatics and other byproducts.

  20. Synthesis and Properties of Some polyurethane/ Partially Aromatic Polyester Casting Samples

    International Nuclear Information System (INIS)

    A series of partially aromatic terephthalate polyesters were synthesized by melt transesterification of dimethyl terephthalate with various types of aliphatic diol compounds in 1:1.1 molar ratio. Ethylene-, di-, tri-, tetra ethylene glycol and polyethylene glycol with different molecular weights 1000, 4000, 6000 as well as the prepared dihydroxy natural rubber were used. Another series of partially aromatic adipate and sebacate polyesters based on the prepared bisphenol A and its tetrabromo derivative were also synthesized by direct polycondensation esterification with adipic and sebacic acid. Polyurethane with NCO/OH ratio equal 4 was prepared from the reaction of 2,4 toluene diisocyanate with polyethylene glycol 1000. The prepared polyurethane was mixed with different weight percentages (2, 4, 6, 8, 10 or 12 % w/w) of the prepared partially aromatic polyesters to give polyurethane/polyester compositions. Mechanical and electrical properties as well as water and chemical resistance of the prepared film samples with thickness 3-4 mm were determined and compared with those of polyurethane film sample without polyester. The data indicate that 10 % w/w of the added partially aromatic polyester increases polyurethane tensile strength, improves its insulation properties and hydrolytic stability as well as its chemical resistance. Film samples based on bisphenol A impart excellent properties as compared with those based on aliphatic glycol species and dihydroxy natural rubber. Keywords: Partially aromatic polyesters, Dimethyl terephthalate, Glycols, Bisphenol A, Tetrabromo bisphenol A, Natural rubber, Adipic acid, Sebacic acid, Polyurethane, Casting

  1. Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity

    OpenAIRE

    Campillo-Brocal, Jonatan C; Chacón-Verdú, María Dolores; Lucas-Elío, Patricia; Sánchez-Amat, Antonio

    2015-01-01

    Background L-Amino acid oxidases (LAOs) have been generally described as flavoproteins that oxidize amino acids releasing the corresponding ketoacid, ammonium and hydrogen peroxide. The generation of hydrogen peroxide gives to these enzymes antimicrobial characteristics. They are involved in processes such as biofilm development and microbial competition. LAOs are of great biotechnological interest in different applications such as the design of biosensors, biotransformations and biomedicine....

  2. Beyond organic chemistry: aromaticity in atomic clusters.

    Science.gov (United States)

    Boldyrev, Alexander I; Wang, Lai-Sheng

    2016-04-28

    We describe joint experimental and theoretical studies carried out collaboratively in the authors' labs for understanding the structures and chemical bonding of novel atomic clusters, which exhibit aromaticity. The concept of aromaticity was first discovered to be useful in understanding the square-planar unit of Al4 in a series of MAl4(-) bimetallic clusters that led to discoveries of aromaticity in many metal cluster systems, including transition metals and similar cluster motifs in solid compounds. The concept of aromaticity has been found to be particularly powerful in understanding the stability and bonding in planar boron clusters, many of which have been shown to be analogous to polycyclic aromatic hydrocarbons in their π bonding. Stimulated by the multiple aromaticity in planar boron clusters, a design principle has been proposed for stable metal-cerntered aromatic molecular wheels of the general formula, M@Bn(k-). A series of such borometallic aromatic wheel complexes have been produced in supersonic cluster beams and characterized experimentally and theoretically, including Ta@B10(-) and Nb@B10(-), which exhibit the highest coordination number in two dimensions. PMID:26864511

  3. C2-Symmetric chiral diamine ligands for enantiomeric recognition of amino acid esters and mandelic acid by proton NMR titration method

    OpenAIRE

    ARAL, Hayriye; ARAL, Tarık; ÇOLAK, Mehmet; ZİYADANOĞULLARI, Berrin; ZİYADANOĞULLARI, Recep

    2013-01-01

    Two novel C2-symmetric chiral diamines containing a -phenylethyl and a -(1-naphthyl)ethyl chiral subunits were prepared with quantitative yields. Enantiomeric recognition properties of these simple structured diamine ligands towards D- and L-amino acid esters and D- and L-mandelic acid were examined by the 1H NMR titration method. These ligands exhibited strong complexation (with Kf up to 2481 M-1) and good enantioselectivity (up to KL/KD = 4.08) towards the mandelic acid enantiomers...

  4. Studies on Mo/HZSM-5 Complex Catalyst for Methane Aromatization

    Institute of Scientific and Technical Information of China (English)

    Qun Dong; Xiaofei Zhao; Jian Wang; M. Ichikawa

    2004-01-01

    The influence of adding Fe, Cr, Co, and Ga into 3%Mo/HZSM-5 catalyst on methane aromatization, and the influence of additives ratio on methane conversion, selectivity to hydrocarbons and coke,as well as distribution of aromatics were investigated. The experimental results showed that the addition of Fe, Cr, Co and Ga promoted the dehydrogenation and dissociation of methane. The results of NH3-TPD indicated that the acidity of HZSM-5 was changed by adding Fe and Co components, consequently the catalytic properties of Mo/HZSM-5 were changed. It was also revealed that strong acid sites were the center of methane aromatization. The results of XRD characterization showed that the crystallinity of Mo on ZSM-5 zeolite was increased after adding Fe, Co additives.

  5. Comparison of RNA extraction methods in Thai aromatic coconut water

    Directory of Open Access Journals (Sweden)

    Nopporn Jaroonchon

    2015-10-01

    Full Text Available Many researches have reported that nucleic acid in coconut water is in free form and at very low yields which makes it difficult to process in molecular studies. Our research attempted to compare two extraction methods to obtain a higher yield of total RNA in aromatic coconut water and monitor its change at various fruit stages. The first method used ethanol and sodium acetate as reagents; the second method used lithium chloride. We found that extraction using only lithium chloride gave a higher total RNA yield than the method using ethanol to precipitate nucleic acid. In addition, the total RNA from both methods could be used in amplification of betaine aldehyde dehydrogenase2 (Badh2 genes, which is involved in coconut aroma biosynthesis, and could be used to perform further study as we expected. From the molecular study, the nucleic acid found in coconut water increased with fruit age.

  6. Cross-aldol condensation between cyclohexanone and aromatic aldehydes catalyzed by silicon dioxide supported phosphoric acid under solvent-free conditions%无溶剂条件下硅胶固载磷酸催化环己酮与芳香醛的缩合反应

    Institute of Scientific and Technical Information of China (English)

    裴强; 金春雪; 薛灵芬; 张小宁; 宋文姬

    2011-01-01

    Seven α,β-unsaturated ketones were synthesized from cross-aldol condensation between aromatic aldehydes and cyclohex-anone in the presence of silicon dioxide supported phosphoric acid under solvent-free conditions. It showed advantages of short reaction time (60 - ISO rain) and good yields (73.4%~92.7% ). This method was simple,fast,environmental friendly,and the catalyst could be reused.%以硅胶(mSiO2·nH2O)固载磷酸为催化剂,在无溶剂条件下催化环已酮与芳香醛的Cross-Aldol缩合反应,得到7个相应的α,β不饱和羰基化合物,反应时间短(60~150 min),产率高(73.4% ~ 92.7%).该方法操作简单,催化剂可重复使用,且对环境友好.

  7. 无溶剂条件下硅胶固载硫酸催化酮与芳香醛的Cross-Aldol缩合反应%Silicon Dioxide Supported Sulfuric Acid as an Efficient Catalyst for Cross-Aldol Condensation of Ketones with Aromatic Aldehydes under Solvent-Free Conditions

    Institute of Scientific and Technical Information of China (English)

    郭鹏; 裴强; 张永笑; 樊阳; 张小宁

    2011-01-01

    在无溶剂条件下,用硅胶(mSiO2·nH2O)固载硫酸催化环己酮与芳香醛的Cross-Aldol缩合反应.结果表明,反应时间60~150 min,产率可达72%~93%,共得到5个相应的α,β-不饱和羰基化合物.该方法操作简单,催化剂可重复使用,且对环境友好.%Aromatic aldehydes underwent cross-aldol condensation with ketones in the presence of silicon dioxide supported sulfuric acid under solvent-free conditions to afford 7 corresponding α, β-unsaturated ketones, in shrot reaction time (50 ~ 150 min) and good yields (72% ~93% ).This method provides a synthetic method with simple workup procedure, reusing of catalyst, and environment benign.

  8. Cocrystals of fenamic acids with nicotinamide

    OpenAIRE

    Fábián, László; Hamill, Noel; Eccles, Kevin S; Moynihan, Humphrey A; Maguire, Anita R.; McCausland, Linda; Lawrence, Simon E.

    2011-01-01

    Cocrystal formation between nicotinamide and five fenamic acid derivative drugs (flufenamic acid, niflumic tolfenamic acid, mefenamic acid and meclofenamic acid) was investigated using solution-based and solid-state preparation methods. It was anticipated that the well-known acid-aromatic nitrogen heterosynthon would provide a sufficient driving force for cocrystallization. The experiments yielded cocrystals with four of the five acids. Although the structures of these molecules are similar, ...

  9. Polycyclic aromatic hydrocarbons with SPICA

    CERN Document Server

    Berne, O; Mulas, G; Tielens, A G G M; Goicoechea, J R

    2009-01-01

    Thanks to high sensitivity and angular resolution and broad spectral coverage, SPICA will offer a unique opportunity to better characterize the nature of polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs), to better use them as probes of astrophysical environments. The angular resolution will enable to probe the chemical frontiers in the evolution process from VSGs to neutral PAHs, to ionized PAHs and to "Grand-PAHs" in photodissotiation regions and HII regions, as a function of G$_0$/n (UV radiation field / density). High sensitivity will favor the detection of the far-IR skeletal emission bands of PAHs, which provide specific fingerprints and could lead to the identification of individual PAHs. This overall characterization will allow to use PAH and VSG populations as tracers of physical conditions in spatially resolved protoplanetary disks and nearby galaxies (using mid-IR instruments), and in high redshift galaxies (using the far-IR instrument), thanks to the broad spectral coverage SPIC...

  10. Chiral analysis of amino acids using electrochemical composite bienzyme biosensors.

    Science.gov (United States)

    Domínguez, R; Serra, B; Reviejo, A J; Pingarrón, J M

    2001-11-15

    The construction and performance of bienzyme amperometric composite biosensors for the selective determination of l- or d-amino acids is reported. D- or L-Amino acid oxidase, horseradish peroxidase, and the mediator ferrocene were coimmobilized by simple physical inclusion into the bulk of a graphite-70% Teflon electrode matrix. Working conditions including amino acid oxidase loading and pH were optimized. Studies on the repeatability of the amperometric response obtained at +0.00 V, with and without regeneration of the electrode surface by polishing, on the useful lifetime of one single biosensor and on the reproducibility in the fabrication of different biosensors illustrate the robustness of the bioelectrodes design. Calibration plots by both amperometry in stirred solutions and flow injection with amperometric detection were obtained for L-arginine, L-phenylalanine, L-leucine, L-methionine, L-tryptophan, D-leucine, D-methionine, D-serine, and D-valine. Differences in sensitivity were discussed in terms of the hydrophobicity of the substrate and of the electrode surface. The bienzyme composite electrode was applied to the determination of L- and D-amino acids in racemic samples, as well as to the estimation of the L-amino acids content in muscatel grapes. PMID:11700983

  11. Metabolic pathways of biotransformation and biosynthesis of aromatic compounds for the flavour industry by the basidiomycete Pycnoporus cinnabarinus

    OpenAIRE

    Asther, Marcel; Lomascolo, A.; Asther, M.; Moukha, S.; Lesage-Meessen, L.

    1998-01-01

    Among filamentous fungi, white-rot Basidiomycetes have become a strategic group to generate industrial aromatic flavours. In the course of a basidiomycete screening, the biotechnological potential of #Pycnoporus cinnabarinus$ strains was studied in order to produce, by transformation or de novo, natural aromatic flavours in liquid cultures. Ferulic acid and L-phenylalanine were found to be suitable substrates for vanillin and benzaldehyde (bitter almond aroma) production, respectively. These ...

  12. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area

    OpenAIRE

    Yiming Feng; Min Liu; Yanan Ouyang; Xianfang Zhao; Yanlun Ju; Yulin Fang

    2015-01-01

    Background: Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. Methods: The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was a...

  13. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area

    OpenAIRE

    Feng, Yiming; Liu, Min; Ouyang, Yanan; Zhao, Xianfang; Ju, Yanlun; Fang, Yulin

    2015-01-01

    Background Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. Methods The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was ana...

  14. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area

    OpenAIRE

    Feng, Yiming; Fang, Yulin; Liu, Min; Ouyang, Yanan; Zhao, Xianfang; Ju, Yanlun

    2015-01-01

    Background: Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits.Methods: The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was an...

  15. Translation of an aromatic field image

    Science.gov (United States)

    Yastrebov, Anatoliy S.; Makarov, Leonid M.; Protasenya, Sergey V.; Vereshak, Evgeniy V.

    2005-04-01

    As is known, for a person there are possibilities of perception of audio, video, and aromatic information messages by means of touch systems available to him. Such packages of the messages are accepted remotely without direct contact to a message source. Now the direction bound with creation of devices capable to playback aromatic information images is actively developed. Such systems switched on in special transmission channels of information provide adequate perception of information highways describing actual event which happen in the enclosing world. One can present the aromatic-field image through a series of control codes for an aromatic field synthesizer, thereupon it is possible to transmit the image on telecommunication networks. For odor oscillators installation problems in compartments of automobiles, buses as well as of airplanes are widely discussed. In this work we deal with a device for synthesis of an image of an aromatic field which works under the control of a personal computer with an express program. In the given operation, the possibility of remote handle of an image of an aromatic field and, as a corollary, organization of a new tansmission channel for the information on the aromatic-field image through an existing synthesizer is considered.

  16. Mlp24 (McpX) of Vibrio cholerae Implicated in Pathogenicity Functions as a Chemoreceptor for Multiple Amino Acids

    OpenAIRE

    Nishiyama, So-ichiro; Suzuki, Daisuke; Itoh, Yasuaki; Suzuki, Kazuho; Tajima, Hirotaka; Hyakutake, Akihiro; Homma, Michio; Butler-Wu, Susan M.; Camilli, Andrew; Kawagishi, Ikuro

    2012-01-01

    The chemotaxis of Vibrio cholerae, the causative agent of cholera, has been implicated in pathogenicity. The bacterium has more than 40 genes for methyl-accepting chemotaxis protein (MCP)-like proteins (MLPs). In this study, we found that glycine and at least 18 l-amino acids, including serine, arginine, asparagine, and proline, serve as attractants to the classical biotype strain O395N1. Based on the sequence comparison with Vibrio parahaemolyticus, we speculated that at least 17 MLPs of V. ...

  17. Isolation and characterization of Halomonas sp strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions

    OpenAIRE

    Abdelkafi, Slim; Labat, Marc; Casalot, Laurence; Chamkha, M.; Sayadi, S.

    2006-01-01

    A moderately halophilic, mesophilic, Gram-negative, motile, nonsporulating bacterium, designated strain IMPC, was isolated from a table-olive fermentation rich in aromatic compounds, after enrichment on p-coumaric acid under halophilic conditions. Strain IMPC was able to degrade p-coumaric acid. p-hydroxybenzaldehyde and p-hydroxybenzoic acid were detected as breakdown products from p-coumaric acid. Protocatechuic acid was identified as the final aromatic product of p-coumaric acid catabolism...

