WorldWideScience

Sample records for armored blanket development

  1. Experimental studies on tungsten-armor impact on nuclear responses of solid breeding blanket

    International Nuclear Information System (INIS)

    Sato, S.; Nakao, M.; Verzilov, Y.; Ochiai, K.; Wada, M.; Kubota, N.; Kondo, K.; Yamauchi, M.; Enoeda, M.; Nishitani, T.

    2005-01-01

    In order to experimentally evaluate the tungsten armor impact on tritium production of the solid breeding blanket being developed by JAERI for tokamak-type DEMO reactors, neutronics integral experiments have been performed by using DT neutrons at Fusion Neutron Source (FNS) facility of JAERI. Solid breeding blanket mockups relevant to the DEMO blanket have been applied in this study. The mockups are constructed by a set of layers consisting of 0 - 25.2 mm thick tungsten, 16 mm thick F82H, 12 mm thick Li 2 TiO 3 and 100 - 200mm thick beryllium with cross-section of 660 x 660 mm in maximum. Pellets of Li 2 CO 3 are embedded inside the Li 2 TiO 3 layers to measure the tritium production rate. By installing the 5, 12.6 and 25.2 mm thick tungsten armors, sum of the integrated tritium productions at the pellets are reduced by about 2, 3 and 6 % relative to the case without the armor, respectively. Numerical calculations have been conducted using the Monte Carlo code. Calculation results for sum of the integrated tritium productions in the case with the tungsten armor agree well with the experiment data within 4% and 19% under condition without and with a neutron reflector, respectively. (author)

  2. Activities of HIP joining of plasma-facing armors in the blanket first-wall in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il, E-mail: yijung@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedeok-daero, Daejeon 34057 (Korea, Republic of); Park, Jeong-Yong; Choi, Byoung-Kwon; Lee, Jung-Suk; Kim, Hyun-Gil; Park, Dong-Jun; Park, Jung-Hwan; Kim, Suk-Kwon; Lee, Dong-Won [Korea Atomic Energy Research Institute, Daedeok-daero, Daejeon 34057 (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Gwahak-ro, Yuseong, Daejeon 34133 (Korea, Republic of)

    2016-11-01

    Highlights: • HIP joints of Be/CuCrZr, Be/FMS, W/FMS were demonstrated. • The process conditions for HIP joining were developed. • For the joining of Be, coating interlayers as well as thick diffusion barrier was developed. • For the joining of W, double-staged HIP was applied for the joint integrity. • No significant defects nor a brittle failure were observed along the joint interface. - Abstract: Joining technology for dissimilar materials was developed for the fabrication of an ITER blanket first-wall, which consisted of Be, CuCrZr, and stainless steel (SS). The Be/CuCrZr/SS joint was fabricated using a hot isostatic pressing (HIP) method. Beryllium armor was joined to the CuCrZr/SS block at 580 °C under 100 MPa. The optimal interlayer coatings of Cr/Cu and Ti/Cr/Cu were developed using an ion-beam assisted physical vapor deposition. Beryllium is also a candidate armor material for the TBM first-wall. Successful joining of Be to ferritic-martensitic steel (FMS) was accomplished using an HIP method by introducing the thick diffusion barrier. A thick diffusion barrier of a Cu foil(10 μm) limited the excessive diffusion and prevented the formation of brittle phases at the Be/FMS interface. Be and FMS were bonded at 650–850 °C; however, a temperature of lower than 750 °C was recommended to avoid material degradation of FMS. In addition, the joining of W to FMS has been developed. Tungsten is another armor material applicable to more severe plasma conditions. The large difference in the thermal expansion between W and FMS was resolved by introducing the Ti interlayer and Mo separator. Moreover, the double-staged HIP (the first stage at 900 °C and 100 MPa and the second stage at 750 °C and 70 MPa) was applied to suppress the edge delamination of W/FMS joints during thermal history.

  3. Design and analysis of ITER shield blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-12-01

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  4. Key achievements in elementary R and Ds on water-cooled solid breeder blanket for ITER Test Blanket Module in JAERI

    International Nuclear Information System (INIS)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Tanigawa, H.; Tobita, K.; Akiba, M.; Hayashi, K.; Ochiai, K.; Nishitani, T.

    2005-01-01

    This paper presents significant progress in research and development (R and D) of key elementary technologies on the water-cooled solid breeder blanket for the ITER test blanket modules (TBMs) in JAERI. Development of module fabrication technology, bonding technology of armors, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup, and tritium release behavior from Li 2 TiO 3 pebble bed under neutron pulsed operation condition are summarized. By the improvement of heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H, can be obtained by homogenizing it at 1150 deg C followed by normalizing at 930 deg C after the Hot Isostatic Pressing (HIP) process. Moreover, a promising bonding process for a tungsten armor and an F82H structural material was developed by using a solid state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it was found that the thermal fatigue lifetime of F82H can be predicted by using Manson-Coffin's law. As for R and Ds on a breeder material, Li 2 TiO 3 , effective thermal conductivity of Li 2 TiO 3 pebble was measured under compressive force simulating the ITER TBM environment. The increase in the effective thermal conductivity of the pebble bed was about 2.5 % at the compressive strain of 0.9 % at 400 deg C. Neutronic performance of the blanket module mockup has been carried out by the 14 MeV neutron irradiation. It was confirmed that the measured tritium production rate agreed with the calculated values within about 10% difference. Also, tritium release from a Li 2 TiO 3 pebble bed was measured under pulsed neutron irradiation conditions simulating the ITER operation. (author)

  5. Progress on the Fabrication Methods Development for the Korean Test Blanket Module First Wall in the ITER

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Suk Kwon; Bae, Young Dug; Yoon, Jae Sung; Cho, Seung Yon

    2010-01-01

    A Korean helium cooled molten lithium (HCML) test blanket module (TBM) has been designed to be tested in the International Thermonuclear Experimental Reactor (ITER) TBM and related fabrication methods have been developed especially for the purpose of joining. Since the first wall (FW) of the HCML TBM is composed of a beryllium (Be) as an armor material and a FMS as a structural one, joining with Be to FMS and FMS to FMS should be developed in order to fabricate it

  6. Fabrication of the full scale separable first wall of ITER shielding blanket

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Hatano, Toshihisa; Enoeda, Mikio; Miki, Nobuharu; Akiba, Masato

    2002-10-01

    Shielding blanket for ITER-FEAT applies the unique first wall structure which is separable from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. Such unique features of blanket structure required technological clarification from the technical base of the previous achievement of the blanket module fabrication development. Previously, within the EDA Task T216+, a prototype for the no.4 Primary Wall Module of the ITER Shield Blanket with integrated first wall has been manufactured by forging and drilling and the first wall has been manufactured and joined to the shield block by Hot Isostatic Pressing (HIP) in one step process. This work has been performed to clarify the remaining R and D issues which have not been covered in the previous R and D. This report summarizes the demonstrative fabrication of the real scale separable first wall for ITER shielding blanket designed for ITER-FEAT, together with the essential technology developments such as, the slit grooving of the first wall with beryllium armor and SS shield block and fabrication of a partial mockup of beryllium armored first wall panel with built-in cooling channels. This work has been performed under the task agreement of G 16 TT 95 FJ (T420-1) in ITER Engineering Design Activity Extension Period. By the demonstration of the Be armor joining to the first wall panel, the joining technique of Be and DSCu developed previously, was shown to be applicable to the realistic structure of first wall panel. Also, the slit grooving by an end-mill method and an electron discharge machining method have been applied to the first wall mockup with Be armor tiles and demonstrated the applicability within the design tolerance. As the slit grooving technique

  7. Development of blanket remote maintenance system

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou

    1998-01-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  8. Development of blanket remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  9. Field Expedient Armor Modifications to US Armored Vehicles

    Science.gov (United States)

    2006-06-01

    Report on US vs. German Armor,” Exhibit 3, p. 42. 37Ibid., Exhibit 2, p. 38. 38Kenneth W. Estes, Marines Under Armor , The Marine Corps and the...Washington, D.C., 1945), 62. 43Estes, Marines Under Armor , 81. 44Ibid. 45Cameron, “Armor Combat Development 1917-1945,” 17. 46Mayo, The Technical...Marines Under Armor , 53. 72William E. Bennett, Charles W. Fletcher, French G. Lewis, Gerald H. Shea, Rufus J. Cleghorn, James F. Beaver and Thomas

  10. ITER breeding blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Toshimasa; Enoeda, Mikio; Kikuchi, Shigeto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-11-01

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  11. Fabrication of prototype mockups of ITER shielding blanket with separable first wall

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Akiba, Masato

    2002-07-01

    Design of shielding blanket for ITER-FEAT applies the first wall which has the separable structure from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. This report summarizes the demonstrative fabrication of the ITER shielding blanket with separable first wall performed for the shielding blanket fabrication technology development, under the task agreement of G 16 TT 108 FJ (T420-2) in ITER Engineering Design Activity Extension Period. The objectives of the demonstrative fabrication are: to demonstrate the comprehensive fabrication technique in a large scale component (e.g the joining techniques for the beryllium armor/copper alloy and copper alloy/SS, and the slotting method of the FW and shield block); to develop an improved fabrication method for the shielding blanket based on the ITER-FEAT updated design. In this work, the fabrication technique of full scale separable first wall shield blanket was confirmed by fabricating full width Be armored first wall panel, full scale of 1/2 shield block with poloidal cooling channels. As the R and D for updated cooling channel configuration, the fabrication technique of the radial channel shield block was also demonstrated. Concluding to the all R and D results, it was demonstrated successfully that the fabrication technique and optimized conditions in the results obtained under the task agreement of G 16 TT 95 FJ (T420-1) was applicable to the prototype of the separable first wall blanket module. Additionally, basic echo data of ultra-sonic test method (UT) was obtained to show the applicability of UT method for in tube access detection of defect on the Cu alloy/SS tube interface. (author)

  12. Achievements of element technology development for breeding blanket

    International Nuclear Information System (INIS)

    Enoeda, Mikio

    2005-03-01

    Japan Atomic Energy Research Institute (JAERI) has been performing the development of breeding blanket for fusion power plant, as a leading institute of the development of solid breeder blankets, according to the long-term R and D program of the blanket development established by the Fusion Council of Japan in 1999. This report is an overview of development plan, achievements of element technology development and future prospect and plan of the development of the solid breeding blanket in JAERI. In this report, the mission of the blanket development activity in JAERI, key issues and roadmap of the blanket development have been clarified. Then, achievements of the element technology development were summarized and showed that the development has progressed to enter the engineering testing phase. The specific development target and plan were clarified with bright prospect. Realization of the engineering test phase R and D and completion of ITER test blanket module testing program, with universities/NIFS cooperation, are most important steps in the development of breeding blanket of fusion power demonstration plant. (author)

  13. APT target-blanket fabrication development

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  14. Carbon tiles as spectral-shifter for long-life liquid blanket in LHD-type reactor FFHR

    International Nuclear Information System (INIS)

    Sagara, A.; Imagawa, S.; Tanaka, T.; Muroga, T.; Kubota, Y.; Dolan, T.; Hashizume, H.; Kunugi, T.; Fukada, S.; Shimizu, A.; Terai, T.; Mitarai, O.

    2006-01-01

    In terms of engineering feasibility for long-life Flibe blanket in LHD-type reactor FFHR, the Spectral-shifter and Tritium breeder Blanket (STB) concept is evaluated by taking neutron irradiation effects into account under system integration such as Flibe cooling and components replacement. FEM calculations for the neutron wall loading of 1.5 MW/m 2 show that the temperature of the STB armor tile can be kept below 2000 K by optimizing the first metal wall thickness. The heat load experiment on the STB armor mockup confirms feasibility of the temperature control and mechanical joining. Degradation of STB armor tiles due to neutron irradiation requires replacement of them every few years by means of remote handling 'screw coasters' using helical winding, where the replaced tiles are low level wastes. Although the STB concept is feasible within nuclear and thermal properties, more detailed structural optimization is needed including the mechanical and chemical properties

  15. Development of the armoring technique for ITER Divertor Dome

    Energy Technology Data Exchange (ETDEWEB)

    Litunovsky, Nikolay, E-mail: nlitunovsky@sintez.niiefa.spb.su [D.V. Efremov Reseasch Institute, 3, Doroga na Metallostroy, Saint Petersburg (Russian Federation); Alekseenko, Evgeny; Makhankov, Alexey; Mazul, Igor [D.V. Efremov Reseasch Institute, 3, Doroga na Metallostroy, Saint Petersburg (Russian Federation)

    2011-10-15

    This paper describes the current status of the technique for armoring of Plasma Facing Units (PFUs) of the ITER Divertor Dome with flat tungsten tiles planned for application at the procurement stage. Application of high-temperature vacuum brazing for armoring of High Heat Flux (HHF) plasma facing components was traditionally developed at the Efremov Institute and successfully tried out at the ITER R and D stage by manufacturing and HHF testing of a number of W- and Be-armored mock-ups . Nevertheless, the so-called 'fast brazing' technique successfully applied in the past was abandoned at the stage of manufacturing of the Dome Qualification Prototypes (Dome QPs), as it failed to retain the mechanical properties of CuCrZr heat sink of the substrate. Another problem was a substantially increased number of armoring tiles brazed onto one substrate. Severe ITER requirements for the joints quality have forced us to refuse from production of W/Cu joints by brazing in favor of casting. These modifications have allowed us to produce ITER Divertor Dome QPs with high-quality tungsten armor, which then passed successfully the HHF testing. Further preparation to the procurement stage is in progress.

  16. Design and development of ceramic breeder demo blanket

    International Nuclear Information System (INIS)

    Enoeda, M.; Sato, S.; Hatano, T.

    2001-01-01

    Ceramic breeder blanket development has been widely conducted in Japan from fundamental researches to project-oriented engineering scaled development. A long term R and D program has been launched in JAERI since 1996 as a course of DEMO blanket development. The objectives of this program are to provide engineering data base and fabrication technologies of the DEMO blanket, aiming at module testing in ITER currently scheduled to start from the beginning of the ITER operation as a near-term target. Two types of DEMO blanket systems, water cooled blanket and helium cooled blanket, have been designed to be consistent with the SSTR (Steady State Tokamak Reactor) which is the reference DEMO reactor design in JAERI. Both of them utilize packed small pebbles of breeder Li 2 O or Li 2 TiO 3 as a candidate) and neutron multiplier (Be) and rely on the development of advanced structural materials (a reduced activation ferritic steel F82H) compatible with high temperature operation. (author)

  17. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    International Nuclear Information System (INIS)

    Ishitsuka, E.

