WorldWideScience

Sample records for aromatic hydrocarbons biodegradation

  1. In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters

    Science.gov (United States)

    Acton, D. W.; Barker, J. F.

    1992-04-01

    Three types of experiments were conducted to assess the potential for enhancing the in situ biodegradation of nine aromatic hydrocarbons in anaerobic, leachate-impacted aquifers at North Bay, Ontario, and at Canada Forces Base Borden. Laboratory micrososms containing authentic aquifer material and groundwater from the North Bay site were amended with nitrate and glucose. No significant losses of aromatic hydrocarbons were observed compared to unamended controls, over a period of 187 days. A total of eight in situ biodegradation columns were installed in the North Bay and Borden aquifers. Remedial additions included electron acceptors (nitrate and sulphate) and primary substrates (acetate, lactate and yeast extract). Six aromatic hydrocarbons [toluene, ethylbenzene, m-xylene, o-xylene, cumene and 1,2,4-trimethylbenzene ( 1,2,4-TMB)] were completely degraded in at least one in situ column at the North Bay site. Only toluene was degraded in the Borden aquifer. In all cases, aromatic hydrocarbon attenuation was attributed to biodegradation by methanogenic and fermentative bacteria. No evidence of aromatic hydrocarbon degradation was observed in columns remediated with nitrate or primary substrates. A continuous forced gradient injection experiment with sulphate addition was conducted at the North Bay site over a period of 51 days. The concentration of six aromatic hydrocarbons was monitored over time in the injection wells and at piezometer fences located 2, 5 and 10 m downgradient. All compounds except toluene reached injection concentration between 14 and 26 days after pumping began, and showed some evidence of selective retardation. Toluene broke through at a subdued concentration (˜ 50% of injection levels), and eventually declined to undetectable levels on day 43. This attenuation was attributed to adaptation and biodegradation by anaerobic bacteria. The results from these experiments indicate that considerable anaerobic biodegradation of aromatic hydrocarbons in

  2. Biodegradation Mechanism and Technology of Polycyclic Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    DIAO Shuo; WANG Hong-qi; ZHENG Yi-nan; HUA Fei

    2016-01-01

    [Abstract]Polycyclic aromatic hydrocarbons are a class of potentially hazardous chemicals of environmental and health concern.PAHs are one of the most prevalent groups of contaminants found in soil.Biodegradation of complex hydrocarbon usually requires the cooperation of more than single specie.This paper reviews the existing screening methods of PAH-degrading bacteria.It studied the mechanism and technical applications of the co-metabolism in PAHs.Author gives the suggestions and prospects in Biodegradable trend of PHAs.

  3. Biodegradation of Aromatic Hydrocarbons in an Extremely Acidic Environment

    Science.gov (United States)

    Stapleton, Raymond D.; Savage, Dwayne C.; Sayler, Gary S.; Stacey, Gary

    1998-01-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values. PMID:9797263

  4. Solubilization and biodegradation of polycyclic aromatic hydrocarbons in microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J.W.C.; Zhao, Z.Y.; Yang, J.; Wong, S.Y. [Hong Kong Baptist Univ., Hong Kong (China). Sino-Forest Applied Research Centre for Pearl River Delta Environment, Dept. of Biology

    2009-07-01

    This study investigated the feasibility of using microemulsions to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs). Microemulsions are commonly used in soil washing as a means of enhancing the solubility of hydrophobic pollutants. The microemulsions were composed of Tween-80, 1-pentanol and linseed oil. Phenanthrene (PHE) was dissolved in dichloromethane and added to a glass vial. Microemulsions were added separately to the vials. A high performance liquid chromatograph (HPLC) was used to determine PHE concentrations. The vials were inoculated with an isolated PAH degradative bacterium Bacillus subtilis B-UM. Soil collected from abandoned shipyards in Hong Kong were then spiked with the mixtures and aged for 3 months. One way analysis of variance (ANOVA) analyses were conducted. Results of the study showed that a microemulsion composed of 0.4 Tween-80, 0.1 per cent 1-pentanol, and 0.05 linseed oil effectively enhanced the biodegradation of PHE in the aqueous phase. It was concluded that microemulsions can be used to remediate soils contaminated by PAHs. 26 refs., 2 tabs., 4 figs.

  5. Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Berdugo-Clavijo, Carolina; Dong, Xiaoli; Soh, Jung; Sensen, Christoph W; Gieg, Lisa M

    2012-07-01

    Polycyclic aromatic hydrocarbons (PAH) are widespread in methane-rich subsurface environments, such as oil reservoirs and fuel-contaminated aquifers; however, little is known about the biodegradation of these compounds under methanogenic conditions. To assess the metabolism of PAH in the absence of electron acceptors, a crude oil-degrading methanogenic enrichment culture was tested for the ability to biodegrade naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 2, 6-dimethylnaphthalene (2, 6-diMN). When methane was measured as an indicator of metabolism, nearly 400 μmol of methane was produced in the 2-MN- and 2, 6-diMN-amended cultures relative to substrate-unamended controls, which is close to the amount of methane stoichiometrically predicted based on the amount of substrate added (51-56 μmol). In contrast, no substantial methane was produced in the naphthalene- and 1-MN-amended enrichments. In time course experiments, metabolite analysis of enrichments containing 2-MN and 2, 6-diMN revealed the formation of 2-naphthoic acid and 6-methyl-2-naphthoic acid, respectively. Microbial community analysis by 454 pyrosequencing revealed that these PAH-utilizing enrichments were dominated by archaeal members most closely affiliated with Methanosaeta and Methanoculleus species and bacterial members most closely related to the Clostridiaceae, suggesting that these organisms play an important role in the methanogenic metabolism of the substituted naphthalenes in these cultures.

  6. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    Science.gov (United States)

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  7. The effects of biodegradation on the compositions of aromatic hydrocarbons and maturity indicators in biodegraded oils from Liaohe Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By the aid of GC-MS technique,a series of sequentially biodegraded oils from Liaohe Basin have been analyzed. The results show that the concentrations and relative compositions of various aromatic compounds in the biodegraded crude oils will change with increasing biodegradation degree. The concentrations of alkyl naphthalenes,alkyl phenanthrenes,alkyl dibenzothiophene are decreased,and the concentration of triaromatic steroids will increase with increasing biodegradation degree in biodegraded oils. Those phenomena indicate that various aromatic compounds are more easily biodegraded by bacteria like other kinds of hydrocarbons such as alkanes,but different series of aromatic compounds have a varied ability to resistant to biodegradation. The ratios of dibenzothiophene to phenenthrene(DBTH/P) and methyl dibenzothiophene to methyl phenanthrene(MDBTH/MP) are related to the features of depositional environment for source rocks such as redox and ancient salinity. However,in biodegraded oils,the two ratios increase quickly with the increase of the biodegradation degree,indicating that they have lost their geochemical significance. In this case,they could not be used to evaluate the features of depositional environment. Methyl phenanthrene index,methyl phenanthrene ratio and methyl dibenzoyhiophene ratio are useful aromatic maturity indicators for the crude oils and the source rocks without vitrinite. But for biodegraded oils,those aromatic maturity indicators will be affected by biodegradation and decrease with the increase of the biodegradation degree. Therefore,those aromatic molecular maturity indicators could not be used for biodegraded oils.

  8. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

    Science.gov (United States)

    Haritash, A K; Kaushik, C P

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate

  9. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  10. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    Science.gov (United States)

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  11. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-08-01

    Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene.

  12. Complications with remediation strategies involving the biodegradation and detoxification of recalcitrant contaminant aromatic hydrocarbons.

    Science.gov (United States)

    Frenzel, Max; Scarlett, Alan; Rowland, Steven J; Galloway, Tamara S; Burton, Sara K; Lappin-Scott, Hilary M; Booth, Andy M

    2010-09-01

    Environmentally persistent aromatic hydrocarbons known as unresolved complex mixtures (UCMs) derived from crude oil can be accumulated by, and elicit toxicological responses in, marine organisms (e.g. mussels, Mytilus edulis). Comprehensive two-dimensional gas chromatography time-of-flight mass-spectrometry (GCxGC-ToF-MS) previously revealed that these UCMs included highly branched alkylated aromatic hydrocarbons. Here, the effects of biodegradation on the toxicity and chemical composition of an aromatic UCM hydrocarbon fraction isolated from Tia Juana Pesado (TJP) crude oil were examined. 48h exposure of mussels to the aromatic hydrocarbon fraction (F2) resulted in tissue concentrations of 900microgg(-1) (dry wt.) and approximately 45% decrease in clearance rate. Over 90% of the hydrocarbon burden corresponded to an UCM. Following a 5day recovery period, GCxGC-ToF-MS analysis of the tissues indicated depuration of most accumulated hydrocarbons and clearance rates returned to those observed in controls. To assess the potential of biodegradation to reduce UCM toxicity, TJP F2 was exposed to bacteria isolated from Whitley Bay, UK, for 46days. Mussels exposed to the undegraded TJP F2 from the abiotic control exhibited a reduction in clearance rate comparable with values for the pure crude oil TJP F2. Clearance rates of mussels exposed to biodegraded TJP F2 were statistically similar to seawater controls, suggesting biodegradation had reduced the TJP F2 toxicity. GCxGC-ToF-MS analysis revealed the same compound groups in the tissue of mussels exposed to pure TJP F2, undegraded TJP F2 and biodegraded TJP F2 samples; however >300 fewer compounds were observed in the biodegraded (954 compounds) compared to the undegraded TJP F2 (1261). The compound distributions were markedly different, possibly accounting for the decrease in toxicity. Extraction and analysis of pelleted bacterial cell material revealed that a significant proportion of the TJP F2 had adsorbed onto the

  13. Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons (PAH) biodegradation

    OpenAIRE

    A. C. Rodrigues; Nogueira, R; Melo, L. F.; A. G. Brito

    2013-01-01

    The present study is focused on the effect of synthetic surfactants, at low concentration, on the kinetics of polycyclic aromatic hydrocarbons (PAH) biodegradation by Pseudomonas putida ATCC 17514 and addresses the specific issue of the effect of the surfactant on bacterial adhesion to PAH, which is believed to be an important mechanism for the uptake of hydrophobic compounds. For that purpose, three surfactants were tested, namely, the nonionic Tween 20, the anionic sodium dodecyl sulphate (...

  14. Advances in the field of high‐molecular‐weight polycyclic aromatic hydrocarbon biodegradation by bacteria

    OpenAIRE

    Kanaly, Robert A.; Harayama, Shigeaki

    2010-01-01

    Summary Interest in understanding prokaryotic biotransformation of high‐molecular‐weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that...

  15. Monitoring aromatic hydrocarbon biodegradation by functional marker genes

    Energy Technology Data Exchange (ETDEWEB)

    Nyyssoenen, Mari [Technical Research Centre of Finland, Espoo (Finland)], E-mail: mari.nyyssonen@vtt.fi; Piskonen, Reetta; Itaevaara, Merja [Technical Research Centre of Finland, Espoo (Finland)

    2008-07-15

    The development of biological treatment technologies for contaminated environments requires tools for obtaining direct information about the biodegradation of specific contaminants. The potential of functional gene array analysis to monitor changes in the amount of functional marker genes as indicators of contaminant biodegradation was investigated. A prototype functional gene array was developed for targeting key functions in the biodegradation of naphthalene, toluene and xylenes. Internal standard probe based normalization was introduced to facilitate comparison across multiple samples. Coupled with one-colour hybridization, the signal normalization improved the consistency among replicate hybridizations resulting in better discrimination for the differences in the amount of target DNA. During the naphthalene biodegradation in a PAH-contaminated soil slurry microcosm, the normalized hybridization signals in naphthalene catabolic gene probes were in good agreement with the amount of naphthalene-degradation genes and the production of {sup 14}CO{sub 2}. Gene arrays provide efficient means for monitoring of contaminant biodegradation in the environment. - Functional gene array analysis coupled with one-colour hybridization and internal standard based signal normalization provides efficient tool for monitoring contaminant biodegradation processes.

  16. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1994-01-01

    Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing

  17. Characterization and biodegradation of polycyclic aromatic hydrocarbons in radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Tikilili, Phumza V. [Water Utilisation Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Nkhalambayausi-Chirwa, Evans M., E-mail: Evans.Chirwa@up.ac.za [Water Utilisation Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002 (South Africa)

    2011-09-15

    Highlights: {yields} Biodegradation of recalcitrant toxic organics under radioactive conditions. {yields} Biodegradation of PAHs of varying size and complexity in mixed waste streams. {yields} Validation of radiation-tolerance and performance of the isolated organisms. - Abstract: PAH degrading Pseudomonad and Alcaligenes species were isolated from landfill soil and mine drainage in South Africa. The isolated organisms were mildly radiation tolerant and were able to degrade PAHs in simulated nuclear wastewater. The radiation in the simulated wastewater, at 0.677 Bq/{mu}L, was compatible to measured values in wastewater from a local radioisotope manufacturing facility, and was enough to inhibit metabolic activity of known PAH degraders from soil such as Pseudomonas putida GMP-1. The organic constituents in the original radioactive waste stream consisted of the full range of PAHs except fluoranthene. Among the observed PAHs in the nuclear wastewater from the radioisotope manufacturing facility, acenaphthene and chrysene predominated-measured at 25.1 and 14.2 mg/L, respectively. Up to sixteen U.S.EPA priority PAHs were detected at levels higher than allowable limits in drinking water. The biodegradation of the PAHs was limited by the solubility of the compounds. This contributed to the observed faster degradation rates in low molecular weight (LMW) compounds than in high molecular weight compounds.

  18. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime.

    Science.gov (United States)

    Tejeda-Agredano, Maria-Carmen; Mayer, Philipp; Ortega-Calvo, Jose-Julio

    2014-01-01

    Binding of polycyclic aromatic hydrocarbons (PAHs) to dissolved organic matter (DOM) can reduce the freely dissolved concentration, increase apparent solubility or enhance diffusive mass transfer. To study the effects of DOM on biodegradation, we used phenanthrene and pyrene as model PAHs, soil humic acids as model DOM and a soil Mycobacterium strain as a representative degrader organism. Humic acids enhanced the biodegradation of pyrene when present as solid crystals but not when initially dissolved or provided by partitioning from a polymer. Synchronous fluorescence spectrophotometry, scintillation counting and a microscale diffusion technique were applied in order to determine the kinetics of dissolution and diffusive mass transfer of pyrene. We suggest that humic acids can enhance or inhibit biodegradation as a result of the balance of two opposite effects, namely, solubilization of the chemicals on the one hand and inhibition of cell adhesion to the pollutant source on the other.

  19. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation.

    Science.gov (United States)

    Li, Xiaojun; Lin, Xin; Li, Peijun; Liu, Wan; Wang, Li; Ma, Fang; Chukwuka, K S

    2009-12-30

    The biodegradation of polycyclic aromatic hydrocarbons (PAHs) (8.15 mg PAHs kg(-1) soil) in aged contaminated soil by isolated microbial consortium (five fungi and three bacteria) during the incubation of 64d is reported. The applied treatments were: (1) biodegradation by adding microbial consortium in sterile soils (BM); (2) biodegradation by adding microbial consortium in non-sterile soils (BMN); and (3) biodegradation by in situ "natural" microbes in non-sterile soils (BNN). The fungi in BM and BMN soils grew rapidly 0-4d during the incubation and then reached a relative equilibrium. In contrast the fungi in BNN soil remained at a constant level for the entire time. Comparison with the fungi, the bacteria in BNN soils grew rapidly during the incubation 0-2d and then reached a relative equilibrium, and those in BM and BMN soils grew slowly during the incubation of 64 d. After 64 d of incubation, the PAH biodegradations were 35%, 40.7% and 41.3% in BNN, BMN and BM, respectively. The significant release of sequestrated PAHs in aged contaminated soil was observed in this experiment, especially in the BM soil. Therefore, although bioaugmentation of introduced microbial consortium increased significantly the biodegradation of PAHs in aged contaminated soil with low PAH concentration, the creation of optimum of the environmental situation might be the best way to use bioremediation successfully in the field.

  20. Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    Lehto, Kirsi-Maarit; Puhakka, Jaakko A; Lemmetyinen, Helge

    2003-08-01

    Biodegradation of UV-irradiated anthracene, pyrene, benz[a]anthracene, and dibenz[a,h]anthracene was compared to that of the non-irradiated samples, individually and in synthetic mixtures with enrichment cultures. Combined treatment was repeated for individual anthracene and for the PAH mixture with Sphingomonas sp. strain EPA 505 and Sphingomonas yanoikuyae. Enrichment culture studies were performed on the PAH mixtures in the presence of the main photoproduct of anthracene, pure 9,10-anthracenedione. Photochemically pretreated creosote solutions were also subjected to biodegradation and the results were compared to those of the non-irradiated solutions. The primary interest was on 16 polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by European Union (EU) and the United States Environmental Protection Agency (USEPA). Irradiation accelerated the biodegradation onset for anthracene, pyrene, and benz[a]anthracene when they were treated individually. The biodegradation of irradiated pyrene started with no lag phase and was complete by 122 h whereas biodegradation of the non-irradiated sample had a lag of 280 h and resulted in complete degradation by 720 h. Biodegradation of PAHs was accelerated in synthetic mixtures, especially in the presence of pure 9,10-anthracenedione. In general, irradiation had no effect on the biodegradation of PAHs incubated in synthetic mixtures or with pure cultures. Under current experimental conditions, the UV-irradiation invariably reduced the biodegradation of PAHs in creosote. Based on the results of the present and previous photochemical-biological studies of PAHs, the influence of the photochemical pretreatment on the biodegradation is highly dependent on the compounds being treated and other process parameters.

  1. Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids.

    Science.gov (United States)

    Tejeda-Agredano, M C; Gallego, S; Niqui-Arroyo, J L; Vila, J; Grifoll, M; Ortega-Calvo, J J

    2011-02-01

    The main goal of this study was to use an oleophilic biostimulant (S-200) to target possible nutritional limitations for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at the interface between nonaqueous-phase liquids (NAPLs) and the water phase. Biodegradation of PAHs present in fuel-containing NAPLs was slow and followed zero-order kinetics, indicating bioavailability restrictions. The biostimulant enhanced the biodegradation, producing logistic (S-shaped) kinetics and 10-fold increases in the rate of mineralization of phenanthrene, fluoranthene, and pyrene. Chemical analysis of residual fuel oil also evidenced an enhanced biodegradation of the alkyl-PAHs and n-alkanes. The enhancement was not the result of an increase in the rate of partitioning of PAHs into the aqueous phase, nor was it caused by the compensation of any nutritional deficiency in the medium. We suggest that biodegradation of PAH by bacteria attached to NAPLs can be limited by nutrient availability due to the simultaneous consumption of NAPL components, but this limitation can be overcome by interface fertilization.

  2. Quantitative structure-biodegradability relationships for biokinetic parameter of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Xu, Peng; Ma, Wencheng; Han, Hongjun; Jia, Shengyong; Hou, Baolin

    2015-04-01

    Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper, stepwise multiple linear regression analysis method was applied to establish quantitative structure biodegradability relationship (QSBR) between the chemical structure and a novel biodegradation activity index (qmax) of 20 polycyclic aromatic hydrocarbons (PAHs). The frequency B3LYP/6-311+G(2df,p) calculations showed no imaginary values, implying that all the structures are minima on the potential energy surface. After eliminating the parameters which had low related coefficient with qmax, the major descriptors influencing the biodegradation activity were screened to be Freq, D, MR, EHOMO and ToIE. The evaluation of the developed QSBR mode, using a leave-one-out cross-validation procedure, showed that the relationships are significant and the model had good robustness and predictive ability. The results would be helpful for understanding the mechanisms governing biodegradation at the molecular level.

  3. Rapid biodegradation of polycyclic aromatic hydrocarbons (PAHs) using effective Cronobacter sakazakii MM045 (KT933253).

    Science.gov (United States)

    Umar, Zubairu Darma; Aziz, Nor Azwady Abd; Zulkifli, Syaizwan Zahmir; Mustafa, Muskhazli

    2017-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are complex and widely distributed environmental pollutants that can affect living ecosystems. This study was conducted to rapidly degrade phenanthrene and pyrene representing low and high molecular weight of PAHs, respectively. Cronobacter sakazakii MM045 (KT933253) was identified from used engine oil of contaminated soil. PAHs biodegradation was carried out using 2,6-dichlorophenol indophenol (DCPIP) assay. Biodegradation influencing factors including agitation, temperature, pH, inoculums volume and salinity were enhanced using Response Surface Methodology (RSM) by Central Composite Design (CCD). Phenanthrene and pyrene biodegrading metabolites were identified using gas chromatography mass spectrophotometer (GCMS). •Initial biodegradation indicated 75.2% and 54.3% phenanthrene and pyrene degraded by C. sakazakii MM045 within 24 h. After CCD optimisation, 100% degradation was achieved for each of the phenanthrene and pyrene, resulting in the formation of intermediate metabolites.•The identified phenanthrene metabolites were 3,4-dihydroxyphenathrene, phthalic acid, pyruvic acid, acetic acid and oxalic acid. Pyrene intermediates comprised pyrene cis-4,5-dihydrodiol, 3,4-dihydroxyphenanthrene, phthalic acid, pyruvic acid, acetic acid and lactic acid.•Cronbacter sakazakii MM045 was proven to be rapid and effective in degrading PAHs within 24 h despite the unavailability of existing literatures on PAHs biodegradation.

  4. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes.

    Science.gov (United States)

    Piskonen, Reetta; Nyyssönen, Mari; Itävaara, Merja

    2008-11-01

    Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.

  5. Cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and phenols in contaminated soil slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Allan; Kirk T. Semple; Rina Hare; Brian J. Reid [University of East Anglia (United Kingdom). School of Environmental Sciences

    2007-08-01

    This work aimed to evaluate the relative contribution of soil catabolic activity, contaminant bioaccessibility, and nutrient levels on the biodegradation of field-aged polycyclic aromatic hydrocarbons and phenolic compounds in three municipal gas plant site soils. Extents of biodegradation achieved, in 6 week-long soil slurry assays, under the following conditions were compared: (i) with inoculation of catabolically active PAH and phenol-degrading microorganisms, (ii) with and without hydroxypropyl-{beta}-cyclodextrin supplementation (HPCD; 100 g L{sup -1}), and finally (iii) with the provision of additional inorganic nutrients in combination with HPCD. Results indicated no significant (p {lt} 0.05) differences between biodegradation endpoints attained in treatments inoculated with catabolically active microorganisms as compared with the uninoculated control. Amendments with HPCD significantly (p {lt} 0.05) lowered biodegradation endpoints for most PAHs and phenolic compounds. Only in one soil did the combination of HPCD and nutrients consistently achieve better bioremediation endpoints with respect to the HPCD-only treatments. Thus, for most compounds, biodegradation was not limited by the catabolic activity of the indigenous microorganisms but rather by processes resulting in limited availability of contaminants to degraders. It is therefore suggested that the bioremediation of PAH and phenol impacted soils could be enhanced through HPCD amendments. In addition, the biodegradability of in situ and spiked (deuterated analogues) PAHs following 120 days aging of the soils suggested that this contact time was not sufficient to obtain similar partitions to that observed for field-aged contaminants; with the spiked compounds being significantly (p {lt} 0.05) more available for biodegradation. 42 refs., 5 figs., 2 tabs.

  6. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry.

    Science.gov (United States)

    Li, Chun-Hua; Wong, Yuk-Shan; Tam, Nora Fung-Yee

    2010-11-01

    Mangrove sediment, influenced by tidal cycles, switches between low-oxygen and non-oxygen conditions, and iron is abundant in it. Polycyclic aromatic hydrocarbon (PAH) contamination often occurs in mangrove wetlands. In the present paper, the effects of iron [Fe(III)] amendment on the biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), in mangrove sediment slurries, with and without the inoculation of the enriched PAH-degrading bacterial consortia, under low-oxygen (2 + or - 0.3% O(2)) and non-oxygen (0% O(2)) conditions were investigated. Under both oxygen conditions and for all four PAHs, the highest PAHs biodegradation was observed in the groups with the inoculation of the enriched PAH-degrading consortia, while the groups without the inoculum and without Fe(III) amendment had the lowest biodegradation. However, the amendment of Fe(III) did not show any significant improvement on the biodegradation of all the four mixed PAHs.

  7. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria.

    Science.gov (United States)

    Kanaly, Robert A; Harayama, Shigeaki

    2010-03-01

    Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.

  8. Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate.

    Science.gov (United States)

    García-Delgado, C; Jiménez-Ayuso, N; Frutos, I; Gárate, A; Eymar, E

    2013-12-01

    Bioremediation of mixed metal-organic soil pollution constitutes a difficult task in different ecosystems all around the world. The aims of this work are to determine the capacity of two spent mushroom substrates (Agaricus bisporus and Pleurotus ostreatus) to immobilize Cd and Pb, to assess the effect of these metals on laccase activity, and to determine the potential of spent A. bisporus substrate to biodegrade four polycyclic aromatic hydrocarbons (PAH): fluorene, phenanthrene, anthracene, and pyrene, when those toxic heavy metals Cd and Pb are present. According to adsorption isotherms, spent P. ostreatus and A. bisporus substrates showed a high Pb and Cd adsorption capacity. Pb and Cd interactions with crude laccase enzyme extracts from spent P. ostreatus and A. bisporus substrates showed Cd and Pb enzyme inhibition; however, laccase activity of A. bisporus presented lower inhibition. Spent A. bisporus substrate polluted with PAH and Cd or Pb was able to biodegrade PAH, although both metals decrease the biodegradation rate. Spent A. bisporus substrate contained a microbiological consortium able to oxidize PAH with high ionization potential. Cd and Pb were immobilized during the bioremediation process by spent A. bisporus substrate. Consequently, spent A. bisporus substrate was adequate as a multi-polluted soil bioremediator.

  9. Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Daliao River watershed, China

    Institute of Scientific and Technical Information of China (English)

    QUAN Xiangchun; TANG Qian; HE Mengchang; YANG Zhifeng; LIN Chunye; GUO Wei

    2009-01-01

    The Daliao River, as an important water system in Northeast China, was reported to be heavily polluted by polycyclic aromatic hydrocarbons (PAHs). Aerobic biodegradations of four selected PAHs (naphthalene, phenanthrene, fluorene and anthracene) alone or in their mixture in fiver sediments from the Daliao River water systems were studied in microcosm systems. Effects of additional carbon source, inorganic nitrogen and phosphorus, temperature variation on PAHs degradation were also investigated. Results showed that the degradation of phenanthrene in water alone system was faster than that in water-sediment combined system. Degradation of phenanthrene in sediment was enhanced by adding yeast extract and ammonium, but retarded by adding sodium acetate and not significantly influenced by adding phosphate. Although PAHs could also be biodegraded in sediment under low temperature (5℃), much lower degradation rate was observed. Sediments from the three main streams of the Daliao River water system (the Hun River, the Taizi River and the Daliao River) demonstrated different degradation capacities and patterns to four PAHs. Average removal rates (15 or 19 d) of naphthalene, phenanthrene, fluorene and anthracene by sediment were in the range of 0.062-0.087, 0.005-0.066, 0.008-one. In multiple PAHs systems, the interactions between PAHs influenced each PAH biodegradation.

  10. QSAR for Predicting Biodegradation Rates of Polycyclic Aromatic Hydrocarbons in Aqueous Systems

    Institute of Scientific and Technical Information of China (English)

    XU Xiang; LI Xian-Guo

    2012-01-01

    The relationship between chemical structures and biodegradation rates (k b) of 22 polycyclic aromatic hydrocarbons (PAHs) was studied using density functional theory (DFT) and stepwise multiple linear regression analysis (SMLR) method.The equilibrium geometries and vibration frequency have been investigated at the B3LYP/6-31+G(d,p) level by thinking Solvent effects using a selfconsistent reaction field (SCRF) based on the polarizable continuum model (PCM).It was concluded that the biodegradation rate was closely related to its molecular structure,and there is one high correlation coefficient between the in-plane bending vibration frequency of the conjugated ring of PAHs (Freq) and k b.By means of regression analysis,the main factors affecting the biodegradation rate were obtained and the equation of quantitative structure-activity relationship (QSAR) was successfully established kb =-0.653+0.001Freq+0.068CQ+0.049N1.Statistical evaluation of the developed QSAR showed that the relationships were statistically significant and the model had good predictive ability.The fact that a bending frequency is more important than the HOMO or LUMO energies in predicting k b suggests that the bending of benzene ring might play an important role in the enzymatic catalysis of the initial oxidation step.

  11. Biodegradation potential of polycyclic aromatic hydrocarbons by bacteria strains enriched from Yangtze River sediments.

    Science.gov (United States)

    Xu, Xiaoyi; Chen, Xi; Su, Pan; Fang, Fang; Hu, Bibo

    2016-01-01

    Microbial degradation is an effective method for the removal of polycyclic aromatic hydrocarbons (PAHs) compounds from polluted sediments. Surface sediments collected from Yangtze River in the downtown area of Chongqing were found to contain PAH concentrations to various different degrees. Two bacteria strains (termed PJ1 and PJ2) isolated from the sediment samples could use phenanthrene (Phe) and fluoranthene (Flu) as carbon sources for growth thereby degrading these two PAH compounds. Using 16S rDNA gene sequencing, the isolates were identified as Sphingomonas sp. and Klebsiella sp., respectively. Biodegradation assays showed that the PJ1 presented an efficient degradation capability compared to PJ2 in cultures with the initial Phe and Flu concentrations ranging from 20 to 200 mg/L. The highest rates of Phe and Flu biodegradation by PJ1 reached 74.32% and 58.18% after incubation for 15 and 30 days, respectively. This is the first report on the biodegradation potential of the bacterial from surface sediments of an industrial area upstream of the Gorge Reservoir.

  12. Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505.

    Science.gov (United States)

    Desai, Anuradha M; Autenrieth, Robin L; Dimitriou-Christidis, Petros; McDonald, Thomas J

    2008-04-01

    Many contaminated sites commonly have complex mixtures of polycyclic aromatic hydrocarbons (PAHs) whose individual microbial biodegradation may be altered in mixtures. Biodegradation kinetics for fluorene, naphthalene, 1,5-dimethylnaphthalene and 1-methylfluorene were evaluated in sole substrate, binary and ternary systems using Sphingomonas paucimobilis EPA505. The first order rate constants for fluorene, naphthalene, 1,5-dimethylnaphthalene, and 1-methylfluorene were comparable; yet Monod parameters were significantly different for the tested PAHs. S. paucimobilis completely degraded all the components in binary and ternary mixtures; however, the initial degradation rates of individual components decreased in the presence of competitive PAHs. Results from the mixture experiments indicate competitive interactions, demonstrated mathematically. The generated model appropriately predicted the biodegradation kinetics in mixtures using parameter estimates from the sole substrate experiments, validating the hypothesis of a common rate-determining step. Biodegradation kinetics in mixtures were affected by the affinity coefficients of the co-occurring PAHs and mixture composition. Experiments with equal concentrations of substrates demonstrated the effect of concentration on competitive inhibition. Ternary experiments with naphthalene, 1,5-dimethylnaphthalene and 1-methylfluorene revealed delayed degradation, where depletion of naphthalene and 1,5-dimethylnapthalene occurred rapidly only after the complete removal of 1-methylfluorene. The substrate interactions observed in mixtures require a multisubstrate model to account for simultaneous degradation of substrates. PAH contaminated sites are far more complex than even ternary mixtures; however these studies clearly demonstrate the effect that interactions can have on individual chemical kinetics. Consequently, predicting natural or enhanced degradation of PAHs cannot be based on single compound kinetics as this

  13. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    Science.gov (United States)

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.

  14. Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability.

    NARCIS (Netherlands)

    Meulenberg, R.; Rijnaarts, H.H.M.; Doddema, H.J.; Field, J.A.

    1997-01-01

    Polycyclic aromatic hydrocarbons have a low water solubility and tend to adsorb on soil particles, which both result in slow bioremediation processes. Many microorganisms, known for their ability to degrade polycyclic aromatic hydrocarbons, only partially oxidize these compounds. White rot fungi, fo

  15. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil.

    Science.gov (United States)

    Zhu, Hongbo; Aitken, Michael D

    2010-10-01

    We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C(12)E(8)), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant's critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C(12)E(8) did not enhance PAH removal at any dose. In the absence of surfactant, PAH desorbed from the soil over an 18 day period. Brij 30 addition at the lowest dose significantly increased the desorption of most PAHs, whereas the addition of C(12)E(8) at the lowest dose actually decreased the desorption of all PAHs. These findings suggest that the effects of the two surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited.

  16. Effects of enrichment with phthalate on polycyclic aromatic hydrocarbon biodegradation in contaminated soil.

    Science.gov (United States)

    Singleton, David R; Richardson, Stephen D; Aitken, Michael D

    2008-07-01

    The effect of enrichment with phthalate on the biodegradation of polycyclic aromatic hydrocarbons (PAH) was tested with bioreactor-treated and untreated contaminated soil from a former manufactured gas plant (MGP) site. Soil samples that had been treated in a bioreactor and enriched with phthalate mineralized (14)C-labeled phenanthrene and pyrene to a greater extent than unenriched samples over a 22.5-h incubation, but did not stimulate benzo[a]pyrene mineralization. In contrast to the positive effects on (14)C-labeled phenanthrene and pyrene, no significant differences were found in the extent of biodegradation of native PAH when untreated contaminated soil was incubated with and without phthalate amendment. Denaturing-gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes from unenriched and phthalate-enriched soil samples were substantially different, and clonal sequences matched to prominent DGGE bands revealed that beta-Proteobacteria related to Ralstonia were most highly enriched by phthalate addition. Quantitative real-time PCR analyses confirmed that, of previously determined PAH-degraders in the bioreactor, only Ralstonia-type organisms increased in response to enrichment, accounting for 89% of the additional bacterial 16S rRNA genes resulting from phthalate enrichment. These findings indicate that phthalate amendment of this particular PAH-contaminated soil did not significantly enrich for organisms associated with high molecular weight PAH degradation or have any significant effect on overall degradation of native PAH in the soil.

  17. Degradation of polycyclic aromatic hydrocarbons : model simulation for bioavailability and biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Owabor, C.N.; Ogbeide, S.E. [Benin Univ. (Nigeria). Dept. of Chemical Engineering; Susu, A.A. [Lagos Univ. (Nigeria). Dept. of Chemical Engineering

    2010-04-15

    Research has indicated that the biodegradation of polycyclic aromatic hydrocarbons (PAHs) is influenced by the molecular size of the PAHs as well as by soil properties. This study presented a model for a 1-D convective-dispersive solute transport in a soil matrix. The model was designed to consider the gas-liquid interface film and the biofilm between the liquid and solid interface as well as to account for interparticle; intraparticle, and interphase mass transport. A soil microcosm reactor was used to evaluate substrate bioavailability and biodegradation in a contaminated aqueous solids system. The numerical model involved the discretization of depth, radial distance, and time into mesh or grid points with constant intervals. Dimensionless variables were defined using a backward finite difference (BFD) method. Results of the study suggested that PAH occlusion occurred in the micropores of the soil particle. The non-steady state model adequately predicted the concentration profiles of PAHs within the soil matrix. 26 refs., 5 tabs., 7 figs.

  18. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review.

    Science.gov (United States)

    Kadri, Tayssir; Rouissi, Tarek; Kaur Brar, Satinder; Cledon, Maximiliano; Sarma, Saurabhjyoti; Verma, Mausam

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes more challenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds.

  19. Polycyclic aromatic hydrocarbon biodegradation and extracellular enzyme secretion in agitated and stationary cultures of Phanerochaete chrysosporium

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The extracellular enzyme secretion and biodegradation of polycyclic aromatic hydrocarbons (PAHs) were studied in agitated and shallow stationary liquid cultures of Phanerochaete chrysosporium. Veratryl alcohol and Tween80 were added to cultures as lignin peroxidase (LiP) and manganese peroxidase (MnP) inducer, respectively. Shallow stationary cultures were suitable for the production of enzyme, whereas agitated cultures enhanced overall biodegradation by facilitating interphase mass transfer of PAH into aqueous phases. The use of a LiP stimulator, veratryl alcohol, did not increase PAH degradation but significantly enhanced LiP activity. In contrast, Tween80 increased both MnP secretion and PAH degradation in shallow stationary cultures. On the other hand, high PAH degradation was observed in agitated cultures in the absence of detectable LiP and MnP activities. The results suggested that extracellular peroxidase activities are not directly related to the PAH degradation, and the increased solubility rather than enzyme activity may be more important in the promotion of PAH degradation.

  20. Impact of Irradiation and Polycyclic Aromatic Hydrocarbon Spiking on Microbial Populations in Marine Sediment for Future Aging and Biodegradability Studies

    OpenAIRE

    Melcher, Rebecca J.; Apitz, Sabine E; Hemmingsen, Barbara B.

    2002-01-01

    Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders w...

  1. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    Science.gov (United States)

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  2. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  3. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-11-15

    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  4. Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China.

    Science.gov (United States)

    Tian, Yun; Luo, Yuan-rong; Zheng, Tian-ling; Cai, Li-zhe; Cao, Xiao-xing; Yan, Chong-ling

    2008-06-01

    Five stations were established in the Fenglin mangrove area of Xiamen, China to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the numbers of PAH-degrading bacteria in surface sediments. Assessing the biodegradation potential of indigenous microorganisms and isolating the high molecule weight (HMW)-PAH degrading bacteria was also one of the aims of this work. The results showed that the total PAH concentration of sediments was 222.59 ng g(-1) dry weight, whereas the HMW-PAH benzo(a)pyrene (BaP) had the highest concentration among 16 individual PAH compounds. The variation in the numbers of PAH-degrading bacteria was 2.62 x 10(2)-5.67 x 10(4)CFU g(-1) dry weight. The addition of PAHs showed a great influence in increasing the microbial activity in mangrove sediments. A bacterial consortium, which could utilize BaP as the sole source of carbon and energy, and which was isolated from mangrove sediments and enriched in liquid medium for nearly one year degraded 32.8% of BaP after 63 days incubation.

  5. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun

    2014-07-15

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery.

  6. Effect of sediment particle size on polycyclic aromatic hydrocarbon biodegradation: importance of the sediment-water interface.

    Science.gov (United States)

    Xia, Xinghui; Wang, Ran

    2008-01-01

    Mechanisms for the effects of sediment on the biodegradation of organic compounds in the aquatic environment are not clear. In this research, effects of sediment characteristics on biodegradation kinetics of chrysene and benzo[a]pyrene were studied by inoculating polycyclic aromatic hydrocarbon (PAH)-degrading bacteria. Because water and PAHs can pass a polytetrafluoroethylene membrane yet bacteria and sediment cannot, a membrane experiment was performed to compare the biodegradation rates of PAHs in water and at the sediment-water interface, providing direct evidence that the PAH biodegradation rate is enhanced by the presence of sediment. Biodegradation of PAHs in water-sediment systems was fitted to zero-order kinetics; the order of biodegradation rate in water-sediment systems with different sediment was fine silt > clay > coarse silt. Biodegradation of PAHs in water-sediment systems occurred mainly at the sediment-water interface. According to membrane experiment results, when the biodegradation kinetics was fit to a zero-order equation, the maximum specific growth rates of bacteria (1/d) at the sediment-water interface were approximately three- to fourfold those in the water phase. Furthermore, the associated mechanisms regarding the effect of sediment characteristics were analyzed by investigating the process of bacterial growth and the distribution of bacteria and PAHs between water and sediment phases.

  7. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation.

  8. POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION AS A FUNCTION OF OXYGEN TENSION IN CONTAMINATED SOIL

    Science.gov (United States)

    Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was...

  9. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    Science.gov (United States)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots.

  10. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater

    Science.gov (United States)

    Cozzarelli, I.M.; Bekins, B.A.; Eganhouse, R.P.; Warren, E.; Essaid, H.I.

    2010-01-01

    Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C3- and C4-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene ≥ toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1 mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1 mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.

  11. Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Yang, Xinglun; Gu, Chenggang; Kengara, Fredrick Orori; Hong, Qing; Lv, Zhengyong; Jiang, Xin

    2011-05-01

    The objective was to elucidate the role of extracellular polymeric substances (EPS) in biodegradation of polycyclic aromatic hydrocarbons in two-liquid-phase system (TLPs). Therefore, biodegradation of phenanthrene (PHE) was conducted in a typical TLPs--silicone oil-water--with PHE-degrading bacteria capable of producing EPS, Sphingobium sp. PHE3 and Micrococcus sp. PHE9. The results showed that the presence of both strains enhanced mass transfer of PHE from silicone oil to water, and that biodegradation of PHE mainly occurred at the interfaces. The ratios of tightly bound (TB) proteins to TB polysaccharides kept almost constant, whereas the ratios of loosely bound (LB) proteins to LB polysaccharides increased during the biodegradation. Furthermore, polysaccharides led to increased PHE solubility in the bulk water, which resulted in an increased PHE mass transfer. Both LB-EPS and TB-EPS (proteins and polysaccharides) correlated with PHE mass transfer in silicone oil, indicating that both proteins and polysaccharides favored bacterial uptake of PHE at the interfaces. It could be concluded that EPS could facilitate microbial degradation of PHE in the TLPs.

  12. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi.

    Science.gov (United States)

    Chen, Baoliang; Wang, Yinshan; Hu, Dingfei

    2010-07-15

    Bioremediation is a popular approach used to abate polycyclic aromatic hydrocarbons (PAHs) in the environment. A consortium of white-rot fungi (CW-1) isolated from wood pieces was used for studying their potential of bioremediation of PAHs. Biosorption and biodegradation of PAHs by live and heat-killed white-rot fungi (CW-1) were investigated to elucidate the bio-dissipation mechanisms of PAHs. Sorption isotherms of naphthalene, acenaphthene, fluorene, phenanthrene and pyrene to heat-killed fungal biomass were linear and non-competitive, indicating the primary mechanism of biosorption to be by partition. The carbon-normalized partition coefficients (K(oc)) were linearly correlated with octanol-water partition coefficients (K(ow)), i.e., log K(oc)=1.13 log K(ow)-0.84 (n=5, r(2)=0.996). Biosorption and biodegradation of phenanthrene and pyrene by live white-rot fungi were quantified. In 1 week, the removal efficiency of phenanthrene (70-80%) and pyrene (90%) by live fungi from aqueous solution were comparable to those by heat-killed fungi. However, approximately 40-65% of phenanthrene and 60-85% of pyrene were still stored in organismal bodies. Biosorption might restrict biodegradation while nutrient limitation and presence of a PAH mixture might stimulate biodegradation. The apparent partition coefficients (K(d)(*)) in live fungal systems and the K(d) of heat-killed fungi without biodegradation were compared, and then the K(d)(*)/K(d) ratios were employed to illustrate the relative contributions of biosorption and biodegradation under different nutrient conditions.

  13. Variation in toxicity during the biodegradation of various heterocyclic and homocyclic aromatic hydrocarbons in single and multi-substrate systems.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy

    2017-01-01

    In the present study, an attempt was made to understand the variation in the toxicity during the biodegradation of aromatic hydrocarbons in single and multi-substrate system. The bacterial bioassay based on the inhibition of dehydrogenase enzyme activity of two different bacterial sp. E.coli and Pseudomonas fluorescens was used for toxicity assessment. Amongst the chosen pollutants, the highest acute toxicity was observed for benzothiophene followed by benzofuran having EC50 value of 16.60mg/L and 19.30mg/L respectively. Maximum residual toxicity of 30.8% was observed at the end during the degradation of benzothiophene. Due to the accumulation of transitory metabolites in both single and multisubstrate systems, reduction in toxicity was not proportional to the decrease in pollutant concentration. In multi-substrate system involving mixture of heterocyclic hydrocarbons, maximum residual toxicity of 39.5% was observed at the end of biodegradation. Enhanced degradation of benzofuran, benzothiophene and their metabolic intermediates were observed in the presence of naphthalene resulting in significant reduction in residual toxicity. 2 (1H) - quinolinone, an intermediate metabolite of quinoline was observed having significant eco-toxicity amongst all other intermediates investigated.

  14. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site

    DEFF Research Database (Denmark)

    Johnsen, A.R.; de Lipthay, J.R.; Reichenberg, F.

    2006-01-01

    Diffuse pollution of surface soil with polycyclic aromatic hydrocarbons (PAHs) is problematic in terms of the large areas and volumes of polluted soil. The levels and effects of diffuse PAH pollution at a motorway site were investigated. Surface soil was sampled with increasing distance from...... the asphalt pavement and tested for total amounts of PAHs, amounts of bioaccessible PAHs, total bacterial populations, PAH degrader populations, the potential for mineralization of C-14-PAHs, and mutagenicity. Elevated PAH concentrations were found in the samples taken 1-8 m from the pavement. Soil sampled...... at greater distances (12-24 m) contained only background levels of PAHs. The total bacterial populations (CFU and numbers of 16S rDNA genes) were similar for all soil samples, whereas the microbial degrader populations (culturable PAH degraders and numbers of PAH dioxygenase genes) were most abundant...

  15. Simultaneous biodegradation of creosote-polycyclic aromatic hydrocarbons by a pyrene-degrading Mycobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Z.; Vila, J.; Grifoll, M. [Barcelona Univ. (Spain). Dept. de Microbiologia; Ortega-Calvo, J.J. [C.S.I.C., Seville (Spain). Inst. de Recursos Naturales y Agrobiologia

    2008-02-15

    When incubated with a creosote-polycyclic aromatic hydrocarbons (PAHs) mixture, the pyrene-degrading strain Mycobacterium sp. AP1 acted on three- and four-ring components, causing the simultaneous depletion of 25% of the total PAHs in 30 days. The kinetics of disappearance of individual PAHs was consistent with differences in aqueous solubility. During the incubation, a number of acid metabolites indicative of distinctive reactions carried out by high-molecular-weight PAH-degrading mycobacteria accumulated in the medium. Most of these metabolites were dicarboxylic aromatic acids formed as a result of the utilization of growth substrates (phenanthrene, pyrene, or fluoranthene) by multibranched pathways including meta- and ortho-ring-cleavage reactions: phthalic acid, naphthalene-1,8-dicarboxylic acid, phenanthrene-4,5-dicarboxylic acid, diphenic acid, Z-9-carboxymethylenefluorene-1-carboxylic acid, and 6,6'-dihydroxy-2,2'-biphenyl dicarboxylic acid. Others were dead-end products resulting from cometabolic oxidations on nongrowth substrates (fluorene meta-cleavage product). These results contribute to the general knowledge of the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted soils. The identification of the partially oxidized compounds will facilitate to develop analytical methods to determine their potential formation and accumulation in contaminated sites. (orig.)

  16. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1.

    Science.gov (United States)

    Liang, Lei; Song, Xiaohui; Kong, Jing; Shen, Chenghui; Huang, Tongwang; Hu, Zhong

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.

  17. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1.

    Directory of Open Access Journals (Sweden)

    Yihua Lyu

    Full Text Available Novosphingobium pentaromativorans US6-1, a marine bacterium isolated from muddy sediments of Ulsan Bay, Republic of Korea, was previously shown to be capable of degrading multiple polycyclic aromatic hydrocarbons (PAHs. In order to gain insight into the characteristics of PAHs degradation, a proteome analysis of N. pentaromativorans US6-1 exposed to phenanthrene, pyrene, and benzo[a]pyrene was conducted. Several enzymes associated with PAHs degradation were identified, including 4-hydroxybenzoate 3-monooxygenase, salicylaldehyde dehydrogenase, and PAH ring-hydroxylating dioxygenase alpha subunit. Reverse transcription and real-time quantitative PCR was used to compare RHDα and 4-hydroxybenzoate 3-monooxygenase gene expression, and showed that the genes involved in the production of these two enzymes were upregulated to varying degrees after exposing the bacterium to PAHs. These results suggested that N. pentaromativorans US6-1 degraded PAHs via the metabolic route initiated by ring-hydroxylating dioxygenase, and further degradation occurred via the o-phthalate pathway or salicylate pathway. Both pathways subsequently entered the tricarboxylic acid (TCA cycle, and were mineralized to CO2.

  18. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1.

    Science.gov (United States)

    Lyu, Yihua; Zheng, Wei; Zheng, Tianling; Tian, Yun

    2014-01-01

    Novosphingobium pentaromativorans US6-1, a marine bacterium isolated from muddy sediments of Ulsan Bay, Republic of Korea, was previously shown to be capable of degrading multiple polycyclic aromatic hydrocarbons (PAHs). In order to gain insight into the characteristics of PAHs degradation, a proteome analysis of N. pentaromativorans US6-1 exposed to phenanthrene, pyrene, and benzo[a]pyrene was conducted. Several enzymes associated with PAHs degradation were identified, including 4-hydroxybenzoate 3-monooxygenase, salicylaldehyde dehydrogenase, and PAH ring-hydroxylating dioxygenase alpha subunit. Reverse transcription and real-time quantitative PCR was used to compare RHDα and 4-hydroxybenzoate 3-monooxygenase gene expression, and showed that the genes involved in the production of these two enzymes were upregulated to varying degrees after exposing the bacterium to PAHs. These results suggested that N. pentaromativorans US6-1 degraded PAHs via the metabolic route initiated by ring-hydroxylating dioxygenase, and further degradation occurred via the o-phthalate pathway or salicylate pathway. Both pathways subsequently entered the tricarboxylic acid (TCA) cycle, and were mineralized to CO2.

