WorldWideScience

Sample records for aromatic hydrocarbon cations

  1. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  2. Theoretical Infrared Spectra for Polycyclic Aromatic Hydrocarbon Neutrals, Cations and Anions

    Science.gov (United States)

    Langhoff, Stephen R.

    1995-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of the neutrals and cations of thirteen polycyclic aromatic hydrocarbons (PAHs) up to the size of ovalene. Calculations are also carried out for a few PAH anions. The DFT harmonic frequencies, when uniformly scaled by the factor of 0.958 to account primarily for anharmonicity, agree with the matrix isolation fundamentals to within an average error of about 10 per centimeter. Electron correlation is found to significantly reduce the intensities of many of the cation harmonics, bringing them into much better agreement with the available experimental data. While the theoretical infrared spectra agree well with the experimental data for the neutral systems and for many of the cations, there are notable discrepancies with the experimental matrix isolation data for some PAH cations that are difficult to explain in terms of limitations in the calculations. In agreement with previous theoretical work, the present calculations show that the relative intensities for the astronomical unidentified infrared (UIR) bands agree reasonably well with those for a distribution of polycyclic aromatic hydrocarbon (PAH) cations, but not with a distribution of PAH neutrals. We also observe that the infrared spectra of highly symmetrical cations such as coronene agree much better with astronomical observations than do those of, for example, the polyacenes such as tetracene and pentacene. The total integrated intensities for the neutral species are found to increase linearly with size, while the total integrated intensities are much larger for the cations and scale more nearly quadratically with size. We conclude that emission from moderate-sized highly symmetric PAH cations such as coronene and larger could account for the UIR bands.

  3. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  4. Effect of the Structure of Cations and Anions of Ionic Liquids on Separation of Aromatics from Hydrocarbon Mixtures

    Institute of Scientific and Technical Information of China (English)

    Liu Yansheng; Zhang Zhongxin; Zhang Guofu; Liu Zhichang; Hu Yufeng; Shi Quan; Ji Dejun

    2006-01-01

    The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The results showed that the corresponding separation factors were considerably larger than those of the traditional solvents (Benzene+Hexane+sulfolane), and that the ionic liquids could be used as novel solvents for the separation of aromatics from hydrocarbon mixtures. The key parameters governing the ability of ionic liquids for separating aromatics from hydrocarbon sources were investigated. It was found that the effectiveness of the ionic liquids, based on the same anion, changed in the cation order of [BIqu]+< [BPy]+< [BMIM]+. The selectivity of the ionic liquid toward aromatics decreased apparently with the increasing length of the substituted alkyl chain of its cationic head ring. The separation factors, based on the same cation, changed in the anion order of [Tf2N]-<[PF6]-<[BF4]-<[C2H5SO4]-. The solubilities of the aromatics were greater in the ionic liquids based on the former three anions than that in the ionic liquids involving [C2H5SO4]-.

  5. Enhanced sorption of polycyclic aromatic hydrocarbons to tetra-alkyl ammonium modified smectites via cation-pi interactions.

    Science.gov (United States)

    Qu, Xiaolei; Liu, Ping; Zhu, Dongqiang

    2008-02-15

    The objective of this study was to characterize molecular sorptive interactions of polycyclic aromatic hydrocarbons (PAHs) by organoclays modified with quaternary ammonium cations. Three PAHs, naphthalene (NAPH), phenanthrene (PHEN), and pyrene (PYR), and three chlorobenzenes, 1,2-dichlorobenzene (DCB), 1,2,4,5-tetrachlorobenzene (TeCB), and pentachlorobenzene (PtCB), were sorbed from aqueous solution to reference montmorillonite clays (SWy-2) exchanged respectively with tetramethyl ammonium (TMA), tetraethyl ammonium (TEA), tetra-n-butyl ammonium (TBA), and hexadecyltrimethyl ammonium (HDTMA) cations. Solute hydrophobicities are compared between PAHs and chlorobenzenes using the solute n-octanol-water partition coefficient, n-hexadecane-water partition coefficient, and polyethylene-water distribution coefficient. The PAHs show several- to more than 10-fold greater sorption than the chlorobenzenes having close hydrophobicities but fewer delocalized pi electrons (NAPH/DCB, PHEN/TeCB, and PYR/ PtCB) by TEA-, TBA-, and HDTMA-clays. Furthermore, the PAHs show greater trends of solubility enhancement than the compared chlorobenzenes by TMA, TEA, and TBA in aqueous solution. The enhanced sorption and aqueous solubility of PAHs are best described by cation-pi interactions between ammonium cations and PAHs relative to chlorobenzenes that are incapable of such interactions. Cation-pi complexation between PAHs and tetra-alkyl ammonium cations in chloroform was verified by ring-current-induced upfield chemical shifts of the alkyl groups of cations in the 1H NMR spectrum.

  6. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations. 3. The Polyacenes Anthracene, Tetracene, and Pentacene

    Science.gov (United States)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized Polycyclic Aromatic Hydrocarbons (PAH's) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAH's. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400 / cm (between about 1340 and 1500 / cm) and near 1180 /cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.

  7. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations. 3; The Polyacenes Anthracene, Tetracence, and Pentacene

    Science.gov (United States)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHS) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAHS. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400/cm (between about 1340 and 1500/cm) and near 1180/cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.

  8. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  9. Far-Infrared Spectroscopy of Cationic Polycyclic Aromatic Hydrocarbons: Zero Kinetic Energy Photoelectron Spectroscopy of Pentacene Vaporized from Laser Desorption

    CERN Document Server

    Zhang, J; Pei, L; Kong, W; Li, Aigen

    2012-01-01

    The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3{\\mu}m are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offer laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C_22H_14), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266{\\mu}m that may be detectable by space ...

  10. Enhanced aqueous solubility of polycyclic aromatic hydrocarbons by green diester-linked cationic gemini surfactants and their binary solutions

    Science.gov (United States)

    Panda, Manorama; Fatma, Nazish; Kabir-ud-Din

    2016-07-01

    Three homologues of a novel biodegradable diester-linked cationic gemini surfactant series, CmH2m+1 (CH3)2N+(CH2COOCH2)2N+(CH3)2CmH2m+1.2Cl- (m-E2-m; m = 12, 14, 16), were used for investigation of the solubilization of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, anthracene and pyrene in single as well as binary surfactant solutions. Physicochemical parameters of the pure/mixed systems were derived by conductivity and surface tension measurements. Dissolution capacity of the equimolar binary surfactant solutions towards the PAHs was studied from the molar solubilization ratio (MSR), micelle-water partition coefficient (Km) and free energy of solubilization (ΔGs0) of the solubilizates. Influence of hydrophobic chain length of the dimeric surfactants on solubilization was characterized. Aqueous solubility of the PAHs was enhanced linearly with concentration of the surfactant in all the pure and mixed gemini-gemini surfactant systems.

  11. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  12. Thermochemistry and infrared spectroscopy of neutral and cationic iron-polycyclic aromatic hydrocarbon complexes of astrophysical interest: fundamental density functional theory studies.

    Science.gov (United States)

    Simon, Aude; Joblin, Christine

    2007-10-01

    This paper reports extensive calculations on the structural, thermodynamic, and mid-infrared spectroscopic properties of neutral and cationic model iron-polycyclic aromatic hydrocarbon (PAH) complexes of astrophysical interest for three PAHs of increasing size, namely, naphthalene (C10H8), pyrene (C16H10), and coronene (C24H12). Geometry optimizations and frequency calculations were performed using hybrid Hartree-Fock/density functional theory (DFT) methods. The use of DFT methods is mandatory in terms of computational cost and efficiency to describe the electronic and vibrational structures of such large organometallic unsaturated species that present several low-energy isomers of different structures and electronic and spin states. The calculated structures for the low-energy isomers of the model Fe-PAH and Fe-PAH+ complexes are presented and discussed. Iron-PAH binding energies are extracted, and the consequences of the coordination of iron on the infrared spectra of neutral and cationic PAHs are shown with systematic effects on band intensities and positions being demonstrated. The first results are discussed in terms of astrophysical implications. This work is the first step of an ongoing effort in our group to understand the photophysics and spectroscopy of iron-PAH complexes in the conditions of the interstellar medium using a synergy between observations, laboratory experiments, and theory.

  13. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  14. Deuterated polycyclic aromatic hydrocarbons: Revisited

    CERN Document Server

    Doney, Kirstin D; Mori, Tamami; Onaka, Takashi; Tielens, A G G M

    2016-01-01

    The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {\\mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {\\mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case o...

  15. Birds and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  16. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  17. Partition of polycyclic aromatic hydrocarbons on organobentonites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of organobentonites synthesized by exchanging organiccation such as dodecyltri-methylammonium (DTMA),benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene,anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on Foundation item: the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd)between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene,naphthalene, acenaphthene were 2.621x105, 2.106x105, 2.247x104,5.085x104, respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between lgKoc and 1gkow, 1gKoc and 1gS for PAHs in the system of water

  18. Ultrafast studies on the photophysics of matrix-isolated radical cations of polycyclic aromatic hydrocarbons: implications for the Diffuse Interstellar Bands (DIB) problem

    CERN Document Server

    Zhao, L; Shkrob, I A; Crowell, R A; Pommeret, S; Chronister, E L; Liu, A D; Trifunac, A D; Zhao, Liang; Lian, Rui; Shkrob, Ilya A.; Crowell, Robert A.; Pommeret, Stanislas; Chronister, Eric L.; Liu, An Dong; Trifunac, Alexander D.

    2004-01-01

    Rapid, efficient deactivation of the photoexcited PAH cations accounts for their remarkable photostability and have important implications for astrochemistry, as these cations are the leading candidates for the species responsible for the diffuse interstellar bands (DIB) observed throughout the Galaxy.Ultrafast relaxation dynamics for photoexcited PAH cations isolated in boric acid glass have been studied using femtosecond and picosecond transient grating spectroscopy. With the exception of perylene+, the recovery kinetics for the ground doublet (D0) states of these radical cations are biexponential, containing a fast (< 200 fs) and a slow (3-20 ps) components. No temperature dependence or isotope effect was observed for the fast component, whereas the slow component exhibits both the H/D isotope effect (1.1-1.3) and strong temperature dependence (15 to 300 K). We suggest that the fast component is due to internal Dn to D0 conversion and the slow component is due to vibrational energy transfer (VET) from a...

  19. Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

    CERN Document Server

    Gatchell, Michael; de Ruette, Nathalie; Chen, Tao; Giacomozzi, Linda; Nascimento, Rodrigo F; Wolf, Michael; Anderson, Emma K; Delaunay, Rudy; Viziano, Violaine; Rousseau, Patrick; Adoui, Lamri; Huber, Bernd A; Schmidt, Henning T; Zettergren, Henning; Cederquist, Henrik

    2015-01-01

    A recent study of soft X-ray absorption in native and hydrogenated coronene cations, C$_{24}$H$_{12+m}^+$ $m=0-7$, led to the conclusion that additional hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C$_{16}$H$_{10+m}^+$, $m=0$, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.

  20. Dehydrogenation of polycyclic aromatic hydrocarbons in the diffuse interstellar medium

    CERN Document Server

    Foing, B H

    2000-01-01

    We present a model for the hydrogenation states of Polycyclic Aromatic Hydrocarbons (PAHs) in the diffuse interstellar medium. First, we study the abundance of hydrogenation and charge states of PAHs due to photo-ionization, photo-dissociation in the interstellar UV field, electron recombination and chemical reactions between PAH cations and H or H_2. For PAH cations, we find that the dehydrogenation effects are dominant. The hydrogenation state of PAHs depends strongly on the H density, the size of the molecule and UV field. In diffuse clouds with low H density and normal UV radiation, PAHs containing less than 40 C are completely or strongly dehydrogenated whereas at high H density, they are normally hydrogenated. The partially dehydrogenated species dominate in intermediate density clouds. PAHs above 40 C are quite stable and are fully hydrogenated, which would favor their spectroscopic search in near IR surveys of Diffuse Interstellar Bands (DIBs).

  1. Initial microbial degradation of polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Milić Jelena

    2016-01-01

    Full Text Available The group of polycyclic aromatic hydrocarbons (PAHs are very hazardous environmental pollutants because of their mutagenic, carcinogenic and toxic effects on living systems. The aim of this study was to examine and compare the ability and efficiency of selected bacterial isolates obtained from oil-contaminated areas to biodegrade PAHs. The potential of the bacteria to biodegrade various aromatic hydrocarbons was assessed using the 2,6-dichlorophenol-indophenol assay. Further biodegradation of PAHs was monitored by gravimetric and gas-chromatographic analysis. Among the eight bacterial isolates, identified on the basis of 16S rDNA sequences, two isolates, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05, had the ability to grow on and utilize almost all examined hydrocarbons. Those isolates were further examined for biodegradation of phenanthrene and pyrene, as single substrates, and as a mixture, in vitro for ten days. After three days, both isolates degraded a significant amount phenanthrene, which has a simpler chemical structure than pyrene. Planomicrobium sp.RNP01 commenced biodegradation of pyrene in the PAH mixture only after it had almost completly degraded phenanthrene. The isolated and characterized bacteria, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05, have shown high bioremediation potential and are likely candidates to be used for degradation of highly toxic PAHs in contaminated areas. [Projekat Ministarstva nauke Republike Srbije, br. III43004

  2. Theoretical modeling of infrared emission from neutral and charged polycyclic aromatic hydrocarbons. II.

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM; Bauschlicher, CW; Hudgins, DM; Allamandola, LJ

    2001-01-01

    The nature of the carriers of the interstellar infrared (IR) emission features between 3.3 and 12.7 mum is complex. We must consider emission from a family of polycyclic aromatic hydrocarbons (PAHs) in a multiplicity of cationic charge states (+1, +2, +3, and so on), along with neutral and anionic P

  3. Synthesis and chemical modification of polymeric resins for the treatment of cations and aromatic hydrocarbons in produced oily water; Sintese de modificacao quimica de resina polimerica e aplicacao na remocao de cations e hidrocarbonetos aromaticos presentes em agua produzida

    Energy Technology Data Exchange (ETDEWEB)

    Aversa, Thiago M.; Rodrigues, Monique F.; Vieira, Helida V.P.; Queiros, Yure G.C.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Lab. de Macromoleculas e Coloides na Industria do Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: thiagoaversa@ima.ufrj.br

    2011-07-01

    The use of chemically modified resins in oily water treatment process is not very developed yet. Because of this, this work suggests to study the styrene and divinylbenzene sulfonation effect on oil and grease, aniline and calcium removal from the water. The aniline, oils and greases belong to a class of toxic organic compounds, with the Brazilian maximum limits established for disposal in CONAMA 393/2007, while the calcium ions belong to the group of cations of alkaline earth metals which improve hardness to the water, may cause fouling as carbonates and sulfates form. By using sulfonated resins in oily water treatment it is possible to remove not only oils and greases but also calcium and aniline. These kinds of polar compounds are removed because of the cation exchange capacity of resin. (author)

  4. Structural Evolution of Interstellar Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Hammonds, Mark; Candian, Alessandra; Mori, Tamami; Usui, Fumihiko; Onaka, Takashi

    2015-08-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important reservoir for molecular carbon in the interstellar medium (ISM), and investigations into their chemistry and behaviour may be important to the understanding of how carbon is processed from simple forms into complex prebiotic molecules such as those detected in chondritic meteorites. In this study, infrared astronomical data from AKARI and other observatories are used together with laboratory and theoretical data to study variations in the structure of emitting PAHs in interstellar environments using spectroscopic decomposition techniques and bands arising from carbon-hydrogen bond vibrations at wavelengths from 3 - 14 microns. Results and inferences are discussed in terms of the processing of large carbonaceous molecules in astrophysical environments.

  5. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

    KAUST Repository

    González-Gaya, Belén

    2016-05-16

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 10 2 -10 3 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr -1, around 15% of the oceanic CO2 uptake. © 2016 Macmillan Publishers Limited.

  6. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    Science.gov (United States)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  7. Environmental Remediation: Removal of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nkansah, Marian Asantewah

    2012-11-15

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic compounds. They are contaminants that are resistant to degradation and can remain in the environment for long periods due to their high degree of conjugation, and aromaticity. PAHs are present in industrial effluents as products of incomplete combustion processes of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures of these PAHs, and their transport and refining process can also result in the release of PAHs. It is therefore prudent that such effluents are treated before discharge into the environment. In this project, different approaches to the treatment of PAHs have been investigated. Hydrous pyrolysis has been explored as a potential technique for degrading PAHs in water using anthracene as a model compound. The experiments were performed under different conditions of temperature, substrate, redox systems and durations. The conditions include oxidising systems comprising pure water, hydrogen peroxide and Nafion-SiO2 solid catalyst in water; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts to assess a range of reactivities. Products observed in GCMS analysis of the extract from the water phase include anthrone, anthraquinone, xanthone and multiple hydro-anthracene derivatives (Paper I). In addition a modified version of the Nafion-SiO2 solid catalyst in water oxidising system was tested; and reducing systems of formic acid and formic acid / Nafion-SiO2 / Pd-C catalysts were adopted for the conversion of a mixture of anthracene, fluorene and fluoranthene. The rate of conversion in the mixture was high as compared to that of only anthracene (Paper II). Also the use of LECA (Lightweight expanded clay aggregates) as an adsorbent (Paper III) for PAHs (phenanthrene, fluoranthene and pyrene) removal from water has been.(Author)

  8. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures

    NARCIS (Netherlands)

    Meindersma, G. Wytze; Podt, Anita (J.G.); Haan, de André B.

    2005-01-01

    The separation of aromatic hydrocarbons (benzene, toluene, ethyl benzene and xylenes) from C4 to C10 aliphatic hydrocarbon mixtures is challenging since these hydrocarbons have boiling points in a close range and several combinations form azeotropes. In this work, we investigated the separation of t

  9. CHARACTERISTICS OF AROMATIC HYDROCARBONS IN CRUDE OILS

    Institute of Scientific and Technical Information of China (English)

    罗斌杰; 李新宇

    1994-01-01

    Crude oils from different basins in China ,Australia and New Zealand were analyzed to character-ize aromatic hydrocarbons produced in different environments by means of GC/MS .The distributions of some common compounds such as naphthalene, phenanthrene, chrysene,pyrene, fluoranthene, fluorine,dibenzothiophene and dibenzofuran were found to be related to sedimentary environments.Especially the relative contents of fluorenes ,dibenzofurans and dibenzothiophenes can be used to di-vide the oils into three types(1) saline or marine carbonate environment;(2) fresh-brackish water lake;(3) swamp and coal-bearing sequence.A romatic biomarkers (e.g.retene, nor-abietene,derivatives of lupeol and β-amyrin)represent higher plant inpults with respect to the precursors of crude oils. High contents of sulphur-containing compounds like benzothiophene and dibenzothiophene series indicate a reducing sulphur-abundant diagenetic condition .The benzohopane series (C32-C35) was identified both in hypersaline and coal-bearing basins, and it is postulated to be the result of strong bacteria activity.In all the sam-ples, a complete series of alkyl benzenes was analyzed .The similarity of its carbon-number distrbu-tion with that of n-alkanes probably suggests their genetic relationship. The distribution of the methylphenanthrene series reflects the evolution degree of crude oils,MPI holding a positive correlation with C29-sterane 20S/(20S+20R).

  10. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  11. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea

    Science.gov (United States)

    Park, Seung S.; Kim, Young J.; Kang, Chang H.

    Daily particulate- and vapor-phase polycyclic aromatic hydrocarbons (PAH) samples were collected at an urban site in Seoul, Korea, during five intensive sampling campaigns between October 1998 and December 1999. PAH samples collected on quartz fiber filters and PUF plugs were first extracted using dichloromethane with ultrasonication and supercritical fluid extraction methods, respectively, and then analyzed by GC/MSD/SIM. Seasonal trends in atmospheric PAH concentrations in the study area were highly influenced by fossil fuel usage for domestic heating, boundary layer height, and air temperature. The relative benzo[a]pyrene amount and particulate organic to elemental carbon ratio calculated from the measurement results suggested that photo-oxidation is not an important factor in the variation of PAH concentrations during the summer sampling periods. Correlation studies between specific PAH of the individual factors identified by principal component factor analysis and meteorological parameters revealed that both temperature and relative humidity gave greater effects on the semi-volatile PAH, PHEN and FLT, rather than on the heavier PAH, B(b+k)F and BghiP.

  12. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil.

  13. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-05-01

    Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact.

  14. Multicenter bond index analysis of influence of metal cations on the aromaticity of aromatic amino acids: Phenylalanine and tyrosine

    Science.gov (United States)

    Pakiari, A. H.; Farrokhnia, M.; Azami, S. M.

    2008-05-01

    In order to provide insight into the influence of metal cations on the aromaticity of amino acids, evaluation of six-center delocalization indices is accomplished in the context of quantum theory of atoms in molecules (QTAIM). Aromaticity of two amino acids, phenylalanine and tyrosine, is investigated as typical amino acids containing aromatic ring in their isolated state and complexed by some metal cations. The results showed that the metal cations affect the most important three connectivities differently. Also, it is shown that the existence of metal cations can increase two-center delocalization in certain parts of the aromatic rings.

  15. Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay, Japan.

    Science.gov (United States)

    Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki

    2014-08-30

    Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995.

  16. Threshold Energies for Single Carbon Knockout from Polycyclic Aromatic Hydrocarbons

    CERN Document Server

    Stockett, M H; Chen, T; de Ruette, N; Giacomozzi, L; Wolf, M; Schmidt, H T; Zettergren, H; Cederquist, H

    2015-01-01

    We have measured absolute cross sections for ultrafast (fs) single-carbon knockout from Polycyclic Aromatic Hydrocarbon (PAH) cations as functions of He-PAH center-of-mass collision energy in the range 10-200 eV. Classical Molecular Dynamics (MD) simulations cover this range and extend up to 10$^5$ eV. The shapes of the knockout cross sections are well described by a simple analytical expression yielding experimental and MD threshold energies of $E_{th}^{Exp}=32.5\\pm 0.4$ eV and $E_{th}^{MD}=41.0\\pm 0.3$ eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated \\emph{in vacuo}. We further deduce semi-empirical (SE) and MD displacement energies --- \\emph{i.e.} the energy transfers to the PAH molecules at the threshold energies for knockout --- of $T_{disp}^{SE}=23.3\\pm 0.3$ eV and $T_{disp}^{MD}=27.0\\pm 0.3$ eV. The semi-empirical results compare favorably with measured displacement energies for graphene $T_{disp}=23.6$ eV [Meyer \\emph{et al.} Phys. Rev Lett. \\tex...

  17. Environmental Behaviors and Toxicities of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Hayakawa, Kazuichi

    2016-01-01

    Airborne particulate matter (PM) has been collected at four cities in Japan starting in the late 1990s, at five or more major cities in China, Korea and Russia starting in 2001 and at the Noto Peninsula starting in 2004. Nine polycyclic aromatic hydrocarbons (PAHs) and eleven nitropolycyclic aromatic hydrocarbons (NPAHs) were determined by HPLC with fluorescence and chemiluminescence detections, respectively. Annual concentrations of PAHs and NPAHs were in the order, China>Russia≫Korea=Japan, with seasonal change (winter>summer). During the observation period, concentrations of PAHs and NPAHs in Japanese cities significantly decreased but the increases in the PAH concentration were observed in Chinese and Russian cities. Concentrations of PAHs and NPAHs were higher in the Northern China than those in the Southern China. At the Noto peninsula, which is in the main path of winter northwest winds and a year-round jet stream that blow from the Asian continent to Japan, the concentrations were high in winter and low in summer every year. A cluster analysis and back trajectory analysis indicated that PAHs and NPAHs were long-range transported from Northeastern China, where coal burning systems such as coal-heating boilers are considered to be the major contributors of PAHs and NPAHs. A dramatic change in atmospheric concentrations of PAHs and NPAHs in East Asia suggests the rapid and large change of PM2.5 pollution in East Asia. Considering the adverse health effects of PM2.5, continuous monitoring of atmospheric PAHs and NPAHs is necessary in this area.

  18. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer.

    Science.gov (United States)

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J

    2015-05-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

  19. Environmental Remediation: Removal of polycyclic aromatic hydrocarbons Dissertation

    OpenAIRE

    Nkansah, Marian Asantewah

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent semi-volatile organic compounds. They are contaminants that are resistant to degradation and can remain in the environment for long periods due to their high degree of conjugation, and aromaticity. PAHs are present in industrial effluents as products of incomplete combustion processes of organic compounds. Petroleum, coal and shale oil contain extremely complex mixtures of these PAHs, and their transport and refi...

  20. Exposure of iron foundry workers to polycyclic aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Omland, Øyvind; Sherson, D; Hansen, Åse Marie

    1994-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in foundry workers has been evaluated by determination of benzo(a)pyrene-serum albumin adducts and urinary 1-hydroxypyrene. Benzo(a)pyrene binding to albumin and 1-hydroxypyrene were quantitatively measured by enzyme linked immunosorbent assay...... than in smoking and non-smoking controls (0 (0-0.022) and 0 (0-0.010) mumol/mol creatinine). Dose-response relations between total PAH, pyrene, carcinogenic PAHs, and 1-hydroxypyrene for smokers, and polycyclic aromatic hydrocarbons adsorbed to dust for non-smokers are suggested. Exposure to PAHs...

  1. Polycyclic aromatic hydrocarbons in air samples of meat smokehouses

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Olsen, I L; Poulsen, O M

    1992-01-01

    In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors or approx......In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors...

  2. Comments on Coulomb pairing in aromatic hydrocarbons

    CERN Document Server

    Huber, D L

    2013-01-01

    Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.

  3. Determination of the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants.

    Science.gov (United States)

    Uematsu, Yoko; Suzuki, Kumi; Ogimoto, Mami

    2016-01-01

    A method was developed to determine the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants; a survey was also conducted of commercial lubricants. Hydrocarbons in lubricants were separated from the matrix components of lubricants using a silica gel solid phase extraction (SPE) column. Normal-phase liquid chromatography (NPLC) coupled with an evaporative light-scattering detector (ELSD) was used to determine the aromatic hydrocarbon to total hydrocarbon ratio. Size exclusion chromatography (SEC) coupled with a diode array detector (DAD) and a refractive index detector (RID) was used to estimate carbon numbers and the presence of aromatic hydrocarbons, which supplemented the results obtained by NPLC/ELSD. Aromatic hydrocarbons were not detected in 12 lubricants specified for use for incidental food contact, but were detected in 13 out of 22 lubricants non-specified for incidental food contact at a ratio up to 18%. They were also detected in 10 out of 12 lubricants collected at food factories at a ratio up to 13%. The centre carbon numbers of hydrocarbons in commercial lubricants were estimated to be between C16 and C50.

  4. Gas-phase infrared photodissociation spectroscopy of cationic polyaromatic hydrocarbons

    NARCIS (Netherlands)

    Oomens, J.; van Roij, A. J. A.; Meijer, G.; von Helden, G.

    2000-01-01

    Infrared spectra of gas-phase cationic naphthalene, phenanthrene, anthracene, and pyrene are recorded in the 500-1600 cm(-1) range using multiphoton dissociation in an ion trap. Gas-phase polyaromatic hydrocarbons are photoionized by an excimer laser and stored in a quadrupole ion trap. Subsequent i

  5. Interactions of polyhalogeneted aromatic hydrocarbons with thyroid hormone metabolism.

    NARCIS (Netherlands)

    Schuur, A.G.

    1998-01-01

    This thesis deals with the possible interactions of polyhalogenated aromatic hydrocarbons and/or their metabolites with thyroid hormone metabolism. This chapter summarizes firstly the effects of thyroid hormone on the induction of biotransformation enzymes by PHAHs. Secondly, the results on the inhi

  6. Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Aaslyng, Margit Dall; Meinert, Lene

    2015-01-01

    Barbecuing is known to result in the formation of polycyclic aromatic hydrocarbons (PAHs). A validated method that employed pressurized liquid extraction (PLE), gel permeation chromatography (GPC) followed by solid phase extraction (SPE) on Silica and analytical determination by GC-MS was applied...

  7. Bioavailability of Polycyclic Aromatic Hydrocarbons in Soils and Sediments

    NARCIS (Netherlands)

    Cuypers, M.P.

    2001-01-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of priority pollutants which are of increasing environmental concern because of their adverse effects on humans, animals, and plants. Soils and sediments generally serve as a sink for PAHs, which leads to the accumulation of PAHs at contamin

  8. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  9. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Giessing, Anders; Rasmussen, Lene Juel

    2008-01-01

    Deposit-feeding polychaetes constitute the dominant macrofauna in marine environments that tend to be depositional centers for organic matter and contaminants. Polychaetes are known to accumulate polycyclic aromatic hydrocarbons (PAHs) from both particulate and dissolved phases but less is known...

  10. Integrated Environmental Quality Objectives for Polycyclic Aromatic Hydrocarbons (PAHs)

    NARCIS (Netherlands)

    Kalf DF; Crommentuijn GH; Posthumus R; Plassche EJ van de; ACT

    1995-01-01

    In the present report Maximum Permissible Concentrations (MPCs) are derived for 10 Polycyclic Aromatic Hydrocarbons (PAHs). For the aquatic environment MPCs are derived from the available experimental data. For 3 PAHs no experimental data are available. These MPCs are calculated using the QSAR-appro

  11. THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING

    Science.gov (United States)

    The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...

  12. Polycyclic aromatic hydrocarbons in soils around Guanting Reservoir, Beijing, China

    NARCIS (Netherlands)

    Jiao, W.T.; Lu, Y.L.; Wang, T.Y.; Li, J.; Han, Jingyi; Wang, G.; Hu, W.Y.

    2009-01-01

    The concentrations of 16 polycyclic aromatic hydrocarbons ( 16PAHs) were measured by gas chromatography equipped with a mass spectrometry detector (GC-MS) in 56 topsoil samples around Guanting Reservior (GTR), which is an important water source for Beijing. Low to medium levels of PAH contamination

  13. Microbial Degradation of Polycyclic Aromatic Hydrocarbons and Characterization of Bacteria

    Science.gov (United States)

    Tikilili, P. V.; Chirwa, E. M. N.

    2010-01-01

    Biodegradation of polycyclic aromatic hydrocarbons was studied. Naphthalene was used as a model compound to represent these compounds. Low initial concentrations of naphthalene in a range of 30-60 mg/L were completely degraded after incubation for 15 hrs by consortia from a landfill soil while consortia from minewater took more that 29 hrs to reach complete degradation.

  14. In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters

    Science.gov (United States)

    Acton, D. W.; Barker, J. F.

    1992-04-01

    Three types of experiments were conducted to assess the potential for enhancing the in situ biodegradation of nine aromatic hydrocarbons in anaerobic, leachate-impacted aquifers at North Bay, Ontario, and at Canada Forces Base Borden. Laboratory micrososms containing authentic aquifer material and groundwater from the North Bay site were amended with nitrate and glucose. No significant losses of aromatic hydrocarbons were observed compared to unamended controls, over a period of 187 days. A total of eight in situ biodegradation columns were installed in the North Bay and Borden aquifers. Remedial additions included electron acceptors (nitrate and sulphate) and primary substrates (acetate, lactate and yeast extract). Six aromatic hydrocarbons [toluene, ethylbenzene, m-xylene, o-xylene, cumene and 1,2,4-trimethylbenzene ( 1,2,4-TMB)] were completely degraded in at least one in situ column at the North Bay site. Only toluene was degraded in the Borden aquifer. In all cases, aromatic hydrocarbon attenuation was attributed to biodegradation by methanogenic and fermentative bacteria. No evidence of aromatic hydrocarbon degradation was observed in columns remediated with nitrate or primary substrates. A continuous forced gradient injection experiment with sulphate addition was conducted at the North Bay site over a period of 51 days. The concentration of six aromatic hydrocarbons was monitored over time in the injection wells and at piezometer fences located 2, 5 and 10 m downgradient. All compounds except toluene reached injection concentration between 14 and 26 days after pumping began, and showed some evidence of selective retardation. Toluene broke through at a subdued concentration (˜ 50% of injection levels), and eventually declined to undetectable levels on day 43. This attenuation was attributed to adaptation and biodegradation by anaerobic bacteria. The results from these experiments indicate that considerable anaerobic biodegradation of aromatic hydrocarbons in

  15. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    Science.gov (United States)

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  16. Growth of fungi on volatile aromatic hydrocarbons

    NARCIS (Netherlands)

    Prenafeta Boldú, F.X.

    2002-01-01

    The present study aimed the better understanding of the catabolism of monoaromatic hydrocarbons by fungi. This knowledge can be used to enhance the biodegradation of BTEX pollutants. Fungi with the capacity of using toluene as the sole source of carbon and energy were isolated by enriching environme

  17. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  18. Near Infrared Spectra of Large Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.

    The widespread, mid-IR interstellar emission features at 3.3, 6.2, 7.7, 8.6, and 11.2 microns are generally attributed to vibrationally excited polycyclic aromatic hydrocarbons (PAHs). Since these features typcially originate from radiation-rich regions, it has been generally thought that UV photons must dominate the interstellar excitation process since PAHs have very strong UV absorption bands. However, observations have shown that lower energy photons can also pump the emission (Aitken and Roche, Uchida and Sellgren), raising questions about the PAH model. Although it has long been known that larger PAHs should absorb at longer wavelengths (e.g. Schutte et. al., Salama et al., Li and Draine) data was not available for the isolated, neutral and ionized PAHs of sizes comparable to those thought responsible for the interstellar emission features. Here the matrix-isolated near-IR (NIR) spectra (from 0.7 to 2.5 microns) are presented for the anions and cations of PAHs ranging in size from C34H16 to C50H22. These molecules are characterized by strong absorption bands in this region, bands that can account for the emission of the interstellar features from UV poor regions. These NIR PAH transitions could also contribute to the extinction curve associated with the diffuse interstellar medium. For example, band overlap, as expected from a mixture of PAHs, can contribute to the continuum. Overlapping broad bands could lead to slight undulations in the continuum reminiscent of the Very Broad Structure (VBS, e.g. Hayes et al.). Furthermore, as previously pointed out, individual PAH bands may contribute to the diffuse interstellar band (DIB) spectrum (e.g. Romanini)

  19. Correlation between atmospheric polycyclic aromatic hydrocarbons exposure and urinary hydroxyl metabolites of polycyclic aromatic hydrocarbons in elderly population in Tianjin

    Institute of Scientific and Technical Information of China (English)

    秦晓蕾

    2013-01-01

    Objective To identify suitable hydroxyl polycyclic aromatic hydrocarbons(OH-PAHs) for co-evaluation of internal exposure level of PAHs by simultaneous determination of a variety of OH-PAHs in urine. Methods The 24-h individual particulate matter and morning urine

  20. Electron affinities of aromatic hydrocarbons and disproportionation of their radical-anions

    Energy Technology Data Exchange (ETDEWEB)

    Szwarc, M.

    1986-09-01

    Electron affinities of aromatic hydrocarbons measured in the gas-phase and in solutions are compared. The experimental methods used for their determination are briefly reviewed. The reduction yields the respective radical-anions. Radical-anions may undergo disproportionation, a reaction described by the scheme: 2A/sup -/ . , Cat/sup =/ in equilibrium A + A/sup 2-/, 2 Cat/sup +/, K/sub dipr/. The disproportionation constant, K/sub dipr/, is greatly affected by the nature of aromatic hydrocarbon, of the cation, and of the solvent. Variation of each of these factors is illustrated. Variation of the cation and solvent results in changes of the disproportionation constant as large as factors of 10/sup 25/. The causes of these variations are rationalized and discussed in terms of the respective ..delta..H and ..delta..S. Kinetics of disproportionation was investigated by flash-photolysis techniques. The experimental approach is described. The peculiarities of Ba salts deserved some discussion to clarify the nature of those salts. The effect of disproportionation on reactions of radical-anions are described: namely on cis-trans isomerization of stilbenes, on protonation of radical-anions of anthracene an perylene, on dissociation of radical anions of aromatic derivatives ethane, etc.

  1. Biodegradation of Aromatic Hydrocarbons in an Extremely Acidic Environment

    Science.gov (United States)

    Stapleton, Raymond D.; Savage, Dwayne C.; Sayler, Gary S.; Stacey, Gary

    1998-01-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values. PMID:9797263

  2. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  3. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Directory of Open Access Journals (Sweden)

    K. Jaars

    2014-02-01

    Full Text Available Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters, the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters, the Johannesburg–Pretoria metropolitan conurbation (>10 million people, the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries, the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. Benzene levels did not exceed local air quality standards. Toluene was the most abundant species, with an annual median concentration of 0.63 ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal

  4. Biodegradation Mechanism and Technology of Polycyclic Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    DIAO Shuo; WANG Hong-qi; ZHENG Yi-nan; HUA Fei

    2016-01-01

    [Abstract]Polycyclic aromatic hydrocarbons are a class of potentially hazardous chemicals of environmental and health concern.PAHs are one of the most prevalent groups of contaminants found in soil.Biodegradation of complex hydrocarbon usually requires the cooperation of more than single specie.This paper reviews the existing screening methods of PAH-degrading bacteria.It studied the mechanism and technical applications of the co-metabolism in PAHs.Author gives the suggestions and prospects in Biodegradable trend of PHAs.

  5. Magnetic molecules derived from hydrogenation of Polycyclic Aromatic Hydrocarbons

    CERN Document Server

    Vergés, J A; Louis, E; Pastor-Abia, L; SanFabian, E

    2008-01-01

    Present routes to produce magnetic organic-based materials adopt a common strategy: the use of magnetic species (atoms, polyradicals, etc.) as building blocks. We explore an alternative approach which consists of selective hydrogenation of Polycyclic Aromatic Hydrocarbons. Self-Consistent-Field (SCF) (Hartree-Fock and DFT) and multi-configurational (CISD and MCSCF) calculations on coronene and corannulene, both hexa-hydrogenated, show that the formation of stable high spin species is possible. The spin of the ground states is discussed in terms of the Hund rule and Lieb's theorem for bipartite lattices (alternant hydrocarbons in this case). This proposal opens a new door to magnetism in the organic world.

  6. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J., E-mail: Alessandra.Ricca-1@nasa.gov, E-mail: Charles.W.Bauschlicher@nasa.gov [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  7. Occurrence of fungi degrading aromatic hydrocarbons in activated sludge biocenoses

    Directory of Open Access Journals (Sweden)

    Anna Grabińska-Łoniewska

    2014-08-01

    Full Text Available A set of 21 strains of yeast-like microorganisms isolated from biocenoses of aerobic and anaerobic wastewater treatment systems were assayed for their ability to utilize aromatic hydrocarbons as a sole C-source. Basing on the achieved results, the highly biochemically active strains for application in enhancing of wastewaters and exhaust gases purification as well as soil bioremediation were selected.

  8. Polycyclic Aromatic Hydrocarbons in Residential Dust: Sources of Variability

    OpenAIRE

    Whitehead, Todd P; Metayer, Catherine; Petreas, Myrto; Does, Monique; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    Background: There is interest in using residential dust to estimate human exposure to environmental contaminants. Objectives: We aimed to characterize the sources of variability for polycyclic aromatic hydrocarbons (PAHs) in residential dust and provide guidance for investigators who plan to use residential dust to assess exposure to PAHs. Methods: We collected repeat dust samples from 293 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 thr...

  9. EPR and DFT Study of the Polycyclic Aromatic Radical Cations from FriedeI-Crafts Alkylation Reactions

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; An-an Wu; Li-guo Gao; Han-qing Wang

    2009-01-01

    Electron paramagnetic resonance and electron-nuclear double resonance methods were used to study the polycyclic aromatic radical cations produced in a Friedel-Crafts alkylating sys-tem, with m-xylene, or p-xylene and alkyl chloride. The results indicate that the observed electron paramagnetic resonance spectra are due to polycyclic aromatic radicals formed from the parent hydrocarbons. It is suggested that benzyl halides produced in the Friedel-Crafts alkylation reactions undergo Scholl self-condensation to give polycyclic aromatic hydrocar-bons, which are converted into corresponding polycyclic aromatic radical cations in the presence of AlCl3. The identification of observed two radicals 2,6-dimethylanthracene and 1,4,5,8-tetramethylanthracene were supported by density functional theory calculations us-ing the B3LYP/6-31G(d,p)//B3LYP/6-31G(d) approach. The theoretical coupling constants support the experimental assignment of the observed radicals.

  10. Thermodiffusion of polycyclic aromatic hydrocarbons in binary mixtures

    Science.gov (United States)

    Hashmi, Sara M.; Senthilnathan, Sid; Firoozabadi, Abbas

    2016-11-01

    Thermodiffusion in liquid mixtures may explain some counter-intuitive but naturally occurring phenomena such as hydrocarbon reservoirs with heavier component(s) stratified on top of lighter ones. However, beyond benchmark systems, systematic measurements of thermodiffusion in binary organic mixtures are lacking. We use an optical beam deflection apparatus to simultaneously probe Fickian and thermal diffusion in binary solution mixtures of polycyclic aromatic hydrocarbons dissolved in alkanes, and measure both Fickian diffusion D and the Soret coefficient ST, and then obtain the thermodiffusion coefficient DT. In a series of nine binary mixtures, we vary both the size of the aromatic compound from two to four rings, as well as the length of the alkane chain from 6 to 16 carbons. To probe the effect of increasing ring size, we include a 6-ringed aromatic compound, coronene, and toluene as a solvent, due to the insolubility of coronene in alkanes. Our results suggest that Fickian diffusion increases with the inverse of solvent viscosity and also with decreasing molecular weight of the solute. While both of these trends match our intuition, the behavior of ST and DT is more complicated. We find that ST and DT increase with the solute molecular weight when the solvent is held fixed and that the impact of solute ring size is higher in shorter chain alkane solvents.

  11. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively.

  12. Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge

    DEFF Research Database (Denmark)

    Larsen, Sille Bendix; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAH) are regarded as environmental pollutants. A promising approach to reduce PAH pollution is based on the implementation of the natural potential of some microorganisms to utilize hydrocarbons. In this study Proteiniphilum acetatigenes was used...

  13. The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments

    CERN Document Server

    Cherchneff, Isabelle

    2010-01-01

    The formation of Polycyclic Aromatic Hydrocarbons in the circumstellar outflows of evolved stars is reviewed, with an emphasis on carbon stars on the Asymptotic Giant Branch. Evidence for PAHs present in their winds is provided by meteoritic studies and recent observations of the Unidentified Infrared bands. We detail the chemical processes leading to the closure of the first aromatic ring as well as the growth mechanisms leading to amorphous carbon grains. Existing studies on PAH formation in evolved stellar envelopes are reviewed and new results for the modelling of the inner wind of the archetype carbon star IRC+10216 are presented. Benzene, C6H6, forms close to the star, as well as water, H2O, as a result of non-equilibrium chemistry induced by the periodic passage of shocks. The growth process of aromatic rings may thus resemble that active in sooting flames due to the presence of radicals like hydroxyl, OH. Finally, we discuss possible formation processes for PAHs and aromatic compounds in the hydrogen-...

  14. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer

    Directory of Open Access Journals (Sweden)

    Thamaraiselvan Rengarajan

    2015-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are a group of compounds consisting of two or more fused aromatic rings. Most of them are formed during incomplete combustion of organic materials such as wood and fossil fuels, petroleum products, and coal. The composition of PAH mixtures varies with the source and is also affected by selective weathering effects in the environment. PAHs are ubiquitous pollutants frequently found in a variety of environments such as fresh water and marine sediments, the atmosphere, and ice. Due to their widespread distribution, the environmental pollution due to PAHs has aroused global concern. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher forms of life including humans. The main aim of this review is to provide contemporary information on PAH sources, route of exposure, worldwide emission rate, and adverse effects on humans, especially with reference to cancer.

  15. Technogenic pollution of pine forests by polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    O. V. Kalugina

    2015-08-01

    Full Text Available Anthropogenic pollution of boreal forests by polycyclic aromatic hydrocarbons was assessed by polycyclic aromatic hydrocarbon (PAH concentrations in needles of Scots pine (Pinus sylvestris L. trees growing in the vicinity of the Bratsk aluminium smelter – one of the largest aluminium smelters in the world. The fieldwork was performed in 2012–2013 on 34 index plots, set in mixed herb and sedge-mixed herb pine forests (mostly site class III. It is shown that the total accumulation of PAHs reaches its highest level (more than 6000 ng/g in pine needle samples collected at sites up to 3 km from the aluminium smelter. PAH total quantity decreases with increasing the distance from the pollution source and at a distance of 50 km reaches values close to background ones. The highest concentrations of PAHs were detected in needle samples collected at plots located from the plant in a direction corresponding to the prevailing emissions transfer. There was also detected a significant difference in compositions of individual PAHs: there were 18 compounds identified in samples collected near the aluminium smelter whereas only 6 compounds were identified in samples collected on the background territories. Among the PAHs accumulated in pine trees assimilation organs the substances with 3–4 aromatic rings (phenanthrene, fluoranthene, pyrene, chrysene were dominant with their total number reaching 90 % of the total. Compound with 5–6 aromatic rings (benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[e]pyrene, perylene, indeno[1,2,3-c,d]pyrene, benzo[g, h, i]perylene, dibenz[a, h]anthracene.comprises a smaller proportion (from 6 to 27 % in total PAHs content. High concentrations of benzo[a]pyrene and perylene in needle samples collected in the vicinity of the aluminum smelter indicate technogenic character of forest pollution.

  16. Cation-{pi}-interaction promoted aggregation of aromatic molecules and energy transfer within Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.J.; Sunoj, R.B.; Chandrasekhar, J.; Ramamurthy, V.

    2000-05-30

    Photophysical studies of naphthalene confirm that aromatic molecules tend to aggregate within cation exchanged Y zeolites. Ground-state aggregation is traced to the presence of cation-aromatic {pi}-interaction. Solvents that can coordinate to the cation turn off the cation-aromatic interaction, and consequently aggregation does not occur in zeolites that are impregnated with the above solvents. The solvent that exhibits a maximum in such an effect is water. MP2 calculations on cation-benzene dimer indicate that cation-{pi}-interaction results in stabilization of the {pi}-stacked benzene dimer. Results of MP2 calculations are consistent with the formation of ground-state {pi}-stacked aggregates of naphthalene molecules within Y zeolites.

  17. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Directory of Open Access Journals (Sweden)

    E. V. Lau

    2010-01-01

    Full Text Available This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.

  18. Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components.

    Science.gov (United States)

    Groen, Joost; Deamer, David W; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C(6)-C(10) fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane.

  19. Thermal neutron cross-section libraries for aromatic hydrocarbons

    Science.gov (United States)

    Cantargi, F.; Granada, J. R.

    2010-08-01

    Solid phases of aromatic hydrocarbons, such as benzene, toluene, mesitylene and a 3:2 mixture by volume of mesitylene and toluene, were studied as potential moderator materials for a cold neutron source. Existing information on the (lattice) translational and rotational modes of the different molecular species was used to produce generalized frequency spectra; the latter included the internal vibrational modes which in turn involved the analysis of the weights of the different modes. Cross-section libraries were generated in ENDF and ACE formats for hydrogen bounded in those materials at several temperatures, and were used in Monte Carlo calculations to analyze their neutron production compared with standard cryogenic materials like liquid hydrogen and solid methane, the best moderators in terms of cold neutron production. In particular, cross-section libraries were generated at 20 K, which is a typical operating temperature for the majority of the existing cold neutron sources. It was found that those aromatic hydrocarbons produce neutron spectra which are slightly warmer than that of solid methane while presenting a high resistance to radiation, conforming in this way a new and advantageous alternative to traditional moderator materials.