    2002-01-01

    Advanced solid breeding blanket design in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high dose of neutron irradiation. Therefore, the development of such advanced blanket materials is indispensable. In this paper, the cooperation activities among JAERI, universities and industries in Japan on the development of these advanced materials are reported. Advanced tritium breeding material to prevent the grain growth in high temperature had to be developed because the tritium release behavior degraded by the grain growth. As one of such materials, TiO 2 -doped Li 2 TiO 3 has been studied, and TiO 2 -doped Li 2 TiO 3 pebbles was successfully fabricated. For the advanced neutron multiplier, the beryllium intermetallic compounds that have high melting point and good chemical stability have been studied. Some characterization of Be 12 Ti was studied. The pebble fabrication study for Be 12 Ti was also performed and Be 12 Ti pebbles were successfully fabricated. From these activities, the bright prospect to realize the DEMO blanket by the application of TiO 2 -doped Li 2 TiO 3 and beryllium intermetallic compounds was obtained. (author)

  18. Development and Verification of Body Armor Target Geometry Created Using Computed Tomography Scans

    Science.gov (United States)

    2017-07-13

    Computed Tomography Scans by Autumn R Kulaga, Kathryn L Loftis, and Eric Murray Approved for public release; distribution is...Army Research Laboratory Development and Verification of Body Armor Target Geometry Created Using Computed Tomography Scans by Autumn R Kulaga...Development and Verification of Body Armor Target Geometry Created Using Computed Tomography Scans 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  19. Effect of surface texture and structure on the development of stable fluvial armors

    Science.gov (United States)

    Bertin, Stephane; Friedrich, Heide

    2018-04-01

    Stable fluvial armors are found in river systems under conditions of partial sediment transport and limited sediment supply, a common occurrence in nature. Stable armoring is also readily recreated in experimental flumes. Initially, this bed stabilizing phenomenon was examined for different flow discharges and solely related to surface coarsening and bedload transport reduction. The models developed suggest a specific armor composition (i.e., texture) dependent on the parent bed material and formative discharge. Following developments in topographic remote sensing, recent research suggests that armor structure is an important control on bed stability and roughness. In this paper, replicated flume runs during which digital elevation models (DEMs) were collected from both exposed and flooded gravel beds are used to interpret armoring manifestations and to assess their replicability. A range of methodologies was used for the analysis, providing information on (i) surface grain size and orientation, (ii) bed-elevation distributions, (iii) the spatial coherence of the elevations at the grain-scale, (iv) surface slope and aspect, (v) grain imbrication and (vi) the spatial variability in DEM properties. The bed-surface topography was found to be more responsive than bed-material size to changes in flow strength. Our experimental results also provide convincing evidence that gravel-beds' response to water-work during parallel degradation is unique (i.e., replicable) given the formative parameters. Based on this finding, relationships between the armors' properties and formative parameters are proposed, and are supported by adding extensive data from previous research.

  20. Natural flexible dermal armor.

    Science.gov (United States)

    Yang, Wen; Chen, Irene H; Gludovatz, Bernd; Zimmermann, Elizabeth A; Ritchie, Robert O; Meyers, Marc A

    2013-01-04

    Fish, reptiles, and mammals can possess flexible dermal armor for protection. Here we seek to find the means by which Nature derives its protection by examining the scales from several fish (Atractosteus spatula, Arapaima gigas, Polypterus senegalus, Morone saxatilis, Cyprinius carpio), and osteoderms from armadillos, alligators, and leatherback turtles. Dermal armor has clearly been developed by convergent evolution in these different species. In general, it has a hierarchical structure with collagen fibers joining more rigid units (scales or osteoderms), thereby increasing flexibility without significantly sacrificing strength, in contrast to rigid monolithic mineral composites. These dermal structures are also multifunctional, with hydrodynamic drag (in fish), coloration for camouflage or intraspecies recognition, temperature and fluid regulation being other important functions. The understanding of such flexible dermal armor is important as it may provide a basis for new synthetic, yet bioinspired, armor materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A development of user-friendly graphical interface for a blanket simulator

    International Nuclear Information System (INIS)

    Lee, Young-Seok; Yoon, Seok-Heun; Han, Jung-Hoon

    2010-01-01

    A web-based user-friendly graphical interface (GUI) system, named GUMBIS (Graphical User-friendly Monte-Carlo-Application Blanket-Design Interface System), was developed to cut down the efforts of the researchers and practitioners who study tokamak blanket designs with the Monte Carlo MCNP/MCNPX codes. GUMBIS was also aimed at supporting them to use the codes for their study without having through understanding on the complex menus and commands of the codes. Developed on the web-based environment, GUMBIS provides task sharing capability on a network. GUMBIS, applicable for both blanket design and neutronics analysis, could facilitate not only advanced blanket R and D but also the education and training of the researchers in the R and D.

  2. Surface condition effects on tritium permeation through the first wall of a water-cooled ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.-S. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Xu, Y.-P.; Liu, H.-D. [Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Liu, F.; Li, X.-C.; Zhao, M.-Z.; Qi, Q.; Ding, F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Luo, G.-N., E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Hefei Center for Physical Science and Technology, P.O. Box 1126, Hefei (China); Hefei Science Center of Chinese Academy of Science, P.O. Box 1126, Hefei (China)

    2016-11-01

    Highlights: • We investigate surface effects on T transport through the first wall. • We solve transport equations with various surface conditions. • The RAFMs walls w/and w/o W exhibit different T permeation behavior. • Diffusion in W has been found to be the rate-limiting step. - Abstract: Plasma-driven permeation of tritium (T) through the first wall of a water-cooled ceramic breeder (WCCB) blanket may raise safety and other issues. In the present work, surface effects on T transport through the first wall of a WCCB blanket have been investigated by theoretical calculation. Two types of wall structures, i.e., reduced activation ferritic/martensitic steels (RAFMs) walls with and without tungsten (W) armor, have been analyzed. Surface recombination is assumed to be the boundary condition for both the plasma-facing side and the coolant side. It has been found that surface conditions at both sides can affect T permeation flux and inventory. For the first wall using W as armor material, T permeation is not sensitive to the plasma-facing surface conditions. Contamination of the surfaces will lead to higher T inventory inside the first wall.

  3. Benchmark calculations for fusion blanket development

    International Nuclear Information System (INIS)

    Sawan, M.E.; Cheng, E.T.

    1985-01-01

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li/sub 17/Pb/sub 83/ and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the TBR to group structure and weighting spectrum increases and Li enrichment decrease with up to 20% discrepancies for thin natural Li/sub 17/Pb/sub 83/ blankets

  4. Runoff from armored slopes

    International Nuclear Information System (INIS)

    Codell, R.B.

    1986-01-01

    Models exist for calculating overland flow on hillsides but no models have been found which explicitly deal with runoff from armored slopes. Flow on armored slopes differs from overland flow, because substantial flow occurs beneath the surface of the rock layer at low runnoff, and both above and below the surface for high runoff. In addition to the lack of a suitable model, no estimates of the PMP exist for such small areas and for very short durations. This paper develops a model for calculating runoff from armored embankments. The model considers the effect of slope, drainage area and ''flow concentration'' caused by irregular grading or slumping. A rainfall-duration curve based on the PMP is presented which is suitable for very small drainage areas. The development of the runoff model and rainfall-duration curve is presented below, along with a demonstration of the model on the design of a hypothetical tailings embankment

  5. Benchmark calculations for fusion blanket development

    International Nuclear Information System (INIS)

    Sawan, M.L.; Cheng, E.T.

    1986-01-01

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li 17 Pb 83 and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the tritium breeding ratio to group structure and weighting spectrum increases as the thickness and Li enrichment decrease with up to 20% discrepancies for thin natural Li 17 Pb 83 blankets. (author)

  6. Armor Battalion Force Structure in Force XXI

    National Research Council Canada - National Science Library

    Briggs, David

    1998-01-01

    ... effectiveness of the armor unit in a cost effective manner. The initial stages of problem definition led to the identification of an initial effective need of developing a rapidly deployable system capable of effective armored combat...

  7. Mock-up development of new warship protective armor structure and feasibility analysis of ship installation

    Directory of Open Access Journals (Sweden)

    ZHENG Pan

    2017-05-01

    Full Text Available To ensure the installation of the new design of protective armor structure on larger warships,a study into the installation process of the structure of this armor is carried out to improve installation efficiency and ensure the protective effect. This paper proposes a typical composite armor structure design which is composed of ‘silicate aerogel/ballistic ceramic/high-strength polyethylene/silicate aerogel’. The study analyzes the modeling design,down-selection of materials and equipment,and real ship mock-up technical development. The reliability and application of high strength polyethylene in response to high temperatures in the real ship installation process is discussed. The results show that high-temperatures during welding have no negative impact on the high strength polyethylene of the armored structure. The design demonstrates that this installation process is feasible and can be provided as an alternative solution by virtues of its good maneuverability,controllable precision,checkable quality and high reliability.

  8. Joining of Tungsten Armor Using Functional Gradients

    International Nuclear Information System (INIS)

    John Scott O'Dell

    2006-01-01

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  9. Recent developments in fusion first wall, blanket, and shield technology

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1983-01-01

    This brief overview of first wall, blanket and shield technology reviews the changes and trends in important design issues in first wall, blanket and shield design and related technology from the 1970's to the 1980's. The emphasis is on base technology rather than either systems engineering or materials development. The review is limited to the two primary confinement systems, tokamaks and mirrors, and production of electricity as the primary goal for development

  10. European blanket development for a demo reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Anzidei, L.

    1994-01-01

    There are four breeding blanket concepts for a fusion DEMO reactor under development within the framework of the fusion technology programme of the European Union (EU). This paper describes the design of these concepts, the accompanying R + D programme and the status of the development. (authors). 8 figs., 1 tab

  11. Neutronic investigation and activation calculation for CFETR HCCB blankets

    Science.gov (United States)

    Shuling, XU; Mingzhun, LEI; Sumei, LIU; Kun, LU; Kun, XU; Kun, PEI

    2017-12-01

    The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder (HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor (CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio (TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil. The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1 × 10-4 kW, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.

  12. Procurement Policy for Armored Vehicles

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Carros, Deborah L; Schaefer, Beth K; Truong, Linh; Palmer, Kevin A; Chun, Judy M; Smith, Jessica M; Abraham, Amanda M; Peters, Anthony R

    2007-01-01

    ...., and Armor Holdings, Inc., for armored vehicles. This report addresses armored vehicles, specifically the Buffalo Mine Protected Clearance Vehicle, the Cougar, the Joint Explosive Ordnance Disposal Rapid Response Vehicle (JERRV...

  13. Limitations on blanket performance

    International Nuclear Information System (INIS)

    Malang, S.

    1999-01-01

    The limitations on the performance of breeding blankets in a fusion power plant are evaluated. The breeding blankets will be key components of a plant and their limitations with regard to power density, thermal efficiency and lifetime could determine to a large degree the attractiveness of a power plant. The performance of two rather well known blanket concepts under development in the frame of the European Blanket Programme is assessed and their limitations are compared with more advanced (and more speculative) concepts. An important issue is the question of which material (structure, breeder, multiplier, coatings) will limit the performance and what improvement would be possible with a 'better' structural material. This evaluation is based on the premise that the performance of the power plant will be limited by the blankets (including first wall) and not by other components, e.g. divertors, or the plasma itself. However, the justness of this premise remains to be seen. It is shown that the different blanket concepts cover a large range of allowable power densities and achievable thermal efficiencies, and it is concluded that there is a high incentive to go for better performance in spite of possibly higher blanket cost. However, such high performance blankets are usually based on materials and technologies not yet developed and there is a rather high risk that the development could fail. Therefore, it is explained that a part of the development effort should be devoted to concepts where the materials and technologies are more or less in hand in order to ensure that blankets for a DEMO reactor can be developed and tested in a given time frame. (orig.)

  14. Development of a virtual reality simulator for the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi; Tesini, Alessandro

    2008-01-01

    The authors developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robotic simulation software, ENVISION. The simulator is connected to the control system of the manipulator, which was developed as part of the blanket maintenance system during the Engineering Design Activity (EDA), and can reconstruct the positions of the manipulator and blanket module using position data transmitted from motors through a LAN. In addition, it can provide virtual visual information (e.g., about the interface structures behind the blanket module) by making the module transparent on the screen. It can also be used for confirming a maintenance sequence before the actual operation. The simulator will be modified further, with addition of other necessary functions, and will finally serve as a prototype of the actual simulator for the blanket remote handling system, which will be procured as part of an in-kind contribution

  15. A Workshop for Planning the Efficient Transfer of Recent Ceramic Armor/Antiarmor Modeling Results to the Armor Design Community: Summary and Draft Plan

    National Research Council Canada - National Science Library

    Klopp, Richard

    1999-01-01

    In the mid-1980s DARPA began sponsoring several programs to develop ceramic armor for heavy armor applications, supported by DARPA and ARO funded technology base initiatives in modeling, experiments...

  16. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 1

    International Nuclear Information System (INIS)

    Malang, S.; Reimann, J.; Sebening, H.; Barleon, L.; Bogusch, E.; Bojarsky, E.; Borgstedt, H.U.; Buehler, L.; Casal, V.; Deckers, H.; Feuerstein, H.; Fischer, U.; Frees, G.; Graebner, H.; John, H.; Jordan, T.; Kramer, W.; Krieg, R.; Lenhart, L.; Malang, S.; Meyder, R.; Norajitra, P.; Reimann, J.; Schwenk-Ferrero, A.; Schnauder, H.; Stieglitz, R.; Oschinski, J.; Wiegner, E.

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary, Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated R and D-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required R and D-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.) [de

  17. ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  18. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  19. Breeding blanket for Demo

    International Nuclear Information System (INIS)

    Proust, E.; Giancarli, L.

    1992-01-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently investigated within the framework of the European Test-Blanket Development Programme

  20. Coastal Erosion Armoring 2005

    Data.gov (United States)

    California Natural Resource Agency — Coastal armoring along the coast of California, created to provide a database of all existing coastal armoring based on data available at the time of creation....

  1. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    International Nuclear Information System (INIS)

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H.

    2006-07-01

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology

  2. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  3. Dual coolant blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  4. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  5. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 2. Detailed version

    International Nuclear Information System (INIS)

    John, H.; Malang, S.; Sebening, H.

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary. Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated RandD-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required RandD-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.) [de

  6. Analyzing nature's protective design: The glyptodont body armor.

    Science.gov (United States)

    du Plessis, Anton; Broeckhoven, Chris; Yadroitsev, Igor; Yadroitsava, Ina; le Roux, Stephan Gerhard

    2018-06-01

    Many animal species evolved some form of body armor, such as scales of fish and bony plates or osteoderms of reptiles. Although a protective function is often taken for granted, recent studies show that body armor might comprise multiple functionalities and is shaped by trade-offs among these functionalities. Hence, despite the fact that natural body armor might serve as bio-inspiration for the development of artificial protective materials, focussing on model systems in which body armor serves a solely protective function might be pivotal. In this study, we investigate the osteoderms of Glyptotherium arizonae, an extinct armadillo-like mammal in which body armor evolved as protection against predators and/or tail club blows of conspecifics. By using a combination of micro-computed tomography, reverse-engineering, stress simulations and mechanical testing of 3D printed models, we show that the combination of dense compact layers and porous lattice core might provide an optimized combination of strength and high energy absorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Development of simulator for remote handling system of ITER blanket

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakanhira, Masataka; Matsumoto, Yasuhiro; Shibanuma, K.