  19. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site.

    Science.gov (United States)

    Johnsen, Anders R; De Lipthay, Julia R; Reichenberg, Fredrik; Sørensen, Søren J; Andersen, Ole; Christensen, Peter; Binderup, Mona-lise; Jacobsen, Carsten S

    2006-05-15

    Diffuse pollution of surface soil with polycyclic aromatic hydrocarbons (PAHs) is problematic in terms of the large areas and volumes of polluted soil. The levels and effects of diffuse PAH pollution at a motorway site were investigated. Surface soil was sampled with increasing distance from the asphalt pavement and tested for total amounts of PAHs, amounts of bioaccessible PAHs, total bacterial populations, PAH degrader populations, the potential for mineralization of 14C-PAHs, and mutagenicity. Elevated PAH concentrations were found in the samples taken 1-8 m from the pavement. Soil sampled at greater distances (12-24 m) contained only background levels of PAHs. The total bacterial populations (CFU and numbers of 16S rDNA genes) were similar for all soil samples, whereas the microbial degrader populations (culturable PAH degraders and numbers of PAH dioxygenase genes) were most abundant in the most polluted samples close to the pavement. Hydroxypropyl-beta-cyclodextrin extraction of soil PAHs, as a direct estimate of the bioaccessibility, indicated that only 1-5% of the PAHs were accessible to soil bacteria. This low bioaccessibility is suggested to be due to sorption to traffic soot particles. The increased PAH level close to the pavement was reflected in slightly increased mutagenic activity (1 m, 0.32 +/- 0.08 revertants g(-1) soil; background/ 24 m: 0.08 +/- 0.04), determined by the Salmonella/ microsome assay of total extractable PAHs activated by liver enzymes. The potential for lighter molecular weight PAH degradation in combination with low bioaccessibility of heavier PAHs is proposed to lead to a likely increase in concentration of heavier PAHs over time. These residues are, however, likely to be of low biological significance.

  20. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1.

    Science.gov (United States)

    Yun, Sung Ho; Choi, Chi-Won; Lee, Sang-Yeop; Lee, Yeol Gyun; Kwon, Joseph; Leem, Sun Hee; Chung, Young Ho; Kahng, Hyung-Yeel; Kim, Sang Jin; Kwon, Kae Kyoung; Kim, Seung Il

    2014-01-01

    Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs). Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs) identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.

  1. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1.

    Directory of Open Access Journals (Sweden)

    Sung Ho Yun

    Full Text Available Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs. Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.

  2. The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils--a review.

    Science.gov (United States)

    Anyika, Chinedum; Abdul Majid, Zaiton; Ibrahim, Zahara; Zakaria, Mohamad Pauzi; Yahya, Adibah

    2015-03-01

    Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.

  3. Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil.

    Science.gov (United States)

    García-Delgado, Carlos; Alfaro-Barta, Irene; Eymar, Enrique

    2015-03-21

    Soils impregnated with creosote contain high concentrations of polycyclic aromatic hydrocarbons (PAH). To bioremediate these soils and avoid PAH spread, different bioremediation strategies were tested, based on natural attenuation, biochar application, wheat straw biostimulation, Pleurotus ostreatus mycoremediation, and the novel sequential application of biochar for 21 days and P. ostreatus 21 days more. Soil was sampled after 21 and 42 days after the remediation application. The efficiency and effectiveness of each remediation treatment were assessed according to PAH degradation and immobilization, fungal and bacterial development, soil eco-toxicity and legal considerations. Natural attenuation and biochar treatments did not achieve adequate PAH removal and soil eco-toxicity reduction. Biostimulation showed the highest bacterial development but low PAH degradation rate. Mycoremediation achieved the best PAH degradation rate and the lowest bioavailable fraction and soil eco-toxicity. This bioremediation strategy achieved PAH concentrations below Spanish legislation for contaminated soils (RD 9/2005). Sequential application of biochar and P. ostreatus was the second treatment most effective for PAH biodegradation and immobilization. However, the activity of P. ostreatus was increased by previous biochar application and PAH degradation efficiency was increased. Therefore, the combined strategy for PAH degradation have high potential to increase remediation efficiency.

  4. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Congiu, Eleonora; Ortega-Calvo, José-Julio

    2014-09-16

    The main aim of this study was to investigate the effect of a rhamnolipid biosurfactant on biodegradation of (14)C-labeled phenanthrene and pyrene under desorption-limiting conditions. The rhamnolipid caused a significant solubilization and enhanced biodegradation of PAHs sorbed to soils. The enhancement was, however, negatively influenced by experimental conditions that caused an enrichment of slow desorption fractions. These conditions included aging, a higher organic matter content in soil, and previous extraction with Tenax to remove the labile-desorbing chemical. The decline in bioavailability caused by aging on sorbed (14)C-pyrene was partially reversed by rhamnolipids, which enhanced mineralization of the aged compound, although not so efficiently like with the unaged chemical. This loss in biosurfactant efficiency in promoting biodegradation can be explained by intra-aggregate diffusion of the pollutant during aging. We suggest that rhamnolipid can enhance biodegradation of soil-sorbed PAHs by micellar solubilization, which increase the cell exposure to the chemicals in the aqueous phase, and partitioning into soil organic matter, thus enhancing the kinetics of slow desorption. Our study show that rhamnolipid can constitute a valid alternative to chemical surfactants in promoting the biodegradation of slow desorption PAHs, which constitutes a major bottleneck in bioremediation.

  5. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  6. Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hua [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Zhou, Hong-Wei [Department of Environmental Health Science, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Wong, Yuk-Shan [Department of Biology, The Hong Kong University of Science and Technology (Hong Kong); Tam, Nora Fung-Yee, E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2009-10-15

    The vertical distribution of polycyclic aromatic hydrocarbons (PAHs) at different sediment depths, namely 0-2 cm, 2-4 cm, 4-6 cm, 6-10 cm, 10-15 cm and 15-20 cm, in one of the most contaminated mangrove swamps, Ma Wan, Hong Kong was investigated. It was the first time to study the intrinsic potential of deep sediment to biodegrade PAHs under anaerobic conditions and the abundance of electron acceptors in sediment for anaerobic degradation. Results showed that the total PAHs concentrations (summation of 16 US EPA priority PAHs) increased with sediment depth. The lowest concentration (about 1300 ng g{sup -1} freeze-dried sediment) and the highest value (around 5000 ng g{sup -1} freeze-dried sediment) were found in the surface layer (0-2 cm) and deeper layer (10-15 cm), respectively. The percentage of high molecular weight (HMW) PAHs (4 to 6 rings) to total PAHs was more than 89% at all sediment depths. The ratio of phenanthrene to anthracene was less than 10 while fluoranthene to pyrene was around 1. Negative redox potentials (Eh) were recorded in all of the sediment samples, ranging from - 170 to - 200 mv, with a sharp decrease at a depth of 6 cm then declined slowly to 20 cm. The results suggested that HMW PAHs originated from diesel-powered fishing vessels and were mainly accumulated in deep anaerobic sediments. Among the electron acceptors commonly used by anaerobic bacteria, sulfate was the most dominant, followed by iron(III), nitrate and manganese(IV) was the least. Their concentrations also decreased with sediment depth. The population size of total anaerobic heterotrophic bacteria increased with sediment depth, reaching the peak number in the middle layer (4-6 cm). In contrast, the aerobic heterotrophic bacterial count decreased with sediment depth. It was the first time to apply a modified electron transport system (ETS) method to evaluate the bacterial activities in the fresh sediment under PAH stress. The vertical drop of the ETS activity suggested that

  7. Intrinsic biodegradation potential of aromatic hydrocarbons in an alluvial aquifer--potentials and limits of signature metabolite analysis and two stable isotope-based techniques.

    Science.gov (United States)

    Morasch, Barbara; Hunkeler, Daniel; Zopfi, Jakob; Temime, Brice; Höhener, Patrick

    2011-10-01

    Three independent techniques were used to assess the biodegradation of monoaromatic hydrocarbons and low-molecular weight polyaromatic hydrocarbons in the alluvial aquifer at the site of a former cokery (Flémalle, Belgium). Firstly, a stable carbon isotope-based field method allowed quantifying biodegradation of monoaromatic compounds in situ and confirmed the degradation of naphthalene. No evidence could be deduced from stable isotope shifts for the intrinsic biodegradation of larger molecules such as methylnaphthalenes or acenaphthene. Secondly, using signature metabolite analysis, various intermediates of the anaerobic degradation of (poly-) aromatic and heterocyclic compounds were identified. The discovery of a novel metabolite of acenaphthene in groundwater samples permitted deeper insights into the anaerobic biodegradation of almost persistent environmental contaminants. A third method, microcosm incubations with 13C-labeled compounds under in situ-like conditions, complemented techniques one and two by providing quantitative information on contaminant biodegradation independent of molecule size and sorption properties. Thanks to stable isotope labels, the sensitivity of this method was much higher compared to classical microcosm studies. The 13C-microcosm approach allowed the determination of first-order rate constants for 13C-labeled benzene, naphthalene, or acenaphthene even in cases when degradation activities were only small. The plausibility of the third method was checked by comparing 13C-microcosm-derived rates to field-derived rates of the first approach. Further advantage of the use of 13C-labels in microcosms is that novel metabolites can be linked more easily to specific mother compounds even in complex systems. This was achieved using alluvial sediments where 13C-acenaphthyl methylsuccinate was identified as transformation product of the anaerobic degradation of acenaphthene.

  8. Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors.

    Science.gov (United States)

    Demeter, Marc A; Lemire, Joseph A; Mercer, Sean M; Turner, Raymond J

    2017-03-01

    Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts.

  9. Enhanced biodegradation of total polycyclic aromatic hydrocarbons (TPAHs) by marine halotolerant Achromobacter xylosoxidans using Triton X-100 and β-cyclodextrin--a microcosm approach.

    Science.gov (United States)

    Dave, Bharti P; Ghevariya, Chirag M; Bhatt, Jwalant K; Dudhagara, Dushyant R; Rajpara, Rahul K

    2014-02-15

    Ability of Achromobacter xylosoxidans, a chrysene degrading marine halotolerant bacterium to degrade polycyclic aromatic hydrocarbons (PAHs) using a cost effective laboratory microcosm approach, was investigated. Effect of variables as chrysene, glucose as a co-substrate, Triton X-100 as a non-ionic surfactant and β-cyclodextrin as a PAHs solubilizer was examined on degradation of low molecular weight (LMW) and high molecular weight (HMW) PAHs. A total of eleven PAHs detected from polluted saline soil were found to be degraded. Glucose, in combination with Triton X-100 and β-cyclodextrin resulted in 2.8 and 1.4-fold increase in degradation of LMW PAHs and 7.59 and 2.23-fold increase in degradation of HMW PAHs, respectively. Enhanced biodegradation of total PAHs (TPAHs) by amendments with Triton X-100 and β-cyclodextrin using Achromobacter xylosoxidans can prove to be promising approach for in situ bioremediation of marine sites contaminated with PAHs.

  10. Initial microbial degradation of polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Milić Jelena

    2016-01-01

    Full Text Available The group of polycyclic aromatic hydrocarbons (PAHs are very hazardous environmental pollutants because of their mutagenic, carcinogenic and toxic effects on living systems. The aim of this study was to examine and compare the ability and efficiency of selected bacterial isolates obtained from oil-contaminated areas to biodegrade PAHs. The potential of the bacteria to biodegrade various aromatic hydrocarbons was assessed using the 2,6-dichlorophenol-indophenol assay. Further biodegradation of PAHs was monitored by gravimetric and gas-chromatographic analysis. Among the eight bacterial isolates, identified on the basis of 16S rDNA sequences, two isolates, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05, had the ability to grow on and utilize almost all examined hydrocarbons. Those isolates were further examined for biodegradation of phenanthrene and pyrene, as single substrates, and as a mixture, in vitro for ten days. After three days, both isolates degraded a significant amount phenanthrene, which has a simpler chemical structure than pyrene. Planomicrobium sp.RNP01 commenced biodegradation of pyrene in the PAH mixture only after it had almost completly degraded phenanthrene. The isolated and characterized bacteria, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05, have shown high bioremediation potential and are likely candidates to be used for degradation of highly toxic PAHs in contaminated areas. [Projekat Ministarstva nauke Republike Srbije, br. III43004

  11. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures.

    Science.gov (United States)

    Simarro, Raquel; González, Natalia; Bautista, Luis Fernando; Molina, Maria Carmen

    2013-02-01

    This study evaluates the ability of two bacterial consortia (C2PL05 and BOS08), extracted from very different environments, to degrade low- (naphthalene, phenanthrene, anthracene) and high- (pyrene, perylene) molecular-weight polycyclic aromatic hydrocarbons (PAHs) at high (15-25 °C) and low (5-15 °C) temperature ranges. C2PL05 was isolated from a soil in an area chronically and heavily contaminated with petroleum hydrocarbons and BOS08 from decomposing wood in an unpolluted forest, free of PAHs. Bacterial consortia were described by cultivable and noncultivable techniques (denaturing gradient gel electrophoresis). Fungal DNA was not observed within the wood-decomposing consortium and fungal activity was therefore negligible during most of the PAH degradation process. PAH-degrading bacterial populations, measured by most probable number enumeration, increased during the exponential phase. Toxicity estimated by the Microtox method was reduced to low levels and final PAH depletion, determined by HPLC, confirmed the high degree (54% and 99%, respectively) of low- and high-molecular-weight PAH degradation capacity of the two consortia. PAH-degrading capacity was also confirmed at low temperatures, and especially by consortium BOS08 not previously exposed to those toxic compounds, where strains of Acinetobacter sp., Pseudomonas sp., Ralstonia sp. and Microbacterium sp. were identified.

  12. Biodegradation Rates of Aromatic Contaminants in Biofilm Reactors

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols, chlorophe......This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols......-reducing conditions, toluene was easily biodegraded. The xylenes and ethylbenzene were degraded cometabolically if toluene was used as a primary carbon source; their removal was influenced by competitive inhibition with toluene. These interaction phenomena are discussed in this paper and a kinetic model taking...

  13. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15.

    Science.gov (United States)

    Bautista, Luis Fernando; Morales, Gabriel; Sanz, Raquel

    2015-10-01

    A covalent immobilization method based on glutaraldehyde and amino-functionalized SBA-15 supports has been successfully applied to covalently and stably immobilize laccase from Trametes versicolor. The resultant biocatalysts displayed high incorporation yields of enzyme and led to excellent biodegradation rates of selected HPAs models, i.e. naphthalene, phenanthrene and anthracene, in water. The nature of the hydrocarbon chain accompanying the amino group has been shown as determinant for the immobilization as well as for the activity and reusability of the materials. Thus, alkyl moieties displayed higher enzyme loadings than phenyl moieties, being more adequate the larger n-butyl tethering residue likely due to its higher mobility. Using the aminobutyl-based laccase-SBA-15, 82%, 73%, and 55% conversion of naphthalene, phenanthrene and anthracene, respectively, were achieved after 48 h, very close to the values obtained with free laccase under the same reaction conditions. On the other hand, aminopropyl-based laccase-SBA-15 biocatalysts displayed the best reusability properties, retaining higher activity after four repeated uses than the corresponding aminobutyl-based materials.

  14. Study on biodegradable aromatic/aliphatic copolyesters

    Energy Technology Data Exchange (ETDEWEB)

    Yiwang Chen; Licheng Tan; Lie Chen; Yan, Yang; Xiaofeng Wang [Nanchang University, Nanchang (China). School of Materials Science and Engineering. Inst. of Polymer Materials]. E-mail: ywchen@ncu.edu.cn

    2008-04-15

    Progress on biodegradable aromatic/aliphatic copolyesters based on aliphatic and aromatic diacids, diols and ester monomers was reviewed. The aromatic/aliphatic copolyesters combined excellent mechanical properties with biodegradability. Physical properties and biodegradability of copolyesters varied with chain length of the aliphatic polyester segment and atacticity of copolyesters. The process ability of copolyesters could be improved significantly after incorporating a stiff chain segment through copolymerization of aliphatic polyesters with an aromatic liquid crystal element. The aromatic/aliphatic copolyesters as a new type of biodegradable materials could replace some general plastics in certain applications, namely biomedical and environmental friendly fields. (author)

  15. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  16. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

    Science.gov (United States)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.

  17. Methyl-beta-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil.

    Science.gov (United States)

    Sun, Mingming; Luo, Yongming; Christie, Peter; Jia, Zhongjun; Li, Zhengao; Teng, Ying

    2012-01-01

    The contamination of soils by polycyclic aromatic hydrocarbons (PAHs) is a widespread environmental problem and the remediation of PAHs from these areas has been a major concern. The effectiveness of many in situ bioremediation systems may be constrained by low contaminant bioavailability due to limited aqueous solubility or a large magnitude of sorption. The objective of this research was to evaluate the effect of methyl-beta-cyclodextrin (MCD) on bioaugmentation by Paracoccus sp. strain HPD-2 of an aged PAH-contaminated soil. When 10% (W/W) MCD amendment was combined with bioaugmentation by the PAH-degrading bacterium Paracoccus sp. strain HPD-2, the percentage degradation of total PAHs was significantly enhanced up to 34.8%. Higher counts of culturable PAH-degrading bacteria and higher soil dehydrogenase and soil polyphenol oxidase activities were observed in 10% (W/W) MCD-assisted bioaugmentation soil. This MCD-assisted bioaugmentation strategy showed significant increases (p PAH-contaminated soil. The results suggest that MCD-aided bioaugmentation by Paracoccus sp. strain HPD-2 may be a promising practical bioremediation strategy for aged PAH-contaminated soils.

  18. Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil

    Institute of Scientific and Technical Information of China (English)

    Mingming Sun; Yongming Luo; Peter Christie; Zhongjun Jia; Zhengao Li; Ying Teng

    2012-01-01

    The contamination of soils by polycyclic aromatic hydrocarbons (PAHs) is a widespread environmental problem and the remediation of PAHs from these areas has been a major concern.The effectiveness of many in situ bioremediation systems may be constrained by low contaminant bipavailability due to limited aqueous solubility or a large magnitude of sorption.The objective of this research was to evaluate the effect of methyl-β-cyclodextrin (MCD) on bioaugmentation by Paracoccus sp.strain HPD-2 of an aged PAH-contaminated soil.When 10% (W/W) MCD amendment was combined with bioaugmentation by the PAH-degrading bacterium Paracoccus sp.strain HPD-2,the percentage degradation of total PAHs was significantly enhanced up to 34.8%.Higher counts of culturable PAH-degrading bacteria and higher soil dehydrogenase and soil polyphenol oxidase activities were observed in 10% (W/W) MCD-assisted bioaugmentation soil.This MCD-assisted bioaugmentation strategy showed significant increases (p < 0.05) in the average well color development (AWCD) obtained by the BIOLOG Eco plate assay,Shannon-Weaver index (H) and Simpson index (λ) compared with the controls,implying that this strategy at least partially restored the microbiological functioning of the PAH-contaminated soil.The results suggest that MCD-aided bioaugmentation by Paracoccus sp.strain HPD-2 may be a promising practical bioremediation strategy for aged PAH-contaminated soils.

  19. Biodegradation and bioremediation of hydrocarbons in extreme environments.

    Science.gov (United States)

    Margesin, R; Schinner, F

    2001-09-01

    Many hydrocarbon-contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, high salt concentrations, or high pressure, Hydrocarbon-degrading microorganisms, adapted to grow and thrive in these environments, play an important role in the biological treatment of polluted extreme habitats. The biodegradation (transformation or mineralization) of a wide range of hydrocarbons, including aliphatic, aromatic, halogenated and nitrated compounds, has been shown to occur in various extreme habitats. The biodegradation of many components of petroleum hydrocarbons has been reported in a variety of terrestrial and marine cold ecosystems. Cold-adapted hydrocarbon degraders are also useful for wastewater treatment. The use of thermophiles for biodegradation of hydrocarbons with low water solubility is of interest, as solubility and thus bioavailability, are enhanced at elevated temperatures. Thermophiles, predominantly bacilli, possess a substantial potential for the degradation of environmental pollutants, including all major classes. Indigenous thermophilic hydrocarbon degraders are of special significance for the bioremediation of oil-polluted desert soil. Some studies have investigated composting as a bioremediation process. Hydrocarbon biodegradation in the presence of high salt concentrations is of interest for the bioremediation of oil-polluted salt marshes and industrial wastewaters, contaminated with aromatic hydrocarbons or with chlorinated hydrocarbons. Our knowledge of the biodegradation potential of acidophilic, alkaliphilic, or barophilic microorganisms is limited.

  20. Biodegradation and bioremediation of hydrocarbons in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Margesin, R.; Schinner, F. [Innsbruck Univ. (Austria). Inst. fuer Mikrobiologie

    2001-07-01

    Many hydrocarbon-contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, high salt concentrations, or high pressure. Hydrocarbon-degrading microorganisms, adapted to grow and thrive in these environments, play an important role in the biological treatment of polluted extreme habitats. The biodegradation (transformation or mineralization) of a wide range of hydrocarbons, including aliphatic, aromatic, halogenated and nitrated compounds, has been shown to occur in various extreme habitats. The biodegradation of many components of petroleum hydrocarbons has been reported in a variety of terrestrial and marine cold ecosystems. Cold-adapted hydrocarbon degraders are also useful for wastewater treatment. The use of thermophiles for biodegradation of hydrocarbons with low water solubility is of interest, as solubility and thus bioavailability, are enhanced at elevated temperatures. Thermophiles, predominantly bacilli, possess a substantial potential for the degradation of environmental pollutants, including all major classes. Indigenous thermophilic hydrocarbon degraders are of special significance for the bioremediation of oil-polluted desert soil. Some studies have investigated composting as a bioremediation process. Hydrocarbon biodegradation in the presence of high salt concentrations is of interest for the bioremediation of oil-polluted salt marshes and industrial wastewaters, contaminated with aromatic hydrocarbons or with chlorinated hydrocarbons. Our knowledge of the biodegradation potential of acidophilic, alkaliphilic, or barophilic microorganisms is limited. (orig.)

  1. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds.

    Science.gov (United States)

    Bahr, Arne; Fischer, Anko; Vogt, Carsten; Bombach, Petra

    2015-02-01

    The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 μg L(-1) d(-1) and 1639 μg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers.

  2. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment.

    Science.gov (United States)

    Jin, Hyun Mi; Kim, Jeong Myeong; Lee, Hyo Jung; Madsen, Eugene L; Jeon, Che Ok

    2012-07-17

    Following the 2007 oil spill in South Korean tidal flats, we sought to identify microbial players influencing the environmental fate of released polycyclic aromatic hydrocarbons (PAHs). Two years of monitoring showed that PAH concentrations in sediments declined substantially. Enrichment cultures were established using seawater and modified minimal media containing naphthalene as sole carbon source. The enriched microbial community was characterized by 16S rRNA-based DGGE profiling; sequencing selected bands indicated Alteromonas (among others) were active. Alteromonas sp. SN2 was isolated and was able to degrade naphthalene, phenanthrene, anthracene, and pyrene in laboratory-incubated microcosm assays. PCR-based analysis of DNA extracted from the sediments revealed naphthalene dioxygenase (NDO) genes of only two bacterial groups: Alteromonas and Cycloclasticus, having gentisate and catechol metabolic pathways, respectively. However, reverse transcriptase PCR-based analysis of field-fixed mRNA revealed in situ expression of only the Alteromonas-associated NDO genes; in laboratory microcosms these NDO genes were markedly induced by naphthalene addition. Analysis by GC/MS showed that naphthalene in tidal-flat samples was metabolized predominantly via the gentisate pathway; this signature metabolite was detected (0.04 μM) in contaminated field sediment. A quantitative PCR-based two-year data set monitoring Alteromonas-specific 16S rRNA genes and NDO transcripts in sea-tidal flat field samples showed that the abundance of bacteria related to strain SN2 during the winter season was 20-fold higher than in the summer season. Based on the above data, we conclude that strain SN2 and its relatives are site natives--key players in PAH degradation and adapted to winter conditions in these contaminated sea-tidal-flat sediments.

  3. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Bacosa, Hernando Pactao, E-mail: hernando.bacosa@utexas.edu [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373 (United States); Inoue, Chihiro [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-02-11

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.

  4. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  5. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  6. Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from a river sediment: a microcosm study and bacterial community analysis.

    Science.gov (United States)

    Muangchinda, Chanokporn; Yamazoe, Atsushi; Polrit, Duangporn; Thoetkiattikul, Honglada; Mhuantong, Wuttichai; Champreda, Verawat; Pinyakong, Onruthai

    2017-02-01

    This study assessed the biodegradation of mixtures of polycyclic aromatic hydrocarbons (PAHs) by indigenous bacteria in river sediment. Microcosms were constructed from sediment from the Chao Phraya River (the main river in Thailand) by supplementation with high concentrations of fluorene, phenanthrene, pyrene (300 mg kg(-1) of each PAH), and acenaphthene (600 mg kg(-1)). Fluorene and phenanthrene were completely degraded, whereas 50% of the pyrene and acenaphthene were removed at the end of the incubation period (70 days). Community analyses revealed the dynamics of the bacterial profiles in the PAH-degrading microcosms after PAH exposure. Actinobacteria predominated and became significantly more abundant in the microcosms after 14 days of incubation at room temperature under aerobic conditions. Furthermore, the remaining PAHs and alpha diversity were positively correlated. The sequencing of clone libraries of the PAH-RHDα genes also revealed that the dioxygenase genes of Mycobacterium sp. comprised 100% of the PAH-RHDα library at the end of the microcosm setup. Moreover, two PAH-degrading Actinobacteria (Arthrobacter sp. and Rhodococcus ruber) were isolated from the original sediment sample and showed high activity in the degradation of phenanthrene and fluorene in liquid cultivation. This study reveals that indigenous bacteria had the ability to degrade high concentrations of mixed PAHs and provide clear evidence that Actinobacteria may be potential candidates to play a major role in PAH degradation in the river sediment.

  7. Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp.

    Science.gov (United States)

    Tiwari, Bhagyashree; Manickam, N; Kumari, Smita; Tiwari, Akhilesh

    2016-09-01

    The aim of this work was to study the biodegradation capabilities of a locally isolated bacterium, Stenotrophomonas sp. strain IITR87 to degrade the polycyclic aromatic hydrocarbons and also check the preferential biodegradation of polycyclic aromatic hydrocarbons (PAHs). From preferential substrate degradation studies, it was found that Stenotrophomonas sp. strain IITR87 first utilized phenanthrene (three membered ring), followed by pyrene (four membered ring), then benzo[α]pyrene (five membered ring). Dissolution study of PAHs with surfactants, rhamnolipid and tritonX-100 showed that the dissolution of PAHs increased in the presence of surfactants.

  8. Biodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1

    OpenAIRE

    Lang, F. S.; Destain, Jacqueline; Delvigne, Frank; Druart, P.; Ongena, Marc; Thonart, Philippe

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons. With the aim of treating mangrove sediments polluted by hydrocarbons in a biological way, a biodegrada...

  9. Biodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1

    OpenAIRE

    Semboung Lang, Firmin; Destain, Jacqueline; Delvigne, Frank; Druart, Philippe; Ongena, Marc; Thonart, Philippe

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons.With the aim of treating mangrove sediments polluted by hydrocarbons in a biolo...

  10. STUDY ON BIODEGRADATION TECHNOLOGY APPLICATION IN BULK IN THE REMEDIATION OF SOILS CONTAMINATED WITH POLYCYCLIC AROMATIC HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina Ramona PECINGINĂ

    2015-05-01

    Full Text Available Biodecontaminare methods are based on biodegradation in the subsurface presence of microorganisms capable of degrading most of carbonaceous organic pollutants and much of inorganic pollutants. Biodegradation in bulk meet that principle biological decontamination several ways. These methods are intended solely for solids, and is often used for on-site remediation of soils contaminated with organic products. Station bioremediation ensure reducing the harmfulness of residues from oil exploitation activities considered hazardous, using a bioremediation process. Bioremediation process will lead to reduction of oil content and thus reducing the hazard of waste.

  11. Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment.

    Science.gov (United States)

    Adrion, Alden C; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-04-05

    A total of five nonionic surfactants (Brij 30, Span 20, Ecosurf EH-3, polyoxyethylene sorbitol hexaoleate, and R-95 rhamnolipid) were evaluated for their ability to enhance PAH desorption and biodegradation in contaminated soil after treatment in an aerobic bioreactor. Surfactant doses corresponded to aqueous-phase concentrations below the critical micelle concentration in the soil-slurry system. The effect of surfactant amendment on soil (geno)toxicity was also evaluated for Brij 30, Span 20, and POESH using the DT40 B-lymphocyte cell line and two of its DNA-repair-deficient mutants. Compared to the results from no-surfactant controls, incubation of the bioreactor-treated soil with all surfactants increased PAH desorption, and all except R-95 substantially increased PAH biodegradation. POESH had the greatest effect, removing 50% of total measured PAHs. Brij 30, Span 20, and POESH were particularly effective at enhancing biodegradation of four- and five-ring PAHs, including five of the seven carcinogenic PAHs, with removals up to 80%. Surfactant amendment also significantly enhanced the removal of alkyl-PAHs. Most treatments significantly increased soil toxicity. Only the no-surfactant control and Brij 30 at the optimum dose significantly decreased soil genotoxicity, as evaluated with either mutant cell line. Overall, these findings have implications for the feasibility of bioremediation to achieve cleanup levels for PAHs in soil.

  12. 土壤多环芳烃污染的植物根际降解研究%Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) in the Rhizosphere Soil

    Institute of Scientific and Technical Information of China (English)

    林爱军; 李晓亮; 王凤花; 谢文娟

    2011-01-01

    人类活动引起的土壤多环芳烃(PAHs)累积已经引起了土壤污染,并已经成为影响人体健康和农业生产的重要环境问题之一.在土壤环境中,植物根际过程是土壤多环芳烃消除的关键环节之一.为此,对土壤中多环芳烃污染的来源和危害进行了叙述,并对土壤多环芳烃污染生物降解的机制和影响因素进行了分析.说明了土壤根际降解在土壤多环芳烃污染修复中的作用和多环芳烃在根际降解中的限制因素,指出提高土壤多环芳烃修复的关键因素之一是提高土壤多环芳烃的生物可利用性,最后对环芳烃在根际降解研究的发展趋势进行了展望.%Polycyclic aromatic hydrocarbons (PAHs) due to a variety of anthropogenic activities were one class of toxic environmental pollutants that had accumulated in the soil environment and induced risk to human health and agriculture production. In the bioremediation of soil contaminated by PAHs, rhizosphere process played an important role. In the paper, the status of PAHs in soil and the toxicity induced by the accumulation of PAHs was reviewed. The effects of soil environment on the rhizosphere biodegradation and the mechanism of PAHs degradation were introduced in details and the bioremediation could be enhanced by increased the bioavailability of PAHs in soil. Finally, it was forecasted the trends of PAHs biodegradation in rhizosphere soil.

  13. Monitoring the biodegradation of polycyclic aromatic hydrocarbons in a co-contaminated soil using stable isotope labeling

    Science.gov (United States)

    Wawra, Anna; Friesl-Hanl, Wolfgang; Watzinger, Andrea; Soja, Gerhard; Puschenreiter, Markus

    2016-04-01

    Conventional remediation techniques like "dig and dump" are costly and limited in scale. Plant- and microbe-based alternatives, e.g. phytoremediation options, offer a cheap and environmentally friendly approach that can be applied on larger areas. However, the application of phytoremediation techniques to co-contaminated sites may be hindered due to a potential inhibition of biodegradation processes by the presence of heavy metals in soil. Therefore, the objective of this study is to test the hypothesis that the degradation of organic pollutants can be enhanced by immobilising potentially toxic heavy metals. This study aims to identify the influence of heavy metal immobilisation on the degradation of organic pollutants, and to determine chemical, physical and biological measures further accelerating these processes. The influence of heavy metals on organic pollutant degradation dynamics is assessed using 13C-phospholipid fatty acid analysis (13C-PLFA). Application of 13C-labeled phenanthrene allows the identification of microbial groups responsible for the degradation process. For metal immobilisation and enhanced biodegradation, distinct mineral and organic soil amendments (iron oxides, gravel sludge, biochar) are deployed, partly in combination with fast-growing and pollution-tolerant woody plants (willow, black locust and alder). Results of an incubation batch experiment show a fast degradation of the phenanthrene label within the first two weeks by various microbial groups (gram negative bacteria as indicated by the cy17:0 peak) resulting in a decrease by up to 80% of the total PAH concentration (Σ 16 EPA PAHs) measured in soil. A similar trend was observed in the greenhouse pot experiment, whereby heavy metal accumulation in the woody plants growing on the co-contaminated soil significantly varied with plant species (willow > black locust, alder).

  14. Optimization of low ring polycylic aromatic biodegradation

    Science.gov (United States)

    Othman, N.; Abdul-Talib, S.; Tay, C. C.

    2016-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrance and persistence that finally turn into problematic environmental contaminants. Microbial degradation is considered to be the primary mechanism of PAHs removal from the environment due to its organic criteria. This study is carried out to optimize degradation process of low ring PAHs. Bacteria used in this study was isolated from sludge collected from Kolej Mawar, Universiti Teknologi MARA, Shah Alam, Selangor. Working condition namely, substrate concentration, bacteria concentration, pH and temperature were optimized. PAHs in the liquid sample was extracted by using solid phase microextractio equipped with a 7 µm polydimethylsiloxane (PDMS) SPME fibr. Removal of PAHs were assessed by measuring PAHs concentration using GC-FID. Results from the optimization study of biodegradation indicated that maximum rate of PAHs removal occurred at 100 mgL-1 of PAHs, 10% bacteria concentration, pH 7.0 and 30°C. These working condition had proved the effectiveness of using bacteria in biodegradation process of PAHs.

  15. Microbial Degradation of Polycyclic Aromatic Hydrocarbons and Characterization of Bacteria

    Science.gov (United States)

    Tikilili, P. V.; Chirwa, E. M. N.

    2010-01-01

    Biodegradation of polycyclic aromatic hydrocarbons was studied. Naphthalene was used as a model compound to represent these compounds. Low initial concentrations of naphthalene in a range of 30-60 mg/L were completely degraded after incubation for 15 hrs by consortia from a landfill soil while consortia from minewater took more that 29 hrs to reach complete degradation.

  16. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  17. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid.

    Science.gov (United States)

    Kang, Seok-Whan; Kim, Young-Bum; Shin, Jae-Dong; Kim, Eun-Ki

    2010-03-01

    Effectiveness of a microbial biosurfactant, sophorolipid, was evaluated in washing and biodegradation of model hydrocarbons and crude oil in soil. Thirty percent of 2-methylnaphthalene was effectively washed and solubilized with 10 g/L of sophorolipid with similar or higher efficiency than that of commercial surfactants. Addition of sophorolipid in soil increased biodegradation of model compounds: 2-methylnaphthalene (95% degradation in 2 days), hexadecane (97%, 6 days), and pristane (85%, 6 days). Also, effective biodegradation method of crude oil in soil was observed by the addition of sophorolipid, resulting in 80% biodegradation of saturates and 72% aromatics in 8 weeks. These results showed the potentials of the microbial biosurfactant, sophorolipid, as an effective surfactant for soil washing and as an in situ biodegradation enhancer.

  18. In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants.

    Science.gov (United States)

    Jeon, Che Ok; Madsen, Eugene L

    2013-06-01

    Microbial processes that eliminate organic environmental contamination are important. Progress in the biotechnology of biodegradation relies upon the underlying sciences of environmental microbiology and analytical geochemistry. Recent key discoveries advancing knowledge of biodegradation (in general) and the aromatic-hydrocarbon biodegradation (in particular) have relied upon characterization of microorganisms: pure-culture isolates, laboratory enrichment cultures, and in contaminated field sites. New analytical and molecular tools (ranging from sequencing the DNA of biodegrading microorganisms to assessing changes in the isotopic ratios of 13C to 12C and 2H to 1H in contaminant pools in field sites) have deepened our insights into the mechanisms (how), the occurrence (what), and the identity (who) of active players that effect biodegradation of organic environmental pollutants.

  19. Deuterated polycyclic aromatic hydrocarbons: Revisited

    CERN Document Server

    Doney, Kirstin D; Mori, Tamami; Onaka, Takashi; Tielens, A G G M

    2016-01-01

    The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {\\mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {\\mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case o...

  20. Fate and biodegradability of sulfonated aromatic amines

    NARCIS (Netherlands)

    Tan, N.C.G.; Leeuwen, van A.; Voorthuizen, van E.M.; Slenders, P.; Prenafeta, F.X.; Temmink, H.; Lettinga, G.; Field, J.A.

    2005-01-01

    Ten sulfonated aromatic amines were tested for their aerobic and anaerobic biodegradability and toxicity potential in a variety of environmental inocula. Of all the compounds tested, only two aminobenzenesulfonic acid (ABS) isomers, 2- and 4-ABS, were degraded. The observed degradation occurred only

  1. Biodegradation of aliphatic and aromatic polycarbonates.

    Science.gov (United States)

    Artham, Trishul; Doble, Mukesh

    2008-01-01

    Polycarbonate is one of the most widely used engineering plastics because of its superior physical, chemical, and mechanical properties. Understanding the biodegradation of this polymer is of great importance to answer the increasing problems in waste management of this polymer. Aliphatic polycarbonates are known to biodegrade either through the action of pure enzymes or by bacterial whole cells. Very little information is available that deals with the biodegradation of aromatic polycarbonates. Biodegradation is governed by different factors that include polymer characteristics, type of organism, and nature of pretreatment. The polymer characteristics such as its mobility, tacticity, crystallinity, molecular weight, the type of functional groups and substituents present in its structure, and plasticizers or additives added to the polymer all play an important role in its degradation. The carbonate bond in aliphatic polycarbonates is facile and hence this polymer is easily biodegradable. On the other hand, bisphenol A polycarbonate contains benzene rings and quaternary carbon atoms which form bulky and stiff chains that enhance rigidity. Even though this polycarbonate is amorphous in nature because of considerable free volume, it is non-biodegradable since the carbonate bond is inaccessible to enzymes because of the presence of bulky phenyl groups on either side. In order to facilitate the biodegradation of polymers few pretreatment techniques which include photo-oxidation, gamma-irradiation, or use of chemicals have been tested. Addition of biosurfactants to improve the interaction between the polymer and the microorganisms, and blending with natural or synthetic polymers that degrade easily, can also enhance the biodegradation.

  2. BIOB: a mathematical model for the biodegradation of low solubility hydrocarbons.

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C; Personna, Yves R; Lee, Ken; Tsao, David; Demicco, Erik D

    2014-06-15

    Modeling oil biodegradation is an important step in predicting the long term fate of oil on beaches. Unfortunately, existing models do not account mechanistically for environmental factors, such as pore water nutrient concentration, affecting oil biodegradation, rather in an empirical way. We present herein a numerical model, BIOB, to simulate the biodegradation of insoluble attached hydrocarbon. The model was used to simulate an experimental oil spill on a sand beach. The biodegradation kinetic parameters were estimated by fitting the model to the experimental data of alkanes and aromatics. It was found that parameter values are comparable to their counterparts for the biodegradation of dissolved organic matter. The biodegradation of aromatics was highly affected by the decay of aromatic biomass, probably due to its low growth rate. Numerical simulations revealed that the biodegradation rate increases by 3-4 folds when the nutrient concentration is increased from 0.2 to 2.0 mg N/L.

  3. Birds and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  4. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  5. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Science.gov (United States)

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-01-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review. PMID:24031900

  6. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium

    Science.gov (United States)

    The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance li...

  7. Microbial biodegradation of polyaromatic hydrocarbons.

    Science.gov (United States)

    Peng, Ri-He; Xiong, Ai-Sheng; Xue, Yong; Fu, Xiao-Yan; Gao, Feng; Zhao, Wei; Tian, Yong-Sheng; Yao, Quan-Hong

    2008-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to particulates in soil and sediments, rendering them less available for biological uptake. Microbial degradation represents the major mechanism responsible for the ecological recovery of PAH-contaminated sites. The goal of this review is to provide an outline of the current knowledge of microbial PAH catabolism. In the past decade, the genetic regulation of the pathway involved in naphthalene degradation by different gram-negative and gram-positive bacteria was studied in great detail. Based on both genomic and proteomic data, a deeper understanding of some high-molecular-weight PAH degradation pathways in bacteria was provided. The ability of nonligninolytic and ligninolytic fungi to transform or metabolize PAH pollutants has received considerable attention, and the biochemical principles underlying the degradation of PAHs were examined. In addition, this review summarizes the information known about the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted ecosystems. A deeper understanding of the microorganism-mediated mechanisms of catalysis of PAHs will facilitate the development of new methods to enhance the bioremediation of PAH-contaminated sites.

  8. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Canet, R.; Birnstingl, J.G.; Malcolm, D.G.; Lopez-Real, J.M.; Beck, A.J. [Inst. of Valenciano Invest. Agency, Valencia (Spain)

    2001-07-01

    Four white-rot fungi (Phanerochaete chrysosporium IMI 232175, Pleurotus ostreatus from the University of Alberta Microfungus Collection IMI 341687, Coriolus versicolor IMI210866 and Wye isolate No. 7) and all possible combinations of two or more of these fungi, were incubated in microcosms containing wheat straw and non-sterile coal-tar contaminated soil to determine their potential to degrade polycyclic aromatic hydrocarbons (PAHs). Biotic and abiotic controls were prepared similarly and PAH concentrations remaining in each microcosm were determined after 8, 16 and 32 weeks by GC-MS following extraction with dichloromethane. The greatest PAH losses were in the biotic control. Soil cultures prepared at the end of the experiment showed that though introduced fungi were still alive, they were unable to thrive and degrade PAH in such a highly contaminated soil and remained in a metabolically inactive form.

  9. Characterization of arene di-oxygenases involved in polycyclic aromatic hydrocarbons biodegradation in Mycobacterium sp. 6PY1; Caracterisation d'arene dioxygenases impliquees dans la biodegradation des hydrocarbures aromatiques polycycliques chez Mycobacterium sp. 6PY1

    Energy Technology Data Exchange (ETDEWEB)

    Kuony, S.

    2005-06-15

    This thesis deals with the bacterial biodegradation of pollutants called polycyclic aromatic hydrocarbons (PAHs). The bacterium Mycobacterium sp. 6PY1 was isolated from a polluted soil for its ability to use pyrene, a 4-ring PAH, as sole source of carbon and energy. To learn about the pyrene metabolic pathway, the identification of the enzymes involved in this process has been undertaken using a proteomic approach. This approach revealed the occurrence of two ring-hydroxylating di-oxygenases in strain 6PY1, which could catalyze the initial attack of pyrene. The goal of this study was to clone the genes encoding the di-oxygenases identified in Mycobacterium sp. 6PY1, over-express these genes in an heterologous system in order to facilitate the purification of the corresponding enzymes, and determine the biochemical and catalytic properties of these enzymes. The pdoA1B1 genes encoding the terminal component of a di-oxygenase were cloned and over-expressed in Escherichia coli. The catalytic properties of this enzyme, called Pdo1, were determined in vivo by measuring the oxidation products of 2- to 4-ring PAHs by gas chromatography coupled to mass spectrometry (GC-MS). Analysis of the selectivity of the enzyme, as determined using GC-MS, showed that Pdo1 preferentially oxidized 3- or 4-ring PAHs, including phenanthrene and pyrene, but was inactive on di-aromatic compounds such as naphthalene and biphenyl. Pdo1 was unstable and was therefore purified in inactive form. The genes encoding a second di-oxygenase component were found in a locus containing two other catabolic genes. The pdoA2B2 genes encoded an enzyme called Pdo2 showing a narrow specificity towards 2- to 3-ring PAHs, and a high preference for phenanthrene. Pdo2 is an a3{beta}3 hexamer, containing [2Fe-2S] Rieske clusters which confer it a characteristic absorbance spectrum. A third set of genes possibly encoding another di-oxygenase was discovered in the genome of Mycobacterium sp. 6PY1. This set is closely

  10. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  11. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  12. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation.

    Science.gov (United States)

    García-Delgado, Carlos; D'Annibale, Alessandro; Pesciaroli, Lorena; Yunta, Felipe; Crognale, Silvia; Petruccioli, Maurizio; Eymar, Enrique

    2015-03-01

    Different applications of spent Agaricus bisporus substrate (SAS), a widespread agro-industrial waste, were investigated with respect to the remediation of a historically polluted soil with Polycyclic Aromatic Hydrocarbons (PAH). In one treatment, the waste was sterilized (SSAS) prior to its application in order to assess its ability to biostimulate, as an organic amendment, the resident soil microbiota and ensuing contaminant degradation. For the other treatments, two bioaugmentation approaches were investigated; the first involved the use of the waste itself and thus implied the application of A. bisporus and the inherent microbiota of the waste. In the second treatment, SAS was sterilized and inoculated again with the fungus to assess its ability to act as a fungal carrier. All these treatments were compared with natural attenuation in terms of their impact on soil heterotrophic and PAH-degrading bacteria, fungal growth, biodiversity of soil microbiota and ability to affect PAH bioavailability and ensuing degradation and detoxification. Results clearly showed that historically PAH contaminated soil was not amenable to natural attenuation. Conversely, the addition of sterilized spent A. bisporus substrate to the soil stimulated resident soil bacteria with ensuing high removals of 3-ring PAH. Both augmentation treatments were more effective in removing highly condensed PAH, some of which known to possess a significant carcinogenic activity. Regardless of the mode of application, the present results strongly support the adequacy of SAS for environmental remediation purposes and open the way to an attractive recycling option of this waste.

  13. Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia.

    Science.gov (United States)

    Arulazhagan, P; Al-Shekri, K; Huda, Q; Godon, J J; Basahi, J M; Jeyakumar, D

    2017-01-01

    The present study aims at analyzing the degradation of polycyclic aromatic hydrocarbons (PAHs) at acidic conditions (pH = 2) by acidophilic Stenotrophomonas maltophilia strain AJH1 (KU664513). The strain AJH1 was obtained from an enrichment culture obtained from soil samples of mining area in the presence of PAH as sole sources of carbon and energy. Strain AJH1was able to degrade low (anthracene, phenanthrene, naphthalene, fluorene) and high (pyrene, benzo(e)pyrene and benzo(k)fluoranthene) molecular weight PAHs in acidophilic mineral salt medium at pH 2, with removal rates of up to 95% (LMW PAH) and 80% (HMW PAH), respectively. In addition, strain AJH1 treated petroleum wastewater with 89 ± 1.1% COD removal under acidic condition (pH 2) in a continuously stirred reactor. Acidophilic S. maltophilia strain AJH1, hence holds the promise as an effective degrader for biological treatment of PAHs contaminated wastewater at acidic pH.

  14. Biodegradation of Hydrocarbons within the Water Column and Marsh Sediments following the Deepwater Horizon Accident

    Science.gov (United States)

    Atlas, R.; Cook, L.; Murray, K.; Cerrito, K.; Faith, S.; Boehm, P.

    2012-12-01

    Physical and chemical dispersion of oil released from the Deepwater Horizon spill between April 20 and July 15, 2010 resulted in fine droplets and dissolved hydrocarbons moving away from the wellhead within the water column. Both alkanes and polycyclic aromatic hydrocarbons were rapidly biodegraded as evidenced by detailed chemistry measurements using GC and GC-MS analyses of over 10,000 water samples. During the release (April-July), concentrations of polycyclic aromatic hydrocarbons (PAH) attenuated rapidly with distance from the release point (the wellhead) and were seen to reach biodegradation. Loss of total and high molecular weight alkanes and PAH relative to the conserved biomarker hopane also showed that there was extensive hydrocarbon biodegradation. Shortly after the well was capped most of the hydrocarbons in the deepwater had been biodegraded to levels below analytical detection limits. Clearly microbial biodegradation of the oil within the water column removed many of the toxic components and reduced the overall impact of the oil released from the well. Oil that reached the water surface and formed slicks was less extensively biodegraded by microbes as it moved toward the shorelines. A study of impacted Louisiana coastal marshes 1 year later, however, showed that residual oil was very highly weathered with losses of alkanes and PAHs in the MC252 oiled sediment samples. Where sufficient oil was present for detailed chemical analyses changes in C17/pristine, C18/phytane, C2phenanthrene/C2dibenzothiophene, C3phenanthrene/C3dibenzothiophene, total polycyclic aromatics to hopane, and total heavy polycyclic aromatics (4-6 rings) to hopane showed evidence for extensive biodegradation. Molecular analyses performed with PhyloChip, GeoChip and whole metagenome sequencing confirmed that microbial populations in marsh sediments were capable of hydrocarbon biodegradation.