  20. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, S. [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Leitao, C. [Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J. [Empresa Portuguesa das Aguas Livres, S.A., Avenida de Berlim, 15, 1800-031 Lisboa (Portugal); Crespo, M.T. Barreto [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Pereira, V.J., E-mail: vanessap@itqb.unl.pt [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal)

    2011-09-15

    Highlights: {yields} Low pressure UV photolysis can be used by drinking water utilities to degrade PAHs. {yields} Real water matrices with different compositions were tested. {yields} Photolysis kinetic parameters and by-product formation are described. {yields} The formation of photolysis by-products is highly dependent on the source waters. - Abstract: The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm{sup 2}, anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  1. Xenoestrogenic gene expression: structural features of active polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Schultz, T Wayne; Sinks, Glendon D

    2002-04-01

    Estrogenicity was assessed using the Saccharomyces cerevisiae-based Lac-Z reporter assay and was reported as the logarithm of the inverse of the 50% molar beta-galactosidase activity (log[EC50(-1)]). In an effort to quantify the relationship between molecular structure of polycyclic aromatic hydrocarbons (PAHs) and estrogenic gene expression, a series of PAHs were evaluated. With noted exceptions, the results of these studies indicate that the initial two-dimensional structural warning for estrogenicity, the superpositioning of a hydroxylated aromatic system on the phenolic A-ring of 17-beta-estradiol, can be extended to the PAHs. This two-dimensional-alignment criterion correctly identified estrogenicity of 22 of the 29 PAHs evaluated. Moreover, the estrogenic potency of these compounds was directly related to the size of the hydrophobic backbone. The seven compounds classified incorrectly by this structural feature were either dihydroxylated naphthalenes or aromatic nitrogen-heterocyclic compounds; all such compounds were false positives. Results with dihydroxylated naphthalenes reveal derivatives that were nonestrogenic when superimposed on the phenolic A-ring of 17-beta-estradiol had the second hydroxyl group in the position of the C-ring or were catechol-like in structure. Structural alerts for nitrogen-heterocyclic compounds must take into account the position of the hydroxyl group and the in-ring nitrogen atom; compounds with the hydroxyl group and nitrogen atom involved with the same ring were observed to be nonactive.

  2. Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability.

    NARCIS (Netherlands)

    Meulenberg, R.; Rijnaarts, H.H.M.; Doddema, H.J.; Field, J.A.

    1997-01-01

    Polycyclic aromatic hydrocarbons have a low water solubility and tend to adsorb on soil particles, which both result in slow bioremediation processes. Many microorganisms, known for their ability to degrade polycyclic aromatic hydrocarbons, only partially oxidize these compounds. White rot fungi, fo

  3. 75 FR 8937 - Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...

    Science.gov (United States)

    2010-02-26

    ... AGENCY Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures'' (EPA/635/R-08/012A). The draft document was... 27, 2010. The listening session on the draft document for PAH mixtures will be held on April 7,...

  4. Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010

    Science.gov (United States)

    Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi

    2017-03-01

    Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.

  5. Asymmetric polycyclic aromatic hydrocarbon as a capable source of astronomically observed interstellar infrared spectrum

    CERN Document Server

    Ota, Norio

    2015-01-01

    In order to find out capable molecular source of astronomically well observed infrared (IR) spectrum, asymmetric molecular configuration polycyclic aromatic hydrocarbon (PAH) was analyzed by the density functional theory (DFT) analysis. Starting molecules were benzene C6H6, naphthalene C10H8 and 1H-phenalene C13H9. In interstellar space, those molecules will be attacked by high energy photon and proton, which may bring cationic molecules as like C6H6n+ (n=0~3 in calculation), C10H8n+, and C13H9n+, also CH lacked molecules C5H5n+, C9H7n+, and C12H8n+. IR spectra of those molecules were analyzed based on DFT based Gaussian program. Results suggested that symmetrical configuration molecules as like benzene, naphthalene , 1H-phenalene and those cation ( +, 2+, and 3+) show little resemblance with observed IR. Contrast to such symmetrical molecules, several cases among cationic and asymmetric configuration molecules show fairly good IR tendency. One typical example was C12H83+, of which calculated harmonic IR wave...

  6. In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants.

    Science.gov (United States)

    Jeon, Che Ok; Madsen, Eugene L

    2013-06-01

    Microbial processes that eliminate organic environmental contamination are important. Progress in the biotechnology of biodegradation relies upon the underlying sciences of environmental microbiology and analytical geochemistry. Recent key discoveries advancing knowledge of biodegradation (in general) and the aromatic-hydrocarbon biodegradation (in particular) have relied upon characterization of microorganisms: pure-culture isolates, laboratory enrichment cultures, and in contaminated field sites. New analytical and molecular tools (ranging from sequencing the DNA of biodegrading microorganisms to assessing changes in the isotopic ratios of 13C to 12C and 2H to 1H in contaminant pools in field sites) have deepened our insights into the mechanisms (how), the occurrence (what), and the identity (who) of active players that effect biodegradation of organic environmental pollutants.

  7. Study of ionic equilibria of indotricarbocyanines in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dyadyusha, G.G.; Ishchenko, A.A.; Derevyanko, N.A.; Tolmachev, A.I.

    1982-05-01

    Study of the equilibria in nonpolar solvents is very complicated by the poor solubility of the salt-like dyes. Indotricarbocyanines I and II were found to be fairly soluble in aromatic hydrocarbons for solving these problems by means of electronic spectra. In the present work, their absorption spectra were studied in benzene, toluene, and m-xylene (the absorption spectra were measured on the SF-8 spectrophotometer). It was shown that the dyes studied in these solvents have spectral bands of unusual form of polymethine dyes. At the long wave edge of the spectra of indotricarbocyanines, a distinct band appears, whose intensity is very dependent on the nature of the anion. In the case of perchlorate I, it has a lower intensity, and in the case of iodide II, the intensity is higher.

  8. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    Science.gov (United States)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  9. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    Science.gov (United States)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  10. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    Science.gov (United States)

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed.

  11. Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Luellemann, A.; Huettermann, A.; Majcherczyk, A. [Goettingen Univ. (Germany). Inst. fuer Forstbotanik

    2000-07-01

    Ectomycorrhizal fungi belonging to 16 species (27 strains) were tested for their ability to degrade polycyclic aromatic hydrocarbons (PAHs): Phenanthrene, chrysene, pyrene and benzo[a]pyrene. Cultivated on a complex liquid medium, most of the fungi tested were able to metabolise these compounds. Approximately 50% of the benzo[a]pyrene was removed by strains of Amanita excelsa, Leccinum versipelle, Suillus grevillei, S. luteus, and S. variegatus during a 4-week incubation period. The same amount of phenanthrene was also metabolised by A. muscaria, Paxillus involutus, and S. grevillei. The degradation of the other two PAHs was, for the most part, less effective. Only S. grevillei was able to remove 50% of the pyrene, whereas Boletus edulis and A. muscaria removed 35% of the chrysene. (orig.)

  12. Polycyclic aromatic hydrocarbons in sediments of China Sea.

    Science.gov (United States)

    Li, Yanxia; Duan, Xiaoyong

    2015-10-01

    Increasing pollution pressures were placed in the coastal and estuarine ecosystems in China because of the elevated pollutants discharged from various sources. Polycyclic aromatic hydrocarbons (PAHs) in the environment were closely linked to human activities, which have been intensively studied for their geochemical interest as markers. In this review, the status of PAH contamination in China Sea was assessed by comprehensive reviews of the concentrations, sources, and fates of PAHs in sediments of China Sea. PAH concentrations in China Sea sediments decreased from north to south due to the higher emissions in North China. Atmosphere was probably the main carrier of PAHs in the north due to the higher contents of atmospheric fine particles and higher wind speeds. However, riverine inputs were probably the most important sources of PAHs in the coastal sediments of South China due to higher rainfall.

  13. The distribution of polycyclic aromatic hydrocarbons in asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Y. [Inst. Mexicano del Petroleo, Lazaro (Mexico). Programa de Ingenieria Molecular; Ballard Andrews, A.; Mullins, O.C. [Schlumberger-Doll Research Center, Cambridge, MA (United States)

    2008-07-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in asphaltenes is a strong determinant for asphaltene physical properties. PAHs also provide the UV and visible absorption and emission profiles of asphaltenes. All PAHs absorb light in the UV-visible spectrum and many also emit light in this spectral range. This study combined a molecular orbital theory with an experimental approach to quantitatively link the UV-visible absorption and emission profiles to the asphaltene PAH distribution. Key features of the absorption and emission spectral data were found to be reproduced with PAH distributions centered at 7 fused rings. The study also identified other highly different distributions of PAHs in terms of plausibility to account for the measured optical data. The paper also described the affect that heteroatoms had on the analysis.

  14. Removal of high-molecular weight polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Ulrich Vasconcelos

    2011-01-01

    Full Text Available Alternatives for the removal of high-molecular weight polycyclic aromatic hydrocarbons (HWM-PAH from soil were tested by adding fertilizer or glycerol, as well as the combination of both. Experiments were carried out for 60 days in reactors containing a HWM-PAH-contaminated soil (8030 μg kg-1, accompanied by pH monitoring, humidity control and quantification of total heterotrophic bacteria and total fungus. Fertilizer addition removed 41.6% of HWM-PAH. Fertilizer and glycerol in combination removed 46.2%. When glycerol was added individually, degradation reached 50.4%. Glycerol also promoted the increase of degradation rate during the first 30 days suggesting the HMW-PAH removal occurred through cometabolic pathways.

  15. Polycyclic Aromatic Hydrocarbons in Electrocautery Smoke during Peritonectomy Procedures

    Directory of Open Access Journals (Sweden)

    Sara Näslund Andréasson

    2012-01-01

    Full Text Available Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs, benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed.

  16. Formation History of Polycyclic Aromatic Hydrocarbons in Galaxies

    CERN Document Server

    Seok, Ji Yeon; Asano, Ryosuke S

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are some of the major dust components in the interstellar medium (ISM). We present our evolution models for the abundance of PAHs in the ISM on a galaxy-evolution timescale. We consider shattering of carbonaceous dust grains in interstellar turbulence as the formation mechanism of PAHs while the PAH abundance can be reduced by coagulation onto dust grains, destruction by supernova shocks, and incorporation into stars. We implement these processes in a one-zone chemical evolution model to obtain the evolution of the PAH abundance in a galaxy. We find that PAH formation becomes accelerated above certain metallicity where shattering becomes efficient. For PAH destruction, while supernova shock is the primary mechanism in the metal-poor environment, coagulation is dominant in the metal-rich environment. We compare the evolution of the PAH abundances in our models with observed abundances in galaxies with a wide metallicity range. Our models reproduce both the paucity of PAH...

  17. Simulated transport of polycyclic aromatic hydrocarbons in artificial streams

    Energy Technology Data Exchange (ETDEWEB)

    Bartell, S.M.; Landrum, P.F.; Giesy, J.P.; Leversee, G.J.

    1981-01-01

    A model was constructed to predict the pattern of flow and accumulation of three polycyclic aromatic hydrocarbons (PAH) (anthracene, naphthalene, and benzo(a)pyrene) in artificial streams located on the Savannah River Plant near Aiken, South Carolina. Predictions were based upon the premise that the fundamental chemistry of individual PAH contains useful information for predictive purposes. Model processes included volatilization, photolysis, sorption to sediments and particulates, and net accumulation by biota. Simulations of anthracene transport were compared to results of an experiment conducted in the streams. The model realistically predicted the concentration of dissolved anthracene through time and space. Photolytic degradation appeared to be a major pathway of anthracene flux from the streams.

  18. Transport of Polycyclic Aromatic Hydrocarbons in Unsaturated Porous Media

    Science.gov (United States)

    Chahal, Maninder; Flury, Markus

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are complex organic molecules containing 2 or more fused benzene rings. Being hydrophobic and non-polar, PAHs tend to partition to the organic matter in the soil from bulk aqueous phase. Though transport of these contaminants has been well studied in saturated environment, interactive mechanisms of these fluorescent compounds in unsaturated (identified by presence of air-water interface) porous media is still not well understood. We studied is the transport of fluoranthene in unsaturated porous media as facilitated by moving air-water interfaces. Confocal microscopy was used to visualize the interactions of fluoranthene particles in a glass channel packed with quartz glass beads. The packed glass channel was used to mimic a porous media and effects of an advancing and receding capillary fringe on the detachment of fluoranthene.

  19. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  20. Study on Aromatization of C6 Aliphatic Hydrocarbons on ZRP Zeolite Catalyst

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Xie Chaogang

    2004-01-01

    The performance of ZRP zeolite catalysts for aromatization of C6 aliphatic hydrocarbons was investigated in a pulsed microreactor. The influence of metal modified ZRP zeolites on aromatization reaction was also studied, coupled with comparison of aromatization tendencies of olefins, paraffins and paraffins with different degrees of chain branching. Test results had shown that the lower the silicon/aluminum ratio in the ZRP zeolite, the higher the aromatization reactivity of aliphatic hydrocarbons. Modification of ZRP zeolite by zinc and its zinc content had apparent impact on the yield and distribution of aromatics. The aromatization tendency of olefins was apparently better than paraffins, while the aromatization tendency of monomethyl paraffins was better than that of straight-chain paraffins with the exception of dimethyl paraffins, which had worse aromatization tendency because of their steric hindrance.

  1. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    Science.gov (United States)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  2. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Knowledge of vapor pressure of organic pollutants is essential in predicting their fate and transport in the environment. In the present study, the vapor pressures of 12 halogenated polycyclic aromatic compounds (PACs), 9-chlorofluorene, 2,7-dichlorofluorene, 2-bromofluorene, 9-bromofluorene, 2,7-dibromofluorene, 2-bromoanthracene, 9-chlorophenanthrene, 9-bromophenanthrene, 9,10-dibromophenanthrene, 1-chloropyrene, 7-bromobenz[a]anthracene, and 6,12-dibromochrysene, were measured using the Knudsen effusion method over the temperature range of 301 to 464 K. Enthalpies and entropies of sublimation of these compounds were determined via application of the Clausius-Clapeyron equation. The data were also compared with earlier published literature values to study the influence of halogen substitution on vapor pressure of PACs. As expected, the halogen substitution decreases vapor pressure compared with parent compounds but does not necessarily increase the enthalpy of sublimation. Furthermore, the decrease of vapor pressure also depends on the substitution position and the substituted halogen, and the di-substitution of chlorine and/or bromine decreases the vapor pressure compared with single halogen-substituted polycyclic aromatic hydrocarbons. In addition, the enthalpy of fusion and melting temperature of these 12 PACs were determined using differential scanning calorimetry and melting point analysis.

  3. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic.

    Science.gov (United States)

    Liu, Lijing; Fokkink, Remco; Koelmans, Albert A

    2016-07-01

    Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5)  μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC.

  4. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer

    Institute of Scientific and Technical Information of China (English)

    Thamaraiselvan; Rengarajan; Peramaiyan; Rajendran; Natarajan; Nandakumar; Boopathy; Lokeshkumar; Palaniswami; Rajendran; Ikuo; Nishigaki

    2015-01-01

    Polycyclie aromatic hydrocarbons(PAHs) are a group of compounds consisting of two or more fused aromatic rings.Most of them are formed during incomplete combustion of organic materials such as wood and fossil fuels,petroleum products,and coal.The composition of PAH mixtures varies with the source and is also affected by selective weathering effects in the environment.PAHs are ubiquitous pollutants frequently found in a variety of environments such as fresh water and marine sediments,the atmosphere,and ice.Due to their widespread distribution,the environmental pollution due to PAHs has aroused global concern.Many PAHs and their epoxides are highly toxic,mutagenic and/or carcinogenic to microorganisms as well as to higher forms of life including humans.The main aim of this review is to provide contemporary information on PAH sources,route of exposure,worldwide emission rate,and adverse effects on humans,especially with reference to cancer.

  5. Evaluation of anthropogenic secondary organic aerosol tracers from aromatic hydrocarbons

    Science.gov (United States)

    Al-Naiema, Ibrahim M.; Stone, Elizabeth A.

    2017-02-01

    Products of secondary organic aerosol (SOA) from aromatic volatile organic compounds (VOCs) - 2,3-dihydroxy-4-oxopentanoic acid, dicarboxylic acids, nitromonoaromatics, and furandiones - were evaluated for their potential to serve as anthropogenic SOA tracers with respect to their (1) ambient concentrations and detectability in PM2.5 in Iowa City, IA, USA; (2) gas-particle partitioning behaviour; and (3) source specificity by way of correlations with primary and secondary source tracers and literature review. A widely used tracer for toluene-derived SOA, 2,3-dihydroxy-4-oxopentanoic acid was only detected in the particle phase (Fp = 1) at low but consistently measurable ambient concentrations (averaging 0.3 ng m-3). Four aromatic dicarboxylic acids were detected at relatively higher concentrations (9.1-34.5 ng m-3), of which phthalic acid was the most abundant. Phthalic acid had a low particle-phase fraction (Fp = 0.26) likely due to quantitation interferences from phthalic anhydride, while 4-methylphthalic acid was predominantly in the particle phase (Fp = 0.82). Phthalic acid and 4-methylphthalic acid were both highly correlated with 2,3-dihydroxy-4-oxopentanoic acid (rs = 0.73, p = 0.003; rs = 0.80, p hydrocarbons; however the substantial partitioning toward the gas phase (Fp ≤ 0.16) and their water sensitivity limit their application as tracers. The outcome of this study is the demonstration that 2,3-dihydroxy-4-oxopentanoic acid, phthalic acid, 4-methylphthalic acid, and 4-hydroxy-3-nitrobenzyl alcohol are good candidates for tracing SOA from aromatic VOCs.

  6. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity.

    Science.gov (United States)

    Jajoo, Anjana; Mekala, Nageswara Rao; Tomar, Rupal Singh; Grieco, Michele; Tikkanen, Mikko; Aro, Eva-Mari

    2014-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are very toxic and highly persistent environmental pollutants which accumulate in soil and affect growth of the plants adversely. This study aims to investigate inhibitory effects of 3 major PAH particularly on photosynthetic processes in Arabidopsis thaliana grown in soil treated with PAH. The 3 PAH chosen differ from each other in aromaticity (number of rings) comprising their structure (2 rings: naphthalene, 3 rings: anthracene and 4 rings: pyrene). Several growth parameters and Chlorophyll a fluorescence was monitored in PAH treated plants. BN-PAGe analysis was done in order to get information about change in the protein conformation. PAH treatment led to increased value of Fo which collaborated with increase in the amount of free LHC as seen through BN-Page analysis. Thus PAH were found to inhibit PS II photochemistry and caused distinct change in pigment composition. However the results led us to infer that 3-ring anthracence is more inhibitory as compared to 2-ring naphthalene and 4-ring pyrene. This indicates that aromaticity of PAH is unrelated to their response on photosynthetic processes.

  7. Aromatic Amino Acids-Guanidinium Complexes through Cation-π Interactions

    Directory of Open Access Journals (Sweden)

    Cristina Trujillo

    2015-05-01

    Full Text Available Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These interactions have been characterized by means of the analysis of the molecular electron density using the Atoms-in-Molecules approach as well as the orbital interactions using the Natural Bond Orbital methodology. Finally, the effect that the cation-π and hydrogen bond interactions exert on the aromaticity of the corresponding amino acids has been evaluated by calculating the theoretical NICS values, finding that the aromatic character was not heavily modified upon complexation.

  8. ExBox: a polycyclic aromatic hydrocarbon scavenger.

    Science.gov (United States)

    Barnes, Jonathan C; Juríček, Michal; Strutt, Nathan L; Frasconi, Marco; Sampath, Srinivasan; Giesener, Marc A; McGrier, Psaras L; Bruns, Carson J; Stern, Charlotte L; Sarjeant, Amy A; Stoddart, J Fraser

    2013-01-09

    A template-directed protocol, which capitalizes on donor-acceptor interactions, is employed to synthesize a semi-rigid cyclophane (ExBox(4+)) that adopts a box-like geometry and is comprised of π-electron-poor 1,4-phenylene-bridged ("extended") bipyridinium units (ExBIPY(2+)). ExBox(4+) functions as a high-affinity scavenger of an array of different polycyclic aromatic hydrocarbons (PAHs), ranging from two to seven fused rings, as a result of its large, accommodating cavity (approximately 3.5 Å in width and 11.2 Å in length when considering the van der Waals radii) and its ability to form strong non-covalent bonding interactions with π-electron-rich PAHs in either organic or aqueous media. In all, 11 PAH guests were observed to form inclusion complexes with ExBox(4+), with coronene being the largest included guest. Single-crystal X-ray diffraction data for the 11 inclusion complexes ExBox(4+)⊂PAH as well as UV/vis spectroscopic data for 10 of the complexes provide evidence of the promiscuity of ExBox(4+) for the various PAHs. Nuclear magnetic resonance spectroscopy and isothermal titration calorimetric analyses of 10 of the inclusion complexes are employed to further characterize the host-guest interactions in solution and determine the degree with which ExBox(4+) binds each PAH compound. As a proof-of-concept, a batch of crude oil from Saudi Arabia was subjected to extraction with the water-soluble form of the PAH receptor, ExBox·4Cl, resulting in the isolation of different aromatic compounds after ExBox·4Cl was regenerated.

  9. Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles

    Science.gov (United States)

    de Abrantes, Rui; Vicente de Assunção, João; Pesquero, Célia Regina; Bruns, Roy Edward; Nóbrega, Raimundo Paiva

    The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 μg km -1 to 612 μg km -1 in the gasohol vehicle, and from 11.7 μg km -1 to 27.4 μg km -1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo( a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km -1 to 4.61 μg TEQ km -1 for the gasohol vehicle and from 0.0117 μg TEQ km -1 to 0.0218 μg TEQ km -1 in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed

  10. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    Science.gov (United States)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  11. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    Science.gov (United States)

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  12. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil

    Science.gov (United States)

    The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...

  13. Do lagoon area sediments act as traps for polycyclic aromatic hydrocarbons?

    Science.gov (United States)

    Marini, Mauro; Frapiccini, Emanuela

    2014-09-01

    The coastal lagoons are vulnerable systems, located between the land and the sea, enriched by both marine and continental inputs and are among the most productive aquatic ecosystems. The purpose of this work is to understand the influence of the lagoon area sediments on the behaviour of polycyclic aromatic hydrocarbons, through the adsorption coefficient determination. In fact, the sorption of polycyclic aromatic hydrocarbons is an important process because it governs the fate, transport, bioavailability and toxicity of these compounds in sediments. It has been observed that the adsorption of polycyclic aromatic hydrocarbons in a transitional system is the outcome of different factors, such as their sources and physicochemical properties, salinity and sediment composition, hydrology and environmental conditions. The results showed that transitional areas contribute to the polycyclic aromatic hydrocarbon accumulation in the sediment turning it into a trap.

  14. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    Science.gov (United States)

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  15. Comparison of passive and standard dosing of polycyclic aromatic hydrocarbons to the marine algae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Witt, G.; Niehus, N. C.; Konopka, K.

    2015-01-01

    Testing hydrophobic organic compounds (HOCs), like polycyclic aromatic hydrocarbons (PAHs), in aquatic toxicity tests is difficult due to compound losses through volatilization, sorption to the test vessel and culture medium constituents. This results in poorly defined exposure, the bioavailable...

  16. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    Science.gov (United States)

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  17. Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Ramzi, A; Rahman, K.H.; Gireeshkumar, T.R.; Balachandran, K.K.; Jacob, C.; Chandramohanakumar, N

    Polycyclic aromatic hydrocarbons (PAHs) showed significant seasonal dynamics in surface sediments of a tropical ecosystem (Cochin estuary, south west coast of India). Concentrations ranged from 304 to 5874 ngg-1 in pre-monsoon, 493 to 14...

  18. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  19. Recent analytical methods for atmospheric polycyclic aromatic hydrocarbons and their derivatives.

    Science.gov (United States)

    Hayakawa, Kazuichi; Tang, Ning; Toriba, Akira

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) are ubiquitous environmental pollutants. Moreover, some oxidative metabolites of these pollutants, such as hydroxylated and epoxide PAHs, cause endocrine disruption or produce reactive oxygen species. These compounds have become a large concern from the viewpoint of particulate matter (PM2.5 ) pollution. This report deals with recent studies concerning analytical methods for PAHs, NPAHs and related compounds in atmospheric and biological samples.

  20. PHOTOCHEMISTRY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COSMIC WATER ICE: THE ROLE OF PAH IONIZATION AND CONCENTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph; Bregman, Jonathan [NASA Ames Research Center, PO Box 1, M/S 245-6, Moffett Field, CA 94035 (United States); Ricca, Alessandra; Allamandola, Louis J. [SETI Institute, 189 North Bernardo Avenue, Mountain View, CA 94043 (United States); Bouwman, Jordy [Radboud University Nijmegen, Institute for Molecules and Materials, Toernooiveld 5, 6525 ED Nijmegen (Netherlands); Linnartz, Harold [Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, NL2300 RA Leiden (Netherlands)

    2015-01-20

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H{sub 2}O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H{sub 2}O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) {sub n} ] and quinones [PAH(O) {sub n} ] for all PAH:H{sub 2}O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO{sub 2} and H{sub 2}CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) {sub n} and PAH(O) {sub n} to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H{sub 2}O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.

  1. Solubilization and biodegradation of polycyclic aromatic hydrocarbons in microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J.W.C.; Zhao, Z.Y.; Yang, J.; Wong, S.Y. [Hong Kong Baptist Univ., Hong Kong (China). Sino-Forest Applied Research Centre for Pearl River Delta Environment, Dept. of Biology

    2009-07-01

    This study investigated the feasibility of using microemulsions to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs). Microemulsions are commonly used in soil washing as a means of enhancing the solubility of hydrophobic pollutants. The microemulsions were composed of Tween-80, 1-pentanol and linseed oil. Phenanthrene (PHE) was dissolved in dichloromethane and added to a glass vial. Microemulsions were added separately to the vials. A high performance liquid chromatograph (HPLC) was used to determine PHE concentrations. The vials were inoculated with an isolated PAH degradative bacterium Bacillus subtilis B-UM. Soil collected from abandoned shipyards in Hong Kong were then spiked with the mixtures and aged for 3 months. One way analysis of variance (ANOVA) analyses were conducted. Results of the study showed that a microemulsion composed of 0.4 Tween-80, 0.1 per cent 1-pentanol, and 0.05 linseed oil effectively enhanced the biodegradation of PHE in the aqueous phase. It was concluded that microemulsions can be used to remediate soils contaminated by PAHs. 26 refs., 2 tabs., 4 figs.

  2. Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Berdugo-Clavijo, Carolina; Dong, Xiaoli; Soh, Jung; Sensen, Christoph W; Gieg, Lisa M

    2012-07-01

    Polycyclic aromatic hydrocarbons (PAH) are widespread in methane-rich subsurface environments, such as oil reservoirs and fuel-contaminated aquifers; however, little is known about the biodegradation of these compounds under methanogenic conditions. To assess the metabolism of PAH in the absence of electron acceptors, a crude oil-degrading methanogenic enrichment culture was tested for the ability to biodegrade naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 2, 6-dimethylnaphthalene (2, 6-diMN). When methane was measured as an indicator of metabolism, nearly 400 μmol of methane was produced in the 2-MN- and 2, 6-diMN-amended cultures relative to substrate-unamended controls, which is close to the amount of methane stoichiometrically predicted based on the amount of substrate added (51-56 μmol). In contrast, no substantial methane was produced in the naphthalene- and 1-MN-amended enrichments. In time course experiments, metabolite analysis of enrichments containing 2-MN and 2, 6-diMN revealed the formation of 2-naphthoic acid and 6-methyl-2-naphthoic acid, respectively. Microbial community analysis by 454 pyrosequencing revealed that these PAH-utilizing enrichments were dominated by archaeal members most closely affiliated with Methanosaeta and Methanoculleus species and bacterial members most closely related to the Clostridiaceae, suggesting that these organisms play an important role in the methanogenic metabolism of the substituted naphthalenes in these cultures.

  3. Polycyclic aromatic hydrocarbons in household dust near diesel transport routes.

    Science.gov (United States)

    Kuo, Chung-Yih; Chen, Heng-Chun; Cheng, Fang-Ching; Huang, Li-Ru; Chien, Po-Shan; Wang, Jing-Ya

    2012-02-01

    A river-dredging project has been undertaken in Nantou, Taiwan. A large number of diesel vehicles carrying gravel and sand shuttle back and forth on the main roads. Ten stations along major thoroughfares were selected as the exposure sites for testing, while a small village located about 9 km from a main traffic route was selected as the control site. Levels of household dust loading at the exposure sites (60.3 mg/m(2)) were significantly higher than those at the control site (38.2 mg/m(2)). The loading (μg/m(2)) of t-PAHs (total polycyclic aromatic hydrocarbons) in the household dust at the exposure sites was significantly higher (P < 0.05) than was the case at the control site. The diagnostic ratios of PAHs showed that diesel emissions were the dominant source of PAHs at the exposure sites. The lack of a significant correlation between the concentrations of Fe and t-PAHs suggested that the t-PAHs in household dust might come from diverse sources. However, a significant correlation (P = 0.003) between the concentrations of Mo and t-PAHs implied that the most of the t-PAHs in the household dust might have resulted from diesel emissions. The lifetime cancer risks of BaP(eq) from household dust exposure were markedly higher than those resulting from inhalation exposure.

  4. MONITORING POLYNUCLEAR AROMATIC HYDROCARBONS IN SEDIMENT POREWATER BY SPMD

    Institute of Scientific and Technical Information of China (English)

    朱亚先; 张勇; 庄一廷; Ka-FaiPoon; MichaelH.W.Lam; 洪华生; RudolfS.S.Wu

    2001-01-01

    A new mimic biological Semi-permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was frrst used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC-FID in coastal sediment perewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene (AE), fluorene (F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzo[a]anthracene(B[a]A), chrysene(Chr), benzo[b] fluor- anthene(B[b]F), benzo[k]fluoranthene(B[k]F), benzo[a]pyrene(B[a]P),indeno[1,2,3,-cd]-Pyrene(I[123]P), dibenz[a,h]anthracene(D[ab]A) and benzo[g,h,i] perylene(B[ghi]P) were:50.36, under detection limits(UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13,123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.

  5. MONITORING POLYNUCLEAR AROMATIC HYDROCARBONS IN SEDIMENT POREWATER BY SPMD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new mimic biological Semi-permeable Membrane Device (SPMD) introduced for sampling organic pollutants yielded satisfactory results when it was first used as a passive sampler to concentrate and determine 16 kinds of polynuclear aromatic hydrocarbons (PAHs) by means of capillary GC on an HP 5890 GC-FID in coastal sediment porewater. The concentration of PAHs in sediment porewater for naphthalene(N), acenaphthlene(AL), acenaphthene(AE), fluorene(F), phenaphthene(P), anthracene(A), fluoranthene(FA), pyrene(Py), benzo[ a] anthracene( B [a] A), chrysene(Chr), benzo[b]fluor- anthene ( B [ b ] F ), benzo[ k ] fluoranthene ( B [ k ] F ), benzo[ a ] pyrene ( B [ a ] P), indeno [ 1,2,3,-cd]-Pyrene(I[123]P), dibenz[a,h]anthracene(D[ah]A) and benzo[g,h,i] perylene(B[ghi]P) were:50.36, under detection limits( UD), 18.19, 8.41, 8.40, 1.44, UD, 8.01, 524.15, 168.47, 50.13,123.66, 63.48, 27.40, 82.04 and 58,81 ng/L, respectively.

  6. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    Science.gov (United States)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  7. Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater

    Science.gov (United States)

    Lee, Hwang; Chang, Sein; Kim, Seung-Kyu; Kwon, Jung-Hwan

    2017-01-01

    Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the "net flow" of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.

  8. Polycyclic aromatic hydrocarbons and pesticides in soil of Vojvodina

    Directory of Open Access Journals (Sweden)

    Pucarević Mira M.

    2004-01-01

    Full Text Available The paper deals with several groups of compounds that represent the most frequent pollutants of soil in the world. The paper also reviews results of long-term studies conducted at the Institute of Field and Vegetable Crops in Novi Sad on the residues of pesticides and polycyclic aromatic hydrocarbons (PAHs in the soil of the Vojvodina Province. The analyzed samples have been found to contain residues of persistent pesticides and their metabolites lindane and its metabolites 6,20 μg/kg, alachlor 3,56 μg/kg, aldrin 2,3 μg/kg, heptachlor epoxide 0,99 μg/kg, chlordane 3,82 μg/kg, DDT and its metabolites 10,77 μg/kg, dieldrin 2,04 μg/kg, endrin 3,57 μg/kg and endrin aldehyde 1,36 μg/kg. Soil samples from Novi Sad municipality contained 53,69 μg/kg of DDT and its metabolites. The values of atrazine ranged from 0,0005 to 0,8 mg/kg. The values of PAHs were 6,64 mg/kg in industrial soil, 4,93 mg/kg in agricultural soil, and 4,55 mg/kg and 5,48 mg/kg in the Novi Sad municipality. The lowest value, 0.83 mg/kg, was found for nonagricultural/nonindustrial soils.

  9. Investigation of polycyclic aromatic hydrocarbons from coal gasification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-cang; JIN Bao-sheng; ZHONG Zhao-ping; HUANG Ya-ji; XIAO Rui; LI Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  10. Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater

    Science.gov (United States)

    Lee, Hwang; Chang, Sein; Kim, Seung-Kyu; Kwon, Jung-Hwan

    2017-03-01

    Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the "net flow" of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.

  11. Anharmonicity and infrared bands of Polycyclic Aromatic Hydrocarbon (PAH) molecules

    Science.gov (United States)

    Petrignani, Annemieke; Maltseva, Elena; Candian, Alessandra; Mackie, Cameron; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander; Oomens, Jos; Buma, Wybren Jan

    2015-08-01

    We present a systematic laboratory study of the CH stretching region in Polycyclic Aromatic Hydrocarbon (PAH) molecules of different shapes and sizes to investigate anharmonic behaviour and address the reliability of the never-validated but universally accepted scaling factors employed in astronomical PAH models. At the same time, new anharmonic theoretical quantum chemistry studies have been performed with the software program Spectro using our experimental data as benchmark. We performed mass and conformational-resolved, high-resolution spectroscopy of cold (~10K) linear and compact PAH molecules starting with naphthalene (C10H8) in the 3-µm CH stretching region. Surprisingly, the measured infrared spectra show many more strong modes than expected. Measurements of the deuterated counterparts demonstrate that these bands are the result of Fermi Resonances. First comparisons with harmonic and anharmonic DFT calculations using Gaussian 09 show that both approximations are not able to reproduce in detail the observed molecular reality. The improved anharmonic calculations performed with Spectro now include the effects of Fermi resonances and have been applied to PAHs for the first time. The analysis of the experimental data is greatly aided by these new theoretical quantum chemistry studies. Preliminary assignments are presented, aided by comparison between the observed rotational contour and the symmetry of candidate bands.

  12. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Tao, S.; Pan, B.; Fan, W.; He, X.C.; Zuo, Q.; Wu, S.P.; Li, B.G.; Cao, J.; Liu, W.X.; Xu, F.L.; Wang, X.J.; Shen, W.R.; Wong, P.K. [Peking University, Beijing (China). College of Environmental Science

    2005-03-01

    Abstract: Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 {mu}g/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 {mu}g/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area.

  13. Investigation of polycyclic aromatic hydrocarbons from coal gasification.

    Science.gov (United States)

    Zhou, Hong-cang; Jin, Bao-sheng; Zhong, Zhao-ping; Huang, Ya-ji; Xiao, Rui; Li, Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  14. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

    Science.gov (United States)

    Lamichhane, Shanti; Bal Krishna, K C; Sarukkalige, Ranjan

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015.

  15. Association of polycyclic aromatic hydrocarbons in housewives' hair with hypertension.

    Science.gov (United States)

    Wang, Bin; Li, Zhiwen; Ma, Yiqiu; Qiu, Xinghua; Ren, Aiguo

    2016-06-01

    The relationship between polycyclic aromatic hydrocarbons (PAHs) and hypertension remains a subject of debate. The aims of this study were to determine an association of concentrations of PAHs in housewives' hair with hypertension risk and the modification effect of single nucleotide polymorphisms (SNPs) related to Phase I metabolism of PAHs. We recruited 405 women for a cross-sectional study in Shanxi Province, China, including 170 with hypertension (the case group) and 235 without hypertension (the control group). We analyzed 26 individual PAHs in hair samples and the SNPs of the genes including cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), CYP1A2, CYP1B1 and CYP2E1. Our results showed that seven PAHs in hair samples were measured with detection rate >70%. Only acenaphthylene was found to be associated with an increased risk of hypertension with adjustment for the potential confounders following Bonferroni correction, whereas others not. No SNPs of the concerned genes were found to be associated with the risk of hypertension. A multiple interaction effect of PAHs in housewives' hair and SNPs on hypertension risk was not observed. It was concluded that PAHs tended to contribute to the formation of hypertension.

  16. Occupational exposure to Polycyclic Aromatic Hydrocarbons in wood dust

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, C K; Schuepfer, P; Boiteux, P, E-mail: chuynh@hospvd.c [Institute for Work and Health, rue du Bugnon 21, CH-1005 Lausanne (Switzerland)

    2009-02-01

    Sino-nasal cancer (SNC) represents approximately 3% of Oto-Rhino-Laryngology (ORL) cancers. Adenocarcinoma SNC is an acknowledged occupational disease affecting certain specialized workers such as joiners and cabinetmakers. The high proportion of woodworkers contracting a SNC, subjected to an estimated risk 50 to 100 times higher than that affecting the general population, has suggested various study paths to possible causes such as tannin in hardwood, formaldehyde in plywood and benzo(a)pyrene produced by wood when overheated by cutting tools. It is acknowledged that tannin does not cause cancer to workers exposed to tea dust. Apart from being an irritant, formaldehyde is also classified as carcinogenic. The path involving carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) emitted by overheated wood is attractive. In this study, we measured the particle size and PAHs content in dust emitted by the processing of wood in an experimental chamber, and in field situation. Quantification of 16 PAHs is carried out by capillary GC-ion trap Mass Spectrometric analysis (GC-MS). The materials tested are rough fir tree, oak, impregnated polyurethane (PU) oak. The wood dust contains carcinogenic PAHs at the level of mug.g{sup -1} or ppm. During sanding operations, the PU varnish-impregnated wood produces 100 times more PAHs in dust than the unfinished wood.

  17. Determination of Polycyclic Aromatic Hydrocarbons In Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available The retention by humans of 20 polycyclic aromatic hydrocarbons (PAHs from mainstream cigarette smoke was evaluated. The analysis was done by a new technique using solid phase extraction (SPE for the cleanup and the concenration of PAHs. The new technique has excellent sensitivity and accuracy, which were necessary for the analysis of the very low levels of PAHs present in the exhaled cigarette smoke. The study was done on a common commercial cigarette with 10.6 mg ‘tar’ by U.S. Federal Trade Commission (FTC recommendation. The results were obtained from ten human subjects, each smoking three cigarettes. The exhaled smoke was collected using a vacuum assisted procedure that avoids strain in exhaling. The study showed that the PAHs with a molecular weight lower than about 170 Daltons are retained with high efficiency. The heavier molecules are less retained, but even compounds such as indeno[1,2,3-cd]pyrene, dibenz[a, h]anthracene, and benzoperylene are retained with efficiencies around 50%. The dependence of retention efficiency for PAHs (in % on their octanol-water partition coefficient (LogPow was found to be nonlinear and showed considerable variability for several compounds that have very close LogPow values. Better correlation was obtained between the retention efficiency and PAHs vapor pressure (Log VP.

  18. Polycyclic aromatic hydrocarbon formation under simulated coal seam pyrolysis conditions

    Institute of Scientific and Technical Information of China (English)

    Liu Shuqin; Wang Yuanyuan; Wang Caihong; Bao Pengcheng; Dang Jinli

    2011-01-01

    Coal seam pyrolysis occurs during coal seam fires and during underground coal gasification.This is an important source of polycyclic aromatic hydrocarbon (PAH) emission in China.Pyrolysis in a coal seam was simulated in a tubular furnace.The 16 US Environmental Protection Agency priority controlled PAHs were analyzed by HPLC.The effects of temperature,heating rate,pyrolysis atmosphere,and coal size were investigated.The results indicate that the 3-ring PAHs AcP and AcPy are the main species in the pyrolysis gas.The 2-ring NaP and the 4-ring Pyr are also of concern.Increasing temperature caused the total PAH yield to go through a minimum.The lowest value was obtained at the temperature of 600 ℃ Higher heating rates promote PAH formation,especially formation of the lower molecular weight PAHs.The typical heating rate in a coal seam,5 ℃/min,results in intermediate yields of PAHs.The total PAHs yield in an atmosphere of N2 is about 1.81 times that seen without added N2,which indicates that an air flow through the coal seam accelerates the formation of PAHs.An increase in coal particle size reduces the total PAHs emission but promotes the formation of 5- and 6-ring PAHs.

  19. Tailoring Colors by O Annulation of Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Miletić, Tanja; Fermi, Andrea; Orfanos, Ioannis; Avramopoulos, Aggelos; De Leo, Federica; Demitri, Nicola; Bergamini, Giacomo; Ceroni, Paola; Papadopoulos, Manthos G.; Couris, Stelios

    2017-01-01

    Abstract The synthesis of O‐doped polyaromatic hydro‐ carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high‐yield ring‐closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C−O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron‐donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third‐order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices. PMID:27897357

  20. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol.

  1. Aqueous leaching of polycyclic aromatic hydrocarbons from bitumen and asphalt.

    Science.gov (United States)

    Brandt, H C; de Groot, P C

    2001-12-01

    The application of bitumen in, e.g. asphalt roads, roofs and hydraulic applications will lead to the leaching of compounds from the bitumen/asphalt into the environment. Because polycyclic aromatic hydrocarbons (PAHs) are present in bitumen, static and dynamic leach tests have been performed to study the leaching behaviour of this class of compounds. Nine petroleum bitumens covering a representative range of commercially available products and one asphalt made from one of the bitumens have been tested in a static leach test. The asphalt has been also subjected to a dynamic leach test. The main conclusions are that a 30h dynamic leach test is sufficient to determine the equilibrium concentration that will be reached after bitumen or asphalt has been in contact with the water for more than 3-6 days. As an alternative to performing a leach test, this concentration can be calculated from the PAH concentrations in the bitumen, and their distribution coefficients, as calculated here, or from their aqueous solubilities. The equilibrium PAH concentrations in the leach water from bitumens stay well below the surface water limits that exist in several EEC-countries and are also more than an order of magnitude lower than the current EEC limits for potable water.

  2. Separation and analysis of aromatic hydrocarbons from two Chinese coals

    Institute of Scientific and Technical Information of China (English)

    DING Ming-jie; LI Wen-dian; XIE Rui-lun; ZONG Ying; CAI Ke-ying; PENG Yao-li; ZONG Zhi-min; XIE Rui-lun; WEI Xian-yong

    2008-01-01

    Separation and analysis of aromatic hydrocarbons (AHs) from coals is of considerable significance for both fuel and non-fuel use of the coals. In present work two Chinese bituminous coals were selected for separation of AHs by ultrasonic extraction with CS2 followed by column chromatography using hexane as eluent. A series of AHs were separated from the two coals and analyzed by GC/MS. FTIR was employed to characterize the raw coals and the extracted residues. The results of GC/MS analysis show that the separated AHs are mono- to tetracyclic arenes, among which the principle AHs are alkyl naphthalenes and phenanthrenes. Obvious differences in the composition and the structure of AHs exist between the two coals, i.e., the AHs from Tongting coal tend to be higher rings compared to those from Pingshuo coal both from the variety and from the abundance of the AHs. FFIR analysis shows that the raw and extracted coals are similar in terms of functional groups, suggesting that the composition and structure of CS extract, especially the AHs, from coals can be used to interpret the coal structure to some extent.

  3. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons.

  4. Planar Homotropenylium Cation : A Transition State with Reversed Aromaticity

    NARCIS (Netherlands)

    Gibson, Christopher M.; Havenith, Remco W. A.; Fowler, Patrick W.; Jenneskens, Leonardus W.

    2015-01-01

    In contrast to the equilibrium structure of the homoaromatic C-s homotropenylium cation, C8H9+ (1), which supports a pinched diatropic ring current, the C(2)v transition state (2) for inversion of the methylene bridge of 1 is antiaromatic and supports a two-lobe paratropic pi current, as detected by

  5. Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: assessment and source recognition of petroleum hydrocarbons.

    Science.gov (United States)

    El Nemr, Ahmed; El-Sadaawy, Manal M; Khaled, Azza; Draz, Suzanne O

    2013-06-01

    Coastal marine sediment samples were collected from ten sampling stations along the Egyptian Mediterranean coast in April 2010. All sediment samples were analyzed for aliphatic (C7 to C34) and polycyclic aromatic hydrocarbons (PAHs) as well as total organic carbon (TOC) contents and grain size analysis. Total aliphatic hydrocarbons ranged from 1621.82 to 9069.99 ng/g (dry weight), while aromatic hydrocarbons (16 PAHs) varied between 208.69 and 1020.02 ng/g with an average of 530.68 ± 225.86 ng/g dwt. Good correlations observed between certain PAH concentrations allowed to identify its origin. The average TOC percent was varied from 0.13 to 1.46 %. Principal component analysis was used to determine the sources of hydrocarbon pollutants in sediments of Mediterranean. Additionally, special PAHs compound ratios suggest the petrogenic origins.

  6. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290...

  7. Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities

    NARCIS (Netherlands)

    Stogiannidis, E.; Laane, R.

    2014-01-01

    The Polycyclic Aromatic Hydrocarbons (PAHs or polyaromatic hydrocarbons) have been extensively studied to understand their distribution, fate and effects in the environment (Haftka 2009; Laane et al. 1999, 2006, 2013; Okuda et al. 2002; Page et al. 1999; Pavlova and Ivanova 2003; Stout et al. 2001a;

  8. Catalytic activity of in situ synthesized MoWNi sulfides in hydrogenation of aromatic hydrocarbons

    Science.gov (United States)

    Topolyuk, Yu. A.; Maksimov, A. L.; Kolyagin, Yu. G.

    2017-02-01

    MoWNi-sulfide catalysts were obtained in situ by thermal decomposition of metal-polymer precursors based on the copolymers of polymaleic anhydride in a hydrocarbon raw material. The activity of the synthesized catalysts in hydrogenation of bicyclic aromatic hydrocarbons was studied, and the composition and structure of active phase nanoparticles were determined.

  9. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Werst, D.W.; Trifunac, A.D.

    1992-11-01

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials.

  10. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Werst, D.W.; Trifunac, A.D.

    1992-01-01

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials.

  11. Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy

    Directory of Open Access Journals (Sweden)

    S.-D. Choi

    2008-07-01

    Full Text Available Rapid uptake of gaseous polycyclic aromatic hydrocarbons (PAHs by a forest canopy was observed at Borden in Southern Ontario, Canada during bud break in early spring 2003. High volume air samples were taken on 12 individual days at three different heights (44.4, 29.1, and 16.7 m on a scaffolding tower and on the forest floor below the canopy (1.5 m. Concentrations of PAHs were positively correlated to ambient temperature, resulting from relatively warm and polluted air masses passing over the Eastern United States and Toronto prior to arriving at the sampling site. An analysis of vertical profiles and gas/particle partitioning of the PAHs showed that gaseous PAHs established a concentration gradient with height, whereas levels of particulate PAHs were relatively uniform, implying that only the uptake of gaseous PAHs by the forest canopy was sufficiently rapid to be observed. Specifically, the gaseous concentrations of intermediate PAHs, such as phenanthrene, anthracene, and pyrene, during budburst and leaf emergence were reduced within and above the canopy. When a gradient was observed, the percentage of PAHs on particles increased at the elevations experiencing a decrease in gas phase concentrations. The uptake of intermediate PAHs by the canopy also led to significant differences in gaseous PAH composition with height. These results are the most direct evidence yet of the filter effect of forest canopies for gaseous PAHs in early spring. PAH deposition fluxes and dry gaseous deposition velocities to the forest canopy were estimated from the concentration gradients.