  18. Conservation of medicinal and aromatic plants

    Directory of Open Access Journals (Sweden)

    Šveistytė, Laima

    2016-07-01

    Full Text Available The conservation of medicinal and aromatic plants includes ex situ and in situ methods. The genetic recourses of medicinal and aromatic plants are stored, studied and constantly maintained in the field collections of the Institute of Botany of Nature Research Centre, Kaunas Botanical Garden of Vytautas Magnus University and Aleksandras Stulginskis University of Agriculture. Presently seeds of 214 accessions representing 38 species of medicinal and aromatic plants are stored in a long-term storage in the Plant Gene Bank. The data about national genetic resources are collected and stored in the Central Database of the Plant Gene Bank.

  19. Aromaticity influencing the thermostability of micellar dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.A.; Kunzman, W.J.

    1970-02-17

    The thermostability of a micellar dispersion is shifted to higher temperature ranges by increasing the aromaticity of the hydrocarbon within the dispersion. The micellar solution is composed of kerosene and light catalytic cycle oil (hydrocarbons), water, sodium or ammonium alkyl aryl naphthenic sulfonates (petroleum sulfonate surfactant), isopropanol (cosurfactant), and sodium sulfate (electrolyte). The aromatic content of the light catalytic cycle oil is higher than the aromatic content of the kerosene. By increasing the concentration of cycle oil to kerosene, stable micellar solutions at temperatures from ambient to 200/sup 0/F can be obtained. The aqueous medium can be soft, brackish, or a brine.

  20. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one. PMID:21105726

  1. Carotamine, a Unique Aromatic Amide from Daucus Carota L. Var Biossieri (Apiaceae

    Directory of Open Access Journals (Sweden)

    Mohamed M. El-Azizi

    2002-06-01

    Full Text Available The unique aromatic peptide 4-(p-aminobenzoylamino-2-aminobenzoic acid, carotamine, together with 2,4-diaminobenzoic acid, isolated for the first time from a plant source, were identified from the aqueous alcoholic extract of the aerial parts of Daucus carota L. var. boissieri (Apiaceae. The structures were determined through conventional methods of analysis and confirmed by LC-ESI/MS and NMR spectral analysis.

  2. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    Directory of Open Access Journals (Sweden)

    Tsuyuka Sugiishi

    2015-12-01

    Full Text Available This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

  3. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    Science.gov (United States)

    Sugiishi, Tsuyuka; Aikawa, Kohsuke

    2015-01-01

    Summary This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C) or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics. PMID:26734112

  4. Branched-chain amino acids for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Koretz, R L; Kjaergard, L L;

    2003-01-01

    Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy....

  5. Pulse shape discrimination in non-aromatic plastics

    International Nuclear Information System (INIS)

    Recently it has been demonstrated that plastic scintillators have the ability to distinguish neutrons from gamma rays by way of pulse shape discrimination (PSD). This discovery has lead to new materials and new capabilities. Here we report our work with the effects of aromatic, non-aromatic, and mixed aromatic/non-aromatic matrices have on the performance of PSD plastic scintillators

  6. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  7. Graphite Oxide and Aromatic Amines : Size Matters

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Calvaresi, Matteo; Diamanti, Evmorfi A. K.; Tsoufis, Theodoros; Gournis, Dimitrios; Rudolf, Petra; Zerbetto, Francesco

    2015-01-01

    Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molec

  8. International congress on aromatic and medicinal plants

    International Nuclear Information System (INIS)

    Full Text : In Morocco, medicinal and aromatic plants occupy an important place in the traditional care system of a large number of local people. They are also economically strong potential, but unfortunately they are not valued enough. Indeed, Morocco by its privileged geographical position in the Mediterranean basin and its floristic diversity (with a total of over 4,200 species and subspecies of which over 500 are recognized as medicinal and aromatic plants), is a leading provider of traditional global market. In this context and given the back label of the natural global, group research and studies on Aromatic and Medicinal Plants (GREPAM), the Faculty of Semlalia and University Cadi Ayyad, organize: the International Congress on Medicinal and Aromatic Plants CIPAM 2009. The organization of this conference is part of scientific research developed by the GREPAM.

  9. Activity relationships for aromatic crown ethers

    CERN Document Server

    Wilson, M J

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities...

  10. Comments on Coulomb pairing in aromatic hydrocarbons

    CERN Document Server

    Huber, D L

    2013-01-01

    Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.

  11. PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS REVISITED

    International Nuclear Information System (INIS)

    We reconsider the contribution that singly protonated polycyclic aromatic hydrocarbons (PAHs; HPAH+s) might make to the Class A component of the 6.2 μm interstellar emission feature in light of the recent experimental measurements of protonated naphthalene and coronene. Our calculations on the small HPAH+s have a band near 6.2 μm, as found in experiment. While the larger HPAH+s still have emission near 6.2 μm, the much larger intensity of the band near 6.3 μm overwhelms the weaker band at 6.2 μm, so that the 6.2 μm band is barely visible. Since the large PAHs are more representative of those in the interstellar medium, our work suggests that large HPAH+s cannot be major contributors to the observed emission at 6.2 μm (i.e., Class A species). Saturating large PAH cations with hydrogen atoms retains the 6.2 μm Class A band position, but the rest of the spectrum is inconsistent with observed spectra.

  12. Dehydrogenative Aromatization of Saturated Aromatic Compounds by Graphite Oxide and Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    张轩; 徐亮; 王希涛; 马宁; 孙菲菲

    2012-01-01

    Graphite oxide (GO) has attracted much attention of material and catalysis chemists recently. Here we describe a combination of GO and molecular sieves for the dehydrogenative aromatization. GO prepared through improved Hummers method showed high oxidative activity in this reaction. Partially or fully saturated aromatic compounds were converted to their corresponding dehydrogenated aromatic products with fair to excellent conversions and selectivities. As both GO and molecular sieves are easily available, cheap, lowly toxic and have good tolerance to various functional groups, this reaction provides a facile approach toward aromatic compounds from their saturated precursors

  13. Abilities of some higher plants to hydrolyze the acetates of phenols and aromatic-aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-02-01

    Full Text Available In the biotransformations carried out under the same conditions, the whole intact plants of Spirodela punctata, Nephrolepis exaltata, Cyrtomium falcatum, Nephrolepis cordifolia and the suspension cultures of Helianthus tuberosus, Daucus carota and Petunia hybrida hydrolyze (partially or totally the ester bonds of the acetates of phenols and aromatic-aliphatic alcohols and also the menthyl acetate. Nevertheless, the methyl esters of aromatic acids, structurally similar to the former substrates, do not undergo hydrolysis. At the same time, the viability of first four plants was observed for different levels of acetate concentration. The method of continuous preparative hydrolysis of the same acetates was worked out in Cyrtomium falcatum culture.

  14. Aromatic amines sources, environmental impact and remediation

    OpenAIRE

    Pereira, Luciana; Mondal, P. K.; Alves, M. M.

    2015-01-01

    Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these comp...

  15. Aromaticity influencing the thermostability of micellar dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.A.; Kunzman, W.J.

    1971-05-11

    A hydrocarbon, having sufficient aromaticity to obtain a stable micellar dispersion at the temperature of the formation, is mixed with a surfactant and aqueous medium for injection into the formation to recover crude oil. Higher reservoir temperatures require a greater degree of aromaticity in the hydrocarbon component of the micellar dispersion. This patent is a continuation of U.S. Patent Number 3,495,660 (item No. 118).

  16. Nonchemical weeding of medicinal and aromatic plants

    OpenAIRE

    Carrubba, Alessandra; Militello, Marcello

    2013-01-01

    Medicinal and aromatic plants are major crops of domestic and industrial interest. Medicinal and aromatic plants are increasingly organically grown to enhance profitability. However, the presence of weeds may lead to a decrease in both yield and quality. Therefore, nonchemical methods of weed control are needed. In this study, mechanical weeding, flaming, stale seedbed, and biodegradable mulch were tested from 2003/2004 to 2006/2007 on coriander, fennel, and psyllium. Biomass and seed yield w...

  17. Chemotaxis of Azospirillum Species to Aromatic Compounds

    OpenAIRE

    Lopez-de-Victoria, Geralyne; Lovell, Charles R.

    1993-01-01

    Chemotaxis of Azospirillum lipoferum Sp 59b and Azospirillum brasilense Sp 7 and Sp CD to malate and to the aromatic substrates benzoate, protocatechuate, 4-hydroxybenzoate, and catechol was assayed by the capillary method and direct cell counts. A. lipoferum required induction by growth on 4-hydroxybenzoate for positive chemotaxis to this compound. Chemotaxis of Azospirillum spp. to all other substrates did not require induction. Maximum chemotactic responses for most aromatic compounds occu...

  18. Trifluoromethanesulfonic acid promoted Dakin-West reaction: An efficient and convenient synthesis of -acetamido ketones

    Indian Academy of Sciences (India)

    Ravindra M Kumbhare; Madabhushi Sridhar

    2012-03-01

    Trifluoromethanesulfonic acid promoted efficient condensation of an aromatic aldehyde with an acetophenone and acetonitrile in the presence of acetylchloride as an activator producing -acetamido carbonyl compounds is described.

  19. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  20. Ga BaB pharmacophoric pattern based on conformational analysis of 3-hetero aromatic baclofen analogues

    International Nuclear Information System (INIS)

    Substituting a furan, a thiophen, a benzo (b) furan or a benzo (b) thiophen ring for the p-chlorophenyl moiety of baclofen has led to GABAB (GABA = γ-aminobutyric acid) ligands with different affinities according to the nature of the hetero-aromatic ring, and the nature and position of its substituent. In order to determine the structural requirements that are important for GABAB affinity, we have aligned the 3D structures of several 3-hetero-aromatic baclofen analogues with that of baclofen. As a result, we have suggested a pharmacophoric pattern for 3-hetero-aromatic baclofen analogues. The 3D structures have been studied by X-ray diffraction and by ab initio molecular orbital calculations. (authors). 29 refs., 6 figs., 5 tabs

  1. Selective Production of Aromatics from 2-Octanol on Zinc Ion-Exchanged MFI Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Masakazu Iwamoto

    2015-12-01

    Full Text Available The aromatization of 2-octanol derived from castor oil as a byproduct in the formation of sebacic acid was investigated on various zeolite catalysts. Zn ion-exchanged MFI (ZSM-5 zeolites with small silica/alumina ratios and zinc contents of 0.5 to 2.0 wt. % were determined to exhibit good and stable activity for the reaction at 623 to 823 K. The yield of aromatics was 62% at 773 K and the space velocity 350 to 1400 h−1. The temperature and contact time dependences of the product distributions indicated the reaction pathways of 2-octanol→dehydration to 2-octene→decomposition to C5 and C3 compounds→further decomposition to small alkanes and alkenes→aromatization with dehydrogenation. Alcohols with carbon numbers of 5 to 8 exhibited similar distributions of products compared to 2-octanol, while corresponding carbonyl compounds demonstrated different reactivity.

  2. Hydrogen isotope exchange between boranes and deuterated aromatic hydrocarbons: evidence for reversible hydroboration of benzene

    International Nuclear Information System (INIS)

    Pentaborane, B5H9, and diborane, B2H6, undergo hydrogen isotope exchange with deuterated aromatic hydrocarbons. Lewis acid catalyzed hydrogen isotope exchange occurs between benzene-d6 and the apical hydrogen atom of B5H9 to form 1-DB5H8 at ambient temperature. In uncatalyzed exchanges, B5H9 reacts with deuterated aromatic hydrocarbons to produce 1,2,3,4,5-D5B5H4 at +450C and B5D9 at +1200C. This thermally induced hydrogen isotope exchange apparently occurs via a reversible hydroboration of the aromatic ring. Diborane undergoes a similar isotope exchange with benzene-d6 under mild thermal conditions. 18 references, 6 figures, 3 tables

  3. An overview of the AROMAT campaigns

    Science.gov (United States)

    Merlaud, Alexis; Dekemper, Emmanuel; Van Roozendael, Michel; Constantin, Daniel; Georgescu, Lucian; Meier, Andreas; Richter, Andreas; Den Hoed, Mirjam; Allaart, Marc; Boscornea, Andreea; Vajaiac, Sorin; Bellegante, Livio; Nemuc, Anca; Nicolae, Doina; Shaifangar, Reza; Dörner, Steffen; Wagner, Thomas; Stebel, Kerstin; Schuettemeyer, Dirk

    2016-04-01

    The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign and its follow-up AROMAT-2 were held in September 2014 and August 2015, respectively. Both campaigns focused on two geophysical targets: the city of Bucharest and the large power plants of the Jiu Valley, which are located in a rural area 170 km West of Bucharest. These two areas are complementary in terms of emitted chemical species and their spatial distributions. The objectives of the AROMAT campaigns were (i) to test recently developed airborne observation systems dedicated to air quality satellite validation studies such as the AirMAP imaging DOAS system (University of Bremen), the NO2 sonde (KNMI), and the compact SWING whiskbroom imager (BIRA), and (ii) to prepare the validation programme of the future Atmospheric Sentinels, starting with Sentinel-5 Precursor (S5P) to be launched in early summer 2016. We present results from the different airborne instrumentations and from coincident ground-based measurements (lidar, in-situ, and mobile DOAS systems) performed during both campaigns. The AROMAT dataset addresses several of the mandatory products of TROPOMI/S5P, in particular NO2 and SO2 (horizontal distribution and profile from aircraft, plume image with ground-based SO2 and NO2 cameras, transects with mobile DOAS, in-situ), H2CO (mobile MAX-DOAS), and aerosols (lidar, airborne FUBISS-ASA2 sun-photometer, and aircraft in-situ). We investigate the information content of the AROMAT dataset for satellite validation studies based on co-located OMI and GOME-2 data, and simulations of TROPOMI measurements. The experience gained during AROMAT and AROMAT-2 will be used in support of a large-scale TROPOMI/S5P validation campaign in Romania scheduled for summer 2017.

  4. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  5. The potential production of aromatic compounds in flowers of Vanda tricolor

    Science.gov (United States)

    Darmasiwi, Sari; Indriani, Vitri; Innata, Dita; Semiarti, Endang

    2015-09-01

    Vanda tricolor is a famous natural orchid that has beautiful flowers with fragrance, therefore analysis of aromatic compounds of this orchid are important. The objective of this research was to isolate and identify the aromatic compounds of Vanda tricolor flower. The flower petals were picked at various developmental stages (0,4,7, and 10 days of flower opened) at 12.00 noon. It was then extracted using solvent extraction method and enfleurage method. The hexane:acetone (9:1) extract was considered as concrete extract, while some parts of concrete that were further extracted with ethanol, considered as absolute extract. The olive oil extract was considered as enfleurage extract. Those extracts were then evaporated using nitrogen gas, and analyzed by GC/MS (GC/MS-QP 2010S Shimadzu, Agilent HP-5 MS UI column, 30 m ID length: 0.25 mm, Helium gas carrier). The results showed that aromatic compounds composition in Vanda tricolor flower extracts were consisted of fatty acid derivates, monoterpenoids, sesquiterpenoids, benzenoids, phenylpropanoids, hydrocarbons and other oxygenated compounds. The highest diversity of aromatic compounds were found at the 10th days after floral opened, and the sensory test among those 3 (three) extracts showed that the absolute extract had more similarity with the original flower scent profile rather than the other extracts. This research showed that Vanda tricolor has potential production of aromatic compounds which was different compare to another species of Vanda.

  6. d-Amino Acids Indirectly Inhibit Biofilm Formation in Bacillus subtilis by Interfering with Protein Synthesis

    OpenAIRE

    Leiman, Sara A.; May, Janine M.; Lebar, Matthew D.; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-01-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were ...