  15. Growth of fungi on volatile aromatic hydrocarbons

    NARCIS (Netherlands)

    Prenafeta Boldú, F.X.

    2002-01-01

    The present study aimed the better understanding of the catabolism of monoaromatic hydrocarbons by fungi. This knowledge can be used to enhance the biodegradation of BTEX pollutants. Fungi with the capacity of using toluene as the sole source of carbon and energy were isolated by enriching environme

  16. Biodegradation of polycyclic aromatic hydrocarbons by soil fungi Biodegradação de hidrocarbonetos aromáticos policíclicos por fungos do solo

    Directory of Open Access Journals (Sweden)

    Andrea R. Clemente

    2001-12-01

    Full Text Available Thirteen deuteromycete ligninolytic fungal strains were grown in media containing polycyclic aromatic hydrocarbons (PAHs, for 6 and 10 days. The PAHs were added directly with the inocula or on the third day of cultivation. A selection of the best strains was carried out based on the levels of degradation of the PAHs and also on the ligninolytic activities produced by the fungi. The selected strains were cultivated for 3, 6, 9, 12 and 15 days in the PAHs-containing media. Degradation of PAHs, as measured by reversed-phase HPLC on a C18 column, varied with each strain as did the ligninolytic enzymes present in the culture supernatants. Highest degradation of naphthalene (69% was produced by the strain 984, having Mn-peroxidase activity, followed by strain 870 (17% showing lignin peroxidase and laccase activities. The greatest degradation of phenanthrene (12% was observed with strain 870 containing Mn-peroxidase and laccase activities. When anthracene was used, the strain 710 produced a good level of degradation (65%.Treze fungos deuteromicetos ligninolíticos foram cultivados em meio contendo hidrocarbonetos aromáticos policíclicos (HAPs por 6 e 10 dias. Os HAPs foram adicionados diretamente com o inóculo ou no terceiro dia de cultivo. A seleção das melhores linhagens foi baseada nos níveis de degradação dos HAPs e também nas atividades ligninolíticas produzidas pelas linhagens fúngicas. Essas melhores linhagens foram então cultivadas por 3, 6, 9, 12 e 15 dias. A degradação dos HAPs foi monitorada por cromatografia líquida de alta eficiência (CLAE em uma coluna C18, variando para cada linhagem assim como as enzimas ligninolíticas presentes nos sobrenadantes das culturas. Alta degradação de naftaleno (69% foi obtida pela linhagem 984, tendo atividade de Mn-peroxidase, seguida pela linhagem 870 (17% a qual apresentou atividades de lignina peroxidase e lacase. A melhor porcentagem de degradação de fenantreno (12% foi observada

  17. A rotating disk apparatus for assessing the biodegradation of polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to solutions of surfactant Brij 35

    OpenAIRE

    Bernardez, Letícia Alonso

    2009-01-01

    Texto completo: acesso restrito. p. 415-424 A rotating disk apparatus was used to investigate the biodegradation of PAHs from non-aqueous phase liquids to solutions of Brij 35. The mass transfer of PAHs in absence of surfactant solution was not large enough to replenish the degraded PAHs. The addition of surfactant resulted in an overall enhancement of biodegradation rates compared to that observed in pure aqueous solution. This is because surfactant partition significant amount of PAHs in...

  18. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-03-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium.

  19. Effect of Mn(IV) on the biodegradation of polycyclic aromatic hydrocarbons under low-oxygen condition in mangrove sediment slurry.

    Science.gov (United States)

    Li, Chun-Hua; Ye, Chun; Wong, Yuk-Shan; Tam, Nora Fung-Yee

    2011-06-15

    This study investigated the effect of manganese [Mn(IV)] amendment on the anaerobic biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr) under low-oxygen condition, with and without the inoculation of enriched PAH-degrading bacterial consortia, in mangrove sediment slurries. The results revealed that the addition of Mn(IV) significantly inhibited PAH biodegradation, the rate of which was about 31-70% lower than the one of the groups without Mn(IV) addition. The amendment of Mn(IV) also showed adverse effect on the population size of enriched PAH-degrading bacteria and bacterial activity. The analysis results on the concentrations of Mn(II) and Mn(IV) indicated that Mn(IV) was converted to Mn(II) fast, the latter was the predominate manganese form in the mangrove sediment slurries through the whole experimental period. The Mn(II) toxicity to microorganisms was considered the main reason for inhibition of the PAH-biodegradation. On the other hand, the inoculation of the enriched PAH-degrading consortia significantly enhanced the biodegradation rates of all four PAHs, and the biodegradation rates of 3-rings (Fl, Phe) and 4-rings (Flua, Pyr) PAHs were enhanced by 14-15% and 21-34%, respectively.

  20. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons.

    Science.gov (United States)

    Abbasnezhad, Hassan; Gray, Murray; Foght, Julia M

    2011-11-01

    Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil-water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase.

  1. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-05-01

    Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact.

  2. Hydrocarbons biodegradation in unsaturated porous medium; Biodegradation des hydrocarbures en milieu poreux insature

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C

    2007-12-15

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  3. Hydrocarbon biodegradation in intertidal wetland sediments.

    Science.gov (United States)

    McGenity, Terry J

    2014-06-01

    Intertidal wetlands, primarily salt marsh, mangrove and mudflats, which provide many essential ecosystem services, are under threat on numerous fronts; a situation that is made worse by crude-oil pollution. Microbes are the main vehicle for remediation of such sediments, and new discoveries, such as novel biodegradation pathways, means of accessing oil, multi-species interactions, and community-level responses to oil addition, are helping us to understand, predict and monitor the fate of oil. Despite this, there are many challenges, not least because of the heterogeneity of these ecosystems and the complexity of crude oil. For example, there is growing awareness about the toxicity of the oxygenated products that result from crude-oil weathering, which are difficult to degrade. This review highlights how developments in areas as diverse as systems biology, microbiology, ecology, biogeochemistry and analytical chemistry are enhancing our understanding of hydrocarbon biodegradation and thus bioremediation of oil-polluted intertidal wetlands.

  4. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications.

    Science.gov (United States)

    Biache, Coralie; Mansuy-Huault, Laurence; Faure, Pierre

    2014-02-28

    Based on the isomer stability during their formation, PAH diagnostic ratios have been extensively used to determine PAH contamination origin. Nevertheless, it is known that these isomers do not present the same physicochemical properties and that reactions occurring during the transport from an atmospheric source induce changes in the diagnostic ratios. Yet, little is known about reactions occurring in soils contaminated by other sources such as coal tar and coal. Innovative batch experiments of abiotic oxidation and microbial incubations were performed to discriminate independently the influence of these two major processes occurring in soils on the diagnostic ratios of major PAH sources. Three samples were studied, a coking plant soil and two major PAH sources in this soil, namely coal and coal tar. The combustion signature of the coking plant soil showed the major influence of coal tar in the soil sample composition. Some of these ratios were drastically affected by oxidation and biodegradation processes inducing a change in the source signature. The coal tar signature changed to petrogenic source after oxidation with the anthracene/(anthracene+phenanthrene) ratio. According to this ratio, the initial petrogenic signature of the coal changed to a combustion signature after the biodegradation experiment.

  5. Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil

    OpenAIRE

    Viñas, Marc; Sabaté, Jordi; Espuny, María José; Solanas, Anna M.

    2005-01-01

    Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87...

  6. Review on the Biodegradation and Conversion Mechanisms of Typical Polycyclic Aromatic Hydrocarbons%典型多环芳烃生物降解及转化机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    姜岩; 杨颖; 张贤明

    2014-01-01

    多环芳烃(PAHs)作为重要的难降解环境污染物,因其突出的危害性,对其进行生物降解已受到越来越多的关注。针对不同相对分子质量的典型PAHs ,概述了细菌、真菌、藻类等PAHs生物降解菌种的研究进展;以萘、蒽、菲和苯并[a]芘4种常见环境污染物为模型化合物,论述了 PAHs的生物转化机制;从PAHs的生物可利用性、微生物的活性,以及环境因子方面,分析了PAHs生物降解过程中的关键影响因素。鉴于环境中 PAHs具有组分多样性的特点,指出构建高效菌群,进行多菌种联合降解将成为开展 PA H s生物降解的重要方法,既具有很强的针对性又可提高现有资源的利用率,可以有效地避免当前以菌种开发为主要研究方向的偶然性和随机性。%Polycyclic aromatic hydrocarbons(PAHs) ,a class of crucially persistent pollutants with two or more fused benzene rings , have attracted growing concern due to their carcinogenic , teratogenic and mutagenic effects . The biodegradation progress of typical PAHs with different molecular masses by microorganisms including bacteria , fungi and algae isolated from contaminated soil or sediments is reviewed . The biotransformation mechanisms , key enzymes and metabolic pathways of four representative pollutants of naphthalene ,anthracene ,phenanthrene and benzo[a] pyrene were discussed . Still , the crucial impacting factors , such as bioavailability of PAHs , microbial activity and environmental factors , to increase biodegradation rate are introduced . Finally ,it is advanced that studies on a high‐effective microbial consortium and synergetic degradation will be considered as the important means aiming at the diversity of PAHs in the environment , w hich can effectively avoid the contingency and randomness in the development of PA H‐degrading microbes as main direction , and is niche targeting and effective to improve the utilization of

  7. Biodegradation of Petroleum Hydrocarbons in Soil

    Directory of Open Access Journals (Sweden)

    MR Mehrasbi

    2003-09-01

    Full Text Available Biodegradation of petroleum hydrocarbons (20 g/kg dw soil was investigated in 3 media, differing in the kind of petroleum fractions. In the laboratory experiments, during 5 months, the activities of petroleum hydrocarbon-degrading microorganisms and dehydrogenase activity of soil was determined. Gas chromatographic analysis showed the biological decontaminations for gas oil, kerosene and synthetic mixture (gas oil, kerosene and furnace oil are 60 %, 36 % and 55 %, respectively. Dehydrogenase activity which was assessed by TTC technique, correlated significantly positive with the numbers of microorganisms. The Spearman rank correlation coefficients(r in contaminated soils with gas oil, kerosene and synthetic mixture were 0.79, 0.80 and 0.69, respectively.

  8. Co-Metabolism Biodegradation of Polycyclic Aromatic Hydrocarbons With High Relative Molecular Mass%高相对分子质量多环芳烃的生物共代谢降解

    Institute of Scientific and Technical Information of China (English)

    李政; 顾贵洲; 赵朝成; 赵东风; 杨磊

    2015-01-01

    为了研究高相对分子质量多环芳烃(PAHs)芘的生物共代谢降解,考察了低相对分子质量PAHs芴和菲的加入对芘产生的影响,并采用GC-MS测定了生物降解后代谢产物的组成。结果表明,单一PAHs的生物降解中,芴在培养的第5 d已被完全降解,生成5种代谢产物,菲在第7 d降解率达到98.93%,生成10种代谢产物,芘在第9 d时降解率仅为65.73%,生成较多代谢产物,其中6种可基本定性;3种PAHs混合降解时,芴、菲和芘分别在第3d、5d和8d完全被除去,共产生8种代谢产物,其中芘在第8d时只产生了3种代谢产物。芴和菲的存在不仅促进了芘的完全快速降解,而且能够促进芘代谢产物的去除,芘的存在也促进了芴和菲的降解和代谢产物的去除。%In order to study the co-metabolism biodegradation of the polycyclic aromatic hydrocarbons (PAHs) with high relative molecular mass ,an influence of the addition of fluorene and phenanthrene ,the PAHs with low relative molecular mass ,on pyrene biodegradation was investigated and the composition of the biodegradation metabolites was determined by GC-MS .The results showed that in the biodegradation of single PAHs , fluorene was completely degraded throughout 5 d incubation to generate five metabolites , the degradation rate of phenanthrene reached 98.93% to generate ten metainbolites after 7 d incubation and only 65.73% of pyrene was degraded throughout 9 d incubation to generate more metabolites ,six of w hich could be qualitative . In the degradation of mixture of fluorene ,phenanthrene and pyrene ,they were completely removed after 3 d ,5 d and 8 d incubation ,respectively ,and a total of eight metabolites were produced ,and only three metabolites were produced from pyrene after 8 d incubation .Therefore ,fluorene and phenanthrene not only promoted the degradation of pyrene rapidly and completely , but also promoted the removal of the

  9. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.

    Science.gov (United States)

    Stroud, J L; Paton, G I; Semple, K T

    2007-05-01

    Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.

  10. Methylobacterium populi VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation.

    Science.gov (United States)

    Ventorino, Valeria; Sannino, Filomena; Piccolo, Alessandro; Cafaro, Valeria; Carotenuto, Rita; Pepe, Olimpia

    2014-01-01

    The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate) in Cengio (Savona, Italy). The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA) and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants.

  11. Methylobacterium populi VP2: Plant Growth-Promoting Bacterium Isolated from a Highly Polluted Environment for Polycyclic Aromatic Hydrocarbon (PAH Biodegradation

    Directory of Open Access Journals (Sweden)

    Valeria Ventorino

    2014-01-01

    Full Text Available The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate in Cengio (Savona, Italy. The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants.

  12. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil.

  13. Microbial and molecular techniques to evaluate and to implement in-situ biodegradation potential and activity at sites contaminated with aromatic and chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Karg, F. [HPC Envirotec / France and HPC AG (Germany); Henkler, Ch. [Planreal (Switzerland)

    2005-07-01

    (Biochemical Laboratory of the Medical Faculty) the first PBG-SP : 'Pole Biotechnologique et Genetique - Sites Pollues' in France. The modern tools and approaches have been applied successfully at several field sites for the evaluation, implementation and on-going monitoring of the bio-restoration/ attenuation of various aromatic and chlorinated compounds. (authors)

  14. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  15. Use of slow-release fertilizers and biopolymers for stimulating hydrocarbon biodegradation in oil-contaminated beach sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ran Xu; Li Ching Yong; Yong Giak Lim; Obbard, J.P. [National University of Singapore (Singapore). Department of Chemical and Biomolecular Engineering

    2005-07-01

    Nutrient concentration and hydrocarbon bioavailability are key factors affecting biodegradation rates of oil in contaminated beach sediments. The effect of a slow-release fertilizer, Osmocote, as well as two biopolymers, chitin and chitosan, on the bioremediation of oil-spiked beach sediments was investigated using an open irrigation system over a 56-day period under laboratory conditions. Osmocote was effective in sustaining a high level of nutrients in leached sediments, as well as elevated levels of microbial activity and rates of hydrocarbon biodegradation. Chitin was more biodegradable than chitosan and gradually released nitrogen into the sediment. The addition of chitin or chitosan to the Osmocote amended sediments enhanced biodegradation rates of the alkanes relative to the presence of Osmocote alone, where chitosan was more effective than chitin due to its greater oil sorption capacity. Furthermore, chitosan significantly enhanced the biodegradation rates of all target polycyclic aromatic hydrocarbons. (author)

  16. Bioavailability and biodegradation of polycyclic aromatic hydrocarbons.

    NARCIS (Netherlands)

    Volkering, F.

    1996-01-01

    One of the main problems in biological soil remediation is the slow or incomplete degradation of hydrophobic organic pollutants. The principal reason for this problem is the fact that these compounds bind strongly to the soil matrix or occur as a separate non- aqueous phase in the soil. As most micr

  17. [Biodegradability of the components of natural hydrocarbon mixtures previously submitted to landfarming].

    Science.gov (United States)

    Pucci, G N; Pucci, O H

    2003-01-01

    The complex composition of the crude oil and the hydrocarbons that integrate the waste of the different stages of the oil industry turn this product a mixture that presents different difficulties for its elimination by biological methods. The objective of this paper was to study the biodegradation potential of autochthonous bacterial communities on hydrocarbons obtained from four polluted places and subjected to landfarming biorremediation system during a decade. The results showed a marked difference in biodegradability of the three main fractions of crude oil, aliphatic, aromatic, and polar fractions, obtained by column chromatography. All fractions were used as carbon source and energy. There were variations in the production of biomass among the different fractions as well as in the kinetics of biodegradation, according to the composition of each fraction.

  18. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants.

    OpenAIRE

    Tiehm, A

    1994-01-01

    The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation wa...

  19. Structural Evolution of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hammonds, Mark; Candian, Alessandra; Mori, Tamami; Usui, Fumihiko; Onaka, Takashi

    2015-08-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important reservoir for molecular carbon in the interstellar medium (ISM), and investigations into their chemistry and behaviour may be important to the understanding of how carbon is processed from simple forms into complex prebiotic molecules such as those detected in chondritic meteorites. In this study, infrared astronomical data from AKARI and other observatories are used together with laboratory and theoretical data to study variations in the structure of emitting PAHs in interstellar environments using spectroscopic decomposition techniques and bands arising from carbon-hydrogen bond vibrations at wavelengths from 3 - 14 microns. Results and inferences are discussed in terms of the processing of large carbonaceous molecules in astrophysical environments.

  20. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability.

  1. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil.

    Science.gov (United States)

    Hinchee, R E; Ong, S K

    1992-10-01

    An in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsaturated zone with air and periodically monitoring the depletion of oxygen (O2) and production of carbon dioxide (CO2) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O2/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O2 utilization were generally more reliable (especially for alkaline soils) than rates based on CO2 production. CO2 produced from microbial respiration was probably converted to carbonate under alkaline conditions.

  2. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

    KAUST Repository

    González-Gaya, Belén

    2016-05-16

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 10 2 -10 3 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr -1, around 15% of the oceanic CO2 uptake. © 2016 Macmillan Publishers Limited.

  3. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    Science.gov (United States)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  4. Environmental Remediation: Removal of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nkansah, Marian Asantewah

    2012-11-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic compounds. They are contaminants that are resistant to degradation and can remain in the environment for long periods due to their high degree of conjugation, and aromaticity. PAHs are present in industrial effluents as products of incomplete combustion processes of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures of these PAHs, and their transport and refining process can also result in the release of PAHs. It is therefore prudent that such effluents are treated before discharge into the environment. In this project, different approaches to the treatment of PAHs have been investigated. Hydrous pyrolysis has been explored as a potential technique for degrading PAHs in water using anthracene as a model compound. The experiments were performed under different conditions of temperature, substrate, redox systems and durations. The conditions include oxidising systems comprising pure water, hydrogen peroxide and Nafion-SiO2 solid catalyst in water; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts to assess a range of reactivities. Products observed in GCMS analysis of the extract from the water phase include anthrone, anthraquinone, xanthone and multiple hydro-anthracene derivatives (Paper I). In addition a modified version of the Nafion-SiO2 solid catalyst in water oxidising system was tested; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts were adopted for the conversion of a mixture of anthracene, fluorene and fluoranthene. The rate of conversion in the mixture was high as compared to that of only anthracene (Paper II). Also the use of LECA (Lightweight expanded clay aggregates) as an adsorbent (Paper III) for PAHs (phenanthrene, fluoranthene and pyrene) removal from water has been.(Author)

  5. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures

    NARCIS (Netherlands)

    Meindersma, G. Wytze; Podt, Anita (J.G.); Haan, de André B.

    2005-01-01

    The separation of aromatic hydrocarbons (benzene, toluene, ethyl benzene and xylenes) from C4 to C10 aliphatic hydrocarbon mixtures is challenging since these hydrocarbons have boiling points in a close range and several combinations form azeotropes. In this work, we investigated the separation of t

  6. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  7. CHARACTERISTICS OF AROMATIC HYDROCARBONS IN CRUDE OILS

    Institute of Scientific and Technical Information of China (English)

    罗斌杰; 李新宇

    1994-01-01

    Crude oils from different basins in China ,Australia and New Zealand were analyzed to character-ize aromatic hydrocarbons produced in different environments by means of GC/MS .The distributions of some common compounds such as naphthalene, phenanthrene, chrysene,pyrene, fluoranthene, fluorine,dibenzothiophene and dibenzofuran were found to be related to sedimentary environments.Especially the relative contents of fluorenes ,dibenzofurans and dibenzothiophenes can be used to di-vide the oils into three types(1) saline or marine carbonate environment;(2) fresh-brackish water lake;(3) swamp and coal-bearing sequence.A romatic biomarkers (e.g.retene, nor-abietene,derivatives of lupeol and β-amyrin)represent higher plant inpults with respect to the precursors of crude oils. High contents of sulphur-containing compounds like benzothiophene and dibenzothiophene series indicate a reducing sulphur-abundant diagenetic condition .The benzohopane series (C32-C35) was identified both in hypersaline and coal-bearing basins, and it is postulated to be the result of strong bacteria activity.In all the sam-ples, a complete series of alkyl benzenes was analyzed .The similarity of its carbon-number distrbu-tion with that of n-alkanes probably suggests their genetic relationship. The distribution of the methylphenanthrene series reflects the evolution degree of crude oils,MPI holding a positive correlation with C29-sterane 20S/(20S+20R).

  8. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  9. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea

    Science.gov (United States)

    Park, Seung S.; Kim, Young J.; Kang, Chang H.

    Daily particulate- and vapor-phase polycyclic aromatic hydrocarbons (PAH) samples were collected at an urban site in Seoul, Korea, during five intensive sampling campaigns between October 1998 and December 1999. PAH samples collected on quartz fiber filters and PUF plugs were first extracted using dichloromethane with ultrasonication and supercritical fluid extraction methods, respectively, and then analyzed by GC/MSD/SIM. Seasonal trends in atmospheric PAH concentrations in the study area were highly influenced by fossil fuel usage for domestic heating, boundary layer height, and air temperature. The relative benzo[a]pyrene amount and particulate organic to elemental carbon ratio calculated from the measurement results suggested that photo-oxidation is not an important factor in the variation of PAH concentrations during the summer sampling periods. Correlation studies between specific PAH of the individual factors identified by principal component factor analysis and meteorological parameters revealed that both temperature and relative humidity gave greater effects on the semi-volatile PAH, PHEN and FLT, rather than on the heavier PAH, B(b+k)F and BghiP.

  10. Biochemical ripening of dredged sediments. Part 2. Degradation of polycyclic aromatic hydrocarbons and total petroleum hydorcarbons in slurried and consolidated sediments

    NARCIS (Netherlands)

    Vermeulen, J.; Gool, van M.P.M.; Mentink, G.H.; Joziasse, J.; Bruning, H.; Grotenhuis, J.T.C.

    2007-01-01

    Ripening of polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) polluted dredged sediment can be considered as a bioremediation technique. Aerobic biodegradation of PAH and TPH was studied in five previously anaerobic-slurried sediments during a 350-d laboratory incubation

  11. BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW

    Science.gov (United States)

    Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...

  12. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.

    Science.gov (United States)

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie

    2016-02-01

    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil.

  13. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J. [Museum National d`Histoire Naturelle, Laboratoire de Cryptogamie, 12 rue Buffon, 75005 Paris (France); Morel, J. [Ecole Nationale Superieure d`Agronomie et des Industries Alimentaires de Nancy, Laboratoire Sols et Environnement, INRA, 2 avenue de la Foret de Haye, B.P. 172, F-54505 Vandoeuvre-les-Nancy (France)

    1999-03-09

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m{sup -2} contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation

  14. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J. [Museum National d' Histoire Naturelle, Laboratoire de Cryptogamie, 12 rue Buffon, 75005 Paris (France); Morel, J. [Ecole Nationale Superieure d' Agronomie et des Industries Alimentaires de Nancy, Laboratoire Sols et Environnement, INRA, 2 avenue de la Foret de Haye, B.P. 172, F-54505 Vandoeuvre-les-Nancy (France)

    1999-03-09

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m{sup -2} contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    Science.gov (United States)

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation.

  16. The biodegradation vs. biotransformation of fluorosubstituted aromatics.

    Science.gov (United States)

    Kiel, Martina; Engesser, Karl-Heinrich

    2015-09-01

    Fluoroaromatics are widely and--in recent years--increasingly used as agrochemicals, starting materials for chemical syntheses and especially pharmaceuticals. This originates from the special properties the carbon-fluorine bond is imposing on organic molecules. Hence, fluoro-substituted compounds more and more are considered to be important potential environmental contaminants. On the other hand, the microbial potentials for their transformation and mineralization have received less attention in comparison to other haloaromatics. Due to the high electronegativity of the fluorine atom, its small size, and the extraordinary strength of the C-F bond, enzymes and mechanisms known to facilitate the degradation of chloro- or bromoarenes are not necessarily equally active with fluoroaromatics. Here, we review the literature on the microbial degradation of ring and side-chain fluorinated aromatic compounds under aerobic and anaerobic conditions, with particular emphasis being placed on the mechanisms of defluorination reactions.

  17. Partition of polycyclic aromatic hydrocarbons on organobentonites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of organobentonites synthesized by exchanging organiccation such as dodecyltri-methylammonium (DTMA),benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene,anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on Foundation item: the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd)between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene,naphthalene, acenaphthene were 2.621x105, 2.106x105, 2.247x104,5.085x104, respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between lgKoc and 1gkow, 1gKoc and 1gS for PAHs in the system of water

  18. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  19. Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil.

    Science.gov (United States)

    Yanto, Dede Heri Yuli; Tachibana, Sanro

    2014-08-15

    The potential of fungal co-culture of the filamentous Pestalotiopsis sp. NG007 with four different basidiomycetes--Trametes versicolor U97, Pleurotus ostreatus PL1, Cerena sp. F0607, and Polyporus sp. S133--for accelerating biodegradation of petroleum hydrocarbons (PHCs) was studied using three different physicochemical characteristic PHCs in soil. All the combinations showed a mutual intermingling mycelial interaction on the agar plates. However, only NG007/S133 (50/50) exhibited an optimum growth rate and enzymatic activities that supported the degradation of asphalt in soil. The co-culture also degraded all fractions at even higher concentrations of the different PHCs. In addition, asphaltene, which is a difficult fraction for a single microorganism to degrade, was markedly degraded by the co-culture, which indicated that the simultaneous biodegradation of aliphatic, aromatic, resin, and asphaltene fractions had occurred in the co-culture. An examination of in-vitro degradation by the crude enzymes and the retrieval fungal culture from the soil after the experiment confirmed the accelerated biodegradation due to enhanced enzyme activities in the co-culture. The addition of piperonyl butoxide or AgNO3 inhibited biodegradation by 81-99%, which demonstrated the important role of P450 monooxygenases and/or dioxygenases in the initial degradation of the aliphatic and aromatic fractions in PHCs.

  20. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.

    Science.gov (United States)

    Almeida, Raquel; Mucha, Ana P; Teixeira, Catarina; Bordalo, Adriano A; Almeida, C Marisa R

    2013-02-01

    In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.

  1. Biotransformation and Biodegradation of N-Substituted Aromatics in Methanogenic Granular Sludge.

    NARCIS (Netherlands)

    Razo Flores, E.

    1997-01-01

    N-substituted aromatic compounds are environmental contaminants associated with the production and use of dyes, explosives, pesticides and pharmaceuticals among others. Nitro- and azo-substituted aromatic compounds with strong electron withdrawing groups are poorly biodegradable in aerobic treatment

  2. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9.

    Science.gov (United States)

    Morán, A C; Olivera, N; Commendatore, M; Esteves, J L; Siñeriz, F

    2000-01-01

    A non-sterile biosurfactant preparation (surfactin) was obtained from a 24-h culture of Bacillus subtilis O9 grown on sucrose and used to study its effect on the biodegradation of hydrocarbon wastes by an indigenous microbial community at the Erlenmeyer-flask scale. Crude biosurfactant was added to the cultures to obtain concentrations above and below the critical micelle concentration (CMC). Lower concentration affected neither biodegradation nor microbial growth. Higher concentration gave higher cell concentrations. Biodegradation of aliphatic hydrocarbons increased from 20.9 to 35.5% and in the case of aromatic hydrocarbons from nil to 41%, compared to the culture without biosurfactant. The enhancement effect of biosurfactant addition was more noticeable in the case of long chain alkanes. Pristane and phytane isoprenoids were degraded to the same extent as n-C17 and n-C18 alkanes and, consequently, no decrease in the ratios n-C17/pri and n-C18/phy was observed. Rapid production of surfactin crude preparation could make it practical for bioremediation of ship bilge wastes.

  3. Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay, Japan.

    Science.gov (United States)

    Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki

    2014-08-30

    Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995.

  4. Environmental Behaviors and Toxicities of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Hayakawa, Kazuichi

    2016-01-01

    Airborne particulate matter (PM) has been collected at four cities in Japan starting in the late 1990s, at five or more major cities in China, Korea and Russia starting in 2001 and at the Noto Peninsula starting in 2004. Nine polycyclic aromatic hydrocarbons (PAHs) and eleven nitropolycyclic aromatic hydrocarbons (NPAHs) were determined by HPLC with fluorescence and chemiluminescence detections, respectively. Annual concentrations of PAHs and NPAHs were in the order, China>Russia≫Korea=Japan, with seasonal change (winter>summer). During the observation period, concentrations of PAHs and NPAHs in Japanese cities significantly decreased but the increases in the PAH concentration were observed in Chinese and Russian cities. Concentrations of PAHs and NPAHs were higher in the Northern China than those in the Southern China. At the Noto peninsula, which is in the main path of winter northwest winds and a year-round jet stream that blow from the Asian continent to Japan, the concentrations were high in winter and low in summer every year. A cluster analysis and back trajectory analysis indicated that PAHs and NPAHs were long-range transported from Northeastern China, where coal burning systems such as coal-heating boilers are considered to be the major contributors of PAHs and NPAHs. A dramatic change in atmospheric concentrations of PAHs and NPAHs in East Asia suggests the rapid and large change of PM2.5 pollution in East Asia. Considering the adverse health effects of PM2.5, continuous monitoring of atmospheric PAHs and NPAHs is necessary in this area.

  5. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B--Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-07-01

    Present study focused on the biodegradation of various heterocyclic nitrogen, sulfur, and oxygen (NSO) compounds using naphthalene-enriched culture. Target compounds in the study were pyridine, quinoline, benzothiophene, and benzofuran. Screening studies were carried out using different microbial consortia enriched with specific polycyclic aromatic hydrocarbon (PAH) and NSO compounds. Among different microbial consortia, naphthalene-enriched culture was the most efficient consortium based on high substrate degradation rate. Substrate degradation rate with naphthalene-enriched culture followed the order pyridine > quinoline > benzofuran > benzothiophene. Benzothiophene and benzofuran were found to be highly recalcitrant pollutants. Benzothiophene could not be biodegraded when concentration was above 50 mg/l. It was observed that 2-(1H)-quinolinone, benzothiophene-2-one, and benzofuran-2,3-dione were formed as metabolic intermediates during biodegradation of quinoline, benzothiophene, and benzofuran, respectively. Quinoline-N and pyridine-N were transformed into free ammonium ions during the biodegradation process. Biodegradation pathways for various NSO compounds are proposed. Monod inhibition model was able to simulate single substrate biodegradation kinetics satisfactorily. Benzothiophene and benzofuran biodegradation kinetics, in presence of acetone, was simulated using a generalized multi-substrate model.

  6. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  7. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study

    Science.gov (United States)

    Chen, Yu Dao; Barker, James F.; Gui, Lai

    2008-02-01

    Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600˜800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron

  8. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Guermouche M'rassi, A; Bensalah, F; Gury, J; Duran, R

    2015-10-01

    Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments.

  9. Environmental Remediation: Removal of polycyclic aromatic hydrocarbons Dissertation

    OpenAIRE

    Nkansah, Marian Asantewah

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic compounds. They are contaminants that are resistant to degradation and can remain in the environment for long periods due to their high degree of conjugation, and aromaticity. PAHs are present in industrial effluents as products of incomplete combustion processes of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures of these PAHs, and their transport and refi...

  10. Exposure of iron foundry workers to polycyclic aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Omland, Øyvind; Sherson, D; Hansen, Åse Marie

    1994-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in foundry workers has been evaluated by determination of benzo(a)pyrene-serum albumin adducts and urinary 1-hydroxypyrene. Benzo(a)pyrene binding to albumin and 1-hydroxypyrene were quantitatively measured by enzyme linked immunosorbent assay...... than in smoking and non-smoking controls (0 (0-0.022) and 0 (0-0.010) mumol/mol creatinine). Dose-response relations between total PAH, pyrene, carcinogenic PAHs, and 1-hydroxypyrene for smokers, and polycyclic aromatic hydrocarbons adsorbed to dust for non-smokers are suggested. Exposure to PAHs...

  11. Polycyclic aromatic hydrocarbons in air samples of meat smokehouses

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Olsen, I L; Poulsen, O M

    1992-01-01

    In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors or approx......In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors...

  12. Comments on Coulomb pairing in aromatic hydrocarbons

    CERN Document Server

    Huber, D L

    2013-01-01

    Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.

  13. Determination of the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants.

    Science.gov (United States)

    Uematsu, Yoko; Suzuki, Kumi; Ogimoto, Mami

    2016-01-01

    A method was developed to determine the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants; a survey was also conducted of commercial lubricants. Hydrocarbons in lubricants were separated from the matrix components of lubricants using a silica gel solid phase extraction (SPE) column. Normal-phase liquid chromatography (NPLC) coupled with an evaporative light-scattering detector (ELSD) was used to determine the aromatic hydrocarbon to total hydrocarbon ratio. Size exclusion chromatography (SEC) coupled with a diode array detector (DAD) and a refractive index detector (RID) was used to estimate carbon numbers and the presence of aromatic hydrocarbons, which supplemented the results obtained by NPLC/ELSD. Aromatic hydrocarbons were not detected in 12 lubricants specified for use for incidental food contact, but were detected in 13 out of 22 lubricants non-specified for incidental food contact at a ratio up to 18%. They were also detected in 10 out of 12 lubricants collected at food factories at a ratio up to 13%. The centre carbon numbers of hydrocarbons in commercial lubricants were estimated to be between C16 and C50.

  14. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    Science.gov (United States)

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment.

  15. Availability of polycyclic aromatic hydrocarbons in aging soils

    Energy Technology Data Exchange (ETDEWEB)

    Ling Wanting; Zeng Yuechun; Gao Yanzheng; Dang Hongjiao; Zhu Xuezhu [Coll. of Resource and Environmental Sciences, Nanjing Agricultural Univ. (China)

    2010-07-15

    Purpose: The soil contamination by hydrophobic organic contaminants (HOCs), such as polycyclic aromatic hydrocarbons (PAHs), poses great threats to human health and ecological security and attracts worldwide concerns. The total HOC concentrations overestimate its available fraction to the soil biota. Increased understanding of the availabilities of PAHs in soil environment will have considerable benefits for their risk assessment and be very instructive to food safety and remediation strategies in contaminated sites. However, the availability of PAHs in aging soils and particularly the correlations of the availabilities with their forms in soils have yet to be elucidated. In this work, the availabilities of PAHs in aging soils were evaluated using a sequential mild extraction technique. Materials and methods: Four typical zonal soils in China previously free of PAHs were collected from A (0-20 cm) horizon, air-dried, and sieved. Soils were spiked with a solution of phenanthrene and pyrene as representative PAHs in acetone. After the acetone evaporated off, the treated soils were progressively diluted with unspiked soils and sieved again several times to homogenize the soil samples. The forms of PAHs in soils were experimented using microcosms that are similar to those reported in literature. Various treated soils were packed into amber glass microcosms (each with 25 g soil). Three replications were given for each treatment. NaN{sub 3} solution (0.5%) was added to some microcosms in order to get the microbe-inhibited treatments. The soil water contents were adjusted to be 20% of soil water-holding capacity. After incubation for 0, 2, 4, 8, 12, and 16 weeks in microcosms with a temperature of 25 C, the soils were sampled. PAHs were then extracted by a sequential mild extraction technique, and their forms and availabilities were determined. Results and discussion: The available residual concentrations of phenanthrene and pyrene generally decreased with aging time, and

  16. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation.

    Science.gov (United States)

    Brakstad, Odd G; Bonaunet, Kristin

    2006-02-01

    In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 degrees C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C(10)-C(36) n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5 degrees C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0 degree C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0 degree C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5 degrees C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures bacteria may play an important role during oil HC biodegradation in seawater close to freezing point.

  17. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    Energy Technology Data Exchange (ETDEWEB)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-07-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  18. Interactions of polyhalogeneted aromatic hydrocarbons with thyroid hormone metabolism.

    NARCIS (Netherlands)

    Schuur, A.G.

    1998-01-01

    This thesis deals with the possible interactions of polyhalogenated aromatic hydrocarbons and/or their metabolites with thyroid hormone metabolism. This chapter summarizes firstly the effects of thyroid hormone on the induction of biotransformation enzymes by PHAHs. Secondly, the results on the inhi

  19. Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Aaslyng, Margit Dall; Meinert, Lene

    2015-01-01

    Barbecuing is known to result in the formation of polycyclic aromatic hydrocarbons (PAHs). A validated method that employed pressurized liquid extraction (PLE), gel permeation chromatography (GPC) followed by solid phase extraction (SPE) on Silica and analytical determination by GC-MS was applied...

  20. Bioavailability of Polycyclic Aromatic Hydrocarbons in Soils and Sediments

    NARCIS (Netherlands)

    Cuypers, M.P.

    2001-01-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of priority pollutants which are of increasing environmental concern because of their adverse effects on humans, animals, and plants. Soils and sediments generally serve as a sink for PAHs, which leads to the accumulation of PAHs at contamin

  1. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  2. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Giessing, Anders; Rasmussen, Lene Juel

    2008-01-01

    Deposit-feeding polychaetes constitute the dominant macrofauna in marine environments that tend to be depositional centers for organic matter and contaminants. Polychaetes are known to accumulate polycyclic aromatic hydrocarbons (PAHs) from both particulate and dissolved phases but less is known...

  3. Integrated Environmental Quality Objectives for Polycyclic Aromatic Hydrocarbons (PAHs)

    NARCIS (Netherlands)

    Kalf DF; Crommentuijn GH; Posthumus R; Plassche EJ van de; ACT

    1995-01-01

    In the present report Maximum Permissible Concentrations (MPCs) are derived for 10 Polycyclic Aromatic Hydrocarbons (PAHs). For the aquatic environment MPCs are derived from the available experimental data. For 3 PAHs no experimental data are available. These MPCs are calculated using the QSAR-appro

  4. THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING

    Science.gov (United States)

    The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...

  5. Polycyclic aromatic hydrocarbons in soils around Guanting Reservoir, Beijing, China

    NARCIS (Netherlands)

    Jiao, W.T.; Lu, Y.L.; Wang, T.Y.; Li, J.; Han, Jingyi; Wang, G.; Hu, W.Y.

    2009-01-01

    The concentrations of 16 polycyclic aromatic hydrocarbons ( 16PAHs) were measured by gas chromatography equipped with a mass spectrometry detector (GC-MS) in 56 topsoil samples around Guanting Reservior (GTR), which is an important water source for Beijing. Low to medium levels of PAH contamination

  6. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.;

    1993-01-01

    Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... of toluene, phenol, the cresols (o-, m- and p-cresol) and the dimethylphenols 2,4-DMP and 3,4-DMP at both 10° and 20°C. Benzene, the xylenes, napthalene, 2,3-DMP, 2,5-DMP, 2,6-DMP and 3,5-DMP were resistant to biodegradation during 7–12 months of incubation. It was demonstrated that the degradation...

  7. Bacterial community changes with N'-N' dimethylforamide (DMF) additives during polycyclic aromatic hydrocarbons (PAH) biodegardation.

    Science.gov (United States)

    Chang, Y T; Lee, J F; Chao, H P; Liao, W L

    2006-01-01

    This study examined the changes in the bacterial community during biodegradation of polycyclic aromatic hydrocarbon (PAH) substrate when N'-N' dimethylformamide (DMF) was added. The microbial populations that biodegrade the PAH substrate were assessed by Fluorescence in-situ hybridization (FISH) and changed from 49.45% Archaea and 49.15% Bacteria to 42.00% Archaea and 51.78% Bacteria when the PAH was supplemented with DMF. Nine microorganisms were classified as Gram-negative alpha-, beta- and gamma-Proteobacteria bacteria during biodegradation of PAH alone by the Biolog system. Incentive eleven microorganisms obtained from the PAH-DMF mixed substrate were found to be beta-, gamma-Proteobacteria bacteria, high G+C Gram-positive bacteria (HGC), low G+C Gram-positive bacteria (LGC) and there was even one Deinococcus-Thermus strain; this indicates greater biodiversity. The numbers in the Pseudomonad group were as high as 10(5)-10(6) CFU ml(-1), suggesting that this group plays an important role in PAH biodegradation. Community-Level Physiological Profiling (CLPP) and physiological characterization were different in the PAH biodegradation process with and without DMF. Utilization of the 95 carbon sources from the Biolog GN2 microtiter plate was greater during PAH biodegradation when PAH is present alone compared to that in the presence of DMF. The range of enzymatic activities during PAH biodegradation was lower in the presence of DMF. These results show that DMF should be used with caution when PAH is a substrate during laboratory or pilot biotreatability studies.

  8. Correlation between atmospheric polycyclic aromatic hydrocarbons exposure and urinary hydroxyl metabolites of polycyclic aromatic hydrocarbons in elderly population in Tianjin

    Institute of Scientific and Technical Information of China (English)

    秦晓蕾

    2013-01-01

    Objective To identify suitable hydroxyl polycyclic aromatic hydrocarbons(OH-PAHs) for co-evaluation of internal exposure level of PAHs by simultaneous determination of a variety of OH-PAHs in urine. Methods The 24-h individual particulate matter and morning urine

  9. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon.

    Science.gov (United States)

    Camilli, Richard; Reddy, Christopher M; Yoerger, Dana R; Van Mooy, Benjamin A S; Jakuba, Michael V; Kinsey, James C; McIntyre, Cameron P; Sylva, Sean P; Maloney, James V

    2010-10-08

    The Deepwater Horizon blowout is the largest offshore oil spill in history. We present results from a subsurface hydrocarbon survey using an autonomous underwater vehicle and a ship-cabled sampler. Our findings indicate the presence of a continuous plume of oil, more than 35 kilometers in length, at approximately 1100 meters depth that persisted for months without substantial biodegradation. Samples collected from within the plume reveal monoaromatic petroleum hydrocarbon concentrations in excess of 50 micrograms per liter. These data indicate that monoaromatic input to this plume was at least 5500 kilograms per day, which is more than double the total source rate of all natural seeps of the monoaromatic petroleum hydrocarbons in the northern Gulf of Mexico. Dissolved oxygen concentrations suggest that microbial respiration rates within the plume were not appreciably more than 1 micromolar oxygen per day.

  10. Magnetic Susceptibility Measurements as a Proxy for Hydrocarbon Biodegradation

    Science.gov (United States)

    Mewafy, F.; Atekwana, E. A.; Slater, L. D.; Werkema, D.; Revil, A.; Ntarlagiannis, D.; Skold, M.

    2011-12-01

    Magnetic susceptibility (MS) measurements have been commonly used in paleoclimate studies, as a proxy for environmental pollution such as heavy metal contamination, and for delineating zones of oil seeps related to hydrocarbon exploration. Few studies have assessed the use of MS measurements for mapping zones of oil pollution. In this study, we investigated the variation in magnetic susceptibility across a hydrocarbon contaminated site undergoing biodegradation. Our objective was to investigate if MS measurements could be used as a proxy indicator of intrinsic bioremediation linked to the activity of iron reducing bacteria. An improved understanding of the mechanisms generating geophysical signatures associated with microbial enzymatic activity could permit the development of geophysical imaging technologies for long-term, minimally invasive and sustainable monitoring of natural biodegradation at oil spill sites. We used a Bartington MS probe to measure MS data along fifteen boreholes within contaminated (both free phase and dissolved phase hydrocarbon plumes) and clean areas. Our results show the following: (1) an enhanced zone of MS straddling the water table at the contaminated locations, not observed at the clean locations; (2) MS values within the free product plume are higher compared to values within the dissolved product plume; (3) the MS values within the vadoze zone above the free product plume are higher compared to values within the dissolved product plume; 4) the zone of high MS is thicker within the free product plume compared to the dissolved product plume. We suggest that the zone of enhanced MS results from the precipitation of magnetite related to the oxidation of the hydrocarbons coupled to iron reduction. Our data documents a strong correlation between MS and hydrocarbon concentration. We conclude that recognition of these zones of enhanced magnetite formation allows for the application of MS measurements as a: (1) low cost, rapid monitoring

  11. Bacterial Interaction in the Biodegradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons%高分子量多环芳烃降解过程中菌种间的相互作用

    Institute of Scientific and Technical Information of China (English)

    许光素; 崔志松; 郑立; 臧家业; 杨佰娟; 宋一之; 侯伟

    2013-01-01

    为研究海洋微生物间降解高分子量多环芳烃(High molecular weight-polycyclic aromatic hydrocarbons,简称HMW-PAHs)过程中的相互作用,筛选具有协同效应的菌群,以1株可降解HMW-PAHs的解环菌属细菌Cycloclasticus sp.PY97M和4株其他属细菌分别构建二元菌群降解芘和荧蒽,通过GC-MS测定HMW-PAHs降解率,并采用发光细菌法测定其降解前后的生物毒性.结果表明,由PY97M和Marinobacter nanhaiticus D15-8WT组成的菌群(PY97M+D15-8W)对初始质量浓度均为0.1 g/L的单一碳源芘、荧蒽21 d后的降解率分别为67.40%和62.79%,相对于纯培养PY97M分别提高了20.30%和20.29%.另外,该菌群对初始质量浓度均为0.1 g/L的芘和荧蒽组成的混合碳源14 d后的降解率分别为71.05%和67.36%;生物毒性检测结果显示,HMW-PAHs经该菌群降解后其急性毒性和遗传毒性相对于母体都有显著降低.解环菌与海杆菌在芘和荧蒽的降解过程中表现出明显的协同效应,表明该菌群具有应用到HMW-PAHs污染海洋环境生物修复的潜力.

  12. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  13. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Directory of Open Access Journals (Sweden)

    K. Jaars

    2014-02-01

    Full Text Available Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters, the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters, the Johannesburg–Pretoria metropolitan conurbation (>10 million people, the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries, the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. Benzene levels did not exceed local air quality standards. Toluene was the most abundant species, with an annual median concentration of 0.63 ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal

  14. Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution

    Energy Technology Data Exchange (ETDEWEB)

    Posada-Baquero, Rosa [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080 Seville (Spain); Ortega-Calvo, Jose-Julio, E-mail: jjortega@irnase.csic.es [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080 Seville (Spain)

    2011-12-15

    The microbial accessibility of native phenanthrene and pyrene was determined in soils representing background scenarios for pollution by polycyclic aromatic hydrocarbons (PAHs). The soils were selected to cover a wide range of concentrations of organic matter (1.7-10.0%) and total PAHs (85-952 {mu}g/kg). The experiments included radiorespirometry determinations of biodegradation with {sup 14}C-labeled phenanthrene and pyrene and chemical analyses to determine the residual concentrations of the native compounds. Part of the tests relied on the spontaneous biodegradation of the chemicals by native microorganisms; another part also involved inoculation with PAH-degrading bacteria. The results showed the recalcitrance of PAHs already present in the soils. Even after extensive mineralization of the added {sup 14}C-PAHs, the concentrations of native phenanthrene and pyrene did not significantly decrease. We suggest that aging processes operating at background concentrations may contribute to recalcitrance and, therefore, to ubiquitous pollution by PAHs in soils. - Highlights: > Background PAHs in soils are highly resistant to biodegradation. > Recalcitrance occurs even after inoculation with specialized microorganisms. > Recalcitrance is caused by a low bioaccessibility and aging. > Time (aging) seems a relevant factor causing recalcitrance. > Recalcitrance can explain ubiquitous PAH background pollution. - Background soil PAHs are highly resistant to biodegradation.