  12. Estimation of Chronic Personal Exposure to Airborne Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Choi, Hyunok; Zdeb, Michael; Perera, Frederica; Spengler, John

    2015-01-01

    Background Polycyclic aromatic hydrocarbons (PAH) exposure from solid fuel burning represents an important public health issue for the majority of the global population. Yet, understanding of individual-level exposures remains limited. Objectives To develop regionally adaptable chronic personal exposure model to pro-carcinogenic PAH (c-PAH) for the population in Kraków, Poland. Methods We checked the assumption of spatial uniformity in eight c-PAH using the coefficients of divergence (COD), a marker of absolute concentration differences. Upon successful validation, we developed personal exposure models for eight pro-carcinogenic PAH by integrating individual-level data with area-level meteorological or pollutant data. We checked the resulting model for accuracy and precision against home outdoor monitoring data. Results During winter, COD of 0.1 for Kraków suggest overall spatial uniformity in the ambient concentration of the eight c-PAH. The three models that we developed were associated with index of agreement approximately equal to 0.9, root mean square error < 2.6 ng/m3, and 90th percentile of absolute difference ≤ 4 ng/m3 for the predicted and the observed concentrations for eight pro-carcinogenic PAH. Conclusions Inexpensive and logistically feasible information could be used to estimate chronic personal exposure to PAH profiles, in lieu of costly and labor-intensive personal air monitoring at wide scale. At the same time, thorough validation through direct personal monitoring and assumption checking are critical for successful model development. PMID:25965038

  13. Sorption of polycyclic aromatic hydrocarbons (PAHs) on glass surfaces.

    Science.gov (United States)

    Qian, Yuan; Posch, Tjorben; Schmidt, Torsten C

    2011-02-01

    Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal's forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.

  14. Sorption characteristics of polycyclic aromatic hydrocarbons in aluminum smelter residues.

    Science.gov (United States)

    Breedveld, Gijs D; Pelletier, Emilien; St Louis, Richard; Cornelissen, Gerard

    2007-04-01

    High temperature carbon oxidation in primary aluminum smelters results in the release of polycyclic aromatic hydrocarbons (PAH) into the environment. The main source of PAH are the anodes, which are composed of petroleum coke (black carbon, BC) and coal tar pitch. To elucidate the dominant carbonaceous phase controlling the environmental fate of PAH in aluminum smelter residues (coke BC and/or coal tar), the sorptive behavior of PAHs has been determined, using passive samplers and infinitesink desorption methods. Samples directly from the wet scrubber were studied as well as ones from an adjacent 20-year old storage lagoon and roof dust from the smelter. Carbon-normalized distribution coefficients of native PAHs were 2 orders of magnitude higher than expected based on amorphous organic carbon (AOC)/water partitioning, which is in the same order of magnitude as reported literature values for soots and charcoals. Sorption isotherms of laboratory-spiked deuterated phenanthrene showed strong (-100 times stronger than AOC) but nonetheless linear sorption in both fresh and aged aluminum smelter residues. The absence of nonlinear behavior typical for adsorption to BC indicates that PAH sorption in aluminum smelter residues is dominated by absorption into the semi-solid coal tar pitch matrix. Desorption experiments using Tenax showed that fresh smelter residues had a relatively large rapidly desorbing fraction of PAH (35-50%), whereas this fraction was strongly reduced (11-16%) in the lagoon and roof dust material. Weathering of the coal tar residue and/or redistribution of PAH between coal tar and BC phases could explain the reduced availability in aged samples.

  15. Generation of polycyclic aromatic hydrocarbons (PAH during woodworking operations

    Directory of Open Access Journals (Sweden)

    Evin Danisman Bruschweiler

    2012-10-01

    Full Text Available Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC. Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs. PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools.To determine if PAHs are generated from wood during common woodworking operations, PAHs concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n=30 were collected.Wood dust was generated using tree different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF, beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personnel sampler device during wood working operations. We measured 21 PAHs concentrations in wood dust samples by capillary gas chromatographic-ion trap mass spectrometric analysis (GC-MS.Total PAH concentrations in wood dust varied greatly (0.24 – 7.95 ppm with the lowest being in MDF dust and the highest in wood melamine dust. Personal exposures to PAHs observed were between 37.5-119.8 ng m-3 among workers during wood working operations.Our results suggest that PAH exposures during woodworking operation are present and hence could play a role in the mechanism of cancer induction related to wood dust exposure.

  16. Polycyclic Aromatic Hydrocarbons in Residential Dust: Sources of Variability

    Science.gov (United States)

    Metayer, Catherine; Petreas, Myrto; Does, Monique; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    Background: There is interest in using residential dust to estimate human exposure to environmental contaminants. Objectives: We aimed to characterize the sources of variability for polycyclic aromatic hydrocarbons (PAHs) in residential dust and provide guidance for investigators who plan to use residential dust to assess exposure to PAHs. Methods: We collected repeat dust samples from 293 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 through 2007 and during 2010) using household vacuum cleaners, and measured 12 PAHs using gas chromatography–mass spectrometry. We used a random- and a mixed-effects model for each PAH to apportion observed variance into four components and to identify sources of variability. Results: Median concentrations for individual PAHs ranged from 10 to 190 ng/g of dust. For each PAH, total variance was apportioned into regional variability (1–9%), intraregional between-household variability (24–48%), within-household variability over time (41–57%), and within-sample analytical variability (2–33%). Regional differences in PAH dust levels were associated with estimated ambient air concentrations of PAH. Intraregional differences between households were associated with the residential construction date and the smoking habits of residents. For some PAHs, a decreasing time trend explained a modest fraction of the within-household variability; however, most of the within-household variability was unaccounted for by our mixed-effects models. Within-household differences between sampling rounds were largest when the interval between dust sample collections was at least 6 years in duration. Conclusions: Our findings indicate that it may be feasible to use residential dust for retrospective assessment of PAH exposures in studies of health effects. PMID:23461863

  17. Polycyclic Aromatic Hydrocarbon and Metal Concentrations in Imported Canned Maize

    Directory of Open Access Journals (Sweden)

    Embbey K Ossai

    2014-08-01

    Full Text Available Concentrations and profile of polycyclic aromatic hydrocarbons(PAHs and metals (Cd, Pb, Ni, Cr, Fe and Mn were determined in selected brands of canned maize in the Nigeria market with a view to providing information on the hazards associated with the consumption of these products. The measurement of the concentrations of PAHs was carried out by using a gas chromatography equipped with flame ionization detector (GC-FID after extraction by ultra-sonication with acetone/dichloromethane and clean-up. The 16 PAH concentrations varied between 45.1 and 335.7 µg/kg. The concentrations of the indicators for occurrence and effects of PAHs in food varied from 3.6 to 114.5 µg/kg for BaP, 6.4 to 168.2 µg/kg for PAH2, 11.8 to 232.7 µg/kg for PAH4 and 19.4 to 327.3 µg/kg for PAH8. The concentrations of metals were determined by using atomic absorption spectrometry after acid digestion. The concentrations of metals in these samples ranged from <0.05 to 0.9 µg/g for Cd; 5.0 to 8.0 µg/g for Pb, 0.8 to 1.7 µg/g for Fe while Cr and Mn were less than the limits of quantification (<0.05 µg/g. The concentrations of Cd and Pb in these canned maize samples were above their permissible limits for foods.

  18. Polycyclic aromatic hydrocarbons and heavy metals in Kostrena coastal area.

    Science.gov (United States)

    Linsak, Dijana Tomić; Linsak, Zeljko; Besić, Denis; Vojcić, Nina; Telezar, Mirna; Coklo, Miran; Susnić, Sasa; Mićović, Vladimir

    2011-12-01

    The aim of this study was to determine pollution by polycyclic aromatic hydrocarbons (PAH) and heavy metals in seawater and sediment in Kostrena coastal area, as well as their toxicity using bioluminescence based tests. Total PAH concentration in seawater ranged 1.7-155.3 ng/L. The share of carcinogenetic PAH was relatively high, ranging 22-48.3%. Nickel concentrations in seawater were beyond detection limits (chrome concentrations were beyond detection limits, and copper concentrations were also beyond detection limits or extremely low (up to 0.32 microg/L). EC50 values in seawater ranged 23.80-90.90 ng/L. Correlation between total PAH concentration and toxicity of seawater showed strong connection between them (r = 0.9579). Total PAH concentration in marine sediment ranged 58.02-1116 microg/kg dry weight (d.w.). The share of carcinogenetic PAH was extremely high ranging 10-53%. Nickel concentrations in marine sediment ranged 8-24 mg/kg d.w., vanadium concentrations ranged 24-42 mg/kg d.w., chrome concentrations ranged 11-19 mg/kg d.w., and copper concentrations ranged 7-25 mg/kg d.w. EC50 values in marine sediment ranged 818-4596 microg/kg d.w. Correlation between total PAH concentration and toxicity of marine sediment showed weak connection between them (r = 0.2590). Previous studies of seawater samples from areas of the Adriatic sea under the direct influence of oil industry did not include concentrations of heavy metals, which makes our study the first to present such comprehensive results. Our results point out the need for further evaluations and following of marine environment pollution and its consequences on living organisms and marine ecosystem in whole.

  19. Trace level determination of polycyclic aromatic hydrocarbons in river water with automated pretreatment HPLC.

    Science.gov (United States)

    Watabe, Yoshiyuki; Kubo, Takuya; Tanigawa, Tetsuya; Hayakawa, Yoshihiro; Otsuka, Koji; Hosoya, Ken

    2013-03-01

    A novel on-line pretreatment pump-injection HPLC system for polycyclic aromatic hydrocarbons is proposed. We report novel pump-injection HPLC-based on-line SPE with a specially designed pretreatment column for the determination of trace amounts of chemical substances in surface water. Polycyclic aromatic hydrocarbons are well known for strong carcinogenicity and thus a severe concentration control is required for drinking water and/or river water, which is the main resource of tap water. We found it possible to detect ng/L levels of polycyclic aromatic hydrocarbons by using pump-injection column switching HPLC with fluorescence detection. To avoid the phenomenon, in which polycyclic aromatic hydrocarbons can be often adsorbed on the surface of flow lines of HPLC by their highly hydrophobicity especially resin-made parts in sample delivery pump, we employed "autodilution" device that provides reliable recovery and repeatability. Additionally, real water samples were collected and then the spiked polycyclic aromatic hydrocarbons were determined at ng/L levels.

  20. Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors.

    Science.gov (United States)

    Washe, Alemayehu P; Macho, Santiago; Crespo, Gastón A; Rius, F Xavier

    2010-10-01

    Surfaces made of entangled networks of single-walled carbon nanotubes (SWCNTs) display a strong adsorption affinity for aromatic hydrocarbons. Adsorption of these compounds onto the walls of SWCNTs changes the electrical characteristics of the SWCNT-solution interface. Using these features, we have developed a potentiometric sensor to detect neutral aromatic species. Specifically, we can detect online aromatic hydrocarbons in industrial coolant water. Our chromatographic results confirm the adsorption of toluene onto the walls of carbon nanotubes, and our impedance spectroscopy data show the change in the double layer capacitance of the carbon nanotube-solution interface upon addition of toluene, thus confirming the proposed sensing mechanism. The sensor showed a toluene concentration dependent EMF response that follows the shape of an adsorption isotherm and displayed an immediate response to the presence of toluene with a detection limit of 2.1 ppm. The sensor does not respond to other nonaromatic hydrocarbons that may coexist with aromatic hydrocarbons in water. It shows a qualitative sensitivity and selectivity of 100% and 83%, respectively, which confirms its ability to detect aromatic hydrocarbons in aqueous solutions. The sensor showed an excellent ability to immediately detect the presence of toluene in actual coolant water. Its operational characteristics, including its fast response, low cost, portability, and easy use in online industrial applications, improve those of current chromatographic or spectroscopic techniques.

  1. POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATION LEVELS IN COLLECTED SAMPLES FROM VICINITY OF A HIGHWAY

    Directory of Open Access Journals (Sweden)

    S. V. Samimi ، R. Akbari Rad ، F. Ghanizadeh

    2009-01-01

    Full Text Available Tehran as the biggest city of Iran with a population of more than 10 millions has potentially high pollutant exposures of gas oil and gasoline combustion from vehicles that are commuting in the highways every day. The vehicle exhausts contain polycyclic aromatic hydrocarbons, which are produced by incomplete combustion and can be directly deposited in the environment. In the present study, the presence of polycyclic aromatic hydrocarbons contamination in the collected samples of a western highway in Tehran was investigated. The studied location was a busy highway in Tehran. High performance liquid chromatography equipped with florescence detector was used for determination of polycyclic aromatic hydrocarbons concentrations in the studied samples. Total concentration of the ten studied polycyclic aromatic hydrocarbons compounds ranged from 11107 to 24342 ng/g dry weight in the dust samples and increased from 164 to 2886 ng/g dry weight in the soil samples taken from 300 m and middle of the highway, respectively. Also the average of Σ PAHs was 1759 ng/L in the water samples of pools in parks near the highway. The obtained results indicated that polycyclic aromatic hydrocarbons contamination levels were very high in the vicinity of the highway.

  2. Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.

    Science.gov (United States)

    Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing

    2015-03-01

    The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%.

  3. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

    Science.gov (United States)

    Haritash, A K; Kaushik, C P

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate

  4. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  5. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  6. An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China

    Science.gov (United States)

    Mu, Xilong; Zhu, Xianlei; Wang, Xuesong

    2015-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are among the most dangerous compounds due to their high carcinogenic and mutagenic character. Emission inventory provides the primary data to account for the sources of ambient PAHs and server as a necessary database for effective PAHs pollution control. China is experiencing fast economic growth and large energy consumption, which might result in a large amount of PAHs anthropogenic emissions. Therefore, based on the previous studies and combined recently field emission measurements as well as socio-economic activity data, the development of a nationwide PAHs emission inventory is needed. In this work, the emission inventory of 16 PAHs listed as U.S. Environmental Protection Agency priority pollutants in China in the year 2012 is compiled. The emission amounts of PAHs were estimated as annual rates of emission-related activities multiplied by respective emission factors. The activities such as fuel consumption, including fossil fuel and biofuel, and socio-economic statistics were obtained from yearbook released by Chinese central government and/or provincial governments, as well as related industry reports. Emission factors were derived from the related literature. Recently reported emission factors from local measurements were used. The total emissions of PAHs were 120611 ton in 2012. In China, PAHs were emitted predominantly from domestic combustion of coal and biofuel, coking industry and motor vehicles, accounting for 72% of the total amount. PAHs emission profiles were significantly different between China and the other countries. The emission profile in China featured a relatively higher portion of high molecular weight species with carcinogenic potential due to large contributions of domestic combustion and coking industry. Domestic combustion of straw, coal and firewood emitted 19464 ton, 8831 ton, and 5062 ton of PAHs, respectively, which were much higher than those in other countries. Emission per capita showed

  7. Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species.

    Science.gov (United States)

    Schoeny, R; Cody, T; Warshawsky, D; Radike, M

    1988-02-01

    Polycyclic aromatic hydrocarbons (PAH) known to produce carcinogenic and mutagenic effects have been shown to contaminate waters, sediments and soils. While it is accepted that metabolites of these compounds are responsible for most of their biological effects in mammals, their metabolism, and to a large extent their bioactivity, in aquatic plants have not been explored. Cultures of photosynthetic algal species were assayed for their ability to metabolize benzo[a]pyrene (BaP), a carcinogenic PAH under conditions which either permitted (white light) or disallowed (gold light) photooxidation of the compound. Growth of Selenastrum capricornutum, a fresh-water green alga, was completely inhibited when incubated in white light with 160 micrograms BaP/l medium. By contrast concentrations at the upper limit of BaP solubility in aqueous medium had no effect on algal growth when gold light was used. BaP quinones and phenol derivatives were found to inhibit growth of Selenastrum under white light incubation. BaP phototoxicity and metabolism were observed to be species-specific. All 3 tested species of the order Chlorococcales were growth-inhibited by BaP in white light whereas neither the green alga Chlamydomonas reinhardtii nor a blue-green, a yellow-green or an euglenoid alga responded in this fashion. Assays of radiolabeled BaP metabolism in Selenastrum showed that the majority of radioactivity associated with BaP was found in media as opposed to algal cell pellets, that the extent of metabolism was BaP concentration dependent, and that the proportion of various metabolites detected was a function of the light source. After gold light incubation, BaP diols predominated while after white light treatment at equal BaP concentrations, the 3,6-quinone was found in the highest concentration. Extracted material from algal cell pellets and from media was tested for mutagenicity in a forward mutation suspension assay in Salmonella typhimurium using resistance to 8-azaguanine for

  8. New biomarkers of occupational exposure to polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Seidel, Albrecht; Spickenheuer, Anne; Straif, Kurt; Rihs, Hans-Peter; Marczynski, Boleslaw; Scherenberg, Michael; Dettbarn, Gerhard; Angerer, Jürgen; Wilhelm, Michael; Brüning, Thomas; Jacob, Jürgen; Pesch, Beate

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) are metabolized in a complex manner. Although biological activity is associated with diol-epoxide formation, phenolic metabolites have predominantly been used in human biomonitoring. In this study monohydroxylated and new metabolites were characterized as biomarkers for occupational PAH exposure. In 97 male workers, personal exposure to 16 airborne PAH compounds was measured during shift. In postshift urine, 1-hydroxypyrene and 1,6- and 1,8-dihydroxypyrene (1-OHP, DiOHP) were determined as metabolites of pyrene (P), and the sum of 1-, 2-, 3-, 4-, and 9-hydroxyphenanthrenes (OHPHE), and PHE-dihydrodiols (PHED) as metabolites of phenanthrene (PHE). The referent group comprised 21 nonsmoking construction workers. Median (interquartile range) shift concentrations of airborne P and PHE were 1.46 (0.62-4.05 microg/m(3)) and 10.9 (3.69-23.77 microg/m(3)), respectively. The corresponding parameters were 3.86 (2.08-7.44) microg/g creatinine (crn) for 1-OHP, 0.66 (0.17-1.65) microg/g crn for DiOHP, 11.44 (5.21-34.76) microg/g crn for OHPHE, and 12.28 (3.3-97.76) microg/g crn for PHED in PAH-exposed workers. The median levels of 1-OHP and OHPHE were 0.09 (0.08-0.17 microg/m(3)) and 0.59 (0.45-1.39 microg/m(3)), respectively, in the referents. PHE correlated significantly with OHPHE and PHED, and P with 1-OHP but not with DiOHP. Under a doubling of PHE, OHPHE increased by a factor of 1.56 and PHED by 1.57. With a doubling of P, 1-OHP rose by 1.31 and DiOHP by 1.27. P is predominantly metabolized into 1-OHP, whereas PHE is metabolized equally into OHPHE and PHED. Thus metabolites of PHE were found as reliable biomarkers for PAH exposure.

  9. Emissions of polycyclic aromatic hydrocarbons from coking industries in China

    Institute of Scientific and Technical Information of China (English)

    Ling Mu; Lin Peng; Junji Cao; Qiusheng He; Fan Li; Jianqiang Zhang; Xiaofeng Liu

    2013-01-01

    This study set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emission from coking industries,with field samplings conducted at four typical coke plants.For each selected plant,stack flue gas samples were collected during processes that included charging coal into the ovens (CC),pushing coke (PC) and the combustion of coke-oven gas (CG).Sixteen individual PAHs on the US EPA priority list were analyzed by gas chromatography/mass spectrometry (GC/MS).Results showed that the total PAH concentrations in the flue gas ranged from 45.776 to 414.874 μg/m3,with the highest emission level for CC (359.545 μg/m3).The concentration of PAH emitted from the CC process in CP1 (stamp charging) was lower than that from CP3 and CP4 (top charging).Low-molecular-weight PAHs (i.e.,two-to three-ring PAHs) were predominant contributors to the total PAH contents,and Nap,AcPy,Flu,PhA,and AnT were found to be the most abundant ones.Total BaPeq concentrations for CC (2.248 iμg/m3) were higher than those for PC (1.838 μg/m3) and CG (1.082 μg/m3),and DbA was an important contributor to carcinogenic risk as BaP in emissions from coking processes.Particulate PAH accounted for more than 20% of the total BaPeq concentrations,which were significantly higher than the corresponding contributions to the total PAH mass concentration (5%).Both particulate and gaseous PAH should be taken into consideration when the potential toxicity risk of PAH pollution during coking processes is assessed.The mean total-PAH emission factors were 346.132 and 93.173 μg/kg for CC and PC,respectively.

  10. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...

  11. Polycyclic aromatic hydrocarbons in the South American environment.

    Science.gov (United States)

    Barra, Ricardo; Castillo, Caroline; Torres, Joao Paulo Machado

    2007-01-01

    Pollution of the environment with polycyclic aromatic hydrocarbons (PAHs) should be a global concern, especially in urbanized areas. In South American countries, where notable increase in urban populations has been observed in the past few years, reliable information about the pollution status of these urban environments is not always easily accessible, and therefore an effort to collect updated information is required. This review attempts to contribute by analyzing the existing information regarding environmental levels of PAHs in some South American countries. A regional trend for environmental PAH information is an uneven contribution, because some countries, such as Bolivia, Peru, Paraguay, and Ecuador, have reported no information at all in the scientific literature, reflecting to a certain extent the different patterns of economic, technical, and scientific development. PAH air monitoring is one of the areas that has received the most attention during the last few years, mainly in Brazil, Chile, and Argentina, where data represent a few geographical areas within the region. PAH levels in air from some urban areas in Argentina, Brazil, and Chile, considered moderate to high (100-1000ng/m3), are probably among the highest values reported in the open literature. Urbanization, vehicle pollution, and wood fires are the principal contributors to the high reported levels. In more temperate areas, a clear distinction is observed between summer and winter levels. PAH monitoring in soils is very limited within the region, with few data available, and most information indicates widespread pollution. In Brazil, values for many representative ecosystems were found. In Chile, data from forestry and agricultural areas indicate in general low concentrations, in spite of a relatively high detection frequency. Pollution levels in soils are highly dependent on their closeness to PAH sources and certain cultural practices (agricultural burnings, forest fires, etc.). Water PAH

  12. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  13. Breakdown Products of Gaseous Polycyclic Aromatic Hydrocarbons Investigated with Infrared Ion Spectroscopy

    Science.gov (United States)

    Petrignani, A.; Vala, M.; Eyler, J. R.; Tielens, A. G. G. M.; Berden, G.; van der Meer, A. F. G.; Redlich, B.; Oomens, J.

    2016-07-01

    We report on a common fragment ion formed during the electron-ionization-induced fragmentation of three different three-ring polycyclic aromatic hydrocarbons (PAHs), fluorene (C13H10), 9,10-dihydrophenanthrene (C14H12), and 9,10-dihydroanthracene (C14H12). The infrared spectra of the mass-isolated product ions with m/z = 165 were obtained in a Fourier transform ion cyclotron resonance mass spectrometer whose cell was placed inside the optical cavity of an infrared free-electron laser, thus providing the high photon fluence required for efficient infrared multiple-photon dissociation. The infrared spectra of the m/z = 165 species generated from the three different precursors were found to be similar, suggesting the formation of a single {{{C}}}13{{{{H}}}9}+ isomer. Theoretical calculations using density functional theory (DFT) revealed the fragment's identity as the closed-shell fluorenyl cation. Decomposition pathways from each parent precursor to the fluorenyl ion are proposed on the basis of DFT calculations. The identification of a single fragmentation product from three different PAHs supports the notion of the existence of common decomposition pathways of PAHs in general and can aid in understanding the fragmentation chemistry of astronomical PAH species.

  14. Contribution of methyl group to secondary organic aerosol formation from aromatic hydrocarbon photooxidation

    Science.gov (United States)

    Li, Lijie; Qi, Li; Cocker, David R.

    2017-02-01

    The complete atmospheric oxidation pathways leading to secondary organic aerosol remain elusive for aromatic compounds including the role of methyl substitutes on oxidation. This study investigates the contribution of methyl group to Secondary Organic Aerosol (SOA) formation during the photooxidation of aromatic hydrocarbons under low NOx condition by applying methyl carbon labeled aromatic hydrocarbons ((13C2) m-xylene and (13C2) p-xylene). Particle and gas phase oxidation products are analyzed by a series of mass spectrometers (HR-TOF-AMS, PTR-MS and SIFT-MS). The methyl group carbon containing oxidation products partition to the particle-phase at a lower rate than the carbons originating from the aromatic ring as a result of ring opening reactions. Further, the methyl carbon in the original aromatic structure is at least 7 times less likely to be oxidized when forming products that partition to SOA than the aromatic ring carbon. Therefore, oxidation of the methyl group in xylenes exerts little impact on SOA formation in current study. This study provides supporting evidence for a recent finding - a similarity in the SOA formation and composition from aromatic hydrocarbons regardless of the alkyl substitutes.

  15. Cation-π Interaction between the Aromatic Organic Counterion and DTAB Micelle in Mixed Solvents

    Institute of Scientific and Technical Information of China (English)

    DENG,Dong-Shun(邓东顺); LI,Hao-Ran(李浩然); LIU,Di-Xia(刘迪霞); HAN,Shi-Jun(韩世钧)

    2004-01-01

    The cation-π interaction between the aromatic organic counterion potassium hydrogen phthalate (KHP) and DTAB micelle in aqueous mixture of EG was investigated, using the techniques of conductivity measurements, UV absorption spectrum and NMR spectrum. The conductivity and UV spectrum studies were with respect to the effect of KHP on DTAB and that of DTAB micelle on KHP, respectively. According to the chemical shift changes of the aromatic ring and the surfactant methylene protons, it can be assumed that KHP penetrated into DTAB micelle with its carboxylic group protruding out of the micellar surface. And the strength of the interaction became weaker with the content of EG in the mixed solvent increasing.

  16. C-Nucleosides Derived from Simple Aromatic Hydrocarbons.

    Science.gov (United States)

    Chaudhuri, Narayan C; Ren, Rex X-F; Kool, Eric T

    1997-04-01

    We describe the synthesis, structure and DNA incorporation of a class of novel aromatic C-deoxynucleosides in which benzenes and larger polycyclic aromatics serve as DNA base analogs. Novel approaches have been developed for glycosidic bond formation and for epimenzation of the anomeric substitutents to β-configuration, and we describe some of the properties of such compounds in DNA.

  17. Calculation of electron affinities of polycyclic aromatic hydrocarbons and solvation energies of their radical anion.

    Science.gov (United States)

    Betowski, Leon D; Enlow, Mark; Riddick, Lee; Aue, Donald H

    2006-11-30

    Electron affinities (EAs) and free energies for electron attachment (DeltaGo(a,298K)) have been directly calculated for 45 polynuclear aromatic hydrocarbons (PAHs) and related molecules by a variety of theoretical methods, with standard regression errors of about 0.07 eV (mean unsigned error = 0.05 eV) at the B3LYP/6-31 + G(d,p) level and larger errors with HF or MP2 methods or using Koopmans' Theorem. Comparison of gas-phase free energies with solution-phase reduction potentials provides a measure of solvation energy differences between the radical anion and neutral PAH. A simple Born-charging model approximates the solvation effects on the radical anions, leading to a good correlation with experimental solvation energy differences. This is used to estimate unknown or questionable EAs from reduction potentials. Two independent methods are used to predict DeltaGo(a,298K) values: (1) based upon DFT methods, or (2) based upon reduction potentials and the Born model. They suggest reassignments or a resolution of conflicting experimental EAs for nearly one-half (17 of 38) of the PAH molecules for which experimental EAs have been reported. For the antiaromatic molecules, 1,3,5-tri-tert-butylpentalene and the dithia-substituted cyclobutadiene 1, the reduction potentials lead to estimated EAs close to those expected from DFT calculations and provide a basis for the prediction of the EAs and reduction potentials of pentalene and cyclobutadiene. The Born model has been used to relate the electrostatic solvation energies of PAH and hydrocarbon radical anions, and spherical halide anions, alkali metal cations, and ammonium ions to effective ionic radii from DFT electron-density envelopes. The Born model used for PAHs has been successfully extended here to quantitatively explain the solvation energy of the C60 radical anion.

  18. Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations

    Science.gov (United States)

    Shi, Guosheng; Dang, Yaru; Pan, Tingting; Liu, Xing; Liu, Hui; Li, Shaoxian; Zhang, Lijuan; Zhao, Hongwei; Li, Shaoping; Han, Jiaguang; Tai, Renzhong; Zhu, Yiming; Li, Jichen; Ji, Qing; Mole, R. A.; Yu, Dehong; Fang, Haiping

    2016-12-01

    We experimentally observed considerable solubility of tryptophan (Trp) in a CuCl2 aqueous solution, which could reach 2-5 times the solubility of Trp in pure water. Theoretical studies show that the strong cation-π interaction between Cu2 + and the aromatic ring in Trp modifies the electronic distribution of the aromatic ring to enhance significantly the water affinity of Trp. Similar solubility enhancement has also been observed for other divalent transition-metal cations (e.g., Zn2 + and Ni2 + ), another aromatic amino acid (phenylalanine), and three aromatic peptides (Trp-Phe, Phe-Phe, and Trp-Ala-Phe).

  19. Radical cations of aromatic selenium compounds: role of Se···X nonbonding interactions.

    Science.gov (United States)

    Singh, Beena G; Thomas, Elizabeth; Sawant, Shilpa N; Takahashi, Kohei; Dedachi, Kenchi; Iwaoka, Michio; Priyadarsini, K Indira

    2013-09-26

    Selenium centered radical cations in aliphatic selenium compounds are stabilized by formation of two-center-three electron (2c-3e) hemi bonds either with nearby heteroatoms forming monomer radicals or with selenium atoms of the parent molecules forming dimer radicals. Such radicals in aromatic selenium compounds would generally be stabilized as monomers by the delocalization of the spin density along the aromatic ring. To test the assumption if aromatic selenides having Se···X nonbonding interactions can show different types of radical cations, we have performed pulse radiolysis studies of three structurally related aromatic selenium compounds and the results have been substantiated with cyclic voltammetry and quantum chemical calculations. The three aromatic selenium compounds have functional groups like -CH2N(CH3)2 (1), -CH2OH (2), and -CH3 (3) at ortho position to the -SeCH3 moiety. The energy of Se···X nonbonding interactions (E(nb)) for these compounds is in the order 1 (Se···N) > 2 (Se···O) > 3 (Se···H). Radical cations, 1(•+), 2(•+) and 3(•+) were produced by the one-electron oxidation of 1, 2 and 3 by radiolytically generated (•)OH and Br2(•-) radicals. Results on transient spectra, lifetime, and secondary reactions of 1(•+), 2(•+), and 3(•+) indicated that 1(•+) shows a significantly different absorption spectrum, longer lifetime, and less oxidizing power compared to those of 2(•+) or 3(•+). Quantum chemical calculations suggested that 1(•+) is stabilized by the formation of a 2c-3e bond between Se and N atoms, whereas 2(•+) and 3(•+) acquire stability through the delocalization of the spin density on the aromatic ring. These results provide evidence for the first time that stronger nonbonding interactions between Se···N in the ground state, facilitate the formation of stabilized radical cations, which can significantly influence the redox chemistry and the biological activity of aromatic selenium compounds.

  20. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    Science.gov (United States)

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  1. Historical polycyclic aromatic and petrogenic hydrocarbon loading in Northern Central Gulf of Mexico shelf sediments

    Energy Technology Data Exchange (ETDEWEB)

    Overton, E.B.; Ashton, B.M.; Miles, M.S. [Louisiana State University, Baton Rouge, LA (United States). Dept. of Environmental Studies

    2005-10-01

    The distribution of selected hydrocarbons within ten dated sediment cores taken from the Mississippi River Bight off coastal Louisiana suggests a chronic contaminant loading from several sources including the river itself, oil and gas exploration in the central Gulf of Mexico (GOM) shelf area, and natural geologic hydrocarbon seeps. Data were grouped as either total polycyclic aromatic hydrocarbons (PAH's), which were indicative of pyrogenic PAH's; or estimated total hopanes (indicative of petrogenic hydrocarbons). The total PAH concentrations and estimated total hopanes begin increasing above background levels (approximately 200 ng g{sup -1}) after the 1950s. The distribution of these hydrocarbons and hopanes within the dated sediment cores suggests that the Mississippi River is a regional source of pyrogenic PAH's, and that the hopanes are from natural geologic hydrocarbon seeps, oil and gas exploration in the GOM, or both. (author)

  2. Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil

    OpenAIRE

    Viñas, Marc; Sabaté, Jordi; Espuny, María José; Solanas, Anna M.

    2005-01-01

    Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87...

  3. Availability of polycyclic aromatic hydrocarbons in aging soils

    Energy Technology Data Exchange (ETDEWEB)

    Ling Wanting; Zeng Yuechun; Gao Yanzheng; Dang Hongjiao; Zhu Xuezhu [Coll. of Resource and Environmental Sciences, Nanjing Agricultural Univ. (China)

    2010-07-15

    Purpose: The soil contamination by hydrophobic organic contaminants (HOCs), such as polycyclic aromatic hydrocarbons (PAHs), poses great threats to human health and ecological security and attracts worldwide concerns. The total HOC concentrations overestimate its available fraction to the soil biota. Increased understanding of the availabilities of PAHs in soil environment will have considerable benefits for their risk assessment and be very instructive to food safety and remediation strategies in contaminated sites. However, the availability of PAHs in aging soils and particularly the correlations of the availabilities with their forms in soils have yet to be elucidated. In this work, the availabilities of PAHs in aging soils were evaluated using a sequential mild extraction technique. Materials and methods: Four typical zonal soils in China previously free of PAHs were collected from A (0-20 cm) horizon, air-dried, and sieved. Soils were spiked with a solution of phenanthrene and pyrene as representative PAHs in acetone. After the acetone evaporated off, the treated soils were progressively diluted with unspiked soils and sieved again several times to homogenize the soil samples. The forms of PAHs in soils were experimented using microcosms that are similar to those reported in literature. Various treated soils were packed into amber glass microcosms (each with 25 g soil). Three replications were given for each treatment. NaN{sub 3} solution (0.5%) was added to some microcosms in order to get the microbe-inhibited treatments. The soil water contents were adjusted to be 20% of soil water-holding capacity. After incubation for 0, 2, 4, 8, 12, and 16 weeks in microcosms with a temperature of 25 C, the soils were sampled. PAHs were then extracted by a sequential mild extraction technique, and their forms and availabilities were determined. Results and discussion: The available residual concentrations of phenanthrene and pyrene generally decreased with aging time, and

  4. Time-dependent density functional study of the electronic excited states of polycyclic aromatic hydrocarbon radical ions

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, So; Head-Gordon, Martin P; Szczepanski, Jan; Vala, Martin

    2003-06-19

    A uniform, comprehensive theoretical interpretation of spectroscopic data is presented for 53 radical ion species of polycyclic aromatic hydrocarbons (PAHs) with the aid of (Tamm–Dancoff) time-dependent density functional theory (TDDFT). TDDFT is capable of predicting the transition energies to the low-lying excited states of PAH ions with quantitative accuracy (the standard deviation from experimental results being less than 0.3 eV) and their intensity patterns qualitatively correctly. The accuracy is hardly affected by the sizes of PAH ions (azulene through dinaphthocoronene), the types of transitions (Koopmans or satellite transitions), the types of orbi-tals involved (π* ← π, π* ← σ, or σ* ← π transitions), the types of ions (cations or anions), or other geometrical or electronic perturbations (non-planarity, sp3 carbons, or heterocyclic or non-benzenoid rings).

  5. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    Science.gov (United States)

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  6. Sources and deposition of polycyclic aromatic hydrocarbons to western US national parks

    Science.gov (United States)

    Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify thei...

  7. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database: The Computed Spectra

    NARCIS (Netherlands)

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.; Allamandola, L. J.

    2010-01-01

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant t

  8. Polycyclic aromatic hydrocarbon-polluted dredged peat sediments and earthworms: a mutual interference

    NARCIS (Netherlands)

    Eijsackers, H.J.P.; Jonge, de S.; Muijs, B.; Slijkerman, D.; Gestel, van C.A.M.

    2001-01-01

    In lowland areas of the Netherlands, any peat sediments will gradually become enriched with anthropogenically derived Polycyclic Aromatic Hydrocarbons. Due to Dutch policy standards these (anaerobic) sediments are not allowed to be dredged and placed onto land. Under aerobic conditions, however, bio

  9. Availabiltiy and leaching of polycyclic aromatic hydrocarbons: Controlling processes and comparison of testing methods

    NARCIS (Netherlands)

    Roskam, G.; Comans, R.N.J.

    2009-01-01

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (¿16 US-EPA PAHs 3412 mg/kg) and gasworks soil (¿PAHs 900 mg/kg), by comparing results from three typical types of leaching tests: a column, se

  10. POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION AS A FUNCTION OF OXYGEN TENSION IN CONTAMINATED SOIL

    Science.gov (United States)

    Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was...

  11. Biotransformation of the polycyclic aromatic hydrocarbon pyrene in the marine polychaete Nereis virens

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Glessing, Anders M B; Rasmussen, Lene Juel

    2005-01-01

    In vivo and in vitro biotransformation of the polycyclic aromatic hydrocarbon (PAH) pyrene was investigated in the marine polychaete Nereis virens. Assays were designed to characterize phase I and II enzymes isolated from gut tissue. High-pressure liquid chromatography measurement of 1-hydroxypyr...

  12. Novel β-cyclodextrin modified quantum dots as fluorescent probes for polycyclic aromatic hydrocarbons (PAHs)

    Institute of Scientific and Technical Information of China (English)

    Cui Ping Han; Hai Bing Li

    2008-01-01

    Water-soluble CdSe/ZnS quantum dots (QDs)were prepared via a simple sonochemical procedure using β-cyclodextrin (CD)as surface coating agent.The QDs displayed a sensitive emission enhancement for anthracene over other related polycyclic aromatic hydrocarbons,and the detection limit was around 1.6 × 10-8 mol/L.

  13. The effects of polycyclic aromatic hydrocarbons on the chemistry of photodissociation regions

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM

    1998-01-01

    We have investigated the effects of including polycylic aromatic hydrocarbons (PAHs) on the abundance of neutral atoms and molecules for two typical photodissociation regions (PDRs): a high-density case (the Orion complex) and a low-density case. PAHs provide a large surface area for chemistry betwe

  14. Polycyclic aromatic hydrocarbons and dust in regions of massive star formation

    NARCIS (Netherlands)

    Peeters, Els

    2002-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are known on earth as a large family of tarry materials naturally present in for example coal and crude oil. In addition, they are also formed in the combustion of all sorts of carbonaceous fuels and hence are found in auto exhaust, cigarette smoke, candle soo

  15. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  16. Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates:A review

    Institute of Scientific and Technical Information of China (English)

    LIU Li-bin; LIU Yan; LIN Jin-ming; TANG Ning; HAYAKAWA Kazuichi; MAEDA Tsuneaki

    2007-01-01

    In the present work,the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.

  17. Empirical modeling of soot formation in shock-tube pyrolysis of aromatic hydrocarbons

    Science.gov (United States)

    Frenklach, M.; Clary, D. W.; Matula, R. A.

    1986-01-01

    A method for empirical modeling of soot formation during shock-tube pyrolysis of aromatic hydrocarbons is developed. The method is demonstrated using data obtained in pyrolysis of argon-diluted mixtures of toluene behind reflected shock waves. The developed model is in good agreement with experiment.

  18. Gas phase adiabatic electron affinities of cyclopenta-fused polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Todorov, P.D.; Koper, C.; van Lenthe, J.H.; Jenneskens, L.W.

    2008-01-01

    The B3LYP/DZP++ adiabatic electron affinity (AEA) of nine (non)-alternant polycyclic aromatic hydrocarbons are reported and discussed. Calculations became feasible for molecules this size by projecting out the near-linearly dependent part of the one-electron basis. Non-alternant PAH consisting of an

  19. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  20. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over fe-modified HZSM-5 zeolites

    Science.gov (United States)

    Iron modified HZSM-5 catalysts were prepared by partial ion exchange of NH4ZSM-5 with Fe (II) at three different loadings (1.4, 2.8 and 4.2 wt%), and their effectiveness for producing aromatic hydrocarbons from cellulose, cellobiose, lignin and switchgrass by catalytic pyrolysis were screened using ...

  1. Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions

    DEFF Research Database (Denmark)

    Mayer, Philipp; Fernqvist, M.M.; Christensen, P.S.

    2007-01-01

    Uptake of hydrophobic organic compounds into organisms is often limited by the diffusive transport through a thin boundary layer. Therefore, a microscale diffusion technique was applied to determine the diffusive mass transfer of 12 polycyclic aromatic hydrocarbons through water, air, surfactant...

  2. Elimination and accumulation of polycyclic aromatic hydrocarbons (PAHs) in urban stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Istenič, Daria; Arias, Carlos Alberto; Matamoros, Victor

    2011-01-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of seven wet detention ponds receiving urban stormwater were investigated. The ponds comprised traditional wet detention ponds with a permanent wet volume and a storage volume as well as ponds that were expanded...

  3. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...

  4. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil

    Science.gov (United States)

    A method for the determination of the 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in biochar and soil amended with biochar was developed. Samples were Soxhlet extracted with acetone:cyclohexane 1:1, and PAHs were analysed by GC-MS after silica gel clean-up. In a comparative study based on reflu...

  5. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.

    2001-01-01

    The occurrence of selected nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) associated with atmospheric particulate matter has been investigated at an urban site and at a semi-rural site. For this purpose an analysis method based on gas chromatography and tandem ion trap mass spectrometry has...

  6. Safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, K.; Williams, D.T.; Benoit, F.M.

    1979-01-01

    The safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water and industrial wastewaters in the US was studied by observing the reactions of naphthalene and methylnaphthalenes in essentially chlorine-free, aqueous chlorine dioxide solutions. Naphthalene and methylnaphthalenes yielded chlorinated derivatives and oxidation products. Further research is recommended.

  7. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  8. Longitudinal study of excretion of metabolites of polycyclic aromatic hydrocarbons in urine from two psoriatic patients

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Poulsen, O M; Menné, T

    1993-01-01

    Coal tar, which is widely used in the treatment of patients with atopic dermatitis, chronic eczema, and psoriasis, contains a large amount of polycyclic aromatic hydrocarbons (PAH). Some of the PAH compounds are known either to be carcinogenic or to potentiate the effects of other carcinogenic su...

  9. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    Science.gov (United States)

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  10. Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site

    DEFF Research Database (Denmark)

    Lara, E; Berney, C; Ekelund, Flemming

    2007-01-01

    We compared the abundance and diversity of cultivable protozoa (flagellates and amoebae) in a polycyclic aromatic hydrocarbon (PAH) polluted soil and an unpolluted control, by isolating and cultivating clonal strains. The number of cultivable protozoa was higher in the polluted soil; however...

  11. Effect of three polycyclic aromatic hydrocarbons on nodulation of Rhizobium tropici CIAT 899 on Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Paredes, Y.; Ferrera-Cerrato, R.; Alarcon, A.

    2009-07-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous organic pollutants that are considered toxic and carcinogenic compounds to living organisms. There us scarce information about the effect of PAH on symbiotic systems such as Azolla-Anabaena, arbuscular mycorrhizal fungi-plants, or legume-rhizobia. (Author)

  12. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Jonker, M.T.O.; Sinke, A.; Brils, J.M.; Murk, A.J.; Koelmans, A.A.

    2006-01-01

    Many sediments are contaminated with mixtures of oil residues and polycyclic aromatic hydrocarbons (PAHs), but little is known about the toxicity of such mixtures to sediment-dwelling organisms and the change in toxicity on weathering. In the present study, we investigated the effects of a seminatur

  13. Probing the role of polycyclic aromatic hydrocarbons in the photoelectric heating within photodissociation regions

    NARCIS (Netherlands)

    Okada, Y.; Pilleri, P.; Berné, O.; Ossenkopf, V.; Fuente, A.; Goicoechea, J. R.; Joblin, C.; Kramer, C.; Röllig, M.; Teyssier, D.; van der Tak, F. F. S.

    2013-01-01

    Aims: We observationally investigate the relation between the photoelectric heating efficiency in photodissociation regions (PDRs) and the charge of polycyclic aromatic hydrocarbons (PAHs), which are considered to play a key role in photoelectric heating. Methods: Using PACS onboard Herschel, we obs

  14. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-08-01

    Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene.

  15. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1994-01-01

    Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing

  16. Non-covalent Interactions of Graphene with Polycyclic Aromatic Hydrocarbons

    NARCIS (Netherlands)

    Zygouri, Panagiota; Potsi, Georgia; Mouzourakis, Eleftherios; Spyrou, Konstantinos; Gournis, Dimitrios; Rudolf, Petra

    2015-01-01

    In this mini review we discuss the interactions of polyaromatic hydrocarbons (PAHs) with graphene and the experimental approaches developed so far to create novel graphene/PAH hybrids and composite systems. The utilization of these systems in electrical, biomedical and polymer-reinforcement applicat

  17. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soi

  18. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water.

  19. Application of the cubic-plus-association (CPA) equation of state to complex mixtures with aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2006-01-01

    The cubic-plus-association (CPA) equation of state is applied to phase equilibria of mixtures containing alcohols, glycols, water, and aromatic or olefinic hydrocarbons. Previously, CPA has been successfully used for mixtures containing various associating compounds (alcohols, glycols, amines......, organic acids, and water) and aliphatic hydrocarbons. We show in this work that the model can be satisfactorily extended to complex vapor-liquid-liquid equilibria with aromatic or olefinic hydrocarbons. The solvation between aromatics/olefinics and polar compounds is accounted for. This is particularly...... of the model (the Soave-Redlich-Kwong (SRK) equation of state) can be obtained from mixtures with aliphatic hydrocarbons. For mixtures of glycols with aromatic hydrocarbons, two parameters have been fitted to experimental data, one in the physical (SRK) part and one in the association part of the model...

  20. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks.

    Directory of Open Access Journals (Sweden)

    Patrick Tarnow

    Full Text Available The majority of printing inks are based on mineral oils (MOs which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans.

  1. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks.

    Science.gov (United States)

    Tarnow, Patrick; Hutzler, Christoph; Grabiger, Stefan; Schön, Karsten; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The majority of printing inks are based on mineral oils (MOs) which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans.

  2. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    Science.gov (United States)

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-05

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  3. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: catalyst screening in a pyroprobe.

    Science.gov (United States)

    Du, Zhenyi; Ma, Xiaochen; Li, Yun; Chen, Paul; Liu, Yuhuan; Lin, Xiangyang; Lei, Hanwu; Ruan, Roger

    2013-07-01

    Catalytic pyrolysis of microalgae and egg whites was investigated to evaluate the performance of different zeolites for the production of aromatic hydrocarbons. Three zeolites with different structures (H-Y, H-Beta and H-ZSM5) were used to study the effect of catalyst type on the aromatic yield. All three catalysts significantly increased the aromatic yields from pyrolysis of microalgae and egg whites compared with non-catalytic runs, and H-ZSM5 was most effective with a yield of 18.13%. Three H-ZSM5 with silica-to-alumina ratios of 30, 80 and 280 were used to study the effect of Si/Al ratio on the aromatic yield. The maximum yield was achieved at the Si/Al ratio of 80, which provides moderate acidity to achieve high aromatic production and reduce coke formation simultaneously. Aromatic production increased with the incorporation of copper or gallium to HZSM-5. However, other studied metals either had no significant influence or led to a lower aromatic yield.

  4. Blockade of the aryl hydrocarbon receptor pathway triggered by dioxin, polycyclic aromatic hydrocarbons and cigarette smoke by Phellinus linteus.