    2007-01-01

    The maintenance activity in the ITER has to be performed remotely because 14 MeV neutron caused by fusion reaction induces activation of structural material and emission of gamma ray. In general, it is one of the most critical issues to avoid collision between the remote maintenance system and in-vessel components. Therefore, the visual information in the vacuum vessel is required strongly to understand arrangement of these devices and components. However, there is a limitation of arrangement of viewing cameras in the vessel because of high intensity of gamma ray. It is expected that enough numbers of cameras and lights are not available because of arrangement restriction. Furthermore, visibility of the interested area such as the contacting part is frequently disturbed by the devices and components, thus it is difficult to recognize relative position between the devices and components only by visual information even if enough cameras and lights are equipped. From these reasons, the simulator to recognize the positions of each devices and components is indispensable for remote handling systems in fusion reactors. The authors have been developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robot simulation software ''ENVISION''. The simulator is connected to the control system of the manipulator which was developed as a part of the blanket maintenance system in the EDA and can reconstruct the positions of the manipulator and the blanket module using the position data of the motors through the LAN. In addition, it can provide virtual visual information, such as the connecting operation behind the blanket module with making the module transparent on the screen. It can be used also for checking the maintenance sequence before the actual operation. The developed simulator will be modified further adding other necessary functions and finally completed as a prototype of the actual simulator for the blanket remote handling system

  8. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  9. The Need to Mobilize Armor in Afghanistan

    Science.gov (United States)

    2009-02-20

    success. 1 Kenneth W. Estes, Marines Under Armor (Naval Institute Press,2000)34 2 Increasing Combat...4 Kenneth W. Estes, Marines Under Armor (Naval Institute Press,2000) 202 5 Kenneth W. Estes, Marines Under ... Armor (Naval Institute Press,2000) 198- 202 6 Kenneth W. Estes, Marines Under Armor (Naval Institute Press,2000) 203 8 mechanized unit was needed to

  10. Procurement Policy for Armored Vehicles

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Carros, Deborah L; Schaefer, Beth K; Truong, Linh; Palmer, Kevin A; Chun, Judy M; Smith, Jessica M; Abraham, Amanda M; Peters, Anthony R

    2007-01-01

    Congresswoman Louise M. Slaughter requested that the Inspector General (IG), DoD review the DoD procurement history for body armor and armored vehicles and determine whether officials properly followed contracting policies...

  11. Performance of the PDX neutral beam wall armor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Eubank, H.P.; Kozub, T.A.; Williams, M.D.

    1985-02-01

    The PDX wall armor was designed to function as an inner wall thermal armor, a neutral beam diagnostic, and a large area inner toroidal plasma limiter. In this paper we discuss its thermal performance as wall armor during two years of PDX neutral beam heating experiments. During this period it provided sufficient inner wall protection to permit perpendicular heating injections into normal and disruptive plasmas as well as injections in the absence of plasma involving special experiments, calibrations, and tests important for the optimization and development of the PDX neutral beam injection system. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices

  12. Light Armored Vehicles in Operations Other Than War

    Science.gov (United States)

    2002-05-01

    8Kenneth W. Estes, Marines Under Armor (Annapolis, MD: Naval Institute Press, 2000), 212. 6 attach and detach elements in task organizing for a...operations. Kenneth W. Estes writes in his book Marines Under Armor : “The light armored vehicles of the LAR battalions, by contrast [to tanks], continue...Martin’s Press, 1991. Estes, Kenneth W., Marines under Armor : The Marine Corps and the Armored Fighting Vehicle. 1916-2000. Annapolis, Maryland: Naval

  13. Design study of an armor tile handling manipulator for the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Shibanuma, K.; Honda, T.; Satoh, K.; Terakado, T.; Kondoh, M.; Sasaki, N.; Munakata, T.; Murakami, S.

    1991-01-01

    A conceptual design of the Fusion Experimental Reactor (FER), which is a D-T burning reactor following on JT-60 in Japan, has been developed by Japan Atomic Energy Research Institute (JAERI). In FER, a rail-mounted vehicle concept is planned to be adopted for in-vessel maintenance, such as maintenance of divertor plates and armor tiles. Advantages of this concept are the high stiffness of the rail as a base structure for maintenance and the high mobility of the vehicle along the rail. Twin armor tile handling manipulators installed on both sides of the vehicle have been designed. The respective manipulators for armor tile handling have 8 degrees of freedom in order to have access to any place of the first wall and to go through the horizontal port by operating manipulator joints. If the two types of manipulators for divertor plates and armor tiles are installed on the vehicle and the divertor handling manipulator carries a case filled with armor tiles, the replacement time of armor tiles will be reduced. In FER, moreover, maintenance of armor tiles, which is a scheduled maintenance, is planned to be carried out by the autonomous control using position sensors etc. In order to accumulate the data base for the development of the autonomous control of the manipulator in armor tile maintenance, the present paper describes basic mechanical characteristics (stress, deflection and natural frequency) of the armor tile handling manipulator calculated by static stress and dynamic eigenvalue analyses. (orig.)

  14. Transparent ceramics for armor and EM window applications

    OpenAIRE

    Patel, Parimal J.; Gilde, Gary A.; Dehmer, Peter G.; McCauley, James W.

    2000-01-01

    Recently, the U.S. Army Research Laboratory (ARL) has focused increased attention on the development of transparent armor material systems for a variety of applications. Future combat and non-combat environments will require lightweight, threat adjustable, multifunctional, and affordable armor. Current glass/polycarbonate technologies are not expected to meet the increased requirements. Results over the past few years indicate that the use of transparent crystalline ceramics greatly improve t...

  15. Negligible heat strain in armored vehicle officers wearing personal body armor

    Directory of Open Access Journals (Sweden)

    Hunt Andrew P

    2011-07-01

    Full Text Available Abstract Objectives This study evaluated the heat strain experienced by armored vehicle officers (AVOs wearing personal body armor (PBA in a sub-tropical climate. Methods Twelve male AVOs, aged 35-58 years, undertook an eight hour shift while wearing PBA. Heart rate and core temperature were monitored continuously. Urine specific gravity (USG was measured before and after, and with any urination during the shift. Results Heart rate indicated an intermittent and low-intensity nature of the work. USG revealed six AVOs were dehydrated from pre through post shift, and two others became dehydrated. Core temperature averaged 37.4 ± 0.3°C, with maximum's of 37.7 ± 0.2°C. Conclusions Despite increased age, body mass, and poor hydration practices, and Wet-Bulb Globe Temperatures in excess of 30°C; the intermittent nature and low intensity of the work prevented excessive heat strain from developing.

  16. LMFBR blanket physics project progress report No. 4

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Lanning, D.D.; Kaplan, I.; Supple, A.T.

    1973-01-01

    During the period covered by the report, July 1, 1972, through June 30, 1973, work was devoted to completion of experimental measurements and data analysis on Blanket Mockup No. 3, a graphite-reflected blanket, and to initiation of experimental work on Blanket Mockup No. 4, a steel-reflected assembly designed to mock up a demonstration plant blanket. Work was also carried out on the analysis of a number of advanced blanket concepts, including the use of high-albedo reflectors, the use of thorium in place of uranium in the blanket region, and the ''parfait'' or completely internal blanket concept. Finally, methods development work was initiated to develop the capability for making gamma heating measurements in the blanket mockups. (U.S.)

  17. Water-cooled, fire boom blanket, test and evaluation for system prototype development

    International Nuclear Information System (INIS)

    Stahovec, J. G.; Urban, R. W.

    1999-01-01

    Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs

  18. Fusion blanket design and optimization techniques

    International Nuclear Information System (INIS)

    Gohar, Y.

    2005-01-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques

  19. Blanket materials for DT fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1981-01-01

    This paper presents an overview of the critical materials issues that must be considered in the development of a tritium breeding blanket for a tokamak fusion reactor that operates on the D-T-Li fuel cycle. The primary requirements of the blanket system are identified and the important criteria that must be considered in the development of blanket technology are summarized. The candidate materials are listed for the different blanket components, e.g., breeder, coolant, structure and neutron multiplier. Three blanket concepts that appear to offer the most potential are: (1) liquid-metal breeder/coolant, (2) liquid-metal breeder/separate coolant, and (3) solid breeder/separate coolant. The major uncertainties associated with each of the design concepts are discussed and the key materials R and D requirements for each concept are identified

  20. Engineering model for body armor

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Carton, E.P.

    2014-01-01

    TNO has developed an engineering model for flexible body armor, as one of their energy based engineering models that describe the physics of projectile to target interactions (weaves, metals, ceramics). These models form the basis for exploring the possibilities for protection improvement. This

  1. Blast-Resistant Improvement of Sandwich Armor Structure with Aluminum Foam Composite

    OpenAIRE

    Yang, Shu; Qi, Chang

    2013-01-01

    Sandwich armor structures with aluminum foam can be utilized to protect a military vehicle from harmful blast load such as a landmine explosion. In this paper, a system-level dynamic finite element model is developed to simulate the blast event and to evaluate the blast-resistant performance of the sandwich armor structure. It is found that a sandwich armor structure with only aluminum foam is capable of mitigating crew injuries under a moderate blast load. However, a severe blast load causes...

  2. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Grief, Andrew; Merrill, Brad J.; Humrickhouse, Paul; Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon; Poitevin, Yves; Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard

    2016-01-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  3. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Grief, Andrew [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Merrill, Brad J.; Humrickhouse, Paul [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID (United States); Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom)

    2016-11-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  4. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.; Smith, D.L.

    1987-10-01

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  5. Light Armor

    National Research Council Canada - National Science Library

    2001-01-01

    Using former laboratory experience on examination the properties of silicate-polymer composite of low density and high protective ability against shaped charges armor specimens are designed and tested...

  6. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 2

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Boccaccini, L.V.; Bojarsky, E.; Deckers, H.; Dienst, W.; Doerr, L.; Fischer, U.; Giese, H.; Guenther, E.; Haefner, H.E.; Hofmann, P.; Kappler, F.; Knitter, R.; Kuechle, M.; Moellendorf, U. von; Norajitra, P.; Penzhorn, R.D.; Reimann, G.; Reiser, H.; Schulz, B.; Schumacher, G.; Schwenk-Ferrero, A.; Sordon, G.; Tsukiyama, T.; Wedemeyer, H.; Weimar, P.; Werle, H.; Wiegner, E.; Zimmermann, H.

    1991-10-01

    The BOT (Breeder Outside Tube) Helium Cooled Solid Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test blankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of the test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.) [de

  7. Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured from Detailed Military Specifications

    Science.gov (United States)

    Doherty, Kevin; Squillacioti, Richard; Cheeseman, Bryan; Placzankis, Brian; Gallardy, Denver

    For many years, the range of aluminum alloys for armor plate applications obtainable in accordance with detailed military specifications was very limited. However, the development of improved aluminum alloys for aerospace and other applications has provided an opportunity to modernize the Army portfolio for ground vehicle armor applications. While the benefits of offering additional alloy choices to vehicle designers is obvious, the process of creating detailed military specifications for armor plate applications is not trivial. A significant amount of material and testing is required to develop the details required by an armor plate specification. Due to the vast number of material programs that require standardization and with a limited amount of manpower and funds as a result of Standardization Reform in 1995, one typically requires a need statement from a vehicle program office to justify and sponsor the work. This presentation will focus on recent aluminum alloy armor plate specifications that have added capability to vehicle designers' selection of armor materials that offer possible benefits such as lower cost, higher strength, better ballistic and corrosion resistance, improved weldability, etc.

  8. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  9. Test Blanket Working Group's recent activities

    International Nuclear Information System (INIS)

    Vetter, J.E.

    2001-01-01

    The ITER Test Blanket Working Group (TBWG) has continued its activities during the period of extension of the EDA with a revised charter on the co-ordination of the development work performed by the Parties and by the JCT leading to a co-ordinated test programme on ITER for a DEMO-relevant tritium breeding blanket. This follows earlier work carried out until July 1998, which formed part of the ITER Final Design Report (FDR), completed in 1998. Whilst the machine parameters for ITER-FEAT have been significantly revised compared to the FDR, testing of breeding blanket modules remains a main objective of the test programme and the development of a reactor-relevant breeding blanket to ensure tritium fuel self-sufficiency is recognized a key issue for fusion. Design work and R and D on breeding blanket concepts, including co-operation with the other Contacting Parties of the ITER-EDA for testing these concepts in ITER, are included in the work plans of the Parties

  10. Development of an engineering-scale nuclear test of a solid-breeder fusion-blanket concept

    International Nuclear Information System (INIS)

    Deis, G.A.; Bohn, T.S.; Hsu, P.Y.; Miller, L.G.; Scott, A.J.; Watts, K.D.; Welch, E.C.

    1983-08-01

    As part of the Phase I effort on Program Element-II (PE-II) of the Office of Fusion Energy/Argonne National Laboratory First Wall/Blanket/Shield Engineering Technology Program, a study has been performed to develop preconceptual hardware designs and preliminary test program descriptions for two fission-reactor-based tests of a water-cooled, solid-breeder fusion reactor blanket concept. First, a list of potentially acceptable reactor facilities is developed, based on a list of required reactor characteristics. From this set of facilities, two facilities are selected for study: the Oak Ridge Research Reactor (ORR) and the Power Burst Facility (PBF). A test which employs a cylindrical unit cell of a solid-breeder fusion reactor blanket, with pressurized-water cooling is designed for each facility. The test design is adjusted to the particular characteristics of each reactor. These two test designs are then compared on the basis of technical issues and cost. Both tests can satisfy the PE-II mission: blanket thermal hydraulic and thermomechanical issues. In addition, both reactors will produce prototypical tritium production rates and profiles and release characteristics with little or no additional modifications

  11. Objectives and status of EUROfusion DEMO blanket studies

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V., E-mail: lorenzo.boccaccini@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Aiello, G.; Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bachmann, C. [EUROfusion, PPPT, Garching (Germany); Barrett, T. [CCFE, Abingdon OX14 3DB (United Kingdom); Del Nevo, A. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Demange, D. [Karlsruhe Institute of Technology (KIT) (Germany); Forest, L. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Hernandez, F.; Norajitra, P. [Karlsruhe Institute of Technology (KIT) (Germany); Porempovic, G. [Fuziotech Engineering Ltd (Hungary); Rapisarda, D. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Sardain, P. [CEA/IRFM, 13115 Saint-Paul-lès-Durance (France); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Vala, L. [Centrum výzkumu Řež, 250 68 Husinec-Řež (Czech Republic)

    2016-11-01

    Highlights: • Short description of the new Breeding Blanket Project in the EUROfusion consortium for the design of the EU PPPT DEMO: objectives. • Presentation of the design approach used in the development of the Breeding Blanket design: requirements. • Breeding Blanket design; in particular the four blanket concepts included in the study are presented, recent results highlighted and the status discussed. • Auxiliary systems and related R&D programme: in particular the work areas addressed in the Project (Tritium Technology, Pb-Li and Solid Breeders Technology, First Wall Design and R&D, Manufacturing) are presented, recent results highlighted and the status discussed. - Abstract: The design of a DEMO reactor requires the design of a blanket system suitable of reliable T production and heat extraction for electricity production. In the frame of the EUROfusion Consortium activities, the Breeding Blanket Project has been constituted in 2014 with the goal to develop concepts of Breeding Blankets for the EU PPPT DEMO; this includes an integrated design and R&D programme with the goal to select after 2020 concepts on fusion plants for the engineering phase. The design activities are presently focalized around a pool of solid and liquid breeder blanket with helium, water and PbLi cooling. Development of tritium extraction and control technology, as well manufacturing and development of solid and PbLi breeders are part of the programme.

  12. Flexible Dermal Armor : Designs Learned from Nature

    OpenAIRE

    Chen, Irene Hsu

    2015-01-01

    Designs derived from nature have become a perfect blueprint for today's engineers and scientists to follow and implement. One particularly noted area is the defense industry, wherein flexible dermal armor inspired by nature has been pioneering many sophisticated technologies and designs in recent years. Designers today are considering borrowing aspects of flexibility and mobility of natural dermal armors to enhance the maneuverability of man-made armor by imitating the following mechanisms : ...