  15. Effects of Different Co-substrates on the Biodegradation of Polycyclic Aromatic Hydrocarbons by Coking Sewage Sludge under Anaerobic Condition%厌氧条件下不同共基质对焦化污泥降解多环芳烃的影响

    Institute of Scientific and Technical Information of China (English)

    王鸣; 吴海珍; 刘雷; 韦朝海

    2016-01-01

    Coking wastewater contains various organic matter including polycyclic aromatic hydrocarbons (PAHs), phenolics, benzene and other substances. Phenol is the main component of COD in coking wastewater and the main carbon source for the microbial utilization in biological treatment process. In order to enhanced the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in coking wastewater treatment process, activated sludge was collected from an anaerobic tank of a coking wastewater treatment plant to studied the enhanced biodegradation and kinetics of benzo [a] pyrene (BaP) with phenol, glucose, sodium acetate, TritonX-100, and their combinations as cometabolic substrates, respectively. Moreover, the effects of the mentioned four substrates on the degradation processes of the mixtures of naphthalene, phenanthrene, anthracene, fluoranthene, pyrene and BaP were also investigated. The results showed that the addition of enhanced substrates promote the degradation of BaP and there were significant differences occurred in the degradation rates in the presence of different co-substrates. Sodium acetate demonstrated the highest enhancement of degradation for BaP while 39.9% of BaP can be degraded in 30 days. However, 27.1% of BaP were removed by phenol which was the slowest among the four different substrates; Compared to single substrate group, the combination of phenol and sodium acetate group had the best performance on the biodegradation of BaP and the degradation rate is 50.0%. In different systems, the biodegradation of BaP are followed the first order reaction kinetics model. In the presence of the six PAHs, sodium acetate still had the best enhancement effect, Within 20 days, the biodegradation rates of naphthalene, phenanthrene, anthracene, fluoranthene, pyrene and BaP are 66.1%, 60.7%, 43.2%, 22.0%, 15.5% and 14.7%, respectively. Coking sludge prefer to biodegrade low molecular weight PAHs, such as naphthalene, phenanthrene, anthracene. For high molecular

  16. BIODEGRADATION OF AROMATIC AMINE COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    M. Delnavaz ، B. Ayati ، H. Ganjidoust

    2008-10-01

    Full Text Available Three moving bed biofilm reactors were used to treat synthesized wastewater of aromatic amine compounds including aniline, para-diaminobenzene and para-aminophenol that are found in many industrial wastewaters. The reactors with cylindrical shape had an internal diameter and an effective depth of 10 and 60 cm, respectively. The reactors were filled with light expanded clay aggregate as carriers and operated in an aerobic batch and continuous conditions. Evaluation of the reactors' efficiency was done at different retention time of 8, 24, 48 and 72 h with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. The maximum obtained removal efficiencies were 90% (influent COD=2000 mg/L, 87% (influent COD=1000 mg/L and 75% (influent COD=750 mg/L for aniline, para-diaminobenzene and para-aminophenol, respectively. In the study of decrease in filling ratio from 50 to 30 percent, 6% decrease for both para-diaminobenzene and para-aminophenol and 7% increase for aniline degradation were obtained. The removal efficiency was decreased to about 10% after 15 days of continuous loading for each of the above three substrates. In the shock loading test, initially the COD removal rate was decreased in all reactors, but after about 10 days, it has been approached to the previous values. Finally, biodegradability of aromatic amines has been proved by nuclear magnetic resonance system.

  17. Magnetic molecules derived from hydrogenation of Polycyclic Aromatic Hydrocarbons

    CERN Document Server

    Vergés, J A; Louis, E; Pastor-Abia, L; SanFabian, E

    2008-01-01

    Present routes to produce magnetic organic-based materials adopt a common strategy: the use of magnetic species (atoms, polyradicals, etc.) as building blocks. We explore an alternative approach which consists of selective hydrogenation of Polycyclic Aromatic Hydrocarbons. Self-Consistent-Field (SCF) (Hartree-Fock and DFT) and multi-configurational (CISD and MCSCF) calculations on coronene and corannulene, both hexa-hydrogenated, show that the formation of stable high spin species is possible. The spin of the ground states is discussed in terms of the Hund rule and Lieb's theorem for bipartite lattices (alternant hydrocarbons in this case). This proposal opens a new door to magnetism in the organic world.

  18. 盐碱土壤多环芳烃降解菌群筛选及其降解特性%Screening and Biodegradation Characteristics of Polycyclic Aromatic Hydrocarbons-Degrading Consortium From Saline-Alkali Soil

    Institute of Scientific and Technical Information of China (English)

    宋立超; 刘灵芝; 李培军; 刘宛; 张玉龙

    2012-01-01

    为了强化多环芳烃(PAHs)污染盐碱土壤原位微生物修复的应用,并提供高效的菌种资源,从天津大港油田盐碱化的油污土壤中富集分离出1组高效降解菲、芘的耐盐碱菌群,分离获得可培养优势细菌5株、真菌3株,考察了该菌群对菲、芘的降解效果,并进行了其对菲、芘降解特性分析.结果表明,该菌群在菲、芘质量浓度分别为25、50和75 mg/L的液体无机盐培养基中培养15 d,菲、芘的降解率分别达到75.3%和53.6%、56.6%和52.0%、25.2%和13.6%;该菌群对菲、芘降解具有较广泛的盐质量分数和pH值范围,在菲、芘初始质量浓度各为50 mg/L,最适盐质量分数0~2%,最适pH值8.6条件下,添加质量分数0.4%葡萄糖培养15d后,菲、芘的降解率显著提高,达到92.1%和65.8%.细菌16S rDNA和真菌18S rDNA测序结果表明,该菌群由叶杆菌属(Phyllobacterium)、假单胞菌属(Pseudomonas)、盐单胞属(Halomonas)、泛菌属(Pantoea)和青霉属(Penicillium)、双曲孢属(Sigmoidea)、胶孢炭疽属(Colletotrichum)组成.%The salt and alkaline endurable microbial consortium of degrading phenanthrene and pyrene effectively was developed from oil-contaminated saline-alkali soil of Tianjin Dagang oil field to intensify the application of situ bioremediation of polycyclic aromatic hydrocarbons in saline-alkaline soil and to provide highly effective microorganisms resources. Five cultivable dominate bacterium strains and three fungi strains through separation were obtained, and their degradation characteristics for phenanthrene and pyrene were analyzed. The degradation rates of phenanthrene and pyrene with 25, 50 and 75 mg/L initial concentration by the microbial consortium in liquid mineral medium after 15 d cultivation were 75. 3% and 53. 6%, 56. 6% and 52. 0%, 25. 2% and 13.6% respectively, meanwhile, when the initial concentration of phenanthrene and pyrene was 50 mg/L, respectively, the most

  19. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater

    Science.gov (United States)

    Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J. J.; Vogel, Timothy M.; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier

    2016-10-01

    The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100 L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2 years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈ 22 mg L- 1)) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0 years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2 years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants.

  20. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J., E-mail: Alessandra.Ricca-1@nasa.gov, E-mail: Charles.W.Bauschlicher@nasa.gov [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  1. Occurrence of fungi degrading aromatic hydrocarbons in activated sludge biocenoses

    Directory of Open Access Journals (Sweden)

    Anna Grabińska-Łoniewska

    2014-08-01

    Full Text Available A set of 21 strains of yeast-like microorganisms isolated from biocenoses of aerobic and anaerobic wastewater treatment systems were assayed for their ability to utilize aromatic hydrocarbons as a sole C-source. Basing on the achieved results, the highly biochemically active strains for application in enhancing of wastewaters and exhaust gases purification as well as soil bioremediation were selected.

  2. Polycyclic Aromatic Hydrocarbons in Residential Dust: Sources of Variability

    OpenAIRE

    Whitehead, Todd P; Metayer, Catherine; Petreas, Myrto; Does, Monique; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    Background: There is interest in using residential dust to estimate human exposure to environmental contaminants. Objectives: We aimed to characterize the sources of variability for polycyclic aromatic hydrocarbons (PAHs) in residential dust and provide guidance for investigators who plan to use residential dust to assess exposure to PAHs. Methods: We collected repeat dust samples from 293 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 thr...

  3. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    Directory of Open Access Journals (Sweden)

    Norzila Othman

    2011-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compounds. This technology degrades contaminants through natural biodegradation mechanisms or enhanced biodegradation mechanism and can be performed in-situ or ex-situ under aerobic or anaerobic conditions. The purpose of this paper is to highlight potential of using isolated strains from municipal sludge on soil remediation. Several indigenous bacteria from municipal sludge namely genus Micrococus, Sphingomonas, and Corynebacterium demonstrated a high removal rate of PAHs with more than 80% of lower molecular weight of PAHs degraded after one week incubation. Laboratory studies had established that these genus able to degrade PAHs on contaminated soil. The successful application of bacteria to the bioremediation of PAHs contaminated sites requires a deeper understanding of how microbial PAH degradation proceeds. An overview of research focusing on biodegradation of PAHs will be presented.

  4. Thermodiffusion of polycyclic aromatic hydrocarbons in binary mixtures

    Science.gov (United States)

    Hashmi, Sara M.; Senthilnathan, Sid; Firoozabadi, Abbas

    2016-11-01

    Thermodiffusion in liquid mixtures may explain some counter-intuitive but naturally occurring phenomena such as hydrocarbon reservoirs with heavier component(s) stratified on top of lighter ones. However, beyond benchmark systems, systematic measurements of thermodiffusion in binary organic mixtures are lacking. We use an optical beam deflection apparatus to simultaneously probe Fickian and thermal diffusion in binary solution mixtures of polycyclic aromatic hydrocarbons dissolved in alkanes, and measure both Fickian diffusion D and the Soret coefficient ST, and then obtain the thermodiffusion coefficient DT. In a series of nine binary mixtures, we vary both the size of the aromatic compound from two to four rings, as well as the length of the alkane chain from 6 to 16 carbons. To probe the effect of increasing ring size, we include a 6-ringed aromatic compound, coronene, and toluene as a solvent, due to the insolubility of coronene in alkanes. Our results suggest that Fickian diffusion increases with the inverse of solvent viscosity and also with decreasing molecular weight of the solute. While both of these trends match our intuition, the behavior of ST and DT is more complicated. We find that ST and DT increase with the solute molecular weight when the solvent is held fixed and that the impact of solute ring size is higher in shorter chain alkane solvents.

  5. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively.

  6. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria Isolated from Light Oil Polluted Soils

    Science.gov (United States)

    Ohnuma, T.; Suto, K.; Inoue, C.

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) have polluted soil and groundwater widely and for long term because of their low solubility at normal temperature. Several microorganisms, such as Pseudomonas sp., Sphigomonas sp., a white-rot fungus and so on, being able to decompose PAHs, have been isolated and researched. This study reported to investigate biodegradation of low molecule PAH by isolated bacteria from light oil polluted soil. 12 isolates were obtained from a light oil polluted soil using naphthalene, fluorene and anthracene as sole carbon source, of which 4 isolates grew with naphthalene, 4 isolates did with fluorene and 4 isolates did with anthracene. Among them 3 isolates showed the ability to degrade phenanthrene additionally. These phenanthrene degradation and growth rates were almost same as that of S. yanoikuyae (DSM6900), which is the typical bacteria of PAHs degrader. Therefore, the isolate seemed to have an expectation for PAHs degradation.

  7. Characterizing the parent and oxygenated polycyclic aromatic hydrocarbons in mangrove sediments of Hong Kong.

    Science.gov (United States)

    Wang, Xiaowei; Yuan, Ke; Yang, Lihua; Lin, Li; Tam, Nora F Y; Chen, Baowei; Luan, Tiangang

    2015-09-15

    Parent and oxygenated polycyclic aromatic hydrocarbons (PAHs) were investigated in mangrove sediments of Hong Kong. Most of the analytes were detected, and the dominant carbonylic and hydroxylated PAHs in mangrove sediments were 9-fluorenone and 2-hydroxy fluorene, respectively. The concentration of 9-fluorenone and 9,10-anthraquinone was higher than their parent PAHs. Moreover, the concentration of total organic matter (TOM) related with those of the parent PAHs and carbonylic PAHs, except for hydroxylated PAHs, which indicated that TOM was not the only factor regulating the distribution of oxygenated PAHs. Nevertheless, the parent PAHs in mangrove sediments was correlated positively with carbonylic PAHs which demostrated not only the similar source but also the fate of these two compound class. However, hydroxylated PAHs had different source by comparing with parent PAHs and carbonylic PAHs, they were probably originated from biodegradation and accumulated in mangrove sediments.

  8. Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge

    DEFF Research Database (Denmark)

    Larsen, Sille Bendix; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAH) are regarded as environmental pollutants. A promising approach to reduce PAH pollution is based on the implementation of the natural potential of some microorganisms to utilize hydrocarbons. In this study Proteiniphilum acetatigenes was used...

  9. Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater.

    Science.gov (United States)

    Ulrich, Ania C; Guigard, Selma E; Foght, Julia M; Semple, Kathleen M; Pooley, Kathryn; Armstrong, James E; Biggar, Kevin W

    2009-02-01

    Hydrocarbon-contaminated soil and groundwater at oil and gas production sites may be additionally impacted by salts due to release of produced waters. However, little is known about the effect of salt on the in-situ biodegradation of hydrocarbons by terrestrial microbes, especially at low temperatures. To study this effect, we prepared a groundwater-soil slurry from two sites in Canada: a former flare pit site contaminated with flare pit residue (Site A), and a natural gas processing facility contaminated with natural gas condensate (Site B). The slurry with its indigenous microbes was amended with radiolabeled hydrocarbons dissolved in free product plus nutrients and/or NaCl, and incubated in aerobic biometer flasks with gyrotory shaking at either 25 or 10 degrees C for up to 5 weeks. Cumulative production of (14)CO(2) was measured and the lag time, rate and extent of mineralization were calculated. For Site A, concentrations of NaCl >or=1% (w/v) delayed the onset of mineralization of both (14)C-hexadecane and (14)C-phenanthrene under nutrient-amended conditions, but once biodegradation began the degradation rates were similar over the range of salt concentrations tested (0-5% NaCl). For Site B, increasing concentrations of NaCl >or=1% (w/v) increased the lag time and decreased the rate and extent of mineralization of aliphatic and aromatic substrates. Of particular interest is the observation that low concentrations of salt (

  10. The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments

    CERN Document Server

    Cherchneff, Isabelle

    2010-01-01

    The formation of Polycyclic Aromatic Hydrocarbons in the circumstellar outflows of evolved stars is reviewed, with an emphasis on carbon stars on the Asymptotic Giant Branch. Evidence for PAHs present in their winds is provided by meteoritic studies and recent observations of the Unidentified Infrared bands. We detail the chemical processes leading to the closure of the first aromatic ring as well as the growth mechanisms leading to amorphous carbon grains. Existing studies on PAH formation in evolved stellar envelopes are reviewed and new results for the modelling of the inner wind of the archetype carbon star IRC+10216 are presented. Benzene, C6H6, forms close to the star, as well as water, H2O, as a result of non-equilibrium chemistry induced by the periodic passage of shocks. The growth process of aromatic rings may thus resemble that active in sooting flames due to the presence of radicals like hydroxyl, OH. Finally, we discuss possible formation processes for PAHs and aromatic compounds in the hydrogen-...

  11. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer

    Directory of Open Access Journals (Sweden)

    Thamaraiselvan Rengarajan

    2015-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are a group of compounds consisting of two or more fused aromatic rings. Most of them are formed during incomplete combustion of organic materials such as wood and fossil fuels, petroleum products, and coal. The composition of PAH mixtures varies with the source and is also affected by selective weathering effects in the environment. PAHs are ubiquitous pollutants frequently found in a variety of environments such as fresh water and marine sediments, the atmosphere, and ice. Due to their widespread distribution, the environmental pollution due to PAHs has aroused global concern. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher forms of life including humans. The main aim of this review is to provide contemporary information on PAH sources, route of exposure, worldwide emission rate, and adverse effects on humans, especially with reference to cancer.

  12. Technogenic pollution of pine forests by polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    O. V. Kalugina

    2015-08-01

    Full Text Available Anthropogenic pollution of boreal forests by polycyclic aromatic hydrocarbons was assessed by polycyclic aromatic hydrocarbon (PAH concentrations in needles of Scots pine (Pinus sylvestris L. trees growing in the vicinity of the Bratsk aluminium smelter – one of the largest aluminium smelters in the world. The fieldwork was performed in 2012–2013 on 34 index plots, set in mixed herb and sedge-mixed herb pine forests (mostly site class III. It is shown that the total accumulation of PAHs reaches its highest level (more than 6000 ng/g in pine needle samples collected at sites up to 3 km from the aluminium smelter. PAH total quantity decreases with increasing the distance from the pollution source and at a distance of 50 km reaches values close to background ones. The highest concentrations of PAHs were detected in needle samples collected at plots located from the plant in a direction corresponding to the prevailing emissions transfer. There was also detected a significant difference in compositions of individual PAHs: there were 18 compounds identified in samples collected near the aluminium smelter whereas only 6 compounds were identified in samples collected on the background territories. Among the PAHs accumulated in pine trees assimilation organs the substances with 3–4 aromatic rings (phenanthrene, fluoranthene, pyrene, chrysene were dominant with their total number reaching 90 % of the total. Compound with 5–6 aromatic rings (benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[e]pyrene, perylene, indeno[1,2,3-c,d]pyrene, benzo[g, h, i]perylene, dibenz[a, h]anthracene.comprises a smaller proportion (from 6 to 27 % in total PAHs content. High concentrations of benzo[a]pyrene and perylene in needle samples collected in the vicinity of the aluminum smelter indicate technogenic character of forest pollution.

  13. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Directory of Open Access Journals (Sweden)

    E. V. Lau

    2010-01-01

    Full Text Available This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.

  14. Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

    CERN Document Server

    Gatchell, Michael; de Ruette, Nathalie; Chen, Tao; Giacomozzi, Linda; Nascimento, Rodrigo F; Wolf, Michael; Anderson, Emma K; Delaunay, Rudy; Viziano, Violaine; Rousseau, Patrick; Adoui, Lamri; Huber, Bernd A; Schmidt, Henning T; Zettergren, Henning; Cederquist, Henrik

    2015-01-01

    A recent study of soft X-ray absorption in native and hydrogenated coronene cations, C$_{24}$H$_{12+m}^+$ $m=0-7$, led to the conclusion that additional hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C$_{16}$H$_{10+m}^+$, $m=0$, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.

  15. Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components.

    Science.gov (United States)

    Groen, Joost; Deamer, David W; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C(6)-C(10) fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane.

  16. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil.

    Science.gov (United States)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J; Ekelund, Flemming; Christensen, Peter; Andersen, Ole; Karlson, Ulrich; Jacobsen, Carsten S

    2006-03-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several levels: by slowly diminishing PAH-concentrations, increased mineralization of 14C-PAHs, increasing numbers of PAH degraders and increased prevalence of nah and pdo1 PAH degradation genes, i.e. the microbial communities quickly adapted to PAH degradation. Three- and 4-ring PAHs from the street dust were biodegraded to some extent (10-20%), but 5- and 6-ring PAHs were not biodegraded in spite of frequent soil mixing and high PAH degradation potentials. In addition to biodegradation, leaching of 2-, 3- and 4-ring PAHs from the A-horizon to the C-horizon seems to reduce PAH-levels in surface soil. Over time, levels of 2-, 3- and 4-ring PAHs in surface soil may reach equilibrium between input and the combination of biodegradation and leaching. However, levels of the environmentally critical 5- and 6-ring PAHs will probably continue to rise. We presume that sorption to black carbon particles is responsible for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.

  17. Thermal neutron cross-section libraries for aromatic hydrocarbons

    Science.gov (United States)

    Cantargi, F.; Granada, J. R.

    2010-08-01

    Solid phases of aromatic hydrocarbons, such as benzene, toluene, mesitylene and a 3:2 mixture by volume of mesitylene and toluene, were studied as potential moderator materials for a cold neutron source. Existing information on the (lattice) translational and rotational modes of the different molecular species was used to produce generalized frequency spectra; the latter included the internal vibrational modes which in turn involved the analysis of the weights of the different modes. Cross-section libraries were generated in ENDF and ACE formats for hydrogen bounded in those materials at several temperatures, and were used in Monte Carlo calculations to analyze their neutron production compared with standard cryogenic materials like liquid hydrogen and solid methane, the best moderators in terms of cold neutron production. In particular, cross-section libraries were generated at 20 K, which is a typical operating temperature for the majority of the existing cold neutron sources. It was found that those aromatic hydrocarbons produce neutron spectra which are slightly warmer than that of solid methane while presenting a high resistance to radiation, conforming in this way a new and advantageous alternative to traditional moderator materials.

  18. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, S. [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Leitao, C. [Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J. [Empresa Portuguesa das Aguas Livres, S.A., Avenida de Berlim, 15, 1800-031 Lisboa (Portugal); Crespo, M.T. Barreto [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Pereira, V.J., E-mail: vanessap@itqb.unl.pt [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal)

    2011-09-15

    Highlights: {yields} Low pressure UV photolysis can be used by drinking water utilities to degrade PAHs. {yields} Real water matrices with different compositions were tested. {yields} Photolysis kinetic parameters and by-product formation are described. {yields} The formation of photolysis by-products is highly dependent on the source waters. - Abstract: The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm{sup 2}, anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  19. Xenoestrogenic gene expression: structural features of active polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Schultz, T Wayne; Sinks, Glendon D

    2002-04-01

    Estrogenicity was assessed using the Saccharomyces cerevisiae-based Lac-Z reporter assay and was reported as the logarithm of the inverse of the 50% molar beta-galactosidase activity (log[EC50(-1)]). In an effort to quantify the relationship between molecular structure of polycyclic aromatic hydrocarbons (PAHs) and estrogenic gene expression, a series of PAHs were evaluated. With noted exceptions, the results of these studies indicate that the initial two-dimensional structural warning for estrogenicity, the superpositioning of a hydroxylated aromatic system on the phenolic A-ring of 17-beta-estradiol, can be extended to the PAHs. This two-dimensional-alignment criterion correctly identified estrogenicity of 22 of the 29 PAHs evaluated. Moreover, the estrogenic potency of these compounds was directly related to the size of the hydrophobic backbone. The seven compounds classified incorrectly by this structural feature were either dihydroxylated naphthalenes or aromatic nitrogen-heterocyclic compounds; all such compounds were false positives. Results with dihydroxylated naphthalenes reveal derivatives that were nonestrogenic when superimposed on the phenolic A-ring of 17-beta-estradiol had the second hydroxyl group in the position of the C-ring or were catechol-like in structure. Structural alerts for nitrogen-heterocyclic compounds must take into account the position of the hydroxyl group and the in-ring nitrogen atom; compounds with the hydroxyl group and nitrogen atom involved with the same ring were observed to be nonactive.

  20. 75 FR 8937 - Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...

    Science.gov (United States)

    2010-02-26

    ... AGENCY Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures'' (EPA/635/R-08/012A). The draft document was... 27, 2010. The listening session on the draft document for PAH mixtures will be held on April 7,...

  1. Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010

    Science.gov (United States)

    Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi

    2017-03-01

    Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.

  2. Comprehensive GC²/MS for the monitoring of aromatic tar oil constituents during biodegradation in a historically contaminated soil.

    Science.gov (United States)

    Vasilieva, Viktoriya; Scherr, Kerstin E; Edelmann, Eva; Hasinger, Marion; Loibner, Andreas P

    2012-02-20

    The constituents of tar oil comprise a wide range of physico-chemically heterogeneous pollutants of environmental concern. Besides the sixteen polycyclic aromatic hydrocarbons defined as priority pollutants by the US-EPA (EPA-PAHs), a wide range of substituted (NSO-PAC) and alkylated (alkyl-PAC) aromatic tar oil compounds are gaining increased attention for their toxic, carcinogenic, mutagenic and/or teratogenic properties. Investigations on tar oil biodegradation in soil are in part hampered by the absence of an efficient analytical tool for the simultaneous analysis of this wide range of compounds with dissimilar analytical properties. Therefore, the present study sets out to explore the applicability of comprehensive two-dimensional gas chromatography (GC²/MS) for the simultaneous measurement of compounds with differing polarity or that are co-eluting in one-dimensional systems. Aerobic tar oil biodegradation in a historically contaminated soil was analyzed over 56 days in lab-scale bioslurry tests. Forty-three aromatic compounds were identified with GC²/MS in one single analysis. The number of alkyl chains on a molecule was found to prime over alkyl chain length in hampering compound biodegradation. In most cases, substitution of carbon with nitrogen and oxygen was related to increased compound degradation in comparison to unalkylated and sulphur- or unsubstituted PAH with a similar ring number.The obtained results indicate that GC²/MS can be employed for the rapid assessment of a large variety of structurally heterogeneous environmental contaminants. Its application can contribute to facilitate site assessment, development and control of microbial cleanup technologies for tar oil contaminated sites.

  3. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U. [Univ. of Tennessee, Knoxville, TN (United States); Burlage, R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  4. Characterization of the contamination produced by uncontrolled dumping of aromatic hydrocarbons; Caracterizacion de la contaminacion producida por el vertido incontrolado de hidrocarburos aromaticos

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Flores, A.; Collado Fernandez, D.

    1996-08-01

    Uncontrolled dumping of aromatic hydrocarbons (m, o and p-xylen, ethylbenzene, etc) in the Tenes Valley aquifer (Besos river bassin) has produced a very important contamination of alluvial aquifer, that shows high concentrations of m, p xylen (41 mg/l) in groundwater, at a very vulnerable area. site characterization shows high concentrations of Fe, Mn and Ba in groundwater, originated by degradation of organic pollutants. Numerical simulation of plume movement shows a conditioned mobilization contaminants by biodegradation process. (Author) 11 refs.

  5. Study of ionic equilibria of indotricarbocyanines in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dyadyusha, G.G.; Ishchenko, A.A.; Derevyanko, N.A.; Tolmachev, A.I.

    1982-05-01

    Study of the equilibria in nonpolar solvents is very complicated by the poor solubility of the salt-like dyes. Indotricarbocyanines I and II were found to be fairly soluble in aromatic hydrocarbons for solving these problems by means of electronic spectra. In the present work, their absorption spectra were studied in benzene, toluene, and m-xylene (the absorption spectra were measured on the SF-8 spectrophotometer). It was shown that the dyes studied in these solvents have spectral bands of unusual form of polymethine dyes. At the long wave edge of the spectra of indotricarbocyanines, a distinct band appears, whose intensity is very dependent on the nature of the anion. In the case of perchlorate I, it has a lower intensity, and in the case of iodide II, the intensity is higher.

  6. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    Science.gov (United States)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  7. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    Science.gov (United States)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  8. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    Science.gov (United States)

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed.

  9. Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Luellemann, A.; Huettermann, A.; Majcherczyk, A. [Goettingen Univ. (Germany). Inst. fuer Forstbotanik

    2000-07-01

    Ectomycorrhizal fungi belonging to 16 species (27 strains) were tested for their ability to degrade polycyclic aromatic hydrocarbons (PAHs): Phenanthrene, chrysene, pyrene and benzo[a]pyrene. Cultivated on a complex liquid medium, most of the fungi tested were able to metabolise these compounds. Approximately 50% of the benzo[a]pyrene was removed by strains of Amanita excelsa, Leccinum versipelle, Suillus grevillei, S. luteus, and S. variegatus during a 4-week incubation period. The same amount of phenanthrene was also metabolised by A. muscaria, Paxillus involutus, and S. grevillei. The degradation of the other two PAHs was, for the most part, less effective. Only S. grevillei was able to remove 50% of the pyrene, whereas Boletus edulis and A. muscaria removed 35% of the chrysene. (orig.)

  10. Polycyclic aromatic hydrocarbons in sediments of China Sea.

    Science.gov (United States)

    Li, Yanxia; Duan, Xiaoyong

    2015-10-01

    Increasing pollution pressures were placed in the coastal and estuarine ecosystems in China because of the elevated pollutants discharged from various sources. Polycyclic aromatic hydrocarbons (PAHs) in the environment were closely linked to human activities, which have been intensively studied for their geochemical interest as markers. In this review, the status of PAH contamination in China Sea was assessed by comprehensive reviews of the concentrations, sources, and fates of PAHs in sediments of China Sea. PAH concentrations in China Sea sediments decreased from north to south due to the higher emissions in North China. Atmosphere was probably the main carrier of PAHs in the north due to the higher contents of atmospheric fine particles and higher wind speeds. However, riverine inputs were probably the most important sources of PAHs in the coastal sediments of South China due to higher rainfall.

  11. The distribution of polycyclic aromatic hydrocarbons in asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Y. [Inst. Mexicano del Petroleo, Lazaro (Mexico). Programa de Ingenieria Molecular; Ballard Andrews, A.; Mullins, O.C. [Schlumberger-Doll Research Center, Cambridge, MA (United States)

    2008-07-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in asphaltenes is a strong determinant for asphaltene physical properties. PAHs also provide the UV and visible absorption and emission profiles of asphaltenes. All PAHs absorb light in the UV-visible spectrum and many also emit light in this spectral range. This study combined a molecular orbital theory with an experimental approach to quantitatively link the UV-visible absorption and emission profiles to the asphaltene PAH distribution. Key features of the absorption and emission spectral data were found to be reproduced with PAH distributions centered at 7 fused rings. The study also identified other highly different distributions of PAHs in terms of plausibility to account for the measured optical data. The paper also described the affect that heteroatoms had on the analysis.

  12. Removal of high-molecular weight polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Ulrich Vasconcelos

    2011-01-01

    Full Text Available Alternatives for the removal of high-molecular weight polycyclic aromatic hydrocarbons (HWM-PAH from soil were tested by adding fertilizer or glycerol, as well as the combination of both. Experiments were carried out for 60 days in reactors containing a HWM-PAH-contaminated soil (8030 μg kg-1, accompanied by pH monitoring, humidity control and quantification of total heterotrophic bacteria and total fungus. Fertilizer addition removed 41.6% of HWM-PAH. Fertilizer and glycerol in combination removed 46.2%. When glycerol was added individually, degradation reached 50.4%. Glycerol also promoted the increase of degradation rate during the first 30 days suggesting the HMW-PAH removal occurred through cometabolic pathways.

  13. Dehydrogenation of polycyclic aromatic hydrocarbons in the diffuse interstellar medium

    CERN Document Server

    Foing, B H

    2000-01-01

    We present a model for the hydrogenation states of Polycyclic Aromatic Hydrocarbons (PAHs) in the diffuse interstellar medium. First, we study the abundance of hydrogenation and charge states of PAHs due to photo-ionization, photo-dissociation in the interstellar UV field, electron recombination and chemical reactions between PAH cations and H or H_2. For PAH cations, we find that the dehydrogenation effects are dominant. The hydrogenation state of PAHs depends strongly on the H density, the size of the molecule and UV field. In diffuse clouds with low H density and normal UV radiation, PAHs containing less than 40 C are completely or strongly dehydrogenated whereas at high H density, they are normally hydrogenated. The partially dehydrogenated species dominate in intermediate density clouds. PAHs above 40 C are quite stable and are fully hydrogenated, which would favor their spectroscopic search in near IR surveys of Diffuse Interstellar Bands (DIBs).

  14. Polycyclic Aromatic Hydrocarbons in Electrocautery Smoke during Peritonectomy Procedures

    Directory of Open Access Journals (Sweden)

    Sara Näslund Andréasson

    2012-01-01

    Full Text Available Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs, benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed.

  15. Formation History of Polycyclic Aromatic Hydrocarbons in Galaxies

    CERN Document Server

    Seok, Ji Yeon; Asano, Ryosuke S

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are some of the major dust components in the interstellar medium (ISM). We present our evolution models for the abundance of PAHs in the ISM on a galaxy-evolution timescale. We consider shattering of carbonaceous dust grains in interstellar turbulence as the formation mechanism of PAHs while the PAH abundance can be reduced by coagulation onto dust grains, destruction by supernova shocks, and incorporation into stars. We implement these processes in a one-zone chemical evolution model to obtain the evolution of the PAH abundance in a galaxy. We find that PAH formation becomes accelerated above certain metallicity where shattering becomes efficient. For PAH destruction, while supernova shock is the primary mechanism in the metal-poor environment, coagulation is dominant in the metal-rich environment. We compare the evolution of the PAH abundances in our models with observed abundances in galaxies with a wide metallicity range. Our models reproduce both the paucity of PAH...

  16. Simulated transport of polycyclic aromatic hydrocarbons in artificial streams

    Energy Technology Data Exchange (ETDEWEB)

    Bartell, S.M.; Landrum, P.F.; Giesy, J.P.; Leversee, G.J.

    1981-01-01

    A model was constructed to predict the pattern of flow and accumulation of three polycyclic aromatic hydrocarbons (PAH) (anthracene, naphthalene, and benzo(a)pyrene) in artificial streams located on the Savannah River Plant near Aiken, South Carolina. Predictions were based upon the premise that the fundamental chemistry of individual PAH contains useful information for predictive purposes. Model processes included volatilization, photolysis, sorption to sediments and particulates, and net accumulation by biota. Simulations of anthracene transport were compared to results of an experiment conducted in the streams. The model realistically predicted the concentration of dissolved anthracene through time and space. Photolytic degradation appeared to be a major pathway of anthracene flux from the streams.

  17. Transport of Polycyclic Aromatic Hydrocarbons in Unsaturated Porous Media

    Science.gov (United States)

    Chahal, Maninder; Flury, Markus

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are complex organic molecules containing 2 or more fused benzene rings. Being hydrophobic and non-polar, PAHs tend to partition to the organic matter in the soil from bulk aqueous phase. Though transport of these contaminants has been well studied in saturated environment, interactive mechanisms of these fluorescent compounds in unsaturated (identified by presence of air-water interface) porous media is still not well understood. We studied is the transport of fluoranthene in unsaturated porous media as facilitated by moving air-water interfaces. Confocal microscopy was used to visualize the interactions of fluoranthene particles in a glass channel packed with quartz glass beads. The packed glass channel was used to mimic a porous media and effects of an advancing and receding capillary fringe on the detachment of fluoranthene.

  18. Availability and leaching of polycyclic aromatic hydrocarbons. Controlling processes and comparison of testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Roskam, G.D. [ECN Biomass, Coal and Environment, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Comans, R.N.J. [Wageningen University, Department of Soil Quality, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2009-01-15

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (R16 US-EPA PAHs 3412 mg/kg) and gasworks soil (RPAHs 900 mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.

  19. Availability and leaching of polycyclic aromatic hydrocarbons: Controlling processes and comparison of testing methods.

    Science.gov (United States)

    Roskam, Gerlinde D; Comans, Rob N J

    2009-01-01

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (Sigma16 US-EPA PAHs 3412mg/kg) and gasworks soil (SigmaPAHs 900mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.

  20. Study on Aromatization of C6 Aliphatic Hydrocarbons on ZRP Zeolite Catalyst

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Xie Chaogang

    2004-01-01

    The performance of ZRP zeolite catalysts for aromatization of C6 aliphatic hydrocarbons was investigated in a pulsed microreactor. The influence of metal modified ZRP zeolites on aromatization reaction was also studied, coupled with comparison of aromatization tendencies of olefins, paraffins and paraffins with different degrees of chain branching. Test results had shown that the lower the silicon/aluminum ratio in the ZRP zeolite, the higher the aromatization reactivity of aliphatic hydrocarbons. Modification of ZRP zeolite by zinc and its zinc content had apparent impact on the yield and distribution of aromatics. The aromatization tendency of olefins was apparently better than paraffins, while the aromatization tendency of monomethyl paraffins was better than that of straight-chain paraffins with the exception of dimethyl paraffins, which had worse aromatization tendency because of their steric hindrance.

  1. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    Science.gov (United States)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  2. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Knowledge of vapor pressure of organic pollutants is essential in predicting their fate and transport in the environment. In the present study, the vapor pressures of 12 halogenated polycyclic aromatic compounds (PACs), 9-chlorofluorene, 2,7-dichlorofluorene, 2-bromofluorene, 9-bromofluorene, 2,7-dibromofluorene, 2-bromoanthracene, 9-chlorophenanthrene, 9-bromophenanthrene, 9,10-dibromophenanthrene, 1-chloropyrene, 7-bromobenz[a]anthracene, and 6,12-dibromochrysene, were measured using the Knudsen effusion method over the temperature range of 301 to 464 K. Enthalpies and entropies of sublimation of these compounds were determined via application of the Clausius-Clapeyron equation. The data were also compared with earlier published literature values to study the influence of halogen substitution on vapor pressure of PACs. As expected, the halogen substitution decreases vapor pressure compared with parent compounds but does not necessarily increase the enthalpy of sublimation. Furthermore, the decrease of vapor pressure also depends on the substitution position and the substituted halogen, and the di-substitution of chlorine and/or bromine decreases the vapor pressure compared with single halogen-substituted polycyclic aromatic hydrocarbons. In addition, the enthalpy of fusion and melting temperature of these 12 PACs were determined using differential scanning calorimetry and melting point analysis.

  3. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic.

    Science.gov (United States)

    Liu, Lijing; Fokkink, Remco; Koelmans, Albert A

    2016-07-01

    Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5)  μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC.

  4. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer

    Institute of Scientific and Technical Information of China (English)

    Thamaraiselvan; Rengarajan; Peramaiyan; Rajendran; Natarajan; Nandakumar; Boopathy; Lokeshkumar; Palaniswami; Rajendran; Ikuo; Nishigaki

    2015-01-01

    Polycyclie aromatic hydrocarbons(PAHs) are a group of compounds consisting of two or more fused aromatic rings.Most of them are formed during incomplete combustion of organic materials such as wood and fossil fuels,petroleum products,and coal.The composition of PAH mixtures varies with the source and is also affected by selective weathering effects in the environment.PAHs are ubiquitous pollutants frequently found in a variety of environments such as fresh water and marine sediments,the atmosphere,and ice.Due to their widespread distribution,the environmental pollution due to PAHs has aroused global concern.Many PAHs and their epoxides are highly toxic,mutagenic and/or carcinogenic to microorganisms as well as to higher forms of life including humans.The main aim of this review is to provide contemporary information on PAH sources,route of exposure,worldwide emission rate,and adverse effects on humans,especially with reference to cancer.

  5. Evaluation of anthropogenic secondary organic aerosol tracers from aromatic hydrocarbons

    Science.gov (United States)

    Al-Naiema, Ibrahim M.; Stone, Elizabeth A.

    2017-02-01

    Products of secondary organic aerosol (SOA) from aromatic volatile organic compounds (VOCs) - 2,3-dihydroxy-4-oxopentanoic acid, dicarboxylic acids, nitromonoaromatics, and furandiones - were evaluated for their potential to serve as anthropogenic SOA tracers with respect to their (1) ambient concentrations and detectability in PM2.5 in Iowa City, IA, USA; (2) gas-particle partitioning behaviour; and (3) source specificity by way of correlations with primary and secondary source tracers and literature review. A widely used tracer for toluene-derived SOA, 2,3-dihydroxy-4-oxopentanoic acid was only detected in the particle phase (Fp = 1) at low but consistently measurable ambient concentrations (averaging 0.3 ng m-3). Four aromatic dicarboxylic acids were detected at relatively higher concentrations (9.1-34.5 ng m-3), of which phthalic acid was the most abundant. Phthalic acid had a low particle-phase fraction (Fp = 0.26) likely due to quantitation interferences from phthalic anhydride, while 4-methylphthalic acid was predominantly in the particle phase (Fp = 0.82). Phthalic acid and 4-methylphthalic acid were both highly correlated with 2,3-dihydroxy-4-oxopentanoic acid (rs = 0.73, p = 0.003; rs = 0.80, p hydrocarbons; however the substantial partitioning toward the gas phase (Fp ≤ 0.16) and their water sensitivity limit their application as tracers. The outcome of this study is the demonstration that 2,3-dihydroxy-4-oxopentanoic acid, phthalic acid, 4-methylphthalic acid, and 4-hydroxy-3-nitrobenzyl alcohol are good candidates for tracing SOA from aromatic VOCs.

  6. Dual partitioning and attachment effects of rhamnolipid on pyrene biodegradation under bioavailability restrictions

    NARCIS (Netherlands)

    Congiu, E.; Parsons, J.R.; Ortega-Calvo, J.J.

    2015-01-01

    We investigated the effects of different bioavailability scenarios on the rhamnolipid-enhanced biodegradation of pyrene by the representative polycyclic aromatic hydrocarbon degrader Mycobacterium gilvum VM552. This biosurfactant enhanced biodegradation when pyrene was provided in the form of solid

  7. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity.

    Science.gov (United States)

    Jajoo, Anjana; Mekala, Nageswara Rao; Tomar, Rupal Singh; Grieco, Michele; Tikkanen, Mikko; Aro, Eva-Mari

    2014-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are very toxic and highly persistent environmental pollutants which accumulate in soil and affect growth of the plants adversely. This study aims to investigate inhibitory effects of 3 major PAH particularly on photosynthetic processes in Arabidopsis thaliana grown in soil treated with PAH. The 3 PAH chosen differ from each other in aromaticity (number of rings) comprising their structure (2 rings: naphthalene, 3 rings: anthracene and 4 rings: pyrene). Several growth parameters and Chlorophyll a fluorescence was monitored in PAH treated plants. BN-PAGe analysis was done in order to get information about change in the protein conformation. PAH treatment led to increased value of Fo which collaborated with increase in the amount of free LHC as seen through BN-Page analysis. Thus PAH were found to inhibit PS II photochemistry and caused distinct change in pigment composition. However the results led us to infer that 3-ring anthracence is more inhibitory as compared to 2-ring naphthalene and 4-ring pyrene. This indicates that aromaticity of PAH is unrelated to their response on photosynthetic processes.

  8. A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bai, D.; Li, J.; Chen, S.B.; Chen, B.-H. [National University of Singapore (Singapore). Dept. of Chemical and Environmental Engineering

    2001-10-01

    Polycyclic aromatic hydrocarbons (PAHs) released in such processes as incomplete coal combustion and during the disposal of coal tar, are subject to strict emission controls in which the determination of PAHs has to be addressed. PAHs have low aqueous solubility which necessitates preconcentration prior to the analytical determination of PAHs. A novel but simple cloud-point extraction (CPE) process is developed to preconcentrate the trace of selected polycyclic aromatic hydrocarbons (PAHs) with the use of the readily biodegradable nonionic surfactant of secondary ethyoxylated alcohol Tergitol 15-S-7 as extractant. The concentrations of PAHs, mixtures of naphthalene and phenanthrene as well as pyrene in the spiked samples were determined with the new CPE process at ambient temperature (23{degree}C) followed by high performance liquid chromatography (HPLC) with fluorescence detection. More than 80% of phenanthrene and pyrene, respectively, and 96% of naphthalene initially present in the aqueous solutions with concentrations near or below their aqueous solubilities were recovered using this new CPE process. Importantly Tergitol 15-S-7 does not give any fluorometric signal to interfere with fluorescence detection of PAHs in the UV range. No special washing step is, thus, required to remove surfactant before HPLC analyses. Different experimental conditions were studied. The optimum conditions for the preconcentration and determination of these selected PAHs at ambient temperature have been established as the following: (1) 3 wt% surfactant; (2) addition of 0.5 M Na{sub 2}SO{sub 4}; (3) 10 min for equilibration time; and (4) 3000 rpm for centrifugal speed with duration of 10 min. 50 refs., 7 figs.

  9. Anoxic biodegradation of petroleum hydrocarbons in saline media using denitrifier biogranules.

    Science.gov (United States)

    Moussavi, Gholamreza; Shekoohiyan, Sakine; Naddafi, Kazem

    2016-07-01

    The total petroleum hydrocarbons (TPH) biodegradation was examined using biogranules at different initial TPH concentration and contact time under anoxic condition in saline media. The circular compact biogranules having the average diameter between 2 and 3mm were composed of a dense population of Bacillus spp. capable of biodegrading TPH under anoxic condition in saline media were formed in first step of the study. The biogranules could biodegrade over 99% of the TPH at initial concentration up to 2g/L at the contact time of 22h under anoxic condition in saline media. The maximum TPH biodegradation rate of 2.6 gTPH/gbiomass.d could be obtained at initial TPH concentration of 10g/L. Accordingly, the anoxic biogranulation is a possible and promising technique for high-rate biodegradation of petroleum hydrocarbons in saline media.

  10. Distribution of trace metals, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons in sediment cores from the Sicily Channel and the gulf of Tunis (south-western Mediterranean Sea).

    Science.gov (United States)

    Mzoughi, Nadia; Chouba, Lassaad

    2011-01-01

    Under the framework of the IAEA's Technical Co-operation project RAF7/004, international research cruises were carried out in 2004 to assess the distribution of radionuclides and micropollutants in the south-western Mediterranean Sea. Sediments samples had variable concentrations of total aliphatic hydrocarbons and polycyclic aromatic hydrocarbons ranging from 0.2 to 1.8 microg g(-1) and 26.9 to 364.4 ng g(-1), respectively, in the Sicily Channel and from 0.7 to 2.8 microg g(-1) and 14.7 to 618.1 ng g(-1), respectively, in the open sea of the Gulf of Tunis. Hydrocarbon concentrations changed with depth and were relatively high at 3 cm and 10 cm depths. The use of 'fingerprint' ratios of certain isomeric pairs of polycyclic aromatic hydrocarbons (PAH) and the proportion of 2-3 ring and 4-5 ring PAH concentrations showed that the main origins are characteristic of petroleum sources. The ranges of trace metal concentrations, expressed in microgg(-1), in the Sicily Channel and in the Gulf of Tunis, respectively, were: Hg 0.009-0.2 and 0.02-0.1; Pb 9.9-26.1 and 21.2-32.5; Cd 0.06-0.1 and 0.07-0.33; Fe 23.7-28.1 and 29.9-36.2p; Zn 83-99.5 and 83-104; Mn 309.2-752.5 and 651-814; Cu 17.1-18.5 and 33.5-51.3. Sediment metal abundances were in the order: Mn > Zn > Fe > Cu > Pb > Cd > Hg. The results showed significant differences (p < 0.001) for trace metal and hydrocarbon mean concentrations between the two cores. These concentrations are generally similar to the background levels from the Mediterranean Sea and could be affected by physico-chemical conditions and sedimentation rate as well as biodegradation.

  11. Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-02-01

    Methane emissions in oil sands tailings ponds are sustained by anaerobic biodegradation of unrecovered hydrocarbons. Naphtha (primarily C6-C10; n- iso- and cycloalkanes) is commonly used as a solvent during bitumen extraction process and its residue escapes to tailings ponds during tailings deposition. To investigate biodegradability of hydrocarbons in naphtha, mature fine tailings (MFT) collected from Albian and CNRL tailings ponds were amended with CNRL naphtha at ∼0.2 wt% (∼2000 mg L(-1)) and incubated under methanogenic conditions for ∼1600 d. Microbial communities in both MFTs started metabolizing naphtha after a lag phase of ∼100 d. Complete biodegradation/biotransformation of all n-alkanes (except partial biodegradation of n-octane in CNRL MFT) followed by major iso-alkanes (2-methylpentane, 3-methylhexane, 2- and 4-methylheptane, iso-nonanes and 2-methylnonane) and a few cycloalkanes (derivatives of cyclopentane and cyclohexane) was observed during the incubation. 16S rRNA gene pyrosequencing showed dominance of Peptococcaceae and Anaerolineaceae in Albian MFT and Anaerolineaceae and Syntrophaceae in CNRL MFT bacterial communities with co-domination of Methanosaetaceae and "Candidatus Methanoregula" in archaeal populations during active biodegradation of hydrocarbons. The findings extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments and help refine existing kinetic model to predict greenhouse gas emissions from tailings ponds.

  12. ExBox: a polycyclic aromatic hydrocarbon scavenger.

    Science.gov (United States)

    Barnes, Jonathan C; Juríček, Michal; Strutt, Nathan L; Frasconi, Marco; Sampath, Srinivasan; Giesener, Marc A; McGrier, Psaras L; Bruns, Carson J; Stern, Charlotte L; Sarjeant, Amy A; Stoddart, J Fraser

    2013-01-09

    A template-directed protocol, which capitalizes on donor-acceptor interactions, is employed to synthesize a semi-rigid cyclophane (ExBox(4+)) that adopts a box-like geometry and is comprised of π-electron-poor 1,4-phenylene-bridged ("extended") bipyridinium units (ExBIPY(2+)). ExBox(4+) functions as a high-affinity scavenger of an array of different polycyclic aromatic hydrocarbons (PAHs), ranging from two to seven fused rings, as a result of its large, accommodating cavity (approximately 3.5 Å in width and 11.2 Å in length when considering the van der Waals radii) and its ability to form strong non-covalent bonding interactions with π-electron-rich PAHs in either organic or aqueous media. In all, 11 PAH guests were observed to form inclusion complexes with ExBox(4+), with coronene being the largest included guest. Single-crystal X-ray diffraction data for the 11 inclusion complexes ExBox(4+)⊂PAH as well as UV/vis spectroscopic data for 10 of the complexes provide evidence of the promiscuity of ExBox(4+) for the various PAHs. Nuclear magnetic resonance spectroscopy and isothermal titration calorimetric analyses of 10 of the inclusion complexes are employed to further characterize the host-guest interactions in solution and determine the degree with which ExBox(4+) binds each PAH compound. As a proof-of-concept, a batch of crude oil from Saudi Arabia was subjected to extraction with the water-soluble form of the PAH receptor, ExBox·4Cl, resulting in the isolation of different aromatic compounds after ExBox·4Cl was regenerated.