  7. Experimental Test of L- and D-Amino Acid Binding to L- and D-Codons Suggests that Homochirality and Codon Directionality Emerged with the Genetic Code

    OpenAIRE

    Robert Root-Bernstein

    2010-01-01

    L-amino acids bind preferentially to their D-codons, but almost nothing is known about whether D-amino acids correspondingly prefer L-codons, or how codon directionality affects amino acid binding. To investigate these issues, two D-RNA-oligonucleotides having inverse base sequences (D-CGUA and D-AUGC) and their corresponding L-RNA-oligonucleotides (L-CGUA and L-AUGC) were synthesized and their affinity determined for Gly and eleven pairs of L- and D-amino acids. The data support the hypothes...

  8. Oxidative phosphonylation of aromatic compounds

    OpenAIRE

    Effenberger, Franz; Kottmann, Hariolf

    1985-01-01

    Aryl phosphonates can be prepared in good yield from the respective arenes and tri- or dialkyphosphites by either chemical or anodic oxidation. The anodic oxidation proceeds either via phosphinium radical cations, which then attack the arenes electrophilically, or via arene radical cations, which add the trialkylphosphite as nucleophile. Aryl phosphonates are also obtained in good yield by chemical oxidation with peroxodisulfate/AgNO3 in acetonitrile/water or glacial acetic acid. The diethylp...

  9. Silicone elastomers with aromatic voltage stabilizers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    insulation cables.3–5 As an alternative to utilise additives as voltage stabilizers, grafting aromatic compounds to silicone backbones may overcome the common problem of insolubility of the aromatic voltage stabilizer in the silicone elastomers due to phase separation. Preventing phase separation during...... via hydrosilylation by a vinyl-functional crosslinker. The mechanism of electron-trapping by aromatic compounds grafted to silicone backbones in a crosslinked PDMS is illustrated in Fig. 1. The electrical breakdown strength, the storage modulus and the loss modulus of the elastomer were investigated...... attached to the silicone backbone. The dielectric relative permittivity of PDMS-PPMS copolymers remained between 2 to 3 with low conductivity and low dielectric loss as well as high storage moduli with low viscous loss, thereby maintaining the electro-mechanical integrity of the elastomer....

  10. Chemotaxis of Azospirillum species to aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-de-Victoria, G.; Lovell, C.R. (Univ. of South Carolina, Columbia, SC (United States))

    1993-09-01

    Azospirillum sspeciesare free-living nitrogen fixing bacteria commonly found in soils and in association with plant roots, including important agricultural crops. Rhizosphere colonization my Azospirillum species has been shown to stimulate growth of a variety of plant species. Chemotaxis is one of the properties which may contribute to survival, rhizosphere colonization and the initiation of mutualistic interactions by Azospirillum species. This study evaluates the chemotactic responses of three Azospirillum stains to a variety of aromatic compounds:benzoate, catechol, 4-HB, and PCA. Results indicate that the same aromatic substance can elicit different chemotactic responses from different Azospirillum species, and that Azospirillum can detect aromatic substrates at concentrations similar to those they encounter naturally. 36 refs., 1 fig., 6 tabs.

  11. Interaction of albumin with perylene-diimides with aromatic substituents

    Science.gov (United States)

    Farooqi, Mohammed; Penick, Mark; Burch, Jessica; Negrete, George; Brancaleon, Lorenzo

    2015-03-01

    Polyaromatic hydrocarbons (PAH) binding to proteins remains one of the fundamental aspects of research in biophysics. Ligand binding can regulate the function of proteins. Binding to small ligands remains a very important aspect in the study of the function of many proteins. Perylene diimide or PDI derivatives have attracted initial interest as industrial dyes and pigments. Recently, much attention has been focused on their strong π - π stacks resulting from the large PDI aromatic core. These PDI stacks have distinct optical properties, and provide informative models that mimic the light-harvesting system and initial charge separation and charge transfer in the photosynthetic system. The absorption property of PDI derivatives may be largely tuned from visible to near-infrared region by chemical modifications at the bay-positions. We are currently studying a new class of PDI derivatives with substituents made of the side chains of aromatic amino acids (Tyrosine, Tryptophan and Phenylalanine). We have looked at the fluorescence absorption and emission of these PDIs in water and other organic solvents. PDIs show evidence of dimerization and possible aggregation. We also present binding studies of these PDIs with Human Serum Albumin (HSA). The binding was studied using fluorescence emission quenching of the HSA Tryptophan residue. Stern-Volmer equation is used to derive the quenching constants. PDI binding to HSA also has an effect on the fluorescence emission of the PDIs themselves by red shifting the spectra. Funded by RCMI grant.

  12. Nucleobases in Space: Laboratory Studies of Polycyclic Aromatic Nitrogen Heterocycles

    Science.gov (United States)

    Elsila, Jamie; Mattioda, Andy; Bernstein, Max; Sandford, Scott; Hudgins, Doug

    2005-01-01

    Polycyclic Aromatic Nitrogen Heterocycles (PANHs) are heterocyclic aromatics Le., PAHs with carbon atoms replaced by a nitrogen atom. These molecules have been detected in meteorite extracts, and in general these nitrogen heterocycles are of astrobiological interest since this class of molecules include nucleobases, basic components of our nucleic acids. These compounds are predicted to be present in the interstellar medium and in Titan tholin, but have received relatively little attention. We will present spectra and reactions of PANHs, frozen in solid H2O at 12 K, conditions germane to astronomical observations. In contrast to simple PAHs, that do not interact strongly with solid H2O, the nitrogen atoms in PANHs are potentially capable of hydrogen bonding with H20 changing their spectra, complicating their remote detection on the surfaces of icy bodies. Moreover, we have studied the photo-chemistry of these interesting compounds under astrophysical conditions and will use our lab studies to assess a potential interstellar heritage of these compounds in carbonaceous chondrites.

  13. Synthesis and Evaluation of Novel Aromatic Substrates and Competitive Inhibitors of GABA Aminotransferase

    OpenAIRE

    Clift, Michael D.; Silverman, Richard B.

    2007-01-01

    The design, synthesis, and evaluation of novel γ-aminobutyric acid aminotransferase (GABA-AT) inhibitors and inactivators can lead to the discovery of new GABA-related therapeutics. To this end, a series of aromatic amino acid compounds was synthesized to aid in the design of new inhibitors and inactivators of GABA-AT. All compounds were tested as competitive inhibitors of GABA-AT. The amino acids with benzylic amines were also tested as substrates for GABA-AT. It was found that these compoun...

  14. Effects of Silylation on Zn-IM5 and Its Catalytic Activity for Butane Aromatization

    Institute of Scientific and Technical Information of China (English)

    Yu Lei; Yi Dezhi; Lu Yannan; Shi Li; Chen Junwen; Meng Xuan

    2016-01-01

    Effects of silylation on surface properties and catalytic performance of Zn-IM5 for butane aromatization were studied in this paper. Collidine-IR and NH3-TPD analyses revealed that the silylation treatment not only decreased the quantity of both strong and weak acid sites but also led to a slightly reduced intensity of weak acidity. Silylation of the catalyst promoted the selec-tivity of BTX by narrowing the channel and cutting the acidity. The effect of temperature of silylation and amount of Si loading were evaluated. The best condition has speciifed a temperature of 50℃and a SiO2 loading of 4.0%.

  15. Production of aromatics from di- and polyoxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Taylor; Blank, Brian; Jones, Casey; Woods, Elizabeth; Cortright, Randy

    2016-08-02

    Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Ni.sub.nSn.sub.m alloy and a crystalline alumina support.

  16. Global aromatics supply. Today and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    Aromatics are the essential building blocks for some of the largest petrochemical products in today's use. To the vast majority they are consumed to produce intermediates for polymer products and, hence, contribute to our modern lifestyle. Their growth rates are expected to be in line with GDP growth in future. This contrasts the significantly lower growth rates of the primary sources for aromatics - fuel processing and steam cracking of naphtha fractions. A supply gap can be expected to open up in future for which creative solutions will be required. (orig.)

  17. Electron beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Electron irradiation effects on aromatic polymers having various molecular structures were studied to elucidate the following subjects; (1) relation between radiation stability and molecular structure of repeating units, (2) mechanism of deterioration and (3) adaptability to matrix resin for radiation resistant FRP. Results are summarized as follows: (1) An order of radiation stability of units is; imide ring > diphenyl ether, diphenyl ketone > aromatic amide >> bis-phenol A > diphenyl sulphone. (2) Poly (ether-ether-ketone) and most polyimide are crosslinkable but polysulphones and polyarylate are chain degradation type polymers. (3) Newly developed thermoplastic polyimides have possibilities for use as matrix materials in radiation resistant FRP. (author)

  18. Characterization of acid tars

    International Nuclear Information System (INIS)

    Acid tars from the processing of petroleum and petrochemicals using sulfuric acid were characterized by gas chromatography/mass spectrometry (GC/MS), inductively coupled plasma/optical emission spectrometry (ICP/OES), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectrometry, and scanning electron microscopy/energy dispersive X-ray (SEM/EDX) micro-analysis. Leaching of contaminants from the acid tars in 48 h batch tests with distilled water at a liquid-to-solid ratio 10:1 was also studied. GC/MS results show that the samples contained aliphatic hydrocarbons, cyclic hydrocarbons, up to 12 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs), and numerous other organic groups, including organic acids (sulfonic acids, carboxylic acids and aromatic acids), phenyl, nitrile, amide, furans, thiophenes, pyrroles, and phthalates, many of which are toxic. Metals analysis shows that Pb was present in significant concentration. DSC results show different transition peaks in the studied samples, demonstrating their complexity and variability. FTIR analysis further confirmed the presence of the organic groups detected by GC/MS. The SEM/EDX micro-analysis results provided insight on the surface characteristics of the samples and show that contaminants distribution was heterogeneous. The results provide useful data on the composition, complexity, and variability of acid tars; information which hitherto have been scarce in public domain.

  19. Fluorescent aromatic sensors and their methods of use

    Science.gov (United States)

    Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)

    2012-01-01

    Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.

  20. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    Science.gov (United States)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  1. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  2. Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components

    OpenAIRE

    Groen, Joost; Deamer, David W.; Kros, Alexander; Ehrenfreund, Pascale

    2012-01-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different p...

  3. Electronic Aromaticity Index for Large Rings

    CERN Document Server

    Matito, Eduard

    2015-01-01

    We introduce a new electronic aromaticity index, AV1245, consisting in the average of the 4-center MCI values along the ring that keep a positional relationship of 1,2,4,5. AV1245 measures the extent of transferability of the delocalized electrons between bonds 1-2 and 4-5, which is expected to be large in conjugated circuits and, therefore, in aromatic molecules. A new algorithm for the calculation of MCI for large rings is also introduced and used to produce the data for the calibration of the new aromaticity index. AV1245 does not rely on reference values, does not suffer from large numerical precision errors, and it does not present any limitation on the nature of atoms, the molecular geometry or the level of calculation. It is a size-extensive measure with a small computational cost that grows linearly with the number of ring members. Therefore, it is specially suitable to study the aromaticity of large molecular rings as those occurring in belt-shaped M\\"obius structures or porphyrins.

  4. Extremely long aromatics: Diastereomerically pure [19]helicene

    Czech Academy of Sciences Publication Activity Database

    Nejedlý, Jindřich; Rybáček, Jiří; Stará, Irena G.; Starý, Ivo

    Praha: Czech Chemical Society, 2015. s. 119. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR(CZ) GA14-29667S Institutional support: RVO:61388963 Keywords : helically chiral aromatics * helicenes * [2+2+2] cycloisomerisation Subject RIV: CC - Organic Chemistry

  5. Aromatic cytokinins in micropropagated potato plants

    Czech Academy of Sciences Publication Activity Database

    Baroja, F. E.; Aguirreolea, J.; Martínková, Hana; Hanuš, Jan; Strnad, Miroslav

    2002-01-01

    Roč. 40, č. 3 (2002), s. 217-224. ISSN 0981-9428 R&D Projects: GA MŠk OC 844.10; GA ČR GA301/02/0475 Institutional research plan: CEZ:AV0Z5038910 Keywords : Acclimatization * Aromatic cytokinins * Micropropagation Subject RIV: CE - Biochemistry Impact factor: 1.582, year: 2002

  6. Discovering Chemical Aromaticity Using Fragrant Plants

    Science.gov (United States)

    Schneider, Tanya L.

    2010-01-01

    Introductory organic chemistry is often perceived as inaccessible by students. This article describes a method used to link organic chemistry to everyday experience, asking students to explore whether fragrant molecules are also aromatic in the chemical sense. Students were engaged in this activity, excited about their results, and performed well…

  7. Thermoset/Thermoplastic Aromatic Polyamides for Composites

    Science.gov (United States)

    St. Clair, T. L.; St. Clair, A. K.; Barrick, J. D.; Wolfe, J. F.; Greenwood, T. D.

    1983-01-01

    Aromatic polyamides are processed at relatively low temperature, then heat-treated to attain high softening temperature required when polyamides are used as matrix resins in structural composites. New polyamides are compatable with organic fibers often used as reinforcing agents in such composites Pendent propargyl groups serve as latent cross-linking agents in new series of polyamide resins.

  8. An electronic aromaticity index for large rings.

    Science.gov (United States)

    Matito, Eduard

    2016-04-28

    We introduce a new electronic aromaticity index, AV1245, consisting of an average of the 4-center multicenter indices (MCI) along the ring that keeps a positional relationship of 1, 2, 4, 5. AV1245 measures the extent of transferability of the delocalized electrons between bonds 1-2 and 4-5, which is expected to be large in conjugated circuits and, therefore, in aromatic molecules. A new algorithm for the calculation of MCI for large rings is also introduced and used to produce the data for the calibration of the new aromaticity index. AV1245 does not rely on reference values, does not suffer from large numerical precision errors, and it does not present any limitation on the nature of atoms, the molecular geometry or the level of calculation. It is a size-extensive measure with low computational cost that grows linearly with the number of ring members. Therefore, it is especially suitable to study the aromaticity of large molecular rings such as those occurring in belt-shaped Möbius structures or porphyrins. The analysis of AV1245 in free-base and bis-metalated Pd [32]octaphyrins(1,0,1,0,1,0,1,0) completes this study. PMID:26878146

  9. Fused aromatic thienopyrazines: structure, properties and function

    KAUST Repository

    Mondal, Rajib

    2010-01-01

    Recent development of a fused aromatic thieno[3.4-b]pyrazine system and their application in optoelectronic devices are reviewed. Introduction of a fused aromatic unit followed by side chain engineering, dramatically enhanced the charge carrier mobility in thin film transistor devices and mobilities up to 0.2 cm2/Vs were achieved. The optoelectronic properties of these fused aromatic thienopyrazine polymers (Eg = 1.3 to 1.6 eV, HOMO = -4.9 to -5.2 V) were tuned by introduction of various fused aromatic rings within thienopyrazine. By balancing the fundamental properties of these polymers, both high charge carrier mobilities and moderate PCEs in solar cells were achieved. Further, effects of copolymerizing units are discussed. Low band gap semiconducting polymer (Eg ∼ 1 eV) with high field effect mobility (0.044 cm2/Vs) was obtained using cyclopentadithiophene as copolymerizing unit. Finally, a molecular design approach to enhance the absorption coefficients is discussed, which resulted in improved power conversion efficiency in bulk heterojunction solar cells. © 2010 The Royal Society of Chemistry.