  13. The Combined Arms Role of Armored Infantry.

    Science.gov (United States)

    1985-01-01

    imbalance of its mechanized formations. It lacked the capability of bringing infantry to battle under armor . [57] Without mobile means for its...equipped with firing ports, permitting mounted infantry to deliver fires while under armor . These fires are primarily burst-on-target, limited range, small...infantry with tanks under armor . Although Bradley-equipped forces may take on limited independent -* missions, they can do so only when the general

  14. Ballistic protection performance of curved armor systems with or without debondings/delaminations

    International Nuclear Information System (INIS)

    Tan, Ping

    2014-01-01

    Highlights: • Influence of pre-existing defect in an armor system on its ballistic performance. • Development of finite element models for the ballistic performance of armor systems. • Prediction of the ballistic limit and back face deformation of curved armor systems. - Abstract: In order to discern how pre-existing defects such as single or multiple debondings/delaminations in a curved armor system may affect its ballistic protection performance, two-dimensional axial finite element models were generated using the commercial software ANSYS/Autodyn. The armor systems considered in this investigation are composed of boron carbide front component and Kevlar/epoxy backing component. They are assumed to be perfectly bonded at the interface without defects. The parametric study shows that for the cases considered, the maximum back face deformation of a curved armor system with or without defects is more sensitive to its curvature, material properties of the ceramic front component, and pre-existing defect size and location than the ballistic limit velocity. Additionally, both the ballistic limit velocity and maximum back face deformation are significantly affected by the backing component thickness, front/backing component thickness ratio and the number of delaminations

  15. Development and testing of a zero stitch MLI blanket using plastic pins for space use

    Science.gov (United States)

    Hatakenaka, Ryuta; Miyakita, Takeshi; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki

    2014-11-01

    New types of MLI blanket have been developed to achieve high thermal performance while maintaining production and assembly workability equivalent to the conventional type. Tag-pins, which are widely used in commercial applications to hook price tags to products, are used to fix the films in place and the pin material is changed to polyetheretherketone (PEEK) for use in space. Thermal performance is measured by using a boil-off calorimeter, in which a rectangular liquid nitrogen tank is used to evaluate the degradation at the bending corner and joint of the blanket. Zero-stitch- and multi-blanket-type MLIs show significantly improved thermal performance (ɛeff is smaller than 0.0050 at room temperature) despite having the same fastener interface as traditional blankets, while the venting design and number of tag-pins are confirmed as appropriate in a depressurization test.

  16. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  17. Heterogeneous packing and hydraulic stability of cube and cubipod armor units

    OpenAIRE

    GÓMEZ-MARTÍN, M. ESTHER; Medina, Josep R.

    2014-01-01

    This paper describes the heterogeneous packing (HEP) failure mode of breakwater armor. HEP reduces packing density in the armor layer near and above the mean water level and increases packing density below it. With HEP, armor units may move in the armor layer, although they are not actually extracted from it. Thus, when HEP occurs, armor-layer porosity is not constant, and measurements obtained with conventional methods may underestimate armor damage. In this paper, the Virtual Net method ...

  18. European DEMO BOT solid breeder blanket

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1994-11-01

    The BOT (Breeder Outside Tube) Solid Breeder Blanket for a fusion DEMO reactor is presented. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. In the paper the reference blanket design and external loops are described as well as the results of the theoretical and experimental work in the fields of neutronics, thermohydraulics, mechanical stresses, tritium control and extraction, development and irradiation of the ceramic breeder material, beryllium development, ferromagnetic forces caused by disruptions, safety and reliability. An outlook is given on the remaining open questions and on the required R and D program. (orig.) [de

  19. ARIES-IV Nested Shell Blanket Design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R.; Cheng, E.; Hasan, C.M.; Sharafat, S.

    1993-11-01

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design

  20. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 1

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Boccaccini, L.V.; Bojarsky, E.; Deckers, H.; Dienst, W.; Doerr, L.; Fischer, U.; Giese, H.; Guenther, E.; Haefner, H.E.; Hofmann, P.; Kappler, F.; Knitter, R.; Kuechle, M.; Moellendorf, U. von; Norajitra, P.; Penzhorn, R.D.; Reimann, G.; Reiser, H.; Schulz, B.; Schumacher, G.; Schwenk-Ferrero, A.; Sordon, G.; Tsukiyama, T.; Wedemeyer, H.; Weimar, P.; Werle, H.; Wiegner, E.; Zimmermann, H.

    1991-10-01

    The BOT (Breeder Outside Tube) Helium Cooled Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test plankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.) [de

  1. Blanket comparison and selection study. Volume I

    International Nuclear Information System (INIS)

    1983-10-01

    The objectives of the Blanket Comparison and Selection Study (BCSS) can be stated as follows: (1) Define a small number (approx. 3) of blanket design concepts that should be the focus of the blanket R and D program. A design concept is defined by the selection of all materials (e.g., breeder, coolant, structure and multiplier) and other major characteristics that significantly influence the R and D requirements. (2) Identify and prioritize the critical issues for the leading blanket concepts. (3) Provide the technical input necessary to develop a blanket R and D program plan. Guidelines for prioritizing the R and D requirements include: (a) critical feasibility issues for the leading blanket concepts will receive the highest priority, and (b) for equally important feasibility issues, higher R and D priority will be given to those that require minimum cost and short time

  2. Remote handling demonstration of ITER blanket module replacement

    International Nuclear Information System (INIS)

    Kakudate, S.; Nakahira, M.; Oka, K.; Taguchi, K.; Obara, K.; Tada, E.; Shibanuma, K.; Tesini, A.; Haange, R.; Maisonnier, D.

    2001-01-01

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  3. User s Manual for Armor Stone Evaluation Model (ARMOR): Great Lakes Armor Stone Study

    Science.gov (United States)

    2015-08-01

    Broderick and Ahrens (1982) defined damage to an armor layer by the normalized eroded cross-section area as S = Ae/(Dn50)2, where Ae is the measured...84. Broderick , L., and J. P. Ahrens. 1982. Rip-rap stability scale effects. Technical Paper 82- 3. Vicksburg, MS: U.S. Army Engineer Waterways

  4. Repair of manufacturing defects in the armor of plasma facing units of the ITER Divertor Dome

    International Nuclear Information System (INIS)

    Litunovsky, Nikolay; Alekseenko, Evgeny; Kuznetsov, Vladimir; Lyanzberg, Dmitriy; Makhankov, Aleksey; Rulev, Roman

    2013-01-01

    Highlights: • Sporadic manufacturing defects in ITER Divertor Dome PFUs may be repaired. • We have developed a repair technique for ITER Divertor Dome PFUs. • Armor repair technique for ITER Divertor Dome PFUs is successfully tested. -- Abstract: The paper describes the repair procedure developed for removal of manufacturing defects occurring sporadically during armoring of plasma facing units (PFUs) of the ITER Divertor Dome. Availability of armor repair technique is prescribed by the procurement arrangement for the ITER Divertor Dome concluded in 2009 between the ITER Organization and the ITER Domestic Agency of Russia. The paper presents the detailed description of the procedure, data on its effect on the joints of the rest part of the armor and on the grain structure of the PFU heat sink. The results of thermocycling of large-scale Dome PFU mock-ups manufactured with demonstration of armor repair are also given

  5. Repair of manufacturing defects in the armor of plasma facing units of the ITER Divertor Dome

    Energy Technology Data Exchange (ETDEWEB)

    Litunovsky, Nikolay, E-mail: nlitunovsky@sintez.niiefa.spb.su; Alekseenko, Evgeny; Kuznetsov, Vladimir; Lyanzberg, Dmitriy; Makhankov, Aleksey; Rulev, Roman

    2013-10-15

    Highlights: • Sporadic manufacturing defects in ITER Divertor Dome PFUs may be repaired. • We have developed a repair technique for ITER Divertor Dome PFUs. • Armor repair technique for ITER Divertor Dome PFUs is successfully tested. -- Abstract: The paper describes the repair procedure developed for removal of manufacturing defects occurring sporadically during armoring of plasma facing units (PFUs) of the ITER Divertor Dome. Availability of armor repair technique is prescribed by the procurement arrangement for the ITER Divertor Dome concluded in 2009 between the ITER Organization and the ITER Domestic Agency of Russia. The paper presents the detailed description of the procedure, data on its effect on the joints of the rest part of the armor and on the grain structure of the PFU heat sink. The results of thermocycling of large-scale Dome PFU mock-ups manufactured with demonstration of armor repair are also given.

  6. Cost-Effective Manufacturing of Damage-Tolerant Integral Armor

    National Research Council Canada - National Science Library

    Fink, Bruce

    2000-01-01

    The U.S. Army Research Laboratory (ARL) and the University of Delaware (UD) have developed an enabling technology to produce a polymer matrix composite-based integral armor with improved multihit ballistic capability...

  7. Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained.

  8. Development of vanadium base alloys for fusion first-wall/blanket applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Chung, H.M.; Loomis, B.A.; Matsui, H.; Votinov, S.; VanWitzenburg, W.

    1994-01-01

    Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications

  9. First-wall and blanket engineering development for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Baker, C.; Herman, H.; Maroni, V.; Turner, L.; Clemmer, R.; Finn, P.; Johnson, C.; Abdou, M.

    1981-01-01

    A number of programs in the USA concerned with materials and engineering development of the first wall and breeder blanket systems for magnetic-fusion power reactors are described. Argonne National Laboratory has the lead or coordinating role, with many major elements of the research and engineering tests carried out by a number of organizations including industry and other national laboratories

  10. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Poitevin, Y., E-mail: yves.poitevin@f4e.europa.eu [Fusion for Energy (F4E), Barcelona (Spain); Aubert, Ph. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Diegele, E. [Fusion for Energy (F4E), Barcelona (Spain); Dinechin, G. de [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Rey, J. [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Rieth, M. [Institut fuer Materialforschung I, FZK, Karlsruhe (Germany); Rigal, E. [CEA Grenoble, DRT/DTH, F-38000 Grenoble (France); Weth, A. von der [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Boutard, J.-L. [European Fusion Development Agreement (EFDA), Garching (Germany); Tavassoli, F. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France)

    2011-10-01

    Europe has developed two reference Tritium Breeder Blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both are using the reduced-activation ferritic-martensitic EUROFER-97 steel as structural material and will be tested in ITER under the form of test blanket modules. The fabrication of their EUROFER structures requires developing welding processes like laser, TIG, EB and diffusion welding often beyond the state-of-the-art. The status of European achievements in this area is reviewed, illustrating the variety of processes and key issues behind retained options, in particular with respect to metallurgical aspects and mechanical properties. Fabrication of mock-ups is highlighted and their characterization and performances with respect to design requirements are reviewed.

  11. Cost-Effective Manufacturing of Damage-Tolerant Integral Armor

    National Research Council Canada - National Science Library

    Fink, Bruce

    2000-01-01

    ...) technology demonstrator and Crusader self-propelled howitzer platforms. Present integral armor manufacturing processes involve adhesive bonding of a composite structure with ballistic armor tiles, spall shield, and nuisance cover...

  12. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    International Nuclear Information System (INIS)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li 2 O) and lithium zirconate (Li 2 ZrO 3 ) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers

  13. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  14. The blanket interface to TSTA

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Grimm, T.L.; Sze, D.K.; Anderson, J.L.; Bartlit, J.R.; Naruse, Y.; Yoshida, H.

    1988-01-01

    The requirements of tritium technology are centered in three main areas, (1) fuel processing, (2) breeder tritium extraction, and (3) tritium containment. The Tritium Systems Test Assembly (TSTA) now in operation at Los Alamos National Laboratory (LANL) is dedicated to developing and demonstrating the tritium technology for fuel processing and containment. TSTA is the only fusion fuel processing facility that can operate in a continuous closed-loop mode. The tritium throughput of TSTA is 1000 g/d. However, TSTA does not have a blanket interface system. The authors have initiated a study to define a Breeder Blanket Interface (BBIO) for TSTA. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. Various methods of tritium recovery from liquid lithium were assessed: yttrium gettering, permeation windows, and molten salt extraction. The authors' evaluation concluded that the best method was molten salt extraction

  15. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  16. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1996-01-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as primary blanket materials, which have the greatest influence in determining the overall design and performance, and secondary blanket materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified. (orig.)

  17. Strategy for the development of EU Test Blanket Systems instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Calderoni, P., E-mail: Pattrick.Calderoni@f4e.europa.eu; Ricapito, I.; Poitevin, Y.

    2013-10-15

    Highlights: • We developed a strategy for the development of instrumentation for EU ITER TBSs. • TBSs instrumentation functions: safety, operation and scientific mission. • Described activities are in support of ITER design review process. -- Abstract: The instrumentation of the HCLL and HCPB Test Blanket System is fundamental in ensuring that ITER safety and operational requirements are satisfied as well as in enabling the scientific mission of the TBM program. It carries out three essential functions: (i) safety, intended as compliance with ITER requirements toward public and workers protection; (ii) system control, intended as compliance with ITER operational requirements and investment protection; and (iii) scientific mission, intended as validating technology and predictive tools for blanket concepts relevant to fusion energy systems. This paper describes the strategy for instrumentation development by providing details of the following five steps to be implemented in procured activities in the short to mid-term (3–4 years): (i) provide mapping of sensors requirements based on critical review of preliminary design data; (ii) develop functional specifications for TBS sensors based on the analysis of operative conditions in the various ITER buildings in which they are located; (iii) assess availability of commercial sensors against developed specifications; (iv) develop prototypes when no available solution is identified; and (v) perform single effect tests for the most critical solicitations and post-test examination of commercial products and prototypes. Examples of technology assessment in two technical areas are included to reinforce and complement the strategy description.

  18. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F. [comps.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  19. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report

  20. Development of high conductive C/C composite tiles for plasma facing armor

    International Nuclear Information System (INIS)

    Ioki, K.; Namiki, K.; Tsujimura, S.; Toyoda, M.; Seki, M.; Takatsu, H.

    1991-01-01

    C/C composites with high thermal conductivity were developed in unidirectional, two-dimensional and felt types, and were fabricated as full-scale armor tile. Their thermal conductivity in the direction perpendicular to the plasma-side surface is 250∝550 W/mdeg C, that is comparable to that of pyrolytic graphite. It was shown by heat load tests that the C/C composites have low surface erosion characteristics and high thermal shock resistance. Various kinds of C/C composites were successfully bonded to metal substrate, and their mechanical strength and thermal shock resistance were tested. (orig.)

  1. Methods to enhance blanket power density

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01

    The overall objective of this task is to investigate the extent to which the power density in the FED/INTOR breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow advanced reactor blanket modules to be tested on FED/INTOR under representative conditions

  2. ALT-II armor tile design for upgraded TEXTOR operation

    International Nuclear Information System (INIS)

    Newberry, B.L.; McGrath, R.T.; Watson, R.D.; Kohlhaas, W.; Finken, K.H.