  13. Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles

    Science.gov (United States)

    de Abrantes, Rui; Vicente de Assunção, João; Pesquero, Célia Regina; Bruns, Roy Edward; Nóbrega, Raimundo Paiva

    The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 μg km -1 to 612 μg km -1 in the gasohol vehicle, and from 11.7 μg km -1 to 27.4 μg km -1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo( a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km -1 to 4.61 μg TEQ km -1 for the gasohol vehicle and from 0.0117 μg TEQ km -1 to 0.0218 μg TEQ km -1 in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed

  14. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium.

    Science.gov (United States)

    Nievas, M L; Commendatore, M G; Esteves, J L; Bucalá, V

    2008-06-15

    The biodegradation of a hazardous waste (bilge waste), a fuel oil-type complex residue from normal ship operations, was studied in a batch bioreactor using a microbial consortium in seawater medium. Experiments with initial concentrations of 0.18 and 0.53% (v/v) of bilge waste were carried out. In order to study the biodegradation kinetics, the mass of n-alkanes, resolved hydrocarbons and unresolved complex mixture (UCM) hydrocarbons were assessed by gas chromatography (GC). Emulsification was detected in both experiments, possibly linked to the n-alkanes depletion, with differences in emulsification start times and extents according to the initial hydrocarbon concentration. Both facts influenced the hydrocarbon biodegradation kinetics. A sequential biodegradation of n-alkanes and UMC was found for the higher hydrocarbon content. Being the former growth associated, while UCM biodegradation was a non-growing process showing enzymatic-type biodegradation kinetics. For the lower hydrocarbon concentration, simultaneous biodegradation of n-alkanes and UMC were found before emulsification. Nevertheless, certain UCM biodegradation was observed after the medium emulsification. According to the observed kinetics, three main types of hydrocarbons (n-alkanes, biodegradable UCM and recalcitrant UCM) were found adequate to represent the multicomponent substrate (bilge waste) for future modelling of the biodegradation process.

  15. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer.

    Science.gov (United States)

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J

    2015-05-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

  16. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    Science.gov (United States)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  17. Biodegradation of aliphatic hydrocarbons in the presence of hydroxy cucurbit[6]uril.

    Science.gov (United States)

    Pasumarthi, Rajesh; Kumar, Vikash; Chandrasekharan, Sivaraman; Ganguly, Anasuya; Banerjee, Mainak; Mutnuri, Srikanth

    2014-11-15

    Aliphatic hydrocarbons are one of the major environmental pollutants with reduced bioavailability. The present study focuses on the effect of hydroxy cucurbit[6]uril on the bioavailability of hydrocarbons. A bacterial consortium was used for biodegradation studies under saline and non-saline conditions. Based on denaturing gradient gel electrophoresis results it was found that the consortium under saline conditions had two different strains. The experiment was conducted in microcosms with tetradecane, hexadecane, octadecane and mixture of the mentioned hydrocarbons as the sole carbon source. The residual hydrocarbon was quantified using gas chromatography every 24h. It was found that biodegradation of tetradecane and hexadecane, as individual carbon source increased in the presence of hydroxy CB[6], probably due to the increase in their bioavailability. In case of octadecane this did not happen. Bioavailability of all three aliphatic hydrocarbons was increased when provided as a mixture to the consortium under saline conditions.

  18. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil

    Science.gov (United States)

    The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...

  19. Do lagoon area sediments act as traps for polycyclic aromatic hydrocarbons?

    Science.gov (United States)

    Marini, Mauro; Frapiccini, Emanuela

    2014-09-01

    The coastal lagoons are vulnerable systems, located between the land and the sea, enriched by both marine and continental inputs and are among the most productive aquatic ecosystems. The purpose of this work is to understand the influence of the lagoon area sediments on the behaviour of polycyclic aromatic hydrocarbons, through the adsorption coefficient determination. In fact, the sorption of polycyclic aromatic hydrocarbons is an important process because it governs the fate, transport, bioavailability and toxicity of these compounds in sediments. It has been observed that the adsorption of polycyclic aromatic hydrocarbons in a transitional system is the outcome of different factors, such as their sources and physicochemical properties, salinity and sediment composition, hydrology and environmental conditions. The results showed that transitional areas contribute to the polycyclic aromatic hydrocarbon accumulation in the sediment turning it into a trap.

  20. Comparison of passive and standard dosing of polycyclic aromatic hydrocarbons to the marine algae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Witt, G.; Niehus, N. C.; Konopka, K.

    2015-01-01

    Testing hydrophobic organic compounds (HOCs), like polycyclic aromatic hydrocarbons (PAHs), in aquatic toxicity tests is difficult due to compound losses through volatilization, sorption to the test vessel and culture medium constituents. This results in poorly defined exposure, the bioavailable...

  1. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    Science.gov (United States)

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  2. Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Ramzi, A; Rahman, K.H.; Gireeshkumar, T.R.; Balachandran, K.K.; Jacob, C.; Chandramohanakumar, N

    Polycyclic aromatic hydrocarbons (PAHs) showed significant seasonal dynamics in surface sediments of a tropical ecosystem (Cochin estuary, south west coast of India). Concentrations ranged from 304 to 5874 ngg-1 in pre-monsoon, 493 to 14...

  3. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  4. Recent analytical methods for atmospheric polycyclic aromatic hydrocarbons and their derivatives.

    Science.gov (United States)

    Hayakawa, Kazuichi; Tang, Ning; Toriba, Akira

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) are ubiquitous environmental pollutants. Moreover, some oxidative metabolites of these pollutants, such as hydroxylated and epoxide PAHs, cause endocrine disruption or produce reactive oxygen species. These compounds have become a large concern from the viewpoint of particulate matter (PM2.5 ) pollution. This report deals with recent studies concerning analytical methods for PAHs, NPAHs and related compounds in atmospheric and biological samples.

  5. Polycyclic aromatic hydrocarbons in household dust near diesel transport routes.

    Science.gov (United States)

    Kuo, Chung-Yih; Chen, Heng-Chun; Cheng, Fang-Ching; Huang, Li-Ru; Chien, Po-Shan; Wang, Jing-Ya

    2012-02-01

    A river-dredging project has been undertaken in Nantou, Taiwan. A large number of diesel vehicles carrying gravel and sand shuttle back and forth on the main roads. Ten stations along major thoroughfares were selected as the exposure sites for testing, while a small village located about 9 km from a main traffic route was selected as the control site. Levels of household dust loading at the exposure sites (60.3 mg/m(2)) were significantly higher than those at the control site (38.2 mg/m(2)). The loading (μg/m(2)) of t-PAHs (total polycyclic aromatic hydrocarbons) in the household dust at the exposure sites was significantly higher (P < 0.05) than was the case at the control site. The diagnostic ratios of PAHs showed that diesel emissions were the dominant source of PAHs at the exposure sites. The lack of a significant correlation between the concentrations of Fe and t-PAHs suggested that the t-PAHs in household dust might come from diverse sources. However, a significant correlation (P = 0.003) between the concentrations of Mo and t-PAHs implied that the most of the t-PAHs in the household dust might have resulted from diesel emissions. The lifetime cancer risks of BaP(eq) from household dust exposure were markedly higher than those resulting from inhalation exposure.

  6. MONITORING POLYNUCLEAR AROMATIC HYDROCARBONS IN SEDIMENT POREWATER BY SPMD

    Institute of Scientific and Technical Information of China (English)

    朱亚先; 张勇; 庄一廷; Ka-FaiPoon; MichaelH.W.Lam; 洪华生; RudolfS.S.Wu

    2001-01-01

    A new mimic biological Semi-permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was frrst used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC-FID in coastal sediment perewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene (AE), fluorene (F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzo[a]anthracene(B[a]A), chrysene(Chr), benzo[b] fluor- anthene(B[b]F), benzo[k]fluoranthene(B[k]F), benzo[a]pyrene(B[a]P),indeno[1,2,3,-cd]-Pyrene(I[123]P), dibenz[a,h]anthracene(D[ab]A) and benzo[g,h,i] perylene(B[ghi]P) were:50.36, under detection limits(UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13,123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.

  7. MONITORING POLYNUCLEAR AROMATIC HYDROCARBONS IN SEDIMENT POREWATER BY SPMD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new mimic biological Semi-permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was first used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC-FID in coastal sediment porewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene(AE), fluorene(F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzo[ a] anthracene( B [a] A), chrysene(Chr), benzo[b]fluor- anthene ( B [ b ] F ), benzo[ k ] fluoranthene ( B [ k ] F ), benzo[ a ] pyrene ( B [ a ] P), indeno [ 1,2,3,-cd]-Pyrene(I[123]P), dibenz[a,h]anthracene(D[ah]A) and benzo[g,h,i] perylene(B[ghi]P) were:50.36, under detection limits( UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13,123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.

  8. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    Science.gov (United States)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  9. Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater

    Science.gov (United States)

    Lee, Hwang; Chang, Sein; Kim, Seung-Kyu; Kwon, Jung-Hwan

    2017-01-01

    Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the "net flow" of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.

  10. Polycyclic aromatic hydrocarbons and pesticides in soil of Vojvodina

    Directory of Open Access Journals (Sweden)

    Pucarević Mira M.

    2004-01-01

    Full Text Available The paper deals with several groups of compounds that represent the most frequent pollutants of soil in the world. The paper also reviews results of long-term studies conducted at the Institute of Field and Vegetable Crops in Novi Sad on the residues of pesticides and polycyclic aromatic hydrocarbons (PAHs in the soil of the Vojvodina Province. The analyzed samples have been found to contain residues of persistent pesticides and their metabolites lindane and its metabolites 6,20 μg/kg, alachlor 3,56 μg/kg, aldrin 2,3 μg/kg, heptachlor epoxide 0,99 μg/kg, chlordane 3,82 μg/kg, DDT and its metabolites 10,77 μg/kg, dieldrin 2,04 μg/kg, endrin 3,57 μg/kg and endrin aldehyde 1,36 μg/kg. Soil samples from Novi Sad municipality contained 53,69 μg/kg of DDT and its metabolites. The values of atrazine ranged from 0,0005 to 0,8 mg/kg. The values of PAHs were 6,64 mg/kg in industrial soil, 4,93 mg/kg in agricultural soil, and 4,55 mg/kg and 5,48 mg/kg in the Novi Sad municipality. The lowest value, 0.83 mg/kg, was found for nonagricultural/nonindustrial soils.

  11. Investigation of polycyclic aromatic hydrocarbons from coal gasification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-cang; JIN Bao-sheng; ZHONG Zhao-ping; HUANG Ya-ji; XIAO Rui; LI Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  12. Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater

    Science.gov (United States)

    Lee, Hwang; Chang, Sein; Kim, Seung-Kyu; Kwon, Jung-Hwan

    2017-03-01

    Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the "net flow" of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.

  13. Anharmonicity and infrared bands of Polycyclic Aromatic Hydrocarbon (PAH) molecules

    Science.gov (United States)

    Petrignani, Annemieke; Maltseva, Elena; Candian, Alessandra; Mackie, Cameron; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander; Oomens, Jos; Buma, Wybren Jan

    2015-08-01

    We present a systematic laboratory study of the CH stretching region in Polycyclic Aromatic Hydrocarbon (PAH) molecules of different shapes and sizes to investigate anharmonic behaviour and address the reliability of the never-validated but universally accepted scaling factors employed in astronomical PAH models. At the same time, new anharmonic theoretical quantum chemistry studies have been performed with the software program Spectro using our experimental data as benchmark. We performed mass and conformational-resolved, high-resolution spectroscopy of cold (~10K) linear and compact PAH molecules starting with naphthalene (C10H8) in the 3-µm CH stretching region. Surprisingly, the measured infrared spectra show many more strong modes than expected. Measurements of the deuterated counterparts demonstrate that these bands are the result of Fermi Resonances. First comparisons with harmonic and anharmonic DFT calculations using Gaussian 09 show that both approximations are not able to reproduce in detail the observed molecular reality. The improved anharmonic calculations performed with Spectro now include the effects of Fermi resonances and have been applied to PAHs for the first time. The analysis of the experimental data is greatly aided by these new theoretical quantum chemistry studies. Preliminary assignments are presented, aided by comparison between the observed rotational contour and the symmetry of candidate bands.

  14. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Tao, S.; Pan, B.; Fan, W.; He, X.C.; Zuo, Q.; Wu, S.P.; Li, B.G.; Cao, J.; Liu, W.X.; Xu, F.L.; Wang, X.J.; Shen, W.R.; Wong, P.K. [Peking University, Beijing (China). College of Environmental Science

    2005-03-01

    Abstract: Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 {mu}g/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 {mu}g/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area.

  15. Investigation of polycyclic aromatic hydrocarbons from coal gasification.

    Science.gov (United States)

    Zhou, Hong-cang; Jin, Bao-sheng; Zhong, Zhao-ping; Huang, Ya-ji; Xiao, Rui; Li, Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  16. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

    Science.gov (United States)

    Lamichhane, Shanti; Bal Krishna, K C; Sarukkalige, Ranjan

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015.

  17. Association of polycyclic aromatic hydrocarbons in housewives' hair with hypertension.

    Science.gov (United States)

    Wang, Bin; Li, Zhiwen; Ma, Yiqiu; Qiu, Xinghua; Ren, Aiguo

    2016-06-01

    The relationship between polycyclic aromatic hydrocarbons (PAHs) and hypertension remains a subject of debate. The aims of this study were to determine an association of concentrations of PAHs in housewives' hair with hypertension risk and the modification effect of single nucleotide polymorphisms (SNPs) related to Phase I metabolism of PAHs. We recruited 405 women for a cross-sectional study in Shanxi Province, China, including 170 with hypertension (the case group) and 235 without hypertension (the control group). We analyzed 26 individual PAHs in hair samples and the SNPs of the genes including cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), CYP1A2, CYP1B1 and CYP2E1. Our results showed that seven PAHs in hair samples were measured with detection rate >70%. Only acenaphthylene was found to be associated with an increased risk of hypertension with adjustment for the potential confounders following Bonferroni correction, whereas others not. No SNPs of the concerned genes were found to be associated with the risk of hypertension. A multiple interaction effect of PAHs in housewives' hair and SNPs on hypertension risk was not observed. It was concluded that PAHs tended to contribute to the formation of hypertension.

  18. Occupational exposure to Polycyclic Aromatic Hydrocarbons in wood dust

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, C K; Schuepfer, P; Boiteux, P, E-mail: chuynh@hospvd.c [Institute for Work and Health, rue du Bugnon 21, CH-1005 Lausanne (Switzerland)

    2009-02-01

    Sino-nasal cancer (SNC) represents approximately 3% of Oto-Rhino-Laryngology (ORL) cancers. Adenocarcinoma SNC is an acknowledged occupational disease affecting certain specialized workers such as joiners and cabinetmakers. The high proportion of woodworkers contracting a SNC, subjected to an estimated risk 50 to 100 times higher than that affecting the general population, has suggested various study paths to possible causes such as tannin in hardwood, formaldehyde in plywood and benzo(a)pyrene produced by wood when overheated by cutting tools. It is acknowledged that tannin does not cause cancer to workers exposed to tea dust. Apart from being an irritant, formaldehyde is also classified as carcinogenic. The path involving carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) emitted by overheated wood is attractive. In this study, we measured the particle size and PAHs content in dust emitted by the processing of wood in an experimental chamber, and in field situation. Quantification of 16 PAHs is carried out by capillary GC-ion trap Mass Spectrometric analysis (GC-MS). The materials tested are rough fir tree, oak, impregnated polyurethane (PU) oak. The wood dust contains carcinogenic PAHs at the level of mug.g{sup -1} or ppm. During sanding operations, the PU varnish-impregnated wood produces 100 times more PAHs in dust than the unfinished wood.

  19. Determination of Polycyclic Aromatic Hydrocarbons In Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available The retention by humans of 20 polycyclic aromatic hydrocarbons (PAHs from mainstream cigarette smoke was evaluated. The analysis was done by a new technique using solid phase extraction (SPE for the cleanup and the concenration of PAHs. The new technique has excellent sensitivity and accuracy, which were necessary for the analysis of the very low levels of PAHs present in the exhaled cigarette smoke. The study was done on a common commercial cigarette with 10.6 mg ‘tar’ by U.S. Federal Trade Commission (FTC recommendation. The results were obtained from ten human subjects, each smoking three cigarettes. The exhaled smoke was collected using a vacuum assisted procedure that avoids strain in exhaling. The study showed that the PAHs with a molecular weight lower than about 170 Daltons are retained with high efficiency. The heavier molecules are less retained, but even compounds such as indeno[1,2,3-cd]pyrene, dibenz[a, h]anthracene, and benzoperylene are retained with efficiencies around 50%. The dependence of retention efficiency for PAHs (in % on their octanol-water partition coefficient (LogPow was found to be nonlinear and showed considerable variability for several compounds that have very close LogPow values. Better correlation was obtained between the retention efficiency and PAHs vapor pressure (Log VP.

  20. Polycyclic aromatic hydrocarbon formation under simulated coal seam pyrolysis conditions

    Institute of Scientific and Technical Information of China (English)

    Liu Shuqin; Wang Yuanyuan; Wang Caihong; Bao Pengcheng; Dang Jinli

    2011-01-01

    Coal seam pyrolysis occurs during coal seam fires and during underground coal gasification.This is an important source of polycyclic aromatic hydrocarbon (PAH) emission in China.Pyrolysis in a coal seam was simulated in a tubular furnace.The 16 US Environmental Protection Agency priority controlled PAHs were analyzed by HPLC.The effects of temperature,heating rate,pyrolysis atmosphere,and coal size were investigated.The results indicate that the 3-ring PAHs AcP and AcPy are the main species in the pyrolysis gas.The 2-ring NaP and the 4-ring Pyr are also of concern.Increasing temperature caused the total PAH yield to go through a minimum.The lowest value was obtained at the temperature of 600 ℃ Higher heating rates promote PAH formation,especially formation of the lower molecular weight PAHs.The typical heating rate in a coal seam,5 ℃/min,results in intermediate yields of PAHs.The total PAHs yield in an atmosphere of N2 is about 1.81 times that seen without added N2,which indicates that an air flow through the coal seam accelerates the formation of PAHs.An increase in coal particle size reduces the total PAHs emission but promotes the formation of 5- and 6-ring PAHs.

  1. Tailoring Colors by O Annulation of Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Miletić, Tanja; Fermi, Andrea; Orfanos, Ioannis; Avramopoulos, Aggelos; De Leo, Federica; Demitri, Nicola; Bergamini, Giacomo; Ceroni, Paola; Papadopoulos, Manthos G.; Couris, Stelios

    2017-01-01

    Abstract The synthesis of O‐doped polyaromatic hydro‐ carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high‐yield ring‐closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C−O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron‐donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third‐order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices. PMID:27897357

  2. Threshold Energies for Single Carbon Knockout from Polycyclic Aromatic Hydrocarbons

    CERN Document Server

    Stockett, M H; Chen, T; de Ruette, N; Giacomozzi, L; Wolf, M; Schmidt, H T; Zettergren, H; Cederquist, H

    2015-01-01

    We have measured absolute cross sections for ultrafast (fs) single-carbon knockout from Polycyclic Aromatic Hydrocarbon (PAH) cations as functions of He-PAH center-of-mass collision energy in the range 10-200 eV. Classical Molecular Dynamics (MD) simulations cover this range and extend up to 10$^5$ eV. The shapes of the knockout cross sections are well described by a simple analytical expression yielding experimental and MD threshold energies of $E_{th}^{Exp}=32.5\\pm 0.4$ eV and $E_{th}^{MD}=41.0\\pm 0.3$ eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated \\emph{in vacuo}. We further deduce semi-empirical (SE) and MD displacement energies --- \\emph{i.e.} the energy transfers to the PAH molecules at the threshold energies for knockout --- of $T_{disp}^{SE}=23.3\\pm 0.3$ eV and $T_{disp}^{MD}=27.0\\pm 0.3$ eV. The semi-empirical results compare favorably with measured displacement energies for graphene $T_{disp}=23.6$ eV [Meyer \\emph{et al.} Phys. Rev Lett. \\tex...

  3. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol.

  4. Aqueous leaching of polycyclic aromatic hydrocarbons from bitumen and asphalt.

    Science.gov (United States)

    Brandt, H C; de Groot, P C

    2001-12-01

    The application of bitumen in, e.g. asphalt roads, roofs and hydraulic applications will lead to the leaching of compounds from the bitumen/asphalt into the environment. Because polycyclic aromatic hydrocarbons (PAHs) are present in bitumen, static and dynamic leach tests have been performed to study the leaching behaviour of this class of compounds. Nine petroleum bitumens covering a representative range of commercially available products and one asphalt made from one of the bitumens have been tested in a static leach test. The asphalt has been also subjected to a dynamic leach test. The main conclusions are that a 30h dynamic leach test is sufficient to determine the equilibrium concentration that will be reached after bitumen or asphalt has been in contact with the water for more than 3-6 days. As an alternative to performing a leach test, this concentration can be calculated from the PAH concentrations in the bitumen, and their distribution coefficients, as calculated here, or from their aqueous solubilities. The equilibrium PAH concentrations in the leach water from bitumens stay well below the surface water limits that exist in several EEC-countries and are also more than an order of magnitude lower than the current EEC limits for potable water.

  5. Separation and analysis of aromatic hydrocarbons from two Chinese coals

    Institute of Scientific and Technical Information of China (English)

    DING Ming-jie; LI Wen-dian; XIE Rui-lun; ZONG Ying; CAI Ke-ying; PENG Yao-li; ZONG Zhi-min; XIE Rui-lun; WEI Xian-yong

    2008-01-01

    Separation and analysis of aromatic hydrocarbons (AHs) from coals is of considerable significance for both fuel and non-fuel use of the coals. In present work two Chinese bituminous coals were selected for separation of AHs by ultrasonic extraction with CS2 followed by column chromatography using hexane as eluent. A series of AHs were separated from the two coals and analyzed by GC/MS. FTIR was employed to characterize the raw coals and the extracted residues. The results of GC/MS analysis show that the separated AHs are mono- to tetracyclic arenes, among which the principle AHs are alkyl naphthalenes and phenanthrenes. Obvious differences in the composition and the structure of AHs exist between the two coals, i.e., the AHs from Tongting coal tend to be higher rings compared to those from Pingshuo coal both from the variety and from the abundance of the AHs. FFIR analysis shows that the raw and extracted coals are similar in terms of functional groups, suggesting that the composition and structure of CS extract, especially the AHs, from coals can be used to interpret the coal structure to some extent.

  6. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  7. Genomic and molecular mechanisms for efficient biodegradation of aromatic dye.

    Science.gov (United States)

    Sun, Su; Xie, Shangxian; Chen, Hu; Cheng, Yanbing; Shi, Yan; Qin, Xing; Dai, Susie Y; Zhang, Xiaoyu; Yuan, Joshua S

    2016-01-25

    Understanding the molecular mechanisms for aromatic compound degradation is crucial for the development of effective bioremediation strategies. We report the discovery of a novel phenomenon for improved degradation of Direct Red 5B azo dye by Irpex lacteus CD2 with lignin as a co-substrate. Transcriptomics analysis was performed to elucidate the molecular mechanisms of aromatic degradation in white rot fungus by comparing dye, lignin, and dye/lignin combined treatments. A full spectrum of lignin degradation peroxidases, oxidases, radical producing enzymes, and other relevant components were up-regulated under DR5B and lignin treatments. Lignin induced genes complemented the DR5B induced genes to provide essential enzymes and redox conditions for aromatic compound degradation. The transcriptomics analysis was further verified by manganese peroxidase (MnP) protein over-expression, as revealed by proteomics, dye decolorization assay by purified MnP and increased hydroxyl radical levels, as indicated by an iron reducing activity assay. Overall, the molecular and genomic mechanisms indicated that effective aromatic polymer degradation requires synergistic enzymes and radical-mediated oxidative reactions to form an effective network of chemical processes. This study will help to guide the development of effective bioremediation and biomass degradation strategies.

  8. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    Science.gov (United States)

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment.

  9. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons.

  10. Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Foght, J.; Semple, K.; Pooley, K.; Guigard, S.; Biggar, K. [Alberta Univ., Edmonton, AB (Canada)

    2005-07-01

    Biodegradation can be limited by low concentrations of dissolved oxygen and other terminal electron acceptors, low nutrient concentrations, low temperatures and potentially by low numbers of indigenous hydrocarbon-degrading microbes in inhospitable environments. At flare pit sites, salt is a common co-contaminant in subsurface sediments and groundwater contaminated with crude oil. There are few published reports on the effects of salt on hydrocarbon degradation by soil or freshwater microbial communities. In this study, subsurface sediment and groundwater were collected and stored. Five grams of sediment and 50 ml of groundwater were added to flasks, providing replicate indigenous microbial populations. Nutrients were added to certain flasks as autoclaved solutions of ammonium nitrate and potassium phosphate. Positive and negative controls were included in each test series. Flasks were sealed with neoprene stoppers and unsealed briefly to introduce fresh oxygen to maintain aerobic conditions. Results indicate that nutrient addition is required for significant aliphatic but not aromatic hydrocarbon mineralization. Salt was found to be inhibitory to general metabolic activity. Salt concentrations above 1 per cent wt/vol resulted in increased lag times and a lower extent of mineralization. Inhibitory effects observed included increased lag times and decreased rates and extents of mineralization. Low levels of salt were sometimes stimulatory, which may be explained by the salt providing a more ionically balanced medium for the microbes, or by the dispersal of clays to provide a larger surface area for attachment of cells or for access to trace nutrients. It was noted that certain flasks within a replicate set experienced a long lag time before eventually and suddenly beginning to mineralize the substrate at a rate similar to that of less stressed flasks. The lag time may be considered as an adaptation period of the consortium to the stressors, during which there is

  11. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    Science.gov (United States)

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.

  12. The phn island: A new genomic island encoding catabolism of polynuclear aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    William James Hickey

    2012-04-01

    Full Text Available Bacteria are key in the biodegradation of polycyclic aromatic hydrocarbons (PAH, which are widespread environmental pollutants. At least six genotypes of PAH-degraders are distinguishable via phylogenies of the ring-hydroxylating dioxygenase (RHD that initiates bacterial PAH metabolism, and a given genotype has a characteristic taxonomic distribution. The latter pattern implies each genotype may have distinct pathways for horizontal gene transfer (HGT. But, while such processes are important in the function of PAH-degrader communities, mechanisms of HGT for most RHD genotypes are unknown. Here, we report in silico and functional analyses of the phenanthrene-degrader Delftia sp. Cs1-4, a representative of the phnAFK2 RHD group. The phnAFK2 genotype predominates PAH degrader communities in some soils and sediments, but, until now, their genomic biology has not been explored. In the present studies, genes for the entire phenanthrene catabolic pathway were discovered on a novel ca. 232 kb genomic island (GEI, now termed the phn island. This GEI had characteristics of an integrative and conjugative element with a mobilization/stabilization system similar to that of SXT/R391-type GEI. But, it could not be grouped with any known GEI, and was the first member of a new GEI class. The island also carried genes predicted to encode: synthesis of quorum sensing signal molecules, fatty acid/polyhydroxyalkonate biosynthesis, a type IV secretory system, a PRTRC system, DNA mobilization functions and > 50 hypothetical proteins. The 50% G+C content of the phn gene cluster differed significantly from the 66.7% G+C level of the island as a whole and the strain Cs1-4 chromosome, indicating a divergent phylogenetic origin for the phn genes. Collectively, these studies added new insights into the genetic elements affecting the PAH biodegradation capacity of microbial communities specifically, and the potential vehicles of HGT in general.

  13. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils.

    Science.gov (United States)

    Dandie, Catherine E; Weber, John; Aleer, Samuel; Adetutu, Eric M; Ball, Andy S; Juhasz, Albert L

    2010-11-01

    In this study, the bioaccessibility of petroleum hydrocarbons in aged contaminated soils (1.6-67gkg(-1)) was assessed using four non-exhaustive extraction techniques (100% 1-butanol, 100% 1-propanol, 50% 1-propanol in water and hydroxypropyl-β-cyclodextrin) and the persulfate oxidation method. Using linear regression analysis, residual hydrocarbon concentrations following bioaccessibility assessment were compared to residual hydrocarbon concentrations following biodegradation in laboratory-scale microcosms in order to determine whether bioaccessibility assays can predict the endpoint of hydrocarbon biodegradation. The relationship between residual hydrocarbon concentrations following microcosm biodegradation and bioaccessibility assessment was linear (r(2)=0.71-0.97) indicating that bioaccessibility assays have the potential to predict the extent of hydrocarbon biodegradation. However, the slope of best fit varied depending on the hydrocarbon fractional range assessed. For the C(10)-C(14) hydrocarbon fraction, the slope of best fit ranged from 0.12 to 0.27 indicating that the non-exhaustive or persulfate oxidation methods removed 3.5-8 times more hydrocarbons than biodegradation. Conversely, for the higher molecular weight hydrocarbon fractions (C(29)-C(36) and C(37)-C(40)), biodegradation removed up to 3.3 times more hydrocarbons compared to bioaccessibility assays with the resulting slope of best fit ranging from 1.0-1.9 to 2.0-3.3 respectively. For mid-range hydrocarbons (C(15)-C(28)), a slope of approximately one was obtained indicating that C(15)-C(28) hydrocarbon removal by these bioaccessibility assays may approximate the extent of biodegradation. While this study demonstrates the potential of predicting biodegradation endpoints using bioaccessibility assays, limitations of the study include a small data set and that all soils were collected from a single site, presumably resulting from a single contamination source. Further evaluation and validation is

  14. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria.

    Science.gov (United States)

    Abbasian, Firouz; Lockington, Robin; Mallavarapu, Megharaj; Naidu, Ravi

    2015-06-01

    Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.

  15. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S., E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rezende, Maira L.; Rosa, Derval S. [Universidade Sao Francisco, Itatiba, SP (Brazil)

    2009-07-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used alpha-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras{sup R}) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex{sup R}) film in both methods studied. (author)

  16. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Singleton, David R; Richardson, Stephen D; Aitken, Michael D

    2011-11-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.

  17. Removal of Polycyclic Aromatic Hydrocarbons from Precipitation in an Urban Forest of Guangzhou, South China.

    Science.gov (United States)

    Chen, Bufeng; Pei, Nancai; Huang, Junbiao; Liu, Shuguang; Zhang, Na; Xiao, Yihua; Pan, Yongjun

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations and fluxes were measured monthly in situ from rain events in an urban forest in the megapolitan city Guangzhou, China, to investigate impacts of forest canopy and soils on PAHs. Mean Σ9-PAH concentrations were 107.5, 101.6, 106.3, 107.1 and 42.4 ng L(-1) in precipitation, throughfall, seepage water at the 30 and 60 cm soil depth, and runoff, respectively, indicating a great decrease in the form of runoff. Meanwhile, annual fluxes of total PAHs decreased from precipitation (205.9 µg m(-2) year(-1)), to throughfall (156.3 µg m(-2) year(-1)), and to seepage water (65.3 µg m(-2) year(-1) at 30-cm soil depth and 7.5 µg m(-2) year(-1) at 60-cm soil depth), but increased in runoff (34.1 µg m(-2) year(-1)). When compared to precipitation, PAH fluxes decreased by 83.4% in runoff, with 29% contributed by forest canopy and 71% by soils. Soil biodegradation explained 18.2% of PAH reduction by the surface soil layer and 34.6% by the middle soil layer.

  18. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Viglianti, Christophe [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France); Centre Sciences, Information et Technologies pour l' Environnement (SITE) - ENS de Mines de Saint Etienne, 158 cours Fauriel - 42023 Saint Etienne Cedex 2 (France); Hanna, Khalil [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France)]. E-mail: khalilhanna@hotmail.com; Brauer, Christine de [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France); Germain, Patrick [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France)

    2006-04-15

    The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. {beta}-Cyclodextrin (BCD), hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 {sup o}C. The PAHs extraction enhancement factor compared to water was about 200. - An innovative method using a biodegradable and non-toxic flushing agent for the depollution of industrially aged-contaminated soil.

  19. Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: assessment and source recognition of petroleum hydrocarbons.

    Science.gov (United States)

    El Nemr, Ahmed; El-Sadaawy, Manal M; Khaled, Azza; Draz, Suzanne O

    2013-06-01

    Coastal marine sediment samples were collected from ten sampling stations along the Egyptian Mediterranean coast in April 2010. All sediment samples were analyzed for aliphatic (C7 to C34) and polycyclic aromatic hydrocarbons (PAHs) as well as total organic carbon (TOC) contents and grain size analysis. Total aliphatic hydrocarbons ranged from 1621.82 to 9069.99 ng/g (dry weight), while aromatic hydrocarbons (16 PAHs) varied between 208.69 and 1020.02 ng/g with an average of 530.68 ± 225.86 ng/g dwt. Good correlations observed between certain PAH concentrations allowed to identify its origin. The average TOC percent was varied from 0.13 to 1.46 %. Principal component analysis was used to determine the sources of hydrocarbon pollutants in sediments of Mediterranean. Additionally, special PAHs compound ratios suggest the petrogenic origins.

  20. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290...

  1. Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities

    NARCIS (Netherlands)

    Stogiannidis, E.; Laane, R.

    2014-01-01

    The Polycyclic Aromatic Hydrocarbons (PAHs or polyaromatic hydrocarbons) have been extensively studied to understand their distribution, fate and effects in the environment (Haftka 2009; Laane et al. 1999, 2006, 2013; Okuda et al. 2002; Page et al. 1999; Pavlova and Ivanova 2003; Stout et al. 2001a;

  2. Catalytic activity of in situ synthesized MoWNi sulfides in hydrogenation of aromatic hydrocarbons

    Science.gov (United States)

    Topolyuk, Yu. A.; Maksimov, A. L.; Kolyagin, Yu. G.

    2017-02-01

    MoWNi-sulfide catalysts were obtained in situ by thermal decomposition of metal-polymer precursors based on the copolymers of polymaleic anhydride in a hydrocarbon raw material. The activity of the synthesized catalysts in hydrogenation of bicyclic aromatic hydrocarbons was studied, and the composition and structure of active phase nanoparticles were determined.

  3. Modification of cell surface properties of Pseudomonas alcaligenes S22 during hydrocarbon biodegradation.

    Science.gov (United States)

    Kaczorek, Ewa; Moszyńska, Sylwia; Olszanowski, Andrzej

    2011-04-01

    Biodegradation of water insoluble hydrocarbons can be significantly increased by the addition of natural surfactants one. Very promising option is the use of saponins. The obtained results indicated that in this system, after 21 days, 92% biodegradation of diesel oil could be achieved using Pseudomonas alcaligenes. No positive effect on the biodegradation process was observed using synthetic surfactant Triton X-100. The kind of carbon source influences the cell surface properties of microorganisms. Modification of the surface cell could be observed by control of the sedimentation profile. This analytical method is a new approach in microbiological analysis.

  4. Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy

    Directory of Open Access Journals (Sweden)

    S.-D. Choi

    2008-07-01

    Full Text Available Rapid uptake of gaseous polycyclic aromatic hydrocarbons (PAHs by a forest canopy was observed at Borden in Southern Ontario, Canada during bud break in early spring 2003. High volume air samples were taken on 12 individual days at three different heights (44.4, 29.1, and 16.7 m on a scaffolding tower and on the forest floor below the canopy (1.5 m. Concentrations of PAHs were positively correlated to ambient temperature, resulting from relatively warm and polluted air masses passing over the Eastern United States and Toronto prior to arriving at the sampling site. An analysis of vertical profiles and gas/particle partitioning of the PAHs showed that gaseous PAHs established a concentration gradient with height, whereas levels of particulate PAHs were relatively uniform, implying that only the uptake of gaseous PAHs by the forest canopy was sufficiently rapid to be observed. Specifically, the gaseous concentrations of intermediate PAHs, such as phenanthrene, anthracene, and pyrene, during budburst and leaf emergence were reduced within and above the canopy. When a gradient was observed, the percentage of PAHs on particles increased at the elevations experiencing a decrease in gas phase concentrations. The uptake of intermediate PAHs by the canopy also led to significant differences in gaseous PAH composition with height. These results are the most direct evidence yet of the filter effect of forest canopies for gaseous PAHs in early spring. PAH deposition fluxes and dry gaseous deposition velocities to the forest canopy were estimated from the concentration gradients.

  5. Estimation of Chronic Personal Exposure to Airborne Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Choi, Hyunok; Zdeb, Michael; Perera, Frederica; Spengler, John

    2015-01-01

    Background Polycyclic aromatic hydrocarbons (PAH) exposure from solid fuel burning represents an important public health issue for the majority of the global population. Yet, understanding of individual-level exposures remains limited. Objectives To develop regionally adaptable chronic personal exposure model to pro-carcinogenic PAH (c-PAH) for the population in Kraków, Poland. Methods We checked the assumption of spatial uniformity in eight c-PAH using the coefficients of divergence (COD), a marker of absolute concentration differences. Upon successful validation, we developed personal exposure models for eight pro-carcinogenic PAH by integrating individual-level data with area-level meteorological or pollutant data. We checked the resulting model for accuracy and precision against home outdoor monitoring data. Results During winter, COD of 0.1 for Kraków suggest overall spatial uniformity in the ambient concentration of the eight c-PAH. The three models that we developed were associated with index of agreement approximately equal to 0.9, root mean square error < 2.6 ng/m3, and 90th percentile of absolute difference ≤ 4 ng/m3 for the predicted and the observed concentrations for eight pro-carcinogenic PAH. Conclusions Inexpensive and logistically feasible information could be used to estimate chronic personal exposure to PAH profiles, in lieu of costly and labor-intensive personal air monitoring at wide scale. At the same time, thorough validation through direct personal monitoring and assumption checking are critical for successful model development. PMID:25965038

  6. Sorption of polycyclic aromatic hydrocarbons (PAHs) on glass surfaces.

    Science.gov (United States)

    Qian, Yuan; Posch, Tjorben; Schmidt, Torsten C

    2011-02-01

    Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal's forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.

  7. Sorption characteristics of polycyclic aromatic hydrocarbons in aluminum smelter residues.

    Science.gov (United States)

    Breedveld, Gijs D; Pelletier, Emilien; St Louis, Richard; Cornelissen, Gerard

    2007-04-01

    High temperature carbon oxidation in primary aluminum smelters results in the release of polycyclic aromatic hydrocarbons (PAH) into the environment. The main source of PAH are the anodes, which are composed of petroleum coke (black carbon, BC) and coal tar pitch. To elucidate the dominant carbonaceous phase controlling the environmental fate of PAH in aluminum smelter residues (coke BC and/or coal tar), the sorptive behavior of PAHs has been determined, using passive samplers and infinitesink desorption methods. Samples directly from the wet scrubber were studied as well as ones from an adjacent 20-year old storage lagoon and roof dust from the smelter. Carbon-normalized distribution coefficients of native PAHs were 2 orders of magnitude higher than expected based on amorphous organic carbon (AOC)/water partitioning, which is in the same order of magnitude as reported literature values for soots and charcoals. Sorption isotherms of laboratory-spiked deuterated phenanthrene showed strong (-100 times stronger than AOC) but nonetheless linear sorption in both fresh and aged aluminum smelter residues. The absence of nonlinear behavior typical for adsorption to BC indicates that PAH sorption in aluminum smelter residues is dominated by absorption into the semi-solid coal tar pitch matrix. Desorption experiments using Tenax showed that fresh smelter residues had a relatively large rapidly desorbing fraction of PAH (35-50%), whereas this fraction was strongly reduced (11-16%) in the lagoon and roof dust material. Weathering of the coal tar residue and/or redistribution of PAH between coal tar and BC phases could explain the reduced availability in aged samples.

  8. Generation of polycyclic aromatic hydrocarbons (PAH during woodworking operations

    Directory of Open Access Journals (Sweden)

    Evin Danisman Bruschweiler

    2012-10-01

    Full Text Available Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC. Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs. PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools.To determine if PAHs are generated from wood during common woodworking operations, PAHs concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n=30 were collected.Wood dust was generated using tree different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF, beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personnel sampler device during wood working operations. We measured 21 PAHs concentrations in wood dust samples by capillary gas chromatographic-ion trap mass spectrometric analysis (GC-MS.Total PAH concentrations in wood dust varied greatly (0.24 – 7.95 ppm with the lowest being in MDF dust and the highest in wood melamine dust. Personal exposures to PAHs observed were between 37.5-119.8 ng m-3 among workers during wood working operations.Our results suggest that PAH exposures during woodworking operation are present and hence could play a role in the mechanism of cancer induction related to wood dust exposure.

  9. Polycyclic Aromatic Hydrocarbons in Residential Dust: Sources of Variability

    Science.gov (United States)

    Metayer, Catherine; Petreas, Myrto; Does, Monique; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    Background: There is interest in using residential dust to estimate human exposure to environmental contaminants. Objectives: We aimed to characterize the sources of variability for polycyclic aromatic hydrocarbons (PAHs) in residential dust and provide guidance for investigators who plan to use residential dust to assess exposure to PAHs. Methods: We collected repeat dust samples from 293 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 through 2007 and during 2010) using household vacuum cleaners, and measured 12 PAHs using gas chromatography–mass spectrometry. We used a random- and a mixed-effects model for each PAH to apportion observed variance into four components and to identify sources of variability. Results: Median concentrations for individual PAHs ranged from 10 to 190 ng/g of dust. For each PAH, total variance was apportioned into regional variability (1–9%), intraregional between-household variability (24–48%), within-household variability over time (41–57%), and within-sample analytical variability (2–33%). Regional differences in PAH dust levels were associated with estimated ambient air concentrations of PAH. Intraregional differences between households were associated with the residential construction date and the smoking habits of residents. For some PAHs, a decreasing time trend explained a modest fraction of the within-household variability; however, most of the within-household variability was unaccounted for by our mixed-effects models. Within-household differences between sampling rounds were largest when the interval between dust sample collections was at least 6 years in duration. Conclusions: Our findings indicate that it may be feasible to use residential dust for retrospective assessment of PAH exposures in studies of health effects. PMID:23461863

  10. Polycyclic Aromatic Hydrocarbon and Metal Concentrations in Imported Canned Maize

    Directory of Open Access Journals (Sweden)

    Embbey K Ossai

    2014-08-01

    Full Text Available Concentrations and profile of polycyclic aromatic hydrocarbons(PAHs and metals (Cd, Pb, Ni, Cr, Fe and Mn were determined in selected brands of canned maize in the Nigeria market with a view to providing information on the hazards associated with the consumption of these products. The measurement of the concentrations of PAHs was carried out by using a gas chromatography equipped with flame ionization detector (GC-FID after extraction by ultra-sonication with acetone/dichloromethane and clean-up. The 16 PAH concentrations varied between 45.1 and 335.7 µg/kg. The concentrations of the indicators for occurrence and effects of PAHs in food varied from 3.6 to 114.5 µg/kg for BaP, 6.4 to 168.2 µg/kg for PAH2, 11.8 to 232.7 µg/kg for PAH4 and 19.4 to 327.3 µg/kg for PAH8. The concentrations of metals were determined by using atomic absorption spectrometry after acid digestion. The concentrations of metals in these samples ranged from <0.05 to 0.9 µg/g for Cd; 5.0 to 8.0 µg/g for Pb, 0.8 to 1.7 µg/g for Fe while Cr and Mn were less than the limits of quantification (<0.05 µg/g. The concentrations of Cd and Pb in these canned maize samples were above their permissible limits for foods.

  11. Near Infrared Spectra of Large Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.

    The widespread, mid-IR interstellar emission features at 3.3, 6.2, 7.7, 8.6, and 11.2 microns are generally attributed to vibrationally excited polycyclic aromatic hydrocarbons (PAHs). Since these features typcially originate from radiation-rich regions, it has been generally thought that UV photons must dominate the interstellar excitation process since PAHs have very strong UV absorption bands. However, observations have shown that lower energy photons can also pump the emission (Aitken and Roche, Uchida and Sellgren), raising questions about the PAH model. Although it has long been known that larger PAHs should absorb at longer wavelengths (e.g. Schutte et. al., Salama et al., Li and Draine) data was not available for the isolated, neutral and ionized PAHs of sizes comparable to those thought responsible for the interstellar emission features. Here the matrix-isolated near-IR (NIR) spectra (from 0.7 to 2.5 microns) are presented for the anions and cations of PAHs ranging in size from C34H16 to C50H22. These molecules are characterized by strong absorption bands in this region, bands that can account for the emission of the interstellar features from UV poor regions. These NIR PAH transitions could also contribute to the extinction curve associated with the diffuse interstellar medium. For example, band overlap, as expected from a mixture of PAHs, can contribute to the continuum. Overlapping broad bands could lead to slight undulations in the continuum reminiscent of the Very Broad Structure (VBS, e.g. Hayes et al.). Furthermore, as previously pointed out, individual PAH bands may contribute to the diffuse interstellar band (DIB) spectrum (e.g. Romanini)

  12. Polycyclic aromatic hydrocarbons and heavy metals in Kostrena coastal area.

    Science.gov (United States)

    Linsak, Dijana Tomić; Linsak, Zeljko; Besić, Denis; Vojcić, Nina; Telezar, Mirna; Coklo, Miran; Susnić, Sasa; Mićović, Vladimir

    2011-12-01

    The aim of this study was to determine pollution by polycyclic aromatic hydrocarbons (PAH) and heavy metals in seawater and sediment in Kostrena coastal area, as well as their toxicity using bioluminescence based tests. Total PAH concentration in seawater ranged 1.7-155.3 ng/L. The share of carcinogenetic PAH was relatively high, ranging 22-48.3%. Nickel concentrations in seawater were beyond detection limits (chrome concentrations were beyond detection limits, and copper concentrations were also beyond detection limits or extremely low (up to 0.32 microg/L). EC50 values in seawater ranged 23.80-90.90 ng/L. Correlation between total PAH concentration and toxicity of seawater showed strong connection between them (r = 0.9579). Total PAH concentration in marine sediment ranged 58.02-1116 microg/kg dry weight (d.w.). The share of carcinogenetic PAH was extremely high ranging 10-53%. Nickel concentrations in marine sediment ranged 8-24 mg/kg d.w., vanadium concentrations ranged 24-42 mg/kg d.w., chrome concentrations ranged 11-19 mg/kg d.w., and copper concentrations ranged 7-25 mg/kg d.w. EC50 values in marine sediment ranged 818-4596 microg/kg d.w. Correlation between total PAH concentration and toxicity of marine sediment showed weak connection between them (r = 0.2590). Previous studies of seawater samples from areas of the Adriatic sea under the direct influence of oil industry did not include concentrations of heavy metals, which makes our study the first to present such comprehensive results. Our results point out the need for further evaluations and following of marine environment pollution and its consequences on living organisms and marine ecosystem in whole.

  13. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  14. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill.

    Science.gov (United States)

    Kappell, Anthony D; Wei, Yin; Newton, Ryan J; Van Nostrand, Joy D; Zhou, Jizhong; McLellan, Sandra L; Hristova, Krassimira R

    2014-01-01

    The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including polycyclic aromatic hydrocarbons (PAHs), were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are

  15. Comparing Migration Pathways of Biodegradation Products from Petroleum Hydrocarbon Natural Attenuation

    Science.gov (United States)

    Hathaway, E.; de Sieyes, N. R.; Mackay, D. M.

    2014-12-01

    Petroleum hydrocarbons contaminants frequently exist in both the vadose and saturated zones at contaminated fuel sites. Natural biodegradation of petroleum hydrocarbon contaminants occur in in situ reactive zones present in both the vadose and saturated zones. Biodegradation of petroleum hydrocarbons results in a mass discharge of gaseous biodegradation products through the vadose zone and transport of dissolved gases through the saturated zone. While previous studies have focused solely on transport of degradation products or geochemical parameters in groundwater or efflux of gaseous byproducts from the vadose zone, this study examines both pathways for discharge of degradation products. Quantifying the mass discharge of the biodegradation products through these zones is important to estimate the rates of natural source attenuation, assess the success of monitored natural attenuation, and quantify and document contaminant mass loss. In this study, surface efflux and groundwater mass discharge rates of biodegradation products (carbon dioxide, methane, and other intermediates) were quantified using field data. Field and analytical methodologies will be presented along with the results of the data analysis and a discussion of the uncertainties. Based on the data analysis, the surface efflux pathway through the vadose was found to be the dominant pathway for carbon loss at the monitored field site.