  10. Silicone elastomers with aromatic voltage stabilizers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    enhanced electrical breakdown strength due to delocalized pi-electrons of aromatic rings attached to the silicone backbone. The dielectric relative permittivity of PDMS-PPMS copolymers remained between 2 to3 with low conductivity and low dielectric loss as well as high storage moduli with low viscousloss...

  11. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  12. Aromatic compound degradation by iron reducing bacteria isolated from irrigated tropical paddy soils

    Institute of Scientific and Technical Information of China (English)

    LU Wenjing; WANG Hongtao; HUANG Changyong; W. Reichardt

    2008-01-01

    Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures. Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation. All the isolates were iron reducers, but only 56.5% could couple iron reduction to phenol and/or benzoate degradation, as evidenced by depletion of phenol and benzoate after one week incubation. Analysis of degradative capability using Biolog MT plates revealed that most of them could degrade other aromatic compounds such as ferulic acid, vanillic acid, and hydroxybenzoate. Mixed-cultures and soft samples displayed greater capacity for aromatic degradation and iron reduction than pure bacterial isolates, suggesting that these reactions may be coupled via a consortia-based mechanism in paddy soils.

  13. Photochemical addition of amino acids and peptides to homopolyribonucleotides of the major DNA bases

    International Nuclear Information System (INIS)

    The photochemical quantum yields for addition of glycine and the L-amino acids commonly occurring in proteins to polyadenylic acid, polycytidylic acid, polyguanylic acid and polyribothymidylic acid have been determined in deoxygenated phosphate buffer using a fluorescamine assay technique. Polyadenylic acid was reactive with eleven of the twenty amino acids tested, with phenylalanine, tyrosine, glutamine, lysine and asparagine having the highest quantum yields. Polyguanylic acid reacted with sixteen amino acids; phenylalanine, arginine, cysteine, tyrosine, and lysine displayed the largest quantum yields. Polycytidylic acid showed reactivity with fifteen amino acids with lysine, phenylalanine, cysteine, tyrosine and arginine having the greatest quantum yields. Polyribothymidylic acid, reactive with fifteen of nineteen amino acids surveyed, showed the highest quantum yields for cysteine, phenylalanine, tyrosine, lysine and asparagine. None of the polynucleotides were reactive with aspartic acid or glutamic acid. The quantum yields for photoaddition of eighteen dipeptides of the form gycyl X (X being an amino acid), and of L-alanyl-L-tryptophan, L-seryl-L-seryl-L-serine, L-threonyl-L-threonyl-L-threonine, L-cystine-bis-glycine, and Nsup(α)-acetyllysine to polyadenylic acid, polycytidylic acid and polyguanylic acid were measured. All were found to add photochemically to each of these polymers. Polyribothymidylic acid, tested with eleven peptides and with Nsup(α)-acetyllysine, was found to be reactive with all. (author)

  14. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  15. 40 CFR 721.2673 - Aromatic epoxide resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic epoxide resin (generic). 721... Substances § 721.2673 Aromatic epoxide resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic epoxide resin (PMN...

  16. Plasmids and aromatic degradation in Sphingomonas for bioremediation : Aromatic ring cleavage genes in soil and rhizosphere

    OpenAIRE

    SipilÀ, Timo

    2009-01-01

    Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biode...

  17. Secretion mechanisms of volatile organic compounds in specialized cells of aromatic plants

    OpenAIRE

    Caissard, Jean-Claude; Joly, Caroline; Bergougnoux, Véronique; Hugueney, Philippe; Mauriat, Mélanie; Baudino, Sylvie

    2004-01-01

    The present review focuses on cells secreting volatile odorant compounds. This cell type is found in a wide variety of plants, grouped under the term aromatic plants. Such secreting cells are very diverse in morphology, from highly specialized trichomes to nonspecialized cells, including the secretory epidermal cells of petals and osmophores. In these various types of cell, the biosynthetic pathways of three main groups of volatile organic compounds are recognized: isoprenoids, fatty acid der...

  18. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    OpenAIRE

    Monica Scognamiglio; Brigida D’Abrosca; Assunta Esposito; Antonio Fiorentino

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main id...

  19. Highly enantioselective phenylacetylene addition to aromatic ketones catalyzed by cinchona alkaloid-aluminum complexes.

    Science.gov (United States)

    Liu, Lei; Wang, Rui; Kang, Yong-Feng; Chen, Chao; Xu, Zhao-Qing; Zhou, Yi-Feng; Ni, Ming; Cai, Hua-Qing; Gong, Mao-Zhen

    2005-02-01

    The catalytic asymmetric addition of phenylacetylene to aromatic ketones is reported. The catalyst, generated from commercially available Cinchona alkaloids and industrially available triethylaluminum, gives the expected tertiary alcohols with good enantiomeric excess (70-89%) and yields (60-83%). No previous case has been reported successfully using triethylaluminum as a Lewis acid in the asymmetric alkynylation of carbonylic derivatives, and thus we provide a new method to obtain optically active tertiary propargyl alcohols. PMID:15675878

  20. Carotenoid profile in grapes related to aromatic compounds in wines from Douro region

    OpenAIRE

    Oliveira, Carla; Barbosa, Antonina; Ferreira, A. C. Silva; Guerra, Joaquim; Pinho, Paula Guedes de

    2006-01-01

    The aim of this work was to characterize 8 representative grape varieties of the Douro Region using the carotenoid profile as it relates to aromatic compounds in the respective wines. Some other analyses, such as the determination of sugar, probable alcohol, pH, and total acidity, were also performed in an attempt to understand in which way the evaluated characteristics influenced by grape variety could contribute to the wine aroma. For the 3 y of the study, grape varieties with h...

  1. Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions.

    Science.gov (United States)

    Sales, Pablo S; Fernández, Mariana A

    2016-05-01

    This study investigates the effect of a mixed surfactant system on the desorption of polycyclic aromatic hydrocarbons (PAHs) from soil model systems. The interaction of a non-ionic surfactant, Tween 80, and an anionic one, sodium laurate, forming mixed micelles, produces several beneficial effects, including reduction of adsorption onto solid of the non-ionic surfactant, decrease in the precipitation of the fatty acid salt, and synergism to solubilize PAHs from solids compared with individual surfactants. PMID:26873826

  2. Acid evaporation property in chemically amplified resists

    Science.gov (United States)

    Hashimoto, Shuichi; Itani, Toshiro; Yoshino, Hiroshi; Yamana, Mitsuharu; Samoto, Norihiko; Kasama, Kunihiko

    1997-07-01

    The lithographic performance of a chemically amplified resist system very much depends on the photo-generated acid structure. In a previous paper, we reported the molecular structure dependence of two typical photo-generated acids (aromatic sulfonic acid and alkyl sulfonic acid) from the viewpoints of lithographic performance and acid characteristics such as acid generation efficiency, acid diffusion behavior and acid evaporation property. In this paper, we evaluate the effect of the remaining solvent in a resist film on the acid evaporation property. Four types of two-component chemically amplified positive KrF resists were prepared consisting of tert-butoxycarbonyl (t-BOC) protected polyhydroxystyrene and sulfonic acid derivative photo-acid generator (PAG). Here, a different combination of two types of PAGs [2,4-dimethylbenzenesulfonic acid (aromatic sulfonic acid) derivative PAG and cyclohexanesulfonic acid (alkyl sulfonic acid) derivative PAG] and two types of solvents (propylene glycol monomethyl ether acetate; PGMEA and ethyl lactate; EL) were evaluated. The aromatic sulfonic acid was able to evaporate easily during post exposure bake (PEB) treatment, but the alkyl sulfonic acid was not. The higher evaporation property of aromatic sulfonic acid might be due to the higher vapor pressure and the longer acid diffusion length. Furthermore, the amount of aromatic sulfonic acid in the PGMEA resist was reduced by more than that in the EL resist. The amount of acid loss also became smaller at a higher prebake temperature. The concentration of the remaining solvent in the resist film decreased with the increasing prebake temperature. We think that the acid evaporation property was affected by the remaining solvent in the resist, film; the large amount of remaining solvent promoted the acid diffusion and eventually accelerated the acid evaporation from the resist film surface in the PGMEA resist. In summary, the acid evaporation property depends on both the acid

  3. Rosemary Aromatization of Extra Virgin Olive Oil and Process Optimization Including Antioxidant Potential and Yield

    Directory of Open Access Journals (Sweden)

    Erkan Karacabey

    2016-08-01

    Full Text Available Aromatization of olive oil especially by spices and herbs has been widely used technique throughout the ages in Mediterranean diets. The present study was focused on aromatization of olive oil by rosemary (Rosmarinus officinalis L.. Aromatization process was optimized by response surface methodology as a function of malaxation’s conditions (temperature and time. According to authors’ best knowledge it was first time for examination of oil yield performance with antioxidant potential and pigments under effect of aromatization parameters. For all oil samples, values of the free acidity, peroxide, K232 and K270 as quality parameters fell within the ranges established for the highest quality category “extra virgin oil”. Oil yield (mL oil/kg olive paste changed from 158 to 208 with respect to design parameters. Total phenolic content and free radical scavenging activity as antioxidant potential of olive oil samples were varied in the range of 182.44 – 348.65 mg gallic acid equivalent/kg oil and 28.91 – 88.75 % inhibition of 2,2-Diphenyl-1-picrylhydrazyl-(DPPH•, respectively. Total contents of carotenoid, chlorophyll and pheophytin a as pigments in oil samples were found to be in between 0.09 – 0.48 mg carotenoid/kg oil, 0.11 – 0.96 mg chlorophyll/kg oil, 0.15 – 4.44 mg pheo α/kg oil, respectively. The proposed models for yield, pigments and antioxidant potential responses were found to be good enough for successful prediction of experimental results. Total phenolics, carotenoids and free radical scavenging activity of aromatized olive oil and oil yield were maximized to gather and optimal conditions were determined as 25°C, 84 min, and 2 % (Rosemary/olive paste; w/w.

  4. Proton nuclear magnetic resonance characterization of the aromatic residues in the variant-3 neurotoxin from Centruroides sculpturatus Ewing

    International Nuclear Information System (INIS)

    The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, CalphaH, CbetaH', H double prime, and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current induced shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution

  5. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  6. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Stahlhut, Steen Gustav; Li, Mingji;

    2015-01-01

    Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approache...

  7. Aromatic Structure in Simulates Titan Aerosol

    Science.gov (United States)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  8. Comparative analysis of cross strand aromatic-Phe interactions in designed peptide β-hairpins.

    Science.gov (United States)

    Makwana, Kamlesh Madhusudan; Mahalakshmi, Radhakrishnan

    2014-04-01

    The mode(s), geometry and strength of interaction of the three aromatic amino acids, namely Phe, Tyr and Trp, with the benzyl side chain of Phe, at the non-hydrogen bonding position of designed model octapeptide β-hairpins, nucleated by the central (D)Pro-Gly turn, have been examined. In the absence of solvent-driven hydrophobic forces, the extent of contribution of such interactions indicates that the stereospecific face-to-edge (FtE) geometry of aromatic rings is most stabilizing in the Trp-Phe pair. In contrast, our study shows that the Tyr-Phe pair exhibits the weakest interaction energy, despite its abundance in protein structures. The contribution of aromatic interactions as opposed to the influence of spatial proximity to electron-rich groups, to the observed anomalous backbone and side chain chemical shifts, has also been delineated. Our findings indicate that the Trp-Phe pair contributes an additional ∼0.9 kcal mol(-1) and ∼1.3 kcal mol(-1) towards scaffold stabilization, when compared with the Phe-Phe and Tyr-Phe pair, respectively, even in an amphipathic solvent such as methanol. Detailed NMR analysis of backbone resonances, as well as the extent of pronounced anomalous chemical shifts, indicates that the strength of aromatic interactions with Phe follows the order Trp > Phe > Tyr. Furthermore, the advantages of Trp-Phe or Phe-Phe pairs as alternative structure stabilizing elements are also highlighted. PMID:24413913

  9. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability.

    Science.gov (United States)

    Li, Xiaohua; Luque-Moreno, Luis C; Oudenhoven, Stijn R G; Rehmann, Lars; Kersten, Sascha R A; Schuur, Boelo

    2016-09-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid-liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created from acid-leached and untreated pinewood, with levoglucosan contents (most abundant sugar) of 29.0% and 8.3% (w/w), respectively. In a single stage extraction, 70% of the aromatics were effectively removed by P666,14[N(CN)2] and 50% by EA, while no levoglucosan was extracted. The IL was regenerated by vacuum evaporation (100mbar) at 220°C, followed by extraction of aromatics from fresh pyrolytic sugar solutions. Regenerated IL extracted aromatics with similar extraction efficiency as the fresh IL, and the purified sugar fraction from pretreated pinewood was hydrolyzed to glucose and fermented to ethanol, yielding 0.46g ethanol/(g glucose), close to the theoretical maximum yield. PMID:27214164

  10. Radiolabeled derivatives of folic acid

    International Nuclear Information System (INIS)

    Derivatives of folic acid are described, in which the α-carboxyl group is substituted with an amino compound having an aromatic or heterocyclic ring substituent which is capable of being radiolabelled. Particularly mentioned as a radiolabel is 125I. (author)

  11. GenBank blastx search result: AK287444 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287444 J043016J03 CR456724.1 CR456724 Homo sapiens full open reading frame cDNA c...lone RZPDo834H113D for gene DDC, dopa decarboxylase (aromatic L-amino acid decarboxylase); complete cds, incl. stopcodon. PRI 7e-81 0 ...

  12. GenBank blastx search result: AK060367 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060367 001-009-A08 CR456724.1 Homo sapiens full open reading frame cDNA clone RZP...Do834H113D for gene DDC, dopa decarboxylase (aromatic L-amino acid decarboxylase); complete cds, incl. stopcodon.|PRI PRI 3e-30 +2 ...

  13. Drug: D03082 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available bolism hsa00360(1644) Phenylalanine metabolism hsa00380(1644) Tryptophan metabolism map07057 Antiparkinson...r [decarboxylase], Antiparkinsonian Peripheral aromatic L-amino acid decarboxylase inhibitors (DCI) DOPA dec...D03082 Drug Benserazide (USAN/INN) C10H15N3O5 257.1012 257.2432 D03082.gif Inhibito

  14. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  15. Starlike aluminum-carbon aromatic species.