    1994-01-01

    The upgrade of the TEXTOR tokamak at KFA Juelich was recently completed. This upgrade extended the TEXTOR pulse length from 5 seconds to 10 seconds. The auxiliary heating was increased to a total of 8.0 MW through a combination of neutral beam injection and radio frequency heating. Originally, the inertially cooled armor tiles of the full toroidal belt Advanced Limiter Test -- II (ALT-II) were designed for a 5-second operation with total heating of 6.0 MW. The upgrade of TEXTOR will increase the energy deposited per pulse onto the ALT-II by about 300%. Consequently, the graphite armor tiles for the ALT-II had to be redesigned to avoid excessively high graphite armor surface temperatures that would lead to unacceptable contamination of the plasma. This redesign took the form of two major changes in the ALT-II armor tile geometry. The first design change was an increase of the armor tile thermal mass, primarily by increasing the radial thickness of each tile from 17 mm to 20 mm. This increase in the radial tile dimension reduces the overall pumping efficiency of the ALT-II pump limiter by about 30%. The reduction in exhaust efficiency is unfortunate, but could be avoided only by active cooling of the ALT-II armor tiles. The active cooling option was too complicated and expensive to be considered at this time. The second design change involved redefining the plasma facing surface of each armor tile in order to fully utilize the entire surface area. The incident charged particle heat flux was distributed uniformly over the armor tile surfaces by carefully matching the radial, poloidal and toroidal curvature of each tile to the plasma flow in the TEXTOR boundary layer. This geometry redefinition complicates the manufacturing of the armor tiles, but results in significant thermal performance gains. In addition to these geometry upgrades, several material options were analyzed and evaluated

  3. ITER blanket designs

    International Nuclear Information System (INIS)

    Gohar, Y.; Parker, R.; Rebut, P.H.

    1995-01-01

    The ITER first wall, blanket, and shield system is being designed to handle 1.5±0.3 GW of fusion power and 3 MWa m -2 average neutron fluence. In the basic performance phase of ITER operation, the shielding blanket uses austenitic steel structural material and water coolant. The first wall is made of bimetallic structure, austenitic steel and copper alloy, coated with beryllium and it is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. A breeding blanket has been designed to satisfy the technical objectives of the Enhanced Performance Phase of ITER operation for the Test Program. The breeding blanket design is geometrically similar to the shielding blanket design except it is a self-cooled liquid lithium system with vanadium structural material. Self-healing electrical insulator (aluminum nitride) is used to reduce the MHD pressure drop in the system. Reactor relevancy, low tritium inventory, low activation material, low decay heat, and a tritium self-sufficiency goal are the main features of the breeding blanket design. (orig.)

  4. ITER convertible blanket evaluation

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.

    1995-01-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate

  5. Convertible shielding to ceramic breeding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Kurasawa, Toshimasa; Sato, Satoshi; Nakahira, Masataka; Togami, Ikuhide; Hashimoto, Toshiyuki; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1995-05-01

    Four concepts have been studied for the ITER convertible blanket: 1)Layered concept 2)BIT(Breeder-Inside-Tube)concept 3)BOT(Breeder-Out of-Tube)concept 4)BOT/mixed concept. All concepts use ceramic breeder and beryllium neutron multiplier, both in the shape of small spherical pebbles, 316SS structure, and H 2 O coolant (inlet/outlet temperatures : 100/150degC, pressure : 2 MPa). During the BPP, only beryllium pebbles (the primary pebble in case of BOT/mixed concept) are filled in the blanket for shielding purpose. Then, before the EPP operation, breeder pebbles will be additionally inserted into the blanket. Among possible conversion methods, wet method by liquid flow seems expecting for high and homogeneous pebble packing. Preliminary 1-D neutronics calculation shows that the BOT/mixed concept has the highest breeding and shielding performance. However, final selection should be done by R and D's and more detail investigation on blanket characteristics and fabricability. Required R and D's are also listed. With these efforts, the convertible blanket can be developed. However, the following should be noted. Though many of above R and D's are also necessary even for non-convertible blanket, R and D's on convertibility will be one of the most difficult parts and need significant efforts. Besides the installation of convertible blanket with required structures and lines for conversion will make the ITER basic machine more complicated. (author)

  6. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  7. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse.

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs

  8. Assessing a Suitable Contribution of the French Armor Branch to the Doctrinal Development of Violence: Mastering Operations in the Urban Environment

    National Research Council Canada - National Science Library

    Millet, Jean-Michel

    2003-01-01

    .... This study analyzes the current state of the French Army doctrinal development of armor employment in the violence-mastering mode in the urban environment and compare it to the lessons learned...

  9. Improved Shaped Charge Armors

    National Research Council Canada - National Science Library

    Vodenicharov, Stefan

    2003-01-01

    .... The major activities that are carried out are design, fabrication and testing in proving ground conditions of armor samples of various characteristics, electron microscopic and X-ray structural...

  10. Glass matrix armor

    International Nuclear Information System (INIS)

    Calkins, N.C.

    1991-01-01

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material

  11. EU DEMO blanket concepts safety assessment. Final report of Working Group 6a of the Blanket Concept Selection Exercise

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Porfiri, T.

    1996-06-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four blanket concepts under development. Two of them use lithium ceramics, the other two concepts employ an eutectic lead-lithium alloy (Pb-17Li) as breeder material. The two most promising concepts were to select in 1995 for further development. In order to prepare the selection, a Blanket Concept Selection Exercise (BCSE) has been inititated by the participating associations under the auspices of the European Commission. This BCSE has been performed in 14 working groups which, in a comparative evaluation of the four blanket concepts, addressed specific fields. The working group safety addressed the safety implications. This report describes the methodology adopted, the safety issues identified, their comparative evaluation for the four concepts, and the results and conclusions of the working group to be entered into the overall evaluation. There, the results from all 14 working groups have been combined to yield a final ranking as a basis for the selection. In summary, the safety assessment showed that the four European blanket concepts can be considered as equivalent in terms of the safety rating adopted, each concept, however, rendering safety concerns of different quality in different areas which are substantiated in this report. (orig.) [de

  12. An assessment of the base blanket for ITER

    International Nuclear Information System (INIS)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored

  13. Experimental programme in support of the development of the European ceramic-breeder-inside-tube test-blanket: present status and future work

    International Nuclear Information System (INIS)

    Proust, E.; Roux, N.; Flament, T.; Anzidei, L.; ENEA, Frascati; Casadio, S.; Dell'orco, G.

    1992-01-01

    Four DEMO blanket classes are under investigation within the framework of the European Test-Blanket Development Programme. One of them is featured by the use of lithium ceramic breeder pellets contained inside externally helium cooled tubes. This paper summarizes the main achievements to date of the experimental programme supporting the development of this class of blanket. It also gives an outline of the areas of the breeder material, beryllium, tritium control, and thermomechanical tests, the future work envisaged for the 92-94 period. 53 refs

  14. INTOR first wall/blanket/shield activity

    International Nuclear Information System (INIS)

    Gohar, Y.; Billone, M.C.; Cha, Y.S.; Finn, P.A.; Hassanein, A.M.; Liu, Y.Y.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.

    1986-01-01

    The main emphasis of the INTOR first wall/blanket/shield (FWBS) during this period has been upon the tritium breeding issues. The objective is to develop a FWBS concept which produces the tritium requirement for INTOR operation and uses a small fraction of the first wall surface area. The FWBS is constrained by the dimensions of the reference design and the protection criteria required for different reactor components. The blanket extrapolation to commercial power reactor conditions and the proper temperature for power extraction have been sacrificed to achieve the highest possible local tritium breeding ratio (TBR). In addition, several other factors that have been considered in the blanket survey study include safety, reliability, lifetime fluence, number of burn cycles, simplicity, cost, and development issues. The implications of different tritium supply scenarios were discussed from the cost and availability for INTOR conditions. A wide variety of blanket options was explored in a preliminary way to determine feasibility and to see if they can satisfy the INTOR conditions. This survey and related issues are summarized in this report. Also discussed are material design requirements, thermal hydraulic considerations, structure analyses, tritium permeation through the first wall into the coolant, and tritium inventory

  15. A Li-particulate blanket concept for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.

    1989-01-01

    The Li-particulate blanket design concept the authors proposed for the International Thermonuclear Experimental Reactor (ITER) uses a dilute suspension of fine solid breeder particles in a carrier gas as the combined coolant and lithium breeder stream. This blanket concept has a simple mechanical and hydraulic configuration, low inventory of bred tritium, and simple tritium extraction system. Existing technology can be used to implement the design for ITER. The concept has the potential to be a highly reliable shield and blanket design for ITER with relatively low development and capital costs

  16. Fusion reactor blanket-main design aspects

    International Nuclear Information System (INIS)

    Strebkov, Yu.; Sidorov, A.; Danilov, I.

    1994-01-01

    The main function of the fusion reactor blanket is ensuring tritium breeding and radiation shield. The blanket version depends on the reactor type (experimental, DEMO, commercial) and its parameters. Blanket operation conditions are defined with the heat flux, neutron load/fluence, cyclic operation, dynamic heating/force loading, MHD effects etc. DEMO/commercial blanket design is distinguished e.g. by rather high heat load and neutron fluence - up to 100 W/cm 2 and 7 MWa/m 2 accordingly. This conditions impose specific requirements for the materials, structure, maintenance of the blanket and its most loaded components - FW and limiter. The liquid Li-Pb eutectic is one of the possible breeder for different kinds of blanket in view of its advantages one of which is the blanket convertibility that allow to have shielding blanket (borated water) or breeding one (Li-Pb eutectic). Using Li-Pb eutectic for both ITER and DEMO blankets have been considered. In the conceptual ITER design the solid eutectic blanket was carried out. The liquid eutectic breeder/coolant is suggested also for the advanced (high parameter) blanket

  17. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  18. Co-Injection Resin Transfer Molding for Optimization of Integral Armor

    National Research Council Canada - National Science Library

    Fink, B

    1998-01-01

    ... enhancement over existing defense industry practices. CIRTM was invented and developed for single-step manufacturing of integral armor by enabling simultaneous injection of multiple resins into multi-layer preform...

  19. Armor breakup and reformation in a degradational laboratory experiment

    OpenAIRE

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-01-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1mm sand fraction and two gravel fractions (6 and 10mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport condit...

  20. Analysis of Terminal Metallic Armor Plate Free-Surface Bulging

    National Research Council Canada - National Science Library

    Rapacki, Jr, E. J

    2008-01-01

    An analysis of the bulge formed on the free-surface of the terminal metallic plate of an armor array is shown to lead to reasonable estimates of the armor array's remaining penetration/perforation resistance...

  1. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  2. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  3. Japanese contributions to the Japan-US workshop on blanket design/technology

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Seki, Yasushi; Minato, Akio; Kobayashi, Takeshi; Mori, Seiji; Kawasaki, Hiromitsu; Sumita, Kenji.

    1983-02-01

    This report describes Japanese papers presented at the Japan-US Workshop on Blanket Design/Technology which was held at Argonne National Laboratory, November 10 - 11, 1982. Overview of Fusion Experimental Reactor (FER), JAERI's activities related to first wall/blanket/shield, summary of FER blanket and its technology development issues and summary of activities at universities on fusion reactor blanket engineering are covered. (author)

  4. Overview of the TFTB lithium blanket module program

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-01-01

    The Lithium Blanket Module (LBM) is an ∼ 80-cm 3 module, representative of a helium-cooled lithium oxide fusion reactor blanket module. This paper summarizes the design, development, and construction of the LBM, and indicates the present status of the LBM program

  5. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  6. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  7. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  8. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  9. Economic evaluation of the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    Waganer, L.M.

    1985-01-01

    The economic impact of employing the highly ranked blankets in the Blanket Comparison and Selection Study (BCSS) was evaluated in the context of both a tokamak and a tandem mirror power reactor (TMR). The economic evaluation criterion was determined to be the cost of electricity. The influencing factors that were considered are the direct cost of the blankets and related systems; the annual cost of blanket replacement; and the performance of the blanket, heat transfer, and energy conversion systems. The technical and cost bases for comparison were those of the STARFIRE and Mirror Advanced Reactor Study conceptual design power plants. The economic evaluation results indicated that the nitrate-salt-cooled blanket concept is an economically attractive concept for either reactor type. The water-cooled, solid breeder blanket is attractive for the tokamak and somewhat less attractive for the TMR. The helium-cooled, liquidlithium breeder blanket is the least economically desirable of higher ranked concepts. The remaining self-cooled liquid-metal and the helium-cooled blanket concepts represent moderately attractive concepts from an economic standpoint. These results are not in concert with those found in the other BCSS evaluation areas (engineering feasibility, safety, and research and development (R and D) requirements). The blankets faring well economically had generally lower cost components, lower pumping power requirements, and good power production capability. On the other hand, helium- and lithium-cooled systems were preferred from the standpoints of safety, engineering feasibility, and R and D requirements

  10. Overview of first wall/blanket/shield technology

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1983-04-01

    This brief overview of first wall, blanket, and shield technology focuses first on changes and trends in important design issues from the 1970's to the 1980's, then on current perceptions of critical issues in first wall, blanket, and shield design and related technology. The emphasis is on base technology rather than either systems engineering or materials development, on the two primary confinement systems, tokamaks and mirrors, and on production of electricity as the primary goal for development

  11. The Armored Infantry in the US Force Structure.

    Science.gov (United States)

    1985-12-02

    armored infantry and tank integration occurred during the capture of the town of Troyes , France, in 1944, by Task Force West of the 4th Armored...Singling and Troyes . The same can not be said of the foot infantryman because normally he was not associated with tanks. Such was the case in the previously

  12. Novel blanket design for ICTR's

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Conn, R.W.; Wolfer, W.G.; Larsen, E.N.; Sviatoslavsky, I.N.

    1978-01-01

    A novel blanket design for ICTRs is described. This blanket is used in SOLASE, the conceptual laser fusion reactor of the University of Wisconsin. The blanket to be described offers numerous advantages, including low cost, low weight, low induced radioactivity levels, the potential for hands-on maintenance, modular construction, low pressure, ability to decouple first wall and blanket coolant temperatures, adequate breeding, low tritium inventory and leakage, and sufficiently long life

  13. Analysis of behind the armor ballistic trauma.

    Science.gov (United States)

    Wen, Yaoke; Xu, Cheng; Wang, Shu; Batra, R C

    2015-05-01

    The impact response of body armor composed of a ceramic plate with an ultrahigh molecular weight polyethylene (UHMWPE) fiber-reinforced composite and layers of UHMWPE fibers shielding a block of ballistic gelatin has been experimentally and numerically analyzed. It is a surrogate model for studying injuries to human torso caused by a bullet striking body protection armor placed on a person. Photographs taken with a high speed camera are used to determine deformations of the armor and the gelatin. The maximum depth of the temporary cavity formed in the ballistic gelatin and the peak pressure 40mm behind the center of the gelatin front face contacting the armor are found to be, respectively, ~34mm and ~15MPa. The Johnson-Holmquist material model has been used to simulate deformations and failure of the ceramic. The UHMWPE fiber-reinforced composite and the UHMWPE fiber layers are modeled as linear elastic orthotropic materials. The gelatin is modeled as a strain-rate dependent hyperelastic material. Values of material parameters are taken from the open literature. The computed evolution of the temporary cavity formed in the gelatin is found to qualitatively agree with that seen in experiments. Furthermore, the computed time histories of the average pressure at four points in the gelatin agree with the corresponding experimentally measured ones. The maximum pressure at a point and the depth of the temporary cavity formed in the gelatin can be taken as measures of the severity of the bodily injury caused by the impact; e.g. see the United States National Institute of Justice standard 0101.06-Ballistic Resistance of Body Armor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mirror reactor blankets

    International Nuclear Information System (INIS)

    Lee, J.D.; Barmore, W.L.; Bender, D.J.; Doggett, J.N.; Galloway, T.R.