  16. BIODEGRADATION OF HYDROCARBON VAPORS IN THE UNSATURATED ZONE

    Science.gov (United States)

    The time-averaged concentration of hydrocarbon and oxygen vapors were measured in the unsaturated zone above the residually contaminated capillary fringe at the U.S. Coast Guard Air Station in Traverse City, Michigan. Total hydrocarbon and oxygen vapor concentrations were observe...

  17. APPROXIMATION OF BIODEGRADATION RATE CONSTANTS FOR MONOAROMATIC HYDROCARBONS (BTEX) IN GROUND WATER

    Science.gov (United States)

    Two methods were used to approximate site-specific biodegradation rates of monoaromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylenes [BTEX]) dissolved in ground water. Both use data from monitoring wells and the hydrologic properties of the quifer to estimate a biode...

  18. Trace level determination of polycyclic aromatic hydrocarbons in river water with automated pretreatment HPLC.

    Science.gov (United States)

    Watabe, Yoshiyuki; Kubo, Takuya; Tanigawa, Tetsuya; Hayakawa, Yoshihiro; Otsuka, Koji; Hosoya, Ken

    2013-03-01

    A novel on-line pretreatment pump-injection HPLC system for polycyclic aromatic hydrocarbons is proposed. We report novel pump-injection HPLC-based on-line SPE with a specially designed pretreatment column for the determination of trace amounts of chemical substances in surface water. Polycyclic aromatic hydrocarbons are well known for strong carcinogenicity and thus a severe concentration control is required for drinking water and/or river water, which is the main resource of tap water. We found it possible to detect ng/L levels of polycyclic aromatic hydrocarbons by using pump-injection column switching HPLC with fluorescence detection. To avoid the phenomenon, in which polycyclic aromatic hydrocarbons can be often adsorbed on the surface of flow lines of HPLC by their highly hydrophobicity especially resin-made parts in sample delivery pump, we employed "autodilution" device that provides reliable recovery and repeatability. Additionally, real water samples were collected and then the spiked polycyclic aromatic hydrocarbons were determined at ng/L levels.

  19. Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors.

    Science.gov (United States)

    Washe, Alemayehu P; Macho, Santiago; Crespo, Gastón A; Rius, F Xavier

    2010-10-01

    Surfaces made of entangled networks of single-walled carbon nanotubes (SWCNTs) display a strong adsorption affinity for aromatic hydrocarbons. Adsorption of these compounds onto the walls of SWCNTs changes the electrical characteristics of the SWCNT-solution interface. Using these features, we have developed a potentiometric sensor to detect neutral aromatic species. Specifically, we can detect online aromatic hydrocarbons in industrial coolant water. Our chromatographic results confirm the adsorption of toluene onto the walls of carbon nanotubes, and our impedance spectroscopy data show the change in the double layer capacitance of the carbon nanotube-solution interface upon addition of toluene, thus confirming the proposed sensing mechanism. The sensor showed a toluene concentration dependent EMF response that follows the shape of an adsorption isotherm and displayed an immediate response to the presence of toluene with a detection limit of 2.1 ppm. The sensor does not respond to other nonaromatic hydrocarbons that may coexist with aromatic hydrocarbons in water. It shows a qualitative sensitivity and selectivity of 100% and 83%, respectively, which confirms its ability to detect aromatic hydrocarbons in aqueous solutions. The sensor showed an excellent ability to immediately detect the presence of toluene in actual coolant water. Its operational characteristics, including its fast response, low cost, portability, and easy use in online industrial applications, improve those of current chromatographic or spectroscopic techniques.

  20. POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATION LEVELS IN COLLECTED SAMPLES FROM VICINITY OF A HIGHWAY

    Directory of Open Access Journals (Sweden)

    S. V. Samimi ، R. Akbari Rad ، F. Ghanizadeh

    2009-01-01

    Full Text Available Tehran as the biggest city of Iran with a population of more than 10 millions has potentially high pollutant exposures of gas oil and gasoline combustion from vehicles that are commuting in the highways every day. The vehicle exhausts contain polycyclic aromatic hydrocarbons, which are produced by incomplete combustion and can be directly deposited in the environment. In the present study, the presence of polycyclic aromatic hydrocarbons contamination in the collected samples of a western highway in Tehran was investigated. The studied location was a busy highway in Tehran. High performance liquid chromatography equipped with florescence detector was used for determination of polycyclic aromatic hydrocarbons concentrations in the studied samples. Total concentration of the ten studied polycyclic aromatic hydrocarbons compounds ranged from 11107 to 24342 ng/g dry weight in the dust samples and increased from 164 to 2886 ng/g dry weight in the soil samples taken from 300 m and middle of the highway, respectively. Also the average of Σ PAHs was 1759 ng/L in the water samples of pools in parks near the highway. The obtained results indicated that polycyclic aromatic hydrocarbons contamination levels were very high in the vicinity of the highway.

  1. Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.

    Science.gov (United States)

    Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing

    2015-03-01

    The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%.

  2. An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China

    Science.gov (United States)

    Mu, Xilong; Zhu, Xianlei; Wang, Xuesong

    2015-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are among the most dangerous compounds due to their high carcinogenic and mutagenic character. Emission inventory provides the primary data to account for the sources of ambient PAHs and server as a necessary database for effective PAHs pollution control. China is experiencing fast economic growth and large energy consumption, which might result in a large amount of PAHs anthropogenic emissions. Therefore, based on the previous studies and combined recently field emission measurements as well as socio-economic activity data, the development of a nationwide PAHs emission inventory is needed. In this work, the emission inventory of 16 PAHs listed as U.S. Environmental Protection Agency priority pollutants in China in the year 2012 is compiled. The emission amounts of PAHs were estimated as annual rates of emission-related activities multiplied by respective emission factors. The activities such as fuel consumption, including fossil fuel and biofuel, and socio-economic statistics were obtained from yearbook released by Chinese central government and/or provincial governments, as well as related industry reports. Emission factors were derived from the related literature. Recently reported emission factors from local measurements were used. The total emissions of PAHs were 120611 ton in 2012. In China, PAHs were emitted predominantly from domestic combustion of coal and biofuel, coking industry and motor vehicles, accounting for 72% of the total amount. PAHs emission profiles were significantly different between China and the other countries. The emission profile in China featured a relatively higher portion of high molecular weight species with carcinogenic potential due to large contributions of domestic combustion and coking industry. Domestic combustion of straw, coal and firewood emitted 19464 ton, 8831 ton, and 5062 ton of PAHs, respectively, which were much higher than those in other countries. Emission per capita showed

  3. Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species.

    Science.gov (United States)

    Schoeny, R; Cody, T; Warshawsky, D; Radike, M

    1988-02-01

    Polycyclic aromatic hydrocarbons (PAH) known to produce carcinogenic and mutagenic effects have been shown to contaminate waters, sediments and soils. While it is accepted that metabolites of these compounds are responsible for most of their biological effects in mammals, their metabolism, and to a large extent their bioactivity, in aquatic plants have not been explored. Cultures of photosynthetic algal species were assayed for their ability to metabolize benzo[a]pyrene (BaP), a carcinogenic PAH under conditions which either permitted (white light) or disallowed (gold light) photooxidation of the compound. Growth of Selenastrum capricornutum, a fresh-water green alga, was completely inhibited when incubated in white light with 160 micrograms BaP/l medium. By contrast concentrations at the upper limit of BaP solubility in aqueous medium had no effect on algal growth when gold light was used. BaP quinones and phenol derivatives were found to inhibit growth of Selenastrum under white light incubation. BaP phototoxicity and metabolism were observed to be species-specific. All 3 tested species of the order Chlorococcales were growth-inhibited by BaP in white light whereas neither the green alga Chlamydomonas reinhardtii nor a blue-green, a yellow-green or an euglenoid alga responded in this fashion. Assays of radiolabeled BaP metabolism in Selenastrum showed that the majority of radioactivity associated with BaP was found in media as opposed to algal cell pellets, that the extent of metabolism was BaP concentration dependent, and that the proportion of various metabolites detected was a function of the light source. After gold light incubation, BaP diols predominated while after white light treatment at equal BaP concentrations, the 3,6-quinone was found in the highest concentration. Extracted material from algal cell pellets and from media was tested for mutagenicity in a forward mutation suspension assay in Salmonella typhimurium using resistance to 8-azaguanine for

  4. New biomarkers of occupational exposure to polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Seidel, Albrecht; Spickenheuer, Anne; Straif, Kurt; Rihs, Hans-Peter; Marczynski, Boleslaw; Scherenberg, Michael; Dettbarn, Gerhard; Angerer, Jürgen; Wilhelm, Michael; Brüning, Thomas; Jacob, Jürgen; Pesch, Beate

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) are metabolized in a complex manner. Although biological activity is associated with diol-epoxide formation, phenolic metabolites have predominantly been used in human biomonitoring. In this study monohydroxylated and new metabolites were characterized as biomarkers for occupational PAH exposure. In 97 male workers, personal exposure to 16 airborne PAH compounds was measured during shift. In postshift urine, 1-hydroxypyrene and 1,6- and 1,8-dihydroxypyrene (1-OHP, DiOHP) were determined as metabolites of pyrene (P), and the sum of 1-, 2-, 3-, 4-, and 9-hydroxyphenanthrenes (OHPHE), and PHE-dihydrodiols (PHED) as metabolites of phenanthrene (PHE). The referent group comprised 21 nonsmoking construction workers. Median (interquartile range) shift concentrations of airborne P and PHE were 1.46 (0.62-4.05 microg/m(3)) and 10.9 (3.69-23.77 microg/m(3)), respectively. The corresponding parameters were 3.86 (2.08-7.44) microg/g creatinine (crn) for 1-OHP, 0.66 (0.17-1.65) microg/g crn for DiOHP, 11.44 (5.21-34.76) microg/g crn for OHPHE, and 12.28 (3.3-97.76) microg/g crn for PHED in PAH-exposed workers. The median levels of 1-OHP and OHPHE were 0.09 (0.08-0.17 microg/m(3)) and 0.59 (0.45-1.39 microg/m(3)), respectively, in the referents. PHE correlated significantly with OHPHE and PHED, and P with 1-OHP but not with DiOHP. Under a doubling of PHE, OHPHE increased by a factor of 1.56 and PHED by 1.57. With a doubling of P, 1-OHP rose by 1.31 and DiOHP by 1.27. P is predominantly metabolized into 1-OHP, whereas PHE is metabolized equally into OHPHE and PHED. Thus metabolites of PHE were found as reliable biomarkers for PAH exposure.

  5. Emissions of polycyclic aromatic hydrocarbons from coking industries in China

    Institute of Scientific and Technical Information of China (English)

    Ling Mu; Lin Peng; Junji Cao; Qiusheng He; Fan Li; Jianqiang Zhang; Xiaofeng Liu

    2013-01-01

    This study set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emission from coking industries,with field samplings conducted at four typical coke plants.For each selected plant,stack flue gas samples were collected during processes that included charging coal into the ovens (CC),pushing coke (PC) and the combustion of coke-oven gas (CG).Sixteen individual PAHs on the US EPA priority list were analyzed by gas chromatography/mass spectrometry (GC/MS).Results showed that the total PAH concentrations in the flue gas ranged from 45.776 to 414.874 μg/m3,with the highest emission level for CC (359.545 μg/m3).The concentration of PAH emitted from the CC process in CP1 (stamp charging) was lower than that from CP3 and CP4 (top charging).Low-molecular-weight PAHs (i.e.,two-to three-ring PAHs) were predominant contributors to the total PAH contents,and Nap,AcPy,Flu,PhA,and AnT were found to be the most abundant ones.Total BaPeq concentrations for CC (2.248 iμg/m3) were higher than those for PC (1.838 μg/m3) and CG (1.082 μg/m3),and DbA was an important contributor to carcinogenic risk as BaP in emissions from coking processes.Particulate PAH accounted for more than 20% of the total BaPeq concentrations,which were significantly higher than the corresponding contributions to the total PAH mass concentration (5%).Both particulate and gaseous PAH should be taken into consideration when the potential toxicity risk of PAH pollution during coking processes is assessed.The mean total-PAH emission factors were 346.132 and 93.173 μg/kg for CC and PC,respectively.

  6. Polycyclic aromatic hydrocarbons in the South American environment.

    Science.gov (United States)

    Barra, Ricardo; Castillo, Caroline; Torres, Joao Paulo Machado

    2007-01-01

    Pollution of the environment with polycyclic aromatic hydrocarbons (PAHs) should be a global concern, especially in urbanized areas. In South American countries, where notable increase in urban populations has been observed in the past few years, reliable information about the pollution status of these urban environments is not always easily accessible, and therefore an effort to collect updated information is required. This review attempts to contribute by analyzing the existing information regarding environmental levels of PAHs in some South American countries. A regional trend for environmental PAH information is an uneven contribution, because some countries, such as Bolivia, Peru, Paraguay, and Ecuador, have reported no information at all in the scientific literature, reflecting to a certain extent the different patterns of economic, technical, and scientific development. PAH air monitoring is one of the areas that has received the most attention during the last few years, mainly in Brazil, Chile, and Argentina, where data represent a few geographical areas within the region. PAH levels in air from some urban areas in Argentina, Brazil, and Chile, considered moderate to high (100-1000ng/m3), are probably among the highest values reported in the open literature. Urbanization, vehicle pollution, and wood fires are the principal contributors to the high reported levels. In more temperate areas, a clear distinction is observed between summer and winter levels. PAH monitoring in soils is very limited within the region, with few data available, and most information indicates widespread pollution. In Brazil, values for many representative ecosystems were found. In Chile, data from forestry and agricultural areas indicate in general low concentrations, in spite of a relatively high detection frequency. Pollution levels in soils are highly dependent on their closeness to PAH sources and certain cultural practices (agricultural burnings, forest fires, etc.). Water PAH

  7. Contribution of methyl group to secondary organic aerosol formation from aromatic hydrocarbon photooxidation

    Science.gov (United States)

    Li, Lijie; Qi, Li; Cocker, David R.

    2017-02-01

    The complete atmospheric oxidation pathways leading to secondary organic aerosol remain elusive for aromatic compounds including the role of methyl substitutes on oxidation. This study investigates the contribution of methyl group to Secondary Organic Aerosol (SOA) formation during the photooxidation of aromatic hydrocarbons under low NOx condition by applying methyl carbon labeled aromatic hydrocarbons ((13C2) m-xylene and (13C2) p-xylene). Particle and gas phase oxidation products are analyzed by a series of mass spectrometers (HR-TOF-AMS, PTR-MS and SIFT-MS). The methyl group carbon containing oxidation products partition to the particle-phase at a lower rate than the carbons originating from the aromatic ring as a result of ring opening reactions. Further, the methyl carbon in the original aromatic structure is at least 7 times less likely to be oxidized when forming products that partition to SOA than the aromatic ring carbon. Therefore, oxidation of the methyl group in xylenes exerts little impact on SOA formation in current study. This study provides supporting evidence for a recent finding - a similarity in the SOA formation and composition from aromatic hydrocarbons regardless of the alkyl substitutes.

  8. C-Nucleosides Derived from Simple Aromatic Hydrocarbons.

    Science.gov (United States)

    Chaudhuri, Narayan C; Ren, Rex X-F; Kool, Eric T

    1997-04-01

    We describe the synthesis, structure and DNA incorporation of a class of novel aromatic C-deoxynucleosides in which benzenes and larger polycyclic aromatics serve as DNA base analogs. Novel approaches have been developed for glycosidic bond formation and for epimenzation of the anomeric substitutents to β-configuration, and we describe some of the properties of such compounds in DNA.

  9. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway.

    Science.gov (United States)

    Yong, Yang-Chun; Zhong, Jian-Jiang

    2013-05-01

    The mechanism for quorum sensing (QS) regulation on aromatics degradation was investigated. Deletion of rhl QS system resulted in a significant decrease in aromatics biodegradation as well as the activity of catechol 2,3-dioxygenase (C23O, key enzyme for catechol meta-cleavage pathway) in Pseudomonas aeruginosa CGMCC1.860. Interestingly, this repression could be relieved by N-butyryl homoserine lactone (the signaling molecule of rhl QS system) addition. In accordance, the transcription level of nahH (the gene encoding C23O) and nahR (transcriptional activator) also responded to rhl perturbation in a similar way. The results indicated that rhl QS system positively controlled the catechol meta-cleavage pathway, and hence improved aromatics biodegradation. It suggested manipulation of QS system could be a promising strategy to tune the catechol cleavage pathway and to control aromatics biodegradation.

  10. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation.

    Science.gov (United States)

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  11. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation

    Science.gov (United States)

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  12. Hydrocarbon Biodegrading Potentials of a Proteus vulgaris Strain Isolated from Fish Samples

    Directory of Open Access Journals (Sweden)

    Patience O. Olajide

    2010-01-01

    Full Text Available A Proteus vulgaris bacterium SR-1 was isolated from a freshly killed fish sample collected close to the point of crude oil spill in the Niger Delta region, Nigeria. Problem statement: The application of native bacterial species in bioremediation processes has long been desired, because they would be cost effective and efficient in terms of acclimation time. The ability to isolate high numbers of certain oil-degrading microorganisms from oil-polluted environment is evidence that these microorganisms are the active degraders of that environment. In this study, we reported the potential of a candidate bacterium- Proteus vulgaris SR-1 in the biodegradation of Bonny light crude oil, diesel and kerosene. Approach: To screen for oil degrading capability, the bacterium was cultivated in Minimal Salts Medium (MSM supplemented with 1% (v/v sterile Bonny Light Crude Oil (BLCO. Oil degradation was monitored by measurement of turbidity using a spectrophotometer and the pH, total viable counts of the culture fluids were determined at time intervals as biodegradation indices. The ability of strain to degrade diesel and kerosene oils was also studied while the level of used hydrocarbon degradation was determined using the gravimetric analysis. The bacterium was screened for presence of Plasmid DNA and implication of plasmid in hydrocarbon degradation was investigated. Results: (1 The bacterium utilize hydrocarbons as sole source of carbon and it biodegraded Bonny light crude oil, kerosene and diesel media by as much as 78, 79 and 73.8% respectively, in the presence of 1.0% NaCl (w/v after 96 h. The total viable count after 96, 120 and 168 h of biodegradation of the test hydrocarbons range between 6.2 and 9.1 log10 c.f.u mL-1, (2 The results showed that increasing NaCl concentration in water had decreasing effect on hydrocarbon degradation. (3 pH of media decreased from 7.0 to between 3.29 and 5.02 during the reaction period while growth increases. (4 Plasmid

  13. The peroxidase-mediated biodegradation of petroleum hydrocarbons in a H2O2-induced SBR using in-situ production of peroxidase: Biodegradation experiments and bacterial identification.

    Science.gov (United States)

    Shekoohiyan, Sakine; Moussavi, Gholamreza; Naddafi, Kazem

    2016-08-05

    A bacterial peroxidase-mediated oxidizing process was developed for biodegrading total petroleum hydrocarbons (TPH) in a sequencing batch reactor (SBR). Almost complete biodegradation (>99%) of high TPH concentrations (4g/L) was attained in the bioreactor with a low amount (0.6mM) of H2O2 at a reaction time of 22h. A specific TPH biodegradation rate as high as 44.3mgTPH/gbiomass×h was obtained with this process. The reaction times required for complete biodegradation of TPH concentrations of 1, 2, 3, and 4g/L were 21, 22, 28, and 30h, respectively. The catalytic activity of hydrocarbon catalyzing peroxidase was determined to be 1.48U/mL biomass. The biodegradation of TPH in seawater was similar to that in fresh media (no salt). A mixture of bacteria capable of peroxidase synthesis and hydrocarbon biodegradation including Pseudomonas spp. and Bacillus spp. were identified in the bioreactor. The GC/MS analysis of the effluent indicated that all classes of hydrocarbons could be well-degraded in the H2O2-induced SBR. Accordingly, the peroxidase-mediated process is a promising method for efficiently biodegrading concentrated TPH-laden saline wastewater.

  14. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    Science.gov (United States)

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  15. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514.

    Science.gov (United States)

    Varjani, Sunita J; Upasani, Vivek N

    2016-12-01

    The aim of this work was to study the potential of an indigenous strain of Pseudomonas aeruginosa NCIM 5514, isolated from petroleum-polluted soil, for the biodegradation of crude petroleum oil. The isolate completely decolorized 2,6-dichlorophenol indophenol in 120h when grown at (37±1°C), indicating its hydrocarbon utilizing nature. Ex situ biodegradation study was performed to find out quantitative utilization and biodegradation of paraffin(s) present in crude oil. When the culture was grown in Bushnell-Hass medium containing crude oil (3%,v/v) at 37°C, 180rpm for 60days, the viscosity of the oil was reduced from 1883cp to 1002cp. Gravimetric and gas chromatographic analysis showed 61.03% and 60.63% of biodegradation of C8-C36+ hydrocarbons, respectively. These results indicated that the isolate has potential to be used for ex-situ and in-situ bioremediation of hydrocarbon pollutants and could have promising applications in petrochemical industry.

  16. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems.

    Science.gov (United States)

    Yu, Hui; Huang, Guo-He; Xiao, Huining; Wang, Lei; Chen, Wei

    2014-09-01

    This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil-water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM-biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.

  17. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    Science.gov (United States)

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  18. Historical polycyclic aromatic and petrogenic hydrocarbon loading in Northern Central Gulf of Mexico shelf sediments

    Energy Technology Data Exchange (ETDEWEB)

    Overton, E.B.; Ashton, B.M.; Miles, M.S. [Louisiana State University, Baton Rouge, LA (United States). Dept. of Environmental Studies

    2005-10-01

    The distribution of selected hydrocarbons within ten dated sediment cores taken from the Mississippi River Bight off coastal Louisiana suggests a chronic contaminant loading from several sources including the river itself, oil and gas exploration in the central Gulf of Mexico (GOM) shelf area, and natural geologic hydrocarbon seeps. Data were grouped as either total polycyclic aromatic hydrocarbons (PAH's), which were indicative of pyrogenic PAH's; or estimated total hopanes (indicative of petrogenic hydrocarbons). The total PAH concentrations and estimated total hopanes begin increasing above background levels (approximately 200 ng g{sup -1}) after the 1950s. The distribution of these hydrocarbons and hopanes within the dated sediment cores suggests that the Mississippi River is a regional source of pyrogenic PAH's, and that the hopanes are from natural geologic hydrocarbon seeps, oil and gas exploration in the GOM, or both. (author)

  19. Long-term simulation of in situ biostimulation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Richardson, Stephen D; Jones, Maiysha D; Singleton, David R; Aitken, Michael D

    2012-07-01

    A continuous-flow column study was conducted to evaluate the long-term effects of in situ biostimulation on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil from a manufactured gas plant site. Simulated groundwater amended with oxygen and inorganic nutrients was introduced into one column, while a second column receiving unamended groundwater served as a control. PAH and dissolved oxygen (DO) concentrations, as well as microbial community profiles, were monitored along the column length immediately before and at selected intervals up to 534 days after biostimulation commenced. Biostimulation resulted in significantly greater PAH removal than in the control condition (73% of total measured PAHs vs. 34%, respectively), with dissolution accounting for a minor amount of the total mass loss (~6%) in both columns. Dissolution was most significant for naphthalene, acenaphthene, and fluorene, accounting for >20% of the total mass removed for each. A known group of PAH-degrading bacteria, 'Pyrene Group 2' (PG2), was identified as a dominant member of the microbial community and responded favorably to biostimulation. Spatial and temporal variations in soil PAH concentration and PG2 abundance were strongly correlated to DO advancement, although there appeared to be transport of PG2 organisms ahead of the oxygen front. At an estimated oxygen demand of 6.2 mg O(2)/g dry soil and a porewater velocity of 0.8 m/day, it took between 374 and 466 days for oxygen breakthrough from the 1-m soil bed in the biostimulated column. This study demonstrated that the presence of oxygen was the limiting factor in PAH removal, as opposed to the abundance and/or activity of PAH-degrading bacteria once oxygen reached a previously anoxic zone.

  20. Solubilization of Polycyclic Aromatic Hydrocarbons by Single and Binary Mixed Rhamnolipid-Sophorolipid Biosurfactants.

    Science.gov (United States)

    Song, Dandan; Liang, Shengkang; Yan, Lele; Shang, Yujun; Wang, Xiuli

    2016-07-01

    Biosurfactants are promising additives for surfactant enhanced remediation (SER) technologies due to their low toxicity and high biodegradability. To develop green and efficient additives for SER, the aqueous solubility enhancements of polycyclic aromatic hydrocarbons (PAHs; naphthalene, phenanthrene, and pyrene) by rhamnolipid (RL) and sophorolipid (SL) biosurfactants were investigated in single and binary mixed systems. The solubilization capacities were quantified in terms of the solubility enhancement factor, molar solubilization ratio (MSR), and micelle-water partition coefficient (). Rughbin's model was applied to evaluate the interaction parameters (β) in the mixed RL-SL micelles. The solubility of the PAHs increased linearly with the glycolipid concentration above the critical micelle concentration (CMC) in both single and mixed systems. Binary RL-SL mixtures exhibited greater solubilization than individual glycolipids. At a SL molar fraction of 0.7 to 0.8, the solubilization capacity was the greatest, and the MSR and reached their maximum values, and β values became positive. These results suggest that the two biosurfactants act synergistically to increase the solubility of the PAHs. The solubilization capacity of the RL-SL mixtures increased with increasing temperature and decreased with increasing salinity. The aqueous solubility of phenanthrene reached a maximum value at pH of 5.5. Moreover, the mixed RL-SL systems exhibited a strong ability to solubilize PAHs, even in the presence of heavy metal ions. These mixed biosurfactant systems have the potential to improve the performance of SER technologies using biosurfactants to solubilize hydrophobic organic contaminants by decreasing the applied biosurfactant concentration, which reduces the costs of remediation.

  1. Biodegradation of Petroleum Hydrocarbon Vapors in the Vadose Zone

    Science.gov (United States)

    The current state of practice to estimate the risk from intrusion of vapors of petroleum hydrocarbons from spills of gasoline is to measure the concentration of the chemical of concern in ground water under the spill, use Henry’s Law to estimate a concentration of the chemical ...

  2. Enhanced degradation of mono aromatic hydrocarbons in sandy aquifer materials

    Energy Technology Data Exchange (ETDEWEB)

    Corseuil, Henry X. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Sanitaria; Weber Junior, W.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Civil and Environmental Engineering

    1993-12-31

    The use of an inoculation technique to enhance rates of in-situ biodegradation of toxic organic contaminants by increasing subsurface populations of specific microorganisms is described. An external biologically active carbon (BAC) adsorber is demonstrated to be an efficient reactor system for collection, acclimation and enrichment of microorganisms for the inoculation process (author). 15 refs., 3 figs.

  3. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone

    Science.gov (United States)

    Lahvis, M.A.; Baehr, A.L.

    1996-01-01

    The distribution of oxygen and carbon dioxide gases in the unsaturated zone provides a geochemical signature of aerobic hydrocarbon degradation at petroleum product spill sites. The fluxes of these gases are proportional to the rate of aerobic biodegradation and are quantified by calibrating a mathematical transport model to the oxygen and carbon dioxide gas concentration data. Reaction stoichiometry is assumed to convert the gas fluxes to a corresponding rate of hydrocarbon degradation. The method is applied at a gasoline spill site in Galloway Township, New Jersey, to determine the rate of aerobic degradation of hydrocarbons associated with passive and bioventing remediation field experiments. At the site, microbial degradation of hydrocarbons near the water table limits the migration of hydrocarbon solutes in groundwater and prevents hydrocarbon volatilization into the unsaturated zone. In the passive remediation experiment a site-wide degradation rate estimate of 34,400 g yr-1 (11.7 gal. yr-1) of hydrocarbon was obtained by model calibration to carbon dioxide gas concentration data collected in December 1989. In the bioventing experiment, degradation rate estimates of 46.0 and 47.9 g m-2 yr-1 (1.45 x 10-3 and 1.51 x 10-3 gal. ft.-2 yr-1) of hydrocarbon were obtained by model calibration to oxygen and carbon dioxide gas concentration data, respectively. Method application was successful in quantifying the significance of a naturally occurring process that can effectively contribute to plume stabilization.

  4. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone

    Science.gov (United States)

    Lahvis, Matthew A.; Baehr, Arthur L.

    1996-07-01

    The distribution of oxygen and carbon dioxide gases in the unsaturated zone provides a geochemical signature of aerobic hydrocarbon degradation at petroleum product spill sites. The fluxes of these gases are proportional to the rate of aerobic biodegradation and are quantified by calibrating a mathematical transport model to the oxygen and carbon dioxide gas concentration data. Reaction stoichiometry is assumed to convert the gas fluxes to a corresponding rate of hydrocarbon degradation. The method is applied at a gasoline spill site in Galloway Township, New Jersey, to determine the rate of aerobic degradation of hydrocarbons associated with passive and bioventing remediation field experiments. At the site, microbial degradation of hydrocarbons near the water table limits the migration of hydrocarbon solutes in groundwater and prevents hydrocarbon volatilization into the unsaturated zone. In the passive remediation experiment a site-wide degradation rate estimate of 34,400 gyr-1 (11.7 gal. yr-1) of hydrocarbon was obtained by model calibration to carbon dioxide gas concentration data collected in December 1989. In the bioventing experiment, degradation rate estimates of 46.0 and 47.9 gm-2yr-1 (1.45×10-3 and 1.51×10-3 gal.ft.-2yr-1) of hydrocarbon were obtained by model calibration to oxygen and carbon dioxide gas concentration data, respectively. Method application was successful in quantifying the significance of a naturally occurring process that can effectively contribute to plume stabilization.

  5. Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Tian, Weijun; Zhao, Jing; Zhou, Yuhang; Qiao, Kaili; Jin, Xin; Liu, Qing

    2017-01-01

    Changes in root exudates, including low molecular weight organic acids (LMWOAs), amino acids and sugars, in rhizosphere soils during the gel-beads/reeds combination remediation for high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and the degree of the effects on HMW-PAH biodegradation were evaluated in this study. The results showed that the gel-beads/reeds combination remediation notably increased the removal rates of pyrene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene (65.0-68.9%, 60.0-68.5% and 85.2-85.9%, respectively). During the removal of HMW-PAHs, the LMWOAs, particularly maleic acid, enhanced the biodegradation of HMW-PAHs. Arginine and trehalose monitored in reed root exudates promoted the growth of plants and microorganisms and then improved the removal of HMW-PAHs, especially pyrene. However, the contribution of reed root exudates on degradation of 5- and 6-ring PAHs was minor. These results indicated that the utilization of root exudates was certainly not the only important trait for the removal of HMW-PAHs.

  6. Enhanced utilization of oxidants for in situ chemical oxidation of chlorinated and aromatic hydrocarbons

    Science.gov (United States)

    Kang, Namgoo

    Potentially viable strategies were sought for enhanced utilization of potassium permanganate (KMnO4) and Fenton's reagent during in situ chemical oxidation (ISCO). An innovative concept of controlled release of oxidant was introduced and organic-coated, completely or partially microencapsulated KMnO4 (MEPP) particles (874 +/- 377 mum) were created to serve a material that can be specifically targeted to a contaminant source zone. Paraffin wax was employed as the coating material because it is biodegradable, inert to KMnO4, insoluble in water and yet soluble in hydrophobic contaminants such as perchloroethylene (PCE). KMnO4 was released very slowly into water, but the oxidant was rapidly released into PCE. The estimated times for 90% release of the oxidant were 1.6 months, 19.3 years, and 472 years for paraffin wax to KMnO4 mass ratios of 1:1, 2:1 and 5:1, respectively. The MEPP particles preferentially accumulated at the PCE-water interface, and the KMnO4 was rapidly released into PCE (contaminant and the locally high concentrations of KMnO 4 could be achieved at the interfacial region between PCE and water. Fenton's oxidative destruction was investigated for aromatic hydrocarbons (benzene, toluene, ethylbenzene, and o-xylene; BTEX) present as dissolved and adsorbed phases, and chlorinated hydrocarbon (PCE) present mostly as dense non-aqueous phase liquid (DNAPL) (>93% of total PCE mass) in batch reactors (soil: solution = 1 g/L). An enhanced mass removal was observed by combining 300 mM H2O2, 2 mM Fe(III) and 2 mM N-(2-hydroxyethyl)iminodiacetic acid (HEIDA) at near-neutral pH. The PCE degradation was maximal at 600 mM H2O2, 5 mM Fe(III) and 5 mM HEIDA at pH 3. The observed BTEX mass removal rate constants (3.6--7.8 x 10-4 s-1) were compared to the estimated ones (4.1--10.1 x 10-3 s-1) using a semi-quantitative kinetic model. The model sensitivity analyses indicate that iron oxides and soil organic matter could play important roles in the non-specific losses of

  7. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    Science.gov (United States)

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  8. Sources and deposition of polycyclic aromatic hydrocarbons to western US national parks

    Science.gov (United States)

    Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify thei...

  9. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database: The Computed Spectra

    NARCIS (Netherlands)

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.; Allamandola, L. J.

    2010-01-01

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant t

  10. Polycyclic aromatic hydrocarbon-polluted dredged peat sediments and earthworms: a mutual interference

    NARCIS (Netherlands)

    Eijsackers, H.J.P.; Jonge, de S.; Muijs, B.; Slijkerman, D.; Gestel, van C.A.M.

    2001-01-01

    In lowland areas of the Netherlands, any peat sediments will gradually become enriched with anthropogenically derived Polycyclic Aromatic Hydrocarbons. Due to Dutch policy standards these (anaerobic) sediments are not allowed to be dredged and placed onto land. Under aerobic conditions, however, bio

  11. Availabiltiy and leaching of polycyclic aromatic hydrocarbons: Controlling processes and comparison of testing methods

    NARCIS (Netherlands)

    Roskam, G.; Comans, R.N.J.

    2009-01-01

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (¿16 US-EPA PAHs 3412 mg/kg) and gasworks soil (¿PAHs 900 mg/kg), by comparing results from three typical types of leaching tests: a column, se

  12. Biotransformation of the polycyclic aromatic hydrocarbon pyrene in the marine polychaete Nereis virens

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Glessing, Anders M B; Rasmussen, Lene Juel

    2005-01-01

    In vivo and in vitro biotransformation of the polycyclic aromatic hydrocarbon (PAH) pyrene was investigated in the marine polychaete Nereis virens. Assays were designed to characterize phase I and II enzymes isolated from gut tissue. High-pressure liquid chromatography measurement of 1-hydroxypyr...

  13. Novel β-cyclodextrin modified quantum dots as fluorescent probes for polycyclic aromatic hydrocarbons (PAHs)

    Institute of Scientific and Technical Information of China (English)

    Cui Ping Han; Hai Bing Li

    2008-01-01

    Water-soluble CdSe/ZnS quantum dots (QDs)were prepared via a simple sonochemical procedure using β-cyclodextrin (CD)as surface coating agent.The QDs displayed a sensitive emission enhancement for anthracene over other related polycyclic aromatic hydrocarbons,and the detection limit was around 1.6 × 10-8 mol/L.

  14. The effects of polycyclic aromatic hydrocarbons on the chemistry of photodissociation regions

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM

    1998-01-01

    We have investigated the effects of including polycylic aromatic hydrocarbons (PAHs) on the abundance of neutral atoms and molecules for two typical photodissociation regions (PDRs): a high-density case (the Orion complex) and a low-density case. PAHs provide a large surface area for chemistry betwe

  15. Polycyclic aromatic hydrocarbons and dust in regions of massive star formation

    NARCIS (Netherlands)

    Peeters, Els

    2002-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are known on earth as a large family of tarry materials naturally present in for example coal and crude oil. In addition, they are also formed in the combustion of all sorts of carbonaceous fuels and hence are found in auto exhaust, cigarette smoke, candle soo

  16. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  17. Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates:A review

    Institute of Scientific and Technical Information of China (English)

    LIU Li-bin; LIU Yan; LIN Jin-ming; TANG Ning; HAYAKAWA Kazuichi; MAEDA Tsuneaki

    2007-01-01

    In the present work,the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.

  18. Empirical modeling of soot formation in shock-tube pyrolysis of aromatic hydrocarbons

    Science.gov (United States)

    Frenklach, M.; Clary, D. W.; Matula, R. A.

    1986-01-01

    A method for empirical modeling of soot formation during shock-tube pyrolysis of aromatic hydrocarbons is developed. The method is demonstrated using data obtained in pyrolysis of argon-diluted mixtures of toluene behind reflected shock waves. The developed model is in good agreement with experiment.

  19. Gas phase adiabatic electron affinities of cyclopenta-fused polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Todorov, P.D.; Koper, C.; van Lenthe, J.H.; Jenneskens, L.W.

    2008-01-01

    The B3LYP/DZP++ adiabatic electron affinity (AEA) of nine (non)-alternant polycyclic aromatic hydrocarbons are reported and discussed. Calculations became feasible for molecules this size by projecting out the near-linearly dependent part of the one-electron basis. Non-alternant PAH consisting of an

  20. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  1. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over fe-modified HZSM-5 zeolites

    Science.gov (United States)

    Iron modified HZSM-5 catalysts were prepared by partial ion exchange of NH4ZSM-5 with Fe (II) at three different loadings (1.4, 2.8 and 4.2 wt%), and their effectiveness for producing aromatic hydrocarbons from cellulose, cellobiose, lignin and switchgrass by catalytic pyrolysis were screened using ...

  2. Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions

    DEFF Research Database (Denmark)

    Mayer, Philipp; Fernqvist, M.M.; Christensen, P.S.

    2007-01-01

    Uptake of hydrophobic organic compounds into organisms is often limited by the diffusive transport through a thin boundary layer. Therefore, a microscale diffusion technique was applied to determine the diffusive mass transfer of 12 polycyclic aromatic hydrocarbons through water, air, surfactant...

  3. Elimination and accumulation of polycyclic aromatic hydrocarbons (PAHs) in urban stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Istenič, Daria; Arias, Carlos Alberto; Matamoros, Victor

    2011-01-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of seven wet detention ponds receiving urban stormwater were investigated. The ponds comprised traditional wet detention ponds with a permanent wet volume and a storage volume as well as ponds that were expanded...

  4. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...

  5. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil

    Science.gov (United States)

    A method for the determination of the 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in biochar and soil amended with biochar was developed. Samples were Soxhlet extracted with acetone:cyclohexane 1:1, and PAHs were analysed by GC-MS after silica gel clean-up. In a comparative study based on reflu...

  6. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.

    2001-01-01

    The occurrence of selected nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) associated with atmospheric particulate matter has been investigated at an urban site and at a semi-rural site. For this purpose an analysis method based on gas chromatography and tandem ion trap mass spectrometry has...

  7. Safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, K.; Williams, D.T.; Benoit, F.M.

    1979-01-01

    The safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water and industrial wastewaters in the US was studied by observing the reactions of naphthalene and methylnaphthalenes in essentially chlorine-free, aqueous chlorine dioxide solutions. Naphthalene and methylnaphthalenes yielded chlorinated derivatives and oxidation products. Further research is recommended.

  8. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  9. Longitudinal study of excretion of metabolites of polycyclic aromatic hydrocarbons in urine from two psoriatic patients

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Poulsen, O M; Menné, T

    1993-01-01

    Coal tar, which is widely used in the treatment of patients with atopic dermatitis, chronic eczema, and psoriasis, contains a large amount of polycyclic aromatic hydrocarbons (PAH). Some of the PAH compounds are known either to be carcinogenic or to potentiate the effects of other carcinogenic su...

  10. Theoretical modeling of infrared emission from neutral and charged polycyclic aromatic hydrocarbons. II.

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM; Bauschlicher, CW; Hudgins, DM; Allamandola, LJ

    2001-01-01

    The nature of the carriers of the interstellar infrared (IR) emission features between 3.3 and 12.7 mum is complex. We must consider emission from a family of polycyclic aromatic hydrocarbons (PAHs) in a multiplicity of cationic charge states (+1, +2, +3, and so on), along with neutral and anionic P

  11. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    Science.gov (United States)

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  12. Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site

    DEFF Research Database (Denmark)

    Lara, E; Berney, C; Ekelund, Flemming

    2007-01-01

    We compared the abundance and diversity of cultivable protozoa (flagellates and amoebae) in a polycyclic aromatic hydrocarbon (PAH) polluted soil and an unpolluted control, by isolating and cultivating clonal strains. The number of cultivable protozoa was higher in the polluted soil; however...

  13. Effect of three polycyclic aromatic hydrocarbons on nodulation of Rhizobium tropici CIAT 899 on Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Paredes, Y.; Ferrera-Cerrato, R.; Alarcon, A.

    2009-07-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous organic pollutants that are considered toxic and carcinogenic compounds to living organisms. There us scarce information about the effect of PAH on symbiotic systems such as Azolla-Anabaena, arbuscular mycorrhizal fungi-plants, or legume-rhizobia. (Author)

  14. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Jonker, M.T.O.; Sinke, A.; Brils, J.M.; Murk, A.J.; Koelmans, A.A.

    2006-01-01

    Many sediments are contaminated with mixtures of oil residues and polycyclic aromatic hydrocarbons (PAHs), but little is known about the toxicity of such mixtures to sediment-dwelling organisms and the change in toxicity on weathering. In the present study, we investigated the effects of a seminatur

  15. Probing the role of polycyclic aromatic hydrocarbons in the photoelectric heating within photodissociation regions

    NARCIS (Netherlands)

    Okada, Y.; Pilleri, P.; Berné, O.; Ossenkopf, V.; Fuente, A.; Goicoechea, J. R.; Joblin, C.; Kramer, C.; Röllig, M.; Teyssier, D.; van der Tak, F. F. S.

    2013-01-01

    Aims: We observationally investigate the relation between the photoelectric heating efficiency in photodissociation regions (PDRs) and the charge of polycyclic aromatic hydrocarbons (PAHs), which are considered to play a key role in photoelectric heating. Methods: Using PACS onboard Herschel, we obs

  16. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media.

    Science.gov (United States)

    Pęziak, Daria; Piotrowska, Aleksandra; Marecik, Roman; Lisiecki, Piotr; Woźniak, Marta; Szulc, Alicja; Ławniczak, Łukasz; Chrzanowski, Łukasz

    2013-01-01

    The aim of our study was to investigate the effect of Triton X-100 on the biodegradation efficiency of hexadecane and phenanthrene carried out by two bacterial consortia. It was established that the tested consortia were not able to directly uptake compounds closed in micelles. It was observed that in micellar systems the nonionic synthetic surfactant was preferentially degraded (the degradation efficiency of Triton X-100 after 21 days was 70% of the initial concentration - 500 mg/l), followed by a lesser decomposition of hydrocarbon released from the micelles (30% for hexadecane and 20% for phenanthrene). However, when hydrocarbons were used as the sole carbon source, 70% of hexadecane and 30% of phenanthrene were degraded. The degradation of the surfactant did not contribute to notable shifts in bacterial community dynamics, as determined by Real-Time PCR. The obtained results suggest that if surfactant-supplementation is to be used as an integral part of a bioremediation process, then possible bioavailability decrease due to entrapment of the contaminant into surfactant micelles should also be taken into consideration, as this phenomenon may have a negative impact on the biodegradation efficiency. Surfactant-induced mobilization of otherwise recalcitrant hydrocarbons may contribute to the spreading of contaminants in the environment and prevent their biodegradation.

  17. Non-covalent Interactions of Graphene with Polycyclic Aromatic Hydrocarbons

    NARCIS (Netherlands)

    Zygouri, Panagiota; Potsi, Georgia; Mouzourakis, Eleftherios; Spyrou, Konstantinos; Gournis, Dimitrios; Rudolf, Petra

    2015-01-01

    In this mini review we discuss the interactions of polyaromatic hydrocarbons (PAHs) with graphene and the experimental approaches developed so far to create novel graphene/PAH hybrids and composite systems. The utilization of these systems in electrical, biomedical and polymer-reinforcement applicat

  18. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soi

  19. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water.

  20. Application of the cubic-plus-association (CPA) equation of state to complex mixtures with aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2006-01-01

    The cubic-plus-association (CPA) equation of state is applied to phase equilibria of mixtures containing alcohols, glycols, water, and aromatic or olefinic hydrocarbons. Previously, CPA has been successfully used for mixtures containing various associating compounds (alcohols, glycols, amines......, organic acids, and water) and aliphatic hydrocarbons. We show in this work that the model can be satisfactorily extended to complex vapor-liquid-liquid equilibria with aromatic or olefinic hydrocarbons. The solvation between aromatics/olefinics and polar compounds is accounted for. This is particularly...... of the model (the Soave-Redlich-Kwong (SRK) equation of state) can be obtained from mixtures with aliphatic hydrocarbons. For mixtures of glycols with aromatic hydrocarbons, two parameters have been fitted to experimental data, one in the physical (SRK) part and one in the association part of the model...

  1. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks.

    Directory of Open Access Journals (Sweden)

    Patrick Tarnow

    Full Text Available The majority of printing inks are based on mineral oils (MOs which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans.

  2. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks.

    Science.gov (United States)

    Tarnow, Patrick; Hutzler, Christoph; Grabiger, Stefan; Schön, Karsten; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The majority of printing inks are based on mineral oils (MOs) which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans.

  3. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    Science.gov (United States)

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-05

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  4. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: catalyst screening in a pyroprobe.

    Science.gov (United States)

    Du, Zhenyi; Ma, Xiaochen; Li, Yun; Chen, Paul; Liu, Yuhuan; Lin, Xiangyang; Lei, Hanwu; Ruan, Roger

    2013-07-01

    Catalytic pyrolysis of microalgae and egg whites was investigated to evaluate the performance of different zeolites for the production of aromatic hydrocarbons. Three zeolites with different structures (H-Y, H-Beta and H-ZSM5) were used to study the effect of catalyst type on the aromatic yield. All three catalysts significantly increased the aromatic yields from pyrolysis of microalgae and egg whites compared with non-catalytic runs, and H-ZSM5 was most effective with a yield of 18.13%. Three H-ZSM5 with silica-to-alumina ratios of 30, 80 and 280 were used to study the effect of Si/Al ratio on the aromatic yield. The maximum yield was achieved at the Si/Al ratio of 80, which provides moderate acidity to achieve high aromatic production and reduce coke formation simultaneously. Aromatic production increased with the incorporation of copper or gallium to HZSM-5. However, other studied metals either had no significant influence or led to a lower aromatic yield.

  5. Blockade of the aryl hydrocarbon receptor pathway triggered by dioxin, polycyclic aromatic hydrocarbons and cigarette smoke by Phellinus linteus.

    Science.gov (United States)

    Mukai, Mai; Kasai, Ayumi; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Okamura, Maro; Tagawa, Yasuhiro; Yao, Jian; Nakamura, Tomoyuki; Kitamura, Masanori

    2008-10-01

    Environmental pollutants including halogenated and polycyclic aromatic hydrocarbons activate the aryl hydrocarbon receptor (AhR) and thereby cause a wide range of pathological changes. Development of AhR antagonists will be useful for prevention and treatment of diseases related to AhR activation. Towards this end, we aimed in the present study at seeking for potential inhibitors of the AhR pathway in mycelial extracts using the dioxin responsive element-based sensing via secreted alkaline phosphatase (DRESSA). Through the screening of 13 mycelia, extracts prepared from Phellinus linteus, Cordyceps militaris and Hericium erinaceum inhibited activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin, benzo[a]pyrene or 3-methylcholanthrene. Subsequent studies revealed that only Phellinus linteus suppressed activation of AhR and AhR-dependent gene expression triggered by all of these agonists. Cigarette smoke is known to contain a number of halogenated and polycyclic aromatic hydrocarbons. We found that Phellinus linteus has the potential to block activation of AhR and AhR-dependent gene expression triggered by cigarette smoke. Furthermore, the inhibitory effect of Phellinus linteus on the AhR pathway was independent of; 1) depression of AhR or AhR nuclear translocator, and 2) induction of AhR repressor. We conclude that Phellinus linteus contains potent inhibitor(s) of AhR activation and may be useful for prevention of pathologies associated with aberrant activation of AhR.

  6. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico coastal microbial communities after the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Anthony D. Kappell

    2014-05-01

    Full Text Available The Deepwater Horizon (DWH blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including PAHs, were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are primed for PAH

  7. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  8. Determination of low concentrations of aromatic hydrocarbons in multicomponent mixtures with iso-octane and n-heptane

    Science.gov (United States)

    Vesnin, V. L.; Muradov, V. G.

    2011-11-01

    We have experimentally studied the absorption spectra of hydrocarbon mixtures based on n-heptane and isooctane with small (1%-2%) additions of aromatic hydrocarbons (benzene, toluene, xylene). The study was conducted in the region of the first overtones of the vibrational spectra for the hydrocarbon groups CH3, CH2, CH. We show that four-component modeling of the absorption spectrum of the hydrocarbon mixture and minimization of the deviation of the model spectrum from the experimental spectrum allow us to separately determine the content of the aromatic additives for concentrations from 1%.