    Science.gov (United States)

    Wu, Yan-Bo; Jiang, Jin-Liang; Lu, Hai-Gang; Wang, Zhi-Xiang; Perez-Peralta, Nancy; Islas, Rafael; Contreras, Maryel; Merino, Gabriel; Wu, Judy I-Chia; Schleyer, Paul von Ragué

    2011-01-10

    Is it possible to achieve molecules with starlike structures by replacing the H atoms in (CH)(n)(q) aromatic hydrocarbons with aluminum atoms in bridging positions? Although D(4h) C(4)Al(4)(2-) and D(2) C(6)Al(6) are not good prospects for experimental realization, a very extensive computational survey of fifty C(5)Al(5)(-) isomers identified the starlike D(5h) global minimum with five planar tetracoordinate carbon atoms to be a promising candidate for detection by photoelectron detachment spectroscopy. BOMD (Born-Oppenheimer molecular dynamics) simulations and high-level theoretical computations verified this conclusion. The combination of favorable electronic and geometric structural features (including aromaticity and optimum C-Al-C bridge bonding) stabilizes the C(5)Al(5)(-) star preferentially. PMID:21207593

  16. Synthesis of aromatic cytokinins for plant biotechnology.

    Science.gov (United States)

    Plíhalová, Lucie; Vylíčilová, Hana; Doležal, Karel; Zahajská, Lenka; Zatloukal, Marek; Strnad, Miroslav

    2016-09-25

    Cytokinins represent an important group of plant growth regulators that can modulate several biotechnological processes owing to their ability to influence almost all stages of plant development and growth. In addition, the use of purine based cytokinins with aromatic substituent in C6 position of the purine moiety in tissue culture techniques is currently experiencing a surge in interest, made possible by the ongoing systematic synthesis and study of these compounds. This review article outlines progress in the synthesis of aromatic cytokinins, the in vitro and in vivo effects of these substances and insights gleaned from their synthesis. As the purine moiety in these compounds can be substituted at several positions, we examine each of the substitution possibilities in relation to the derivatives prepared so far. The discussion highlights the gradual simplification of their preparation in relation to their application in practice and summarizes the relevant organic chemistry literature and published patents. PMID:26703810

  17. A New Aromatic Compound from the Stem Bark of Terminalia catappa.

    Science.gov (United States)

    Pertuit, David; Mitaine-Offer, Anne-Claire; Miyamoto, Tomofumi; Tanaka, Chiaki; Delemasure, Stéphanie; Dutartre, Patrick; Lacaille-Dubois, Marie-Aleth

    2015-06-01

    A new aromatic compound 3,4,5-trimethoxyphenyl-1-O-(4-sulfo)-β-D-glucopyranoside (1), in addition to two triterpenoid saponins (chebuloside II, arjunoglucoside II), two triterpenes (arjunolic acid and 3-betulinic acid) and sitosterol-3-O-β-D-glucopyranoside have been isolated from the barks of Terminalia catappa. Their structures have been established on the basis of spectroscopic techniques (1D/2D NMR) and MS. Their cytotoxicity and antiinflammatory activity, together with the antioxidant capacity of compound 1 were also evaluated. PMID:26197537

  18. Carcinogenic potential of hydrotreated petroleum aromatic extracts.

    OpenAIRE

    Doak, S. M.; Hend, R W; van der Wiel, A; Hunt, P F

    1985-01-01

    Five experimental petroleum extracts were produced from luboil distillates derived from Middle East paraffinic crude by solvent extraction and severe hydrotreatment. The polycyclic aromatic content (PCA) of the extracts was determined by dimethyl sulphoxide extraction and ranged from 3.7-9.2% w/w. The five extracts were evaluated for their potential to induce cutaneous and systemic neoplasia in female mice derived from Carworth Farm No 1 strain (CF1). The test substances were applied undilute...

  19. Decarboxylative and direct functionalisations of aromatic compounds

    OpenAIRE

    Seo, Sangwon

    2014-01-01

    Aromatic rings are privileged structures found in a diverse range of natural and synthetic compounds, thus synthetic methods for their functionalisations are important in organic synthesis. Despite significant advancements made, especially in the field of transition metal catalysis, work still continues for the development of milder, more efficient, and more atom economical reactions. We describe here our efforts towards the development of decarboxylative/direct C(aryl)–N and C(aryl)–C bond f...

  20. AN AROMATIC COMPOUND from CENTAUREA PTOSIMOPAPPOIDES

    OpenAIRE

    A. ULUBELEN, S. ÖKSÜZ

    2015-01-01

    Centaurea ptosimopappoides was previously investigated by our groupand the presence of two new triterpenes were reported. The rare occurrence ofthis type compounds in the plants prompted us to further investigation of Centaureaptosimopappoides. In this work we report the isolation and structure determinationof an aromatic glycoside which was found in the genus Centaureafor the first time. The structure of the compound was determined by spectralmethods.Key words: Centaurea ptosimopappoides; Co...

  1. Synthetic fuel aromaticity and staged combustion

    Energy Technology Data Exchange (ETDEWEB)

    Longanbach, J. R.; Chan, L. K.; Levy, A.

    1982-11-15

    Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

  2. Transformations of aromatic hydrocarbons over zeolites

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Žilková, Naděžda; Čejka, Jiří

    2008-01-01

    Roč. 34, 5-7 (2008), s. 439-454. ISSN 0922-6168 R&D Projects: GA ČR GA203/05/0197; GA AV ČR 1QS400400560; GA AV ČR KJB4040402 Institutional research plan: CEZ:AV0Z40400503 Keywords : aromatic hydrocarbons * zeolites * alkylation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.514, year: 2008

  3. ANTIEMETIC ACTIVITY OF SOME AROMATIC PLANTS

    OpenAIRE

    Hasan MuhammadMohtasheemul; Ahmed Salman; Ahmed Ziauddin; Azhar Iqbal

    2012-01-01

    Current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., Carissa carandus L. (fruits), Chichorium intybus L (flowers), Cinnamum tamala L (leaves), Curcuma caesia Roxb (rhizomes), Lallemantia royleana Benth (leaves), Matricaria chamomila L (flowers), Piper longum L (fruits), Piper methysticum G. Forst (fruits), Piper nigrum Linn. (fruits) and Syzygium aromaticum (Linn.) Merr. & Perry (flowering buds) was studied using chick emetic model. The ethan...

  4. Spectroscopic Characterisation of Novel Polycyclic Aromatic Polymers

    OpenAIRE

    O'Neill, Luke; Lynch, Patrick; McNamara, Mary; Byrne, Hugh

    2007-01-01

    A series of novel polyphenylenevinylene (PPV) derivative polymers were studied by absorption and photoluminescence spectroscopies. The effect of the sequential introduction of polycyclic aromatic ring substituents into the delocalized backbone was examined with relation to hypsochromatic and bathochromatic shifting. While the replacement of the phenyl units by naphthyl units results in a substantial hypsochromic shift of both the absorption and emission spectra, their subsequent substitution ...

  5. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  6. 苏南地区农田表层土壤中多环芳烃和酞酸酯的污染特征及来源%Pollution Characteristics and Sources of Polycyclic Aromatic Hydrocarbons and Phthalic Acid Esters in Agricultural Surface Soil from the Southern Jiangsu Province, China

    Institute of Scientific and Technical Information of China (English)

    张利飞; 杨文龙; 董亮; 黄业茹; 史双昕; 张烃; 周丽

    2011-01-01

    采用气相色谱质谱(GC-MS)法测定了苏南地区13个农田表层土壤样品中的多环芳烃(PAHs)和酞酸酯(PAEs)污染物,分析比较了不同区域农田表层土壤,尤其是来自钢铁企业周边的表层土壤中PAHs和PAEs的污染特征及其来源.结果表明,苏南地区农田上壤中总PAHs和总PAEs的浓度分别在147~40 300 μg·kg-1和0.575~762 μg· kg-1之间,其中钢铁厂周边的平均浓度分别为6 130 μg· kg-1和47.4 μg· kg-1.土壤样品中苯并(a)芘的浓度与总PAHs的浓度显著相关,高分子量PAHs在钢铁厂周边表土中含量较高,钢铁冶炼焦化和烧结等工序是其污染来源.酞酸正丁酯(DBP)和酞酸乙基己基酯是苏南地区农田土壤中含量最高的两种PAEs类物质,钢铁厂周边有较高的DBP检出可能与炼钢、冷轧和炼铁等工序有关.本研究将为经济高速发展地区农田土壤环境质量评价、农产品安全生产及土壤污染防治对策的制定提供科学依据.%Polycyclic aromatic hydrocarbons(PAHs) and phthalic acid esters(PAEs) are ubiquitous in the environment. They were the key pollutants of the national survey of soil pollution. The Southern Jiangsu Province is the main part of the Yangtze River Delta, which was one of the most rapidly developing areas not only in China but also in the world. Agricultural pollution in the Southern Jiangsu Province is more concerned with the economic development. In this study, three cities including Suzhou, Wuxi, and Nantong in the Southern Jiangsu Province were selected for the determination of PAHs and PAEs. Thirteen agricultural surface soil samples, including five samples from an iron and steel factory were collected. The pollution characteristics and potential sources of PAHs and PAEs were investigated. The total PAHs and PAEs concentrations varied from 147 to 40 300 μg·kg-1, and from 0.575 to 762 μg·kg-1, respectively. Concentration of benzo[a] pyrene and the total PAHs of the surface soil

  7. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.

    Science.gov (United States)

    Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah

    2015-01-01

    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced. PMID:26798644

  8. Electrochemical degradation of aromatic amines on BDD electrodes

    International Nuclear Information System (INIS)

    The electrochemical oxidation of four aromatic amines, with different substituent groups, 3-amino-4-hydroxy-5-nitrobenzenesulfonic acid (A1), 5-amino-2-methoxybenzenesulfonic acid (A2), 2,4-dihydroxyaniline hydrochloride (A3) and benzene-1,4-diamine (A4), was performed using as anode a boron-doped diamond electrode, commercially available at Adamant Technologies. Tests were run at room temperature with model solutions of the different amines, with concentrations of 200 ppm, using as electrolyte 0.035 M Na2SO4 aqueous solutions, in a batch cell with recirculation, at different current densities (200 and 300 A m-2). The following analyses were performed with the samples collected during the assays: UV-Vis spectrophotometry, chemical oxygen demand (COD), total organic carbon (TOC), total Kjeldahl nitrogen, ammonia nitrogen, nitrates and HPLC. Results have shown a good electrodegradation of all the amines tested, with COD removals, after 6 h assays, higher than 90% and TOC removals between 60 and 80%. Combustion efficiency (ηC), which measures the tendency to convert organic carbon to CO2, was also determined for all the amines, being ηCA1 CA2 CA3 CA4 = 0.99.

  9. Controlled synthesis of monodisperse gold nanorods with different aspect ratios in the presence of aromatic additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Wang, Feihu [Shanghai Jiao Tong University, School of Pharmacy (China); Guo, Yuan [University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology (United Kingdom); Chen, Rongjun, E-mail: rongjun.chen@imperial.ac.uk [Imperial College London, Department of Chemical Engineering (United Kingdom); Shen, Yuanyuan; Guo, Aijie; Liu, Jieying; Zhang, Xiao [Shanghai Jiao Tong University, School of Pharmacy (China); Zhou, Dejian, E-mail: d.zhou@leeds.ac.uk [University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology (United Kingdom); Guo, Shengrong, E-mail: srguo@sjtu.edu.cn [Shanghai Jiao Tong University, School of Pharmacy (China)

    2014-12-15

    This paper reports the synthesis of monodisperse gold nanorods (GNRs) via a simple seeded growth approach in the presence of different aromatic additives, such as 7-bromo-3-hydroxy-2-naphthoic acid (7-BrHNA), 3-hydroxy-2-naphthoic acid (HNA), 5-bromosalicylic acid (5-BrSA), salicylic acid (SA), or phenol (PhOH). Effects of the aromatic additives and hydrochloric acid (HCl) on the structure and optical properties of the synthesized GNRs were investigated. The longitudinal surface plasmon resonance (LSPR) peak wavelength of the resulting GNRs was found to be dependent on the aromatic additive in the following sequence: 5-BrSA (778 nm) > 7-BrHNA (706 nm) > SA (688 nm) > HNA (676 nm) > PhOH (638 nm) without the addition of HCl, but this was changed to 7-BrHNA (920 nm) > SA (890 nm) > HNA (872 nm) > PhOH (858 nm) > 5-BrSA (816 nm) or 7-BrHNA (1,005 nm) > PhOH (995 nm) > SA (990 nm) > HNA (980 nm) > 5-BrSA (815 nm) with the addition of HCl or HNO{sub 3}, respectively. The LSPR peak wavelength was increased with the increasing concentration of 7-BrHNA without HCl addition; however, there was a maximum LSPR peak wavelength when HCl was added. Interestingly, the LSPR peak wavelength was also increased with the amount of HCl added. The results presented here thus established a simple approach to synthesize monodisperse GNRs of different LSPR wavelengths.

  10. Adsorption behaviour of aromatic in different activated carbon: (Frendlich and Langmuir models)

    International Nuclear Information System (INIS)

    Adsorption behavior of p-Cresol, Benzoic acid and nitrobenzene on the two different activated carbons was carried out at 301 K and at controlled ph conditions. In acidic conditions, well below the pKa of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent on adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular form of the aromatic solute was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher ph values was found to be dependent on the concentration of anionic form of the solutes. All isotherms on the F 100 and S E I were fitted into Langmuir and Freundlich isotherm Equations, respectively to find the relative factors

  11. The role of active site aromatic residues in substrate degradation by the human chitotriosidase.

    Science.gov (United States)

    Eide, Kristine Bistrup; Stockinger, Linn Wilhelmsen; Lewin, Anna Sofia; Tøndervik, Anne; Eijsink, Vincent G H; Sørlie, Morten

    2016-02-01

    Human chitotriosidase (HCHT) is a glycoside hydrolase family 18 chitinase synthesized and secreted in human macrophages thought be an innate part of the human immune system. It consists of a catalytic domain with the (β/α)8 TIM barrel fold having a large area of solvent-exposed aromatic amino acids in the active site and an additional family 14 carbohydrate-binding module. To gain further insight into enzyme functionality, especially the effect of the active site aromatic residues, we expressed two variants with mutations in subsites on either side of the catalytic acid, subsite -3 (W31A) and +2 (W218A), and compared their catalytic properties on chitin and high molecular weight chitosans. Exchange of Trp to Ala in subsite -3 resulted in a 12-fold reduction in extent of degradation and a 20-fold reduction in kcat(app) on chitin, while the values are 5-fold and 10-fold for subsite +2. Moreover, aromatic residue mutation resulted in a decrease of the rate of chitosan degradation contrasting previous observations for bacterial family 18 chitinases. Interestingly, the presence of product polymers of 40 sugar moieties and higher starts to disappear already at 8% degradation for HCHT50-W31A. Such behavior contrast that of the wild type and HCHT-W218A and resembles the action of endo-nonprocessive chitinases. PMID:26621384

  12. Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions

    Science.gov (United States)

    Li, Jianguo; Garg, Manju; Shah, Dhawal; Rajagopalan, Raj

    2010-08-01

    Experiments hold intriguing, circumstantial clues to the mechanisms behind arginine-mediated solubilization of small organic drugs and suppression of protein aggregation driven by hydrophobic or aromatic associations, but how exactly arginine's molecular structure and interactions contribute to its function remains unclear since attention has focused so far on the thermodynamics of the preferential exclusion or binding of arginine. Here, we examine, through molecular dynamics simulations, how arginine solubilizes nanoscale particles with hydrophobic surfaces or aromatic-ring-type surface interactions. We show that preferential, hydrophobic, and dispersion interactions of arginine's guanidinium group with the particles lead to a surfactant-like behavior of arginine around the particles and to a solvation layer with a protective polar mask creating a hydrophilic shell. Additionally, arginine-arginine association around the solvation layer further prevents aggregative contacts. The results shed some light on the mechanistic basis of arginine's function as a suppressant of protein aggregation, although the complex energy landscapes and kinetic pathways of aggregation are protein-dependent and pose formidable challenges to developing comprehensive mechanistic pictures. Our results suggest arginine's mode of interaction with hydrophobic patches and aromatic residues could reduce aggregation-prone intermediate states of proteins and shield protein-protein aggregative contacts. The approach used here offers a systematic way of exploring implications of other amino acid/excipient interactions by studying interactions of the excipient with particles grafted with amino acids.