    1976-01-01

    The general requirements of a breeding blanket for a mirror reactor are described. The following areas are discussed: (1) facility layout and blanket maintenance, (2) heat transfer and thermal conversion system, (3) materials, (4) tritium containment and removal, and (5) nuclear performance

  15. Development of packagings for 'MONJU' blanket fuel assemblies

    International Nuclear Information System (INIS)

    Shibata, Kan; Ouchi, Yuichiro; Matsuzaki, Masaaki; Okuda, Yoshihisa

    1995-01-01

    Blanket assemblies for prototype Fast Breeder Reactor 'MONJU' are made at commercial fuel fabrication plants capable of handling deplete Uranium in Japan. For the purpose of transport the assemblies are inserted into a packaging that is set horizontally at the fabrication plants because of compatibility with equipment installed at the plants. On the other hand, the assemblies must be taken out from the packaging set vertically at 'MONJU' due to compatibility. For this reason development of a new packaging, which makes it possible to take assemblies in and out both horizontally and vertically, is needed to carry out transport of assemblies for reload. The development and fabrication of the packagings, taking about two years, were completed in March 1995. The packagings were used in transport of assemblies in June 1995 for the first change. This report introduces the outline of the packaging and confirmation tests done in the process of development. (author)

  16. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp; Tanigawa, Hisashi; Hirose, Takanori; Nakajima, Motoki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Hayashi, Takumi; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji; Yokoyama, Kenji

    2014-10-15

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li{sub 2}TiO{sub 3} pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA.

  17. ALT-II armor tile design for upgraded TEXTOR operation

    International Nuclear Information System (INIS)

    Newberry, B.L.; McGrath, R.T.; Watson, R.D.

    1994-01-01

    The upgrade of the TEXTOR tokamak at KFA Julich will be completed in the spring of 1994. The upgrade will extend the TEXTOR pulse length from 5 seconds to 10 seconds. The auxiliary heating systems are also scheduled to be upgraded so that eventually a total of 8.0 MW auxiliary heating will be available through a combination of neutral beam injection and radio frequency heating. Originally, the inertially cooled armor tiles on the full toroidal belt Advanced Limiter Test - II (ALT-II) were designed for 5-second operation with a total heating power of 6.0 MW. The upgrade of TEXTOR will increase the energy deposited per pulse onto ALT-II by more than 300%. Consequently, the graphite armor tiles for ALT-II had to be redesigned in order to increase their thermal inertia and, thereby, avoid excessively high graphite armor surface temperatures that would lead to unacceptable contamination of the plasma. The armor tile thermal inertia had been increase primarily by expanding the radial thickness of the tiles from 17 mm to 20 mm. This increase in radial tile dimension will reduce the overall pumping efficiency of the ALT-II pump limiter by about 30%. The final armor tile design was a compromise between increasing the power handling capability and reducing the particle exhaust efficiency of ALT-II. The reduction in exhaust efficiency is unfortunate, but could only be avoided by active cooling of the ALT-II armor tiles. The active cooling option was too complicated and expensive to be considered at this time

  18. Fast brazing development for the joining of the beryllium armor layer for the ITER First Wall panels

    International Nuclear Information System (INIS)

    Buodot, C.; Boireau, B.; Lorenzetto, P.; Macel, D.

    2006-01-01

    In order to reduce cost and manufacturing time induction brazing is being developed as an alternative to Hot Isostatic Pressing for the joining of the beryllium armor onto the copper alloy heat sink material for the manufacture of First Wall panels for the ITER Blanket. The copper alloy that is currently adopted by ITER is a Copper Chromium Zirconium alloy. Its good mechanical properties are obtained by precipitation hardening by means of an ageing heat treatment at a temperature of about 480 o C. In order to avoid over-ageing and keep acceptable mechanical properties, brazing at higher temperatures must therefore be done as fast as possible. The flat geometry of a panel is not familiar for induction process; nevertheless, a development work was done validating the feasibility of joining beryllium tiles onto a copper chromium zirconium flat surface of a panel by induction brazing process. The development was done in 2 stages: validation of the capability of the induction process to realise a heat cycle on a dummy panel and in parallel, validation of the brazing parameters giving acceptable mechanical results on the beryllium CuCrZr joint. A flat pancake inductor was manufactured and tested on a dummy panel in an induction brazing vessel manufactured for this purpose. Several heating cycles were done with the aim of defining a cycle that gives uniform temperature at the interface of all the beryllium tiles on the entire panel surface. These cycles gave us a temperature range in which the brazing can be performed. A special device for brazing small mock up was also manufactured. This was for the metallurgical characterisation program. Many brazing samples where done and mechanically characterised. Unfortunately, this first metallurgical stage led to unacceptably low shear test values. A complete analysis of this non conformance put in evidence that the bad results were due to the braze material that was not adapted to this process. By changing the braze material

  19. 76 FR 70165 - Ballistic-Resistant Body Armor Standard Workshop

    Science.gov (United States)

    2011-11-10

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1573] Ballistic-Resistant Body Armor Standard Workshop AGENCY: National Institute of Justice, DOJ. ACTION: Notice. SUMMARY: The... jointly hosting a workshop focused on NIJ Standard-0101.06, Ballistic Resistance of Body Armor, and the...

  20. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    International Nuclear Information System (INIS)

    Finn, P.A.

    1985-01-01

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared

  1. An evaluation of fast reactor blankets

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    A comparative study of different types of fast reactor radial blankets is presented. Included are blankets of fertile material UO 2 , THO 2 and Th-metal blankets of pure reflectors C, BeO, Ni and combinations of reflecting and fertile blankets. The results for 1000MWe cores indicate that there is no incentive to use other than fertile blankets. The most favorable fertile material is thorium due to the prospective higher price of U-233

  2. Armored Composite Ammunition Pressure Vessel

    National Research Council Canada - National Science Library

    Clark, William

    1999-01-01

    ...). This ammunition containment system must not only meet environmental and handling requirements but also provide armor protection against impacting threats and reduce the response of the stowed...

  3. Thermohydraulics design and thermomechanics analysis of two European breeder blanket concepts for DEMO. Pt. 1 and Pt. 2. Pt. 1: BOT helium cooled solid breeding blanket. Pt. 2: Dual coolant self-cooled liquid metal blanket

    International Nuclear Information System (INIS)

    Norajitra, P.

    1995-06-01

    Two different breeding blanket concepts are being elaborated at Forschungszentrum Karlsruhe within the framework of the DEMO breeding blanket development, the concept of a helium cooled solid breeding blanket and the concept of a self-cooled liquid metal blanket. The breeder material used in the first concept is Li 4 SiO 4 as a pebble bed arranged separate from the beryllium pebble bed, which serves as multiplier. The breeder material zone is cooled by several toroidally-radially configurated helium cooling plates which, at the same time, act as reinforcements of the blanket structures. In the liquid metal blanket concept lead-lithium is used both as the breeder material and the coolant. It flows at low velocity in poloidal direction downwards and back in the blanket front zone. In both concepts the First Wall is cooled by helium gas. This report deals with the thermohydraulics design and thermomechanics analysis of the two blanket concepts. The performance data derived from the Monte-Carlo computations serve as a basis for the design calculations. The coolant inlet and outlet temperatures are chosen with the design criteria and the economics aspects taken into account. Uniform temperature distribution in the blanket structures can be achieved by suitable branching and routing of the coolant flows which contributes to reducing decisively the thermal stress. The computations were made using the ABAQUS computer code. The results obtained of the stresses have been evaluated using the ASME code. It can be demonstrated that all maximum values of temperature and stress are below the admissible limit. (orig.) [de

  4. A methodology for accident analysis of fusion breeder blankets and its application to helium-cooled lead–lithium blanket

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; Trow, Martin; Dillistone, Michael

    2016-01-01

    'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.

  5. Physical Training for Armor Crewmen

    National Research Council Canada - National Science Library

    Baker, Shane

    2003-01-01

    .... The author concluded that if his sample population represented the entire population then armor leaders were neglecting muscular strength, muscular endurance and flexibility in their physical readiness programs...

  6. Engineering challenges and development of the ITER Blanket System and Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, Alphonse Rene; Chappuis, Philippe; Hirai, Takeshi; Gicquel, Stefan

    2015-10-15

    The ITER Blanket System and the Divertor are the main components which directly face the plasma. Being the first physical barrier to the plasma, they have very demanding design requirements, which include accommodating: (1) surface heat flux and neutronic volumetric heating, (2) electromagnetic loads, (3) nuclear shielding function, (4) capability of being assembled and remote-handled, (5) interfaces with other in-vessel components, and (6) high heat flux technologies and complex welded structures in the design. The main functions of the Blanket System have been substantially expanded and it has now also to provide limiting surfaces that define the plasma boundary during startup and shutdown. As regards the Divertor, the ITER Council decided in November 2013 to start the ITER operation with a full-tungsten armour in order to minimize costs and already gain operational experience with tungsten during the non-active phase of the machine. This paper gives an overview of the design and technology qualification of the Blanket System and the Divertor.

  7. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  8. Key achievements in elementary R&D on water-cooled solid breeder blanket for ITER test blanket module in JAERI

    Science.gov (United States)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.

    2006-02-01

    This paper presents the significant progress made in the research and development (R&D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li2TiO3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 °C followed by normalizing it at 930 °C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R&D on the breeder material, Li2TiO3, the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li2TiO3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li2TiO3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation.

  9. Fusion blanket testing in MFTF-α + T

    International Nuclear Information System (INIS)

    Kleefeldt, K.

    1985-01-01

    The Mirror Fusion Test Facility-α + T (MFTF-α + T) is an upgraded version of the current MFTF-B test facility at Lawrence Livermore National Laboratory, and is designed for near-term fusion-technology-integrated tests at a neutron flux of 2 MW/m 2 . Currently, the fusion community is screening blanket and related issues to determine which ones can be addressed using MFTF-α + T. In this work, the minimum testing needs to address these issues are identified for the liquid-metal-cooled blanket and the solid-breeder blanket. Based on the testing needs and on the MFTF-α + T capability, a test plan is proposed for three options; each option covers a six to seven year testing phase. The options reflect the unresolved question of whether to place the research and development (R and D) emphasis on liquid-metal or solid-breeder blankets. In each case, most of the issues discussed can be addressed to a reasonable extent in MFTF-α+T

  10. Physical Training for Armor Crewmen

    National Research Council Canada - National Science Library

    Baker, Shane

    2003-01-01

    This thesis examines the physical requirements of armor crewmen and provides a method for training them to meet those requirements based on current Army doctrine and emerging fitness doctrine using...

  11. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  12. Development of conductively cooled first wall armor and actively cooled divertor structure for ITER/FER

    International Nuclear Information System (INIS)

    Ioki, K.; Yamada, M.; Sakata, S.; Okada, K.; Toyoda, M.; Shimizu, K.; Tsujimura, S.; Iimura, M.; Akiba, M.; Araki, M.; Seki, M.

    1991-01-01

    Based on the design requirements for the plasma facing components in ITER/FER, we have performed design studies on the conductively cooled first wall armor and the divertor plate with sliding supports. The full-scale armor tiles were fabricated for heat load tests, and good thermal performances were obtained in heat load tests of 0.2-0.4 MW/m 2 . It is shown by the thermomechanical analysis on the divertor plate that thermal stresses and bending deformation are reduced significantly by using the sliding supports. The divertor test module with the sliding supports has been fabricated to investigate its fabricability and to verify the functions of the sliding supports during a high heat load of about 10 MW/m 2 . (orig.)

  13. FW/Blanket and vacuum vessel for RTO/RC ITER

    International Nuclear Information System (INIS)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Iida, H.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Utin, Y.; Yamada, M.

    2000-01-01

    The design has progressed on the vacuum vessel and First Wall (FW)/blanket for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design. The design has been improved to achieve, along with the size reduction, ∼50% target reduction of the fabrication cost. The number of blanket modules has been minimized according to smaller dimensions of the machine and a higher payload capacity of the blanket Remote Handling tool. A concept without the back plate has been designed and assessed. The blanket module concept with flat separable FW panels has been developed to reduce the fabrication cost and future radioactive waste

  14. FW/Blanket and vacuum vessel for RTO/RC ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K. E-mail: iokik@itereu.de; Barabash, V.; Cardella, A.; Elio, F.; Iida, H.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Utin, Y.; Yamada, M

    2000-11-01

    The design has progressed on the vacuum vessel and First Wall (FW)/blanket for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design. The design has been improved to achieve, along with the size reduction, {approx}50% target reduction of the fabrication cost. The number of blanket modules has been minimized according to smaller dimensions of the machine and a higher payload capacity of the blanket Remote Handling tool. A concept without the back plate has been designed and assessed. The blanket module concept with flat separable FW panels has been developed to reduce the fabrication cost and future radioactive waste.

  15. Development of remote replacement system for armor tiles of first wall of FER

    International Nuclear Information System (INIS)

    Adachi, Junichi; Yoshizawa, Shunji; Nakano, Yasuo; Kuboyama, Takashi; Shibanuma, Kiyoshi; Kakudate, Satoshi; Oka, Kiyoshi.

    1993-01-01

    A remote system has been developed to replace automatically armor tiles of first walls with a single manipulator arm for the Fusion Experimental Reactor (FER). The system is composed of a manipulator arm and an end-effector (a tile replacement hand), which have a gripper of the tiles, a nutrunner to rotate attatching bolts of them and a vision sensor to measure positions of them. The system can replace the tiles by means of a visual feedback system using vision sensor, even if the positions of the tiles would have changed. As a result of tests, it has been proved that the end-effector is useful and the control system is practicable. (author)

  16. European research and development programme for water-cooled lithium-lead blankets: present status and future work

    International Nuclear Information System (INIS)

    Giancarli, L.; Leroy, P.; Proust, E.; Raepsaet, X.

    1992-01-01

    The European R and D programme in support of the development of water-cooled Pb-17Li blankets for DEMO aims at improving the data base concerning tritium behaviour and compatibility between blanket materials. The four main areas of the experimental programme are structural material corrosion by Pb-17Li, tritium extraction and permeation control.=, Pb-17Li physico-chemistry, and water/Pb-17Li interaction. This paper describes the most significant results obtained to date in the various experiments performed in Europe and the future programme required to complete the data base by 1994. 28 refs

  17. Armor Plate Surface Roughness Measurements

    National Research Council Canada - National Science Library

    Stanton, Brian; Coburn, William; Pizzillo, Thomas J

    2005-01-01

    ...., surface texture and coatings) that could become important at high frequency. We measure waviness and roughness of various plates to know the parameter range for smooth aluminum and rolled homogenous armor (RHA...

  18. Transparent Armor Cost Benefit Study

    National Research Council Canada - National Science Library

    Prokurat Franks, Lisa; Holm, David; Barnak, Rick

    2006-01-01

    ...; the increase in demand for transparent gun shields in Operation Iraqi Freedom (OIF) and early versions of jerry-rigged shields used in OIF, including Pope glass and Transparent Armored Gun Shields (TAGS...

  19. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound.