    Science.gov (United States)

    Mukai, Mai; Kasai, Ayumi; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Okamura, Maro; Tagawa, Yasuhiro; Yao, Jian; Nakamura, Tomoyuki; Kitamura, Masanori

    2008-10-01

    Environmental pollutants including halogenated and polycyclic aromatic hydrocarbons activate the aryl hydrocarbon receptor (AhR) and thereby cause a wide range of pathological changes. Development of AhR antagonists will be useful for prevention and treatment of diseases related to AhR activation. Towards this end, we aimed in the present study at seeking for potential inhibitors of the AhR pathway in mycelial extracts using the dioxin responsive element-based sensing via secreted alkaline phosphatase (DRESSA). Through the screening of 13 mycelia, extracts prepared from Phellinus linteus, Cordyceps militaris and Hericium erinaceum inhibited activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin, benzo[a]pyrene or 3-methylcholanthrene. Subsequent studies revealed that only Phellinus linteus suppressed activation of AhR and AhR-dependent gene expression triggered by all of these agonists. Cigarette smoke is known to contain a number of halogenated and polycyclic aromatic hydrocarbons. We found that Phellinus linteus has the potential to block activation of AhR and AhR-dependent gene expression triggered by cigarette smoke. Furthermore, the inhibitory effect of Phellinus linteus on the AhR pathway was independent of; 1) depression of AhR or AhR nuclear translocator, and 2) induction of AhR repressor. We conclude that Phellinus linteus contains potent inhibitor(s) of AhR activation and may be useful for prevention of pathologies associated with aberrant activation of AhR.

  5. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  6. Determination of low concentrations of aromatic hydrocarbons in multicomponent mixtures with iso-octane and n-heptane

    Science.gov (United States)

    Vesnin, V. L.; Muradov, V. G.

    2011-11-01

    We have experimentally studied the absorption spectra of hydrocarbon mixtures based on n-heptane and isooctane with small (1%-2%) additions of aromatic hydrocarbons (benzene, toluene, xylene). The study was conducted in the region of the first overtones of the vibrational spectra for the hydrocarbon groups CH3, CH2, CH. We show that four-component modeling of the absorption spectrum of the hydrocarbon mixture and minimization of the deviation of the model spectrum from the experimental spectrum allow us to separately determine the content of the aromatic additives for concentrations from 1%.

  7. IUPAC-NIST Solubility Data Series. 101. Alcohols + Hydrocarbons + Water Part 3. C1-C3 Alcohols + Aromatic Hydrocarbons

    Science.gov (United States)

    Oracz, Paweł; Góral, Marian; Wiśniewska-Gocłowska, Barbara; Shaw, David G.; Mączyński, Andrzej

    2016-09-01

    The mutual solubilities and related liquid-liquid equilibria for 11 ternary systems of C1-C3 alcohols with aromatic hydrocarbons and water are exhaustively and critically reviewed. Reports of experimental determination of solubility that appeared in the primary literature prior to the end of 2012 are compiled. For nine systems, sufficient data are available (two or more independent determinations) to allow critical evaluation. All new data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, an additional criterion was used for each of the evaluated systems. These systems include one binary miscibility gap in the hydrocarbon + water subsystem. The binary tie lines were compared with the recommended values published previously.

  8. Removal of polycyclic aromatic hydrocarbons and phenols from coking wastewater by simultaneously synthesized organobentonite in a one-step process

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Wu; Lizhong Zhu

    2012-01-01

    The optimal condition for a one-step process removing organic compounds from coiking wastewater by simultaneously synthesized organobentonite as a pretreatment was investigated.Results showed that sorption of organic compounds by organobentonite was positively correlated to the cation surfactant exchange on the bentonite and the octanol-water partition coefficient (Kow) of the solutes.With 0.75 g/L bentonite and 180 mg/L (60% of bentonite cation exchange capacity) cetyltrimethylammonium bromide,the removal efficiencies of the 16 polycyclic aromatic hydrocarbon (PAHs) specified by the US Environmental Protection Agency in coking waste0water except naphthalene were more than 90%,and that of benzo(a)pyrene was 99.5%.At the same time,the removal efficiencies of CODCr,NH3-N,volatile phenols,colour and turbidity were 28.6%,13.2%,8.9%,55% and 84.3%,respectively,and the ratio of BOD5/CODcr increased from 0.31 to 0.41.These results indicated that the one-step process had high removal efficiency for toxic and refractory hydrophobic organic compounds,and could improve the biodegradability of the coking wastewater.Therefore it could be a promising technology for the pretreatment of toxic and refractory organic wastewater.

  9. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements

    Science.gov (United States)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang

    2017-01-01

    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  10. Dissolved and Suspended Polycyclic Aromatic Hydrocarbons (PAH in the North Aegean Sea

    Directory of Open Access Journals (Sweden)

    I. HATZIANESTIS

    2012-12-01

    Full Text Available The distribution and sources of polycyclic aromatic hydrocarbons (PAH were investigated in the seawater of the North Aegean Sea. The measured PAH concentrations in SPM are generally considered as elevated for open sea waters and were evenly distributed in the area. Their levels in the dissolved phase (1.6-33.0 ng/l were much higher than those encountered in the corresponding particulate phases (0.04-10.2 ng/l. The PAH patterns in both phases were dominated by the three ring aromatics and their alkylated derivatives, reflecting a predominant contribution of fossil hydrocarbons probably related to ship traffic, whereas no significant inputs from the rivers outfalling in the area were detected. In bottom waters PAH values were generally lower, whereas a higher depletion of the petroleum PAH in comparison with the pyrolytic ones according to depth was observed.

  11. Molecular variations in aromatic cosolutes: critical role in the rheology of cationic wormlike micelles.

    Science.gov (United States)

    Ito, Thiago H; Miranda, Paulo C M L; Morgon, Nelson H; Heerdt, Gabriel; Dreiss, Cécile A; Sabadini, Edvaldo

    2014-10-07

    Wormlike micelles formed by the addition to cetyltrimethylammonium bromide (CTAB) of a range of aromatic cosolutes with small molecular variations in their structure were systematically studied. Phenol and derivatives of benzoate and cinnamate were used, and the resulting mixtures were studied by oscillatory, steady-shear rheology, and the microstructure was probed by small-angle neutron scattering. The lengthening of the micelles and their entanglement result in remarkable viscoelastic properties, making rheology a useful tool to assess the effect of structural variations of the cosolutes on wormlike micelle formation. For a fixed concentration of CTAB and cosolute (200 mmol L(-1)), the relaxation time decreases in the following order: phenol > cinnamate> o-hydroxycinnamate > salicylate > o-methoxycinnamate > benzoate > o-methoxybenzoate. The variations in viscoelastic response are rationalized by using Mulliken population analysis to map out the electronic density of the cosolutes and quantify the barrier to rotation of specific groups on the aromatics. We find that the ability of the group attached to the aromatic ring to rotate is crucial in determining the packing of the cosolute at the micellar interface and thus critically impacts the micellar growth and, in turn, the rheological response. These results enable us for the first time to propose design rules for the self-assembly of the surfactants and cosolutes resulting in the formation of wormlike micelles with the cationic surfactant CTAB.

  12. The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18

    CERN Document Server

    Kokkin, Damian L; Nakajima, Masakazu; Nauta, Klaas; Varberg, Thomas D; Metha, Gregory F; Lucas, Nigel T; Schmidt, Timothy W

    2008-01-01

    The first optical spectrum of an isolated polycyclic aromatic hydrocarbon large enough to survive the photophysical conditions of the interstellar medium is reported. Vibronic bands of the first electronic transition of the all benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon ionization spectroscopy. The strongest feature at 4261 Angstrom is estimated to have an oscillator strength of f=1.4x10^-3, placing an upper limit on the interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12 cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study opens up the possibility to rigorously test neutral polycyclic aromatic hydrocarbons as carriers of the diffuse interstellar bands in the near future.

  13. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    Science.gov (United States)

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  14. Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus

    NARCIS (Netherlands)

    Lange, de H.J.; Sperber, V.; Peeters, E.T.H.M.

    2006-01-01

    Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of contaminant

  15. Synthesis of novel cationic lipids with fully or partially non-scissile linkages between the hydrocarbon chains and pseudoglyceryl backbone

    Indian Academy of Sciences (India)

    Santanu Bhattacharya; Saubhik Haldar

    2002-06-01

    Five novel cationic lipids with fully or partially non-scissile linkage regions between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. The membrane-forming properties of these new lipids are briefly presented.

  16. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants.

    OpenAIRE

    Tiehm, A

    1994-01-01

    The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation wa...

  17. Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons (PAH) biodegradation

    OpenAIRE

    A. C. Rodrigues; Nogueira, R; Melo, L. F.; A. G. Brito

    2013-01-01

    The present study is focused on the effect of synthetic surfactants, at low concentration, on the kinetics of polycyclic aromatic hydrocarbons (PAH) biodegradation by Pseudomonas putida ATCC 17514 and addresses the specific issue of the effect of the surfactant on bacterial adhesion to PAH, which is believed to be an important mechanism for the uptake of hydrophobic compounds. For that purpose, three surfactants were tested, namely, the nonionic Tween 20, the anionic sodium dodecyl sulphate (...

  18. Advances in the field of high‐molecular‐weight polycyclic aromatic hydrocarbon biodegradation by bacteria

    OpenAIRE

    Kanaly, Robert A.; Harayama, Shigeaki

    2010-01-01

    Summary Interest in understanding prokaryotic biotransformation of high‐molecular‐weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that...

  19. Use of Ionic Liquid-filled Semipermeable Membrane for Extraction of Polycyclic Aromatic Hydrocarbons in Water

    Institute of Scientific and Technical Information of China (English)

    Wen Yan ZHAO; Meng HAN; Shu Gui DAI; Xia ZHONG

    2005-01-01

    A novel and facile sample preparation method was developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in aqueous sample solution using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM] [PF6]) - filled semipermeable membrane. For24 hrs extraction of naphthalene, 1-methylnaphthalene, 2-chloronaphthalene, phenanthrene, the result showed that the extraction efficiency, correlation coefficient (R2) and RSD (n=5) were in the range of 67-102 %, 0.9870-0.9962, and 2.1-5.3 %, respectively.

  20. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons

    DEFF Research Database (Denmark)

    Hoff, Thomas C.; Gardner, David W.; Thilakaratne, Rajeeva

    2016-01-01

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents...... a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high...

  1. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children

    OpenAIRE

    Jedrychowski, Wiesław A.; Perera, Frederica P.; Camann, David; Spengler, John; Butscher, Maria; Mroz, Elzbieta; Majewska, Renata; Flak, Elżbieta; Jacek, Ryszard; Sowa, Agata

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced by combustion of fossil fuel and other organic materials. Both experimental animal and human studies have reported the harmful impacts of PAH compounds on fetal growth and neurodevelopment, including verbal IQ of children. Here, we have assessed the association between cognitive function of children and prenatal PAH exposures. The study is part of an ongoing, longitudinal investigation of the health effec...

  2. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39.

    OpenAIRE

    1996-01-01

    Three strains of Comamonas testosteroni were isolated from river sediment for the ability to degrade phenanthrene; two of the strains also grew on naphthalene, and one strain also grew on anthracene. The homology of the genes for polycyclic aromatic hydrocarbon degradation in these strains to the classical genes (nah) for naphthalene degradation from Pseudomonas putida NCIB 9816-4 was determined. The three C. testosteroni strains showed no homology to the nah gene probe even under low-stringe...

  3. Estimated IR and phosphorescence emission fluxes for specific Polycyclic Aromatic Hydrocarbons in the Red Rectangle

    CERN Document Server

    Mulas, G; Joblin, C; Toublanc, D

    2005-01-01

    Following the tentative identification of the blue luminescence in the Red Rectangle by Vijh et al. (2005), we compute absolute fluxes for the vibrational IR emission and phosphorescence bands of three small polycyclic aromatic hydrocarbons. The calculated IR spectra are compared with available ISO observations. A subset of the emission bands are predicted to be observable using presently available facilities, and can be used for an immediate, independent, discriminating test on their alleged presence in this well-known astronomical object.

  4. Emissions of Parent, Nitro, and Oxygenated Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion in Rural China

    OpenAIRE

    SHEN, Guofeng; TAO, SHU; WEI, Siye; ZHANG, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; HUANG, YE; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wang, Xilong; Liu, Wenxin

    2012-01-01

    Residential wood combustion is one of the important sources of air pollution in developing countries. Among the pollutants emitted, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives, including nitrated and oxygenated PAHs (nPAHs and oPAHs), are of concern because of their mutagenic and carcinogenic effects. In order to evaluate their impacts on regional air quality and human health, emission inventories, based on realistic emission factors (EFs), are needed. In this study,...

  5. Structural Vector Description and Estimation of Normal Boiling Points for 66 Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The correlation coefficient (R) between the estimated bp and experimental bp is 0.9988 and the root mean square error (RMS) is 7.907° C for 66 AHs. The RMS obtained by cross-validation is 9.131° C, which implies the relationship model having good prediction ability.

  6. Analysis of 23 polycyclic aromatic hydrocarbons in smokeless tobacco by gas chromatography-mass spectrometry

    OpenAIRE

    Stepanov, Irina; Villalta, Peter W.; Knezevich, Aleksandar; Jensen, Joni; Hatsukami, Dorothy; Hecht, Stephen S.

    2010-01-01

    Smokeless tobacco contains 28 known carcinogens and causes precancerous oral lesions and oral and pancreatic cancer. A recent study conducted by our research team identified 8 different polycyclic aromatic hydrocarbons (PAH) in U.S. moist snuff, encouraging further investigations of this group of toxicants and carcinogens in smokeless tobacco products. In this study, we developed a gas chromatography-mass spectrometry method that allows simultaneous analysis of 23 various PAH in smokeless tob...

  7. Fingerprint of polycyclic aromatic hydrocarbons in two populations of southern sea lions (Otaria flavescens).

    Science.gov (United States)

    Marsili, L; Fossi, M C; Casini, S; Savelli, C; Jimenez, B; Junin, M; Castello, H

    1997-02-01

    The fingerprint of 14 polycyclic aromatic hydrocarbons (PAHs) was investigated in biopsy, fur, blood, liver and faeces of live and dead specimens of two Argentinian population of southern sea lion (Otaria flavescens). One colony lives in Mar del Plata harbour which is particularly polluted with petroleum, the second (control) colony lives at Punta Bermeja (Patagonia). The highest concentrations of the five carcinogenic PAHs were found in the Mar del Plata sea lions.

  8. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    OpenAIRE

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactio...

  9. Molecular mechanics-valence bond method for planar conjugated hydrocarbon cations.

    Science.gov (United States)

    Hall, Katherine F; Tokmachev, Andrei M; Bearpark, Michael J; Boggio-Pasqua, Martial; Robb, Michael A

    2007-10-07

    We present an extension of the molecular mechanics-valence bond (MMVB) hybrid method to study ground and excited states of planar conjugated hydrocarbon cations. Currently, accurate excited state calculations on these systems are limited to expensive ab initio studies of smaller systems: up to 15 active electrons in 16 pi orbitals with complete active space self-consistent field (CASSCF) theory using high symmetry. The new MMVB extension provides a faster, cheaper treatment to investigate larger cation systems with more than 24 active orbitals. Extension requires both new matrix elements and new parameters: In this paper we present both, for the limited planar case. The scheme is tested for the planar radical cations of benzene, naphthalene, anthracene, and phenanthrene. Calculated MMVB relative energies are in good agreement with CASSCF results for equilibrium geometries on the ground and first excited states, and conical intersections.

  10. Complications with remediation strategies involving the biodegradation and detoxification of recalcitrant contaminant aromatic hydrocarbons.

    Science.gov (United States)

    Frenzel, Max; Scarlett, Alan; Rowland, Steven J; Galloway, Tamara S; Burton, Sara K; Lappin-Scott, Hilary M; Booth, Andy M

    2010-09-01

    Environmentally persistent aromatic hydrocarbons known as unresolved complex mixtures (UCMs) derived from crude oil can be accumulated by, and elicit toxicological responses in, marine organisms (e.g. mussels, Mytilus edulis). Comprehensive two-dimensional gas chromatography time-of-flight mass-spectrometry (GCxGC-ToF-MS) previously revealed that these UCMs included highly branched alkylated aromatic hydrocarbons. Here, the effects of biodegradation on the toxicity and chemical composition of an aromatic UCM hydrocarbon fraction isolated from Tia Juana Pesado (TJP) crude oil were examined. 48h exposure of mussels to the aromatic hydrocarbon fraction (F2) resulted in tissue concentrations of 900microgg(-1) (dry wt.) and approximately 45% decrease in clearance rate. Over 90% of the hydrocarbon burden corresponded to an UCM. Following a 5day recovery period, GCxGC-ToF-MS analysis of the tissues indicated depuration of most accumulated hydrocarbons and clearance rates returned to those observed in controls. To assess the potential of biodegradation to reduce UCM toxicity, TJP F2 was exposed to bacteria isolated from Whitley Bay, UK, for 46days. Mussels exposed to the undegraded TJP F2 from the abiotic control exhibited a reduction in clearance rate comparable with values for the pure crude oil TJP F2. Clearance rates of mussels exposed to biodegraded TJP F2 were statistically similar to seawater controls, suggesting biodegradation had reduced the TJP F2 toxicity. GCxGC-ToF-MS analysis revealed the same compound groups in the tissue of mussels exposed to pure TJP F2, undegraded TJP F2 and biodegraded TJP F2 samples; however >300 fewer compounds were observed in the biodegraded (954 compounds) compared to the undegraded TJP F2 (1261). The compound distributions were markedly different, possibly accounting for the decrease in toxicity. Extraction and analysis of pelleted bacterial cell material revealed that a significant proportion of the TJP F2 had adsorbed onto the

  11. Assessment of the bioavailability and phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rončević, Srđan; Spasojević, Jelena; Maletić, Snežana; Jazić, Jelena Molnar; Isakovski, Marijana Kragulj; Agbaba, Jasmina; Grgić, Marko; Dalmacija, Božo

    2016-02-01

    Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.

  12. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  13. Geochemical markers and polycyclic aromatic hydrocarbons in solvent extracts from diesel engine particulate matter.

    Science.gov (United States)

    Fabiańska, Monika; Kozielska, Barbara; Bielaczyc, Piotr; Woodburn, Joseph; Konieczyński, Jan

    2016-04-01

    Exhaust particulate from compression ignition (CI) engines running on engine and chassis dynamometers was studied. Particulate dichloromethane extracts were qualitatively and quantitatively analyzed for polycyclic aromatic hydrocarbons (PAHs) and biomarkers by gas chromatography with flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). PAH group profiles were made and the PAH group shares according to the number of rings (2 or 3; 4; 5 or more) as well as diagnostic indices were calculated. Values of geochemical ratios of selected biomarkers and alkyl aromatic hydrocarbons were compared with literature values. A geochemical interpretation was carried out using these values and biomarker and alkyl aromatic hydrocarbon distributions. It has been shown that geochemical features are unequivocally connected to the emission of fossil fuels and biofuels burned in CI engines. The effect of the exothermic combustion process is limited to low-molecular-weight compounds, which shows that the applied methodology permits source identification of PAHs coexisting in the particulate emitted.

  14. A method for removing aromatic hydrocarbons from liquid n-paraffins

    Energy Technology Data Exchange (ETDEWEB)

    Gayle, A.A.; Pavlyuk, N.F.; Proskuryakov, V.A.; Semenov, L.V.; Zakhrov, A.P.

    1982-01-01

    In the known method for removing aromatic hydrocarbons from liquid n-paraffins through liquid extraction by a selective solvent, in order to increase the output of the paraffins methoxyacetonitrile (I) is used as the selective solvent. The advantages of the extraction process using I are high output and quality of the purified paraffins and the possibility of using series produced extractors of medium effectiveness. The high selectivity of I relative to aromatic hydrocarbons, unlike low selective acetone in the known method and its high density (1.032) as compared with acetone (0.790) provide for effective mass exchange in industrial performance of the process. The regeneration of I from the extraction phase may be accomplished through rectification. In an example of single stage isolation of mixtures of n-tetradecane with 1,2,4,5-tetramethylbenzene and 1-methylnaphthaline (a temperature of 30 degrees, a ratio of solvent to raw material of 3, an aromatic hydrocarbon content in the mixture of 1.0 percent) showed the following.

  15. Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups: Intensity Scaling for the C–H Stretching Modes and Astrophysical Implications

    Science.gov (United States)

    Yang, X. J.; Li, Aigen; Glaser, R.; Zhong, J. X.

    2017-03-01

    The so-called unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μ {{m}} ubiquitously seen in a wide variety of astrophysical regions are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. Astronomical PAHs may have an aliphatic component, as revealed by the detection in many UIE sources of the aliphatic C–H stretching feature at 3.4 μ {{m}}. The ratio of the observed intensity of the 3.4 μ {{m}} feature to that of the 3.3 μ {{m}} aromatic C–H feature allows one to estimate the aliphatic fraction of the UIE carriers. This requires knowledge of the intrinsic oscillator strengths of the 3.3 μ {{m}} aromatic C–H stretch ({A}3.3) and the 3.4 μ {{m}} aliphatic C–H stretch ({A}3.4). Lacking experimental data on {A}3.3 and {A}3.4 for the UIE candidate materials, one often has to rely on quantum-chemical computations. Although the second-order Møller–Plesset (MP2) perturbation theory with a large basis set is more accurate than the B3LYP density functional theory, MP2 is computationally very demanding and impractical for large molecules. Based on methylated PAHs, we show here that, by scaling the band strengths computed at an inexpensive level (e.g., B3LYP/6-31G*), we are able to obtain band strengths as accurate as those computed at far more expensive levels (e.g., MP2/6-311+G(3df,3pd)). We calculate the model spectra of methylated PAHs and their cations excited by starlight of different spectral shapes and intensities. We find that {({I}3.4/{I}3.3)}{mod}, the ratio of the model intensity of the 3.4 μ {{m}} feature to that of the 3.3 μ {{m}} feature, is insensitive to the spectral shape and intensity of the exciting starlight. We derive a straightforward relation for determining the aliphatic fraction of the UIE carriers (i.e., the ratio of the number of C atoms in aliphatic units {N}{{C},{ali}} to that in aromatic rings {N}{{C},{aro}}) from the observed band ratios {({I}3.4/{I}3.3)}{obs}: {N

  16. Infrared spectra of protonated polycyclic aromatic hydrocarbon molecules: Azulene

    Science.gov (United States)

    Zhao, Dawei; Langer, Judith; Oomens, Jos; Dopfer, Otto

    2009-11-01

    The infrared (IR) spectrum of protonated azulene (AzuH+, C10H9+) has been measured in the fingerprint range (600-1800 cm-1) by means of IR multiple photon dissociation (IRMPD) spectroscopy in a Fourier transform ion cyclotron resonance mass spectrometer equipped with an electrospray ionization source using a free electron laser. The potential energy surface of AzuH+ has been characterized at the B3LYP/6-311G∗∗ level in order to determine the global and local minima and the corresponding transition states for interconversion. The energies of the local and global minima, the dissociation energies for the lowest-energy fragmentation pathways, and the proton affinity have been evaluated at the CBS-QB3 level. Comparison with calculated linear IR absorption spectra supports the assignment of the IRMPD spectrum to C4-protonated AzuH+, the most stable of the six distinguishable C-protonated AzuH+ isomers. Comparison between Azu and C4-AzuH+ reveals the effects of protonation on the geometry, vibrational properties, and the charge distribution of these fundamental aromatic molecules. Calculations at the MP2 level indicate that this technique is not suitable to predict reliable IR spectra for this type of carbocations even for relatively large basis sets. The IRMPD spectrum of protonated azulene is compared to that of isomeric protonated naphthalene and to an astronomical spectrum of the unidentified IR emission bands.

  17. DISTRIBUTION AND CHARACTERIZATION OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN AIRBORNE PARTICULATES OF EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Libin Liu; Jin-Ming Lin; Ning Tang; Kazuichi Hayakawa

    2006-01-01

    A review is presented on the distribution and characterization of polycyclic aromatic hydrocarbons (PAHs)and their derivatives, including nitro-PAHs and hydro-PAHs, on atmospheric particulates of East Asia. Generally, PAH compounds with two or three aromatic rings are released mainly into the gas phase, while those containing three or more aromatic rings are associated with particulate matter (PM) emission. Particle-associated PAHs are primarily adsorbed on fine particles, and little associated with coarse particles. Investigation into the concentration level of PAHs in different areas can serve not only to reflect the pollutant status and sources but also to lead to the formulation of control strategies.The results of the present study show that China has more severe PAH pollution than such East Asian countries as Japan and Korea.

  18. Aliphatic and aromatic hydrocarbons in particulate fallout of Alexandria, Egypt: Sources and implications

    Energy Technology Data Exchange (ETDEWEB)

    Aboul-Kassim, T.A.T.; Simoneit, B.R.T. [Oregon State Univ., Corvallis, OR (United States)

    1995-10-01

    Particulate fallout samples (PFS) were collected in Alexandria, and their aliphatic and aromatic hydrocarbon compositions were determined both quantitatively and qualitatively to characterize the homologous and biomarker compounds in terms of their original sources. The results show that all samples contain aliphatic hydrocarbons, including n-alkanes, UCM, isoprenoids, tri- and tetracyclic terpanes, hopanes, and steranes/diasteranes. The main source of these compounds is from petrochemical contamination with trace input of terrestrial higher plant wax. In addition, polycyclic aromatic hydrocarbons, which are considered to be combustion products from fossil fuels such as petroleum, are also widely distributed in all samples. Multivariate statistical analysis, including extended Q-mode factor analysis and linear programming technique, was performed in order to reduce the hydrocarbon data set into a meaningful number of end members (sources). This analysis indicates that there are two significant end members explaining 90% of the total variation among the samples and confirming petrochemical (79.6%), and thermogenic/pyrolytic (10.4%) sources in the PFS model. 65 refs., 7 figs., 4 tabs.

  19. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Marco-Urrea, Ernest; García-Romera, Inmaculada; Aranda, Elisabet

    2015-12-25

    In previous decades, white-rot fungi as bioremediation agents have been the subjects of scientific research due to the potential use of their unspecific oxidative enzymes. However, some non-white-rot fungi, mainly belonging to the Ascomycota and Zygomycota phylum, have demonstrated their potential in the enzymatic transformation of environmental pollutants, thus overcoming some of the limitations observed in white-rot fungi with respect to growth in neutral pH, resistance to adverse conditions and the capacity to surpass autochthonous microorganisms. Despite their presence in so many soil and water environments, little information exists on the enzymatic mechanisms and degradation pathways involved in the transformation of hydrocarbons by these fungi. This review describes the bioremediation potential of non-ligninolytic fungi with respect to chlorinated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) and also shows known conversion pathways and the prospects for future research.

  20. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  1. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery.

    Science.gov (United States)

    Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao

    2016-05-01

    A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies.

  2. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  3. Electronic spectroscopy of transient species in solid neon: the indene-motif polycyclic hydrocarbon cation family C9Hy(+) (y = 7-9) and their neutrals.

    Science.gov (United States)

    Nagy, Adam; Garkusha, Iryna; Fulara, Jan; Maier, John P

    2013-11-28

    In this Perspective the development and application of a mass-selective matrix isolation approach, employed with success over the last two decades in the spectroscopic characterization of numerous ions and neutral reactive species, is illustrated with original data for hydrocarbon cations and neutrals with a six- and a five-membered carbon ring fused. The setup allows for the electronic and vibrational assessment of these isolated molecules and ions in the inert neon environment. The transient species of interest are chosen due to their astrophysical relevance, and the role they play in flames, plasmas, combustion, organic reactions and atmospheric chemistry. Electronic absorption and fluorescence spectra of indene-related polycyclic aromatic hydrocarbon derivatives, C9Hy(+) (y = 7-9) cations, are presented. The ions were produced in a discharge source and investigated by means of absorption and emission spectroscopies after selectively trapping them in 6 K neon matrices. Photoconversion between the two C9H8(+) indenylium isomers and, upon irradiation, H2 loss from C9H9(+) were observed. Corresponding neutral species C9Hy are identified by photobleaching the matrices containing the cations.

  4. Evaluation of environmental levels of aromatic hydrocarbons in gasoline service stations by gas chromatography.

    Science.gov (United States)

    Periago, J F; Zambudio, A; Prado, C

    1997-08-22

    The volume of gasoline sold in refuelling operations and the ambient temperature, can increase significantly the environmental levels of aromatic hydrocarbon vapours and subsequently, the occupational risk of gasoline service station attendants, specially in the case of benzene. We have evaluated the occupational exposure to aromatic hydrocarbons by means of personal-breathing-zone samples of gasoline vapours in a service station attendant population. This evaluation was carried out using diffusive samplers, in two periods at quite different temperatures (March and July). A significant relationship between the volume of gasoline sold during the shift and the ambient concentration of benzene, toluene, and xylenes was found for each worker sampled. Furthermore a significant difference was found between the time-weighted average concentration of aromatic compounds measured in March, with ambient temperatures of 14-15 degrees C and July, with temperatures of 28-30 degrees C. In addition, 20% of the population sampled in the last period were exposed to a time-weighted average concentration of benzene above the proposed Threshold Limit Value of 960 micrograms/m(3) of the American Conference of Governmental Industrial Hygienists (ACGIH).

  5. Docosahexaenoic acid regulates gene expression in HUVEC cells treated with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Gdula-Argasińska, Joanna; Czepiel, Jacek; Totoń-Żurańska, Justyna; Jurczyszyn, Artur; Perucki, William; Wołkow, Paweł

    2015-07-16

    The molecular mechanism of inflammation and carcinogenesis induced by exposure of polycyclic aromatic hydrocarbons (PAHs) is not clearly understood. Our study was undertaken due to the strong pro-carcinogenic potential and reactivity of PAH-metabolites, as well as the susceptibility of polyunsaturated fatty acids to oxidation. The aim of this study was to evaluate the pro- or anti-inflammatory impact of n-3 docosahexaenoic acid on human primary umbilical vein endothelial cells (HUVEC) exposed to polycyclic aromatic hydrocarbons. We analysed the influence of docosahexaenoic acid (DHA) and/or PAHs supplementation on the fatty acid profile of cell membranes, on cyclooxygenase-2 (COX-2), aryl hydrocarbon receptor (AHR), and glutathione S transferase Mu1 (GSTM1) protein expression as well as on the prostaglandin synthase 2 (PTGS2), AHR, GSTM1, PLA2G4A, and cytochrome P450 CYP1A1 gene expression. We observed that COX-2 and AHR protein expression was increased while GSTM1 expression was decreased in cells exposed to DHA and PAHs. Docosahexaenoic acid down-regulated CYP1A1 and up-regulated the AHR and PTGS2 genes. Our findings suggested that DHA contributes significantly to alleviate the harmful effects caused by PAHs in endothelial cells. Moreover, these results suggest that a diet rich in n-3 fatty acids is helpful to reduce the harmful effects of PAHs exposure on human living in heavily polluted areas.

  6. C-H and N-H bond dissociation energies of small aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barckholtz, C.; Barckholtz, T.A.; Hadad, C.M.

    1999-01-27

    A survey of computational methods was undertaken to calculate the homolytic bond dissociation energies (BDEs) of the C-H and N-H bonds in monocyclic aromatic molecules that are representative of the functionalities present in coal. These include six-membered rings (benzene, pyridine, pyridazine, pyrimidine, pyrazine) and five-membered rings (furan, thiophene, pyrrole, oxazole). By comparison of the calculated C-H BDEs with the available experimental values for these aromatic molecules, the B3LYP/6-31G(d) level of theory was selected to calculate the BDEs of polycyclic aromatic hydrocarbons (PAHs), including carbonaceous PAHs (naphthalene, anthracene, pyrene, coronene) and heteroatomic PAHs (benzofuran, benzothiophene, indole, benzoxazole, quinoline, isoquinoline, dibenzofuran, carbazole). The cleavage of a C-H or a N-H bond generates a {sigma} radical that is, in general, localized at the site from which the hydrogen atom was removed. However, delocalization of the unpaired electron results in {approximately} 7 kcal {center{underscore}dot} mol{sup {minus}1} stabilization of the radical with respect to the formation of phenyl when the C-H bond is adjacent to a nitrogen atom in the azabenzenes. Radicals from five-membered rings are {approximately} 6 kcal {center{underscore}dot} mol{sup {minus}1} less stable than those formed from six-membered rings due to both localization of the spin density and geometric factors. The location of the heteroatoms in the aromatic ring affects the C-H bond strengths more significantly than does the size of the aromatic network. Therefore, in general, the monocyclic aromatic molecules can be used to predict the C-H BDE of the large PAHs within 1 kcal {center{underscore}dot} mol{sup {minus}1}.

  7. Distribution and Geochemical Implication of Aromatic Hydrocarbons across the Meishan Permian-Triassic Boundary

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Aromatic compounds extracted from sedimentary rocks can reflect environmental conditions, organic sources and maturity. The aromatics, identified in association with mass extinction in particular, would provide a signature assisting our understanding of the causes of the biotic crisis. Aromatic hydrocarbons were fractionated from the total lipid extracts of 37 samples taken from the Permian Triassic boundary (beds 23 to 34) of section B at Meishan(煤山),Zhejiang(浙江)Province in South China. These aromatics were analyzed by using gas chromatography-mass spectrometry (GC-MS). Main compounds identified include naphthalene, phenanthrenes, fluorene, dibenzothiophene, dibenzofuran, fluoranthene, pyrene and some of their methyl homologues. The indices of methyl phenanthrene distribution fraction indicate the comparable maturity (within the oil window, 0.7% - 1.0% of the mean vitrinite reflectance) of the organic matter throughout the whole profile analyzed. The ratio of dibenzothiophene to phenanthrene (DBT/PHN) varies generally at a comparable pace with lithology. Significantly,a gradual decrease of this ratio was observed within bed 24 limestone, which is probably due to the variation of sedimentary environment. This change is in line with the drop in the carbon isotope composition of carbonate, the loss of the Changhsingian reef ecosystem, and the decrease of cyanobacteria abundance within the bacteria population. The coincidence of these records suggests a close relation between the biotic crisis and marine environmental conditions, and these records clearly show the onset of the biotic crisis prior to event bed 25.

  8. Laboratory studies of polycyclic aromatic hydrocarbons: the search for interstellar candidates

    CERN Document Server

    Joblin, C; Simon, A; Mulas, G

    2009-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are considered as a major constituent of interstellar dust. They have been proposed as the carriers of the Aromatic Infrared Bands (AIBs) observed in emission in the mid-IR. They likely have a significant contribution to various features of the extinction curve such as the 220 nm bump,the far-UV rise and the diffuse interstellar bands. Emission bands are also expected in the far-IR, which are better fingerprints of molecular identity than the AIBs. They will be searched for with the Herschel Space Observatory. Rotational emission is also expected in the mm range for those molecules which carry significant dipole moments. Despite spectroscopic studies in the laboratory, no individual PAH species could be identified. This emphasises the need for an investigation on where interstellar PAHs come from and how they evolve due to environmental conditions: ionisation and dissociation upon UV irradiation, interactions with electrons, gas and dust. There is also evidence for PAH ...

  9. Sorption of polycyclic aromatic hydrocarbons (PAHs) to lignin: effects of hydrophobicity and temperature.

    Science.gov (United States)

    Zhang, Ming; Ahmad, Mahtab; Lee, Sang Soo; Xu, Li Heng; Ok, Yong Sik

    2014-07-01

    The study of the sorption of contaminants to lignin is significant for understanding the migration of contaminants in the environment as well as developing low cost sorbent. In this study, sorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene, acenaphthene and phenanthrene, to lignin was investigated. Sorption isotherms were well described by both linear and Freundlich sorption models. Sorption coefficients of PAHs to lignin from water obtained from regression of both linear model (K d) and Freundlich model (K f) were highly positively correlated with hydrophobicity of PAHs. The amorphous structure of lignin provided sufficient sorption domain for partitioning of PAHs, and the attraction between PAHs molecules and aromatic fractions in lignin via π-π electron-donor-acceptor (π-π EDA) interaction is hypothesized to provide a strong sorption force. Thermodynamic modeling revealed that sorption of PAHs to lignin was a spontaneous and exothermic process.

  10. Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark.

    Science.gov (United States)

    Li, Yungui; Chen, Baoliang; Zhu, Lizhong

    2010-10-01

    To enhance removal efficiency of natural sorbent with polycyclic aromatic hydrocarbons (PAHs), single-solute and bi-solute sorption of phenanthrene and pyrene onto raw and modified pine bark were investigated. Pine bark was modified using Soxhlet extraction, saponification and acid hydrolysis, yielding six bark fractions with different chemical compositions. Raw pine bark exhibited high affinities with PAHs, and sorption was dominated by partitioning. The relatively nonlinear sorption isotherms of modified bark were attributed to the specific interaction between sorbate and aromatic core of sorbent. Comparison with lipid and suberin, lignin was the most powerful sorption medium, but which was almost completely suppressed by coexisting polysaccharide. After consuming polysaccharide by acid hydrolysis, sorption of pine bark fractions was notably increased (4-17 folds); and sorption of pyrene just decreased 16-34% with phenanthrene as a competitor. These observations suggest that pine bark is of great potential for PAHs removal and can be significantly promoted by acid hydrolysis for environmental application.

  11. Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Sharma, Swati; Habib, Gazala; Gupta, Tarun

    2015-08-01

    Airborne submicron particles (PM1) were collected using PM1 sampler during the fog-dominated days (December 2013-January 2014). PM1 values varied between 58.12 μg/m(3) and 198.75 μg/m(3), and average mass concentration was 162.33 ± 38.25 μg/m(3) while total average concentration of particle-associated polycyclic aromatic hydrocarbon (PAHs) determined was 616.31 ± 30.31 ng/m(3). This is a signal for an alarming high pollution level at this site situated in the Indo-Gangetic Plain (IGP). PAHs were extracted from filters using toluene and acetonitrile. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the high performance liquid chromatography (HPLC) technique. The extracts were analyzed for 16 target polycyclic aromatic hydrocarbons (PAHs) including carcinogenic compound benzo(a)pyrene (19.86 ± 38.98 ng/m(3)). Fluoranthene, benzo(a)anthracene, anthracene, and fluorene were the predominant compounds found in the samples collected during foggy days. Based on number of rings, four-ring PAH compounds had maximum contribution (43%) in this fog time collected submicron particles followed by three-ring (21%), five-ring (20%), six-ring (13%), and two-ring (3%), respectively. In winter and foggy days, wood and coal combustion and biomass burning also significantly contribute to the PAH levels. However, diagnostic ratio suggests diesel emissions as the prime source of PAHs at this sampling site.

  12. Aromatic C-H Bond Functionalization Induced by Electrochemically in Situ Generated Tris(p-bromophenyl)aminium Radical Cation: Cationic Chain Reactions of Electron-Rich Aromatics with Enamides.

    Science.gov (United States)

    Li, Long-Ji; Jiang, Yang-Ye; Lam, Chiu Marco; Zeng, Cheng-Chu; Hu, Li-Ming; Little, R Daniel

    2015-11-01

    An effective Friedel-Crafts alkylation reaction of electron-rich aromatics with N-vinylamides, induced by electrochemically in situ-generated TBPA radical cation, has been developed; the resulting adducts are produced in good to excellent yields. In the "ex-cell" type electrolysis, TBPA is transformed to its oxidized form in situ and subsequently employed as an electron transfer reagent to initiate a cationic chain reaction. An easily recoverable and reusable polymeric ionic liquid-carbon black (PIL-CB) composite was also utilized as a supporting electrolyte for the electrochemical generation of TBPA cation radical, without sacrificing efficiency or stability after four electrolyses. Cyclic voltammetry analysis and the results of control experiments demonstrate that the reaction of electron-rich aromatics and N-vinylamides occurs via a cationic chain reaction, which takes place though an oxidative activation of a C-H bond of electron-rich aromatics instead of oxidation of the N-vinylamide as previously assumed.

  13. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  14. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.

    Science.gov (United States)

    Wang, Ying; Yang, Xianhai; Wang, Juying; Cong, Yi; Mu, Jingli; Jin, Fei

    2016-05-05

    In the present study, quantitative structure-activity relationship (QSAR) techniques based on toxicity mechanism and density functional theory (DFT) descriptors were adopted to develop predictive models for the toxicity of alkylated and parent aromatic hydrocarbons to Vibrio fischeri. The acute toxicity data of 17 aromatic hydrocarbons from both literature and our experimental results were used to construct QSAR models by partial least squares (PLS) analysis. With consideration of the toxicity process, the partition of aromatic hydrocarbons between water phase and lipid phase and their interaction with the target biomolecule, the optimal QSAR model was obtained by introducing aqueous freely dissolved concentration. The high statistical values of R(2) (0.956) and Q(CUM)(2) (0.942) indicated that the model has good goodness-of-fit, robustness and internal predictive power. The average molecular polarizability (α) and several selected thermodynamic parameters reflecting the intermolecular interactions played important roles in the partition of aromatic hydrocarbons between the water phase and biomembrane. Energy of the highest occupied molecular orbital (E(HOMO)) was the most influential descriptor which dominated the toxicity of aromatic hydrocarbons through the electron-transfer reaction with biomolecules. The results demonstrated that the adoption of freely dissolved concentration instead of nominal concentration was a beneficial attempt for toxicity QSAR modeling of hydrophobic organic chemicals.

  15. Influence of smoking parameters on the concentration of polycyclic aromatic hydrocarbons (PAHs) in Danish smoked fish

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Christensen, J. H.; Højgård, A.

    2010-01-01

    ), solid-phase extraction (silica gel), and gas chromatography-mass spectrometry analysis. The sum concentration of 25 PAHs (Sigma PAH25) was highest in smoked herring (n = 3) and mackerel fillets (n = 13), with an average concentration of 320 and 235 mu g kg-1, respectively. Lowest average Sigma PAH25......A new method for the analysis of 25 polycyclic aromatic hydrocarbon (PAH) compounds in fish was developed, validated, and used for the quantification of PAHs in 180 industrially smoked fish products. The method included pressurized liquid extraction, gel-permeation chromatography (Bio-beads S-X3...

  16. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and

    Directory of Open Access Journals (Sweden)

    Hussein I. Abdel-Shafy

    2016-03-01

    The aim of this review is to discuss PAHs impact on the environmental and the magnitude of the human health risks posed by such substances. They also contain important information on concentrations, burdens and fate of polycyclic aromatic hydrocarbons (PAHs in the atmosphere. The main anthropogenic sources of PAHs and their effect on the concentrations of these compounds in air are discussed. The fate of PAHs in the air, their persistence and the main mechanisms of their losses are presented. Health hazards associated with PAH air pollution are stressed.

  17. Medium scale spatial structures of polycyclic aromatic hydrocarbons in the topsoil of Tianjin area

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.J.; Zheng, Y.; Liu, R.M.; Li, B.G.; Cao, J.; Tao, S. [Peking University, Beijing (China). Dept. of Urban & Environmental Science, MOE Lab. for Earth Surface Process

    2003-07-01

    The spatial distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in soil are important to regional environmental assessment. In this paper, the spatial structural features of sixteen prior PAH compounds in the topsoil of Tianjin area, as well as soil properties, were studied. Results showed that medium scale spatial autocorrelations were well revealed. Spherical models with sills could be used to fit all experimental variograms. The spatial structures of PAHs contents demonstrated significant anisotropy. Air precipitation caused by the combustion of coal was the key factor in the formation of the spatial structural patterns of PAHs in the topsoil of Tianjin area.

  18. Structures and electronic properties of thin-films of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Yutaka [Asahi-Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka (Japan)], E-mail: natsume.yc@om.asahi-kasei.co.jp; Minakata, Takashi; Aoyagi, Takeshi [Asahi-Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka (Japan)

    2009-03-02

    We report the fabrication and characterization of organic thin-film transistors (TFTs) using several polycyclic aromatic hydrocarbons (PAHs). Pentacene, ovalene, dibenzocoronene and hexabenzocoronene were deposited as organic semiconductors on silicon wafers with gold electrodes as the bottom-contact configuration of the TFTs. The pentacene TFT showed the highest field-effect mobility of more than 0.1 cm{sup 2}/Vs in comparison with the other PAHs. The results clarified that the high field-effect mobility of the pentacene thin film is due to large grain size and intrinsic electronic properties.

  19. Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

    DEFF Research Database (Denmark)

    Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

    Recently, there has been an augmented focus on the increasing amount of pesticides, drug residues and endocrine disruptors present in waste and drinking water1. These pollutants represent a challenge in water purification since they may be hazardous to human health even in low doses2. Cyclodextrins...... of the textile fibers. In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification....

  20. Contamination of soils in the urbanized areas of Belarus with polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Kukharchyk, T. I.; Khomich, V. S.; Kakareka, S. V.; Kurman, P. V.; Kozyrenko, M. I.

    2013-02-01

    The content of polycyclic aromatic hydrocarbons (PAHs) in the soils of urbanized areas, including the impact zones of Belarus, were studied. The concentrations of 16 PAHs in the soils were determined for individual and high-rise building zones, forests, and forest parks of Belarus. The levels of the PAH accumulation in the soils of different industrial enterprises and boiler stations were analyzed. Possible sources of soil contamination with PAHs were considered, and the structure of the PAHs in the soils was shown. The levels of the soil contamination were determined from the regulated parameters for individual compounds and the sum of 16 PAHs.

  1. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China

    Science.gov (United States)

    Liu, Jihua; Hu, Ningjing; Shi, Xuefa

    2015-04-01

    Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China Liu Jihua, Hu Ningjing, Shi Xuefa First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous organic contaminants in the environment. Indeed, 16 PAH compounds have been listed as priority pollutants by the United States Environmental Protection Agency and the European Union because of their potential toxicity to humans and ecosystems. As POPs are released or escape into the environment, their global accumulation in marine sediments generates a complex balance between inputs and outputs. Furthermore, PAHs in coastal sediments can serve as effective tracers of materials transport from land-to-sea (Fang et al., 2009). Hence, investigations of PAHs in sediments can provide useful information for further understanding of environmental processes and material transport. In this study, sixteen polycyclic aromatic hydrocarbons (PAHs) were extracted from a total of 112 surface sediment samples collected across the entire territory of the Bohai Sea. The detectable concentrations of PAHs ranged from 97.2 to 300.7 ng/g across all samples, indicating low contamination levels of PAHs compared with reported values for other coastal sediments in China and developed countries. The highest concentrations were found within three belts in the vicinity of Luan River Estuary-Qinhuangdao Harbor, the Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The distribution patterns of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from offshore oil exploration, sewage discharge from rivers and shipping activities. Further Principal components analysis (PCA)/multivariate linear regression (MLR) analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion and traffic

  2. Dermal uptake of polycyclic aromatic hydrocarbons after hairwash with coal-tar shampoo

    Energy Technology Data Exchange (ETDEWEB)

    Schooten, F.-J. van; Moonen, E.J.C.; Rhijnsburger, E.; Agen, B. van; Thijssen, H.H.W.; Kleinjans, J.C.S. [University of Limburg, Maastricht (Netherlands). Dept. of Health Risk Analysis and Toxicology

    1994-11-26

    Describes an experiment to assess the dermal uptake of polycyclic aromatic hydrocarbons (PAHs) after hairwashing with coal tar antidandruff shampoo. The urinary excretion of 1-hydroxypyrene (1-OH-P), a PAH metabolile was used to assess internal dose of PAH. A single use of coal tar shampoo resulted in increased 1-OH-P excretion in all members of the experimental group compared with the control group using a non-coal tar antidandruff shampoo. It is suggested that repeated use of coal tar shampoo would result in a high internal dose of carcinogenic PAH. 5 refs., 1 fig.

  3. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS IN SEAFOODS CAUGHT IN CORIGLIANO CALABRO GULF (CS,ITALY

    Directory of Open Access Journals (Sweden)

    R. Marrone

    2012-08-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs were determined by high performance liquid chromatography (HPLC with fluorescence detection in seafoods (Merluccius merluccius, Arnoglossus laterna, Scomber japonicus, Penaeus kerathurus, Eledone cirrhosa collected along coasts of Corigliano Calabro gulf (Calabria Region - Italy. The results showed that Bap levels exceeded the limit fixed by EU Regulation 1881/2006 in only four samples of Merluccius merluccius, Arnoglossus laterna and Scomber japonicus particularly. PAH concentrations detected in samples caught in winter were higher than those found in summer.