  13. Ga Ba{sub B} pharmacophoric pattern based on conformational analysis of 3-hetero aromatic baclofen analogues

    Energy Technology Data Exchange (ETDEWEB)

    Pirard, B.; Paquet, B.; Evrard, G.; Durant, F. [Facultes Universitaires Notre-Dame de la Paix, Namur (Belgium); Berthelot, P.; Vaccher, C.; Ansard, M.H.; Debaert, M. [UFR de Pharmacie, 59 - Lille (France)

    1995-12-31

    Substituting a furan, a thiophen, a benzo (b) furan or a benzo (b) thiophen ring for the p-chlorophenyl moiety of baclofen has led to GABA{sub B} (GABA = {gamma}-aminobutyric acid) ligands with different affinities according to the nature of the hetero-aromatic ring, and the nature and position of its substituent. In order to determine the structural requirements that are important for GABA{sub B} affinity, we have aligned the 3D structures of several 3-hetero-aromatic baclofen analogues with that of baclofen. As a result, we have suggested a pharmacophoric pattern for 3-hetero-aromatic baclofen analogues. The 3D structures have been studied by X-ray diffraction and by ab initio molecular orbital calculations. (authors). 29 refs., 6 figs., 5 tabs.

  14. Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds.

    Science.gov (United States)

    Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi

    2016-01-01

    Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250

  15. Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds

    Science.gov (United States)

    Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi

    2016-01-01

    Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250

  16. Characterization of phenolic acid reductase and decarboxylase activities of lactic acid bateria

    OpenAIRE

    Soares, Ana de Seabra Leão Ferreira

    2014-01-01

    Hydroxycinnamic acids are natural constituents of grape juice and wine, and are precursors of volatile phenols produced by yeasts and lactic acid bacteria (LAB). The organoleptic defects due to the presence of this volatile phenols are usually associated with “animal”, “horsey”, “leather”, “phenolic” or “spicy” aromatic notes. The most common pathway for the degradation of hydroxycinnamic acids involves two enzymes. In first place, it occurs a decarboxylation by the phenolic acid decarboxylas...

  17. Study on Removing Trace Olefins in Aromatic Hydrocarbons with HPMo-loaded Y Zeolites

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhenghong; Zeng Haiping; Shi Li

    2008-01-01

    HPMo-loaded Y-zeolites were prepared for the removal of trace olefins from aromatic hydrocarbons.The temperature of calcination and the proportion of phospho-molybdic acid in the catalyst were studied. The catalytic activity for olefins removal and the service life of the catalyst were tested in a fixed bed microreactor. The results showed that the catalyst containing 3% phospho-molybdic acid, which was calcined at 550℃,demonstrated the best activity for olefins removal. The catalyst could be regenerated and could perform still very well. Catalyst characterization was performed by XRD and measured by pyridine-FTIR spectrometry. The test results indicated that the activity of the catalyst was related with the effect of acid concentration and acid strength. Besides, the deactivation of the catalyst was associated with the formation of coke deposits and the deactivated catalyst could recover its activity by oxidation with air under a proper temperature.

  18. Fabrication of Palladium Nanoparticles on Porous Aromatic Frameworks as a Sensing Platform to Detect Vanillin.

    Science.gov (United States)

    Vilian, A T Ezhil; Puthiaraj, Pillaiyar; Kwak, Cheol Hwan; Hwang, Seung-Kyu; Huh, Yun Suk; Ahn, Wha-Seung; Han, Young-Kyu

    2016-05-25

    Here, we report the fabrication of palladium nanoparticles on porous aromatic frameworks (Pd/PAF-6) using a facile chemical approach, which was characterized by various spectro- and electrochemical techniques. The differential pulse voltammetry (DPV) response of Pd/PAF-6 toward the vanillin (VA) sensor shows a linear relationship over concentrations (10-820 pM) and a low detection limit (2 pM). Pd/PAF-6 also exhibited good anti-interference performance toward 2-fold excess of ascorbic acid, nitrophenol, glutathione, glucose, uric acid, dopamine, ascorbic acid, 4-nitrophenol, glutathione, glucose, uric acid, dopamine, and 100-fold excess of Na(+), Mg(2+), and K(+) during the detection of VA. The developed electrochemical sensor based on Pd/PAF-6 had good reproducibility, as well as high selectivity and stability. The established sensor revealed that Pd/PAF-6 could be used to detect VA in biscuit and ice cream samples with satisfactory results. PMID:27149292

  19. A Convenient Synthesis of Amino Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  20. The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter

    KAUST Repository

    Le Roux, Julien

    2015-10-21

    Water treatment utilities are diversifying their water sources and often rely on waters enriched in nitrogen-containing compounds (e.g., ammonia, organic nitrogen such as amino acids). The disinfection of waters exhibiting high levels of nitrogen has been associated with the formation of nitrogenous disinfection byproducts (N-DBPs) such as haloacetonitriles (HANs) and haloacetamides (HAcAms). While the potential precursors of HANs have been extensively studied, only few investigations are available regarding the nature of HAcAm precursors. Previous research has suggested that HAcAms are hydrolysis products of HANs. Nevertheless, it has been recently suggested that HAcAms can be formed independently, especially during chloramination of humic substances. When used as a disinfectant, monochloramine can also be a source of nitrogen for N-DBPs. This study investigated the role of aromatic organic matter in the formation of N-DBPs (HAcAms and HANs) upon chloramination. Formation kinetics were performed from various fractions of organic matter isolated from surface waters or treated wastewater effluents. Experiments were conducted with 15N-labeled monochloramine (15NH2Cl) to trace the origin of nitrogen. N-DBP formation showed a two-step profile: (1) a rapid formation following second-order reaction kinetics and incorporating nitrogen atom originating from the organic matrix (e.g., amine groups); and (2) a slower and linear increase correlated with exposure to chloramines, incorporating inorganic nitrogen (15N) from 15NH2Cl into aromatic moieties. Organic matter isolates showing high aromatic character (i.e., high SUVA) exhibited high reactivity characterized by a major incorporation of 15N in N-DBPs. A significantly lower incorporation was observed for low-aromatic-content organic matter. 15N-DCAcAm and 15N-DCAN formations exhibited a linear correlation, suggesting a similar behavior of 15N incorporation as SUVA increases. Chloramination of aromatic model compounds (i

  1. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase

    International Nuclear Information System (INIS)

    The usual substrates of tyrosinase, a copper-containing monooxygenase (EC 1.14.18.1), are monophenols and o-diphenols which are both converted to o-quinones. In this paper, the authors studied the reaction of this enzyme with two new classes of substrates: aromatic amines and o-aminophenols, structural analogues of monophenols and o-diphenols, respectively. They undergo the same catalytic reactions (ortho hydroxylation and oxidation), as documented by product analysis and kinetic studies. In the presence of tyrosinase, arylamines and o-aminophenols are converted to o-quinone imines, which are isolated as quinone anils or phenoxazones. As an example, in the presence of tyrosinase, 2-amino-3-hydroxybenzoic acid (an o-aminophenol) is converted to cinnabarinic acid, a well-known phenoxazone, while p-aminotoluene (an aromatic amine) gives rise to the formation of 5-amino-2-methyl-1,4-benzoquinone 1-(4-methylanil). Kinetic studies using an oxygen electrode show that arylamines and the corresponding monophenols exhibit similar Michaelis constants. In contrast, the reaction rates observed for aromatic amines are relatively slow as compared to monophenols. The enzymatic conversion of arylamines by tryosinase is different from the typical ones: N-oxidation and ring hydroxylation without further oxidation. This difference originates from the regiospecific hydroxylation (ortho position) and subsequent oxidation of the intermediate o-aminophenol to the corresponding o-quinone imine. Finally, the well-know monooxygenase activity of tyrosinase was also confirmed for the aromatic amine p-aminotoluene, with 18O2

  2. The Design of Reactions, Catalysts and Materials with Aromatic Ions

    Science.gov (United States)

    Bandar, Jeffrey Scott

    This thesis details the use of aromatic ions, especially aminocyclopropenium ions, as empowering design elements in the development of new chemical reactions, organic catalysts and polymeric materials. A particular focus is placed throughout on understanding the relationship between the structure of aromatic ions and their performance in these novel applications. Additionally, the benefits that aromatic ions provide in these contexts are highlighted. The first chapter briefly summarizes the Lambert Group's prior efforts toward exploiting the unique reactivity profiles of aromatic ions in the context of new reaction design. Also provided in the first chapter is a comprehensive literature review of aminocyclopropenium ions, upon which the majority of advances described in this thesis are based. To set the stage for the first application of aminocyclopropenium ions, Chapter 2 provides an account of existing highly Bronsted basic functional groups, including guanidines, proazaphosphatranes and iminophosphoranes. The provided review on the synthesis and use in asymmetric catalysis of these bases indicates that there is a high need for conceptually new Bronsted basic functional groups. To address this need, the development of chiral 2,3-bis(dialkylamino)cyclopropenimines as a new platform for asymmetric Bronsted base catalysis is described in Chapter 3. This new class of Bronsted base is readily synthesized on scale, operates efficiently under practical conditions, and greatly outperforms closely related guanidine-based catalysts. Structure-activity relationship studies, mechanistic experiments and computational transition state modeling are all discussed in the context of asymmetric glycinate imine Michael reactions in order to arrive at a working model for cyclopropenimine chemistry. Cumulatively, this chapter provides a "user's guide" to understanding and developing further applications of 2,3-bis(dialkylamino)cyclopropenimines. The use of our optimal chiral 2,3-bis

  3. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  4. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha-1 for Cd, 660 g ha-1 for Pb, 180 g ha-1 for Cu, 350 g ha-1 for Mn, and 205 g ha-1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  5. Biodegradation Rates of Aromatic Contaminants in Biofilm Reactors

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols......, chlorophenols, nitrophenol, chlorobenzenes and aromatic nitrogen-, sulphur- or oxygen-containing heterocyclic compounds (NSO-compounds). Furthermore, a comparison with degradation rates observed for easily degradable organics is also presented. At concentrations below 20-100 μg/l the degradation of the aromatic...

  6. Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons.

    Science.gov (United States)

    Bultinck, Patrick

    2007-01-01

    A large number of local aromaticity indices for the benzenoid rings in polyaromatic hydrocarbons is computed. The results are interpreted, supporting Clar's hypothesis, and mutual correlations are investigated. It is shown that there are good correlations between all indices that strictly allow comparing benzenoid character. Poor correlations are found with NICS. A rationale is offered, yielding the conclusion that NICS and ring current maps follow a fundamentally different path to local aromaticity. In this sense the lack of correlation is not due to a real multidimensional character of aromaticity but rather to confusion and vagueness of the aromaticity concept. PMID:17328438

  7. Carcinogenic potential of hydrotreated petroleum aromatic extracts.

    Science.gov (United States)

    Doak, S M; Hend, R W; van der Wiel, A; Hunt, P F

    1985-06-01

    Five experimental petroleum extracts were produced from luboil distillates derived from Middle East paraffinic crude by solvent extraction and severe hydrotreatment. The polycyclic aromatic content (PCA) of the extracts was determined by dimethyl sulphoxide extraction and ranged from 3.7-9.2% w/w. The five extracts were evaluated for their potential to induce cutaneous and systemic neoplasia in female mice derived from Carworth Farm No 1 strain (CF1). The test substances were applied undiluted (0.2 ml per application) to the shorn dorsal skin twice weekly for up to 78 weeks, with 48 mice in each treatment group and 96 in the untreated control group; two further groups, each of 48 mice, were similarly treated either with a non-hydrotreated commercial aromatic extract (PCA content, 19.7% w/v) or with a low dose of benzo(a)pyrene (12.5 micrograms/ml acetone). The mice were housed individually in polypropylene cages in specified pathogen free conditions. The incidence of cutaneous and systemic tumours was determined from histological analysis of haematoxylin and eosin stained tissue sections. The results were correlated with the PCA content of the extracts and compared with those from female mice exposed to a non-hydrotreated commercial aromatic extract. Four of the hydrotreated extracts were carcinogenic for murine skin; the two products with the lower PCA contents were less carcinogenic than the products with the higher PCA contents and all were less carcinogenic than the commercial extract. One extract with the lowest PCA content was non-carcinogenic. Thus refining by severe hydrotreatment was an effective method of reducing the carcinogenic potential of petroleum aromatic extracts. Although other physicochemical properties may influence the biological activity of oil products, the PCA content determined by dimethyl sulphoxide extraction may be a useful indicator of the potential of oil products to induce cutaneous tumours in experimental animals. There was no

  8. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  9. Fuel cell membrane materials by chemical grafting of aromatic main-chain polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, P. [Department of Polymer Science and Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2005-04-01

    An extensive world-wide pursuit for new efficient fuel cell membranes materials is currently motivating research on proton-conducting ionomers based on durable aromatic main-chain polymers. In this context, most ionomers have been prepared either by direct sulfonation of polymers, using for example fuming sulfuric acid, or by direct polymerizations using different sulfonated monomers. Far less exploited are chemical grafting reactions carried out to introduce sulfonic acid units, or alternative acidic units, directly on the polymer main-chain, or on side-chains to the polymer main-chain. This versatile method offers very interesting possibilities, not only to control the degree and the site of sulfonation, but also when it comes to manipulating the molecular mobility of the sulfonic acid units and their distance from the polymer main-chain. The length and nature of the grafted units have shown to have a large influence on for example the water-uptake characteristics and conductivity of ionomer membranes, especially at temperatures above 100 C. Grafting can also be used to introduce other useful functions to the polymers, or to crosslink membranes. This paper reviews various grafting reactions carried out on aromatic main-chain polymers, especially polybenzimidazoles and polysulfones, to prepare membrane materials, as well as the characteristics of these materials regarding their use in fuel cells. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  10. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li, E-mail: wangxiuli@bhu.edu.cn

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.

  11. An Aromatic Inventory of the Local Volume

    CERN Document Server

    Marble, A R; van Zee, L; Dale, D A; Smith, J D T; Gordon, K D; Wu, Y; Lee, J C; Kennicutt, R C; Skillman, E D; Johnson, L C; Block, M; Calzetti, D; Cohen, S A; Lee, H; Schuster, M D

    2010-01-01

    Using infrared photometry from the Spitzer Space Telescope, we perform the first inventory of aromatic feature emission (AFE, but also commonly referred to as PAH emission) for a statistically complete sample of star-forming galaxies in the local volume. The photometric methodology involved is calibrated and demonstrated to recover the aromatic fraction of the IRAC 8 micron flux with a standard deviation of 6% for a training set of 40 SINGS galaxies (ranging from stellar to dust dominated) with both suitable mid-infrared Spitzer IRS spectra and equivalent photometry. A potential factor of two improvement could be realized with suitable 5.5 and 10 micron photometry, such as what may be provided in the future by JWST. The resulting technique is then applied to mid-infrared photometry for the 258 galaxies from the Local Volume Legacy (LVL) survey, a large sample dominated in number by low-luminosity dwarf galaxies for which obtaining comparable mid-infrared spectroscopy is not feasible. We find the total LVL lum...

  12. Molecular dynamics studies of aromatic hydrocarbon liquids

    International Nuclear Information System (INIS)

    This project mainly involves a molecular dynamics and Monte Carlo study of the effect of molecular shape on thermophysical properties of bulk fluids with an emphasis on the aromatic hydrocarbon liquids. In this regard we have studied the modeling, simulation methodologies, and predictive and correlating methods for thermodynamic properties of fluids of nonspherical molecules. In connection with modeling we have studied the use of anisotropic site-site potentials, through a modification of the Gay-Berne Gaussian overlap potential, to successfully model the aromatic rings after adding the necessary electrostatic moments. We have also shown these interaction sites should be located at the geometric centers of the chemical groups. In connection with predictive methods, we have shown two perturbation type theories to work well for fluids modeled using one-center anisotropic potentials and the possibility exists for extending these to anisotropic site-site models. In connection with correlation methods, we have studied, through simulations, the effect of molecular shape on the attraction term in the generalized van der Waals equation of state for fluids of nonspherical molecules and proposed a possible form which is to be studied further. We have successfully studied the vector and parallel processing aspects of molecular simulations for fluids of nonspherical molecules

  13. Biodegradation Rates of Aromatic Contaminants in Biofilm Reactors

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    , chlorophenols, nitrophenol, chlorobenzenes and aromatic nitrogen-, sulphur- or oxygen-containing heterocyclic compounds (NSO-compounds). Furthermore, a comparison with degradation rates observed for easily degradable organics is also presented. At concentrations below 20-100 μg/l the degradation of the aromatic...