  9. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    Science.gov (United States)

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  10. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-04-01

    Microbial communities drive many biogeochemical processes in oil sands tailings and cause greenhouse gas emissions from tailings ponds. Paraffinic solvent (primarily C5-C6; n- and iso-alkanes) is used by some oil sands companies to aid bitumen extraction from oil sands ores. Residues of unrecovered solvent escape to tailings ponds during tailings deposition and sustain microbial metabolism. To investigate biodegradation of hydrocarbons in paraffinic solvent, mature fine tailings (MFT) collected from Albian and CNRL ponds were amended with paraffinic solvent at ~0.1wt% (final concentration: ~1000mgL(-1)) and incubated under methanogenic conditions for ~1600d. Albian and CNRL MFTs exhibited ~400 and ~800d lag phases, respectively after which n-alkanes (n-pentane and n-hexane) in the solvent were preferentially metabolized to methane over iso-alkanes in both MFTs. Among iso-alkanes, only 2-methylpentane was completely biodegraded whereas 2-methylbutane and 3-methylpentane were partially biodegraded probably through cometabolism. 16S rRNA gene pyrosequencing showed dominance of Anaerolineaceae and Methanosaetaceae in Albian MFT and Peptococcaceae and co-domination of "Candidatus Methanoregula" and Methanosaetaceae in CNRL MFT bacterial and archaeal communities, respectively, during active biodegradation of paraffinic solvent. The results are important for developing future strategies for tailings reclamation and management of greenhouse gas emissions.

  11. Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration.

    Science.gov (United States)

    Nisenbaum, Melina; Sendra, Gonzalo Hernán; Gilbert, Gastón Alfredo Cerdá; Scagliola, Marcelo; González, Jorge Froilán; Murialdo, Silvia Elena

    2013-03-01

    We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader, Pseudomonas strain H. The biochemical and phylogenetic analysis of the 16S rDNA sequence identified Pseudomonas strain H as having 99.56% similarity with P. aeruginosa PA01. This strain was able to degrade n-hexadecane, 1-undecene, 1-nonene, 1-decene, 1-dodecene and kerosene. It grew in the presence of 1-octene, while this hydrocarbons is toxic to other hydrocarbons degraders. Pseudomonas strain H was also chemotactic towards n-hexadecane, kerosene, 1-undecene and 1-dodecene. These results show that this Pseudomonas strain H is an attractive candidate for hydrocarbon-containing wastewater bioremediation in controlled environments. Since the classical standard techniques for detecting chemotaxis are not efficient at low bacterial concentrations, we demonstrate the use of the dynamic speckle laser method, which is simple and inexpensive, to confirm bacterial chemotaxis at low cell concentrations (less than 10(5) colony-forming unit per millilitre (CFU/mL)) when hydrocarbons are the attractants.

  12. Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration

    Institute of Scientific and Technical Information of China (English)

    Melina Nisenbaum; Gonzalo Hernán Sendra; Gastón Alfredo Cerdá Gilbert; Marcelo Scagliola; Jorge Froilán González; Silvia Elena Murialdo

    2013-01-01

    We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader,Pseudomonas strain H.The biochemical and phylogenetic analysis of the 16S rDNA sequence identified Pseudomonas strain H as having 99.56% similarity with P.aeruginosa PA01.This strain was able to degrade n-hexadecane,1-undecene,1-nonene,1-decene,1-dodecene and kerosene.It grew in the presence of 1-octene,while this hydrocarbons is toxic to other hydrocarbons degraders.Pseudomonas strain H was also chemotactic towards n-hexadecane,kerosene,1-undecene and 1-dodecene.These results show that this Pseudomonas strain H is an attractive candidate for hydrocarbon-containing wastewater bioremediation in controlled environments.Since the classical standard techniques for detecting chemotaxis are not efficient at low bacterial concentrations,we demonstrate the use of the dynamic speckle laser method,which is simple and inexpensive,to confirm bacterial chemotaxis at low cell concentrations (less than 105 colony-forming unit per millilitre (CFU/mL)) when hydrocarbons are the attractants.

  13. IUPAC-NIST Solubility Data Series. 101. Alcohols + Hydrocarbons + Water Part 3. C1-C3 Alcohols + Aromatic Hydrocarbons

    Science.gov (United States)

    Oracz, Paweł; Góral, Marian; Wiśniewska-Gocłowska, Barbara; Shaw, David G.; Mączyński, Andrzej

    2016-09-01

    The mutual solubilities and related liquid-liquid equilibria for 11 ternary systems of C1-C3 alcohols with aromatic hydrocarbons and water are exhaustively and critically reviewed. Reports of experimental determination of solubility that appeared in the primary literature prior to the end of 2012 are compiled. For nine systems, sufficient data are available (two or more independent determinations) to allow critical evaluation. All new data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, an additional criterion was used for each of the evaluated systems. These systems include one binary miscibility gap in the hydrocarbon + water subsystem. The binary tie lines were compared with the recommended values published previously.

  14. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements

    Science.gov (United States)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang

    2017-01-01

    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  15. Dissolved and Suspended Polycyclic Aromatic Hydrocarbons (PAH in the North Aegean Sea

    Directory of Open Access Journals (Sweden)

    I. HATZIANESTIS

    2012-12-01

    Full Text Available The distribution and sources of polycyclic aromatic hydrocarbons (PAH were investigated in the seawater of the North Aegean Sea. The measured PAH concentrations in SPM are generally considered as elevated for open sea waters and were evenly distributed in the area. Their levels in the dissolved phase (1.6-33.0 ng/l were much higher than those encountered in the corresponding particulate phases (0.04-10.2 ng/l. The PAH patterns in both phases were dominated by the three ring aromatics and their alkylated derivatives, reflecting a predominant contribution of fossil hydrocarbons probably related to ship traffic, whereas no significant inputs from the rivers outfalling in the area were detected. In bottom waters PAH values were generally lower, whereas a higher depletion of the petroleum PAH in comparison with the pyrolytic ones according to depth was observed.

  16. The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18

    CERN Document Server

    Kokkin, Damian L; Nakajima, Masakazu; Nauta, Klaas; Varberg, Thomas D; Metha, Gregory F; Lucas, Nigel T; Schmidt, Timothy W

    2008-01-01

    The first optical spectrum of an isolated polycyclic aromatic hydrocarbon large enough to survive the photophysical conditions of the interstellar medium is reported. Vibronic bands of the first electronic transition of the all benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon ionization spectroscopy. The strongest feature at 4261 Angstrom is estimated to have an oscillator strength of f=1.4x10^-3, placing an upper limit on the interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12 cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study opens up the possibility to rigorously test neutral polycyclic aromatic hydrocarbons as carriers of the diffuse interstellar bands in the near future.

  17. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    Science.gov (United States)

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  18. Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus

    NARCIS (Netherlands)

    Lange, de H.J.; Sperber, V.; Peeters, E.T.H.M.

    2006-01-01

    Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of contaminant

  19. Effects of Temperature Changes on Biodegradation of Petroleum Hydrocarbons in Contaminated Soils from an Arctic Site

    Science.gov (United States)

    Chang, W.; Klemm, S.; Whyte, L.; Ghoshal, S.

    2009-05-01

    Bioremediation is being considered as a cost-effective and a minimally disruptive remedial option at remote sites in the Arctic and sub-Arctic impacted by petroleum NAPL contamination. The implementation of on-site bioremediation in cold environments has been generally limited in the short, non-freezing summer months since ground remains frozen for 8-9 months of the year. This study evaluates the effect of different temperature regimes on petroleum hydrocarbon biodegradation rates and extent, as well as on the microbial activity. A series of pilot-scale landfarming bioremediation experiments (1 m×0.6 m×0.35 m soil tank dimension) was performed using aged, petroleum fuel-contaminated soils shipped from Resolution Island, Nunavut, Canada. These experiments were conducted under the following temperature conditions: (1) variable daily average field temperatures (1 to 10°C) representative of summers at the site; (2) constant mean temperature-mode with 6°C, representing typical stable laboratory incubation; and (3) under seasonal freeze-thaw conditions (-8°C to 10°C). Data to be presented include changes with time of petroleum hydrocarbons concentration fractionated by C-lengths, soil moisture (unfrozen water) contents, O2 and CO2 concentrations in soil pore gas, microbial population size and community composition in nutrient- amended and untreated landfarms. Hydrocarbon biodegradation and heterotrophic respiration activity was more rapid under the variable temperature cycle (1 to 10°C) than at a constant average temperature of 6°C, and total petroleum hydrocarbon (TPH) concentrations were reduced by 55% due to biodegradation over a 60 day test period under the variable temperature regime, compared to only 21% in soil tanks which were subjected to a constant temperature of 6°C. Shifts in microbial community were clearly observed in the both temperature modes using PCR-DGGE analyses and the emergence of a hydrocarbon-degrading population, Alkanindiges, was

  20. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars;

    2010-01-01

    Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused......, resulting in an accumulation of pollution within coarse sandy lenses. Air-filled porosity, readily available phosphorous, and the first-order rate constant (k1) of benzene obtained from slurry biodegradation experiments were found to depend on geologic sample characterization (P ... for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface....

  1. Use of Ionic Liquid-filled Semipermeable Membrane for Extraction of Polycyclic Aromatic Hydrocarbons in Water

    Institute of Scientific and Technical Information of China (English)

    Wen Yan ZHAO; Meng HAN; Shu Gui DAI; Xia ZHONG

    2005-01-01

    A novel and facile sample preparation method was developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in aqueous sample solution using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM] [PF6]) - filled semipermeable membrane. For24 hrs extraction of naphthalene, 1-methylnaphthalene, 2-chloronaphthalene, phenanthrene, the result showed that the extraction efficiency, correlation coefficient (R2) and RSD (n=5) were in the range of 67-102 %, 0.9870-0.9962, and 2.1-5.3 %, respectively.

  2. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons

    DEFF Research Database (Denmark)

    Hoff, Thomas C.; Gardner, David W.; Thilakaratne, Rajeeva

    2016-01-01

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents...... a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high...

  3. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children

    OpenAIRE

    Jedrychowski, Wiesław A.; Perera, Frederica P.; Camann, David; Spengler, John; Butscher, Maria; Mroz, Elzbieta; Majewska, Renata; Flak, Elżbieta; Jacek, Ryszard; Sowa, Agata

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced by combustion of fossil fuel and other organic materials. Both experimental animal and human studies have reported the harmful impacts of PAH compounds on fetal growth and neurodevelopment, including verbal IQ of children. Here, we have assessed the association between cognitive function of children and prenatal PAH exposures. The study is part of an ongoing, longitudinal investigation of the health effec...

  4. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39.

    OpenAIRE

    1996-01-01

    Three strains of Comamonas testosteroni were isolated from river sediment for the ability to degrade phenanthrene; two of the strains also grew on naphthalene, and one strain also grew on anthracene. The homology of the genes for polycyclic aromatic hydrocarbon degradation in these strains to the classical genes (nah) for naphthalene degradation from Pseudomonas putida NCIB 9816-4 was determined. The three C. testosteroni strains showed no homology to the nah gene probe even under low-stringe...

  5. Estimated IR and phosphorescence emission fluxes for specific Polycyclic Aromatic Hydrocarbons in the Red Rectangle

    CERN Document Server

    Mulas, G; Joblin, C; Toublanc, D

    2005-01-01

    Following the tentative identification of the blue luminescence in the Red Rectangle by Vijh et al. (2005), we compute absolute fluxes for the vibrational IR emission and phosphorescence bands of three small polycyclic aromatic hydrocarbons. The calculated IR spectra are compared with available ISO observations. A subset of the emission bands are predicted to be observable using presently available facilities, and can be used for an immediate, independent, discriminating test on their alleged presence in this well-known astronomical object.

  6. Emissions of Parent, Nitro, and Oxygenated Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion in Rural China

    OpenAIRE

    SHEN, Guofeng; TAO, SHU; WEI, Siye; ZHANG, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; HUANG, YE; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wang, Xilong; Liu, Wenxin

    2012-01-01

    Residential wood combustion is one of the important sources of air pollution in developing countries. Among the pollutants emitted, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives, including nitrated and oxygenated PAHs (nPAHs and oPAHs), are of concern because of their mutagenic and carcinogenic effects. In order to evaluate their impacts on regional air quality and human health, emission inventories, based on realistic emission factors (EFs), are needed. In this study,...

  7. Structural Vector Description and Estimation of Normal Boiling Points for 66 Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The correlation coefficient (R) between the estimated bp and experimental bp is 0.9988 and the root mean square error (RMS) is 7.907° C for 66 AHs. The RMS obtained by cross-validation is 9.131° C, which implies the relationship model having good prediction ability.

  8. Analysis of 23 polycyclic aromatic hydrocarbons in smokeless tobacco by gas chromatography-mass spectrometry

    OpenAIRE

    Stepanov, Irina; Villalta, Peter W.; Knezevich, Aleksandar; Jensen, Joni; Hatsukami, Dorothy; Hecht, Stephen S.

    2010-01-01

    Smokeless tobacco contains 28 known carcinogens and causes precancerous oral lesions and oral and pancreatic cancer. A recent study conducted by our research team identified 8 different polycyclic aromatic hydrocarbons (PAH) in U.S. moist snuff, encouraging further investigations of this group of toxicants and carcinogens in smokeless tobacco products. In this study, we developed a gas chromatography-mass spectrometry method that allows simultaneous analysis of 23 various PAH in smokeless tob...

  9. Fingerprint of polycyclic aromatic hydrocarbons in two populations of southern sea lions (Otaria flavescens).

    Science.gov (United States)

    Marsili, L; Fossi, M C; Casini, S; Savelli, C; Jimenez, B; Junin, M; Castello, H

    1997-02-01

    The fingerprint of 14 polycyclic aromatic hydrocarbons (PAHs) was investigated in biopsy, fur, blood, liver and faeces of live and dead specimens of two Argentinian population of southern sea lion (Otaria flavescens). One colony lives in Mar del Plata harbour which is particularly polluted with petroleum, the second (control) colony lives at Punta Bermeja (Patagonia). The highest concentrations of the five carcinogenic PAHs were found in the Mar del Plata sea lions.

  10. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    OpenAIRE

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactio...

  11. A mesocasm study of enhanced anaerobic biodegradation of petroleum hydrocarbons in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Guigard, S.; Biggar, K. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Foght, J.; Semple, K. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences

    2005-07-01

    Under certain conditions, Natural Attenuation (NA) processes can act to reduce the mass, toxicity, mobility, volume or concentrations of contaminants in soil or groundwater within a reasonable time frame. NA processes are considered to be a more cost-effective remediation approach than engineered processes. However, the rates of biodegradation in cold regions are slower and occasionally the processes are nutrient or Terminal Electron Acceptor (TEA) limited. These limitations may make NA less viable due to slower rates of biological activity. This paper discusses the results of a mesocasm study conducted in laboratory-controlled conditions to investigate the TEA and nutrient enhanced anaerobic biodegradation of petroleum hydrocarbons in groundwater from two sites in Alberta. Target compounds for the study were BTEX and the CCME F1 fraction. Samples taken from the site were used to set up 11 L mesocasms with a water to soil ratio of 10:1 under anaerobic conditions. The samples were amended with nitrate and sulfate and then incubated. Sub-sampling was carried out once a month to monitor substrate consumption, TEA depletion and evolution of biogenic gases. Microbial enumeration and metabolite analysis were also done. No final conclusions could be drawn from the study, which had only been carried out for 6 months at the time that this paper was written. However, results to date have indicated that the method of mesocasms and sub-sampling are applicable to anaerobic biodegradation studies. In addition, nutrient supplementation appears to enhance nitrate and sulfate reduction. However, the TEA depletion was greater than expected and could not be explained by the substrate consumption. Results also indicated that the groundwater from site 1 was sulfate-limited, suggesting that sulfate amendment could enhance anaerobic biodegradation of CCME F1 petroleum hydrocarbons. Data from the ongoing study may provide additional insight to clarify processes in the mesocasms. 9 refs

  12. Biodegradable aliphatic-aromatic copolyester/corn starch blend composite reinforced with coffee parchment husk

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valquiria A.; Teixeira, Jaciele G.; Gomes, Michelle G.; Ortiz, Angel V.; Oliveira, Rene R.; Scapin, Marcos A.; Moura, Esperidiana A.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Colombo, Maria A., E-mail: valquiriaalves36@yahoo.com.br [Faculdade de Tecnologia da Zona Leste (FATEC), Sao Paulo, SP (Brazil)

    2013-07-01

    In recent years, studies have shown that the addition of natural fiber or proper filler is an effective strategy for achieving improved properties in biodegradable polymer materials. Moreover, is especially important if such fibers are residues of agro-industrial processes. In this work, a promising technique to develop biodegradable polymer matrix composite based on aliphatic-aromatic copolyester/corn starch blend (Evela®) and coffee parchment husk, which is residue from coffee processing is described. The biodegradable polymeric blend (Evela®) with 5 % (w/w) of ball-milled coffee parchment husk fiber powder, with size ≤250 μm, without any modification was prepared by melt-mixing processing, using a twin screw extruder machine and then pelletized. In a second step, the pelletized Evela®)/coffee parchment (Composite) was then dried at 70 ± 2 deg C for 24 h in a circulating air oven, fed into injection molding machine and test specimens were obtained. The Composite specimen samples were irradiated using an electron beam accelerator, at radiation dose of 20 and 40 kGy, at room temperature in presence of air. The irradiated and non-irradiated samples were characterized by means of scanning electron microscopy (SEM), X-Ray diffraction (XRD), tensile tests and sol-gel analysis and the correlation between their properties was discussed. In addition, coffee parchment husk fiber characterization by SEM, EDS, XRD and WDXRF have also been carried out with a view to evaluate its importance in determining the end-use properties of the composite. (author)

  13. Assessment of the bioavailability and phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rončević, Srđan; Spasojević, Jelena; Maletić, Snežana; Jazić, Jelena Molnar; Isakovski, Marijana Kragulj; Agbaba, Jasmina; Grgić, Marko; Dalmacija, Božo

    2016-02-01

    Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.

  14. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  15. Geochemical markers and polycyclic aromatic hydrocarbons in solvent extracts from diesel engine particulate matter.

    Science.gov (United States)

    Fabiańska, Monika; Kozielska, Barbara; Bielaczyc, Piotr; Woodburn, Joseph; Konieczyński, Jan

    2016-04-01

    Exhaust particulate from compression ignition (CI) engines running on engine and chassis dynamometers was studied. Particulate dichloromethane extracts were qualitatively and quantitatively analyzed for polycyclic aromatic hydrocarbons (PAHs) and biomarkers by gas chromatography with flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). PAH group profiles were made and the PAH group shares according to the number of rings (2 or 3; 4; 5 or more) as well as diagnostic indices were calculated. Values of geochemical ratios of selected biomarkers and alkyl aromatic hydrocarbons were compared with literature values. A geochemical interpretation was carried out using these values and biomarker and alkyl aromatic hydrocarbon distributions. It has been shown that geochemical features are unequivocally connected to the emission of fossil fuels and biofuels burned in CI engines. The effect of the exothermic combustion process is limited to low-molecular-weight compounds, which shows that the applied methodology permits source identification of PAHs coexisting in the particulate emitted.

  16. A method for removing aromatic hydrocarbons from liquid n-paraffins

    Energy Technology Data Exchange (ETDEWEB)

    Gayle, A.A.; Pavlyuk, N.F.; Proskuryakov, V.A.; Semenov, L.V.; Zakhrov, A.P.

    1982-01-01

    In the known method for removing aromatic hydrocarbons from liquid n-paraffins through liquid extraction by a selective solvent, in order to increase the output of the paraffins methoxyacetonitrile (I) is used as the selective solvent. The advantages of the extraction process using I are high output and quality of the purified paraffins and the possibility of using series produced extractors of medium effectiveness. The high selectivity of I relative to aromatic hydrocarbons, unlike low selective acetone in the known method and its high density (1.032) as compared with acetone (0.790) provide for effective mass exchange in industrial performance of the process. The regeneration of I from the extraction phase may be accomplished through rectification. In an example of single stage isolation of mixtures of n-tetradecane with 1,2,4,5-tetramethylbenzene and 1-methylnaphthaline (a temperature of 30 degrees, a ratio of solvent to raw material of 3, an aromatic hydrocarbon content in the mixture of 1.0 percent) showed the following.

  17. Infrared spectra of protonated polycyclic aromatic hydrocarbon molecules: Azulene

    Science.gov (United States)

    Zhao, Dawei; Langer, Judith; Oomens, Jos; Dopfer, Otto

    2009-11-01

    The infrared (IR) spectrum of protonated azulene (AzuH+, C10H9+) has been measured in the fingerprint range (600-1800 cm-1) by means of IR multiple photon dissociation (IRMPD) spectroscopy in a Fourier transform ion cyclotron resonance mass spectrometer equipped with an electrospray ionization source using a free electron laser. The potential energy surface of AzuH+ has been characterized at the B3LYP/6-311G∗∗ level in order to determine the global and local minima and the corresponding transition states for interconversion. The energies of the local and global minima, the dissociation energies for the lowest-energy fragmentation pathways, and the proton affinity have been evaluated at the CBS-QB3 level. Comparison with calculated linear IR absorption spectra supports the assignment of the IRMPD spectrum to C4-protonated AzuH+, the most stable of the six distinguishable C-protonated AzuH+ isomers. Comparison between Azu and C4-AzuH+ reveals the effects of protonation on the geometry, vibrational properties, and the charge distribution of these fundamental aromatic molecules. Calculations at the MP2 level indicate that this technique is not suitable to predict reliable IR spectra for this type of carbocations even for relatively large basis sets. The IRMPD spectrum of protonated azulene is compared to that of isomeric protonated naphthalene and to an astronomical spectrum of the unidentified IR emission bands.

  18. DISTRIBUTION AND CHARACTERIZATION OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN AIRBORNE PARTICULATES OF EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Libin Liu; Jin-Ming Lin; Ning Tang; Kazuichi Hayakawa

    2006-01-01

    A review is presented on the distribution and characterization of polycyclic aromatic hydrocarbons (PAHs)and their derivatives, including nitro-PAHs and hydro-PAHs, on atmospheric particulates of East Asia. Generally, PAH compounds with two or three aromatic rings are released mainly into the gas phase, while those containing three or more aromatic rings are associated with particulate matter (PM) emission. Particle-associated PAHs are primarily adsorbed on fine particles, and little associated with coarse particles. Investigation into the concentration level of PAHs in different areas can serve not only to reflect the pollutant status and sources but also to lead to the formulation of control strategies.The results of the present study show that China has more severe PAH pollution than such East Asian countries as Japan and Korea.

  19. BIODEGRADATION OF SEDIMENT-BOUND PAHS IN FIELD-CONTAMINATED SEDIMENT

    Science.gov (United States)

    The biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been reported to occur under aerobic, sulfate reducing, and denitrifying conditions. PAHs present in contaminated sites, however, are known for their persistence. Most published studies were conducted in systems wh...

  20. Problems Caused by Microbes and Treatment Strategies Anaerobic Hydrocarbon Biodegradation and Biocorrosion: A Case Study

    Science.gov (United States)

    Suflita, Joseph M.; Duncan, Kathleen E.

    The anaerobic biodegradation of petroleum hydrocarbons is important for the intrinsic remediation of spilt fuels (Gieg and Suflita, 2005), for the conversion of hydrocarbons to clean burning natural gas (Gieg et al., 2008; Jones et al., 2008) and for the fundamental cycling of carbon on the planet (Caldwell et al., 2008). However, the same process has also been implicated in a host of difficult problems including reservoir souring (Jack and Westlake, 1995), oil viscosity alteration (Head et al., 2003), compromised equipment performance and microbiologically influenced corrosion (Duncan et al., 2009). Herein, we will focus on the role of anaerobic microbial communities in catalysing biocorrosion activities in oilfield facilities. Biocorrosion is a costly problem that remains relatively poorly understood. Understanding of the underlying mechanisms requires reliable information on the carbon and energy sources supporting biofilm microorganisms capable of catalysing such activities.

  1. Relating desorption of polycyclic aromatic hydrocarbons from harbour sludges to type of organic material

    Science.gov (United States)

    Heister, K.; Pols, S.; Loch, J. P. G.; Bosma, T.

    2009-04-01

    For decades, polycyclic aromatic hydrocarbons (PAH) cause great concern as environmental pollutants. Especially river and marine harbour sediments are frequently polluted with PAH derived from surface runoff, fuel and oil spills due to shipping and industrial activities, industrial waste and atmospheric deposition. Harbour sediments contain large amounts of organic carbon and clay minerals and are therefore not easy to remediate and have to be stored in sludge depositories after dredging to maintain sufficient water depth for shipping. The organic contaminants will be adsorbed to particles, leached in association with dissolved organic material or microbially degraded. However, compounds of high molecular weight are very persistent, particularly under anaerobic conditions, thus giving rise to the potential to become desorbed again. PAH adsorb mainly to organic material. It has been shown that components of the organic material with a low polarity and a high hydrophobicity like aliphatic and aromatic components exhibit a high sorption capacity for hydrophobic organic contaminants like PAH. Accordingly, not only the amount but also the type of organic material needs to be determined in order to be able to predict contaminant behaviour. In this study, desorption behaviour of the 16 EPA-PAH in two different harbour sludges from the port of Rotterdam, the Netherlands, has been investigated. The Beerkanaal (BK) site is located relatively close to the North Sea and represents a brackish environment; the Beneden Merwede River (BMR) site originates from a fresh water environment and is close to industrial sites. The samples were placed in dialysis membranes and brought into contact with water for a period of 130 days. At several time intervals, water samples were retrieved for analysis of pH, dissolved organic carbon (DOC) content, electrical conductivity and PAH concentrations. The experiment was conducted at 4 and at 20°C. Although the samples were initially treated with

  2. Aliphatic and aromatic hydrocarbons in particulate fallout of Alexandria, Egypt: Sources and implications

    Energy Technology Data Exchange (ETDEWEB)

    Aboul-Kassim, T.A.T.; Simoneit, B.R.T. [Oregon State Univ., Corvallis, OR (United States)

    1995-10-01

    Particulate fallout samples (PFS) were collected in Alexandria, and their aliphatic and aromatic hydrocarbon compositions were determined both quantitatively and qualitatively to characterize the homologous and biomarker compounds in terms of their original sources. The results show that all samples contain aliphatic hydrocarbons, including n-alkanes, UCM, isoprenoids, tri- and tetracyclic terpanes, hopanes, and steranes/diasteranes. The main source of these compounds is from petrochemical contamination with trace input of terrestrial higher plant wax. In addition, polycyclic aromatic hydrocarbons, which are considered to be combustion products from fossil fuels such as petroleum, are also widely distributed in all samples. Multivariate statistical analysis, including extended Q-mode factor analysis and linear programming technique, was performed in order to reduce the hydrocarbon data set into a meaningful number of end members (sources). This analysis indicates that there are two significant end members explaining 90% of the total variation among the samples and confirming petrochemical (79.6%), and thermogenic/pyrolytic (10.4%) sources in the PFS model. 65 refs., 7 figs., 4 tabs.

  3. Biogeochemical and physical controls on concentrations of polycyclic aromatic hydrocarbons in water and plankton of the Mediterranean and Black Seas

    Science.gov (United States)

    Berrojalbiz, Naiara; Dachs, Jordi; Ojeda, MaríA. José; Valle, MaríA. Carmen; Castro-JiméNez, Javier; Wollgast, Jan; Ghiani, Michela; Hanke, Georg; Zaldivar, José Manuel

    2011-12-01

    The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to atmospheric and riverine inputs of organic pollutants. They include regions of different physical and trophic characteristics, which allow the studying of the controls on pollutant occurrence and fate under different conditions in terms of particles, plankton biomass, interactions with the atmosphere, biodegradation, and their dependence on the pollutant physical chemical properties. Polycyclic Aromatic Hydrocarbons (PAHs) have been measured in samples of seawater (dissolved and particulate phases) and plankton during two east-west sampling cruises in June 2006 and May 2007. The concentrations of dissolved PAHs were higher in the south-western Black Sea and Eastern Mediterranean than in the Western Mediterranean, reflecting different pollutant loads, trophic conditions and cycling. Particle and plankton phase PAH concentrations were higher when lower concentrations of suspended particles and biomass occurred, with apparent differences due to the PAH physical chemical properties. The surface PAH particle phase concentrations decreased when the total suspended particles (TSP) increased for the higher molecular weight (MW) compounds, consistent with controls due to particle settling depletion of water column compounds and dilution. Conversely, PAH concentrations in plankton decreased at higher biomass only for the low MW PAHs, suggesting that biodegradative processes in the water column are a major driver of their occurrence in the photic zone. The results presented here are the most extensive data set available for the Mediterranean Sea and provide clear evidence of the important physical and biological controls on PAH occurrence and cycling in oceanic regions.

  4. Heavy metal ions affecting the removal of polycyclic aromatic hydrocarbons by fungi with heavy-metal resistance.

    Science.gov (United States)

    Ma, Xiao-Kui; Ling Wu, Ling; Fam, Hala

    2014-12-01

    The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) is very common in contaminated environments. It is of paramount importance and great challenge to exploit a bioremediation to remove PAHs in these environments with combined pollution. We approached this question by probing the influence of HMs coexisting with PAHs on the removal of PAHs by Acremonium sp. P0997 possessing metal resistance. A removal capability for naphthalene, fluorene, phenanthrene, anthracene, and fluoranthenepresentalone (98.6, 99.3, 89.9, 60.4, and 70 %, respectively) and in a mixture (96.9, 71.8, 67.0, 85.0, and 87.9 %, respectively) was achieved in mineral culture inoculated with Acremonium sp. P0997, and this strain also displayed high resistance to the individual HMs (Mn(2+), Fe(2+), Zn(2+), Cu(2+), Al(3+), and Pb(2+)). The removal of individual PAHs existing in a mixture was differently affected by the separately tested HMs. Cu(2+)enhanced the partition process of anthracene to dead or alive mycelia and the contribution of the biosorption by this strain but imposed a little negative influence on the contribution of biodegradation to the total removal of anthracene individually in a culture. However, Mn(2+) had an inhibitory effect on the partition process of anthracene to dead or alive mycelia and decreased the contributions of both biosorption and biodegradation to the total anthracene removal. This work showcased the value of fungi in bioremediation for the environments with combined pollution, and the findings have major implications for the bioremediation of organic pollutants in metal-organic mixed contaminated sites.

  5. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Marco-Urrea, Ernest; García-Romera, Inmaculada; Aranda, Elisabet

    2015-12-25

    In previous decades, white-rot fungi as bioremediation agents have been the subjects of scientific research due to the potential use of their unspecific oxidative enzymes. However, some non-white-rot fungi, mainly belonging to the Ascomycota and Zygomycota phylum, have demonstrated their potential in the enzymatic transformation of environmental pollutants, thus overcoming some of the limitations observed in white-rot fungi with respect to growth in neutral pH, resistance to adverse conditions and the capacity to surpass autochthonous microorganisms. Despite their presence in so many soil and water environments, little information exists on the enzymatic mechanisms and degradation pathways involved in the transformation of hydrocarbons by these fungi. This review describes the bioremediation potential of non-ligninolytic fungi with respect to chlorinated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) and also shows known conversion pathways and the prospects for future research.

  6. Approach for estimating microbial growth and the biodegradation of hydrocarbon contaminants in subsoil based on field measurements: 1. Model development and verification.

    Science.gov (United States)

    Song, Dejun; Katayama, Arata

    2010-01-15

    An approach was developed to represent the microbial growth and corresponding biodegradation of hydrocarbons (HCs) during the natural attenuation process based on field measurements of in situ microbial biomass and residual HC concentrations in unsaturated subsurface soil. A kinetic model combining Monod and logistic kinetics represents microbial growth under the limitation of HCs as substrates and environmental factors at actual contaminated sites by the introduction of two new kinetic parameters, the effective rate and the self-limiting coefficient of microbial growth. The correspondence between microbial growth and the biodegradation of HCs in the soil is obtained by dividing the amount of HC and the corresponding degrading microbial groups into two classes: saturated HCs as inert components and aromatic HCs that form a contamination plume as dissolved components. The respiratory quinones were used as indicators of microbial biomass. The biodegradation capacity of contaminated sites was evaluated by the maximum microbial biomass obtained by field measurements, which is considered as the integrated results from measurements of HCs, degrading kinetics, and environmental factors at the site. The feasibility of the proposed approach was verified at two hypothetical contaminated sites. The results suggested that the proposed approach is feasible for application at actual HC-contaminated sites.

  7. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  8. Removal of polycyclic aromatic hydrocarbons and phenols from coking wastewater by simultaneously synthesized organobentonite in a one-step process

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Wu; Lizhong Zhu

    2012-01-01

    The optimal condition for a one-step process removing organic compounds from coiking wastewater by simultaneously synthesized organobentonite as a pretreatment was investigated.Results showed that sorption of organic compounds by organobentonite was positively correlated to the cation surfactant exchange on the bentonite and the octanol-water partition coefficient (Kow) of the solutes.With 0.75 g/L bentonite and 180 mg/L (60% of bentonite cation exchange capacity) cetyltrimethylammonium bromide,the removal efficiencies of the 16 polycyclic aromatic hydrocarbon (PAHs) specified by the US Environmental Protection Agency in coking waste0water except naphthalene were more than 90%,and that of benzo(a)pyrene was 99.5%.At the same time,the removal efficiencies of CODCr,NH3-N,volatile phenols,colour and turbidity were 28.6%,13.2%,8.9%,55% and 84.3%,respectively,and the ratio of BOD5/CODcr increased from 0.31 to 0.41.These results indicated that the one-step process had high removal efficiency for toxic and refractory hydrophobic organic compounds,and could improve the biodegradability of the coking wastewater.Therefore it could be a promising technology for the pretreatment of toxic and refractory organic wastewater.

  9. Enhanced aqueous solubility of polycyclic aromatic hydrocarbons by green diester-linked cationic gemini surfactants and their binary solutions

    Science.gov (United States)

    Panda, Manorama; Fatma, Nazish; Kabir-ud-Din

    2016-07-01

    Three homologues of a novel biodegradable diester-linked cationic gemini surfactant series, CmH2m+1 (CH3)2N+(CH2COOCH2)2N+(CH3)2CmH2m+1.2Cl- (m-E2-m; m = 12, 14, 16), were used for investigation of the solubilization of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, anthracene and pyrene in single as well as binary surfactant solutions. Physicochemical parameters of the pure/mixed systems were derived by conductivity and surface tension measurements. Dissolution capacity of the equimolar binary surfactant solutions towards the PAHs was studied from the molar solubilization ratio (MSR), micelle-water partition coefficient (Km) and free energy of solubilization (ΔGs0) of the solubilizates. Influence of hydrophobic chain length of the dimeric surfactants on solubilization was characterized. Aqueous solubility of the PAHs was enhanced linearly with concentration of the surfactant in all the pure and mixed gemini-gemini surfactant systems.

  10. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  11. Biodegradation of gasoline in environment: from total assessment to the case of recalcitrant hydrocarbons; Biodegradabilite de l'essence dans l'environnement: de l'evaluation globale au cas des hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Solano-Serena, F.

    1999-11-26

    Because of their massive utilisation, hydrocarbons are major pollutants of soils and aquifers. Biodegradation is a key aspect of the fate of pollutants in the environment. Such knowledge, concerns in particular the intrinsic biodegradability of the products and the distribution in the environment of competent degradative microflora. In this study, a methodology has been developed to assess the aerobic biodegradability of gasoline. It is based on the direct gas chromatographic analysis of all hydrocarbons, after incubation in optimal conditions, of gasoline fractions and of model mixtures. The results demonstrated first the quasi-total biodegradability of gasoline ({>=} 94%). Concerning the distribution in the environment of degradative capacities, even microflora from non polluted sites exhibited a high performance (total degradation rates at least 85%) but were limited concerning the degradation of trimethyl-alkanes, such as 2,2,4-trimethyl-pentane (iso-octane) and 2,3,4-trimethyl-pentane, and of cyclohexane. Samples of polluted sites exhibited more extensive degradative capacities with total degradation in half of the cases studied. Cyclohexane was always degraded by mutualism and/or co-metabolism. Trimethyl-alkanes with quaternary carbons such as iso-octane and/or alkyl groups on consecutive carbons were degraded by co-metabolism but could also support growth of specialized strains. A strain of Mycobacterium austroafricanum (strain IFP 2173) growing on iso-octane was isolated from a gasoline polluted sample. This strain exhibited the capacity to co-metabolize various hydrocarbons (cyclic and branched alkanes, aromatics) and in particular cyclohexane. M austroafricanum lFP 2173 was also able to use a large spectrum of hydrocarbons (n- and iso-alkanes, aromatics) as sole carbon and energy source. (author)

  12. Effect of plant cultivation,phosphorus fertilization and co-existing polycyclic aromatic hydrocarbons (PAHs) on biodegradation of PAHs%植物、施磷量及多环芳烃共存对多环芳烃生物降解影响

    Institute of Scientific and Technical Information of China (English)

    周笑白; 周集体; 项学敏

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants with toxic, mutagenic and carcingenic properties. Pot experiment and microplate experiments are conducted to investigate the impact of plant cultivation, phosphorus fertilization and PAHs co-existence on the removal rate of phenanthracene (PHE), pyrene (PYR) and dihenzo [a, hi anthracene (DBA). Results show that the dissipation and degraders of PHE are significantly higher than those of PYR and DBA in both pot and microplate experiments. In pot experiment, plants and higher quantity of phosphorus fertilizer increase DBA dissipation. Different interactions are obtained among the co- existing PAHs. The results show that co-existence of different PAH compounds can lead to synergistic co-metabolism (PHE enhanced DBA degradation), no co-metabolism (PYR and DBA) and inhibition of PAH degradation (PYR inhibited PHE+DBA degradation). The positive effect of PHE on DBA dissipation decreases with time course, which is probably due to the decrease of PHE concentration or the toxicity and accumulation of DBA degradation products in the substrate.%多环芳烃(PAHs)是具有“三致”效应的持久性有机污染物.通过盆栽及微生物培养实验,考察了植物、施磷量及PAHs共存对菲(PHE)、芘(PYR)和二苯并葸(DBA)去除率的影响,发现PHE的降解率和降解菌量均高于PYR和DBA.盆栽实验中,植物种植和给植物施加高磷浓度的营养液可促进DBA的降解;微生物培养实验表明共存的PAHs之间存在相互作用,而这种作用随PAHs种类不同可表现为促进降解作用(如PHE促进DBA降解)、无作用(如PYR和DBA)或抑制作用(如PYR抑制PHE+DBA降解).PHE对DBA降解的促进作用随时间的增加而减弱,这可能与PHE浓度降低和DBA中间产物的毒性及其积累有关.

  13. Isotopic characterization of Polycyclic Aromatic Hydrocarbons for identification of sources and transfer mechanisms in Ile de France.

    Science.gov (United States)

    Fauches, Raphaël; Moreau-Guigon, Elodie; Alliot, Fabrice; Mendez, Mercedes; Chevreuil, Marc

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants that accumulate in the environment as mainly a result of human processes in anthropic environment. Emission of PAHs in Ile de France region is a major environmental and public health problem. Seventy percent of the Seine Watershed Rivers do not respect the requirement of the 2012 European Water Framework Directive for good chemical status due to PAHs. We study the 16 PAHs selected by the United States Environmental Protection Agency. The measurement of the ratio of stable Carbon (δ13C) and hydrogen (δ2H) isotopes may be used as a means to identify the source of PAHs. Two samplings campaign in the Seine watershed was conducted in summer and in winter during dry periods and one during rainy periods. Water and sediment were sampled from 12 locations along the Orge River (France) and classified in three categories: urban, peri-urban and rural. Extraction and purification methods have been developed and tested. This method consists on a liquid-liquid extraction and sonication extraction. The Aromatic fraction is purified and isolated on silica/alumina column before performing thin purification by using a semi-preparative High Performance Liquid Chromatography (HPLC). HPLC is used for separation of each PAH one by one. Moreover, this fractionation reduces background noise generated in part by unwanted compounds like alkanes and allows the isotopic analysis of PAH. The purity of each fraction was verified by Mass-Spectrometry Gas Chromatography in scan mode. The mean recovery of the method for all PAHs was around 80%. Isotopic analysis for carbon 13 and deuterium by Gas Chromatography-Combustion- Isotope-ratio mass spectrometry are ongoing. Beside the sampling campaign, biodegradation, hydrolysis and photolysis tests were performed. In addition, combustion testing of gasoline and diesel on an experimental device are provided to estimate the isotopic ratio of motorized vehicles in the Ile de France region.

  14. Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium.

    Science.gov (United States)

    Xu, Nana; Bao, Mutai; Sun, Peiyan; Li, Yiming

    2013-12-01

    A microbial consortium isolated from Shengli oilfield polluted sludge was capable of degrading naphthalene (NAP), phenanthrene (PHE), pyrene (PYR) and crude oil. It performed high biodegradation activity and emulsifiability for petroleum hydrocarbons, and was tolerant to 6.2mM Cu(2+), 2.7 mM Zn(2+) and 9.5mM Pb(2+). Biodegradation rates of NAP, PHE, PYR and crude oil were 53%, 21%, 32% and 44% in the presence of heavy metal (Cu(2+), 1.7 mM and Zn(2+), 2mM), respectively. Exploration on the adsorption and uptake of petroleum hydrocarbons by microbe suggested the stability of surface adsorption and cell uptake by live microbial consortium followed a decreasing order of NAP > PHE ≈ PYR > crude oil. The adsorption by heat-killed microbial consortium was constant for PAHs, while decreased for crude oil. Experiments on enzymatic degradation indicated that the metabolic efficiency of periplasmic, cytoplasmic and extracellular enzymes secreted by the microbial consortium for diverse substrates was different.

  15. Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates

    Science.gov (United States)

    Baker, R.J.; Baehr, A.L.; Lahvis, M.A.

    2000-01-01

    An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the

  16. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia.

    Science.gov (United States)

    Shen, Tiantian; Pi, Yongrui; Bao, Mutai; Xu, Nana; Li, Yiming; Lu, Jinren

    2015-12-01

    The efficiencies of free and immobilized microbial consortia in the degradation of different types of petroleum hydrocarbons were investigated. In this study, the biodegradation rates of naphthalene, phenanthrene, pyrene and crude oil reached about 80%, 30%, 56% and 48% under the optimum environmental conditions of free microbial consortia after 7 d. We evaluated five unique co-metabolic substances with petroleum hydrocarbons, α-lactose was the best co-metabolic substance among glucose, α-lactose, soluble starch, yeast powder and urea. The orthogonal biodegradation analysis results showed that semi-coke was the best immobilized carrier followed by walnut shell and activated carbon. Meanwhile, the significance of various factors that contribute to the biodegradation of semi-coke immobilized microbial consortia followed the order of: α-lactose > semi-coke > sodium alginate > CaCl2. Moreover, the degradation rate of the immobilized microbial consortium (47%) was higher than that of a free microbial consortium (26%) under environmental conditions such as the crude oil concentration of 3 g L(-1), NaCl concentration of 20 g L(-1), pH at 7.2-7.4 and temperature of 25 °C after 5 d. SEM and FTIR analyses revealed that the structure of semi-coke became more porous and easily adhered to the microbial consortium; the functional groups (e.g., hydroxy and phosphate) were identified in the microbial consortium and were changed by immobilization. This study demonstrated that the ability of microbial adaptation to the environment can be improved by immobilization which expands the application fields of microbial remediation.

  17. Optimisation research of petroleum hydrocarbon biodegradation in weathered drilling wastes from waste pits.

    Science.gov (United States)

    Steliga, Teresa; Jakubowicz, Piotr; Kapusta, Piotr

    2010-12-01

    The aim of this article is to discuss the problem of drilling waste remediation. Analyses and research showed that material stored in waste pits could be classified as soil with a high level of petroleum impurities (total petroleum hydrocarbons [TPH] = 102,417-132,472 mg kg(-1) dry mass). While preparing the complex technology of soil decontamination (which included primary reclamation, basic bioremediation and inoculation with biopreparations based on indigenous bacteria and fungi), laboratory tests indicated the use of an ex-situ method was fundamental. Remediation was controlled with a chromatographic method of qualitative and quantitative determination of petroleum hydrocarbons. Based on analytical data, there was the possibility to determine the effectiveness of consecutive purifying phases. Laboratory tests, following 135 days of basic bioremediation stimulated by optimum conditions to activate the growth of indigenous micro-organisms, resulted in a decrease in the TPH content, which was in the range of 52.3-72.5%. The next phase of soil decontamination lasted 135 days and involved the use of inoculation with biopreparations based on indigenous micro-organisms and fungi. This process enabled a TPH decrease of 93.8- 94.3%. Laboratory biodegradation research was done with the use of the biomarker C30-17α(H)21β(H)-hopane to normalize analyte (TPH, Σn-C8-n-C22 and Σn-C23-n-C36) concentrations. The calculated first-order biodegradation constants enable estimation of the purification stage dynamics and the effectiveness of the applied biopreparations. Furthermore, they represent the biodegradation degree of individual n-alkanes in subsequent stages of the soil purification process.

  18. Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions

    Science.gov (United States)

    Lahvis, M.A.; Baehr, A.L.; Baker, R.J.

    1999-01-01

    Aerobic biodegradation and volatilization near the water table constitute a coupled pathway that contributes significantly to the natural attenuation of hydrocarbons at gasoline spill sites. Rates of hydrocarbon biodegradation and volatilization were quantified by analyzing vapor transport in the unsaturated zone at a gasoline spill site in Beaufort, South Carolina. Aerobic biodegradation rates decreased with distance above the water table, ranging from 0.20 to 1.5g m-3 d-1 for toluene, from 0.24 to 0.38 g m-3 d-1 for xylene, from 0.09 to 0.24 g m-3 d-1 for cyclohexene, from 0.05 to 0.22 g m-3 d-1 for ethylbenzene, and from 0.02 to 0.08 g m-3 d-1 for benzene. Rates were highest in the capillary zone, where 68% of the total hydrocarbon mass that volatilized from the water table was estimated to have been biodegraded. Hydrocarbons were nearly completely degraded within 1 m above the water table. This large loss underscores the importance of aerobic biodegradation in limiting the transport of hydrocarbon vapors in the unsaturated zone and implies that vapor-plume migration to basements and other points of contact may only be significant if a source of free product is present. Furthermore, because transport of the hydrocarbon in the unsaturated zone can be limited relative to that of oxygen and carbon dioxide, soil, gas surveys conducted at hydrocarbon-spill sites would benefit by the inclusion of oxygen- and carbon-dioxide-gas concentration measurements. Aerobic degradation kinetics in the unsaturated zone were approximately first-order. First-order rate constants near the water table were highest for cyctohexene (0.21-0.65 d-1) and nearly equivalent for ethylbenzene (0.11-20.31 d-1), xylenes (0.10-0.31 d-1), toluene (0.09-0.30 d-1), and benzene (0.07,0.31 d-1). Hydrocarbon mass loss rates at the water table resulting from the coupled aerobic biodegradation and volatilization process were determined by extrapolating gas transport rates through the capillary zone. Mass

  19. Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem.

    Science.gov (United States)

    Lafortune, Isabelle; Juteau, Pierre; Déziel, Eric; Lépine, François; Beaudet, Réjean; Villemur, Richard

    2009-04-01

    High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. Although several PAH-degrading bacterial species have been isolated, it is not expected that a single isolate would exhibit the ability to degrade completely all PAHs. A consortium composed of different microorganisms can better achieve this. Two-liquid phase (TLP) culture systems have been developed to increase the bioavailability of poorly soluble substrates for uptake and biodegradation by microorganisms. By combining a silicone oil-water TLP system with a microbial consortium capable of degrading HMW PAHs, we previously developed a highly efficient PAH-degrading system. In this report, we characterized the bacterial diversity of the consortium with a combination of culture-dependent and culture-independent methods. Polymerase chain reaction (PCR) of part of the 16S ribosomal RNA gene (rDNA) sequences combined with denaturing gradient gel electrophoresis was used to monitor the bacterial population changes during PAH degradation of the consortium when pyrene, chrysene, and benzo[a]pyrene were provided together or separately in the TLP cultures. No substantial changes in bacterial profiles occurred during biodegradation of pyrene and chrysene in these cultures. However, the addition of the low-molecular-weight PAHs phenanthrene or naphthalene in the system favored one bacterial species related to Sphingobium yanoikuyae. Eleven bacterial strains were isolated from the consortium but, interestingly, only one-IAFILS9 affiliated to Novosphingobium pentaromativorans-was capable of growing on pyrene and chrysene as sole source of carbon. A 16S rDNA library was derived from the consortium to identify noncultured bacteria. Among 86 clones screened, 20 were affiliated to different bacterial species-genera. Only three strains were represented in the screened clones. Eighty

  20. Evaluation of environmental levels of aromatic hydrocarbons in gasoline service stations by gas chromatography.

    Science.gov (United States)

    Periago, J F; Zambudio, A; Prado, C

    1997-08-22

    The volume of gasoline sold in refuelling operations and the ambient temperature, can increase significantly the environmental levels of aromatic hydrocarbon vapours and subsequently, the occupational risk of gasoline service station attendants, specially in the case of benzene. We have evaluated the occupational exposure to aromatic hydrocarbons by means of personal-breathing-zone samples of gasoline vapours in a service station attendant population. This evaluation was carried out using diffusive samplers, in two periods at quite different temperatures (March and July). A significant relationship between the volume of gasoline sold during the shift and the ambient concentration of benzene, toluene, and xylenes was found for each worker sampled. Furthermore a significant difference was found between the time-weighted average concentration of aromatic compounds measured in March, with ambient temperatures of 14-15 degrees C and July, with temperatures of 28-30 degrees C. In addition, 20% of the population sampled in the last period were exposed to a time-weighted average concentration of benzene above the proposed Threshold Limit Value of 960 micrograms/m(3) of the American Conference of Governmental Industrial Hygienists (ACGIH).