  4. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63...... for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...

  5. Batch washing of saturated hydrocarbons and polycyclic aromatic hydrocarbons from crude oil contaminated soils using bio-surfactant

    Institute of Scientific and Technical Information of China (English)

    张文

    2015-01-01

    Desorption of total saturated fractions (i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions (i.e. PAH, defined as the summation of the concentrations of all polycyclic aromatic fractions including the 16 EPA priority PAH) in two types of soils subjected to the changes of pH and salinity and different bio-surfactant concentrations were investigated. In general, compared with the experiments without bio-surfactant addition, adding rhamnolipid to crude oil−water systems at concentrations above its critical micelle concentration (CMC) values benefits SAT and PAH desorption. The results indicate that the change of pH could have distinct effects on rhamnolipid performance concerning its own micelle structure and soil properties. For loam soil, the adsorption of non-aqueous phase liquid (NAPL) and rhamnolipid would be the principle limiting factors during the NAPL removal procedure. For sand soil, less amount of rhamnolipid is adsorbed onto soil. Thus, with the increase of salinity, the solubilization and desorption of rhamnolipid solution are more significant. In summary, the pH and salt sensitivity of the bio-surfactant will vary according to the specific structure of the surfactant characteristics and soil properties.

  6. Oil and gas potential assessment for coal measure source rocks on absolute concentration of n-alkanes and aromatic hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Absolute concentration of normal alkanes(n-alkanes) and aromatic hydrocarbons in bitumen extracted from source rocks in the period of thermodegradation from Turpan-Hami Basin suggests that aromatic hydrocarbons are dominant in coal and carbargilite while n-alkanes are dominant in mudstones. Bulkrock analysis and gas chromatograph/mass spectrum(GC-MS) of source rocks shows aromatic hydrocarbons are dominant in total ion chromatograms(TIC) of samples with poor perhydrous macerals while n-alkanes are dominant in TICs of samples with abundant perhydrous macerals. The identification of oil-prone and gas prone property based on GC-MS of bitumen "A" together with bulkrock analysis indicates that source rocks from Shengbei area are more oil-prone while source rocks from Qiudong and Xiaocaohu areas are more gas-prone,coinciding with the distribution of oil and gas reservoirs in Taibei Sag. Ratios used to identify oil-prone and gas-prone property for source rocks from Turpan Basin are proposed:n-alkanes >110 μg·mg-1,aromatics <15 μg·mg-1,and n-alkanes/aromatics >8 for oil-prone source rock bitumen while n-alkanes<82 μg·mg-1,aromatics >40 μg·mg-1,and n-alkanes/aromatics <1.5 for gas-prone source rock bitumen.

  7. Identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar.

    Science.gov (United States)

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A

    2016-04-15

    A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context.

  8. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.

    Science.gov (United States)

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2011-12-23

    Reversed-phase liquid chromatography (RPLC) is the foremost technique for the separation of analytes that have very similar chemical functionalities, but differ only in their molecular shape. This ability is crucial in the analysis of various mixtures with environmental and biological importance including polycyclic aromatic hydrocarbons (PAHs) and steroids. A large amount of effort has been devoted to studying this phenomenon experimentally, but a detailed molecular-level description remains lacking. To provide some insight on the mechanism of shape selectivity in RPLC, particle-based simulations were carried out for stationary phases and chromatographic parameters that closely mimic those in an experimental study by Sentell and Dorsey [J. Chromatogr. 461 (1989) 193]. The retention of aromatic hydrocarbons ranging in size from benzene to the isomeric PAHs of the formula C(18)H(12) was examined for model RPLC systems consisting of monomeric dimethyl octadecylsilane (ODS) stationary phases with surface coverages ranging from 1.6 to 4.2 μmol/m(2) (i.e., stationary phases yielding low to intermediate shape selectivity) in contact with a 67/33 mol% acetonitrile/water mobile phase. The simulations show that the stationary phase acts as a very heterogeneous environment where analytes with different shapes prefer different spatial regions with specific local bonding environments of the ODS chains. However, these favorable retentive regions cannot be described as pre-existing cavities because the chain conformation in these local stationary phase regions adapts to accommodate the analytes.

  9. Firefighting instructors' exposures to polycyclic aromatic hydrocarbons during live fire training scenarios.

    Science.gov (United States)

    Kirk, Katherine M; Logan, Michael B

    2015-01-01

    Cumulative exposures of firefighting instructors to toxic contaminants generated from live-fire training potentially far exceed firefighter exposures arising from operational fires. This study measured the atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) outside and inside the structural firefighting ensembles worn by instructors during five live fire training evolutions. In addition, the contamination of ensembles by deposition of PAHs was characterized. Concentrations of polycyclic aromatic hydrocarbons outside the instructors' structural firefighting ensembles during the training evolutions ranged from 430 μg/m(3) to 2700 μg/m(3), and inside the structural firefighting ensembles from 32 μg/m(3) to 355 μg/m(3). Naphthalene, phenanthrene and acenaphthylene dominated the PAHs generated in the live fire evolutions, but benzo[a]pyrene was the greatest contributor to the toxicity of the PAH mixture both inside and outside the structural firefighting ensembles. Deposition of PAHs onto the structural firefighting ensembles was measured at between 69 and 290 ng/cm(2), with phenanthrene, fluoranthene, pyrene, and benzo[a]anthracene detected on all samples. These findings suggest that firefighting instructor exposures to PAHs during a single live-fire training evolution are comparable with exposures occurring in industrial settings over a full shift. Further research is required to investigate the importance of various potential routes of exposure to PAHs as a result of ingress and deposition of PAHs in/on structural firefighting ensembles.

  10. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons

    Science.gov (United States)

    Heguri, Satoshi; Kobayashi, Mototada; Tanigaki, Katsumi

    2015-07-01

    Superconductivity in aromatic hydrocarbons doped with potassium (K) such as K3 [picene (PCN)] and K3 [phenanthrene (PHN)] is found for only armchair-type polycyclic aromatic hydrocarbon. In this paper the thermodynamics of the reaction processes of PHN or anthracene (AN, zigzag type) with K was studied using differential scanning calorimetry and x-ray diffraction. We show that PHN decomposes during the reaction, triggered by hydrogen abstraction, to give metal hydride KH and unknown amorphous. No stable doped phases exist in Kx(PHN ) with stoichiometries of x =1 -3 . However, in the case of AN, a stable doped phase forms. We claim that PHN, which has been reported to be energetically more stable in the ground state than AN by first principle calculations, is unstable upon doping. We also suggest that the superconductivity in K3(PCN ) is due to the misinterpretation of experimental data, which actually arises from ferromagnetic impurities. We have never detected the superconductivity above 2 K in these compounds. The superconductivity in both Kx(PHN ) and Kx(PCN ) is concluded to be highly questionable.

  11. Studies of biomarkers in aluminum workers occupationally exposed to polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Ovrebø, S; Haugen, A; Hemminki, K; Szyfter, K; Drabløs, P A; Skogland, M

    1995-01-01

    Evaluation of biomarkers for genotoxic exposure are important for future use of such biomarkers in cancer prevention. We have studied a group of aluminum plant workers for a period of 2.5 years. The level of polycyclic aromatic hydrocarbons (PAHs) has been monitored at the work place (cathode relining). During the study period, urine and blood were sampled up to seven times from the same workers. Mean level of urinary 1-hydroxypyrene varied from 1.08 to 2.44 mumol/mol creatinine in the exposed groups compared with 0.36 and 0.20 mumol/mol creatinine in the two reference groups. For a group of 14 workers the intraindividual variation of urinary 1-hydroxypyrene was analyzed. The relative standard deviation of the values was < or = 0.50 for half of the workers; the relative standard deviation was calculated for individual values divided by mean of each time point. Polycyclic aromatic hydrocarbon-DNA adducts in white blood cells from exposed and nonexposed workers were measured by both immunoassay and 32P-postlabeling. By 32P-postlabeling mean values of 12.0 adducts/10(8) and 10.8 adducts/10(8) nucleotides were found in a PAH-exposed group and a reference group, respectively. Intraindividual variation of PAH-DNA adducts was also analyzed.

  12. Polycyclic Aromatic Hydrocarbons (PAHs) in urban atmospheric particulate of NCR, Delhi, India

    Science.gov (United States)

    Sonwani, Saurabh; Amreen, Hassan; Khillare, P. S.

    2016-07-01

    The present study identifies the particulate Polycyclic Aromatic hydrocarbons (PAHs) and their sources in ambient atmosphere of Delhi, India. PM10 (aerodynamic diameter, ≤10 μm) samples were collected weekly at two residential areas from July 2013 to January 2014. First sampling site was located in centre of the city, while other was at city's background (located in South-East direction of the Delhi). PM10 was collected on Whatman GF/A (8"x10") glass fibre filters using High-Volume sampler having a constant flow rate of 1.10 m3/min. A total of 55 samples, 27 from city centre and 28 from background site were collected during sampling period, covering two different seasons. The samples were analysed for determination of 16 Polycyclic Aromatic Hydrocarbons by using High Performance Liquid Chromatography (HPLC) system (Waters, USA). A source apportionment study using Molecular Diagnostic Ratio (MDR) and Principal Component Analysis (PCA) were conducted for both sampling sites in order to identify the potential PAHs sources in Delhi. MDR was used for the preliminary identification of sources and PCA was used for further confirmation of the PAH sources at both the sites in Delhi. Results indicated towards traffic and coal combustion related sources as dominant contributors of urban atmospheric PAHs in Delhi.

  13. Biomarker sensitivity for polynuclear and halogenated aromatic hydrocarbon contamination in fish species from Galveston Bay

    Energy Technology Data Exchange (ETDEWEB)

    Willett, K.; McDonald, S.; Steinberg, M.; Beatty, K.; Safe, S. [Texas A and M Univ., College Station, TX (United States)

    1995-12-31

    The Galveston Bay estuary exhibits a contamination gradient for polynuclear aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons, which is useful for comparing biomarker response sensitivity in fish taken from different bay locations. Two fish species, hardhead catfish (Arius felis) and Atlantic croaker (Micropogon undulatus), were collected from four stations where sediment total PAHs ranged from 68 to > 1,000 ng/g. Hardhead catfish showed no consistent CYP1A mediated responses (hepatic ethoxyresorufin-O-deethylase activity (EROD), CYP1A mRNA levels, or CYP1A immunoreactive protein) in the field collected fish or in fish dosed with up to 15 mg/kg benzo(a)pyrene (BaP). Significant differences were seen in field collected hardhead catfish in biliary concentrations of naphthalene, phenanthrene, and BaP metabolites. Conversely, in croakers taken from the same four Galveston Bay locations, there were significant elevations IN EROD and glutathione-S-transferase activities, CYP1A immunoreactive protein, and biliary PAH metabolites at the contaminated stations. These studies suggest that croaker is a good monitoring species especially with respect to induction of CYP1A mediated responses by PAHs. Biliary PAH metabolites and PAH-DNA adducts were sensitive to PAH contamination in both species.

  14. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects

    DEFF Research Database (Denmark)

    Nielsen, T.; Ejsing Jørgensen, Hans; Larsen, J.C.

    1996-01-01

    The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3) in ...... was estimated to be 40%. Four different approaches to evaluate the health effects are discussed. The direct effect of PAH air pollution, and other mutagens, is considered to be a maximum of five lung cancer cases each year out of one million people.......The presence of polycyclic aromatic hydrocarbons (PAH), mutagens and other air pollutants was investigated in a busy street in central Copenhagen and in a park area adjacent to the street. The winter concentration of benzo(a)pyrene was 4.4+/-1.2 ng/m(3) in the street air and 1.4+/-0.6 ng/m(3......) in the city park. The atmospheric concentrations of PAH decreased in the order of: street > city background air similar to suburbs > village > open land. The traffic contribution of PAH to street air was estimated to be 90% on working days and 60% during weekends and its contribution to city background air...

  15. Mortality from obstructive lung diseases and exposure to polycyclic aromatic hydrocarbons among asphalt workers

    Energy Technology Data Exchange (ETDEWEB)

    Burstyn, I.; Boffetta, P.; Heederik, D.; Partanen, T.; Kromhout, H.; Svane, O.; Langard, S.; Frentzel-Beyme, R.; Kauppinen, T.; Stucker, I.; Shaham, J.; Ahrens, W.; Cenee, S.; Ferro, G.; Heikkila, P.; Hooiveld, M.; Johansen, C.; Randem, B.G.; Schill, W. [University of Utrecht, Utrecht (Netherlands)

    2003-09-01

    Work in the asphalt industry has been associated with nonmalignant respiratory morbidity and mortality, but the evidence is not consistent. A historical cohort of asphalt workers included 58,862 men (911,209 person-years) first employed between 1913 and 1999 in companies applying and mixing asphalt in Denmark, Finland, France, Germany, Israel, the Netherlands, and Norway. The relations between mortality from nonmalignant respiratory diseases (including the obstructive lung diseases: chronic bronchitis, emphysema, and asthma) and specific chemical agents and mixtures were evaluated using a study-specific exposure matrix. Mortality from obstructive lung diseases was associated with the estimated cumulative and average exposures to polycyclic aromatic hydrocarbons and coal tar (p values of the test for linear trend=0.06 and 0.01, respectively). The positive association between bitumen fume exposure and mortality from obstructive lung diseases was weak and not statistically significant; confounding by simultaneous exposure to coal tar could not be excluded. The authors lacked data on smoking and full occupational histories. In conclusion, exposures to polycyclic aromatic hydrocarbons, originating from coal tar and possibly from bitumen fume, may have contributed to mortality from obstructive lung diseases among asphalt workers, but confounding and bias cannot be ruled out as an explanation for the observed associations.

  16. Assessment of atmospheric distribution of polychlorinated biphenyls and polycyclic aromatic hydrocarbons using polyparameter model

    Directory of Open Access Journals (Sweden)

    Turk-Sekulić Maja M.

    2011-01-01

    Full Text Available Results of partial or total destruction of industrial plants, military targets, infrastructure, uncontrolled fires and explosions during the conflict period from 1991 to 1999, at the area of Western Balkans, were large amounts of hazardous organic matter that have been generated and emitted in the environment. In order to assess gas/particle partition of seven EPA polychlorinated biphenyls and sixteen EPA polycyclic aromatic hydrocarbons, twenty air samples have been collected at six urban, industrial and highly contaminated localities in Vojvodina. Hi-Vol methodology has been used for collecting ambiental air samples, that simultaneously collects gaseous and particulate phase with polyurethane foam filters (PUF and glass fiber filters (GFF. PUF and GFF filters have been analyzed, and concentration levels of gaseous PCBs and PAHs molecules in gaseous and particulate phase were obtained, converted and expressed through fraction of individual compounds sorbed onto particulate phase of the sample, in total detected quantity. Experimentally gained gas/particle partitioning values of PCBs and PAHs molecules have been compared with PP-LFER model estimated values. Significant deviation has been noticed during comparative analysis of estimated polyparameter model values for complete set of seven PCBs congeners. Much better agreement of experimental and estimated values is for polycyclic aromatic hydrocarbons, especially for molecules with four rings. These results are in a good correlation with literature data where polyparameter model has been used for predicting gas/particle partition of studied group of organic molecules.

  17. Polycyclic aromatic hydrocarbons in Recent lake sediments—I. Compounds having anthropogenic origins

    Science.gov (United States)

    Wakeham, Stuart G.; Schaffner, Christian; Giger, Walter

    1980-03-01

    Polycyclic aromatic hydrocarbons (PAH) in sediment cores from Lake Lucerne, Lake Zürich, and Greifensee, Switzerland, and Lake Washington, northwest U.S.A., have been isolated, identified and quantified by glass capillary gas chromatography and gas chromatography/mass spectrometry. Surface sediment layers are greatly enriched in PAH—up to 40 times—compared to deeper layers. In addition, concentration increases in upper sediments generally correspond to increasing industrialization and urbanization in the catchment basins of the lakes. Few PAH could be detected in pre-industrial revolution sediments, indicating that background levels for most PAH in aquatic sediments are extremely low. These results are consistent with an anthropogenic source for most of the aromatic hydrocarbons present in the modern sediments. A comparison of PAH distributions in the sediments and in possible source materials shows that urban runoff of street dust may be the most important PAH input to these lacustrine sediments. There is evidence that a significant contribution to the PAH content of street dust comes from material associated with asphalt.

  18. Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of agaricus bisporus

    Energy Technology Data Exchange (ETDEWEB)

    Mayolo-Deloisa, K. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Machin-Ramirez, C. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Faculty of Chemical Sciences and Engineering, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Rito-Palomares, M. [Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Trejo-Hernandez, M.R. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico)

    2011-08-15

    Laccase partially purified from residual compost of Agaricus bisporus by an aqueous two-phase system (Lac ATPS) was used in degrading polycyclic aromatic hydrocarbons: fluorene (Flu), phenanthrene (Phe), anthracene (Ant), benzo[a]pyrene (BaP), and benzo[a]anthracene (BaA). The capacity of the enzyme to oxidize polyaromatic compounds was compared to that of the crude laccase extract (CE). After treatment of 72 h, Lac ATPS and CE were not capable of oxidizing Flu and Phe, while Ant, BaP, and BaA were oxidized, resulting in percentages of oxidation of 11.2 {+-} 1, 26 {+-} 2, and 11.7 {+-} 4 % with CE, respectively. When Lac ATPS was used, the following percentages of oxidation were obtained: 11.4 {+-} 3 % for Ant, 34 {+-} 0.1 % for BaP, and 13.6 {+-} 2 % for BaA. The results reported here demonstrate the potential application of Lac ATPS for the oxidation of polycyclic aromatic hydrocarbons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Characteristics of polycyclic aromatic hydrocarbon emissions of particles of various sizes from smoldering incense.

    Science.gov (United States)

    Yang, T T; Lin, T S; Wu, J J; Jhuang, F J

    2012-02-01

    Release of polycyclic aromatic hydrocarbons (PAHs) in particles of various sizes from smoldering incenses was determined. Among the three types of incense investigated, yielding the total PAH emission rate and factor ranges for PM0.25 were 2,139.7-6,595.6 ng/h and 1,762.2-8,094.9 ng/g, respectively. The PM0.25/PM2.5 ratio of total PAH emission factors and rates from smoldering three incenses was greater than 0.92. This study shows that total particle PAH emission rates and factors were mainly incenses. The benzo[a]pyrene accounted for 65.2%-68.0% of the total toxic equivalency emission factor of PM2.5 for the three incenses. Experimental results clearly indicate that the PAH emission rates and factors were influenced significantly by incense composition, including carbon and hydrogen content. The study concludes that smoldering incense with low atomic hydrogen/carbon ratios minimized the production of total polycyclic aromatic hydrocarbons of both PM2.5 and PM0.25.

  20. Evaluation of methods for predicting the toxicity of polycyclic aromatic hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, W.; Barhoumi, R.; Burghardt, R.C. [and others] [Texas A & M University, College Station, TX (USA). Dept. of Veterinary Anatomy and Public Health and Department of Civil Engineering

    2001-04-15

    Risk assessments of polycyclic aromatic hydrocarbon mixtures are hindered by a lack of reliable information on the potency of both mixtures and their individual components. This paper examines methods for approximating the toxicity of polycyclic aromatic hydrocarbon (PAH) mixtures. PAHs were isolated from a coal tar and then separated by ring number using HPLC. Five fractions (A-E) were generated, each possessing a unique composition and expected potency. The toxicity of each fraction was measured in the Salmonella/mutagenicity assay and the Chick Embryo Screening Test (CHEST). Their abilities to induce ethoxyresorufin-O-deethylase and to inhibit gap junction intercellular communication in rat liver Clone 9 cells were also measured. In the Salmonella/mutagenicity assay, fractions were predicted to have potencies in the order C {gt} E {gt} B {gt} A. Toxic equivalency factors (TEFs) for fractions A-E were in the order E {ge} D {gt} C {gt} B {gt} A. TEF values were 20 652, 20 929, 441, 306 and 74.1 {mu}g of BaP equiv/g, respectively. A lack of agreement between assay-predicted potencies and chemical analysis-predicted potencies was observed with other assays and other methods of calculation. The results demonstrate the limitations of using a single method to predict the toxicity of a complex PAH mixture. 41 refs., 2 figs., 3 tabs.

  1. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.

    Science.gov (United States)

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-15

    An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions.

  2. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela); Synthesis and Biotics Div., Indian Oil Corp., Research and Development Center, Haryana (India); Leon, V.; Materano, A.D.S.; Ilzins, O.A.; Galindo-Castro, I.; Fuenmayor, S.L. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela)

    2006-03-15

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm{sup -1} to 35.4 dN cm{sup -1} and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons. (orig.)

  3. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10

    Directory of Open Access Journals (Sweden)

    Tri Handayani Kurniati

    2016-12-01

    Full Text Available Pyrene degradation and biosurfactant activity by a new strain identified as Gordonia cholesterolivorans AMP 10 were studied. The strain grew well and produced effective biosurfactants in the presence of glucose, sucrose, and crude oil. The biosurfactants production was detected by the decreased surface tension of the medium and emulsification activity.  Analysis of microbial growth parameters showed that AMP10 grew best at 50 µg mL-1 pyrene concentration, leading to 96 % degradation of pyrene within 7 days. The result of nested PCR analysis revealed that this isolate possessed the nahAc gene which encodes dioxygenase enzyme for initial degradation of Polycyclic Aromatic Hydrocarbon (PAH. Observation of both tensio-active and emulsifying activities indicated that biosurfactants which produced by AMP 10 when grown on glucose could lower the surface tension of medium from 71.3 mN/m to 24.7 mN/m and formed a stable emulsion in used lubricant oil with an emulsification index (E24 of 74%. According to the results, it is suggested that the bacterial isolates G. cholesterolivorans AMP10 are suitable candidates for bioremediation of PAH-contaminated environments.How to CiteKurniati, T. H.,  Rusmana, I. Suryani, A. & Mubarik, N. R. (2016. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10. Biosaintifika: Journal of Biology & Biology Education, 8(3, 336-343. 

  4. Fate of Soil Organic Carbon and Polycyclic Aromatic Hydrocarbons in a Vineyard Soil Treated with Biochar.

    Science.gov (United States)

    Rombolà, Alessandro G; Meredith, Will; Snape, Colin E; Baronti, Silvia; Genesio, Lorenzo; Vaccari, Francesco Primo; Miglietta, Franco; Fabbri, Daniele

    2015-09-15

    The effect of biochar addition on the levels of black carbon (BC) and polcyclic aromatic hydrocarbons (PAHs) in a vineyard soil in central Italy was investigated within a two year period. Hydropyrolysis (HyPy) was used to determine the contents of BC (BCHyPy) in the amended and control soils, while the hydrocarbon composition of the semi-labile (non-BCHyPy) fraction released by HyPy was determined by gas chromatography-mass spectrometry, together with the solvent-extractable PAHs. The concentrations of these three polycyclic aromatic carbon reservoirs changed and impacted differently the soil organic carbon over the period of the trial. The addition of biochar (33 ton dry biochar ha(-1)) gave rise to a sharp increase in soil organic carbon, which could be accounted for by an increase in BCHyPy. Over time, the concentration of BCHyPy decreased significantly from 36 to 23 mg g(-1) and as a carbon percentage from 79% to 61%. No clear time trends were observed for the non-BCHyPy PAHs varying from 39 to 34 μg g(-1) in treated soils, not significantly different from control soils. However, the concentrations of extractable PAHs increased markedly in the amended soils and decreased with time from 153 to 78 ng g(-1) remaining always higher than those in untreated soil. The extent of the BCHyPy loss was more compatible with physical rather than chemical processes.

  5. Kekulé-based Valence Bond Model.Ⅱ. Diels-Alder Reactivity of Polycyclic Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    MA,Jing(马晶); LI,Shu-Hua(黎书华); JIANG,Yuan-Sheng(江元生)

    2002-01-01

    The Kekule-based valence bond ( VB ) method was employed to study the ground state properties of 52 polycyclic aromatic hydrocarbons. The reactivity indices defined upon our VB calculations were demonstrated to be capable of quantitatively interpreting the secnd order rate constants of the Diels-Alder reactions. The qualitative trends of the reactivities of many homologous series can be also explained based on the local aromaticity index defined in this work.

  6. Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Shukla, Bikau; Koshi, Mitsuo

    2012-06-05

    The most basic chemistry of products formation in hydrocarbons pyrolysis has been explored via a comparative experimental study on the roles of fundamental sp, sp(2), and sp(3) hydrocarbon radicals/intermediates such as ethyne/ethynyl (C(2)H(2)/C(2)H), ethene/ethenyl (C(2)H(4)/C(2)H(3)), and methane/methyl (CH(4)/CH(3)) in products formations. By using an in situ time-of-flight mass spectrometry technique, gas-phase products of pyrolysis of acetylene (ethyne, C(2)H(2)), ethylene (ethene, C(2)H(4)), and acetone (propanone, CH(3)COCH(3)) were detected and found to include small aliphatic products to large polycyclic aromatic hydrocarbons (PAHs) of mass 324 amu. Observed products mass spectra showed a remarkable sequence of mass peaks at regular mass number intervals of 24, 26, or 14 indicating the role of the particular corresponding radicals, ethynyl (C(2)H), ethenyl (C(2)H(3)), or methyl (CH(3)), in products formation. The analysis of results revealed the following: (a) product formation in hydrocarbon pyrolysis is dominated by hydrogen abstraction and a vinyl (ethenyl, C(2)H(3)) radical addition (HAVA) mechanism, (b) contrary to the existing concept of termination of products mass growth at cyclopenta fused species like acenaphthylene, novel pathways forming large PAHs were found succeeding beyond such cyclopenta fused species by the further addition of C(2)H(x) or CH(3) radicals, (c) production of cyclopenta ring-fused PAHs (CP-PAHs) such as fluoranthene/corannulene appeared as a preferred route over benzenoid species like pyrene/coronene, (d) because of the high reactivity of the CH(3) radical, it readily converts unbranched products into products with aliphatic chains (branched product), and (e) some interesting novel products such as dicarbon monoxide (C(2)O), tricarbon monoxide (C(3)O), and cyclic ketones were detected especially in acetone pyrolysis. These results finally suggest that existing kinetic models of product formation should be modified to include

  7. 食品中多环芳烃的研究进展%Progress in polycyclic aromatic hydrocarbons in food

    Institute of Scientific and Technical Information of China (English)

    李翠翠; 马宇翔; 陆启玉

    2015-01-01

    The progress in research on the formation mechanism,analytical methods and control measures about polycyclic aromatic hydrocarbons in food was summarized,in order to provide references for solving pollution problems caused by polycyclic aromatic hydrocarbons in food.%简述了近年来关于食品中多环芳烃的形成机理、分析方法及控制措施的研究进展,以期为解决食品中多环芳烃的污染问题提供依据。

  8. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study.

    Science.gov (United States)

    Sinha, Sourab; Raj, Abhijeet

    2016-03-21

    The role of resonantly stabilized radicals such as propargyl, cyclopentadienyl and benzyl in the formation of aromatic hydrocarbons such as benzene and naphthalene in the high temperature environments has been long known. In this work, the possibility of benzyl recombination to form three-ring aromatics, phenanthrene and anthracene, is explored. A reaction mechanism for it is developed, where reaction energetics are calculated using density functional theory (B3LYP functional with 6-311++G(d,p) basis set) and CBS-QB3, while temperature-dependent reaction kinetics are evaluated using transition state theory. The mechanism begins with barrierless formation of bibenzyl from two benzyl radicals with the release of 283.2 kJ mol(-1) of reaction energy. The further reactions involve H-abstraction by a H atom, H-desorption, H-migration, and ring closure to gain aromaticity. Through mechanism and rate of production analyses, the important reactions leading to phenanthrene and anthracene formation are determined. Phenanthrene is found to be the major product at high temperatures. Premixed laminar flame simulations are carried out by including the proposed reactions for phenanthrene formation from benzyl radicals and compared to experimentally observed species profiles to understand their effects on species concentrations.

  9. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia

    Directory of Open Access Journals (Sweden)

    Mariana Gomes Germano

    2012-05-01

    Full Text Available The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE and their biochar (BC. Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF and agriculture (AG -, and the biochar (SF_BC and AG_BC, respectively. Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.

  10. Conversion of methanol to hydrocarbons over ZSM-5 zeolite: an examination of the role of aromatic hydrocarbons using /sup 13/carbon and deuterium-labeled feeds

    Energy Technology Data Exchange (ETDEWEB)

    Mole, T.; Bett, G.; Seddon, D.

    1983-12-01

    A mechanism is suggested for the acceleration by aromatic hydrocarbons of zeolite-catalyzed methanol conversion. According to this mechanism, the aromatic hydrocarbon undergoes successive ring methylation, prototropic conversion to an exo-methylene-cyclohexadiene, side-chain methylation, and ring de-ethylation. The overall result is that two methanol molecules give an ethylene molecule. The mechanism is supported by various reactions observed over ZSM-5 catalyst at methanol conversion temperatures: (I) deuteration of p-xylene by D/sub 2/O in the ring and methyl positions; (II) de-alkylation of p-ethyltoluene and n-propylbenzene; and (III) incorporation of the aromatic carbon of benzenes and alkylbenzenes into ethylene product, as revealed by /sup 13/C-labeling studies. 3 tables.

  11. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    Science.gov (United States)

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.

  12. Comparison of three different in vitro mutation assays used for the investigation of cytochrome P450-mediated mutagenicity of nitro-polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Kappers, W.A.; Och, F.M.M. van; Groene, E.M. de; Horbach, G.J.

    2000-01-01

    Three different in vitro mutation assays were used to investigate the involvement of cytochrome P450 enzymes in the activation of the nitro- polycyclic aromatic hydrocarbons (nitroPAHs) 1-nitropyrene and 2- nitrofluorene and their reduced metabolites amino-polycyclic aromatic hydrocarbons (aminoPAHs

  13. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated pesticides in background air in central Europe - investigating parameters affecting wet scavenging of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Shahpoury, P.; Lammel, G.; Holubová Šmejkalová, A.; Klánová, J.; Přibylová, P.; Váňa, M.

    2015-02-01

    Concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and chlorinated pesticides (CPs) were measured in air and precipitation at a background site in central Europe. ∑ PAH concentrations in air and rainwater ranged from 0.7 to 327.9 ng m-3 and below limit of quantification (< LOQ) to 2.1 × 103 ng L-1. The concentrations of PCBs and CPs in rainwater were < LOQ. ∑ PCB and ∑ CP concentrations in air ranged from < LOQ to 44.6 and < LOQ to 351.7 pg m-3, respectively. The potential relationships between PAH wet scavenging and particulate matter and rainwater properties were investigated. The concentrations of ionic species in particulate matter and rainwater were significantly correlated, highlighting the importance of particle scavenging process. Overall, higher scavenging efficiencies were found for relatively less volatile PAHs, underlining the effect of analyte gas-particle partitioning on scavenging process. The particulate matter removal by rain, and consequently PAH wet scavenging, was more effective when the concentrations of ionic species were high. In addition, the elemental and organic carbon contents of the particulate matter were found to influence the PAH scavenging.

  14. Polycyclic aromatic hydrocarbons produced by electrocautery smoke and the use of personal protective equipment 1

    Science.gov (United States)

    Claudio, Caroline Vieira; Ribeiro, Renata Perfeito; Martins, Júlia Trevisan; Marziale, Maria Helena Palucci; Solci, Maria Cristina; Dalmas, José Carlos

    2017-01-01

    ABSTRACT Objective: analyze the concentration of polycyclic aromatic hydrocarbons in electrocautery smoke in operating rooms and the use of personal protective equipment by the intraoperative team when exposed to hydrocarbons. Method: exploratory and cross-sectional field research conducted in a surgery center. Gases were collected by a vacuum suction pump from a sample of 50 abdominal surgeries in which an electrocautery was used. A form was applied to identify the use of personal protective equipment. Gases were analyzed using chromatography. Descriptive statistics and Spearman's test were used to treat data. Results: there were 17 (34%) cholecystectomies with an average duration of 136 minutes, while the average time of electrocautery usage was 3.6 minutes. Airborne hydrocarbons were detected in operating rooms in 100% of the surgeries. Naphthalene was detected in 48 (96.0%) surgeries and phenanthrene in 49 (98.0%). The average concentration of these compounds was 0.0061 mg/m3 and a strong correlation (0.761) was found between them. The intraoperative teams did not use respirator masks such as the N95. Conclusion: electrocautery smoke produces gases that are harmful to the health of the intraoperative team, which is a concern considering the low adherence to the use of personal protective equipment. PMID:28301033

  15. LLE data for the ionic liquid 3-methyl-N-butyl pyridinium dicyanamide with several aromatic and aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hansmeier, Antje R., E-mail: a.hansmeier@tue.n [Chair of Process Systems Engineering (SPS), Technical University of Eindhoven, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Jongmans, Mark; Wytze Meindersma, G.; Haan, Andre B. de [Chair of Process Systems Engineering (SPS), Technical University of Eindhoven, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2010-04-15

    (Liquid + liquid) equilibrium data for ternary systems of several aromatic and aliphatic hydrocarbons with the ionic liquid 3-methyl-N-butylpyridinium dicyanamide were determined at T = 303.15 K and 328.15 K and atmospheric pressure. As aromatics benzene, cumene and p-xylene have been chosen, as paraffins n-hexane and n-nonane were used. The experimental data were regressed and could be adequately correlated with the NRTL model. A logical order in the extraction capacity of 3-methyl-N-butylpyridinium dicyanamide for the different aromatics is obtained: benzene > p-xylene > cumene.

  16. Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

    Science.gov (United States)

    Nehr, S.; Bohn, B.; Dorn, H.-P.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2014-07-01

    Current photochemical models developed to simulate the atmospheric degradation of aromatic hydrocarbons tend to underestimate OH radical concentrations. In order to analyse OH budgets, we performed experiments with benzene, toluene, p-xylene and 1,3,5-trimethylbenzene in the atmosphere simulation chamber SAPHIR. Experiments were conducted under low-NO conditions (typically 0.1-0.2 ppb) and high-NO conditions (typically 7-8 ppb), and starting concentrations of 6-250 ppb of aromatics, dependent on OH rate constants. For the OH budget analysis a steady-state approach was applied in which OH production and destruction rates (POH and DOH) have to be equal. The POH were determined from measurements of HO2, NO, HONO, and O3 concentrations, considering OH formation by photolysis and recycling from HO2. The DOH were calculated from measurements of the OH concentrations and total OH reactivities. The OH budgets were determined from DOH/POH ratios. The accuracy and reproducibility of the approach were assessed in several experiments using CO as a reference compound where an average ratio DOH/POH = 1.13 ± 0.19 was obtained. In experiments with aromatics, these ratios ranged within 1.1-1.6 under low-NO conditions and 0.9-1.2 under high-NO conditions. The results indicate that OH budgets during photo-oxidation experiments with aromatics are balanced within experimental accuracies. Inclusion of a further, recently proposed OH production via HO2 + RO2 reactions led to improvements under low-NO conditions but the differences were small and insignificant within the experimental errors.

  17. [Characterization of aromatic hydrocarbons in heavy gas oil using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry].

    Science.gov (United States)

    Guo, Kun; Zhou, Jian; Liu, Zelong

    2012-02-01

    An analytical method for separating and identifying the aromatic hydrocarbons in heavy gas oil using comprehensive two-dimensional gas chromatography (GC x GC) coupled to time-of-flight mass spectrometry (TOF MS) was established. The two-dimensional distribution by ring number of the aromatic hydrocarbons was obtained. Besides phenanthrene and methyl-phenanthrene, many other polycyclic aromatic hydrocarbons (PAHs) such as pyrene and benzo [a] anthracene were identified by using the retention times, standard mass spectra or literature reports. The method was successfully applied to the hydrotreating process of heavy gas oil and the hydrotreated products of phenanthrene, pyrene were identified. This method provided technical support for the characterization of aromatic hydrocarbons in heavy gas oil and the investigation of hydrogenation mechanism of polycyclic aromatic hydrocarbons. Compared with the conventional method, gas chromatography coupled to mass spectrometry (GC-MS), the GC x GC-TOF MS method illustrated the obvious advantages for heavy gas oil analysis.

  18. Effect of Disc Filtration with and without Addition of Flocculent on Nano- and Micro-Particles and Their Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mørch-Madsen, Andreas; Mikkelsen, Peter Steen;

    2015-01-01

    . Stormwater runoff may, however, be heavily polluted and Best Available Technologies (BAT) are therefore needed to treat the stormwater before discharge. The aim here was to determine the sizes of particles found in stormwater from roads and to evaluate the use of a cationic organic flocculant to increase......) and nano-sized particles were also observed (ca. 76–228 nm). The flocculent increased the observed particle micrometer sizes by 46% and the removal of particle-associate Polycyclic Aromatic Hydrocarbons (PAHs) was confirmed. The majority of the particles were, however, still below 10 µm after addition...... of flocculant, which shows that application of flocculants with the woven disc filter technology for stormwater treatment needs further refinement....

  19. Study of the interaction between water and hydrogen sulfide with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Cabaleiro-Lago, Enrique M; Carrazana-García, Jorge A; Rodríguez-Otero, Jesús

    2009-06-21

    A computational study has been carried out for determining the characteristics of the interaction between one water and hydrogen sulfide molecule with a series of polycyclic aromatic hydrocarbons of increasing size, namely, benzene, anthracene, triphenylene, coronene, circumcoronene, and dicircumcoronene. Potential energy curves were calculated for structures where H(2)X (X=O,S) molecule is located over the central six-membered ring with its hydrogen atoms pointing toward to (mode A) or away from (mode B) the hydrocarbon. The accuracy of different methods has been tested against the results of coupled cluster calculations extrapolated to basis set limit for the smaller hydrocarbons. The spin component scaled MP2 (SCS-MP2) method and a density functional theory method empirically corrected for dispersion (DFT-D) reproduce fairly well the results of high level calculations and therefore were employed for studying the larger systems, though DFT-D seems to underestimate the interaction in hydrogen sulfide clusters. Water complexes in mode A have interaction energies that hardly change with the size of the hydrocarbon due to compensation between the increase in the correlation contribution to the interaction energy and the increase in the repulsive character of the Hartree-Fock energy. For all the other clusters studied, there is a continuous increase in the intensity of the interaction as the size of the hydrocarbon increases, suggesting already converged values for circumcoronene. The interaction energy for water clusters extrapolated to an infinite number of carbon atoms amounts to -13.0 and -15.8 kJ/mol with SCS-MP2 and DFT-D, respectively. Hydrogen sulfide interacts more strongly than water with the hydrocarbons studied, leading to a limiting value of -21.7 kJ/mol with the SCS-MP2 method. Also, complexes in mode B are less stable than the corresponding A structures, with interaction energies amounting to -8.2 and -18.2 kJ/mol for water and hydrogen sulfide

  20. Content of heterocyclic amines and polycyclic aromatic hydrocarbons in pork, beef and chicken barbecued at home by Danish consumers

    DEFF Research Database (Denmark)

    Aaslyng, Margit D.; Duedahl-Olesen, Lene; Jensen, Kirsten;

    2013-01-01

    It is a well-known fact that, when meat is barbecued, several harmful components, including heterocyclic amines (HCA) and polycyclic aromatic hydrocarbons (PAH), may be formed. The aim of this study was to determine the HCA and PAH content in meat (pork, chicken and beef) when barbecued at home...

  1. The occupational exposure of dermatology nurses to polycyclic aromatic hydrocarbons - evaluating the effectiveness of better skin protection.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Houtum, J.L.M. van; Anzion, R.B.M.; Champmartin, C.; Hertsenberg, S.; Bos, R.P.; Valk, P. van der

    2009-01-01

    OBJECTIVES: We studied the uptake of polycyclic aromatic hydrocarbons (PAH) in nurses who apply ointments containing coal tar to patients and investigated the effectiveness of skin protection methods. METHODS: We determined gas-phase PAH on XAD-2 and particle-associated PAH on filters. We also used

  2. Monitoring of polycyclic aromatic hydrocarbons (PAH) in food supplements containing botanicals and other ingredients on the Dutch market

    NARCIS (Netherlands)

    Martena, M.J.; Grutters, M.; Groot, de H.N.; Konings, E.J.M.; Rietjens, I.

    2011-01-01

    Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified eight priority PAH (PAH8) or four of these (PAH4) as good indicators of the toxicity and occurrence of PA

  3. A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons

    Science.gov (United States)

    Stutz, Jochen; Hurlock, Stephen C.; Colosimo, Santo F.; Tsai, Catalina; Cheung, Ross; Festa, James; Pikelnaya, Olga; Alvarez, Sergio; Flynn, James H.; Erickson, Matthew H.; Olaguer, Eduardo P.

    2016-12-01

    Aromatic hydrocarbons are well known air toxics which are regulated by the US EPA and other air quality agencies. Accurate, long-term monitoring of these compounds at low part-per-billion levels, as well as identifying emission point sources is therefore crucial to protect human health in neighborhoods near large emission sources. Here we present a new long-path differential optical absorption spectroscopy (LP-DOAS) instrument specifically designed to monitor aromatic hydrocarbons. The system is based on a novel dual - light emitting diode (LED) light source, which eliminates the requirement to suppress spectrometer stray light. This light source, together with a high stability fiber-based sending/receiving telescope, allows the measurement of aromatic hydrocarbons on once-folded absorptions paths of 200-1200 m length. The new instrument shows very good agreement with simultaneous in-situ measurements if inhomogeneities of the trace gas spatial distributions are considered. The new instrument performed well during a three-month field test as an automated fence-line monitor at a refinery, successfully distinguishing upwind background levels of ∼1 ppb from emissions reflected in elevated mixing ratios of 3-4 ppb. A two-dimensional measurement network based on two identical LP-DOAS instruments operating on seven crossed light paths was operated successfully in Houston, TX. Qualitative and quantitative analysis of two events with toluene and xylene plumes demonstrate how this setup can be used to derive the spatial distribution of aromatic hydrocarbons, and identify point sources.

  4. Impact of polychlorinated biphenyl and polycyclic aromatic hydrocarbon sequestration in sediment on bioaccumulation in aquatic food webs

    NARCIS (Netherlands)

    Moermond, C.T.A.; Roessink, I.; Jonker, M.T.O.; Meijer, T.; Koelmans, A.A.

    2007-01-01

    It is not clear whether sequestration or aging of organic chemicals like polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) limits accumulation in higher levels of aquatic food chains. Therefore, the effect of aging on accumulation was studied in 1-m3 model ecosystems that

  5. Identification of sources of elevated concentrations of polycyclic aromatic hydrocarbons in an industrial area in Tianjin, China

    NARCIS (Netherlands)

    Jiao, W.T.; Lu, Y.L.; Li, J.; Han, Jingyi; Wang, T.Y.; Luo, W.; Shi, Y.J.; Wang, G.

    2009-01-01

    The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector in 105 topsoil samples from an industrial area around Bohai Bay, Tianjin in the North of China. Results demonstrated that concentrations of PAHs in 104 so

  6. Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: beneficial reuse

    NARCIS (Netherlands)

    Harmsen, J.; Rulkens, W.H.; Sims, R.C.; Rijtema, P.E.; Zweers, A.J.

    2007-01-01

    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described

  7. Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems

    DEFF Research Database (Denmark)

    Lang, Susann-Cathrin; Hursthouse, Andrew; Mayer, Philipp

    2015-01-01

    Solid Phase Microextraction (SPME) was applied to provide the first large scale dataset of freely dissolved concentrations for 9 polycyclic aromatic hydrocarbons (PAHs) in Baltic Sea sediment cores. Polydimethylsiloxane (PDMS) coated glass fibers were used for ex-situ equilibrium sampling followed...

  8. Diffusion Coefficients of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Polydimethylsiloxane and Low-Density Polylethylene Polymers

    NARCIS (Netherlands)

    Rusina, T.; Smedes, F.; Klanova, J.

    2010-01-01

    Diffusion coefficients (D) of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were determined by film-stacking technique in low-density polyethylene (LDPE) and two types of polydimethylsiloxane (PDMS) (also known as silicone rubber, SR) with the trade names AlteSil (TM)

  9. FISH BILIARY POLYCYCLIC AROMATIC HYDROCARBON METABOLITES ESTIMATED BY FIXED-WAVELENGTH FLUORESCENCE: COMPARISON WITH HPLC-FLUORESCENT DETECTION

    Science.gov (United States)

    Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...

  10. Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Johannessen, Christian; Rasmussen, Lene Juel

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, formed during incomplete burning of coal, oil and gas. Several PAHs have carcinogenic and mutagenic potencies, but these compounds must be activated in order to exert their mutagenic effects. One of the principal pathways...

  11. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...

  12. Interpreting the subtle spectral variations of the 11.2 and 12.7 {\\mu}m polycyclic aromatic hydrocarbon bands

    CERN Document Server

    Shannon, M J; Peeters, E

    2016-01-01

    We report new properties of the 11 and 12.7 {\\mu}m emission complexes of polycyclic aromatic hydrocarbons (PAHs) by applying a Gaussian-based decomposition technique. Using high-resolution \\textit{Spitzer} Space Telescope data, we study in detail the spectral and spatial characteristics of the 11 and 12.7 {\\mu}m emission bands in maps of reflection nebulae NGC 7023 and NGC 2023 (North and South) and the star-forming region M17. Profile variations are observed in both the 11 and 12.7 {\\mu}m emission bands. We identify a neutral contribution to the traditional 11.0 {\\mu}m PAH band and a cationic contribution to the traditional 11.2 {\\mu}m band, the latter of which affects the PAH class of the 11.2 {\\mu}m emission in our sample. The peak variations of the 12.7 {\\mu}m complex are explained by the competition between two underlying blended components. The spatial distributions of these components link them to cations and neutrals. We conclude that the 12.7 {\\mu}m emission originates in both neutral and cationic PA...

  13. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site

    DEFF Research Database (Denmark)

    Johnsen, A.R.; de Lipthay, J.R.; Reichenberg, F.

    2006-01-01

    Diffuse pollution of surface soil with polycyclic aromatic hydrocarbons (PAHs) is problematic in terms of the large areas and volumes of polluted soil. The levels and effects of diffuse PAH pollution at a motorway site were investigated. Surface soil was sampled with increasing distance from...... the asphalt pavement and tested for total amounts of PAHs, amounts of bioaccessible PAHs, total bacterial populations, PAH degrader populations, the potential for mineralization of C-14-PAHs, and mutagenicity. Elevated PAH concentrations were found in the samples taken 1-8 m from the pavement. Soil sampled...... at greater distances (12-24 m) contained only background levels of PAHs. The total bacterial populations (CFU and numbers of 16S rDNA genes) were similar for all soil samples, whereas the microbial degrader populations (culturable PAH degraders and numbers of PAH dioxygenase genes) were most abundant...

  14. The lack of microbial degradation of polycyclic aromatic hydrocarbons from coal-rich soils

    Energy Technology Data Exchange (ETDEWEB)

    Achten, C.; Cheng, S.B.; Straub, K.L.; Hofmann, T. [University of Vienna, Vienna (Austria)

    2011-02-02

    Analytical techniques used to assess the environmental risk of contamination from polycyclic aromatic hydrocarbons (PAHs) typically consider only abiotic sample parameters. Supercritical fluid extraction and sorption enthalpy experiments previously suggested slow desorption rates for PAH compounds in two coal-contaminated floodplain soils. In this study, the actual PAH availability for aerobic soil microorganisms was tested in two series of soil-slurry experiments. The experimental conditions supported microbial degradation of phenanthrene if it was weakly sorbed onto silica gel. Native coals and coal-derived particles in two soils effectively acted as very strong sorbents and prevented microbial PAH degradation. The long history of PAH exposure and degree of coal contamination apparently had no influence on the capability of the microbial soil community to overcome constraints of PAH availability. Within the context of the experimental conditions and the compounds chosen, our results confirm that coal-bound PAHs are not bioavailable and hence of low environmental concern.