  14. Products Distribution of Meta-Oriented Aromatic Polyamide Needs Improvement

    Institute of Scientific and Technical Information of China (English)

    Sun Maojian

    2007-01-01

    @@ Capacity holding the second place in the world Metaoriented aromatic polya-mide fiber was first developed by DuPont of the United States. Commercial production began in the late 1960s.Today the world's capacity to produce meta-oriented aromatic polyamide fiber is 28 150t/a, and DuPont holds a 78% market share.

  15. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    Science.gov (United States)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  16. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    Science.gov (United States)

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  17. Bis-perfluoroalkylation of aromatic compounds with sodium perfluoroalkanesulfinates

    Institute of Scientific and Technical Information of China (English)

    LIU, Jin-Tao(刘金涛); LU, He-Jun(吕贺军)

    2000-01-01

    Bis-perfluoroalkylation of aromatic compounds such as dimethoxybenzenes (2,4,6), anisole (8), pyridine (10) and quinoline (13) was accomplished by reaction with excess sodium perfluoroalkanesulfinates, RFSO2Na (1), in the presence of Mn(OAc)3·2H2O under mild conditions. The reaction provides a facile method for the synthesis of bis-perfluoroalkylated aromatic compounds.

  18. 40 CFR 721.757 - Polyoxyalkylene substituted aromatic azo colorant.

    Science.gov (United States)

    2010-07-01

    ... azo colorant. 721.757 Section 721.757 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.757 Polyoxyalkylene substituted aromatic azo colorant. (a) Chemical... as polyoxyalkylene substituted aromatic azo colorant (PMN P-92-1131) is subject to reporting...

  19. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Sherine N. Khattab

    2005-09-01

    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  20. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  1. Electron-Exchange Reactions of Aromatic Molecules

    International Nuclear Information System (INIS)

    A large body of information is available on the rates and mechanisms of inorganic electron-exchange processes. In contrast, purely organic systems have received only minor attention. The homogeneous electron-exchange rates (kexc) and the heterogeneous rate constants for the electrode reaction (kel) have been measured only for a few hydrocarbons. We have measured kexc for a variety of aromatic systems including hydrocarbons, quinones and nitro compounds. These measurements have been carried out via electron paramagnetic resonance (EPR) line broadening measurements on mixtures of radical ions and their parent compounds. We have been able to measure kexc with a precision that allows detection of small differences presumably due to molecular structure and environment. Hydrocarbon systems like anthracene/anthracene anion are very rapid with kexc values of ca. 108-109 litres mole-1 sec-1. Some substituted aromatics like quinones and nitriles are also quite rapid. However, when a strong electron acceptor function is present like a nitro group in nitrobenzene, the value of kexc decreases by a factor of 10. It is possible to correlate changes in kexc in the nitrobenzene series with the unpaired electron density in terms of the 14N coupling constants of the EPR spectra. Further, the nitro aromatic series show very large variations in kexc with the solvent system. These changes can be correlated with recent studies of the solvation effect on hyperfine coupling constants. Marcus has reviewed recently chemical and electrochemical electron-transfer theory and suggested correlations between kexc and kel. We have measured kel especially for the nitrobenzene system under conditions which are as nearly identical experimentally to the EPR studies as possible. The electrochemical investigations were carried out by a steady-state d.c. method to eliminate some of the uncertainties inherent in electrochemical relaxation techniques. Rotated disc electrodes at low temperatures were used

  2. Selective side-chain oxidation of alkyl aromatic compounds catalyzed by cerium modified silver catalysts

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Schimmoeller, Bjoern; Hansen, Thomas Willum; Andersen, Jens Enevold Thaulov; Pratsinis, Sotiris E.; Grunwaldt, Jan-Dierk

    2010-01-01

    Silver supported on silica effectively catalyzes the aerobic side-chain oxidation of alkyl aromatic compounds under solvent-free conditions. Toluene, p-xylene, ethylbenzene and cumene were investigated as model substrates. Typically, the reaction was performed at ambient pressure; only for toluene...... an elevated pressure was required. Carboxylic acids, such as benzoic acid or p-toluic acid, additionally increased the reaction rate while CeO2 could act both as a promoter and an inhibitor depending on the substrate and the reaction conditions. Silver catalysts were prepared both by standard...... catalysis. In addition, flame-made catalysts were more stable against silver leaching compared to the impregnated catalysts. The structure of the silver catalysts was studied in detail both by X-ray absorption spectroscopy and transmission electron microscopy suggesting metallic silver to be required for...

  3. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals

    KAUST Repository

    Zeng, Zebing

    2015-01-01

    © 2015 The Royal Society of Chemistry. Aromaticity is an important concept to understand the stability and physical properties of π-conjugated molecules. Recent studies on pro-aromatic and anti-aromatic molecules revealed their irresistible tendency to become diradicals in the ground state. Diradical character thus becomes another very important concept and it is fundamentally correlated to the physical (optical, electronic and magnetic) properties and chemical reactivity of most of the organic optoelectronic materials. Molecules with distinctive diradical character show unique properties which are very different from those of traditional closed-shell π-conjugated systems, and thus they have many potential applications in organic electronics, spintronics, non-linear optics and energy storage. This critical review first introduces the fundamental electronic structure of Kekulé diradicals within the concepts of anti-aromaticity and pro-aromaticity in the context of Hückel aromaticity and diradical character. Then recent research studies on various stable/persistent diradicaloids based on pro-aromatic and anti-aromatic compounds are summarized and discussed with regard to their synthetic chemistry, physical properties, structure-property relationships and potential material applications. A summary and personal perspective is given at the end.

  4. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440.

    Science.gov (United States)

    Molina-Henares, M Antonia; García-Salamanca, Adela; Molina-Henares, A Jesús; de la Torre, Jesús; Herrera, M Carmen; Ramos, Juan L; Duque, Estrella

    2009-01-01

    Pseudomonas putida KT2440 is a non-pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini-Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene-encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB-like genes are present in the host chromosome. PMID:21261884

  5. Neutron Scattering of Aromatic and Aliphatic Liquids

    Science.gov (United States)

    Falkowska, Marta; Bowron, Daniel T.; Manyar, Haresh G.

    2016-01-01

    Abstract Organic solvents, such as cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene, are widely used as both reagents and solvents in industrial processes. Despite the ubiquity of these liquids, the local structures that govern the chemical properties have not been studied extensively. Herein, we report neutron diffraction measurements on liquid cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene at 298 K to obtain a detailed description of the local structure in these compounds. The radial distribution functions of the centres of the molecules, as well as the partial distribution functions for the double bond for cyclohexene and methyl group for methylcyclohexane and toluene have been calculated. Additionally, probability density functions and angular radial distribution functions were extracted to provide a full description of the local structure within the chosen liquids. Structural motifs are discussed and compared for all liquids, referring specifically to the functional group and aromaticity present in the different liquids. PMID:26990367

  6. Photochemically induced oscillations of aromatic pentazadienes

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, T.; Hahn, C.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Aromatic pentazadienes are used to enhance the laser induced ablation of standard polymers with low absorption in the UV. Therefore the photochemistry of substituted 1,5-diaryl-3-alkyl-1,4-pentazadiene monomers was studied with a pulsed excimer laser as irradiation source. The net photochemical reaction proceeds in an overall one-step pathway A{yields}B. Quantum yields for the laser decomposition were determined to be up to 10%. An oscillating behaviour of the absorption was found during the dark period following the irradiation. The temperature dependence of this dark reaction has been studied. An attempt to model this behaviour in terms of a non-linear coupling between heat released, heat transfer, and reaction kinetics will be described. (author) 4 figs., 4 refs.

  7. Neutron Scattering of Aromatic and Aliphatic Liquids.

    Science.gov (United States)

    Falkowska, Marta; Bowron, Daniel T; Manyar, Haresh G; Hardacre, Christopher; Youngs, Tristan G A

    2016-07-01

    Organic solvents, such as cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene, are widely used as both reagents and solvents in industrial processes. Despite the ubiquity of these liquids, the local structures that govern the chemical properties have not been studied extensively. Herein, we report neutron diffraction measurements on liquid cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene at 298 K to obtain a detailed description of the local structure in these compounds. The radial distribution functions of the centres of the molecules, as well as the partial distribution functions for the double bond for cyclohexene and methyl group for methylcyclohexane and toluene have been calculated. Additionally, probability density functions and angular radial distribution functions were extracted to provide a full description of the local structure within the chosen liquids. Structural motifs are discussed and compared for all liquids, referring specifically to the functional group and aromaticity present in the different liquids. PMID:26990367

  8. Muonium addition reactions to aromatic solutes

    International Nuclear Information System (INIS)

    Reaction rate constants of 0.3 to 1.1 x 10sup(10) Msup(-1) ssup(-1) were determined for the reaction of muonium (μsup(+)esup(-),Mu) with seven aromatic solutes in dilute aqueous solution at approximately 295K. The reaction was deduced to be that of addition to the benzene ring to form cyclohexadienyl radicals. On comparison with the analogous H-atom reactions, the kinetic isotope effects were generally about three, equal to the mean thermal velocity ratio of Mu/H. When analyzed through the Hammett equation there were serious discontinuities but a rho value of +0.6 was deduced, not inconsistent with attack by a mildly electron-donating neutral atom forming only free radical intermediates

  9. Naturally occurring antifungal aromatic esters and amides

    International Nuclear Information System (INIS)

    During the search of antifungal natural products from terrestrial plants, a new long chained aromatic ester named grandiflorate along with spatazoate from Portulaca grandiflora and N-[2-methoxy-2-(4-methoxyphenyl) ethyl]-trans-cinnamide and aegeline from Solanum erianthum of Nigeria were isolated and tested against six fungal species. The known constituents have not been reported so far from mentioned investigated plants. Structures of the isolated compounds were elucidated with the aid of spectroscopic techniques including two dimensional NMR experiments. Among the compounds, the esters found more potent than amides against Candida albicans and Aspergillus flavus. The new compound grandiflorate gave response against all tested fungal species while aegeline was found to give lowest inhibition during this study. (author)

  10. ANTIEMETIC ACTIVITY OF SOME AROMATIC PLANTS

    Directory of Open Access Journals (Sweden)

    Hasan MuhammadMohtasheemul

    2012-02-01

    Full Text Available Current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., Carissa carandus L. (fruits, Chichorium intybus L (flowers, Cinnamum tamala L (leaves, Curcuma caesia Roxb (rhizomes, Lallemantia royleana Benth (leaves, Matricaria chamomila L (flowers, Piper longum L (fruits, Piper methysticum G. Forst (fruits, Piper nigrum Linn. (fruits and Syzygium aromaticum (Linn. Merr. & Perry (flowering buds was studied using chick emetic model. The ethanol extracts of these plants were administered at 150 mg/kg body weight orally. Domperidone was given at 100 mg/kg as a reference drug. All the extracts decrease in retches induced by copper sulphate pentahydrate given orally at 50 mg/kg body weight and showed comparable antiemetic activity with domperidone. Compound targeted antiemetic activity is further suggested.

  11. Aromatic C-nitrosation by a copper(II)-nitrosyl complex.

    Science.gov (United States)

    Rout, Kanhu Charan; Mondal, Biplab

    2015-01-28

    Copper(II) complex of 4-amino-3-hydroxy-1-sulphonic acid was synthesized and characterized. Upon addition of nitric oxide, the copper(II) center of the complex in methanol was found to undergo reduction through an unstable copper(II)-nitrosyl intermediate. The formation of the intermediate was confirmed by UV-visible and FT-IR spectroscopy. The reduction of the copper(II) center was accompanied with a simultaneous C-nitrosation of the aromatic ring of the ligand. The C-nitrosation product was isolated and characterized by various spectroscopic analyses. PMID:25476484

  12. Photocycloaddition of aromatic and aliphatic aldehydes to isoxazoles: Cycloaddition reactivity and stability studies

    Directory of Open Access Journals (Sweden)

    Hidehiro Kotaka

    2011-01-01

    Full Text Available The first photocycloadditions of aromatic and aliphatic aldehydes to methylated isoxazoles are reported. The reactions lead solely to the exo-adducts with high regio- and diastereoselectivities. Ring methylation of the isoxazole substrates is crucial for high conversions and product stability. The 6-arylated bicyclic oxetanes 9a–9c were characterized by X-ray structure analyses and showed the highest thermal stabilities. All oxetanes formed from isoxazoles were highly acid-sensitive and also thermally unstable. Cleavage to the original substrates is dominant and the isoxazole derived oxetanes show type T photochromism.

  13. Charge-transfer complexes of pyrimidine Schiff bases with aromatic nitro compounds

    Science.gov (United States)

    Issa, Yousry M.; El Ansary, A. L.; Sherif, O. E.; Hassib, H. B.

    2011-08-01

    Charge-transfer (CT) complexes of pyrimidine Schiff bases, derived from condensation of 2-aminopyrimidine and substituted benzaldehydes, with some aromatic polynitro compounds were prepared and investigated using IR, UV, visible and 1H NMR spectroscopy. For all solid complexes, the main interaction between the donor and acceptor molecules takes place through the π-π* interaction. Strong and some weak acidic acceptors, in addition interact through proton transfer from the acceptor molecule to the basic centre of the electron donor. Also, an n-π* transition was detected in some complexes.

  14. Polar metabolites of polycyclic aromatic compounds from fungi are potential soil and groundwater contaminants

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Johnsen, Anders R.; Christensen, Jan H.

    2015-01-01

    This study investigated the sorption to soil of water-soluble metabolites from polycyclic aromatic compounds (PACs). The soil fungus Cunninghamella elegans was used to produce PAC metabolites from two un-substituted PACs (phenanthrene, pyrene), three alkyl-substituted PACs (2-methylnaphthalene, 1...... calculated for fourteen representative metabolites. Sulfate conjugated metabolites displayed Kd's below 70 whereas the metabolites with both a sulfate and a carboxylic acid group had Kd's below 2.8. The low Kd's of water-soluble PAC metabolites indicate high mobility in soil and a potential for leaching to...

  15. Aromatic fluorine compounds. VII. Replacement of aromatic -Cl and -NO2 groups by -F

    Science.gov (United States)

    Finger, G.C.; Kruse, C.W.

    1956-01-01

    Replacement of -Cl by -F in aryl chlorides with potassium fluoride has been extended from 2,4-dinitrochlorobenzene to less activated halides by the use of non-aqueous solvents, especially dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Also replacement of -NO2 by -F in substituted nitrobenzenes was studied in DMF. As a direct result of this study, many aromatic fluorine compounds can now be obtained by a relatively simple synthetic route.

  16. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.

    Science.gov (United States)

    Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J

    2014-08-20

    Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates. PMID:25076127

  17. Molecular Self-Assembly of Short Aromatic Peptides: From Biology to Nanotechnology and Material Science

    Science.gov (United States)

    Gazit, Ehud

    2013-03-01

    The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.

  18. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    International Nuclear Information System (INIS)

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  19. Solvent extraction of metals with hydroxamic acids.