  1. Electron affinities of aromatic hydrocarbons and disproportionation of their radical-anions

    Energy Technology Data Exchange (ETDEWEB)

    Szwarc, M.

    1986-09-01

    Electron affinities of aromatic hydrocarbons measured in the gas-phase and in solutions are compared. The experimental methods used for their determination are briefly reviewed. The reduction yields the respective radical-anions. Radical-anions may undergo disproportionation, a reaction described by the scheme: 2A/sup -/ . , Cat/sup =/ in equilibrium A + A/sup 2-/, 2 Cat/sup +/, K/sub dipr/. The disproportionation constant, K/sub dipr/, is greatly affected by the nature of aromatic hydrocarbon, of the cation, and of the solvent. Variation of each of these factors is illustrated. Variation of the cation and solvent results in changes of the disproportionation constant as large as factors of 10/sup 25/. The causes of these variations are rationalized and discussed in terms of the respective ..delta..H and ..delta..S. Kinetics of disproportionation was investigated by flash-photolysis techniques. The experimental approach is described. The peculiarities of Ba salts deserved some discussion to clarify the nature of those salts. The effect of disproportionation on reactions of radical-anions are described: namely on cis-trans isomerization of stilbenes, on protonation of radical-anions of anthracene an perylene, on dissociation of radical anions of aromatic derivatives ethane, etc.

  2. Docosahexaenoic acid regulates gene expression in HUVEC cells treated with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Gdula-Argasińska, Joanna; Czepiel, Jacek; Totoń-Żurańska, Justyna; Jurczyszyn, Artur; Perucki, William; Wołkow, Paweł

    2015-07-16

    The molecular mechanism of inflammation and carcinogenesis induced by exposure of polycyclic aromatic hydrocarbons (PAHs) is not clearly understood. Our study was undertaken due to the strong pro-carcinogenic potential and reactivity of PAH-metabolites, as well as the susceptibility of polyunsaturated fatty acids to oxidation. The aim of this study was to evaluate the pro- or anti-inflammatory impact of n-3 docosahexaenoic acid on human primary umbilical vein endothelial cells (HUVEC) exposed to polycyclic aromatic hydrocarbons. We analysed the influence of docosahexaenoic acid (DHA) and/or PAHs supplementation on the fatty acid profile of cell membranes, on cyclooxygenase-2 (COX-2), aryl hydrocarbon receptor (AHR), and glutathione S transferase Mu1 (GSTM1) protein expression as well as on the prostaglandin synthase 2 (PTGS2), AHR, GSTM1, PLA2G4A, and cytochrome P450 CYP1A1 gene expression. We observed that COX-2 and AHR protein expression was increased while GSTM1 expression was decreased in cells exposed to DHA and PAHs. Docosahexaenoic acid down-regulated CYP1A1 and up-regulated the AHR and PTGS2 genes. Our findings suggested that DHA contributes significantly to alleviate the harmful effects caused by PAHs in endothelial cells. Moreover, these results suggest that a diet rich in n-3 fatty acids is helpful to reduce the harmful effects of PAHs exposure on human living in heavily polluted areas.

  3. C-H and N-H bond dissociation energies of small aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barckholtz, C.; Barckholtz, T.A.; Hadad, C.M.

    1999-01-27

    A survey of computational methods was undertaken to calculate the homolytic bond dissociation energies (BDEs) of the C-H and N-H bonds in monocyclic aromatic molecules that are representative of the functionalities present in coal. These include six-membered rings (benzene, pyridine, pyridazine, pyrimidine, pyrazine) and five-membered rings (furan, thiophene, pyrrole, oxazole). By comparison of the calculated C-H BDEs with the available experimental values for these aromatic molecules, the B3LYP/6-31G(d) level of theory was selected to calculate the BDEs of polycyclic aromatic hydrocarbons (PAHs), including carbonaceous PAHs (naphthalene, anthracene, pyrene, coronene) and heteroatomic PAHs (benzofuran, benzothiophene, indole, benzoxazole, quinoline, isoquinoline, dibenzofuran, carbazole). The cleavage of a C-H or a N-H bond generates a {sigma} radical that is, in general, localized at the site from which the hydrogen atom was removed. However, delocalization of the unpaired electron results in {approximately} 7 kcal {center{underscore}dot} mol{sup {minus}1} stabilization of the radical with respect to the formation of phenyl when the C-H bond is adjacent to a nitrogen atom in the azabenzenes. Radicals from five-membered rings are {approximately} 6 kcal {center{underscore}dot} mol{sup {minus}1} less stable than those formed from six-membered rings due to both localization of the spin density and geometric factors. The location of the heteroatoms in the aromatic ring affects the C-H bond strengths more significantly than does the size of the aromatic network. Therefore, in general, the monocyclic aromatic molecules can be used to predict the C-H BDE of the large PAHs within 1 kcal {center{underscore}dot} mol{sup {minus}1}.

  4. Distribution and Geochemical Implication of Aromatic Hydrocarbons across the Meishan Permian-Triassic Boundary

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Aromatic compounds extracted from sedimentary rocks can reflect environmental conditions, organic sources and maturity. The aromatics, identified in association with mass extinction in particular, would provide a signature assisting our understanding of the causes of the biotic crisis. Aromatic hydrocarbons were fractionated from the total lipid extracts of 37 samples taken from the Permian Triassic boundary (beds 23 to 34) of section B at Meishan(煤山),Zhejiang(浙江)Province in South China. These aromatics were analyzed by using gas chromatography-mass spectrometry (GC-MS). Main compounds identified include naphthalene, phenanthrenes, fluorene, dibenzothiophene, dibenzofuran, fluoranthene, pyrene and some of their methyl homologues. The indices of methyl phenanthrene distribution fraction indicate the comparable maturity (within the oil window, 0.7% - 1.0% of the mean vitrinite reflectance) of the organic matter throughout the whole profile analyzed. The ratio of dibenzothiophene to phenanthrene (DBT/PHN) varies generally at a comparable pace with lithology. Significantly,a gradual decrease of this ratio was observed within bed 24 limestone, which is probably due to the variation of sedimentary environment. This change is in line with the drop in the carbon isotope composition of carbonate, the loss of the Changhsingian reef ecosystem, and the decrease of cyanobacteria abundance within the bacteria population. The coincidence of these records suggests a close relation between the biotic crisis and marine environmental conditions, and these records clearly show the onset of the biotic crisis prior to event bed 25.

  5. Laboratory studies of polycyclic aromatic hydrocarbons: the search for interstellar candidates

    CERN Document Server

    Joblin, C; Simon, A; Mulas, G

    2009-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are considered as a major constituent of interstellar dust. They have been proposed as the carriers of the Aromatic Infrared Bands (AIBs) observed in emission in the mid-IR. They likely have a significant contribution to various features of the extinction curve such as the 220 nm bump,the far-UV rise and the diffuse interstellar bands. Emission bands are also expected in the far-IR, which are better fingerprints of molecular identity than the AIBs. They will be searched for with the Herschel Space Observatory. Rotational emission is also expected in the mm range for those molecules which carry significant dipole moments. Despite spectroscopic studies in the laboratory, no individual PAH species could be identified. This emphasises the need for an investigation on where interstellar PAHs come from and how they evolve due to environmental conditions: ionisation and dissociation upon UV irradiation, interactions with electrons, gas and dust. There is also evidence for PAH ...

  6. Sorption of polycyclic aromatic hydrocarbons (PAHs) to lignin: effects of hydrophobicity and temperature.

    Science.gov (United States)

    Zhang, Ming; Ahmad, Mahtab; Lee, Sang Soo; Xu, Li Heng; Ok, Yong Sik

    2014-07-01

    The study of the sorption of contaminants to lignin is significant for understanding the migration of contaminants in the environment as well as developing low cost sorbent. In this study, sorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene, acenaphthene and phenanthrene, to lignin was investigated. Sorption isotherms were well described by both linear and Freundlich sorption models. Sorption coefficients of PAHs to lignin from water obtained from regression of both linear model (K d) and Freundlich model (K f) were highly positively correlated with hydrophobicity of PAHs. The amorphous structure of lignin provided sufficient sorption domain for partitioning of PAHs, and the attraction between PAHs molecules and aromatic fractions in lignin via π-π electron-donor-acceptor (π-π EDA) interaction is hypothesized to provide a strong sorption force. Thermodynamic modeling revealed that sorption of PAHs to lignin was a spontaneous and exothermic process.

  7. Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark.

    Science.gov (United States)

    Li, Yungui; Chen, Baoliang; Zhu, Lizhong

    2010-10-01

    To enhance removal efficiency of natural sorbent with polycyclic aromatic hydrocarbons (PAHs), single-solute and bi-solute sorption of phenanthrene and pyrene onto raw and modified pine bark were investigated. Pine bark was modified using Soxhlet extraction, saponification and acid hydrolysis, yielding six bark fractions with different chemical compositions. Raw pine bark exhibited high affinities with PAHs, and sorption was dominated by partitioning. The relatively nonlinear sorption isotherms of modified bark were attributed to the specific interaction between sorbate and aromatic core of sorbent. Comparison with lipid and suberin, lignin was the most powerful sorption medium, but which was almost completely suppressed by coexisting polysaccharide. After consuming polysaccharide by acid hydrolysis, sorption of pine bark fractions was notably increased (4-17 folds); and sorption of pyrene just decreased 16-34% with phenanthrene as a competitor. These observations suggest that pine bark is of great potential for PAHs removal and can be significantly promoted by acid hydrolysis for environmental application.

  8. Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Sharma, Swati; Habib, Gazala; Gupta, Tarun

    2015-08-01

    Airborne submicron particles (PM1) were collected using PM1 sampler during the fog-dominated days (December 2013-January 2014). PM1 values varied between 58.12 μg/m(3) and 198.75 μg/m(3), and average mass concentration was 162.33 ± 38.25 μg/m(3) while total average concentration of particle-associated polycyclic aromatic hydrocarbon (PAHs) determined was 616.31 ± 30.31 ng/m(3). This is a signal for an alarming high pollution level at this site situated in the Indo-Gangetic Plain (IGP). PAHs were extracted from filters using toluene and acetonitrile. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the high performance liquid chromatography (HPLC) technique. The extracts were analyzed for 16 target polycyclic aromatic hydrocarbons (PAHs) including carcinogenic compound benzo(a)pyrene (19.86 ± 38.98 ng/m(3)). Fluoranthene, benzo(a)anthracene, anthracene, and fluorene were the predominant compounds found in the samples collected during foggy days. Based on number of rings, four-ring PAH compounds had maximum contribution (43%) in this fog time collected submicron particles followed by three-ring (21%), five-ring (20%), six-ring (13%), and two-ring (3%), respectively. In winter and foggy days, wood and coal combustion and biomass burning also significantly contribute to the PAH levels. However, diagnostic ratio suggests diesel emissions as the prime source of PAHs at this sampling site.

  9. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  10. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.

    Science.gov (United States)

    Wang, Ying; Yang, Xianhai; Wang, Juying; Cong, Yi; Mu, Jingli; Jin, Fei

    2016-05-05

    In the present study, quantitative structure-activity relationship (QSAR) techniques based on toxicity mechanism and density functional theory (DFT) descriptors were adopted to develop predictive models for the toxicity of alkylated and parent aromatic hydrocarbons to Vibrio fischeri. The acute toxicity data of 17 aromatic hydrocarbons from both literature and our experimental results were used to construct QSAR models by partial least squares (PLS) analysis. With consideration of the toxicity process, the partition of aromatic hydrocarbons between water phase and lipid phase and their interaction with the target biomolecule, the optimal QSAR model was obtained by introducing aqueous freely dissolved concentration. The high statistical values of R(2) (0.956) and Q(CUM)(2) (0.942) indicated that the model has good goodness-of-fit, robustness and internal predictive power. The average molecular polarizability (α) and several selected thermodynamic parameters reflecting the intermolecular interactions played important roles in the partition of aromatic hydrocarbons between the water phase and biomembrane. Energy of the highest occupied molecular orbital (E(HOMO)) was the most influential descriptor which dominated the toxicity of aromatic hydrocarbons through the electron-transfer reaction with biomolecules. The results demonstrated that the adoption of freely dissolved concentration instead of nominal concentration was a beneficial attempt for toxicity QSAR modeling of hydrophobic organic chemicals.

  11. Influence of smoking parameters on the concentration of polycyclic aromatic hydrocarbons (PAHs) in Danish smoked fish

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Christensen, J. H.; Højgård, A.

    2010-01-01

    ), solid-phase extraction (silica gel), and gas chromatography-mass spectrometry analysis. The sum concentration of 25 PAHs (Sigma PAH25) was highest in smoked herring (n = 3) and mackerel fillets (n = 13), with an average concentration of 320 and 235 mu g kg-1, respectively. Lowest average Sigma PAH25......A new method for the analysis of 25 polycyclic aromatic hydrocarbon (PAH) compounds in fish was developed, validated, and used for the quantification of PAHs in 180 industrially smoked fish products. The method included pressurized liquid extraction, gel-permeation chromatography (Bio-beads S-X3...

  12. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and

    Directory of Open Access Journals (Sweden)

    Hussein I. Abdel-Shafy

    2016-03-01

    The aim of this review is to discuss PAHs impact on the environmental and the magnitude of the human health risks posed by such substances. They also contain important information on concentrations, burdens and fate of polycyclic aromatic hydrocarbons (PAHs in the atmosphere. The main anthropogenic sources of PAHs and their effect on the concentrations of these compounds in air are discussed. The fate of PAHs in the air, their persistence and the main mechanisms of their losses are presented. Health hazards associated with PAH air pollution are stressed.

  13. Medium scale spatial structures of polycyclic aromatic hydrocarbons in the topsoil of Tianjin area

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.J.; Zheng, Y.; Liu, R.M.; Li, B.G.; Cao, J.; Tao, S. [Peking University, Beijing (China). Dept. of Urban & Environmental Science, MOE Lab. for Earth Surface Process

    2003-07-01

    The spatial distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in soil are important to regional environmental assessment. In this paper, the spatial structural features of sixteen prior PAH compounds in the topsoil of Tianjin area, as well as soil properties, were studied. Results showed that medium scale spatial autocorrelations were well revealed. Spherical models with sills could be used to fit all experimental variograms. The spatial structures of PAHs contents demonstrated significant anisotropy. Air precipitation caused by the combustion of coal was the key factor in the formation of the spatial structural patterns of PAHs in the topsoil of Tianjin area.

  14. Structures and electronic properties of thin-films of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Yutaka [Asahi-Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka (Japan)], E-mail: natsume.yc@om.asahi-kasei.co.jp; Minakata, Takashi; Aoyagi, Takeshi [Asahi-Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka (Japan)

    2009-03-02

    We report the fabrication and characterization of organic thin-film transistors (TFTs) using several polycyclic aromatic hydrocarbons (PAHs). Pentacene, ovalene, dibenzocoronene and hexabenzocoronene were deposited as organic semiconductors on silicon wafers with gold electrodes as the bottom-contact configuration of the TFTs. The pentacene TFT showed the highest field-effect mobility of more than 0.1 cm{sup 2}/Vs in comparison with the other PAHs. The results clarified that the high field-effect mobility of the pentacene thin film is due to large grain size and intrinsic electronic properties.

  15. Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

    DEFF Research Database (Denmark)

    Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

    Recently, there has been an augmented focus on the increasing amount of pesticides, drug residues and endocrine disruptors present in waste and drinking water1. These pollutants represent a challenge in water purification since they may be hazardous to human health even in low doses2. Cyclodextrins...... of the textile fibers. In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification....

  16. Contamination of soils in the urbanized areas of Belarus with polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Kukharchyk, T. I.; Khomich, V. S.; Kakareka, S. V.; Kurman, P. V.; Kozyrenko, M. I.

    2013-02-01

    The content of polycyclic aromatic hydrocarbons (PAHs) in the soils of urbanized areas, including the impact zones of Belarus, were studied. The concentrations of 16 PAHs in the soils were determined for individual and high-rise building zones, forests, and forest parks of Belarus. The levels of the PAH accumulation in the soils of different industrial enterprises and boiler stations were analyzed. Possible sources of soil contamination with PAHs were considered, and the structure of the PAHs in the soils was shown. The levels of the soil contamination were determined from the regulated parameters for individual compounds and the sum of 16 PAHs.

  17. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China

    Science.gov (United States)

    Liu, Jihua; Hu, Ningjing; Shi, Xuefa

    2015-04-01

    Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China Liu Jihua, Hu Ningjing, Shi Xuefa First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous organic contaminants in the environment. Indeed, 16 PAH compounds have been listed as priority pollutants by the United States Environmental Protection Agency and the European Union because of their potential toxicity to humans and ecosystems. As POPs are released or escape into the environment, their global accumulation in marine sediments generates a complex balance between inputs and outputs. Furthermore, PAHs in coastal sediments can serve as effective tracers of materials transport from land-to-sea (Fang et al., 2009). Hence, investigations of PAHs in sediments can provide useful information for further understanding of environmental processes and material transport. In this study, sixteen polycyclic aromatic hydrocarbons (PAHs) were extracted from a total of 112 surface sediment samples collected across the entire territory of the Bohai Sea. The detectable concentrations of PAHs ranged from 97.2 to 300.7 ng/g across all samples, indicating low contamination levels of PAHs compared with reported values for other coastal sediments in China and developed countries. The highest concentrations were found within three belts in the vicinity of Luan River Estuary-Qinhuangdao Harbor, the Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The distribution patterns of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from offshore oil exploration, sewage discharge from rivers and shipping activities. Further Principal components analysis (PCA)/multivariate linear regression (MLR) analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion and traffic

  18. Dermal uptake of polycyclic aromatic hydrocarbons after hairwash with coal-tar shampoo

    Energy Technology Data Exchange (ETDEWEB)

    Schooten, F.-J. van; Moonen, E.J.C.; Rhijnsburger, E.; Agen, B. van; Thijssen, H.H.W.; Kleinjans, J.C.S. [University of Limburg, Maastricht (Netherlands). Dept. of Health Risk Analysis and Toxicology

    1994-11-26

    Describes an experiment to assess the dermal uptake of polycyclic aromatic hydrocarbons (PAHs) after hairwashing with coal tar antidandruff shampoo. The urinary excretion of 1-hydroxypyrene (1-OH-P), a PAH metabolile was used to assess internal dose of PAH. A single use of coal tar shampoo resulted in increased 1-OH-P excretion in all members of the experimental group compared with the control group using a non-coal tar antidandruff shampoo. It is suggested that repeated use of coal tar shampoo would result in a high internal dose of carcinogenic PAH. 5 refs., 1 fig.

  19. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS IN SEAFOODS CAUGHT IN CORIGLIANO CALABRO GULF (CS,ITALY

    Directory of Open Access Journals (Sweden)

    R. Marrone

    2012-08-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs were determined by high performance liquid chromatography (HPLC with fluorescence detection in seafoods (Merluccius merluccius, Arnoglossus laterna, Scomber japonicus, Penaeus kerathurus, Eledone cirrhosa collected along coasts of Corigliano Calabro gulf (Calabria Region - Italy. The results showed that Bap levels exceeded the limit fixed by EU Regulation 1881/2006 in only four samples of Merluccius merluccius, Arnoglossus laterna and Scomber japonicus particularly. PAH concentrations detected in samples caught in winter were higher than those found in summer.

  20. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63...... for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...

  1. Batch washing of saturated hydrocarbons and polycyclic aromatic hydrocarbons from crude oil contaminated soils using bio-surfactant

    Institute of Scientific and Technical Information of China (English)

    张文

    2015-01-01

    Desorption of total saturated fractions (i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions (i.e. PAH, defined as the summation of the concentrations of all polycyclic aromatic fractions including the 16 EPA priority PAH) in two types of soils subjected to the changes of pH and salinity and different bio-surfactant concentrations were investigated. In general, compared with the experiments without bio-surfactant addition, adding rhamnolipid to crude oil−water systems at concentrations above its critical micelle concentration (CMC) values benefits SAT and PAH desorption. The results indicate that the change of pH could have distinct effects on rhamnolipid performance concerning its own micelle structure and soil properties. For loam soil, the adsorption of non-aqueous phase liquid (NAPL) and rhamnolipid would be the principle limiting factors during the NAPL removal procedure. For sand soil, less amount of rhamnolipid is adsorbed onto soil. Thus, with the increase of salinity, the solubilization and desorption of rhamnolipid solution are more significant. In summary, the pH and salt sensitivity of the bio-surfactant will vary according to the specific structure of the surfactant characteristics and soil properties.

  2. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  3. Spatial distributions of sulphur species and sulphate-reducing bacteria provide insights into sulphur redox cycling and biodegradation hot-spots in a hydrocarbon-contaminated aquifer

    Science.gov (United States)

    Einsiedl, Florian; Pilloni, Giovanni; Ruth-Anneser, Bettina; Lueders, Tillman; Griebler, Christian

    2015-05-01

    Dissimilatory sulphate reduction (DSR) has been proven to be one of the most relevant redox reactions in the biodegradation of contaminants in groundwater. However, the possible role of sulphur species of intermediate oxidation state, as well as the role of potential re-oxidative sulphur cycling in biodegradation particularly at the groundwater table are still poorly understood. Here we used a combination of stable isotope measurements of SO42-, H2S, and S0 as well as geochemical profiling of sulphur intermediates with special emphasis on SO32-, S2O32-, and S0 to unravel possible sulphur cycling in the biodegradation of aromatics in a hydrocarbon-contaminated porous aquifer. By linking these results to the quantification of total bacterial rRNA genes and respiratory genes of sulphate reducers, as well as pyrotag sequencing of bacterial communities over depth, light is shed on possible key-organisms involved. Our results substantiate the role of DSR in biodegradation of hydrocarbons (mainly toluene) in the highly active plume fringes above and beneath the plume core. In both zones the concentration of sulphur intermediates (S0, SO32- and S2O32-) was almost twice that of other sampling-depths, indicating intense sulphur redox cycling. The dual isotopic fingerprint of oxygen and sulphur in dissolved sulphate suggested a re-oxidation of reduced sulphur compounds to sulphate especially at the upper fringe zone. An isotopic shift in δ34S of S0 of nearly +4‰ compared to the δ34S values of H2S from the same depth linked to a high abundance (∼10%) of sequence reads related to Sulphuricurvum spp. (Epsilonproteobacteria) in the same depth were indicative of intensive oxidation of S0 to sulphate in this zone. At the lower plume fringe S0 constituted the main inorganic sulphur species, possibly formed by abiotic re-oxidation of H2S with Fe(III)oxides subsequent to sulphate reduction. These results provide first insights into intense sulphur redox cycling in a hydrocarbon

  4. Oil and gas potential assessment for coal measure source rocks on absolute concentration of n-alkanes and aromatic hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Absolute concentration of normal alkanes(n-alkanes) and aromatic hydrocarbons in bitumen extracted from source rocks in the period of thermodegradation from Turpan-Hami Basin suggests that aromatic hydrocarbons are dominant in coal and carbargilite while n-alkanes are dominant in mudstones. Bulkrock analysis and gas chromatograph/mass spectrum(GC-MS) of source rocks shows aromatic hydrocarbons are dominant in total ion chromatograms(TIC) of samples with poor perhydrous macerals while n-alkanes are dominant in TICs of samples with abundant perhydrous macerals. The identification of oil-prone and gas prone property based on GC-MS of bitumen "A" together with bulkrock analysis indicates that source rocks from Shengbei area are more oil-prone while source rocks from Qiudong and Xiaocaohu areas are more gas-prone,coinciding with the distribution of oil and gas reservoirs in Taibei Sag. Ratios used to identify oil-prone and gas-prone property for source rocks from Turpan Basin are proposed:n-alkanes >110 μg·mg-1,aromatics <15 μg·mg-1,and n-alkanes/aromatics >8 for oil-prone source rock bitumen while n-alkanes<82 μg·mg-1,aromatics >40 μg·mg-1,and n-alkanes/aromatics <1.5 for gas-prone source rock bitumen.

  5. Distribution of petroleum hydrocarbons and toluene biodegradation, Knox Street fire pits, Fort Bragg, North Carolina

    Science.gov (United States)

    Harden, S.L.; Landmeyer, J.E.

    1996-01-01

    ground-water toluene concentration data, a maximum rate constant for anaerobic biodegradation of toluene in the saturated zone was estimated to be as low as 0.002 d-1 or as high as 0.026 d-1. Based on analyses of ground-water/vapor samples, toluene was the prin- cipal TEX compound identified in ground water discharging to Beaver Creek. Observed decreases in ground-water/vapor toluene concentrations during the study period may reflect a decrease in source inputs, an increase in dilution caused by higher ground-water flow, and(or) removal by biological or other physical processes. Rate constants of toluene anaerobic biodegradation determined by laboratory measurements illustrate a typical acclimation response of micro-organisms to hydrocarbon contamination in sediments collected from the site. Toluene biodegradation rate constants derived from laboratory microcosm studies ranged from 0.001 to 0.027 d-1, which is similar to the range of 0.002 to 0.026 d-1 for toluene biodegradation rate constants derived from ground-water analytical data. The close agreement of toluene biodegradation rate constants reported using both approaches offer strong evidence that toluene can be degraded at environmentally significant rates at the study site.

  6. Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Brignoli, Pierlorenzo; Vallini, Giovanni

    2016-05-01

    Trichoderma sp. strain Evx1 was isolated from a semi-deciduous forest soil in Southern Italy. It decolorizes polynuclear organic dyes and tolerates high concentrations of phenanthrene, anthracene, fluoranthene, and pyrene. The ability of this ascomycete fungus to degrade polycyclic aromatic hydrocarbons was verified in vitro and confirmed by its strong phenoloxidase activity in the presence of gallic acid. Phylogenetic characterization of Trichoderma sp. Evx1 positioned this strain within the species Trichoderma longibrachiatum. The potential use of this species for the bioremediation of contaminated environmental matrices was tested by inoculating diesel-spiked soil with a dense mycelial suspension. The biodegradation percentage of the C12-40 hydrocarbon fraction in the inoculated soil rose to 54.2 ± 1.6 %, much higher than that in non-inoculated soil or soil managed solely by a combination of watering and aeration. The survival and persistence of T. longibrachiatum Evx1 throughout the bioremediation trial was monitored by PCR-DGGE analysis. The fungal strain was still present in the soil 30 days after bioaugmentation. These findings indicate that T. longibrachiatum Evx1 may be a suitable inoculum in bioremediation protocols for the reclamation of soils contaminated by complex mixtures of hydrocarbons.

  7. The Oil-Spill Snorkel: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments

    Directory of Open Access Journals (Sweden)

    Carolina eCruz Viggi

    2015-09-01

    Full Text Available This study presents the proof-of-concept of the Oil-Spill Snorkel: a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The Oil-Spill Snorkel consists of a single conductive material (the snorkel positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment and the oxic zone (the overlying O2-containing water. The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode, where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing 1 or 3 graphite snorkels and controls (snorkel-free and autoclaved were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p=0.023, two-tailed t-test in the cumulative oxygen uptake and 1.4-fold increase (p=0.040 in the cumulative CO2 evolution in the microcosms containing 3 snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12±1% (p=0.004 and 21±1% (p=0.001 was observed in microcosms containing 1 and 3 snorkels, respectively. Although, the Oil-Spill Snorkel potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable configurations for field

  8. The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments.

    Science.gov (United States)

    Cruz Viggi, Carolina; Presta, Enrica; Bellagamba, Marco; Kaciulis, Saulius; Balijepalli, Santosh K; Zanaroli, Giulio; Petrangeli Papini, Marco; Rossetti, Simona; Aulenta, Federico

    2015-01-01

    This study presents the proof-of-concept of the "Oil-Spill Snorkel": a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The "Oil-Spill Snorkel" consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 ± 1% (p = 0.004) and 21 ± 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the "Oil-Spill Snorkel" potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable

  9. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface.

    Science.gov (United States)

    Kristensen, Andreas H; Poulsen, Tjalfe G; Mortensen, Lars; Moldrup, Per

    2010-07-15

    Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16 m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analysed values of essential soil properties. The subsurface of the site was highly layered, resulting in an accumulation of pollution within coarse sandy lenses. Air-filled porosity, readily available phosphorous, and the first-order rate constant (k(1)) of benzene obtained from slurry biodegradation experiments were found to depend on geologic sample characterization (P<0.05), while inorganic nitrogen was homogenously distributed across the soil stratigraphy. Semivariogram analysis showed a spatial continuity of 4-8.6 m in the vertical direction, while it was 2-5 times greater in the horizontal direction. Values of k(1) displayed strong spatial autocorrelation. Even so, the soil potential for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface.

  10. Identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar.

    Science.gov (United States)

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A

    2016-04-15

    A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context.

  11. Study of weathering effects on the distribution of aromatic steroid hydrocarbons in crude oils and oil residues.

    Science.gov (United States)

    Wang, Chuanyuan; Chen, Bing; Zhang, Baiyu; Guo, Ping; Zhao, Mingming

    2014-01-01

    The composition and distribution of triaromatic steroid hydrocarbons in oil residues after biodegradation and photo-oxidation processes were detected, and the diagnostic ratios for oil spill identification were developed and evaluated based on the relative standard deviation (RSD) and the repeatability limit. The preferential loss of C27 methyl triaromatic steranes (MTAS) relative to C28 MTAS and C29 MTAS was shown during the photo-oxidation process. In contrast to the photochemical degradation, the MTAS with the original 20R biological configuration was preferentially degraded during the biodegradation process. The RSD of most of the diagnostic ratios of MTAS ranged from 9 to 84% during the photo-oxidation process. However, the RSDs of such ratios derived from MTAS were all hydrocarbons retained their molecular compositions after biodegradation and photo-oxidation and most of the diagnostic ratios derived from them could be efficiently used in oil spill identification.

  12. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.

    Science.gov (United States)

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2011-12-23

    Reversed-phase liquid chromatography (RPLC) is the foremost technique for the separation of analytes that have very similar chemical functionalities, but differ only in their molecular shape. This ability is crucial in the analysis of various mixtures with environmental and biological importance including polycyclic aromatic hydrocarbons (PAHs) and steroids. A large amount of effort has been devoted to studying this phenomenon experimentally, but a detailed molecular-level description remains lacking. To provide some insight on the mechanism of shape selectivity in RPLC, particle-based simulations were carried out for stationary phases and chromatographic parameters that closely mimic those in an experimental study by Sentell and Dorsey [J. Chromatogr. 461 (1989) 193]. The retention of aromatic hydrocarbons ranging in size from benzene to the isomeric PAHs of the formula C(18)H(12) was examined for model RPLC systems consisting of monomeric dimethyl octadecylsilane (ODS) stationary phases with surface coverages ranging from 1.6 to 4.2 μmol/m(2) (i.e., stationary phases yielding low to intermediate shape selectivity) in contact with a 67/33 mol% acetonitrile/water mobile phase. The simulations show that the stationary phase acts as a very heterogeneous environment where analytes with different shapes prefer different spatial regions with specific local bonding environments of the ODS chains. However, these favorable retentive regions cannot be described as pre-existing cavities because the chain conformation in these local stationary phase regions adapts to accommodate the analytes.

  13. Firefighting instructors' exposures to polycyclic aromatic hydrocarbons during live fire training scenarios.

    Science.gov (United States)

    Kirk, Katherine M; Logan, Michael B

    2015-01-01

    Cumulative exposures of firefighting instructors to toxic contaminants generated from live-fire training potentially far exceed firefighter exposures arising from operational fires. This study measured the atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) outside and inside the structural firefighting ensembles worn by instructors during five live fire training evolutions. In addition, the contamination of ensembles by deposition of PAHs was characterized. Concentrations of polycyclic aromatic hydrocarbons outside the instructors' structural firefighting ensembles during the training evolutions ranged from 430 μg/m(3) to 2700 μg/m(3), and inside the structural firefighting ensembles from 32 μg/m(3) to 355 μg/m(3). Naphthalene, phenanthrene and acenaphthylene dominated the PAHs generated in the live fire evolutions, but benzo[a]pyrene was the greatest contributor to the toxicity of the PAH mixture both inside and outside the structural firefighting ensembles. Deposition of PAHs onto the structural firefighting ensembles was measured at between 69 and 290 ng/cm(2), with phenanthrene, fluoranthene, pyrene, and benzo[a]anthracene detected on all samples. These findings suggest that firefighting instructor exposures to PAHs during a single live-fire training evolution are comparable with exposures occurring in industrial settings over a full shift. Further research is required to investigate the importance of various potential routes of exposure to PAHs as a result of ingress and deposition of PAHs in/on structural firefighting ensembles.

  14. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons

    Science.gov (United States)

    Heguri, Satoshi; Kobayashi, Mototada; Tanigaki, Katsumi

    2015-07-01

    Superconductivity in aromatic hydrocarbons doped with potassium (K) such as K3 [picene (PCN)] and K3 [phenanthrene (PHN)] is found for only armchair-type polycyclic aromatic hydrocarbon. In this paper the thermodynamics of the reaction processes of PHN or anthracene (AN, zigzag type) with K was studied using differential scanning calorimetry and x-ray diffraction. We show that PHN decomposes during the reaction, triggered by hydrogen abstraction, to give metal hydride KH and unknown amorphous. No stable doped phases exist in Kx(PHN ) with stoichiometries of x =1 -3 . However, in the case of AN, a stable doped phase forms. We claim that PHN, which has been reported to be energetically more stable in the ground state than AN by first principle calculations, is unstable upon doping. We also suggest that the superconductivity in K3(PCN ) is due to the misinterpretation of experimental data, which actually arises from ferromagnetic impurities. We have never detected the superconductivity above 2 K in these compounds. The superconductivity in both Kx(PHN ) and Kx(PCN ) is concluded to be highly questionable.

  15. Studies of biomarkers in aluminum workers occupationally exposed to polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Ovrebø, S; Haugen, A; Hemminki, K; Szyfter, K; Drabløs, P A; Skogland, M

    1995-01-01

    Evaluation of biomarkers for genotoxic exposure are important for future use of such biomarkers in cancer prevention. We have studied a group of aluminum plant workers for a period of 2.5 years. The level of polycyclic aromatic hydrocarbons (PAHs) has been monitored at the work place (cathode relining). During the study period, urine and blood were sampled up to seven times from the same workers. Mean level of urinary 1-hydroxypyrene varied from 1.08 to 2.44 mumol/mol creatinine in the exposed groups compared with 0.36 and 0.20 mumol/mol creatinine in the two reference groups. For a group of 14 workers the intraindividual variation of urinary 1-hydroxypyrene was analyzed. The relative standard deviation of the values was < or = 0.50 for half of the workers; the relative standard deviation was calculated for individual values divided by mean of each time point. Polycyclic aromatic hydrocarbon-DNA adducts in white blood cells from exposed and nonexposed workers were measured by both immunoassay and 32P-postlabeling. By 32P-postlabeling mean values of 12.0 adducts/10(8) and 10.8 adducts/10(8) nucleotides were found in a PAH-exposed group and a reference group, respectively. Intraindividual variation of PAH-DNA adducts was also analyzed.

  16. Polycyclic Aromatic Hydrocarbons (PAHs) in urban atmospheric particulate of NCR, Delhi, India

    Science.gov (United States)

    Sonwani, Saurabh; Amreen, Hassan; Khillare, P. S.

    2016-07-01

    The present study identifies the particulate Polycyclic Aromatic hydrocarbons (PAHs) and their sources in ambient atmosphere of Delhi, India. PM10 (aerodynamic diameter, ≤10 μm) samples were collected weekly at two residential areas from July 2013 to January 2014. First sampling site was located in centre of the city, while other was at city's background (located in South-East direction of the Delhi). PM10 was collected on Whatman GF/A (8"x10") glass fibre filters using High-Volume sampler having a constant flow rate of 1.10 m3/min. A total of 55 samples, 27 from city centre and 28 from background site were collected during sampling period, covering two different seasons. The samples were analysed for determination of 16 Polycyclic Aromatic Hydrocarbons by using High Performance Liquid Chromatography (HPLC) system (Waters, USA). A source apportionment study using Molecular Diagnostic Ratio (MDR) and Principal Component Analysis (PCA) were conducted for both sampling sites in order to identify the potential PAHs sources in Delhi. MDR was used for the preliminary identification of sources and PCA was used for further confirmation of the PAH sources at both the sites in Delhi. Results indicated towards traffic and coal combustion related sources as dominant contributors of urban atmospheric PAHs in Delhi.

  17. Biomarker sensitivity for polynuclear and halogenated aromatic hydrocarbon contamination in fish species from Galveston Bay

    Energy Technology Data Exchange (ETDEWEB)

    Willett, K.; McDonald, S.; Steinberg, M.; Beatty, K.; Safe, S. [Texas A and M Univ., College Station, TX (United States)

    1995-12-31

    The Galveston Bay estuary exhibits a contamination gradient for polynuclear aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons, which is useful for comparing biomarker response sensitivity in fish taken from different bay locations. Two fish species, hardhead catfish (Arius felis) and Atlantic croaker (Micropogon undulatus), were collected from four stations where sediment total PAHs ranged from 68 to > 1,000 ng/g. Hardhead catfish showed no consistent CYP1A mediated responses (hepatic ethoxyresorufin-O-deethylase activity (EROD), CYP1A mRNA levels, or CYP1A immunoreactive protein) in the field collected fish or in fish dosed with up to 15 mg/kg benzo(a)pyrene (BaP). Significant differences were seen in field collected hardhead catfish in biliary concentrations of naphthalene, phenanthrene, and BaP metabolites. Conversely, in croakers taken from the same four Galveston Bay locations, there were significant elevations IN EROD and glutathione-S-transferase activities, CYP1A immunoreactive protein, and biliary PAH metabolites at the contaminated stations. These studies suggest that croaker is a good monitoring species especially with respect to induction of CYP1A mediated responses by PAHs. Biliary PAH metabolites and PAH-DNA adducts were sensitive to PAH contamination in both species.

  18. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects

    DEFF Research Database (Denmark)

    Nielsen, T.; Ejsing Jørgensen, Hans; Larsen, J.C.

    1996-01-01

    The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3) in ...... was estimated to be 40%. Four different approaches to evaluate the health effects are discussed. The direct effect of PAH air pollution, and other mutagens, is considered to be a maximum of five lung cancer cases each year out of one million people.......The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3......) in the city park. The atmospheric concentrations of PAH decreased in the order of: street > city background air similar to suburbs > village > open land. The traffic contribution of PAH to street air was estimated to be 90% on working days and 60% during weekends and its contribution to city background air...

  19. Mortality from obstructive lung diseases and exposure to polycyclic aromatic hydrocarbons among asphalt workers

    Energy Technology Data Exchange (ETDEWEB)

    Burstyn, I.; Boffetta, P.; Heederik, D.; Partanen, T.; Kromhout, H.; Svane, O.; Langard, S.; Frentzel-Beyme, R.; Kauppinen, T.; Stucker, I.; Shaham, J.; Ahrens, W.; Cenee, S.; Ferro, G.; Heikkila, P.; Hooiveld, M.; Johansen, C.; Randem, B.G.; Schill, W. [University of Utrecht, Utrecht (Netherlands)

    2003-09-01

    Work in the asphalt industry has been associated with nonmalignant respiratory morbidity and mortality, but the evidence is not consistent. A historical cohort of asphalt workers included 58,862 men (911,209 person-years) first employed between 1913 and 1999 in companies applying and mixing asphalt in Denmark, Finland, France, Germany, Israel, the Netherlands, and Norway. The relations between mortality from nonmalignant respiratory diseases (including the obstructive lung diseases: chronic bronchitis, emphysema, and asthma) and specific chemical agents and mixtures were evaluated using a study-specific exposure matrix. Mortality from obstructive lung diseases was associated with the estimated cumulative and average exposures to polycyclic aromatic hydrocarbons and coal tar (p values of the test for linear trend=0.06 and 0.01, respectively). The positive association between bitumen fume exposure and mortality from obstructive lung diseases was weak and not statistically significant; confounding by simultaneous exposure to coal tar could not be excluded. The authors lacked data on smoking and full occupational histories. In conclusion, exposures to polycyclic aromatic hydrocarbons, originating from coal tar and possibly from bitumen fume, may have contributed to mortality from obstructive lung diseases among asphalt workers, but confounding and bias cannot be ruled out as an explanation for the observed associations.

  20. Assessment of atmospheric distribution of polychlorinated biphenyls and polycyclic aromatic hydrocarbons using polyparameter model

    Directory of Open Access Journals (Sweden)

    Turk-Sekulić Maja M.

    2011-01-01

    Full Text Available Results of partial or total destruction of industrial plants, military targets, infrastructure, uncontrolled fires and explosions during the conflict period from 1991 to 1999, at the area of Western Balkans, were large amounts of hazardous organic matter that have been generated and emitted in the environment. In order to assess gas/particle partition of seven EPA polychlorinated biphenyls and sixteen EPA polycyclic aromatic hydrocarbons, twenty air samples have been collected at six urban, industrial and highly contaminated localities in Vojvodina. Hi-Vol methodology has been used for collecting ambiental air samples, that simultaneously collects gaseous and particulate phase with polyurethane foam filters (PUF and glass fiber filters (GFF. PUF and GFF filters have been analyzed, and concentration levels of gaseous PCBs and PAHs molecules in gaseous and particulate phase were obtained, converted and expressed through fraction of individual compounds sorbed onto particulate phase of the sample, in total detected quantity. Experimentally gained gas/particle partitioning values of PCBs and PAHs molecules have been compared with PP-LFER model estimated values. Significant deviation has been noticed during comparative analysis of estimated polyparameter model values for complete set of seven PCBs congeners. Much better agreement of experimental and estimated values is for polycyclic aromatic hydrocarbons, especially for molecules with four rings. These results are in a good correlation with literature data where polyparameter model has been used for predicting gas/particle partition of studied group of organic molecules.

  1. Polycyclic aromatic hydrocarbons in Recent lake sediments—I. Compounds having anthropogenic origins

    Science.gov (United States)

    Wakeham, Stuart G.; Schaffner, Christian; Giger, Walter

    1980-03-01

    Polycyclic aromatic hydrocarbons (PAH) in sediment cores from Lake Lucerne, Lake Zürich, and Greifensee, Switzerland, and Lake Washington, northwest U.S.A., have been isolated, identified and quantified by glass capillary gas chromatography and gas chromatography/mass spectrometry. Surface sediment layers are greatly enriched in PAH—up to 40 times—compared to deeper layers. In addition, concentration increases in upper sediments generally correspond to increasing industrialization and urbanization in the catchment basins of the lakes. Few PAH could be detected in pre-industrial revolution sediments, indicating that background levels for most PAH in aquatic sediments are extremely low. These results are consistent with an anthropogenic source for most of the aromatic hydrocarbons present in the modern sediments. A comparison of PAH distributions in the sediments and in possible source materials shows that urban runoff of street dust may be the most important PAH input to these lacustrine sediments. There is evidence that a significant contribution to the PAH content of street dust comes from material associated with asphalt.

  2. Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of agaricus bisporus

    Energy Technology Data Exchange (ETDEWEB)

    Mayolo-Deloisa, K. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Machin-Ramirez, C. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Faculty of Chemical Sciences and Engineering, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Rito-Palomares, M. [Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Trejo-Hernandez, M.R. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico)

    2011-08-15

    Laccase partially purified from residual compost of Agaricus bisporus by an aqueous two-phase system (Lac ATPS) was used in degrading polycyclic aromatic hydrocarbons: fluorene (Flu), phenanthrene (Phe), anthracene (Ant), benzo[a]pyrene (BaP), and benzo[a]anthracene (BaA). The capacity of the enzyme to oxidize polyaromatic compounds was compared to that of the crude laccase extract (CE). After treatment of 72 h, Lac ATPS and CE were not capable of oxidizing Flu and Phe, while Ant, BaP, and BaA were oxidized, resulting in percentages of oxidation of 11.2 {+-} 1, 26 {+-} 2, and 11.7 {+-} 4 % with CE, respectively. When Lac ATPS was used, the following percentages of oxidation were obtained: 11.4 {+-} 3 % for Ant, 34 {+-} 0.1 % for BaP, and 13.6 {+-} 2 % for BaA. The results reported here demonstrate the potential application of Lac ATPS for the oxidation of polycyclic aromatic hydrocarbons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Characteristics of polycyclic aromatic hydrocarbon emissions of particles of various sizes from smoldering incense.

    Science.gov (United States)

    Yang, T T; Lin, T S; Wu, J J; Jhuang, F J

    2012-02-01

    Release of polycyclic aromatic hydrocarbons (PAHs) in particles of various sizes from smoldering incenses was determined. Among the three types of incense investigated, yielding the total PAH emission rate and factor ranges for PM0.25 were 2,139.7-6,595.6 ng/h and 1,762.2-8,094.9 ng/g, respectively. The PM0.25/PM2.5 ratio of total PAH emission factors and rates from smoldering three incenses was greater than 0.92. This study shows that total particle PAH emission rates and factors were mainly incenses. The benzo[a]pyrene accounted for 65.2%-68.0% of the total toxic equivalency emission factor of PM2.5 for the three incenses. Experimental results clearly indicate that the PAH emission rates and factors were influenced significantly by incense composition, including carbon and hydrogen content. The study concludes that smoldering incense with low atomic hydrogen/carbon ratios minimized the production of total polycyclic aromatic hydrocarbons of both PM2.5 and PM0.25.

  4. Evaluation of methods for predicting the toxicity of polycyclic aromatic hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, W.; Barhoumi, R.; Burghardt, R.C. [and others] [Texas A & M University, College Station, TX (USA). Dept. of Veterinary Anatomy and Public Health and Department of Civil Engineering

    2001-04-15

    Risk assessments of polycyclic aromatic hydrocarbon mixtures are hindered by a lack of reliable information on the potency of both mixtures and their individual components. This paper examines methods for approximating the toxicity of polycyclic aromatic hydrocarbon (PAH) mixtures. PAHs were isolated from a coal tar and then separated by ring number using HPLC. Five fractions (A-E) were generated, each possessing a unique composition and expected potency. The toxicity of each fraction was measured in the Salmonella/mutagenicity assay and the Chick Embryo Screening Test (CHEST). Their abilities to induce ethoxyresorufin-O-deethylase and to inhibit gap junction intercellular communication in rat liver Clone 9 cells were also measured. In the Salmonella/mutagenicity assay, fractions were predicted to have potencies in the order C {gt} E {gt} B {gt} A. Toxic equivalency factors (TEFs) for fractions A-E were in the order E {ge} D {gt} C {gt} B {gt} A. TEF values were 20 652, 20 929, 441, 306 and 74.1 {mu}g of BaP equiv/g, respectively. A lack of agreement between assay-predicted potencies and chemical analysis-predicted potencies was observed with other assays and other methods of calculation. The results demonstrate the limitations of using a single method to predict the toxicity of a complex PAH mixture. 41 refs., 2 figs., 3 tabs.

  5. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.

    Science.gov (United States)

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-15

    An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions.

  6. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela); Synthesis and Biotics Div., Indian Oil Corp., Research and Development Center, Haryana (India); Leon, V.; Materano, A.D.S.; Ilzins, O.A.; Galindo-Castro, I.; Fuenmayor, S.L. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela)

    2006-03-15

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm{sup -1} to 35.4 dN cm{sup -1} and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons. (orig.)

  7. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10

    Directory of Open Access Journals (Sweden)

    Tri Handayani Kurniati

    2016-12-01

    Full Text Available Pyrene