  15. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria Isolated from Light Oil Polluted Soils

    Science.gov (United States)

    Ohnuma, T.; Suto, K.; Inoue, C.

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) have polluted soil and groundwater widely and for long term because of their low solubility at normal temperature. Several microorganisms, such as Pseudomonas sp., Sphigomonas sp., a white-rot fungus and so on, being able to decompose PAHs, have been isolated and researched. This study reported to investigate biodegradation of low molecule PAH by isolated bacteria from light oil polluted soil. 12 isolates were obtained from a light oil polluted soil using naphthalene, fluorene and anthracene as sole carbon source, of which 4 isolates grew with naphthalene, 4 isolates did with fluorene and 4 isolates did with anthracene. Among them 3 isolates showed the ability to degrade phenanthrene additionally. These phenanthrene degradation and growth rates were almost same as that of S. yanoikuyae (DSM6900), which is the typical bacteria of PAHs degrader. Therefore, the isolate seemed to have an expectation for PAHs degradation.

  16. Qualitative TLC determination of some polycyclic aromatic hydrocarbons in sugar-beet

    Directory of Open Access Journals (Sweden)

    BILJANA D. SKRBIC

    2005-10-01

    Full Text Available The presence of polycyclic or polynuclear aromatic hydrocarbons (PAHs were investigated in sugar-beet from a local sugar factory in the district of Vojvodina. The sugar-beet was cultivated on areas near roads with intensive traffic. The procedure for the preparation and determination of these compounds included saponification of the sample, several liquid–liquid extraction systems and a silica gel column clean-up. The purified sample solution was analysed by thin layer chromatography (TLC on silica gel with cyclohexane as the developing solvent. Benzo(bfluoranthene and benzo(aanthracene and/or benzo(apyrene were detected at concentrations greater than the allowed limits in food.

  17. Characterizing the parent and oxygenated polycyclic aromatic hydrocarbons in mangrove sediments of Hong Kong.

    Science.gov (United States)

    Wang, Xiaowei; Yuan, Ke; Yang, Lihua; Lin, Li; Tam, Nora F Y; Chen, Baowei; Luan, Tiangang

    2015-09-15

    Parent and oxygenated polycyclic aromatic hydrocarbons (PAHs) were investigated in mangrove sediments of Hong Kong. Most of the analytes were detected, and the dominant carbonylic and hydroxylated PAHs in mangrove sediments were 9-fluorenone and 2-hydroxy fluorene, respectively. The concentration of 9-fluorenone and 9,10-anthraquinone was higher than their parent PAHs. Moreover, the concentration of total organic matter (TOM) related with those of the parent PAHs and carbonylic PAHs, except for hydroxylated PAHs, which indicated that TOM was not the only factor regulating the distribution of oxygenated PAHs. Nevertheless, the parent PAHs in mangrove sediments was correlated positively with carbonylic PAHs which demostrated not only the similar source but also the fate of these two compound class. However, hydroxylated PAHs had different source by comparing with parent PAHs and carbonylic PAHs, they were probably originated from biodegradation and accumulated in mangrove sediments.

  18. Comparison of polycyclic aromatic hydrocarbon pollution in Chinese and Japanese residential air

    Institute of Scientific and Technical Information of China (English)

    Hao Lu; Takashi Amagai; Takeshi Ohura

    2011-01-01

    Comparative studies on polycyclic aromatic hydrocarbon (PAH) pollution in residential air of Hangzhou (China) and Shizuoka (Japan) were conducted in summer (August,2006) and winter (January,2007).Total concentrations of 8 PAHs ranged from 7.1 to 320ng/m3 and 0.15 to 35 ng/m3 in residential air of Hangzhou and Shizuoka,respectively.Air PAH concentrations in smoking houses were higher than that in nonsmoking houses.In nonsmoking houses,mothball emission and cooking practice were the emission sources of 2- and 3-ring PAHs in Hangzhou,respectively.The 2- and 3-ring PAHs were from use of insect repellent,kerosene heating and outdoor environment in nonsmoking houses in Shizuoka.The 5- and 6-ring PAHs in residential air were mainly from outdoor environment in both cities.Toxicity potencies of PAHs in residential air of Hangzhou were much higher than that in Shizuoka.

  19. An unexpected restructuring of combustion soot aggregates by subnanometer coatings of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Chen, Chao; Fan, Xiaolong; Shaltout, Tasneem; Qiu, Chong; Ma, Yan; Goldman, Andrew; Khalizov, Alexei F.

    2016-10-01

    We investigated the effect of thin polycyclic aromatic hydrocarbon (PAH) coatings on the structure of soot aggregates. Soot aerosol from an inverted diffusion burner was size classified, thermally denuded, coated with six different PAHs, and then characterized using scanning electron microscopy, light scattering, and mass-mobility measurements. Contrary to our expectation, significant restructuring was observed in the presence of subnanometer layers of pyrene, fluoranthene, and phenanthrene. These PAHs remained in subcooled liquid state in thin films, whereby the liquid layer acted as a lubricant, reducing the force required to initiate the restructuring. Thin layers of PAH of higher melting temperatures (perylene, anthracene, and triphenylene) presumably remained solid because these chemicals induced lesser structural changes. Our results suggest that some of the intrinsic PAH generated during incomplete combustion may induce significant restructuring of soot aggregates, even when present in small quantities, altering the properties and atmospheric impacts of combustion aerosols.

  20. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime.

    Science.gov (United States)

    Tejeda-Agredano, Maria-Carmen; Mayer, Philipp; Ortega-Calvo, Jose-Julio

    2014-01-01

    Binding of polycyclic aromatic hydrocarbons (PAHs) to dissolved organic matter (DOM) can reduce the freely dissolved concentration, increase apparent solubility or enhance diffusive mass transfer. To study the effects of DOM on biodegradation, we used phenanthrene and pyrene as model PAHs, soil humic acids as model DOM and a soil Mycobacterium strain as a representative degrader organism. Humic acids enhanced the biodegradation of pyrene when present as solid crystals but not when initially dissolved or provided by partitioning from a polymer. Synchronous fluorescence spectrophotometry, scintillation counting and a microscale diffusion technique were applied in order to determine the kinetics of dissolution and diffusive mass transfer of pyrene. We suggest that humic acids can enhance or inhibit biodegradation as a result of the balance of two opposite effects, namely, solubilization of the chemicals on the one hand and inhibition of cell adhesion to the pollutant source on the other.

  1. Gas-phase Reactions of Polycyclic Aromatic Hydrocarbon Anions with Molecules of Interstellar Relevance

    Science.gov (United States)

    Demarais, Nicholas J.; Yang, Zhibo; Martinez, Oscar; Wehres, Nadine; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-02-01

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C6H- 5), naphthalenide (C10H- 7), and anthracenide (C14H- 9) with atomic H, H2, and D2 using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O2, CO2, N2O, C2H2, CH3OH, CH3CN, (CH3)2CO, CH3CHO, CH3Cl, and (CH3CH2)2O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  2. Study on Removing Trace Olefins in Aromatic Hydrocarbons with HPMo-loaded Y Zeolites

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhenghong; Zeng Haiping; Shi Li

    2008-01-01

    HPMo-loaded Y-zeolites were prepared for the removal of trace olefins from aromatic hydrocarbons.The temperature of calcination and the proportion of phospho-molybdic acid in the catalyst were studied. The catalytic activity for olefins removal and the service life of the catalyst were tested in a fixed bed microreactor. The results showed that the catalyst containing 3% phospho-molybdic acid, which was calcined at 550℃,demonstrated the best activity for olefins removal. The catalyst could be regenerated and could perform still very well. Catalyst characterization was performed by XRD and measured by pyridine-FTIR spectrometry. The test results indicated that the activity of the catalyst was related with the effect of acid concentration and acid strength. Besides, the deactivation of the catalyst was associated with the formation of coke deposits and the deactivated catalyst could recover its activity by oxidation with air under a proper temperature.

  3. Inclusion of poly-aromatic hydrocarbon (PAH) molecules in a functionalized layered double hydroxide

    Indian Academy of Sciences (India)

    L Mohanambe; S Vasudevan

    2006-01-01

    The internal surface of an Mg-Al layered double hydroxide has been functionalized by anchoring carboxy-methyl derivatized -cyclodextrin cavities to the gallery walls. Neutral polyaromatic hydrocarbon (PAH) molecules have been included within the functionalized solid by driving the hydrophobic aromatic molecules from a polar solvent into the less polar interior of the anchored cyclodextrin cavities by a partitioning process. The optical (absorption and emission) properties of the PAH molecules included within the functionalized Mg-Al layered double hydroxide solid are similar to that of dilute solutions of the PAH in non-polar solvents. The unique feature of these hybrid materials is that they are thermally stable over a wide temperature range with their emission properties practically unaltered.

  4. [Assessment of exposure to cancerogenic aromatic hydrocarbon during controlled-access highways management activities].

    Science.gov (United States)

    Martinotti, I; Cirla, A M; Cottica, D; Cirla, P E

    2011-01-01

    The purpose of this study was an integrated assessment of exposure to benzene and Polycyclic Aromatic Hydrocarbons (PAH) in 29 workers employed to manage a controlled-access highways. A campaign was performed in summertime by environmental monitoring (active and passive airborne personal sampler), as well as by biological monitoring (urine samples of the beginning and of the end of daily shift, baseline after two days of vacation). The measured environmental levels did not differ from background environmental concentrations found in a metropolitan area (i.e. benzo[a]pyrene < 1 ng/m3; benzene < 5 mcg/m3), and the results of biological monitoring were in agreement and were compatible with extra-professional habits of the investigated subjects (1-hydroxipyrene 50-990 ng/g creatinine; unmetabolized benzene 15-2010 ng/I; t-t muconic acid < 4-222 mcg/g creatinine).

  5. Estimation and characterization of polycyclic aromatic hydrocarbons from magnesium metallurgy facilities in China.

    Science.gov (United States)

    Nie, Zhiqiang; Yang, Yufei; Tang, Zhenwu; Liu, Feng; Wang, Qi; Huang, Qifei

    2014-11-01

    Field monitoring was conducted to develop a polycyclic aromatic hydrocarbon (PAH) emission inventory for the magnesium (Mg) metallurgy industry in China. PAH emissions in stack gas and fly/bottom ash samples from different smelting units of a typical Mg smelter were measured and compared. Large variations of concentrations, congener patterns, and emission factors of PAHs during the oxidation and reduction stages in the Mg smelter were observed. The measured average emission factor (166,487 μg/t Mg) was significantly higher than those of other industrial sources. Annual emission from Mg metallurgy in 2012 in China was estimated at 116 kg (514 g BaPeq) for PAHs. The results of this study suggest that PAH emission from Mg industries should be considered by local government agencies. These data may be helpful for understanding PAH levels produced by the Mg industry and in developing a PAH inventory.

  6. Identification of cytochrome P4501A inducers in complex mixtures of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, D.L. [Michigan State Univ., East Lansing, MI (United States); DeVita, W.M.; Crunkilton, R.L. [Univ. of Wisconsin, Stevens Point, WI (United States). Coll. of Natural Resources

    1998-12-31

    An in vitro ethoxyresorufin O-deethylase (EROD) assay was used to study the ability of individual polycyclic aromatic hydrocarbons (PAHs) and mixtures of PAHs to induce Ah receptor (AhR) mediated cytochrome P4501A activity in PLHC-1 fish hepatoma cells. The purpose was to identify the most potent inducers from a set of thirteen separate PAHs and describe interactions occurring in complex mixtures of these PAHs. Where possible, potency was expressed in terms of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TCDD-EQ) by normalizing the PAH results to a TCDD standard curve. The most potent inducers were benzo(k)fluoranthene > benzo(a)pyrene {approx} benzo(b)fluoranthene > chrysene {approx} benzo(a)anthracene. At equal concentrations, these PAHs yielded potencies of 1670, 940, 655, 255, and 185 pg TCDD-EQ/g, respectively. Analysis of various mixtures of the thirteen PAHs suggested that complex interactions may be occurring.

  7. Distribution and ecotoxicological significance of polycyclic aromatic hydrocarbons in sediments from Iko River estuary mangrove ecosystem.

    Science.gov (United States)

    Essien, Joseph P; Eduok, Samuel I; Eduok, Stephen I; Olajire, Abass Abiola

    2011-05-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in epipelic and benthic sediments from Iko River estuary mangrove ecosystem has been investigated. Total PAHs ranged from 6.10 to 35.27 mg/kg dry weight. Quantitative difference between the total PAHs in epipelic and benthic sediments showed that the benthic sediment known for higher capability to serve as sink for chemical pollutants accumulated less PAHs. This implies that PAHs in the epipelic sediment may plausibly be from industrial sources via runoff and/or of biogenic origin. A strong pyrolytic source fingerprint has been detected with slight influence of petrogenic sources. Total organic carbon normalized PAHs (sum of 16 PAHs, 59.7 to 372.4 mg/kg OC) were under (except for ES3 and BS3) the threshold effects concentrations (TEC, 290 mg/kg OC). Total PAHs in Iko River estuary sediments were in the range between ERL and ERM.

  8. Binding of polycyclic aromatic hydrocarbons by size classes of particulate in Hamilton Harbor water

    Energy Technology Data Exchange (ETDEWEB)

    Leppard, G.G. [National Water Research Inst., Burlington, Ontario (Canada). Aquatic Ecosystem Protection Branch]|[McMaster Univ., Hamilton, Ontario (Canada). Dept. of Biology; Flannigan, D.T. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Biology; Mavrocordatos, D. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Biology]|[Univ. of Lausanne (Switzerland). Dept. of Chemistry; Marvin, C.H. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Chemistry]|[Agriculture and Agri-Food Canada, Vineland Station Ontario (Canada). Pest Management Research Centre; Bryant, D.W.; McCarry, B.E. [McMaster Univ., Hamilton, Ontario (Canada)

    1998-11-15

    In aquatic systems there is considerable transport of organic contaminants on suspended particles that act as carriers and influence the redistribution, bioavailability, and ultimate fate of contaminants. Using methodology not previously applied to the analysis of lake water, the authors demonstrate that polycyclic aromatic hydrocarbons (PAH) in Hamilton Harbor are predominantly sorbed to suspended flocs. Techniques employed were as follows: (i) differential cascade sedimentation and centrifugation to separate suspended particles; (ii) scanning transmission electron microscopy and energy-dispersive spectroscopy to identify flocs and individual particles in the size range of 10{sup {minus}3}--10{sup 3} {micro}m; (iii) gas chromatography-mass spectrometry to identify PAH in extracts prepared from size classes. Heterogeneous flocs larger than 20 {micro}m accounted for roughly 98% of phenanthrene binding, 89% of fluoranthene binding, and 85% of pyrene binding.

  9. Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil.

    Science.gov (United States)

    Sasek, V; Bhatt, M; Cajthaml, T; Malachová, K; Lednická, D

    2003-04-01

    Compost-assisted remediation of a manufactured-gas plant soil contaminated with polycyclic aromatic hydrocarbons (PAHs) was performed in thermally insulated composting chamber using mushroom compost consisting wheat straw, chicken manure, and gypsum. The degradation of individual PAHs was in range of 20-60% at the end of 54 days of composting followed by further increase of PAH removal (37-80%) after another 100 days of maturation. Both chemical analysis of the contaminated soil for PAHs and ecotoxicity tests on bioluminescent bacteria, earthworms, and plant seeds were performed before and after the composting. After the composting, inhibition of bioluminescence decreased, whereas no significant change in toxicity was observed for earthworm survival and seed germination. Using bacterial culture of Escherichia coli K12 genotoxicity tests were performed on samples taken from different parts of the composting pile; after the composting the decrease in genotoxicity was observed only in the sample taken from upper part of the composted pile.

  10. Occurrence of polycyclic aromatic hydrocarbons in dust emitted from circulating fluidized bed boilers.

    Science.gov (United States)

    Kozielska, B; Konieczyńiski, J

    2008-11-01

    Occurrence of polycyclic aromatic hydrocarbons (PAHs) in granulometric fractions of dust emitted from a hard coal fired circulating fluidized bed (CFB) boiler was investigated. The dust was sampled with the use of a Mark III impactor. In each fraction of dust, by using gas chromatography (GC), 16 selected PAHs and total PAHs were determined and the toxic equivalent B(a)P (TE B(a)P) was computed. The results, recalculated for the standard granulometric fractions, are presented as concentrations and content of the determined PAHs in dust. Distributions of PAHs and their profiles in the granulometric dust fractions were studied also. The PAHs in dust emitted from the CFB boiler were compared with those emitted from mechanical grate boilers; a distinctly lower content of PAHs was found in dust emitted from the former.

  11. Polycyclic aromatic hydrocarbons (PAHs) in bio-crudes from induction-heating pyrolysis of biomass wastes.

    Science.gov (United States)

    Tsai, Wen-Tien; Mi, Hsiao-Hsuan; Chang, Yuan-Ming; Yang, Shyh-Yu; Chang, Jeng-Hung

    2007-03-01

    The aim of this work was to prepare the bio-crudes from agricultural wastes (i.e., rice straw, rice husk, sugarcane bagasse and coconut shell) by using induction-heating pyrolysis at specified conditions. The quantitative analysis of 21 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in bio-crudes examined using gas chromatography/mass spectrometry (GC/MS) revealed that the PAHs in bio-crudes were primarily dominant in the low molecular weight (LMW) PAHs, including naphthalene (1.10-2.45 mg/L) and acenaphthene (0.72-7.61 mg/L). However, by considering carcinogenic potency, the bio-crudes from rice husk and sugarcane bagasse contained higher contents of benzo[a]pyrene (BaP) (0.52 and 0.92 mg/L, respectively) as compared to those from rice straw and coconut shell.

  12. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Q.; Duan, Y.H.; Yang, Y.; Wang, X.J.; Tao, S. [Peking University, Beijing (China)

    2007-05-15

    Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were coking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total.

  13. Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z. [College of Environmental Sciences, Peking University, Beijing 100871 (China); Tao, S. [College of Environmental Sciences, Peking University, Beijing 100871 (China)]. E-mail: taos@urban.pku.edu.cn; Pan, B. [College of Environmental Sciences, Peking University, Beijing 100871 (China); Liu, W.X. [College of Environmental Sciences, Peking University, Beijing 100871 (China); Shen, W.R. [Tianjin Environmental Protection Bureau, Tianjin 300191 (China)

    2007-03-15

    Water, suspended particulate matter (SPM), and sediment samples were collected from ten rivers in Tianjin and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), dissolved organic carbon (DOC), particulate organic carbon (POC) in SPM and total organic carbon (TOC) in sediment. The behavior and fate of PAHs influenced by these parameters were examined. Generally, organic carbon was the primary factor controlling the behavior of the 16 PAH species. Partitioning of PAHs between SPM and water phase was studied, and K {sub OC} for some PAH species were found to be significantly higher than the predicted values. The source of PAHs contamination was diagnosed by using PAH isomer ratios. Coal combustion was identified to be a long-term and prevailing contamination source for sediment, while sewage/wastewater source could reasonably explain a short-term PAHs contamination of SPM. - Distribution of PAHs among water, suspended solids and sediment was under strong influence of naturally occurring organic carbon.

  14. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments from Khuzestan province, Iran

    DEFF Research Database (Denmark)

    Lübeck, Josephine; Poulsen, Kristoffer Gulmark; Knudsen, Sofie B.;

    2016-01-01

    Khuzestan, Iran is heavily industrialised with petrochemical and refinery companies. Herein, sediment and soil samples were collected from Hendijan coast, Khore Mosa and Arvandroud River. The CHEMSIC (CHEmometric analysis of Selected Ion Chromatograms) method was used to assign the main sources...... of polycyclic aromatic hydrocarbon (PAH) pollution. A four-component principal component analysis (PCA) model was obtained. While principal component 1 (PC1) was related to the total concentration of PAHs, the remaining PCs described three distinct sources: PC2 and PC3 collectively differentiate between...... weathered petrogenic and pyrogenic, and PC4 is indicative for a diagenetic input. The sources of PAHs in the Arvandroud River were mainly relatively fresh oil with some samples corresponding to a weathered oil input. Further, perylene (indicator for diagenetic source) was identified. Samples from Khore Mosa...

  15. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in seawater from the Western Taiwan Strait, China.

    Science.gov (United States)

    Wu, Yu-Ling; Wang, Xin-Hong; Li, Yong-Yu; Hong, Hua-Sheng

    2011-01-01

    Seawater samples (including surface water and bottom water) were collected from the Western Taiwan Strait (WTS) during June 24-25, 2009; polycyclic aromatic hydrocarbons (PAHs) in dissolved phase and particulate phase were analyzed, respectively. The results showed that the total concentrations of PAHs in the dissolved phase and particulate phase were ranged from 12.3 to 58.0 ng L(-1), and 10.3-45.5 ng L(-1), which showed a low-middle contamination level in the China Seas. The spatial variability of PAHs may be related to the complicated currents of WTS, especially the Min-Zhe coastal current. PAHs diagnostic ratios suggested that PAHs mainly originated from the inputs of pyrolytic (combustion) sources, which might be contributed to land-based atmospheric deposition. The particle-water partition coefficients of individual PAH showed that partitions were not correlated with suspended particulate matter content, dissolved organic carbon or salinity, similar to the Yangtze coastal area.

  16. Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatic-hydrocarbon-degrading species.

    Science.gov (United States)

    Derz, Kerstin; Klinner, Ulrich; Schuphan, Ingolf; Stackebrandt, Erko; Kroppenstedt, Reiner M

    2004-11-01

    The taxonomic position of a polycyclic-aromatic-hydrocarbon-degrading bacterium, strain 17A3(T), isolated from contaminated soil was determined using a combination of phenotypic and genotypic properties. The isolate showed phenotypic properties that were diagnostic for species of the genus Mycobacterium. Comparative 16S rRNA gene sequence analysis assigned 17A3(T) to the 16S rRNA gene subgroup that contains Mycobacterium aurum, Mycobacterium austroafricanum, Mycobacterium vaccae and Mycobacterium vanbaalenii, but it could clearly be distinguished from these species using a combination of physiological, chemotaxonomic markers and internal rRNA gene spacer analyses. The data showed that strain 17A3(T) (=DSM 44605(T)=NRRL B-24244(T)) merits recognition as the type strain of a novel species of the genus Mycobacterium. The name Mycobacterium pyrenivorans sp. nov. is proposed for the species because of its ability to use pyrene as a sole source of carbon and energy.

  17. Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury.

    Science.gov (United States)

    Stracquadanio, Milena; Dinelli, Enrico; Trombini, Claudio

    2003-12-01

    The role of volcanic ash as scavenger of atmospheric pollutants, in their transport and final deposition to the ground is examined. Attention is focused on polycyclic aromatic hydrocarbons (PAHs) and on particulate mercury (Hgp). The ash-fall deposits studied belong to the 2001 and 2002 eruptive activity of Mount Etna, Southern Italy, and were investigated at three (2001) and four (2002) sites downwind of the major tephra dispersal pattern. The dry deposition of mercury and PAHs was determined, and, in particular, a downward flux to the ground of PAHs (approximately 7.29 microg m(-2) per day) and mercury (750 ng m(-2) per day) was estimated in Catania from October 26 to October 28, 2002. Finally, evidence on the anthropogenic origin of PAHs scavenged from the troposphere by volcanic ash is supported by the analysis of PAH compositions in granulometrically homogeneous fractions.

  18. Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant ionization.

    Science.gov (United States)

    Callahan, Michael P; Abo-Riziq, Ali; Crews, Bridgit; Grace, Louis; de Vries, Mattanjah S

    2008-12-15

    We have used two-color resonant two-photon ionization (2C-R2PI) mass spectrometry to discriminate between isomers of polycyclic aromatic hydrocarbons in the Murchison meteorite. We measured the 2C-R2PI spectra of chrysene and triphenylene seeded in a supersonic jet by laser desorption. Since each isomer differs in its R2PI spectrum, we can distinguish between isomers using wavelength dependent ionization and mass spectrometry. We found both chrysene and triphenylene in sublimates from carbonaceous residue obtained by acid demineralization of the Murchison meteorite. Their R2PI mass spectra show only the molecular ion, even though these samples contain a complex inventory of organic molecules.

  19. Aromatic hydrocarbons associated with brines from geopressured wells. Annual report, fiscal 1985

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, D.F.; Meriwether, J.R.

    1985-01-01

    Samples of cryocondensates - materials condensed at - 78.5/sup 0/C were taken on a regular basis from the gas stream for the USDOE geopressured wells. Most of the data has been taken from the Gladys McCall well as it has flowed on a regular and almost continous basis. The cryocondensates, not the ''condensate'' from gas wells, are almost exclusively aromatic hydrocarbons, primarily benzene, toluene, ethylbenzene, and the xylenes, but contain over 95 compounds, characterized using gas chromatographic-mass spectroscopy. The solubility in water and brine of benezene, toluene, ethylbenzene and o-xylene, some of the components of the cryocondensate, as well as distribution coefficients between water or brine and a standard oil have been measured. 25 refs.

  20. Biological risk and pollution history of polycyclic aromatic hydrocarbons (PAHs) in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Tam, Nora F Y; Chen, Shejun; Mai, Bixian; Zhou, Xizhen; Xia, Lihua; Geng, Xinhua

    2014-08-15

    Chinese government has taken various measures to alleviate pollution caused by polycyclic aromatic hydrocarbons (PAHs) in the region of Pearl River Delta since the economic reform in 1978, but the effectiveness of these measures remains largely unknown. This study aimed to elucidate the biological risk and pollution history of PAHs by measuring the concentrations of 28 PAHs in the surface and core sediments, respectively, in Nansha mangrove. Results found that the biological risk of PAHs was low without obvious spatial variation. The PAH concentration along the depth gradient indicated that PAH pollution was stabilized since the early 1990s while the source of PAHs has gradually changed from combustion of coal to petroleum products. This implied that the mitigation measures taken by the Chinese government were effective. Compared to marine bottom sediment, we propose that using mangrove sediment can provide a more accurate and precise estimate of pollution history of PAHs.

  1. Formation of H{sub 2} from internally heated polycyclic aromatic hydrocarbons: Excitation energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Zettergren, H., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se [Department of Physics, Stockholm University, S-106 91 Stockholm (Sweden); Delaunay, R.; Rousseau, P.; Adoui, L. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Université de Caen Basse-Normandie, Esplanade de la Paix, F-14032 Caen (France); Domaracka, A.; Huber, B. A. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Micelotta, E. R. [Université Paris Sud, Institut d’Astrophysique Spatiale, UMR 8617, 91405 Orsay (France); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2015-04-14

    We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.

  2. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies.

    Science.gov (United States)

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs.

  3. Contamination of runoff waters with polycyclic aromatic hydrocarbons in the city of Siedlce

    Directory of Open Access Journals (Sweden)

    Kluska Mariusz

    2016-12-01

    Full Text Available The paper presents the results of the research on content of 16 polycyclic aromatic hydrocarbons in samples of runoff waters collected in Siedlce city. The samples were collected in March, July and October 2015. The highest mean total concentration of 16 PAHs amounting to 12.54 μmolּdm-3 was determined in water samples collected at Łukowska Street, whereas the lowest concentrations (1.90 μmolּdm-3 were found in samples collected at Warszawska Street. In some samples, small amounts of benzo(apyrene were present; the average content ranged from 0.02 μmol⋅dm-3 at Warszawska Street to 0.20 μmolּdm-3 at Garwolińska Street.

  4. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric dustfall from the industrial corridor in Hubei Province, Central China.

    Science.gov (United States)

    Zhang, Jiaquan; Qu, Chengkai; Qi, Shihua; Cao, Junji; Zhan, Changlin; Xing, Xinli; Xiao, Yulun; Zheng, Jingru; Xiao, Wensheng

    2015-10-01

    Thirty atmospheric dustfall samples collected from an industrial corridor in Hubei Province, central China, were analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) to investigate their concentrations, spatial distributions, sources, and health risks. Total PAH concentrations (ΣPAHs) ranged from 1.72 to 13.17 µg/g and averaged 4.91 µg/g. High molecular weight (4-5 rings) PAHs averaged 59.67% of the ΣPAHs. Individual PAH concentrations were not significantly correlated with total organic carbon, possibly due to the semi-continuous inputs from anthropogenic sources. Source identification studies suggest that the PAHs were mainly from motor vehicles and biomass/coal combustion. The incremental lifetime cancer risks associated with exposure to PAHs in the dustfall ranged from 10(-4) to 10(-6); these indicate potentially serious carcinogenic risks for exposed populations in the industrial corridor.

  5. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects.

    Science.gov (United States)

    Kim, Ki-Hyun; Jahan, Shamin Ara; Kabir, Ehsanul; Brown, Richard J C

    2013-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds comprised of two or more fused benzene rings arranged in various configurations. PAHs are widespread environmental contaminants formed as a result of incomplete combustion of organic materials such as fossil fuels. The occurrence of PAHs in ambient air is an increasing concern because of their carcinogenicity and mutagenicity. Although emissions and allowable concentrations of PAHs in air are now regulated, the health risk posed by PAH exposure suggests a continuing need for their control through air quality management. In light of the environmental significance of PAH exposure, this review offers an overview of PAH properties, fates, transformations, human exposure, and health effects (acute and chronic) associated with their emission to the atmosphere. Biomarkers of PAH exposure and their significance are also discussed.

  6. Toxicity assessment of polycyclic aromatic hydrocarbons in sediments from European high mountain lakes.

    Science.gov (United States)

    Quiroz, Roberto; Grimalt, Joan O; Fernández, Pilar

    2010-05-01

    Sediment quality guidelines and toxic equivalent factors have been used for assessment of the toxicity of sedimentary long-range atmospherically transported polycyclic aromatic hydrocarbons (PAHs) to the organisms living in high mountain European lakes. This method has provided indices that are consistent with experimental studies evaluating in situ sedimentary estrogenic activity or physiological response to AhR binding in fish from the same lakes. All examined lakes in north, central, west, northeast and southeast European mountains have shown sedimentary PAH concentrations that are above thresholds of no effect but only those situated in the southeast lakes district exhibited concentrations above the indices of probable effects. These mountains, Tatras, are also those having PAH concentrations of highest activity for AhR binding. Chrysene+triphenylene, dibenz[a]anthracene, benzo[k]fluoranthene and indeno[1,2,3-cd]pyrene are the main compounds responsible for the observed toxic effects.

  7. Approaches for externally validated QSAR modelling of Nitrated Polycyclic Aromatic Hydrocarbon mutagenicity.

    Science.gov (United States)

    Gramatica, P; Pilutti, P; Papa, E

    2007-01-01

    Nitrated Polycyclic Aromatic Hydrocarbons (nitro-PAHs), ubiquitous environmental pollutants, are recognized mutagens and carcinogens. A set of mutagenicity data (TA100) for 48 nitro-PAHs was modeled by the Quantitative Structure-Activity Relationships (QSAR) regression method, and OECD principles for QSAR model validation were applied. The proposed Multiple Linear Regression (MLR) models are based on two topological molecular descriptors. The models were validated for predictivity by both internal and external validation. For the external validation, three different splitting approaches, D-optimal Experimental Design, Self Organizing Maps (SOM) and Random Selection by activity sampling, were applied to the original data set in order to compare these methodologies and to select the best descriptors able to model each prediction set chemicals independently of the splitting method applied. The applicability domain was verified by the leverage approach.

  8. Use of antioxidant enzymes of clam Ruditapes philippinarum as biomarker to polycyclic aromatic hydrocarbon pollution

    Science.gov (United States)

    Zhu, Lin; Tang, Xuexi; Wang, Ying; Sui, Yadong; Xiao, Hui

    2016-03-01

    The typical organic pollutant polycyclic aromatic hydrocarbon (PAH) anthracene was selected as a contaminant to investigate its effects on the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the clam Ruditapes philippinarum. The results show that SOD, CAT and GSH-Px had diff erent induction and inhibition reactions to anthracene stress, and that three diff erent organs in R. philippinarum (visceral mass, muscle tissue and mantle) had diff erent sensitivities to anthracene stress. This study suggest that SOD activities of the visceral mass, CAT activitities of the mantle and the visceral mass, and GSH-Px activity of the muscle tissue could be used as sensitive indicators of anthracene stress in R. philippinarum.

  9. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons: the realm of anharmonicity

    CERN Document Server

    Maltseva, Elena; Candian, Alessandra; Mackie, Cameron J; Huang, Xinchuan; Lee, Timothy J; Tielens, Alexander G G M; Oomens, Jos; Buma, Wybren Jan

    2015-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micron CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (~4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilises intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination ...

  10. Aromatic hydrocarbon pathology in fish following a large spill into the Nemadji River, Wisconsin, USA

    Science.gov (United States)

    Caldwell, C.A.

    1997-01-01

    On June 30, 1992, a train accident resulted in a rail car releasing 114,000 L of a complex mixture of aromatic hydrocarbons into the Nemadji River, a tributary of Lake Superior near Superior, Wisconsin (Table 1). Although the majority of the spilled material evaporated, damage to aquatic life was extensive. Several thousand fishes were killed and an inestimable number were exposed to low concentrations (exposure to determine the extent of injury when compared to fishes collected from the reference site. The liver, spleen, gill, and head kidney were examined for histopathology. Blood was collected to determine the severity of liver damage reflected by the presence of the serum enzymes (aspartate aminotransferase, alanine aminotransferase, and d - glutamyl transferase).

  11. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo Metropolitan area.

    Science.gov (United States)

    Takada, H; Onda, T; Harada, M; Ogura, N

    1991-09-01

    Molecular distributions of polycyclic aromatic hydrocarbons (PAHs) in street dust samples collected from the Tokyo Metropolitan area were determined by capillary gas chromatography following HPLC fractionation. Three- to six-ring PAHs and sulfur-heterocyclics were detected. PAHs in the dusts were dominated by three and four unsubstituted ring systems with significant amounts of their alkyl homologues. PAHs were widely distributed in the streets, with concentrations (sigma COMB) of a few microgram/g dust. Automobile exhaust, asphalt, gasoline fuel, diesel fuel, tyre particles, automobile crankcase oils, and atmospheric fallout were also analysed. The PAH profile, especially the relative abundance of alkyl-PAHs and sulfur-containing heterocyclics, indicated that PAHs in the street dusts from roads carrying heavy traffic are mainly derived from automobile exhausts; dusts from residential areas have a more significant contribution from atmospheric fallout.

  12. [Limit values for polycyclic aromatic hydrocarbons in soil of children's playgrounds--basic criteria and recommendations].

    Science.gov (United States)

    Roscher, E; Liebl, B; Schwegler, U; Schmied, R; Kerscher, G

    1996-01-01

    Elevated concentrations of polycyclic aromatic hydrocarbons (PAK) are often found in the soil of former waste disposal sites, industrial areas, etc. It is desirable and useful to determine orientation values to facilitate and unify the evaluation of contaminations under the aspects of present or planned uses of an area, health protection and decision-making on remedial measures. In the present paper we wish to draw attention to, and discuss problems resulting from, particular characteristics of PAK, e.g. the toxicological property "complete carcinogens" or the necessity of taking into account oral, inhalative and dermal exposure of children on a playground. Based on the discussion, orientation values for benzo[a]pyrene and PAK ("normal" pattern) of 0.5 mg/kg soil and 5 mg/kg soil, respectively, are recommended for top soil of vegetation-free playgrounds. In comparison, deductions carried out by other working groups are presented.

  13. The phototoxicity of polycyclic aromatic hydrocarbons: a theoretical study of excited states and correlation to experiment.

    Science.gov (United States)

    Betowski, Leon D; Enlow, Mark; Riddick, Lee

    2002-06-01

    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHs) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calculated for ten PAHs by several ab initio methods. The main method used for these calculations was the Configuration Interaction approach, modeling excited states as combinations of single substitutions out of the Hartree-Fock ground state. These calculations correlate well with both experimentally measured singlet and triplet state energies and also previous HOMO-LUMO gap energies that approximate the singlet state energies. The excited state calculations then correlate well with general models of photo-induced toxicity based for the PAHs.

  14. Analysis of carcinogenic Polycyclic Aromatic Hydrocarbons (PAHS): an overview of modern electroanalytical techniques and their applications.

    Science.gov (United States)

    Şentürk, Zühre

    2013-02-01

    A number of Polycyclic Aromatic Hydrocarbons (PAHs) have been shown to be toxicants, and induce carcinogenic and immunotoxic effects. Since PAHs are often present in low concentrations and it may be difficult to determine them in complex matrices, it is therefore essential to use powerful analytical tools to separate and identify the analyses in the samples. In this paper, initially, a short description of the principles, instrumentation, and use of common extraction and analytical techniques for PAH pollutants and their metabolites will be made in light of the previously reported works and major reviews. Special attention will be given to the use of modern polarographic and voltammetric techniques on the mercury and different types of solid electrodes, together with their some practical applications. The main drawbacks and limitations of these methods will also be discussed.

  15. Polycyclic aromatic hydrocarbon pollution in the surface water and sediments of Chabahar Bay, Oman Sea.

    Science.gov (United States)

    Agah, Homira; Mehdinia, Ali; Bastami, Kazem Darvish; Rahmanpour, Shirin

    2017-02-15

    In the present study, the concentrations and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in the water and surface sediments from the Chabahar Bay, Oman Sea, were investigated in May (premonsoon) and December (postmonsoon) 2012. The concentrations of PAHs in the surface water samples ranged from 1.7 to 2.8ngl(-1) and from 0.04 to 59.6ngl(-1) in pre- and postmonsoon, respectively. In general, the PAH levels of the water samples from Chabahar Bay were higher in postmonsoon than in premonsoon (p<0.05). The concentrations of PAHs in the sediment samples varied from undetectable levels to 92.8ngg(-1) d.w. in both seasons. The seasonal comparison of the results in sediment samples showed that the overall concentration of PAH compounds was higher in the postmonsoon season (p<0.05).

  16. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    facilities in Denmark. This is a consequence of climate changes, with increasing precipitation in Europe. The increased precipitation causes problems with hydraulic overloading of sewer systems and therefore stormwater is directed into stormwater drainage systems and to stormwater treatment facilities...... and size distribution of colloids and nano-sized particles in stormwater, as well as quantify the particle-enhanced transportation of polycyclic aromatic hydrocarbons (PAHs) in stormwater. Stormwater from five sites in Europe was collected to characterise the particulate matter, colloids and nano......-sized particles in the stormwater, in terms of particle size distribution (PSD) and zeta potential. In combination with the characterisation of the particles, concentrations of organic and inorganic compounds were quantified in the stormwater, with a focus on PAHs, together with physical and chemical parameters...

  17. [Symptoms of atopy in persons exposed to chronic immunosuppression of polycyclic aromatic hydrocarbons].

    Science.gov (United States)

    Szczeklik, J; Kowalczyk, E; Gałuszka, Z

    1995-01-01

    The frequency of the atopy symptoms was estimated in 126 coke oven workers chronically exposed to polycyclic aromatic hydrocarbons (PAHs). The assessment was based on questionnaire, point skin tests with the allergens of dust, feathers, mould grass as well as on the measurements of total blood serum IgE concentration. The control group was consisted of 75 men, workers of cold rolling mill division where the environmental conditions were much better. It was observed that positive questionnaire data and positive skin tests were significantly less frequent in men exposed to PAHs. The men serum IgE values were not statistically different in both group workers although in coke oven workers the tendency to higher IgE values was observed. It is rather suggested that more useful method might be the measurement of specific serum IgE.

  18. Application of random forests method to predict the retention indices of some polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Goudarzi, N; Shahsavani, D; Emadi-Gandaghi, F; Chamjangali, M Arab

    2014-03-14

    In this work, a quantitative structure-retention relationship (QSRR) investigation was carried out based on the new method of random forests (RF) for prediction of the retention indices (RIs) of some polycyclic aromatic hydrocarbon (PAH) compounds. The RIs of these compounds were calculated using the theoretical descriptors generated from their molecular structures. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. Optimization of these parameters showed that in the point m=70, nt=460, the RF method can give the best results. Also, performance of the RF model was compared with that of the artificial neural network (ANN) and multiple linear regression (MLR) techniques. The results obtained show the relative superiority of the RF method over the MLR and ANN ones.

  19. Sorption of polycyclic aromatic hydrocarbons (PAHs by dietary fiber extracted from wheat bran

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2016-10-01

    Full Text Available The unintentional ingestion of carcinogenic xenobiotic substances leads to the high risk of cancer. Dietary fiber (DF may protect against cancer by sorbing such chemicals. To this end, the sorption of four polycyclic aromatic hydrocarbons (PAHs to DF extracted from wheat bran (WB was studied. The strong affinity of PAHs to DF and WB indicated the effective binding of PAHs, and their distribution coefficients (Kd positively increased with the increase in hydrophobicity of the PAHs. The DF had much higher Kd values for all PAHs compared to those of the unprocessed WB. The DF extraction process removed hydrophilic residues, such as starch, from WB, and increased the roughness of DF surface. Loss of hydrophilic components from WB to DF led to much higher affinity of DF with PAHs than WB. The results indicate that the DF can effectively sorb and remove xenobiotics, thereby having the potential to lower carcinogenic risk to humans.

  20. Polycyclic aromatic hydrocarbons alter the structure of oceanic and oligotrophic microbial food webs

    KAUST Repository

    Cerezo, Maria Isabel

    2015-11-01

    One way organic pollutants reach remote oceanic regions is by atmospheric transport. During the Malaspina-2010 expedition, across the Atlantic, Indian, and Pacific Oceans, we analyzed the polycyclic aromatic hydrocarbon (PAH) effects on oceanic microbial food webs. We performed perturbation experiments adding PAHs to classic dilution experiments. The phytoplankton growth rates were reduced by more than 5 times, being Prochlorococcus spp. the most affected. 62% of the experiments showed a reduction in the grazing rates due to the presence of PAHs. For the remaining experiments, grazing usually increased likely due to cascading effects. We identified changes in the slope of the relation between the growth rate and the dilution fraction induced by the pollutants, moving from no grazing to V-shape, or to negative slope, indicative of grazing increase by cascade effects and alterations of the grazers\\' activity structure. Our perturbation experiments indicate that PAHs could influence the structure oceanic food-webs structure.

  1. Distribution and sources of polycyclic aromatic hydrocarbons in main aquacultural areas in Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    MASKAOUI Khalid; HU Zhong; ZHOU Junliang; HAN Yali

    2007-01-01

    The environmental quality status of Daya Bay (22.56-22.77°N, 114.51-114.73°E), a main aquaculture area in Guangdong of China, was investigated using 16 polycyclic aromatic hydrocarbon (PAH) sediment samples of the bay. The total concentrations of 16 PAHs varied from 115 to 1 134 ng/g dry weight. The PAH composition pattern in sediments suggest dominance of 4-ring PAHs in Sites 2 and 4, and the ratio of certain related PAHs indicated important pyrolytic and petrogenic sources. The results enhance the understanding of current contamination levels and make a better assessment of likely impacts of organic contamination on ecosystems and the sustainability of local aquaculture in the area especially after the establishment of the Nuclear Power Station by the bay.

  2. Sorption effects interfering with the analysis of polycyclic aromatic hydrocarbons (PAH) in aqueous samples.

    Science.gov (United States)

    Krüger, Oliver; Kalbe, Ute; Meißner, Kerstin; Sobottka, Sebastian

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAH) are severe environmental pollutants that are analyzed frequently. The risk assessment of PAH impact to groundwater can be performed using leaching tests. Therby a liquid-solid separation step including centrifugation may be required, which in turn might lead to loss of analytes due to sorption on the equipment. Thus we determined the PAH recoveries from various container materials (polyethylene (PE), polypropylene (PP), polytetraflourethylene (PTFE), stainless steel (ES), and perflouroalkoxy (PFA)) and compared them to selected PAH properties. We found the best recoveries for PFA (68%) and PTFE (65%) containers. We found good negative correlations (-0.93 and better) between PAH recovery and log partition coefficient organic carbon-water (logKOC) for PFA, PTFE, and ES containers.

  3. Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in Korea.

    Science.gov (United States)

    Kang, Bomi; Lee, Byung-Mu; Shin, Han-Seung

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) content and a risk assessment from consumption of Korean edible oils were investigated. Liquid-liquid extraction and gas chromatography-mass spectroscopy were used to measure eight PAH in edible oils commonly consumed in Korea. The total average PAH concentration was 0.548 μg/kg from edible oils and the content of the 8 PAH was lower than 2 μg/kg, which is the maximum tolerable limit reported by the commission regulation. The contents of the eight PAH were converted to exposure assessment and risk characterization values. Dietary exposure to PAH from edible oils was 0.025 ng-TEQBaP/kg/d, and margin of exposure (MOE) was 4 × 10(6), which represents negligible concern. Although PAH were detected from edible oils in Korea, their contribution to human exposure to PAH is considered not significant.

  4. Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation

    Institute of Scientific and Technical Information of China (English)

    Chengbin Xu; Dianbo Dong; Xuelian Meng; Xin Su; Xu Zheng; Yaoyao Li

    2013-01-01

    Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated.The effects of oxygen,irradiation intensity and soil moisture on the degradation of the three PAHs were observed.The results showed that oxygen,soil moisture and irradiation intensity enhanced the photolysis of the three PAHs on soil surfaces.The degradation of the three PAHs on soil surfaces is related to their absorption spectra and the oxidation-half-wave potential.The photolysis of PAHs on soil surfaces in the presence of oxygen followed pseudo first-order kinetics.The photolysis half-lives ranged from 37.87 days for benzo[a]pyrene to 58.73 days for phenanthrene.The results indicate that photolysis is a successful way to remediate PAHs-contaminated soils.

  5. Polycyclic aromatic hydrocarbon-DNA adducts in beluga whales from the Arctic.

    Science.gov (United States)

    Mathieu, A; Payne, J F; Fancey, L L; Santella, R M; Young, T L

    1997-05-01

    The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and rivers (Muir et al., 1992). Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the value of developing biological assessment programs for Arctic wildlife.

  6. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  7. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles

    Science.gov (United States)

    Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

    2011-08-01

    The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

  8. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.

    2017-02-17

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed to phytoplankton by exploiting their spectral characteristics. We discriminated between cells with PAHs from cells free of PAHs. Clear discrimination was observed with flow cytometer provided with 375 or 405nm lasers in addition to the standard 488nm laser necessary to identify phytoplankton. Using this method, we measured the relationship between the percentages of phytoplankton organisms with PAHs, with the decrease in the growth rate. Moreover, the development of this method could be extended to facilitate the study of PAHs impact on cell cultures from a large variety of organisms.

  9. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Guermouche M'rassi, A; Bensalah, F; Gury, J; Duran, R

    2015-10-01

    Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments.

  10. Polycyclic aromatic hydrocarbons in Australian coals. I. Angularly fused pentacyclic tri- and tetraaromatic components of Victorian brown coal

    Science.gov (United States)

    Chaffee, Alan L.; Johns, R. B.

    1983-12-01

    Analysis of the tri- and tetraaromatic hydrocarbon fractions of a brown coal sample from the Latrobe Valley, Victoria, Australia indicate the predominance of pentacyclic hydroaromatic components. Many of these have not been previously reported in the literature, but are obviously diagenetically related to triterpenoids naturally occurring in the biosphere. The components whose molecular structures have been confirmed, together with those for which tentative structural assignments are given, offer strong support for a theory of progressive diagenetic aromatization of C-3 oxygenated triterpenoids, commencing from ring A. Other compounds present in smaller amounts suggest that 1,2-methyl shift reactions also occur prior to or during aromatization. There is a notable absence of polycyclic aromatic hydrocarbons (PAH's) which can be diagenetically related to the steroid or extended-side-chain hopane skeletons.