    Science.gov (United States)

    Lee, Timothy S; Toft, Jason D; Cordell, Jeffery R; Dethier, Megan N; Adams, Jeffrey W; Kelly, Ryan P

    2018-01-01

    Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic-terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness) from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  20. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound

    Directory of Open Access Journals (Sweden)

    Timothy S. Lee

    2018-02-01

    Full Text Available Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic–terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  1. Magnetic non-destructive evaluation of ruptures of tensile armor in oil risers

    International Nuclear Information System (INIS)

    Pérez-Benitez, J A; Padovese, L R

    2012-01-01

    Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires. (paper)

  2. (D,T) Driven thorium hybrid blankets

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Khan, S.; Sahin, S.

    1983-01-01

    Recently, a project has started, with the aim to establish the neutronic performance and the basic design of an experimental fusionfission (hybrid) reactor facility, called AYMAN, in cylinderical geometry. The fusion reactor will have to be simulated by a (D,T) neutron generator. Fissile and fertile fuel will have to surround the neutron generator as a cylinderical blanket to simulate the boundary conditions of the hybrid blanket in a proper way. This geometry is consistent with Tandem Mirror Hybrid Blanket design and with most of the ICF blanket designs. A similar experimental installation will become operational around 1984 at the Swiss Federal Institute of Technology in Lausanne, Switzerland known under the project LOTUS. Due to the limited dimensions of the experimental cavity of the LOTUS-hybrid reactor, the LOTUS blankets have to be designed in plane geometry. Also, the bulky form of the Haefely neutron generator of the LOTUS facility obliges one to design a blanket in the plane geometry. This results in a vacuum left boundary conditions for the LOTUS blanket. The importance of a reflecting left boundary condition on the overall neutronic performance of a hybrid blanket has been analyzed in previous work in detail

  3. 27 CFR 478.148 - Armor piercing ammunition intended for sporting or industrial purposes.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Armor piercing ammunition... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.148 Armor piercing ammunition intended for sporting or industrial purposes. The Director may exempt certain armor piercing...

  4. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1986-06-01

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  5. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab

  6. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  7. Armored garment for protecting

    Science.gov (United States)

    Purvis, James W [Albuquerque, NM; Jones, II, Jack F.; Whinery, Larry D [Albuquerque, NM; Brazfield, Richard [Albuquerque, NM; Lawrie, Catherine [Tijeras, NM; Lawrie, David [Tijeras, NM; Preece, Dale S [Watkins, CO

    2009-08-11

    A lightweight, armored protective garment for protecting an arm or leg from blast superheated gases, blast overpressure shock, shrapnel, and spall from a explosive device, such as a Rocket Propelled Grenade (RPG) or a roadside Improvised Explosive Device (IED). The garment has a ballistic sleeve made of a ballistic fabric, such as an aramid fiber (e.g., KEVLAR.RTM.) cloth, that prevents thermal burns from the blast superheated gases, while providing some protection from fragments. Additionally, the garment has two or more rigid armor inserts that cover the upper and lower arm and protect against high-velocity projectiles, shrapnel and spall. The rigid inserts can be made of multiple plies of a carbon/epoxy composite laminate. The combination of 6 layers of KEVLAR.RTM. fabric and 28 plies of carbon/epoxy laminate inserts (with the inserts being sandwiched in-between the KEVLAR.RTM. layers), can meet the level IIIA fragmentation minimum V.sub.50 requirements for the US Interceptor Outer Tactical Vest.

  8. Key achievements in elementary R and D on water-cooled solid breeder blanket for ITER test blanket module in JAERI

    International Nuclear Information System (INIS)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.

    2006-01-01

    This paper presents the significant progress made in the research and development (R and D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li 2 TiO 3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 0 C followed by normalizing it at 930 0 C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R and D on the breeder material, Li 2 TiO 3 , the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li 2 TiO 3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li 2 TiO 3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation

  9. Development, installation, and initial operation of DIII-D graphite armor tiles

    International Nuclear Information System (INIS)

    Anderson, P.M.; Baxi, C.B.; Reis, E.E.; Smith, J.P.; Smith, P.D.

    1988-04-01

    An upgrade of the DIII-D vacuum vessel protection system has been completed. The ceiling, floor, and inner wall have been armored to enable operation of CIT-relevant doublenull diverted plasmas and to enable the use of the inner wall as a limiting surface. The all- graphite tiles replace the earlier partial coverage armor configuration which consisted of a combination of Inconel tiles and graphite brazed to Inconel tiles. A new all-graphite design concept was chosen for cost and reliability reasons. The 10 minute duration between plasma discharges required the tiles to be cooled by conduction to the water-cooled vessel wall. Using two and three- dimensional analyses, the tile design was optimized to minimize thermal stresses with uniform thermal loading on the plasma-facing surface. Minimizing the stresses around the tile hold-down feature and eliminating stress concentrators were emphasized in the design. The design of the tile fastener system resulted in sufficient hold-down forces for good thermal conductance to the vessel and for securing the tile against eddy current forces. The tiles are made of graphite, and a program to select a suitable grade of graphite was undertaken. Initially, graphites were compared based on published technical data. Graphite samples were then tested for thermal shock capacity in an electron beam test facility at the Sandia National Laboratory (SNLA) in Albuquerque, New Mexico, USA. 4 refs., 6 figs

  10. ’Stinger under Armor:’ An Analysis of Alternatives

    Science.gov (United States)

    1990-01-01

    This paper examines a concept for employment of the Stinger Air Defense Artillery weapon system known as ’Stinger under Armor .’ It traces the...areas air defense in the pre-FAADS era. This broader deficiency ultimately drove the need for ’Stinger under Armor ’ as a short-term solution to a current battlefield vulnerability.

  11. Blankets for thermonuclear device

    International Nuclear Information System (INIS)

    Maki, Koichi; Fukumoto, Hideshi.

    1986-01-01

    Purpose: To produce tritium more than consumed, through thermonuclear reaction. Constitution: The energy spectrum of neutron generated by neutron multiplying reaction in a neutron multiplying blanket and moderated neutrons has a large ratio in a low energy section. In the low-energy absorption region of stainless steel which is a material of cooling pipes constituting a neutron multiplying blanket cooling channel, the neutrons are absorbed, lessening the neutron multiplying effect. To prevent this, the neutron multiplying blanket cooling channel is covered with tritium breeding blankets, thereby enabling the production of a substantially great amount of tritium more than the amount of tritium to be consumed by the thermonuclear reaction by preventing neutron absorption by the component materials of the cooling channel, improving the tritium breeding ratio by 20 to 25 %, and increasing the efficiency of use of neutrons for tritium generation. (Horiuchi, T.)

  12. Effectiveness of eye armor during blast loading.

    Science.gov (United States)

    Bailoor, Shantanu; Bhardwaj, Rajneesh; Nguyen, Thao D

    2015-11-01

    experienced by the unprotected eye after 0.2 ms of impact of blast wave, for lower as well as higher charge mass. The present model provides fundamental insights of flow and pressure fields in the ocular region, which helps to explain the effectiveness of the eye armor. Since the measurements of these fields are not trivial, the computational model aids in better understanding of development of PBI.

  13. Minimum thickness blanket-shield for fusion reactors

    International Nuclear Information System (INIS)

    Karni, Y.; Greenspan, E.

    1989-01-01

    A lower bound on the minimum thickness fusion reactor blankets can be designed to have, if they are to breed 1.267 tritons per fusion neutron, is identified by performing a systematic nucleonic optimization of over a dozen different blanket concepts which use either Be, Li 17 Pb 83 , W or Zr for neutron multiplication. It is found that Be offers minimum thickness blankets; that the blanket and shield (B/S) thickness of Li 17 Pb 83 based blankets which are supplemented by Li 2 O and/or TiH 2 are comparable to the thickness of Be based B/S; that of the Be based blankets, the aqueous self-cooled one offers one of the most compact B/S; and that a number of blanket concepts might enable the design of B/S which is approximately 12 cm and 39 cm thinner than the B/S thickness of, respectively, conventional self-cooled Li 17 Pb 83 and Li blankets. Aqueous self-cooled tungsten blankets could be useful for experimental fusion devices provided they are designed to be heterogeneous. (orig.)

  14. Blanket Manufacturing Technologies : Thermomechanical Tests on HCLL Blanket Mocks Up

    International Nuclear Information System (INIS)

    Laffont, G.; Cachon, L.; Taraud, P.; Challet, F.; Rampal, G.; Salavy, J.F.

    2006-01-01

    In the Helium Cooled Lithium Lead (HCLL) Blanket concept, the lithium lead plays the double role of breeder and multiplier material, and the helium is used as coolant. The HCCL Blanket Module are made of steel boxes reinforced by stiffening plates. These stiffening plates form cells in which the breeder is slowly flowing. The power deposited in the breeder material is recovered by the breeder cooling units constituted by 5 parallel cooling plates. All the structures such as first wall, stiffening and cooling plates are cooled by helium. Due to the complex geometry of these parts and the high level of pressure and temperature loading, thermo-mechanical phenomena expected in the '' HCLL blanket concept '' have motivated the present study. The aim of this study, carried out in the frame of EFDA Work program, is to validate the manufacturing technologies of HCLL blanket module by testing small scale mock-up under breeder blanket representative operating conditions.The first step of this experimental program is the design and manufacturing of a relevant test section in the DIADEMO facility, which was recently upgraded with an He cooling loop (pressure of 80 bar, maximum temperature of 500 o C,flow rate of 30 g/s) taking the opportunity of synergies with the gas-cooled fission reactor R-and-D program. The second step will deal with the thermo-mechanical tests. This paper focuses on the program made to support the cooling plate mock up tests which will be carried out on the DIADEMO facility (CEA) by thermo-mechanical calculations in order to define the relevant test conditions and the experimental parameters to be monitored. (author)

  15. Disruption problematics in segmented blanket concepts

    International Nuclear Information System (INIS)

    Crutzen, Y.; Fantechi, S.; Farfaletti-Casali, F.

    1994-01-01

    In Tokamaks, the hostile operating environment originated by plasma disruption events requires that the first wall/blanket/shield components sustain the large induced electromagnetic (EM) forces without significant structural deformation and within allowable material stresses. As a consequence there is a need to improve the safety features of the blanket design concepts satisfying the disruption problematics and to formulate guidelines on the required internal reinforcements of the blanket components. The present paper describes the recent investigations on blanket reinforcement systems needed in order to optimize the first-wall/blanket/shield structural design for next step and commercial fusion reactors in the context of ITER, DEMO and SEAFP activities

  16. Proceedings of the fifteenth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Tanigawa, Hisashi; Enoeda, Mikio

    2010-03-01

    This report is the Proceedings of 'the Fifteenth International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors. This workshop was held in Sapporo, Japan on 3-4, Sept. 2009. Twenty six participants from EU, Japan, India, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket development. By this workshop, advance of key technologies for solid breeder blanket development was shared among the participants. Also, desired direction of further investigation and development was recognized. The 20 of the presented papers are indexed individually. (J.P.N.)

  17. Proceedings of the fifteenth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hisashi; Enoeda, Mikio [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki (Japan)

    2010-03-15

    This report is the Proceedings of 'the Fifteenth International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors. This workshop was held in Sapporo, Japan on 3-4, Sept. 2009. Twenty six participants from EU, Japan, India, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket development. By this workshop, advance of key technologies for solid breeder blanket development was shared among the participants. Also, desired direction of further investigation and development was recognized. The 20 of the presented papers are indexed individually. (J.P.N.)

  18. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    Science.gov (United States)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-09-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes.

  19. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    International Nuclear Information System (INIS)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-01-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes. (paper)

  20. Function-Oriented Material Design of Joints for Advance Armors Under Ballistic Impact

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Raju, Basavaraju

    2004-01-01

    The objective of this research is to develop a system of software tools based on a new design methodology for the efficient composite armor structural design under ballistic impact loading conditions...

  1. Effect of reactor size on the breeding economics of LMFBR blankets

    International Nuclear Information System (INIS)

    Tagishi, A.; Driscoll, M.J.

    1975-02-01

    The effect of reactor size on the neutronic and economic performance of LMFBR blankets driven by radially-power-flattened cores has been investigated using both simple models and state-of-the-art computer methods. Reactor power ratings in the range 250 to 3000 MW(e) were considered. Correlations for economic breakeven and optimum irradiation times and blanket thicknesses have been developed for batch-irradiated blankets. It is shown that a given distance from the core-blanket interface the fissile buildup rate per unit volume remains very nearly constant in the radial blanket as (radially-power-flattened, constant-height) core size increases. As a consequence, annual revenue per blanket assembly, and breakeven and optimum irradiation times and optimum blanket dimensions, are the same for all reactor sizes. It is also shown that the peripheral core fissile enrichment, hence neutron leakage spectra, of the (radially-power-flattened, constant-height) cores remains essentially constant as core size increases. Coupled with the preceding observations, this insures that radial blanket breeding performance in demonstration-size LMFBR units will be a good measure of that in much larger commercial LMFBR's

  2. Long-term survivability of riprap for armoring uranium-mill tailings and covers: a literature review

    International Nuclear Information System (INIS)

    Lindsey, C.G.; Long, L.W.; Begej, C.W.

    1982-06-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon suppression cover applied to uranium mill tailings. Because the radon suppression cover and the tailings must remain intact for up to 1000 years or longer, the riprap must withstand natural weathering forces. This report is a review of information on rock weathering and riprap durability. Chemical and physical weathering processes, rock characteristics related to durability, climatic conditions affecting the degree and rate of weathering, and testing procedures used to measure weathering susceptibilities have been reviewed. Sampling and testing techniques, as well as analyses of physical and chemical weathering susceptibilities, are necessary to evaluate rock durability. Many potential riprap materials may not be able to survive 1000 years of weathering. Available techniques for durability testing cannot adequately predict rock durability for the 1000-year period because they do not consider the issue of time (i.e., how long must riprap remain stable). This report includes an Appendix, which discusses rock weathering, written by Dr. Richard Jahns of Stanford University

  3. Armoring confined bubbles in concentrated colloidal suspensions

    Science.gov (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  4. Ballistic Application of Coir Fiber Reinforced Epoxy Composite in Multilayered Armor

    OpenAIRE

    Luz, Fernanda Santos da; Monteiro, Sergio Neves; Lima, Eduardo Sousa; Lima Júnior, Édio Pereira

    2017-01-01

    Multilayered armor systems (MAS) composed of relatively lighter materials with capacity to provide personal ballistic protection are being extensively investigated and used in armor vests. A typical MAS to stand high impact energy 7.62 mm bullet has a front ceramic followed by an aramid fabric laminate, such as Kevlar™. Since both the army and municipal police personnel might need to wear an armor vest, a large number of vests needs to be supplied. In the case of Kevlar™, one of the most expe...