    Science.gov (United States)

    Vernon, F; Khorassani, J H

    1978-07-01

    Solvent extraction with hydroxamic acids has been investigated. with comparison of aliphatic and aromatic reagents for the extraction of iron, copper, cobalt and nickel. Caprylohydroxamic acid has been evaluated for use in extraction systems for titanium, vanadium, chromium, molybdenum and uranium, both in terms of acidity of aqueous phase and oxidation state of the metal. It has been established that caprylohydroxamic acid in 1-hexanol is a suitable extractant for the removal of titanium(IV), vanadium(V), chromium(VI), molybdenum(VI) and uranium(VI) from 6M hydrochloric acid. PMID:18962288

  20. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  1. A Review of Salam Phase Transition in Protein Amino Acids Implication for Biomolecular Homochirality

    CERN Document Server

    Bai, F; Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis aroused suspicion. This paper is aimed to provide direct experimental evidence of a phase transition in alanine, valine single crystals but deny the configuration change of D- to L- enantiomers. New views on Salam phase transition are presented to revalidate its great importance in the origin of homochirality.

  2. The future role of aromatics in refining and petrochemistry. Proceedings of the DGMK-Conference (Authors' manuscripts)

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G.; Rupp, M.; Weitkamp, J. [eds.

    1999-07-01

    Topic of this conference has been the furure role of aromatics in the refinign industry. The articles deal with the following topics: Refining; legal aspects in the aromatics market; transportation fuels; dearomatization; catalytic reforming and aromatics; separation processes for aromatics; oxidation and ammoxidation of aromatics; electrophilic substitution of aromatics; hydrogenation of benzene; zeolites. (orig./sr)

  3. Synthesis of Aromatic Hyperbranched Polyesters and Modification of Their End-groups%全芳型超支化聚酯的合成及端基改性

    Institute of Scientific and Technical Information of China (English)

    唐黎明

    2001-01-01

    Soluble aromatic hyperbranched polyesters with controlled viscosities have been preparedby melt polycondensation of sililated 5-acetoxyisophathalic acid with sililated p-tert-butyl benzoic acidin various molar ratios. By further reaction with thionyl chloride and propargyl alcohol successively,the endgroups of the crude polyester were transferred into ethynylic groups in 78. 2% yield as calculat-ed by 1H NMR spectra.

  4. Aromatic hydrocarbon concentrations in sediments of Placentia Bay, Newfoundland

    International Nuclear Information System (INIS)

    A study was conducted to examine the potential for contamination of recent sediments with polycyclic aromatic hydrocarbons due to tanker and refinery activity in Placentia Bay, Newfoundland, an area without large local anthropogenic sources of aromatics. Sediment samples were taken from the vicinity of the Come By Chance refinery, Woody Island, Wild Cove, and Port Royal Arm, all in the north end of the bay. The samples were extracted by two methods, dichloromethane extraction of dried sediment for determination of total aromatic hydrocarbon content and hexane extraction of wet sediment for estimation of the bioavailability of hydrocarbons and determination of more volatile compounds. Class analysis of aromatic hydrocarbons was conducted on a NH2 column with detection at 255 nm. Total concentrations of di-tricyclic aromatics were highest at the Woody Island site (0.6 μg/g). The sediments from the Come By Chance site, Wild Cove, and Port Royal Arm sediments contained 0.3, 0.1, and 0.2 μg/g respectively. The hexane extracts from Come By Chance were lowest in di-tricyclic aromatics (0.007 μg/g), with the other sites being equal in concentration (0.01 μg/g). It is evident from the study that aromatic hydrocarbon concentrations in Placentia Bay are elevated in some parts of the bay in the absence of local combustion sources, and that the most likely source is petroleum. 12 refs., 5 figs., 2 tabs

  5. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  6. Aromatic compound in different peach cultivars and effect of preservatives on the final aroma of cooked fruits

    Directory of Open Access Journals (Sweden)

    Bavcon-Kralj Mojca

    2014-01-01

    Full Text Available In our study, we were used four yellow-fleshed peach cultivars ‟Royal Glory‟, „Redhaven", 'Maria Marta' and 'Norman', during two-year period. The characterization of aromatic constituents of investigated cultivars was done using headspace solid phase micro-extraction (HS-SPME. The intention was to make implicit discrimination between cultivars by analysis of components present in all cultivars during two-year period. Also, the impact of added preservatives (Na-benzoate and citric acid on the final aroma of cooked peaches was studied. The cultivars' differences and the impact of preservatives (Na-benzoate and citric acid were statistically evaluated. Multiple discriminant analysis of peaches‟ aromatic profile was used to segregate investigated peach cultivars. Although they were very similar, the cultivars were segregated by two discriminant function, function 1 (which accounted for 56.9% of this peach model and function 2 (31.7%. The use of preservatives had also an important impact on the aromatic profile of cooked peaches. The statistical analysis indicated that from 57 identified volatiles, 40 volatiles showed statistically significant difference regarding the way of preservation. The main negative impact had Na-benzoate compared to control or samples preserved with citric acid.

  7. ANALYSIS OF AIRBORNE CARBOXYLIC ACIDS AND PHENOLS AS THEIR PENTAFLUOROBENZYL DERIVATIVES: GAS CHROMATOGRAPHY/ION TRAP MASS SPECTROMETRY WITH A NOVEL CHEMICAL IONIZATION REAGENT, PFBOH. (R826247)

    Science.gov (United States)

    The complex photochemical transformations of biogenichydrocarbons such as isoprene and of anthropogenichydrocarbons such as aromatics are an important sourceof carboxylic acids in the troposphere. Theidentificationof unknown carboxylic acids can be difficul...

  8. Interaction Mechanism of Anthracene with Benzoic Acid and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    HE Ying-Ying; WANG Xiao-Chang; FAN Xiao-Yuan; ZHAO Bo; JIN Peng-Kang

    2008-01-01

    Interaction mechanism of anthracene, one of the typical polycyclic aromatic hydrocarbons, with benzoic acid and its hydroxyl-substituted derivatives, o-hydroxylbenzoic acid and p-hydroxylbenzoic acid, were studied using FFIR, UV and fluorescence spectra. The experiments confirmed that there was a specific and oriented interaction between anthracene and the aromatic carboxylic acids, and the bonding mode depended on both the chemical struc- ture of reactants and acidity of solution. The π-H hydrogen bond played a main role in the interaction between an-thracene and the aromatic carboxylic proton of benzoic acid or o-hydroxylbenzoic acid when pH≤pK, and the π-π electron donor-acceptor (EDA) interaction increasingly became the main binding mode when pH>pK. The de-crease of interaction intensity of benzoic acid was observed by introducing hydroxyl at its ortho position. The spe-cial D-π-A structure of p-hydroxylbenzoic acid made it easy to form the planar multi-molecule congeries that could interact with anthracene, so the interaction between anthracene and p-hydroxylbenzoic acid always followed the π-π EDA model no matter the solution acidity. For p-hydroxylbenzoic acid, the π-π interaction mode remained un-changed when pH increased from 2.0 to 10.0, and the binding intensity was higher than that between benzoic acid and anthracene because of the formation of the multi-molecule congeries.

  9. Theoretical study of aromaticity in inorganic tetramer clusters

    Indian Academy of Sciences (India)

    Sandeep Nigam; Chiranjib Majumder; S K Kulshreshtha

    2006-11-01

    Ground state geometry and electronic structure of M$^{2-}_{4}$ cluster (M = B, Al, Ga) have been investigated to evaluate their aromatic properties. The calculations are performed by employing the Density Functional Theory (DFT) method. It is found that all these three clusters adopt square planar configuration. Results reveal that square planar M$^{2-}_{4}$ dianion exhibits characteristics of multifold aromaticity with two delocalised -electrons. In spite of the unstable nature of these dianionic clusters in the gas phase, their interaction with the sodium atoms forms very stable dipyramidal M4Na2 complexes while maintaining their square planar structure and aromaticity.

  10. 2-(Biphenyl-4-ylacetic acid (felbinac

    Directory of Open Access Journals (Sweden)

    Lynne S. Taylor

    2010-10-01

    Full Text Available The structure of the title compound, C14H12O2, displays the expected intermolecular hydrogen bonding of the carboxylic acid groups, forming dimers. The dihedral angle between the two aromatic rings is 27.01 (7°.

  11. Synthesis of isothiocyanate-derived mercapturic acids

    NARCIS (Netherlands)

    Vermeulen, M.; Zwanenburg, B.; Chittenden, G.J.F.; Verhagen, H.

    2003-01-01

    Twelve mercapturic acids derived from saturated and unsaturated aliphatic and aromatic isothiocyanates were synthesised, by adding isothiocyanate to a solution of N-acetyl-L-cysteine and sodium bicarbonate, in a typical yield of 77%. Isothiocyanates were synthesised first by adding the corresponding

  12. Interaction of aromatic compounds with xenon: spectroscopic and computational characterization for the cases of p-cresol and toluene.

    Science.gov (United States)

    Cao, Qian; Andrijchenko, Natalya; Ermilov, Alexander; Räsänen, Markku; Nemukhin, Alexander; Khriachtchev, Leonid

    2015-03-19

    We have investigated noncovalent interactions of two aromatic compounds (toluene and p-cresol) with Xe atoms by using infrared spectroscopy in a Ne matrix and quantum chemical calculations. The present results show that the methyl group of these molecules is a sensitive probe of the interaction with Xe. We have used the molecules with the deuterated methyl group, possessing a relatively simple spectrum, which allows us to detect characteristic vibrational shifts in the complexes, in which a Xe atom interacts with the aromatic π electron system (π structure). For the p-cresol···Xe complex, we also observed evidence of the 1:1 H-bonded structure. The amount of the H-bonded structure of the cresol···Xe complex is relatively small, which agrees with the calculated interaction energies (stronger interaction for the π structure). The bands of the 1:1 complexes of p-cresol and toluene with Xe appear at low Xe concentration and their intensities relative to the monomer bands are nearly proportional to the Xe/Ne concentration ratio. For the p-cresol-Xe system, additional OH stretching bands appear at higher Xe concentrations, which are suitable for the complexes with several Xe atoms. The π structures studied in this work can probably be formed in the case of aromatic amino acids, for which these simple aromatic compounds are useful models. PMID:25360812

  13. ANSID: a Solid-Phase Proteomic Approach for Identification and Relative Quantification of Aromatic Nitration Sites

    Science.gov (United States)

    Nuriel, Tal; Whitehouse, Julia; Ma, Yuliang; Mercer, Emily; Brown, Neil; Gross, Steven

    2015-12-01

    Nitration of tyrosine and other aromatic amino acid residues in proteins occurs in the setting of inflammatory, neurodegenerative and cardiovascular diseases – importantly, this modification has been implicated in the pathogenesis of diverse diseases and the physiological process of tissue aging. To understand the biological consequences of aromatic nitration in both health and disease, it is critical to molecularly identify the proteins that undergo nitration, specify their cognate modification sites and quantify their extent of nitration. To date, unbiased identification of nitrated proteins has painstakingly employed 2D-gel electrophoresis followed by Western Blotting with an anti-nitrotyrosine antibody for detection. Apart from being relatively slow and laborious, this method suffers from limited coverage, the potential for false-positive identifications and failure to reveal specific amino acid modification sites. To overcome these shortcomings, we have developed a solid-phase, chemical-capture approach for unbiased and high-throughput discovery of nitrotyrosine and nitrotryptophan sites in proteins. Utilizing this method, we have successfully identified several endogenously nitrated proteins in rat brain and a total of 244 nitrated peptides from 145 proteins following in vitro exposure of rat brain homogenates to the nitrating agent peroxynitrite (1 mM). As expected, Tyr residues constituted the great majority of peroxynitrite-mediated protein nitration sites; however, we were surprised to discover several brain proteins that contain nitrated Trp residues. By incorporating a stable-isotope labeling step, this new Aromatic Nitrtion Site IDentification (ANSID) method was also adapted for relative quantification of nitration site abundances in proteins. Application of the quantitative ANSID method offers great potential to advance our understanding of the role of protein nitration in disease pathogenesis and normal physiology.

  14. Capillary Electrophoresis Profiles and Fluorophore Components of Humic Acids in Nebraska Corn and Philippine Rice Soils

    Science.gov (United States)

    As humic substances represent relatively high molecular mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits, capillary electrophoresis (CE) has become an attractive method for “finger-print” characterization of humic acids. In addition, fluorescence excitation-emission ma...

  15. Mirrors in the PDB: left-handed α-turns guide design with D-amino acids

    Directory of Open Access Journals (Sweden)

    Nanda Vikas

    2009-09-01

    Full Text Available Abstract Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  16. Application of aromatization catalyst in synthesis of carbon nanotubes

    Indian Academy of Sciences (India)

    Song Rongjun; Yang Yunpeng; Ji Qing; Li Bin

    2012-02-01

    In a typical chemical vapour deposition (CVD) process for synthesizing carbon nanotubes (CNTs), it was found that the aromatization catalysts could promote effectively the formation of CNT. The essence of this phenomenon was attributed to the fact that the aromatization catalyst can accelerate the dehydrogenation–cyclization and condensation reaction of carbon source, which belongs to a necessary step in the formation of CNTs. In this work, aromatization catalysts, H-beta zeolite, HZSM-5 zeolite and organically modified montmorillonite (OMMT) were chosen to investigate their effects on the formation of multi-walled carbon nanotubes (MWCNTs) via pyrolysis method when polypropylene and 1-hexene as carbon source and Ni2O3 as the charring catalyst. The results demonstrated that the combination of those aromatization catalysts with nickel catalyst can effectively improve the formation of MWCNTs.

  17. Six-Membered Aromatic Polyazides: Synthesis and Application

    Directory of Open Access Journals (Sweden)

    Sergei V. Chapyshev

    2015-10-01

    Full Text Available Aromatic polyazides are widely used as starting materials in organic synthesis and photochemical studies, as well as photoresists in microelectronics and as cross-linking agents in polymer chemistry. Some aromatic polyazides possess high antitumor activity, while many others are of considerable interest as high-energy materials and precursors of high-spin nitrenes and C3N4 carbon nitride nanomaterials. The use of aromatic polyazides in click-reactions may be a new promising direction in the design of various supramolecular systems possessing interesting chemical, physical and biological properties. This review is devoted to the synthesis, properties and applications of six-membered aromatic compounds containing three and more azido groups in the ring.

  18. THE UPTAKE OF AROMATIC AND BRANCHED CHAIN HYDROCARBONS BY YEAST

    Science.gov (United States)

    Studies of the hydrocarbon utilizing yeasts, Candida maltosa and C. lipolytica, have shown that both were capable of reducing recoverable amounts of branched chain and aromatic hydrocarbons in a mixture of naphthalene, tetradecane, hexadecane, pristane (tetra-methylpentadecane). ...

  19. Aromatic Plants as a Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Panagiota Florou-Paneri

    2012-09-01

    Full Text Available Aromatic plants, also known as herbs and spices, have been used since antiquity as folk medicine and as preservatives in foods. The best known aromatic plants, such as oregano, rosemary, sage, anise, basil, etc., originate from the Mediterranean area. They contain many biologically active compounds, mainly polyphenolics, which have been found to possess antimicrobial, antioxidant, antiparasitic, antiprotozoal, antifungal, and anti-inflammatory properties. Currently, the demand for these plants and their derivatives has increased because they are natural, eco-friendly and generally recognized as safe products. Therefore, aromatic plants and their extracts have the potential to become new generation substances for human and animal nutrition and health. The purpose of this review is to provide an overview of the literature surrounding the in vivo and in vitro use of aromatic plants.

  20. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...