  11. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater

    Science.gov (United States)

    Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J. J.; Vogel, Timothy M.; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier

    2016-10-01

    The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100 L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2 years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈ 22 mg L- 1)) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0 years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2 years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants.

  12. A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bai, D.; Li, J.; Chen, S.B.; Chen, B.-H. [National University of Singapore (Singapore). Dept. of Chemical and Environmental Engineering

    2001-10-01

    Polycyclic aromatic hydrocarbons (PAHs) released in such processes as incomplete coal combustion and during the disposal of coal tar, are subject to strict emission controls in which the determination of PAHs has to be addressed. PAHs have low aqueous solubility which necessitates preconcentration prior to the analytical determination of PAHs. A novel but simple cloud-point extraction (CPE) process is developed to preconcentrate the trace of selected polycyclic aromatic hydrocarbons (PAHs) with the use of the readily biodegradable nonionic surfactant of secondary ethyoxylated alcohol Tergitol 15-S-7 as extractant. The concentrations of PAHs, mixtures of naphthalene and phenanthrene as well as pyrene in the spiked samples were determined with the new CPE process at ambient temperature (23{degree}C) followed by high performance liquid chromatography (HPLC) with fluorescence detection. More than 80% of phenanthrene and pyrene, respectively, and 96% of naphthalene initially present in the aqueous solutions with concentrations near or below their aqueous solubilities were recovered using this new CPE process. Importantly Tergitol 15-S-7 does not give any fluorometric signal to interfere with fluorescence detection of PAHs in the UV range. No special washing step is, thus, required to remove surfactant before HPLC analyses. Different experimental conditions were studied. The optimum conditions for the preconcentration and determination of these selected PAHs at ambient temperature have been established as the following: (1) 3 wt% surfactant; (2) addition of 0.5 M Na{sub 2}SO{sub 4}; (3) 10 min for equilibration time; and (4) 3000 rpm for centrifugal speed with duration of 10 min. 50 refs., 7 figs.

  13. Sedimentary record of polycyclic aromatic hydrocarbons in Lake Erhai,Southwest China

    Institute of Scientific and Technical Information of China (English)

    Jianyang Guo; Zhang Liang; Haiqing Liao; Zhi Tang; Xiaoli Zhao; Fengchang Wu

    2011-01-01

    The temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in a sediment core from Lake Erhal in Southwest China using gas-chromatography/mass spectrometry (GC/MS) method.The total organic carbon (TOC) normalized total PAHs concentrations (sum of US Environmental Protection Agency proposed 16 priority PAHs) ranged from 31.9 to 269 μg/g dry weight (dw),and were characterized by a slowly increasing stage in the deeper sediments and a sharp increasing stage in the upper sediments.The PAHs in the sediments were dominated by low molecular weight (LMW) PAHs,suggesting that the primary source of PAHs was low- and moderate temperature combustion processes.However,both the significant increase in high molecular weight (HMW) PAHs in the upper sediments and the vertical profile of diagnostic ratios pointed out a change in the sources of PAHs from low-temperature combustion to high-temperature combustion.The ecotoxicological assessment based on consensus-based sediment quality guidelines implied that potential adverse biological impacts were possible for benzo(ghi)perylenelene and most LMW PAHs.In addition,the total BaP equivalent quotient of seven carcinogenic polycyclic aromatic hydrocarbons (BaA,CHr,BbF,BkF,BaP,DBA and INP) was 106.1 ng/g,according to the toxic equivalency factors.Although there was no great biological impact associated with the HMW PAlls,great attention should be paid to these PAH components based on their rapid increase in the upper sediments.

  14. Urinary metabolites of polycyclic aromatic hydrocarbons in Saudi Arabian schoolchildren in relation to sources of exposure.

    Science.gov (United States)

    Alghamdi, Mansour A; Alam, Mohammed S; Stark, Christopher; Mohammed, Nuredin; Harrison, Roy M; Shamy, Magdy; Khoder, Mamdouh I; Shabbaj, Ibrahim I; Göen, Thomas

    2015-07-01

    Polycyclic aromatic hydrocarbons contain a number of known carcinogenic compounds, and urinary biomarkers have been widely used as a measure of exposure but quantitative relationships with exposure variables have proved elusive. This study aimed to quantify the relationship between exposures to phenanthrene and pyrene from atmospheric and dietary sources with the excretion of 1-hydroxypyrene and hydroxyphenanthrenes in urine as biomarkers of exposure. The study population consisted of 204 male schoolchildren attending three schools in different parts of Jeddah, Saudi Arabia who provided urine samples on each of three consecutive days. Outdoor air measurements of polycyclic aromatic hydrocarbons were made at the schools and the children provided information on diet, exposure to environmental tobacco smoke and incense, and various lifestyle factors through a questionnaire. Mixed models with random effects for subjects nested within site were fitted in order to examine the relationship between exposure variables and urinary PAH metabolites. A unit increase (1 ng m(-3)) in ambient pyrene (particulate plus gaseous phase) was associated with a 3.5% (95% CI: 1.01%, 5.13%) increase in urinary 1-hydroxypyrene concentration. A unit increase in ambient phenanthrene was associated with a 1.01% (95% CI: 0.03%, 2.02%) increase in total hydroxyphenanthrene concentrations. Consumption of chargrilled food increased the 1-hydroxypyrene and hydroxyphenanthrene concentrations by 24% (95% CI: 11%, 37%) and 17% (95% CI: 8%, 26%) respectively. We did not find evidence of association for environmental tobacco smoke exposure or incense burning. It is concluded that both respiratory exposure and consumption of chargrilled food are considerable sources of PAH exposure in this population as reflected by concentrations of urinary biomarkers.

  15. Role of glyoxal in SOA formation from aromatic hydrocarbons: gas-phase reaction trumps reactive uptake

    Directory of Open Access Journals (Sweden)

    S. Nakao

    2011-11-01

    Full Text Available This study evaluates the significance of glyoxal acting as an intermediate species leading to SOA formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH42SO4 seed particles is observed; however, glyoxal did not partition to SOA or SOA coated aqueous seed during all aromatic hydrocarbon experiments (RH up to 80%. Glyoxal is found to only influence SOA formation by raising hydroxyl (OH radical concentrations. Four experimental approaches supporting this conclusion are presented in this paper: (1 increased SOA formation and decreased SOA volatility in the toluene + NOx photooxidation system with additional glyoxal was reproduced by matching OH radical concentrations through H2O2 addition; (2 glyoxal addition to SOA seed formed from toluene + NOx photooxidation did not increase observed SOA volume; (3 SOA formation from toluene + NOx photooxidation with and without deliquesced (NH42SO4 seed resulted in similar SOA growth, consistent with a coating of SOA preventing glyoxal uptake onto deliquesced (NH42SO4 seed; and (4 the fraction of a C4H9+ fragment (observed by Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer, HR-ToF-AMS from SOA formed by 2-tert-butylphenol (BP oxidation was unchanged in the presence of additional glyoxal despite enhanced SOA formation. This study suggests that glyoxal uptake onto aerosol is minor when the surface (and near-surface of aerosols are primarily composed of secondary organic compounds.

  16. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  17. Association between a biomarker of exposure to polycyclic aromatic hydrocarbons and semen quality

    Directory of Open Access Journals (Sweden)

    Joanna Jurewicz

    2013-10-01

    Full Text Available Objectives: Growing evidence supports the reproductive and developmental toxicity of polycyclic aromatic hydrocarbons (PAHs from prenatal and postnatal exposure, but the results of epidemiological studies regarding harmful effects of PAHs exposure on male reproductive system still remain limited and inconclusive. The aim of the present study was to investigate the relationship between 1-hydroxypyrene, a biomarker of polycyclic aromatic hydrocarbons exposure and semen quality. Materials and Methods: The study population consisted of 277 men attending an infertility clinic for diagnostic purposes and having normal semen concentration of 20-300 mln/ml or slight oligozoospermia (semen concentration: 15-20 mln/ml (WHO 1999. All the men were healthy and under 45 years of age. All participants were interviewed and provided a semen sample. The interview included questions concerning demographics, socio-economic status, medical history related to past diseases which may have an impact on semen quality, lifestyle factors and occupational information. Concentrations of 1-hydroxypyrene (1-OHP in the urine samples were analyzed using high performance liquid chromatography (HPLC. Results: A positive association was found between the level of 1-OHP in urine and sperm neck abnormalities as well as the percentage of static sperm cells (p = 0.001, p = 0.018, respectively. Additionally, exposure to PAHs measured by 1-OHP in urine decreased semen volume and the percentage of motile sperm cells (p = 0.014, p = 0.0001, respectively. Conclusions: Presented findings indicate that the environmental level of PAHs exposure adversely affects male semen quality. The future large-scale studies should incorporate different biomarkers to generate a more accurate and full assessment of the effects of PAHs exposure on male fertility.

  18. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun

    2014-07-15

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery.

  19. Determination of hydroxylated polycyclic aromatic hydrocarbons by HPLC-photoionization tandem mass spectrometry in wood smoke particles and soil samples.

    Science.gov (United States)

    Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger

    2015-06-01

    A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.

  20. Polytetrafluoroethylene-jacketed stirrer modified with graphene oxide and polydopamine for the efficient extraction of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin

    2016-10-01

    Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%.

  1. The C--H Stretching Features at 3.2--3.5 Micrometer of Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups

    CERN Document Server

    Yang, Xuejuan; Glaser, Rainer; Zhong, Jianxin

    2016-01-01

    The so-called unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometer are ubiquitously seen in a wide variety of astrophysical regions. The UIE features are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, e.g., polycyclic aromatic hydrocarbon (PAH) molecules. The 3.3 micrometer aromatic C--H stretching feature is often accompanied by a weaker feature at 3.4 micrometer. The latter is often thought to result from the C--H stretch of aliphatic groups attached to the aromatic systems. The ratio of the observed intensity of the 3.3 micrometer aromatic C--H feature to that of the 3.4 micrometer aliphatic C--H feature allows one to estimate the aliphatic fraction of the UIE carriers, provided that the intrinsic oscillator strengths of the 3.3 micrometer aromatic C--H stretch (A3.3) and the 3.4 micrometer aliphatic C--H stretch (A3.4) are known. While previous studies on the aliphatic fraction of the UIE carriers were mostly based on the A3.4...

  2. Atmospheric photochemistry of aromatic hydrocarbons: Analysis of OH budgets during SAPHIR chamber experiments and evaluation of MCMv3.2

    Science.gov (United States)

    Nehr, S.; Bohn, B.; Brauers, T.; Dorn, H.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Lu, K.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2012-12-01

    Aromatic hydrocarbons, almost exclusively originating from anthropogenic sources, comprise a significant fraction of volatile organic compounds observed in urban air. The photo-oxidation of aromatics results in the formation of secondary pollutants and impacts air quality in cities, industrialized areas, and districts of dense traffic. Up-to-date photochemical oxidation schemes of the Master Chemical Mechanism (MCMv3.2) exhibit moderate performance in simulating aromatic compound degradation observed during previous environmental chamber studies. To obtain a better understanding of aromatic photo-oxidation mechanisms, we performed experiments with a number of aromatic hydrocarbons in the outdoor atmosphere simulation chamber SAPHIR located in Jülich, Germany. These chamber studies were designed to derive OH turnover rates exclusively based on experimental data. Simultaneous measurements of NOx (= NO + NO2), HOx (= OH + HO2), and the total OH loss rate constant k(OH) facilitate a detailed analysis of the OH budgets during photo-oxidation experiments. The OH budget analysis was complemented by numerical model simulations using MCMv3.2. Despite MCM's tendency to overestimate k(OH) and to underpredict radical concentrations, the OH budgets are reasonably balanced for all investigated aromatics. However, the results leave some scope for OH producing pathways that are not considered in the current MCMv3.2. An improved reaction mechanism, derived from MCMv3.2 sensitivity studies, is presented. The model performance is basically improved by changes of the mechanistic representation of ring fragmentation channels.

  3. Removal and transformation of polycyclic aromatic hydrocarbons during electrocoagulation treatment of an industrial wastewater.

    Science.gov (United States)

    Gong, Chenhao; Shen, Gang; Huang, Haiou; He, Peiran; Zhang, Zhongguo; Ma, Baoqing

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of water pollutants because of their known ecological and human toxicity. Electrocoagulation (EC) is a promising technology for mitigating industrial wastewater pollution, but the removal and transformation of PAHs during EC treatment has not yet been understood. Therefore, a paper-making wastewater effluent (PMWW) was employed in this study to investigate the relationship between PAHs' removal and transformation during EC treatment. The results show that 86% of PAHs were effectively removed not only by the electro-oxidation reactions, but also by adsorption onto Fe hydroxide flocs. The removal and transformation of PAHs were related to the number of rings in their structures. Some PAHs composed of two aromatic rings (e.g., naphthaline and dimethylnaphthalene) were produced from humic acid-like and fulvic acid-like organics in PMWW, while PAHs with three to four rings were degraded, thus being removed efficiently. Therefore, PAH transformation during EC treatment exerted double-sided effects on the removal of PAHs; the net effect appeared to be positive. Overall, this study revealed the existence and importance of PAH transformation during EC treatment and provided useful guidance for pulp and paper mills to improve the design and operation of wastewater treatment facilities.

  4. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri.

    Science.gov (United States)

    Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael

    2016-06-01

    Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.

  5. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea

    Energy Technology Data Exchange (ETDEWEB)

    Baumard, P.; Budzinski, H.; Garrigues, P. [Univ. Bordeaux I, Talence (France)

    1998-05-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) has been investigated in superficial sediments and mussels (Mytilus galloprovincialis) of the western Mediterranean sea. The analyses were performed by gas chromatography coupled to mass spectrometry (GC-MS). The PAH concentrations ranged from 1 to 20,500 ng/g in the sediments. Different molecular indices allowed differentiation between the different pollutant sources. On the French coast, PAHs originated mainly from incomplete combustion of organic matter (pyrolytic origin), whereas for some sites in Corsica and Sardinia an overimposition of petrogenic PAHs occurred. The mussel PAH concentrations ranged from 25 to 390 ng/g. The total and individual PAH bioaccumulation factors were calculated. The correlation between sediment and mussel PAH content was discussed in terms of bioavailability. It was possible to distinguish different absorption routes for the xenobiotics according to their physicochemical properties. Because the mussel distribution of phenanthrene and anthracene seems to be governed by their water solubility, these compounds were probably mainly absorbed as the water-dissolved form, whereas the heavier molecular weight PAHs (more than four aromatic rings), whose sediment and mussel concentrations are correlated with higher correlation coefficients than for phenanthrene and anthracene, were probably mainly absorbed as adsorbed on particles. Furthermore, a possible preferential biotransformation of benzo[a]pyrene over benzo[e]pyrene is discussed.

  6. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique.

    Science.gov (United States)

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-06-01

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) grams plus sign in circlemol(-1) were measured over the temperature range of (301 to 486) Kelvin using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  7. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs by a Newly Isolated Strain from Oilfield Produced Water

    Directory of Open Access Journals (Sweden)

    Yi-Bin Qi

    2017-02-01

    Full Text Available The polycyclic aromatic hydrocarbon (PAH-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA–DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA and gas chromatography–mass spectrometry (GC–MS analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(apyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution.

  8. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water

    Science.gov (United States)

    Qi, Yi-Bin; Wang, Chen-Yu; Lv, Cheng-Yuan; Lun, Zeng-Min; Zheng, Cheng-Gang

    2017-01-01

    The polycyclic aromatic hydrocarbon (PAH)-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA–DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM) and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA) and gas chromatography–mass spectrometry (GC–MS) analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(a)pyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution. PMID:28241412

  9. Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kang, Hyun-Joong; Lee, So-Young; Kwon, Jung-Hwan

    2016-07-15

    Crude oil and refined petroleum products contain many polycyclic and heterocyclic aromatic hydrocarbons, in particular, alkylated PAHs. Although alkylated PAHs are found in significantly higher quantities than their corresponding unsubstituted PAHs, the most studies on the physico-chemical properties and toxicities of these compounds have been conducted on unsubstituted PAHs. In this study, we measured crucial physico-chemical properties (i.e., water solubility, partition coefficients between polydimethylsiloxane and water (KPDMSw), and partition coefficient between liposomes and water (Klipw)) of selected alkylated PAHs, and evaluated their toxicity using the luminescence inhibition of Aliivibrio fischeri and growth inhibition of Raphidocelis subcapitata. In general, the logarithms of these properties for alkylated PAHs showed good linear correlations with log Kow, as did those for unsubstituted PAHs. Changes in molecular symmetry on the introduction of alkyl groups on aromatic ring structure significantly altered water solubility. The inhibition of bacterial luminescence and algal growth by alkylated PAHs can be explained well by the baseline toxicity hypothesis, and good linear relationships between log Kow or log Klipw and log (1/EC50) were found.

  10. Formation of polycyclic aromatic hydrocarbons from acetylene over nanosized olivine-type silicates.

    Science.gov (United States)

    Tian, M; Liu, B S; Hammonds, M; Wang, N; Sarre, P J; Cheung, A S-C

    2012-05-14

    The formation mechanism of polycyclic aromatic hydrocarbon (PAH) molecules in interstellar and circumstellar environments is not well understood although the presence of these molecules is widely accepted. In this paper, addition and aromatization reactions of acetylene over astrophysically relevant nesosilicate particles are reported. Gas-phase PAHs produced from exposure of acetylene gas to crystalline silicates using pulsed supersonic jet expansion (SJE) conditions were detected by time-of-flight mass spectrometry (TOF-MS). The PAHs produced were further confirmed in a separate experiment using a continuous flow fixed-bed reactor in which acetylene was introduced at atmospheric pressure. The gas-phase effluent and solutions of the carbonaceous compounds deposited on the nesosilicate particles were analyzed using gas chromatography-mass spectrometry (GC-MS). A mechanism for PAH formation is proposed in which the Mg(2+) ions in the nesosilicate particles act as Lewis acid sites for the acetylene reactions. Our studies indicate that the formation of PAHs in mixed-chemistry astrophysical environments could arise from acetylene interacting with olivine nano-particles. These nesosilicate particles are capable of providing catalytic centres for adsorption and activation of acetylene molecules that are present in the circumstellar environments of mass-losing carbon stars. The structure and physical properties of the particles were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and high-resolution transmission electron microscopy (HRTEM) techniques.

  11. Evaluation of sampling devices for the determination of polycyclic aromatic hydrocarbons in surface microlayer coastal waters.

    Science.gov (United States)

    Guitart, C; García-Flor, N; Dachs, J; Bayona, J M; Albaigés, J

    2004-05-01

    The sea surface microlayer (SML) may play an important role on the transport and fate of persistent organic pollutants in the marine environment. In order to evaluate the appropriateness of a number of sampling devices for the analysis of 14 parent polycyclic aromatic hydrocarbons (3-5 aromatic rings), marine SML waters were sampled using a glass plate, a rotating drum/roller, a metal screen and a surface slick sampler. The underlying waters were also sampled for the determination of the corresponding enrichment factors (EF = [C](microlayer)/[C](underlying water)). The EFs were phase dependent, ranging from 1 to 3 for the dissolved phase and between 4 and 7 for the particulate phase. In order to better assess the performance of the different sampling methods, in terms of phase partitioning, the truly dissolved and colloidal phases were also estimated. Generally, no significant differences were found for the enrichment factors provided by the different methods, due to the observed large variability in concentrations that can be attributed to small-scale coastal processes. However, the metal screen is recommended as the most efficient sampling method for the study of PAHs taking into account the amount of water collected versus time.

  12. Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils.

    Science.gov (United States)

    Chen, Baowei; He, Rong; Yuan, Ke; Chen, Enzhong; Lin, Lan; Chen, Xin; Sha, Sha; Zhong, Jianan; Lin, Li; Yang, Lihua; Yang, Ying; Wang, Xiaowei; Zou, Shichun; Luan, Tiangang

    2017-01-01

    The prevalence of antibiotic resistance genes (ARGs) in modern environment raises an emerging global health concern. In this study, soil samples were collected from three sites in petrochemical plant that represented different pollution levels of polycyclic aromatic hydrocarbons (PAHs). Metagenomic profiling of these soils demonstrated that ARGs in the PAHs-contaminated soils were approximately 15 times more abundant than those in the less-contaminated ones, with Proteobacterial being the preponderant phylum. Resistance profile of ARGs in the PAHs-polluted soils was characterized by the dominance of efflux pump-encoding ARGs associated with aromatic antibiotics (e.g., fluoroquinolones and acriflavine) that accounted for more than 70% of the total ARGs, which was significantly different from representative sources of ARG pollution due to wide use of antibiotics. Most of ARGs enriched in the PAHs-contaminated soils were not carried by plasmids, indicating the low possibilities of them being transferred between bacteria. Significant correlation was observed between the total abundance of ARGs and that of Proteobacteria in the soils. Proteobacteria selected by PAHs led to simultaneously enriching of ARGs carried by them in the soils. Our results suggested that PAHs could serve as one of selective stresses for greatly enriching of ARGs in the human-impacted environment.

  13. Simultaneous biodegradation of creosote-polycyclic aromatic hydrocarbons by a pyrene-degrading Mycobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Z.; Vila, J.; Grifoll, M. [Barcelona Univ. (Spain). Dept. de Microbiologia; Ortega-Calvo, J.J. [C.S.I.C., Seville (Spain). Inst. de Recursos Naturales y Agrobiologia

    2008-02-15

    When incubated with a creosote-polycyclic aromatic hydrocarbons (PAHs) mixture, the pyrene-degrading strain Mycobacterium sp. AP1 acted on three- and four-ring components, causing the simultaneous depletion of 25% of the total PAHs in 30 days. The kinetics of disappearance of individual PAHs was consistent with differences in aqueous solubility. During the incubation, a number of acid metabolites indicative of distinctive reactions carried out by high-molecular-weight PAH-degrading mycobacteria accumulated in the medium. Most of these metabolites were dicarboxylic aromatic acids formed as a result of the utilization of growth substrates (phenanthrene, pyrene, or fluoranthene) by multibranched pathways including meta- and ortho-ring-cleavage reactions: phthalic acid, naphthalene-1,8-dicarboxylic acid, phenanthrene-4,5-dicarboxylic acid, diphenic acid, Z-9-carboxymethylenefluorene-1-carboxylic acid, and 6,6'-dihydroxy-2,2'-biphenyl dicarboxylic acid. Others were dead-end products resulting from cometabolic oxidations on nongrowth substrates (fluorene meta-cleavage product). These results contribute to the general knowledge of the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted soils. The identification of the partially oxidized compounds will facilitate to develop analytical methods to determine their potential formation and accumulation in contaminated sites. (orig.)

  14. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    Science.gov (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  15. Random mixtures of polycyclic aromatic hydrocarbon spectra match interstellar infrared emission

    CERN Document Server

    Rosenberg, Marissa J F; Boersma, Christiaan

    2014-01-01

    The mid-infrared (IR; 5-15~$\\mu$m) spectrum of a wide variety of astronomical objects exhibits a set of broad emission features at 6.2, 7.7, 8.6, 11.3 and 12.7 $\\mu$m. About 30 years ago it was proposed that these signatures are due to emission from a family of UV heated nanometer-sized carbonaceous molecules known as polycyclic aromatic hydrocarbons (PAHs), causing them to be referred to as aromatic IR bands (AIBs). Today, the acceptance of the PAH model is far from settled, as the identification of a single PAH in space has not yet been successful and physically relevant theoretical models involving ``true'' PAH cross sections do not reproduce the AIBs in detail. In this paper, we use the NASA Ames PAH IR Spectroscopic Database, which contains over 500 quantum-computed spectra, in conjunction with a simple emission model, to show that the spectrum produced by any random mixture of at least 30 PAHs converges to the same 'kernel'-spectrum. This kernel-spectrum captures the essence of the PAH emission spectrum...

  16. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    Science.gov (United States)

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  17. Conversion of heavy aromatic hydrocarbons to valuable synthetic feed for steamcrackers

    Energy Technology Data Exchange (ETDEWEB)

    Cesana, A.; Dalloro, L.; Rivetti, F.; Buzzoni, R.; Bignazzi, R. [ENI S.p.A., Novara (Italy). Refining and Marketing Div.

    2007-07-01

    The scope of the present study was upgrading a set of heavy aromatic hydrocarbons mixtures whose commercial value ranks close to fuel oil and should become even lower in the next future because of the introduction of more stringent regulations on fuels, through hydro-conversion to a synthetic feed for steam-cracking. The resulting process provides an opportunity to improve the economic return of a steamcracking plant, offering the chance of converting low-value mixtures produced by the plant itself, such as fuel oil of cracking (FOK), saving an equivalent amount of naphtha. The method can also be used for converting pyrolysis gasoline (pygas). Although pygas has at present a fair commercial value, it could suffer a significant penalization in the future due to further limitations on total aromatic content in gasoline. Pygas hydro-conversion to a synthetic steam-cracking feedstock has been recently reported. Fractions from refinery, such as heavy distillates (e.g. Heavy Vacuum Gas Oil, VGO), deasphalted resides (DAO), or some FCC streams (e.g. LCO) resulted suitable and very attractive mixtures to be treated as well. No more than deasphalting was required as pretreatment of the feed mixture and only when the asphalts were >2%. Hetero-elements are often present in such kind of feeds at quite high concentrations, but no problems were observed due to the presence of sulphur and nitrogen, respectively, up to 15000 and 5500 ppm. (orig.)

  18. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hui [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Wu, Chunfei, E-mail: c.wu@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Meng, Aihong [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Yanguo, E-mail: zhangyg@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  19. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives.

    Science.gov (United States)

    Misaki, Kentaro; Takamura-Enya, Takeji; Ogawa, Hideoki; Takamori, Kenji; Yanagida, Mitsuaki

    2016-03-01

    Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (≥10 foci following exposure to BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses.

  20. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria.

    Science.gov (United States)

    John, R C; Essien, J P; Akpan, S B; Okpokwasili, G C

    2012-06-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from aviation fuel contaminated soil at Inua Eyet Ikot in Ibeno, Nigeria. PAH-degrading bacteria in the contaminated soil were isolated by enrichment culture technique. Isolates with high PAH degrading potential characterized by their extensive growth on PAH-supplemented minimal salt medium were screened for their naphthalene, phenanthrene and chrysene degradability. The screening medium which contained selected PAHs as the sole source of carbon and energy showed that Micrococcus varians AFS-2, Pseudomonas putida AFS-3 and Alcaligenes faecalis AFS-5 exhibited a concentration-dependent growth in all the PAH-compounds tested. There were visible changes in the color of growth medium suggesting the production of different metabolites. Their acclimation to different PAH substrates was also evident as A. faecalis AFS-5 isolated from chrysene grew well on other less complex aromatic compounds. The isolate exhibited best growth (0.44 OD(600)) when exposed to 10 ppm of chrysene for 5 days and could utilize up to 90 ppm of chrysene. This isolate and others with strong PAH-degrading potentials are recommended for bioremediation of PAHs in aviation fuel-contaminated sites in the tropics.

  1. HIGH-RESOLUTION IR ABSORPTION SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS: THE REALM OF ANHARMONICITY

    Energy Technology Data Exchange (ETDEWEB)

    Maltseva, Elena; Buma, Wybren Jan [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Tielens, Alexander G. G. M. [Leiden Observatory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Huang, Xinchuan; Lee, Timothy J. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Oomens, Jos, E-mail: w.j.buma@uva.nl, E-mail: petrignani@strw.leidenuniv.nl [Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands)

    2015-11-20

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.

  2. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.

    Science.gov (United States)

    Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure.

  3. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum

    Science.gov (United States)

    McCollom, T. M.; Simoneit, B. R.; Shock, E. L.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.

  4. CHARACTERIZING THE INFRARED SPECTRA OF SMALL, NEUTRAL, FULLY DEHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, C. J.; Peeters, E.; Cami, J. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bauschlicher, C. W. Jr., E-mail: mackie@strw.leidenuniv.nl [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States)

    2015-02-01

    We present the results of a computational study to investigate the infrared spectroscopic properties of a large number of polycyclic aromatic hydrocarbon (PAH) molecules and their fully dehydrogenated counterparts. We constructed a database of fully optimized geometries for PAHs that is complete for eight or fewer fused benzene rings, thus containing 1550 PAHs and 805 fully dehydrogenated aromatics. A large fraction of the species in our database have clearly non-planar or curved geometries. For each species, we determined the frequencies and intensities of their normal modes using density functional theory calculations. Whereas most PAH spectra are fairly similar, the spectra of fully dehydrogenated aromatics are much more diverse. Nevertheless, these fully dehydrogenated species show characteristic emission features at 5.2 μm, 5.5 μm, and 10.6 μm; at longer wavelengths, there is a forest of emission features in the 16-30 μm range that appears as a structured continuum, but with a clear peak centered around 19 μm. We searched for these features in Spitzer-IRS spectra of various positions in the reflection nebula NGC 7023. We find a weak emission feature at 10.68 μm in all positions except that closest to the central star. We also find evidence for a weak 19 μm feature at all positions that is not likely due to C{sub 60}. We interpret these features as tentative evidence for the presence of a small population of fully dehydrogenated PAHs, and discuss our results in the framework of PAH photolysis and the formation of fullerenes.

  5. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.u [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Sizmur, Tom; Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-02-15

    Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg{sup -1}) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg{sup -1}) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg{sup -1}), Cu (60.0 to 120.1 mg kg{sup -1}) and Ni (31.7 to 83.0 mg kg{sup -1}) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg{sup -1}). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed. - Research highlights: Biochar reduced total and bioavailable PAH concentrations. Biochar was less effective at immobilising PTEs, due to its low cation exchange capacity. E. fetida increased PAH bioavailability and PTE mobility. When used in combination biochar reduced the concentration of PTEs mobilised by E. fetida. Biochar had a negative effect on E. fetida in terms of weight loss. - Biochar decreased PAH biovailability but was less effective at reducing PTE mobility, whilst E. fetida increased both PAH and PTE bioavailability.

  6. Assessing the Ecological Risk of Polycyclic Aromatic Hydrocarbons in Sediments at Langkawi Island, Malaysia

    Directory of Open Access Journals (Sweden)

    Essam Nasher

    2013-01-01

    Full Text Available Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g−1 with a mean concentration of 1167.00 ± 24 ng g−1, lower than the SQG effects range-low (3442 ng g−1. The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites.

  7. Assessing the Ecological Risk of Polycyclic Aromatic Hydrocarbons in Sediments at Langkawi Island, Malaysia

    Science.gov (United States)

    Nasher, Essam; Heng, Lee Yook; Zakaria, Zuriati; Surif, Salmijah

    2013-01-01

    Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH) in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID) was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g−1 with a mean concentration of 1167.00 ± 24 ng g−1, lower than the SQG effects range-low (3442 ng g−1). The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites. PMID:24163633

  8. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Cesar S.; Salama, Farid, E-mail: cesar.contreras@nasa.gov, E-mail: Farid.Salama@nasa.gov [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-09-15

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust.

  9. Quantification of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate using stable isotope dilution liquid chromatography with atmospheric-pressure photoionization tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan

    2015-09-17

    A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, ppolycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved.

  10. Polycyclic Aromatic Hydrocarbons in the Martian (SNC) Meteorite ALH 84001: Hydrocarbons from Mars, Terrestrial Contaminants, or Both?

    Science.gov (United States)

    Thomas, K. L.; Clemett, S. J.; Romanek, C. S.; Macheling, C. R.; Gibson, E. K.; McKay, D. S.; Score, R.; Zare, R. N.

    1995-09-01

    Previous work has shown that pre-terrestrial polycyclic aromatic hydrocarbons (PAHs) exist in interplanetary dust particles (IDPs) and certain meteorites [1-3]. We previously reported the first observation of PAHs in the newest member of the SNC group, Allan Hills 84001 [4] and determined that particular types of organic compounds are indigenous to ALH 84001 because they are associated with certain mineralogical features [4]. We also analyzed two diogenites from Antarctica: one showed no evidence for aromatic hydrocarbons while the other contained PAHs with the same major peaks as those in ALH 84001[4]. PAHs in the diogenite meteorite are not associated with mineral features on the analyzed surface and the most abundant PAHs in the diogenite are lower by a factor of 3 than those in ALH 84001. Furthermore, ALH 84001 contains a number of minor PAHs not found in the diogenite or typical terrestrial soils [4]. In this study we are analyzing a more complete group of Antarctic and non-Antarctic meteorites, including SNCs, to determine: (1) PAHs abundance and diversity in Antarctic meteorites and (2) the contribution of PAHs in SNCs from martian and, possibly, terrestrial sources. ALH 84001 is an unusual orthopyroxenite which contains abundant carbonate spheroids which are ~100-200 micrometers in diameter and range in composition from magnesite to ferroan magnesite [5-7]. These spheroids are not the result of terrestrial contamination: oxygen isotopic compositions indicate that the carbonates probably precipitated from a low-temperature fluid within the martian crust [5] and carbon isotopic abundances are consistent with martian atmospheric CO2 as the carbon source [5]. PAHs may coexist with other low-temperature carbon-bearing phases in a subsurface martian environment. Samples: We are analyzing freshly-fractured meteorite samples, or chips, which have been extracted from the internal regions of the following meteorites: ALH 84001 (crush and uncrush zones), EETA79001

  11. Theoretical Study on Vibronic Interactions and Photophysics of Low-Lying Excited Electronic States of Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Samala, Nagaprasad Reddy; Mahapatra, S.

    2014-06-01

    Polycyclic aromatic hydrocarbons (PAHs), in particular, their radical cation (PAH^+), have long been postulated to be the important molecular species in connection with the spectroscopic observations in the interstellar medium. Motivated by numerous important observations by stellar as well as laboratory spectroscopists, we undertook detailed quantum mechanical studies of the structure and dynamics of electronically excited PAH^+ in an attempt to establish possible synergism with the recorded data In this study, we focus on the quantum chemistry and dynamics of the doublet ground (X) and low-lying excited (A, B and C) electronic states of the radical cation of tetracene (Tn), pentacene (Pn), and hexacene (Hn) molecule. This study is aimed to unravel photostability, spectroscopy, and time-dependent dynamics of their excited electronic states. In order to proceed with the theoretical investigations, we construct suitable multistate and multimode Hamiltonian for these systems with the aid of extensive ab initio calculations of their electronic energy surfaces. The diabatic coupling surfaces are derived from the calculated adiabatic electronic energies. First principles nuclear dynamics calculations are then carried out employing the constructed Hamiltonians and with the aid of time-independent and time-dependent quantum mechanical methods. We compared our theoretical results with available photoelectron spectroscopy, zero kinetic energy photoelectron (ZEKE) spectroscopy and matrix isolation spectroscopy (MIS) results. A peak at 8650 Å in the B state spectrum of Tn^+ is in good agreement with the DIB at 8648 Å observed by Salama et al. Similarly in Pn^+, a peak at 8350 Å can be correlated to the DIB at 8321 Å observed by Salama et al. J. Zhang et al., J. Chem. Phys., 128,104301 (2008).; F. Salama, Origins of Life Evol. Biosphere, 28, 349 (1998).; F. Salama et al., Planet. Space Sci., 43, 1165 (1995).; F. Salama et al., Astrophys. J., 526, 265 (1999).; J

  12. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  13. Field effect transistors based on polycyclic aromatic hydrocarbons for the detection and classification of volatile organic compounds.

    Science.gov (United States)

    Bayn, Alona; Feng, Xinliang; Müllen, Klaus; Haick, Hossam

    2013-04-24

    We show that polycyclic aromatic hydrocarbon (PAH) based field effect transistor (FET) arrays can serve as excellent chemical sensors for the detection of volatile organic compounds (VOCs) under confounding humidity conditions. Using these sensors, w/o complementary pattern recognition methods, we study the ability of PAH-FET(s) to: (i) discriminate between aromatic and non-aromatic VOCs; (ii) distinguish polar and non-polar non-aromatic compounds; and to (iii) identify specific VOCs within the subgroups (i.e., aromatic compounds, polar non-aromatic compounds, non-polar non-aromatic compounds). We further study the effect of water vapor on the sensor array's discriminative ability and derive patterns that are stable when exposed to different constant values of background humidity. Patterns based on different independent electronic features from an array of PAH-FETs may bring us one step closer to creating a unique fingerprint for individual VOCs in real-world applications in atmospheres with varying levels of humidity.

  14. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    Science.gov (United States)

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases.

  15. Source Identification of Polycyclic Aromatic Hydrocarbons by Diagnostic Ratios and Positive Matrix Factorization

    Science.gov (United States)

    Dvorska, A.; Jarkovsky, J.; Lammel, G.; Klanova, J.

    2009-04-01

    Although polycyclic aromatic hydrocarbons (PAHs) are also of natural origin, in many regions their environmental concentrations have strongly increased due to human activities. These semivolatile organic compounds are generally formed during incomplete combustion. Other sources include volatilization from unburned petroleum or tire abrasion in road traffic. Among all pollutants PAHs pose the highest human health hazard in Europe (WHO, 2003). A multivariate statistical method, positive matrix factorization (PMF; Paatero, 1997), and diagnostic ratios of individual PAHs (e.g. Yunker et al., 2002) are used for PAH source identification in central Europe. To minimise confounding factors such as differences in volatility, water solubility, adsorption etc., diagnostic ratios should be restricted to PAHs of similar molecular mass (Readman et al., 1987). Furthermore, different reactivities are limiting. Nevertheless, the application of PAH diagnostic ratios is often inconclusive, because substance patterns (profiles) have not been reported for all sources and ranges for various sources overlap. The complete profiles are made use of by statistical methods such as factor analysis, UNMIX and PMF (Tauler et al., 2006). However, these methods can be unreliable, because of incomplete knowledge of source profiles and the analysis' sensitivity to the data distribution. A unique 12-year data set of concentrations of PAHs (16 individual substances, 2 phases, weekly) in air, measured at the regional observatory Košetice, Czech Republic, is examined, together with shorter time series from Leipzig (urban background) and Schwartenberg (subalpine mountain background), Germany. Also, retene and coronene as specific source markers measured in Košetice from 2006 on are included into the analysis. An extensive literature search on PAH emission profiles was conducted. This data set was accomplished by measurements at sites in the Zlínsko region, Czech Republic, which are strongly dominated

  16. Availability and leaching of polycyclic aromatic hydrocarbons. Controlling processes and comparison of testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Roskam, G.D. [ECN Biomass, Coal and Environment, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Comans, R.N.J. [Wageningen University, Department of Soil Quality, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2009-01-15

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (R16 US-EPA PAHs 3412 mg/kg) and gasworks soil (RPAHs 900 mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.

  17. Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils.

    Science.gov (United States)

    Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M

    2016-02-01

    Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer.

  18. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life

    Science.gov (United States)

    Allamandola, Louis

    2004-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early

  19. Availability and leaching of polycyclic aromatic hydrocarbons: Controlling processes and comparison of testing methods.

    Science.gov (United States)

    Roskam, Gerlinde D; Comans, Rob N J

    2009-01-01

    We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (Sigma16 US-EPA PAHs 3412mg/kg) and gasworks soil (SigmaPAHs 900mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.

  20. In situ direct sampling mass spectrometric study on formation of polycyclic aromatic hydrocarbons in toluene pyrolysis.

    Science.gov (United States)

    Shukla, Bikau; Susa, Akio; Miyoshi, Akira; Koshi, Mitsuo

    2007-08-30

    The gas-phase reaction products of toluene pyrolysis with and without acetylene addition produced in a flow tube reactor at pressures of 8.15-15.11 Torr and temperatures of 1136-1507 K with constant residence time (0.56 s) have been detected in an in situ direct sampling mass spectrometric study by using a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry technique. Those products range from methyl radical to large polycyclic aromatic hydrocarbons (PAHs) of mass 522 amu (C(42)H(18)) including smaller species, radicals, polyynes, and PAHs, together with ethynyl, methyl, and phenyl PAHs. On the basis of observed mass spectra, the chemical kinetic mechanisms of the formation of products are discussed. Especially, acetylene is mixed with toluene to understand the effect of the hydrogen abstraction and acetylene addition (HACA) mechanism on the formation pathways of products in toluene pyrolysis. The most prominent outputs of this work are the direct detection of large PAHs and new reaction pathways for the formation of PAHs with the major role of cyclopenta-fused radicals. The basis of this new reaction route is the appearance of different sequences of mass spectra that well explain the major role of aromatic radicals mainly cyclopenta fused radicals of PAHs resulting from their corresponding methyl PAHs, with active participation of c-C(5)H(5), C(6)H(5), C(6)H(5)CH(2) ,and C(9)H(7) in the formation of large PAHs. The role of the HACA only seemed important for the formation of stable condensed PAHs from unstable primary PAHs with zigzag structure (having triple fusing sites) in one step by ring growth with two carbon atoms.

  1. Grating light reflection spectroelectrochemistry for detection of trace amounts of aromatic hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    KELLY,MICHAEL J.; SWEATT,WILLIAM C.; KEMME,SHANALYN A.; KASUNIC,K.J.; BLAIR,DIANNA S.; ZAIDI,S.H.; MCNEIL,J.R.; BURGESS,L.W.; BRODSKY,A.M.; SMITH,S.A.

    2000-04-01

    Grating light reflection spectroscopy (GLRS) is an emerging technique for spectroscopic analysis and sensing. A transmission diffraction grating is placed in contact with the sample to be analyzed, and an incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength that is a function of the grating period and the complex index of refraction of the sample. The intensities of diffracted orders are also dependent on the sample's complex index of refraction. The authors describe the use of GLRS, in combination with electrochemical modulation of the grating, for the detection of trace amounts of aromatic hydrocarbons. The diffraction grating consisted of chromium lines on a fused silica substrate. The depth of the grating lines was 1 {micro}m, the grating period was 1 {micro}m, and the duty cycle was 50%. Since chromium was not suitable for electrochemical modulation of the analyte concentration, a 200 nm gold layer was deposited over the entire grating. This gold layer slightly degraded the transmission of the grating, but provided satisfactory optical transparency for the spectroelectrochemical experiments. The grating was configured as the working electrode in an electrochemical cell containing water plus trace amounts of the aromatic hydrocarbon analytes. The grating was then electrochemically modulated via cyclic voltammetry waveforms, and the normalized intensity of the zero order reflection was simultaneously measured. The authors discuss the lower limits of detection (LLD) for two analytes, 7-dimethylamino-1,2-benzophenoxazine (Meldola's Blue dye) and 2,4,6-trinitrotoluene (TNT), probed with an incident HeNe laser beam ({lambda} = 543.5 nm) at an incident angle of 52.5{degree}. The LLD for 7-dimethylamino-1,2-benzophenoxazine is approximately 50 parts per billion (ppb), while the LLD for TNT is approximately

  2. Development of miniaturized submersible fluorometers for the detection of aromatic hydrocarbons in marine waters

    Science.gov (United States)

    Tedetti, Marc; Bachet, Caroline; Joffre, Pascal; Ferretto, Nicolas; Guigue, Catherine; Goutx, Madeleine

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread organic contaminants in aquatic environments. Due to their physico-chemical properties, PAHs are persistent and mobile, can strongly bioaccumulate in food chains and are harmful to living organisms. They are thus recognized by various international organizations as priority contaminants and are included in the list of 45 priority regulated substances by the European Union. Because of their aromatic structure, PAHs are "optically active" and have inherent fluorescence properties in the ultraviolet (UV) spectral domain (200-400 nm). Therefore, UV fluorescence spectroscopy has been successfully used to develop PAH sensors (i.e. UV fluorometers). Currently, five UV submersible fluorometers are commercially available for in situ measurements of PAHs: EnviroFlu-HC (TriOS Optical Sensors, Germany), Hydrocarbon Fluorometer (Sea & Sun Technology, Germany), HydroC ™ / PAH (CONTROS, Germany), UviLux AquaTracka (Chelsea Technology Group, UK) and Cyclops-7 (Turner Designs, US). These UV fluorometers are all dedicated to the measurement of phenanthrene (λEx /λEm: 255/360 nm), one of the most abundant and fluorescent PAHs found in the aquatic environment. In this study, we developed original, miniaturized submersible fluorometers based on deep UV light-emitting diodes (LEDs) for simultaneous measurements of two PAHs of interest: the MiniFluo-UV 1 for the detection of phenanthrene (PHE, at λEx /λEm: 255/360 nm) and naphthalene (NAP, at λEx /λEm: 270/340 nm), and the MiniFluo-UV 2 for the detection of fluorene (FLU, at λEx /λEm: 255/315 nm) and pyrene (PYR, at λEx /λEm: 270/380 nm). The MiniFluo-UV sensors have several features: measurements of two PAHs at the same time, small size (puck format, 80 x 60 mm), very low energy consumption (500 mW at 12V), LED monitoring, analog and numerical communication modes. The two MiniFluo-UV sensors were first tested in the laboratory: 1) on standard solutions of

  3. A DFT-based investigation of hydrogen abstraction reactions from methylated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Hemelsoet, Karen; Van Speybroeck, Veronique; Waroquier, Michel

    2008-11-10

    The growth of polycyclic aromatic hydrocarbons (PAHs) is in many areas of combustion and pyrolysis of hydrocarbons an inconvenient side effect that warrants an extensive investigation of the underlying reaction mechanism, which is known to be a cascade of radical reactions. Herein, the focus lies on one of the key reaction classes within the coke formation process: hydrogen abstraction reactions induced by a methyl radical from methylated benzenoid species. It has been shown previously that hydrogen abstractions determine the global PAH formation rate. In particular, the influence of the polyaromatic environment on the thermodynamic and kinetic properties is the subject of a thorough exploration. Reaction enthalpies at 298 K, reaction barriers at 0 K, rate constants, and kinetic parameters (within the temperature interval 700-1100 K) are calculated by using B3LYP/6-31+G(d,p) geometries and BMK/6-311+G(3df,2p) single-point energies. This level of theory has been validated with available experimental data for the abstraction at toluene. The enhanced stability of the product benzylic radicals and its influence on the reaction enthalpies is highlighted. Corrections for tunneling effects and hindered (or free) rotations of the methyl group are taken into account. The largest spreading in thermochemical and kinetic data is observed in the series of linear acenes, and a normal reactivity-enthalpy relationship is obtained. The abstraction of a methyl hydrogen atom at one of the center rings of large methylated acenes is largely preferred. Geometrical and electronic aspects lie at the basis of this striking feature. Comparison with hydrogen abstractions leading to arylic radicals is also made.

  4. Structurally Distinct Polycyclic Aromatic Hydrocarbons Induce Differential Transcriptional Responses in Developing Zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn V.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.

  5. Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China

    Institute of Scientific and Technical Information of China (English)

    Yanli Zhang; Chunlei Li; Xinming Wang; Hai Guo; Yanli Feng; Jianmin Chen

    2012-01-01

    Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic preconcentration.Benzene,toluene,ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3± 2.1),(38.7 ± 9.0),(19.4 ± 10.1) and (30.0 ± 11.1) μg/m3,respectively; while trichloroethylene (TrCE),tetrachloroethylene (TeCE)and para-dichlorobenzene (pDCB),vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6 ± 1.3),(1.3 ± 0.5),(4.1 ± 1.1),(2.2 ± 1.1) and (1.2 ± 0.3) μg/m3,respectively.Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O)ratios of 1.1-9.5,whereas no significant indoor/outdoor differences were found except for benzene and TrCE.The highly significant mutual correlations (p < 0.01) for BTEX between indoor and outdoor and their significant correlation (p < 0.05) with methyl tert-butyl ether (MTBE),a marker of traffic-related emission without other indoor and outdoor sources,indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source.TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air,especially in the mezzanines.

  6. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.

    Science.gov (United States)

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-04-01

    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness.

  7. Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers.

    Science.gov (United States)

    Jin, Yuanxiang; Miao, Wenyu; Lin, Xiaojian; Wu, Tao; Shen, Hangjie; Chen, Shan; Li, Yanhong; Pan, Qiaoqiao; Fu, Zhengwei

    2014-09-01

    The potential for exposing humans and wildlife to environmental polycyclic aromatic hydrocarbons (PAHs) has increased. Risk assessments describing how PAHs disturb lipid metabolism and induce hepatotoxicity have only received limited attention. In the present study, seven-week-old male ICR mice received intraperitoneal injections of 0, 0.01, 0.1 or 1mg/kg body weight 3-methylcholanthrene (3MC) per week for 10 weeks. A high-fat diet was provided during the exposure. Histopathological lipid accumulation and lipid metabolism-related genes were measured. We observed that sub-chronic 3MC exposure significantly increased lipid droplet and triacylglycerol (TG) levels in the livers. A low dose of 3MC activated the aryl hydrocarbon receptor, which negatively regulated lipid synthesis in the livers. The primary genes including acetyl-CoA carboxylase (Acc), fatty acid synthase (Fas) and stearoyl-CoA desaturase 1 (Scd1) decreased significantly when compared with those in the control group, indicating that de novo fatty acid synthesis in the hepatocytes was significantly inhibited by the sub-chronic 3MC exposure. However, the free fatty acid (FFA) synthesis in the adipose tissue was greatly enhanced by up-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element binding protein-1c (SREBP1C) and target genes including Acc, Fas and Scd1. The synthesized FFA was released into the blood and then transported into the liver by the up-regulation of Fat and Fatp2, which resulted in the gradual accumulation of lipids in the liver. In conclusion, histological examinations and molecular level analyses highlighted the development of lipid accumulation and confirmed that 3MC significantly impaired lipid metabolism in mice.

  8. Analysis of coal tar polycyclic aromatic hydrocarbon LC-fractions by capillary SFC on a liquid crystalline stationary phase

    Energy Technology Data Exchange (ETDEWEB)

    Kithinji, J.P.; Raynor, M.W.; Egia, B.; Davies, I.L.; Bartle, K.D.; Clifford, A.A. (University of Leeds, Leeds (UK). School of Chemistry)

    1990-01-01

    Supercritical fluid chromatography (SFC) on a capillary column coated with a smectic mesomorphic crystalline phase is shown to exhibit a typical turnover effect (retention versus column temperature) for polycyclic aromatic hydrocarbons (PAHs) at lower temperatures than are found on a methylpolysiloxane phase. Liquid chromatography is used to separate various fractions from a coal tar, which are analyzed by high resolution capillary SFC. Different density and temperature programs were investigated to optimize the separations. Simultaneous density and temperature programs gave the best results, and this is thought to be due to increased solute diffusion coefficients which yield highly efficient separations for the high molecular weight polycyclic aromatic hydrocarbons. The separation mechanism is based on the shape of the liquid crystalline phase, solubility, volatility, and molecular geometry of the PAHs.

  9. Reduced kinetic mechanism of n-heptane oxidation in modeling polycyclic aromatic hydrocarbon formation in opposed-flow diffusion flames

    Institute of Scientific and Technical Information of China (English)

    Beijing ZHONG; Jun XI

    2008-01-01

    A reduced mechanism, which could couple with the multidimensional computational fluid dynamics code for quantitative description of a reacting flow, was developed for chemical kinetic modeling of polycyclic aro-matic hydrocarbon formation in an opposed-flow dif-fusion flame. The complete kinetic mechanism, which comprises 572 reactions and 108 species, was reduced to a simplified mechanism that includes only 83 reactions and 56 species through sensitivity analysis. The results computed via this reduced mechanism are nearly indistin-guishable from those via the detailed mechanism, which demonstrate that the model based on this reduced mech-anism can properly describe n-heptane oxidation chem-istry and quantitatively predict polycyclic aromatic hydrocarbon (such as benzene, naphthalene, phenan-threne and pyrene) formation in opposed-flow diffusion flames.

  10. Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); S. Bulduk; H. van Toor (Hans); D. Tibboel (Dick); W. Meinl; H. Glatt; C.N. Falany; M.W. Coughtrie; A.G. Schuur; A. Brouwer (Abraham)

    2002-01-01

    textabstractPolyhalogenated aromatic hydrocarbons (PHAHs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans, polybrominated diphenylethers, and bisphenol A derivatives are persistent environmental pollutants, which are capable of interfering with reproductive and endocri

  11. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in reclaimed water using solid-phase extraction followed by ultra-performance convergence chromatography with photodiode array detection.

    Science.gov (United States)

    Zhang, Yun; Xiao, Zhiyong; Lv, Surong; Du, Zhenxia; Liu, Xiaoxia

    2016-03-01

    A new fast and effective analysis method has been developed to simultaneously determine 16 polycyclic aromatic hydrocarbons in reclaimed water samples by ultra-performance convergence chromatography with photodiode array detection and solid-phase extraction. The parameters of ultra-performance convergence chromatography on the separation behaviors and the crucial condition of solid-phase extraction were investigated systematically. Under optimal conditions, the 16 polycyclic aromatic hydrocarbons could be separated within 4 min. The limits of detection and quantification were in the range of 0.4-4 and 1-10 μg/L in water, respectively. This approach has been applied to a real industrial wastewater treatment plant successfully. The results showed that polycyclic aromatic hydrocarbons were dramatically decreased after chemical treatment procedure, and the oxidation procedure was effective to remove trace polycyclic aromatic hydrocarbons.

  12. Webinar Presentation: Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes

    Science.gov (United States)

    This presentation, Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Childhood Obesity

  13. Health effects of combustion-generated soot and polycyclic aromatic hydrocarbons. Progress report, May 1, 1979-April 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W. G.

    1980-05-01

    Mutagen studies on soot and soot components are reported in aspects dealing from quantitative chemical analyses of samples and mutagenesis of cells and microorganisms exposed to mutagens, to bioassay developments and techniques. Several polycyclic aromatic hydrocarbons are characterized and discussed.

  14. The doping effect of fluorinated aromatic hydrocarbon solvents on the performance of common olefin metathesis catalysts: application in the preparation of biologically active compounds.

    Science.gov (United States)

    Samojłowicz, Cezary; Bieniek, Michał; Zarecki, Andrzej; Kadyrov, Renat; Grela, Karol

    2008-12-21

    Aromatic fluorinated hydrocarbons, used as solvents for olefin metathesis reactions, catalysed by standard commercially available Ru precatalysts, allow substantially higher yields to be obtained, especially of challenging substrates, including natural and biologically active compounds.

  15. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    Science.gov (United States)

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  16. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H2 FORMATION

    DEFF Research Database (Denmark)

    Thrower, John; Jørgensen, Bjarke; Friis, Emil Enderup;

    2012-01-01

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H2 formation...

  17. The effects of biodegradation on the compositions of aromatic hydrocarbons and maturity indicators in biodegraded oils from Liaohe Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By the aid of GC-MS technique,a series of sequentially biodegraded oils from Liaohe Basin have been analyzed. The results show that the concentrations and relative compositions of various aromatic compounds in the biodegraded crude oils will change with increasing biodegradation degree. The concentrations of alkyl naphthalenes,alkyl phenanthrenes,alkyl dibenzothiophene are decreased,and the concentration of triaromatic steroids will increase with increasing biodegradation degree in biodegraded oils. Those phenomena indicate that various aromatic compounds are more easily biodegraded by bacteria like other kinds of hydrocarbons such as alkanes,but different series of aromatic compounds have a varied ability to resistant to biodegradation. The ratios of dibenzothiophene to phenenthrene(DBTH/P) and methyl dibenzothiophene to methyl phenanthrene(MDBTH/MP) are related to the features of depositional environment for source rocks such as redox and ancient salinity. However,in biodegraded oils,the two ratios increase quickly with the increase of the biodegradation degree,indicating that they have lost their geochemical significance. In this case,they could not be used to evaluate the features of depositional environment. Methyl phenanthrene index,methyl phenanthrene ratio and methyl dibenzoyhiophene ratio are useful aromatic maturity indicators for the crude oils and the source rocks without vitrinite. But for biodegraded oils,those aromatic maturity indicators will be affected by biodegradation and decrease with the increase of the biodegradation degree. Therefore,those aromatic molecular maturity indicators could not be used for biodegraded oils.

  18. Impact of Irradiation and Polycyclic Aromatic Hydrocarbon Spiking on Microbial Populations in Marine Sediment for Future Aging and Biodegradability Studies

    OpenAIRE

    Melcher, Rebecca J.; Apitz, Sabine E; Hemmingsen, Barbara B.

    2002-01-01

    Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders w...

  19. Studies of Polycyclic Aromatic Hydrocarbons in Dungeness Crabs: Biomonitoring, Physiologically Based Toxicokinetic Model, and Human Health Risk Assessment

    OpenAIRE

    Eickhoff, Curtis

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous pollutants released into the environment from the incomplete combustion of organic material and petrochemical sources. PAH are persistent molecules that partition into sediments and biota in the aquatic environment. PAH such as benzo[a]pyrene, are of concern because they are metabolised into potentially carcinogenic chemicals that can cause tumours in fish and mammals. The purpose of this research was three-fold, (1) to explore the use of ...

  20. Monitoring of Polycyclic Aromatic Hydrocarbons (PAH) in food supplements with botanicals and other ingredients on the Dutch market

    OpenAIRE

    Martena, Martijn J.; Grutters, Michiel; De Groot, Henk; Konings, Erik; Rietjens, Ivonne M. C. M.

    2011-01-01

    International audience; Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified 8 priority PAH (PAH8) or 4 of these (PAH4) as good indicators of the toxicity and occurrence of PAH in food. The current study aims to determine benzo[a]pyrene and other EFSA priority PAH in different categories of food supplements containing botanicals and other ingredients. I...

  1. Polycyclic aromatic hydrocarbons in ultrafine particles of diesel exhaust fumes – The use of ultrafast liquid chromatography

    OpenAIRE

    Małgorzata Szewczyńska; Małgorzata Pośniak

    2014-01-01

    Background: The article presents the results of the determination of polycyclic aromatic hydrocarbons (PAHs) in the fine particles fraction emitted from 3 types of diesel fuels using ultra-high pressure liquid chromatography. Material and Methods: Samples of diesel Eco, Verwa and Bio exhaust combustion fumes were generated at the model station which consisted of a diesel engine from the 2007 Diesel TDI 2.0. Personal Cascade Sioutas Impactor (PCSI) with Teflon filters was used to collect sampl...

  2. The phn Genes of Burkholderia sp. Strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Catabolism

    OpenAIRE

    1999-01-01

    Cloning and molecular ecological studies have underestimated the diversity of polycyclic aromatic hydrocarbon (PAH) catabolic genes by emphasizing classical nah-like (nah, ndo, pah, and dox) sequences. Here we report the description of a divergent set of PAH catabolic genes, the phn genes, which although isofunctional to the classical nah-like genes, show very low homology. This phn locus, which contains nine open reading frames (ORFs), was isolated on an 11.5-kb HindIII fragment from phenant...

  3. Determination of Polycyclic Aromatic Hydrocarbons in Automobile Exhaust by Means of High-Performance Liquid Chromatography with Fluorescence Detection

    DEFF Research Database (Denmark)

    Nielsen, Tom

    1979-01-01

    A chromatographic method has been developed and applied to the determination of polycyclic aromatic hydrocarbons (PAHs) in particulate matter in automobile exhaust, in petrols, and in crankcase oils. The PAHs were purified from other organic compounds by thin-layer chromatography, separated by high-performance...... liquid chromatography, and measured by means of on-line fluorescence detection. The identities of the PAHs were verified by comparing the emission spectra obtained by a stop-flow technique with those of standard PAHs...

  4. Effects of polycyclic aromatic hydrocarbons on the proliferation of ectopic thyroid tissue in Poecilia formosa the Amazon molly

    Energy Technology Data Exchange (ETDEWEB)

    Woodhead, A.D.; Setlow, R.B.; Pond, V.

    1982-01-01

    A single intraperitoneal injection of any one of several polycyclic aromatic hydrocarbons given to young Amazon mollies induces massive enlargement of the spleen. This enlargement is the result of splenic tissue being partially or wholly replaced by proliferating thyroid tissue. The pharyngeal thyroid gland is stimulated but to a lesser degree. No exuberant thyroid tissue is found at any other extrapharyngeal site. We discuss the possible causes of this finding.

  5. Lagos lagoon sediment organic extracts and polycyclic aromatic hydrocarbons induce embryotoxic, teratogenic and genotoxic effects in Danio rerio (zebrafish) embryos

    OpenAIRE

    Sogbanmu, Temitope; Nagy, Eszter; Phillips, David Hunter; Arlt, Volker Manfred; Otitoloju, Adebayo; Bury, Nicolas Richard

    2016-01-01

    An expansion of anthropogenic activity around Lagos lagoon, Nigeria has raised concerns over increasing contaminants entering the lagoon’s ecosystem. The embryotoxicity, teratogenicity and genotoxicity of sediment organic extracts from four sampling zones around Lagos lagoon, Ilaje, Iddo, Atlas Cove and Apapa, as well as the dominant polycyclic aromatic hydrocarbons (PAHs) identified in water measured during the wet season (naphthalene, phenanthrene, pyrene, benzo[a]pyrene and a mixture of th...

  6. Evaluation of Chemical Analysis Method and Determination of Polycyclic Aromatic Hydrocarbons Content from Seafood and Dairy Products

    OpenAIRE

    Lee, So-Young; Lee, Jee-Yeon; Shin, Han-Seung

    2015-01-01

    This study was carried out to investigate contents of 8 polycyclic aromatic hydrocarbons (PAHs) from frequently consumed seafood and dairy products and to evaluate their chemical analysis methods. Samples were collected from markets of 9 cities in Korea chosen as the population reference and evaluated. The methodology involved saponification, extraction with n-hexane, clean-up on Sep-Pak silica cartridges and gas chromatograph-mass spectrometry analysis. Validation proceeded on 2 matrices. Re...

  7. Estrogenic/Antiestrogenic Activities of Polycyclic Aromatic Hydrocarbons and Their Monohydroxylated Derivatives by Yeast Two-Hybrid Assay

    OpenAIRE

    Hayakawa, Kazuichi; Onoda, Yu; Tachikawa, Chihiro; Hosoi, Shinzo; Yoshita, Morio; Chung, Sang Woon; Kizu, Ryoichi; Toriba, Akira; Kameda, Takayuki; Tang, Ning

    2007-01-01

    Estrogenic/antiestrogenic activities of 14 polycyclic aromatic hydrocarbons (PAHs) and 63 monohydroxylated PAHs (OHPAHs) having 2 to 6 rings were evaluated by yeast two-hybrid assay expressing human estrogen receptor α. Relative effective potencies of estrogenic and antiestrogenic activities were calculated as the inverse values of the relative concentration of the test compound that gave the same activities of E2 and 4-hydroxytamoxifen, respectively. PAHs did not show any estrogenic/antiestr...

  8. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang

    2006-06-01

    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  9. Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. I. PAH Size, Charge, Composition, and Structure Distribution

    Science.gov (United States)

    Boersma, C.; Bregman, Jesse; Allamandola, L. J

    2013-01-01

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer Infrared Spectrograph spectral map of the northwest photon dominated region (PDR) in NGC 7023 was analyzed exclusively using PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb). The 5-15 micron spectrum at each pixel is fitted using a non-negative-least-squares fitting approach. The fits are of good quality, allowing decomposition of the PAH emission into four subclasses: size, charge, composition, and hydrogen adjacency (structure). Maps tracing PAH subclass distributions across the region paint a coherent astrophysical picture. Once past some 20 seconds of arc from HD 200775, the emission is dominated by the more stable, large, symmetric, compact PAH cations with smaller, neutral PAHs taking over along the lines-of-sight toward the more distant molecular cloud. The boundary between the PDR and the denser cloud material shows up as a distinct discontinuity in the breakdown maps. Noteworthy is the requirement for PANH cations to fit the bulk of the 6.2 and 11.0 micron features and the indication of PAH photo-dehydrogenation and fragmentation close to HD 200775. Decomposition of the spectral maps into "principal" subclass template spectra provides additional insight into the behavior of each subclass. However, the general applicability of this computationally more efficient approach is presently undetermined. This is the first time the spectra of individual PAHs are exclusively used to fit the 5-15 micron region and analyze the spatial behavior of the aromatic infrared bands, providing fundamental, new information about astronomical PAH subpopulations including their dependence on, and response to, changes in local conditions.

  10. Spatial Characterization of Polycyclic Aromatic Hydrocarbons in 2008 TC3 Samples

    Science.gov (United States)

    Sabbah, Hassan; Morrow, A.; Zare, R. N.; Jenniskens, P.

    2009-09-01

    Hassan Sabbah1, Amy L. Morrow1, Richard N. Zare1 and Petrus Jenniskens2 1Stanford University, Stanford, California 94305, 2 SETI Institute, Carl Sagan Center, 515 North Whisman Road, Mountain View, California 94043, USA. In October 2006 a small asteroid (2-3 meters) was observed in outer space. On October 7, 2008, it entered the Earth's atmosphere creating a fireball over Northern Sudan. Some 280 meteorites were collected by the University of Khartoum. In order to explore the existence of organic materials, specifically polycyclic aromatic hydrocarbons (PAHs), we applied two-step laser desorption laser ionization mass spectrometry (L2MS) to some selected fragments. This technique consists of desorbing with a pulsed infrared laser beam the solid materials into a gaseous phase with no fragmentation followed by resonance enhanced multiphoton ionization to analyze the PAH content. L2MS was already applied to an array of extraterrestrial objects including interplanetary dust particles IDPs, carbonaceous chondrites and comet coma particles. Moreover, spatial resolution of PAHs in 2008 TC3 samples was achieved to explore the heterogeneity within individual fragments. The results of these studies and their contribution to understanding the formation of this asteroid will be discussed.

  11. Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate.

    Science.gov (United States)

    García-Delgado, C; Jiménez-Ayuso, N; Frutos, I; Gárate, A; Eymar, E

    2013-12-01

    Bioremediation of mixed metal-organic soil pollution constitutes a difficult task in different ecosystems all around the world. The aims of this work are to determine the capacity of two spent mushroom substrates (Agaricus bisporus and Pleurotus ostreatus) to immobilize Cd and Pb, to assess the effect of these metals on laccase activity, and to determine the potential of spent A. bisporus substrate to biodegrade four polycyclic aromatic hydrocarbons (PAH): fluorene, phenanthrene, anthracene, and pyrene, when those toxic heavy metals Cd and Pb are present. According to adsorption isotherms, spent P. ostreatus and A. bisporus substrates showed a high Pb and Cd adsorption capacity. Pb and Cd interactions with crude laccase enzyme extracts from spent P. ostreatus and A. bisporus substrates showed Cd and Pb enzyme inhibition; however, laccase activity of A. bisporus presented lower inhibition. Spent A. bisporus substrate polluted with PAH and Cd or Pb was able to biodegrade PAH, although both metals decrease the biodegradation rate. Spent A. bisporus substrate contained a microbiological consortium able to oxidize PAH with high ionization potential. Cd and Pb were immobilized during the bioremediation process by spent A. bisporus substrate. Consequently, spent A. bisporus substrate was adequate as a multi-polluted soil bioremediator.

  12. Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Daliao River watershed, China

    Institute of Scientific and Technical Information of China (English)

    QUAN Xiangchun; TANG Qian; HE Mengchang; YANG Zhifeng; LIN Chunye; GUO Wei

    2009-01-01

    The Daliao River, as an important water system in Northeast China, was reported to be heavily polluted by polycyclic aromatic hydrocarbons (PAHs). Aerobic biodegradations of four selected PAHs (naphthalene, phenanthrene, fluorene and anthracene) alone or in their mixture in fiver sediments from the Daliao River water systems were studied in microcosm systems. Effects of additional carbon source, inorganic nitrogen and phosphorus, temperature variation on PAHs degradation were also investigated. Results showed that the degradation of phenanthrene in water alone system was faster than that in water-sediment combined system. Degradation of phenanthrene in sediment was enhanced by adding yeast extract and ammonium, but retarded by adding sodium acetate and not significantly influenced by adding phosphate. Although PAHs could also be biodegraded in sediment under low temperature (5℃), much lower degradation rate was observed. Sediments from the three main streams of the Daliao River water system (the Hun River, the Taizi River and the Daliao River) demonstrated different degradation capacities and patterns to four PAHs. Average removal rates (15 or 19 d) of naphthalene, phenanthrene, fluorene and anthracene by sediment were in the range of 0.062-0.087, 0.005-0.066, 0.008-one. In multiple PAHs systems, the interactions between PAHs influenced each PAH biodegradation.

  13. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1.

    Directory of Open Access Journals (Sweden)

    Yihua Lyu

    Full Text Available Novosphingobium pentaromativorans US6-1, a marine bacterium isolated from muddy sediments of Ulsan Bay, Republic of Korea, was previously shown to be capable of degrading multiple polycyclic aromatic hydrocarbons (PAHs. In order to gain insight into the characteristics of PAHs degradation, a proteome analysis of N. pentaromativorans US6-1 exposed to phenanthrene, pyrene, and benzo[a]pyrene was conducted. Several enzymes associated with PAHs degradation were identified, including 4-hydroxybenzoate 3-monooxygenase, salicylaldehyde dehydrogenase, and PAH ring-hydroxylating dioxygenase alpha subunit. Reverse transcription and real-time quantitative PCR was used to compare RHDα and 4-hydroxybenzoate 3-monooxygenase gene expression, and showed that the genes involved in the production of these two enzymes were upregulated to varying degrees after exposing the bacterium to PAHs. These results suggested that N. pentaromativorans US6-1 degraded PAHs via the metabolic route initiated by ring-hydroxylating dioxygenase, and further degradation occurred via the o-phthalate pathway or salicylate pathway. Both pathways subsequently entered the tricarboxylic acid (TCA cycle, and were mineralized to CO2.

  14. QSAR for Predicting Biodegradation Rates of Polycyclic Aromatic Hydrocarbons in Aqueous Systems

    Institute of Scientific and Technical Information of China (English)

    XU Xiang; LI Xian-Guo

    2012-01-01

    The relationship between chemical structures and biodegradation rates (k b) of 22 polycyclic aromatic hydrocarbons (PAHs) was studied using density functional theory (DFT) and stepwise multiple linear regression analysis (SMLR) method.The equilibrium geometries and vibration frequency have been investigated at the B3LYP/6-31+G(d,p) level by thinking Solvent effects using a selfconsistent reaction field (SCRF) based on the polarizable continuum model (PCM).It was concluded that the biodegradation rate was closely related to its molecular structure,and there is one high correlation coefficient between the in-plane bending vibration frequency of the conjugated ring of PAHs (Freq) and k b.By means of regression analysis,the main factors affecting the biodegradation rate were obtained and the equation of quantitative structure-activity relationship (QSAR) was successfully established kb =-0.653+0.001Freq+0.068CQ+0.049N1.Statistical evaluation of the developed QSAR showed that the relationships were statistically significant and the model had good predictive ability.The fact that a bending frequency is more important than the HOMO or LUMO energies in predicting k b suggests that the bending of benzene ring might play an important role in the enzymatic catalysis of the initial oxidation step.

  15. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    Directory of Open Access Journals (Sweden)

    Norzila Othman

    2011-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compounds. This technology degrades contaminants through natural biodegradation mechanisms or enhanced biodegradation mechanism and can be performed in-situ or ex-situ under aerobic or anaerobic conditions. The purpose of this paper is to highlight potential of using isolated strains from municipal sludge on soil remediation. Several indigenous bacteria from municipal sludge namely genus Micrococus, Sphingomonas, and Corynebacterium demonstrated a high removal rate of PAHs with more than 80% of lower molecular weight of PAHs degraded after one week incubation. Laboratory studies had established that these genus able to degrade PAHs on contaminated soil. The successful application of bacteria to the bioremediation of PAHs contaminated sites requires a deeper understanding of how microbial PAH degradation proceeds. An overview of research focusing on biodegradation of PAHs will be presented.

  16. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry.

    Science.gov (United States)

    Li, Chun-Hua; Wong, Yuk-Shan; Tam, Nora Fung-Yee

    2010-11-01

    Mangrove sediment, influenced by tidal cycles, switches between low-oxygen and non-oxygen conditions, and iron is abundant in it. Polycyclic aromatic hydrocarbon (PAH) contamination often occurs in mangrove wetlands. In the present paper, the effects of iron [Fe(III)] amendment on the biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), in mangrove sediment slurries, with and without the inoculation of the enriched PAH-degrading bacterial consortia, under low-oxygen (2 + or - 0.3% O(2)) and non-oxygen (0% O(2)) conditions were investigated. Under both oxygen conditions and for all four PAHs, the highest PAHs biodegradation was observed in the groups with the inoculation of the enriched PAH-degrading consortia, while the groups without the inoculum and without Fe(III) amendment had the lowest biodegradation. However, the amendment of Fe(III) did not show any significant improvement on the biodegradation of all the four mixed PAHs.

  17. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1.

    Science.gov (United States)

    Lyu, Yihua; Zheng, Wei; Zheng, Tianling; Tian, Yun

    2014-01-01

    Novosphingobium pentaromativorans US6-1, a marine bacterium isolated from muddy sediments of Ulsan Bay, Republic of Korea, was previously shown to be capable of degrading multiple polycyclic aromatic hydrocarbons (PAHs). In order to gain insight into the characteristics of PAHs degradation, a proteome analysis of N. pentaromativorans US6-1 exposed to phenanthrene, pyrene, and benzo[a]pyrene was conducted. Several enzymes associated with PAHs degradation were identified, including 4-hydroxybenzoate 3-monooxygenase, salicylaldehyde dehydrogenase, and PAH ring-hydroxylating dioxygenase alpha subunit. Reverse transcription and real-time quantitative PCR was used to compare RHDα and 4-hydroxybenzoate 3-monooxygenase gene expression, and showed that the genes involved in the production of these two enzymes were upregulated to varying degrees after exposing the bacterium to PAHs. These results suggested that N. pentaromativorans US6-1 degraded PAHs via the metabolic route initiated by ring-hydroxylating dioxygenase, and further degradation occurred via the o-phthalate pathway or salicylate pathway. Both pathways subsequently entered the tricarboxylic acid (TCA) cycle, and were mineralized to CO2.

  18. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation.

    Science.gov (United States)

    Li, Xiaojun; Lin, Xin; Li, Peijun; Liu, Wan; Wang, Li; Ma, Fang; Chukwuka, K S

    2009-12-30

    The biodegradation of polycyclic aromatic hydrocarbons (PAHs) (8.15 mg PAHs kg(-1) soil) in aged contaminated soil by isolated microbial consortium (five fungi and three bacteria) during the incubation of 64d is reported. The applied treatments were: (1) biodegradation by adding microbial consortium in sterile soils (BM); (2) biodegradation by adding microbial consortium in non-sterile soils (BMN); and (3) biodegradation by in situ "natural" microbes in non-sterile soils (BNN). The fungi in BM and BMN soils grew rapidly 0-4d during the incubation and then reached a relative equilibrium. In contrast the fungi in BNN soil remained at a constant level for the entire time. Comparison with the fungi, the bacteria in BNN soils grew rapidly during the incubation 0-2d and then reached a relative equilibrium, and those in BM and BMN soils grew slowly during the incubation of 64 d. After 64 d of incubation, the PAH biodegradations were 35%, 40.7% and 41.3% in BNN, BMN and BM, respectively. The significant release of sequestrated PAHs in aged contaminated soil was observed in this experiment, especially in the BM soil. Therefore, although bioaugmentation of introduced microbial consortium increased significantly the biodegradation of PAHs in aged contaminated soil with low PAH concentration, the creation of optimum of the environmental situation might be the best way to use bioremediation successfully in the field.

  19. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil.

    Science.gov (United States)

    Zhu, Hongbo; Aitken, Michael D

    2010-10-01

    We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C(12)E(8)), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant's critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C(12)E(8) did not enhance PAH removal at any dose. In the absence of surfactant, PAH desorbed from the soil over an 18 day period. Brij 30 addition at the lowest dose significantly increased the desorption of most PAHs, whereas the addition of C(12)E(8) at the lowest dose actually decreased the desorption of all PAHs. These findings suggest that the effects of the two surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited.

  20. Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution

    Energy Technology Data Exchange (ETDEWEB)

    Posada-Baquero, Rosa [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080 Seville (Spain); Ortega-Calvo, Jose-Julio, E-mail: jjortega@irnase.csic.es [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080 Seville (Spain)

    2011-12-15

    The microbial accessibility of native phenanthrene and pyrene was determined in soils representing background scenarios for pollution by polycyclic aromatic hydrocarbons (PAHs). The soils were selected to cover a wide range of concentrations of organic matter (1.7-10.0%) and total PAHs (85-952 {mu}g/kg). The experiments included radiorespirometry determinations of biodegradation with {sup 14}C-labeled phenanthrene and pyrene and chemical analyses to determine the residual concentrations of the native compounds. Part of the tests relied on the spontaneous biodegradation of the chemicals by native microorganisms; another part also involved inoculation with PAH-degrading bacteria. The results showed the recalcitrance of PAHs already present in the soils. Even after extensive mineralization of the added {sup 14}C-PAHs, the concentrations of native phenanthrene and pyrene did not significantly decrease. We suggest that aging processes operating at background concentrations may contribute to recalcitrance and, therefore, to ubiquitous pollution by PAHs in soils. - Highlights: > Background PAHs in soils are highly resistant to biodegradation. > Recalcitrance occurs even after inoculation with specialized microorganisms. > Recalcitrance is caused by a low bioaccessibility and aging. > Time (aging) seems a relevant factor causing recalcitrance. > Recalcitrance can explain ubiquitous PAH background pollution. - Background soil PAHs are highly resistant to biodegradation.

  1. Effects of enrichment with phthalate on polycyclic aromatic hydrocarbon biodegradation in contaminated soil.

    Science.gov (United States)

    Singleton, David R; Richardson, Stephen D; Aitken, Michael D

    2008-07-01

    The effect of enrichment with phthalate on the biodegradation of polycyclic aromatic hydrocarbons (PAH) was tested with bioreactor-treated and untreated contaminated soil from a former manufactured gas plant (MGP) site. Soil samples that had been treated in a bioreactor and enriched with phthalate mineralized (14)C-labeled phenanthrene and pyrene to a greater extent than unenriched samples over a 22.5-h incubation, but did not stimulate benzo[a]pyrene mineralization. In contrast to the positive effects on (14)C-labeled phenanthrene and pyrene, no significant differences were found in the extent of biodegradation of native PAH when untreated contaminated soil was incubated with and without phthalate amendment. Denaturing-gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes from unenriched and phthalate-enriched soil samples were substantially different, and clonal sequences matched to prominent DGGE bands revealed that beta-Proteobacteria related to Ralstonia were most highly enriched by phthalate addition. Quantitative real-time PCR analyses confirmed that, of previously determined PAH-degraders in the bioreactor, only Ralstonia-type organisms increased in response to enrichment, accounting for 89% of the additional bacterial 16S rRNA genes resulting from phthalate enrichment. These findings indicate that phthalate amendment of this particular PAH-contaminated soil did not significantly enrich for organisms associated with high molecular weight PAH degradation or have any significant effect on overall degradation of native PAH in the soil.

  2. Degradation of polycyclic aromatic hydrocarbons : model simulation for bioavailability and biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Owabor, C.N.; Ogbeide, S.E. [Benin Univ. (Nigeria). Dept. of Chemical Engineering; Susu, A.A. [Lagos Univ. (Nigeria). Dept. of Chemical Engineering

    2010-04-15

    Research has indicated that the biodegradation of polycyclic aromatic hydrocarbons (PAHs) is influenced by the molecular size of the PAHs as well as by soil properties. This study presented a model for a 1-D convective-dispersive solute transport in a soil matrix. The model was designed to consider the gas-liquid interface film and the biofilm between the liquid and solid interface as well as to account for interparticle; intraparticle, and interphase mass transport. A soil microcosm reactor was used to evaluate substrate bioavailability and biodegradation in a contaminated aqueous solids system. The numerical model involved the discretization of depth, radial distance, and time into mesh or grid points with constant intervals. Dimensionless variables were defined using a backward finite difference (BFD) method. Results of the study suggested that PAH occlusion occurred in the micropores of the soil particle. The non-steady state model adequately predicted the concentration profiles of PAHs within the soil matrix. 26 refs., 5 tabs., 7 figs.

  3. Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids.

    Science.gov (United States)

    Tejeda-Agredano, M C; Gallego, S; Niqui-Arroyo, J L; Vila, J; Grifoll, M; Ortega-Calvo, J J

    2011-02-01

    The main goal of this study was to use an oleophilic biostimulant (S-200) to target possible nutritional limitations for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at the interface between nonaqueous-phase liquids (NAPLs) and the water phase. Biodegradation of PAHs present in fuel-containing NAPLs was slow and followed zero-order kinetics, indicating bioavailability restrictions. The biostimulant enhanced the biodegradation, producing logistic (S-shaped) kinetics and 10-fold increases in the rate of mineralization of phenanthrene, fluoranthene, and pyrene. Chemical analysis of residual fuel oil also evidenced an enhanced biodegradation of the alkyl-PAHs and n-alkanes. The enhancement was not the result of an increase in the rate of partitioning of PAHs into the aqueous phase, nor was it caused by the compensation of any nutritional deficiency in the medium. We suggest that biodegradation of PAH by bacteria attached to NAPLs can be limited by nutrient availability due to the simultaneous consumption of NAPL components, but this limitation can be overcome by interface fertilization.

  4. Biodegradation potential of polycyclic aromatic hydrocarbons by bacteria strains enriched from Yangtze River sediments.

    Science.gov (United States)

    Xu, Xiaoyi; Chen, Xi; Su, Pan; Fang, Fang; Hu, Bibo

    2016-01-01

    Microbial degradation is an effective method for the removal of polycyclic aromatic hydrocarbons (PAHs) compounds from polluted sediments. Surface sediments collected from Yangtze River in the downtown area of Chongqing were found to contain PAH concentrations to various different degrees. Two bacteria strains (termed PJ1 and PJ2) isolated from the sediment samples could use phenanthrene (Phe) and fluoranthene (Flu) as carbon sources for growth thereby degrading these two PAH compounds. Using 16S rDNA gene sequencing, the isolates were identified as Sphingomonas sp. and Klebsiella sp., respectively. Biodegradation assays showed that the PJ1 presented an efficient degradation capability compared to PJ2 in cultures with the initial Phe and Flu concentrations ranging from 20 to 200 mg/L. The highest rates of Phe and Flu biodegradation by PJ1 reached 74.32% and 58.18% after incubation for 15 and 30 days, respectively. This is the first report on the biodegradation potential of the bacterial from surface sediments of an industrial area upstream of the Gorge Reservoir.

  5. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-11-15

    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  6. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions.

    Science.gov (United States)

    Li, Fengmei; Guo, Shuhai; Hartog, Niels; Yuan, Ye; Yang, Xuelian

    2016-02-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg(-1). Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0% in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs.

  7. Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China.

    Science.gov (United States)

    Tian, Yun; Luo, Yuan-rong; Zheng, Tian-ling; Cai, Li-zhe; Cao, Xiao-xing; Yan, Chong-ling

    2008-06-01

    Five stations were established in the Fenglin mangrove area of Xiamen, China to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the numbers of PAH-degrading bacteria in surface sediments. Assessing the biodegradation potential of indigenous microorganisms and isolating the high molecule weight (HMW)-PAH degrading bacteria was also one of the aims of this work. The results showed that the total PAH concentration of sediments was 222.59 ng g(-1) dry weight, whereas the HMW-PAH benzo(a)pyrene (BaP) had the highest concentration among 16 individual PAH compounds. The variation in the numbers of PAH-degrading bacteria was 2.62 x 10(2)-5.67 x 10(4)CFU g(-1) dry weight. The addition of PAHs showed a great influence in increasing the microbial activity in mangrove sediments. A bacterial consortium, which could utilize BaP as the sole source of carbon and energy, and which was isolated from mangrove sediments and enriched in liquid medium for nearly one year degraded 32.8% of BaP after 63 days incubation.

  8. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria.

    Science.gov (United States)

    Kanaly, Robert A; Harayama, Shigeaki

    2010-03-01

    Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.

  9. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Singleton, David R; Richardson, Stephen D; Aitken, Michael D

    2011-11-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.

  10. Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongyong; Huo, Xia [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Wu, Kusheng [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Department of Preventive Medicine, Shantou University Medical College, Shantou (China); Liu, Junxiao; Zhang, Yuling [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Xu, Xijin, E-mail: xuxj@stu.edu.cn [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou (China)

    2012-06-15

    Unregulated electronic-waste recycling results in serious environmental pollution of polycyclic aromatic hydrocarbons (PAHs) in Guiyu, China. We evaluated the body burden of seven carcinogenic PAHs and potential health risks for neonates. Umbilical cord blood (UCB) samples were collected from Guiyu (n = 103), and the control area of Chaonan (n = 80), China. PAHs in UCB were determined by gas chromatography/mass spectrometry. The median N-Ary-Summation 7c-PAH concentration was 108.05 ppb in UCB samples from Guiyu, vs. 79.36 ppb in samples from Chaonan. Residence in Guiyu and longer cooking time of food during the gestation period were significant factors contributing to the N-Ary-Summation 7c-PAH level. Benzo[a]anthracene (BaA), chrysene (Chr), and benzo[a]pyrene (BaP) were found to correlate with reduced neonatal height and gestational age. Infants experiencing adverse birth outcomes, on the whole, displayed higher BaA, Chr, and BaP levels compared to those with normal outcomes. We conclude that maternal PAH exposure results in fetal accumulation of toxic PAHs, and that such prenatal exposure correlates with adverse effects on neonatal health.

  11. Biostimulation Reveals Functional Redundancy of Anthracene-Degrading Bacteria in Polycyclic Aromatic Hydrocarbon-Contaminated Soil.

    Science.gov (United States)

    Dunlevy, Sage R; Singleton, David R; Aitken, Michael D

    2013-11-01

    Stable-isotope probing was previously used to identify bacterial anthracene-degraders in untreated soil from a former manufactured gas plant site. However, subsequent pyrosequence analyses of total bacterial communities and quantification of 16S rRNA genes indicated that relative abundances of the predominant anthracene-degrading bacteria (designated Anthracene Group 1) diminished as a result of biological treatment conditions in lab-scale, aerobic bioreactors. This study identified Alphaproteobacterial anthracene-degrading bacteria in bioreactor-treated soil which were dissimilar to those previously identified. The largest group of sequences was from the Alterythrobacter genus while other groups of sequences were associated with bacteria within the order Rhizobiales and the genus Bradyrhizobium. Conditions in the bioreactor enriched for organisms capable of degrading anthracene which were not the same as those identified as dominant degraders in the untreated soil. Further, these data suggest that identification of polycyclic aromatic hydrocarbon-degrading bacteria in contaminated but untreated soil may be a poor indicator of the most active degraders during biological treatment.

  12. The anharmonic quartic force field infrared spectra of three polycyclic aromatic hydrocarbons: Naphthalene, anthracene, and tetracene

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Cameron J., E-mail: mackie@strw.leidenuniv.nl; Candian, Alessandra; Tielens, Alexander G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Huang, Xinchuan [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, California 94043 (United States); Maltseva, Elena; Buma, Wybren Jan [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Petrignani, Annemieke [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Radboud University, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Oomens, Jos [Radboud University, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Lee, Timothy J. [NASA Ames Research Center, Moffett Field, California 94035-1000 (United States)

    2015-12-14

    Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.

  13. Discovery of Blue Luminescence in the Red Rectangle: Possible Fluorescence from Neutral Polycyclic Aromatic Hydrocarbon Molecules?

    CERN Document Server

    Vijh, U P; Gordon, K D

    2004-01-01

    Here we report our discovery of a band of blue luminescence (BL) in the Red Rectangle (RR) nebula. This enigmatic proto-planetary nebula is also one of the brightest known sources of extended red emission as well as of unidentified infra-red (UIR) band emissions. The spectrum of this newly discovered BL is most likely fluorescence from small neutral polycyclic aromatic hydrocarbon (PAH) molecules. PAH molecules are thought to be widely present in many interstellar and circumstellar environments in our galaxy as well as in other galaxies, and are considered likely carriers of the UIR-band emission. However, no specific PAH molecule has yet been identified in a source outside the solar system, as the set of mid-infra-red emission features attributed to these molecules between the wavelengths of 3.3 micron and 16.4 micron is largely insensitive to molecular sizes. In contrast, near-UV/blue fluorescence of PAHs is more specific as to size, structure, and charge state of a PAH molecule. If the carriers of this nea...

  14. Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain

    Institute of Scientific and Technical Information of China (English)

    Pugazhcndi Arulazhagan; Namsivayam Vasudevan

    2011-01-01

    A halotolerant bacterial strain VA1 isolated from marine environment was studied for its ability to utilize polycylic aromatic hydrocarbons (PAHs) under saline condition.Anthracene and pyrene were used as representatives for the utilization of PAH by the bacterial strain.Glucose and sodium citrate were used as additional carbon sources to enhance the PAH utilization.The strain VA1was able to utilize anthracene (73%) and pyrene (66%) without any additional substrate.In the presence of additional carbon sources (glucose/sodium citrate) the utilization of PAH was faster.PAH was utilized faster by VA1 in the presence of glucose than sodium citrate.The stain utilized 87% and 83% of anthracene and pyrene with glucose as carbon source and with sodium citrate the strain utilized 81%and 76% respectively in 4 days.Urea as an alternative source of nitrogen also enhanced the utilization of PAHs (anthracene and pyrene)by the bacterial strain up to 88% and 84% in 4 days.Sodium nitrate as nitrogen source was not able to enhance the PAH utilization rate.Phenotypic and phlyogenetic analysis proved that the PAHs utilizing halotolerant strain VA1 belongs to Ochrobactrum sp.

  15. Polycyclic aromatic hydrocarbon contamination and recovery characteristics in some organisms after the Nakhodka oil spill.

    Science.gov (United States)

    Koyama, Jiro; Uno, Seiichi; Kohno, Kumiko

    2004-12-01

    Following the oil spill from the Russian tanker Nakhodka in 1997 in the Sea of Japan, polycyclic aromatic hydrocarbons (PAH) were monitored for three years in some molluscs from the Mikuni-cho shore in Japan. Total PAH concentrations in marine organisms except for spiny top shell, ranged from 5.3 to 32.7 ng/g wet weight, but no trends were evident. Total PAH concentration in spiny top shell (Turbo cornutus) was 44 ng/g w.w. in the first month after the oil spill. However, it rapidly decreased to less than 5.4 ng/g w.w. from the second month. Spiny top shell, which was exposed to dietary Nakhodka heavy fuel oil, concentrated benzo(a)pyrene to 17.1 ng/g w.w. after two weeks of exposure and then rapidly eliminated it during an elimination phase. These results suggest that spiny top shell accumulates PAHs because of their low ability to metabolize PAH, but it can excrete parent PAHs rapidly when removed from the source of contamination. Thus it is suitable as an indicator organism in monitoring oil contamination. It can also be inferred from these field and laboratory investigations that, in three years, organisms from the Mikuni-cho shore seem to have adequately recovered from the Nakhodka oil spill contamination.

  16. Polycyclic aromatic hydrocarbon contamination and recovery characteristics in some organisms after the Nakhodka oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Jiro; Uno, Seiichi [Kagoshima University (Japan). Faculty of Fisheries; Kohno, Kumiko [National Research Institute of Fisheries and Environment of Inland Sea, Hiroshima (Japan)

    2005-12-01

    Following the oil spill from the Russian tanker Nakhodka in 1997 in the Sea of Japan, polycyclic aromatic hydrocarbons (PAH) were monitored for three years in some molluscs from the Mikuni-cho shore in Japan. Total PAH concentrations in marine organisms except for spiny top shell, ranged from 5.3 to 32.7 ng/g wet weight, but no trends were evident. Total PAH concentration in spiny top shell (Turbo cornutus) was 44 ng/g w.w. in the first month after the oil spill. However, it rapidly decreased to less than 5.4 ng/g w.w. from the second month. Spiny top shell, which was exposed to dietary Nakhodka heavy fuel oil, concentrated benzo(a)pyrene to 17.1 ng/g w.w. after two weeks of exposure and then rapidly eliminated it during an elimination phase. These results suggest that spiny top shell accumulates PAHs because of their low ability to metabolize PAH, but it can excrete parent PAHs rapidly when removed from the source of contamination. Thus it is suitable as an indicator organism in monitoring oil contamination. It can also be inferred from these field and laboratory investigations that, in three years, organisms from the Mikuni-cho shore seem to have adequately recovered from the Nakhodka oil spill contamination. (author)

  17. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.

    Science.gov (United States)

    Wang, Jun; Chen, Zaiming; Chen, Baoliang

    2014-05-01

    The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.

  18. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.

    2015-03-30

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  19. Polycyclic aromatic hydrocarbon in rain and street runoff in Amman, Jordan

    Institute of Scientific and Technical Information of China (English)

    Anwar. G. Jiries; Helmi. H. Hussein; Jutta Lintelmann

    2003-01-01

    Concentrations of polycyclic aromatic hydrocarbons(PAHs) were determined in the rain and street runoff samples from two sites in the vicinity of Amman City during the pluvial period 1999-2000. The results showed that elevated levels of PAHs were detected in the city center(site 1 ) than the residential area(site 2) and that the levels were higher in street runoff than rain samples of the same sites.The highest concentration of PAHs in both street runoff and rain samples were observed in the first rainy month( November 1999) which indicated a wash out effect of PAHs originating from vehicular emission accumulated during the long dry summer season before sampling. Within the investigated cold winter seasons, fluctuations in PAHs concentration were observed. The variation was attributed to the fossil combustion for heating purposes and to intervals between rainfalls: as the longer the intervals between rains were, the higher the PAH concentration were.Removal of PAHs from the atmosphere through precipitation over the investigated period varied with time and places depending on the amount of rainfall where higher rainfall removed higher amount of PAHs from the atmosphere. The amount of PAHs washed out through precipitation was estimated to be around 14.8 mg/m2 and 21.1 mg/m2 for sites 1 and 2 respectively.

  20. Urinary profiles to assess polycyclic aromatic hydrocarbons exposure in coke-oven workers.

    Science.gov (United States)

    Campo, Laura; Rossella, Federica; Pavanello, Sofia; Mielzynska, Danuta; Siwinska, Ewa; Kapka, Lucyna; Bertazzi, Pier Alberto; Fustinoni, Silvia

    2010-01-15

    Aim of the study was the assessment of exposure of coke-oven workers to polycyclic aromatic hydrocarbons (PAHs) by determination of urinary profiles of hydroxylated and unmetabolized PAHs. Fifty-five Polish coke-oven workers were investigated by measurement of 12 hydroxylated metabolites of PAHs (OHPAHs) (1-, 2-hydroxynaphthalene; 2-, 9-hydroxyfluorene; 1-, 2-, 3-, 4-, 9-hydroxyphenanthrene; 1-hydroxyypyrene, 6-hydroxychrysene and 3-hydroxybenzo[a]pyrene) and 13 unmetabolized PAHs (U-PAHs) (from naphthalene to benzo[a]pyrene), in spot urine samples collected at the end of the workshift. U-PAHs with four or less rings were detected in all samples. In particular, median levels for urinary naphthalene, phenanthrene, pyrene, chrysene and benz[a]anthracene were 0.806, 0.721, 0.020, 0.032 and 0.035 microg/L. OHPAHs up to 1-hydroxypyrene were found in all samples, while high molecular-weight OHPAHs were always below quantification limit. Median level of 1-hydroxyypyrene was 15.4 microg/L. In all subjects significant correlations between OHPAHs and U-PAHs were observed (0.27 < r < 0.70, p < 0.01). Our results suggest that both hydroxylated metabolites and unmetabolized PAHs in urine are useful biomarkers of exposure to PAHs. Moreover, the simultaneous determination of several biomarkers permits to obtain specific excretion profiles that might help in exposure characterization and in better defining the excretion patterns.