  5. Blanket/first wall challenges and required R&D on the pathway to DEMO

    International Nuclear Information System (INIS)

    Abdou, Mohamed; Morley, Neil B.; Smolentsev, Sergey; Ying, Alice; Malang, Siegfried; Rowcliffe, Arthur; Ulrickson, Mike

    2015-01-01

    The breeding blanket with integrated first wall (FW) is the key nuclear component for power extraction, tritium fuel sustainability, and radiation shielding in fusion reactors. The ITER device will address plasma burn physics and plasma support technology, but it does not have a breeding blanket. Current activities to develop “roadmaps” for realizing fusion power recognize the blanket/FW as one of the principal remaining challenges. Therefore, a central element of the current planning activities is focused on the question: what are the research and major facilities required to develop the blanket/FW to a level which enables the design, construction and successful operation of a fusion DEMO? The principal challenges in the development of the blanket/FW are: (1) the Fusion Nuclear Environment – a multiple-field environment (neutrons, heat/particle fluxes, magnetic field, etc.) with high magnitudes and steep gradients and transients; (2) Nuclear Heating in a large volume with sharp gradients – the nuclear heating drives most blanket phenomena, but accurate simulation of this nuclear heating can be done only in a DT-plasma based facility; and (3) Complex Configuration with blanket/first wall/divertor inside the vacuum vessel – the consequence is low fault tolerance and long repair/replacement time. These blanket/FW development challenges result in critical consequences: (a) non-fusion facilities (laboratory experiments) need to be substantial to simulate multiple fields/multiple effects and must be accompanied by extensive modeling; (b) results from non-fusion facilities will be limited and will not fully resolve key technical issues. A DT-plasma based fusion nuclear science facility (FNSF) is required to perform “multiple effects” and “integrated” experiments in the fusion nuclear environment; and (c) the Reliability/Availability/Maintainability/Inspectability (RAMI) of fusion nuclear components is a major challenge and is one of the primary reasons

  6. Blanket/first wall challenges and required R&D on the pathway to DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, Mohamed, E-mail: abdou@fusion.ucla.edu; Morley, Neil B.; Smolentsev, Sergey; Ying, Alice; Malang, Siegfried; Rowcliffe, Arthur; Ulrickson, Mike

    2015-11-15

    The breeding blanket with integrated first wall (FW) is the key nuclear component for power extraction, tritium fuel sustainability, and radiation shielding in fusion reactors. The ITER device will address plasma burn physics and plasma support technology, but it does not have a breeding blanket. Current activities to develop “roadmaps” for realizing fusion power recognize the blanket/FW as one of the principal remaining challenges. Therefore, a central element of the current planning activities is focused on the question: what are the research and major facilities required to develop the blanket/FW to a level which enables the design, construction and successful operation of a fusion DEMO? The principal challenges in the development of the blanket/FW are: (1) the Fusion Nuclear Environment – a multiple-field environment (neutrons, heat/particle fluxes, magnetic field, etc.) with high magnitudes and steep gradients and transients; (2) Nuclear Heating in a large volume with sharp gradients – the nuclear heating drives most blanket phenomena, but accurate simulation of this nuclear heating can be done only in a DT-plasma based facility; and (3) Complex Configuration with blanket/first wall/divertor inside the vacuum vessel – the consequence is low fault tolerance and long repair/replacement time. These blanket/FW development challenges result in critical consequences: (a) non-fusion facilities (laboratory experiments) need to be substantial to simulate multiple fields/multiple effects and must be accompanied by extensive modeling; (b) results from non-fusion facilities will be limited and will not fully resolve key technical issues. A DT-plasma based fusion nuclear science facility (FNSF) is required to perform “multiple effects” and “integrated” experiments in the fusion nuclear environment; and (c) the Reliability/Availability/Maintainability/Inspectability (RAMI) of fusion nuclear components is a major challenge and is one of the primary reasons

  7. 77 FR 39259 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Body Armor in...

    Science.gov (United States)

    2012-07-02

    ...: Establishment survey and initial approval of collection. (2) Title of Form/Collection: Body Armor in Correctional Institutions Survey. The collections include the forms Body Armor Administrative Agency-Level Survey and Body Armor Individual-level Correctional Officer Survey. (3) Agency form number, if any, and...

  8. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    Science.gov (United States)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  9. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance

    2005-01-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  10. Aqueous self-cooled blanket concepts for fusion reactors

    International Nuclear Information System (INIS)

    Varsamis, G.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1987-01-01

    A novel aqueous self-cooled blanket (ASCB) concept has been proposed. The water coolant also serves as the tritium breeding medium by dissolving small amounts of lithium compound in the water. The tritium recovery requirements of the ASCB concept may be facilitated by the novel in-situ radiolytic tritium separation technique in development at Chalk River Nuclear Laboratories. In this separation process deuterium gas is bubbled through the blanket coolant. Due to radiation induced processes, the equilibrium constant favors tritium migration to the deuterium gas stream. It is expected that the inherent simplicity of this design will result in a highly reliable, safe and economically attractive breeding blanket for fusion reactors. The available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate the proposed blanket concept. Tests for tritium separation and corrosion compatibility show encouraging results for the feasibility of this concept

  11. Status of blanket design for RTO/RC ITER

    International Nuclear Information System (INIS)

    Yamada, M.; Ioki, K.; Cardella, A.; Elio, F.; Miki, N.

    2000-01-01

    Design has progressed on the FW/blanket for the RTO/RC (reduced technical objective/ reduced cost) ITER. The basic functions and structures are the same as for the 1998 ITER design. However, design and fabrication methods of the FW/blanket have been improved to achieve ∝ 50% reduction of the construction cost compared to that for the 1998 ITER design. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R and D performed so far during the EDA (engineering design activity) is still applicable. Further cost reduction methods are also being investigated and additional R and D is being performed. (orig.)

  12. 77 FR 22345 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Body Armor in...

    Science.gov (United States)

    2012-04-13

    ... Collection: Establishment survey and initial approval of collection. (2) Title of Form/Collection: Body Armor... Agency-Level Survey and Body Armor Individual-level Correctional Officer Survey. (3) Agency form number... approaches to overcome those barriers. (a) For the Body Armor Administrative Agency-Level Survey, the chief...

  13. 7 CFR 1755.406 - Shield or armor ground resistance measurements.

    Science.gov (United States)

    2010-01-01

    ...) The insulation resistance test set should have an output voltage not to exceed 500 volts dc and may be... 7 Agriculture 11 2010-01-01 2010-01-01 false Shield or armor ground resistance measurements. 1755... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.406 Shield or armor ground resistance measurements. (a) Shield...

  14. Self-cooled liquid-metal blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Arheidt, K.; Barleon, L.

    1988-01-01

    A blanket concept for the Next European Torus (NET) where 83Pb-17Li serves both as breeder material and as coolant is described. The concept is based on the use of novel flow channel inserts for a decisive reduction of the magnetohydrodynamic (MHD) pressure drop and employs beryllium as neutron multiplier in order to avoid the need for breeding blankets at the inboard side of the torus. This study includes the design, neutronics, thermal hydraulics, stresses, MHDs, corrosion, tritium recovery, and safety of a self-cooled liquid-metal blanket. The results of the investigations indicate that the self-cooled blanket is an attractive alternative to other driver blanket concepts for NET and that it can be extrapolated to the conditions of a DEMO reactor

  15. Neutronics analysis for aqueous self-cooled fusion reactor blankets

    International Nuclear Information System (INIS)

    Varsamis, G.; Embrechts, M.J.; Jaffa, R.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1986-06-01

    The tritium breeding performance of several Aqueous Self-Cooled Blanket (ASCB) configurations for fusion reactors has been evaluated. The ASCB concept employs small amounts of lithium compound dissolved in light or heavy water to serve as both coolant and breeding medium. The inherent simplicity of this concept allows the development of blankets with minimal technological risk. The tritium breeding performance of the ASCB concept is a critical issue for this family of blankets. Contrary to conventional blanket designs there will be a significant contribution to the tritium breeding ratio (TBR) in the water coolant/breeder of duct shields, and the 3-D TBR will therefore be similar to the 1-D TBR. The tritium breeding performance of an ASCB for a MARS-like-tandem reactor and an ASCB based breeding-shield for the Next European Torus (NET) are assessed. Two design options for the MARS-like blanket are discussed. One design employs a vanadium first wall, and zircaloy for the structural material. The trade-offs between light water and heavy water cooling options for this zircaloy blanket are discussed. The second design option for MARS relies on the use of a vanadium alloy as the stuctural material, and heavy water as the coolant. It is demonstrated that both design options lead to low-activation blankets that allow class C burial. The breeder-shield for NET consists of a water-cooled stainless steel shield

  16. Current status on detail design and fabrication techniques development of ITER blanket shield block in Korea

    International Nuclear Information System (INIS)

    Kim, Duck Hoi; Cho, Seungyon; Ahn, Mu-Young; Lee, Eun-Seok; Jung, Ki Jung

    2007-01-01

    The allocation of components and systems to be delivered to ITER on an in-kind basis, was agreed between the ITER Parties. Among parties, Korea agreed to procure inboard blanket modules 1, 2 and 6, which consists of FW and shield block. Regarding shield block the detail design and Fabrication techniques development have been undertaken in Korea. Especially manufacturing feasibility study on shield block had been performed and some technical issues for the fabrication were selected. Based on these results, fabrication techniques using EB welding are being developed. Meanwhile, the detail design of inboard standard module has been carried out. The optimization of flow driver design to improve the cooling performance was executed. And, thermo-hydraulic analysis on half block of inboard standard module was performed. In this study, current status and some results from Fabrication techniques development on ITER blanket shield block are described. The detail design activity and results on shield block are also introduced herein. (orig.)

  17. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  18. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  19. Direct LiT Electrolysis in a Metallic Fusion Blanket

    International Nuclear Information System (INIS)

    Olson, Luke

    2016-01-01

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  20. Blanket comparison and selection study. Volume II

    International Nuclear Information System (INIS)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies

  1. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: fengkm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2016-11-15

    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  2. Fusion blanket inherent safety assessment

    International Nuclear Information System (INIS)

    Sze, D.K.; Jung, J.; Cheng, E.T.

    1986-01-01

    Fusion has significant potential safety advantages. There is a strong incentive for designing fusion plants to ensure that inherent safety will be achieved. Accordingly, both the Tokamak Power Systems Studies and MINIMARS have identified inherent safety as a design goal. A necessary condition is for the blanket to maintain its configuration and integrity under all credible accident conditions. A main problem is caused by afterheat removal in an accident condition. In this regard, it is highly desirable to achieve the required level of protection of the plant capital investment and limitation of radioactivity release by systems that rely only on inherent properties of matter (e.g., thermal conductivity, specific heat, etc.) and without the use of active safety equipment. This paper assesses the conditions under which inherent safety is feasible. Three types of accident conditions are evaluated for two blankets. The blankets evaluated are a self cooled vanadium/lithium blanket and a self-cooled vanadium/Flibe blanket. The accident conditions evaluated are: (1) loss-of-flow accident; (2) loss-of-coolant accident (LOCA); and (3) partial loss-of-coolant accident

  3. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Science.gov (United States)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  4. Blanket maintenance by remote means using the cassette blanket approach

    International Nuclear Information System (INIS)

    Werner, R.W.

    1978-01-01

    Induced radioactivity in the blanket and other parts of a fusion reactor close to the plasma zone will dictate remote assembly, disassembly, and maintenance procedures. Time will be of the essence in these procedures. They must be practicable and certain. This paper discusses the reduction of a complicated Tokamak reactor to a simpler assembly via the use of a vacuum building in which to house the reactor and the introduction in this new model of cassette blanket modules. The cassettes significantly simplify remote handling

  5. Imperfection analysis of flexible pipe armor wires in compression and bending

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    The work presented in this paper is motivated by a specific failure mode known as lateral wire buckling occurring in the tensile armor layers of flexible pipes. The tensile armor is usually constituted by two layers of initially helically wound steel wires with opposite lay directions. During pipe...... ability of the wires. This may cause the wires to buckle in the circumferential pipe direction, when these are restrained against radial deformations by adjacent layers. In the present paper, a single armoring wire modeled as a long and slender curved beam embedded in a frictionless cylinder bent...

  6. Mock-up test results of monoblock-type CFC divertor armor for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Higashijima, S. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)], E-mail: higashijima.satoru@jaea.go.jp; Sakurai, S.; Suzuki, S.; Yokoyama, K.; Kashiwa, Y.; Masaki, K.; Shibama, Y.K.; Takechi, M.; Shibanuma, K.; Sakasai, A.; Matsukawa, M.; Kikuchi, M. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2009-06-15

    The JT-60 Super Advanced (JT-60SA) tokamak project starts under both the Japanese domestic program and the international program 'Broader Approach'. The maximum heat flux to JT-60SA divertor is estimated to {approx}15 MW/m{sup 2} for 100 s. Japan Atomic Energy Agency (JAEA) has developed a divertor armor facing high heat flux in the engineering R and D for ITER, and it is concluded that monoblock-type CFC divertor armor is promising for JT-60SA. The JT-60SA armor consists of CFC monoblocks, a cooling CuCrZr screw-tube, and a thin oxygen-free high conductivity copper (OFHC-Cu) buffer layer between the CFC monoblock and the screw-tube. CFC/OFHC-Cu and OFHC-Cu/CuCrZr joints are essential for the armor, and these interfaces are brazed. Needed improvements from ITER engineering R and D are good CFC/OFHC-Cu and OFHC-Cu/CuCrZr interfaces and suppression of CFC cracking. For these purposes, metalization inside CFC monoblock is applied, and we confirmed again that the mock-up has heat removal capability in excess of ITER requirement. For optimization of the fabrication method and understanding of the production yield, the mock-ups corresponding to quantity produced in one furnace at the same time is also produced, and the half of the mock-ups could remove 15 MW/m{sup 2} as required. This paper summarizes the recent progress of design and mock-up test results for JT-60SA divertor armor.

  7. Design of self-cooled, liquid-metal blankets for tokamak and tandem mirror reactors

    International Nuclear Information System (INIS)

    Cha, Y.S.; Gohar, Y.; Hassanein, A.M.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.; Szo, D.K.

    1985-01-01

    Results of the self-cooled, liquid-metal blanket design from the Blanket Comparison and Selection Study (BCSS) are summarized. The objectives of the BCSS project are to define a small number (about three) of blanket concepts that should be the focus of the blanket research and development (RandD) program, identify and prioritize the critical issues for the leading blanket concepts, and provide technical input necessary to develop a blanket RandD program plan. Two liquid metals (lithium and lithium-lead (17Li-83Pb)) and three structural materials (primary candidate alloy (PCA), ferritic steel (FS) (HT-9), and vanadium alloy (V-15 Cr-5 Ti)) are included in the evaluations for both tokamaks and tandem mirror reactors (TMRs). TMR is of the tube configuration similar to the Mirror Advanced Reactor Study design. Analyses were performed in the following generic areas for each blanket concept: MHD, thermal hydraulics, stress, neutronics, and tritium recovery. Integral analyses were performed to determine the design window for each blanket design. The Li/Li/V blanket for tokamak and the Li/Li/V, LiPb/LiPb/V, and Li/Li/HT-9 blankets for the TMR are judged to be top-rated concepts. Because of its better thermophysical properties and more uniform nuclear heating profile, liquid lithium is a better coolant than liquid 17Li83Pb. From an engineering point of view, vanadium alloy is a better structural material than either FS or PCA since the former has both a higher allowable structural temperature and a higher allowable coolant/structure interface temperature than the latter. Critical feasibility issues and design constraints for the self-cooled, liquid-metal blanket concepts are identified and discussed

  8. Solid breeder test blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: ying@fusion.ucla.edu; Abdou, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Calderoni, P. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Sharafat, S. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Youssef, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); An, Z. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Abou-Sena, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Kim, E. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Reyes, S. [LANL, Livermore, CA (United States); Willms, S. [LANL, Los Alamos, NM (United States); Kurtz, R. [PNNL, Richland, WA (United States)

    2006-02-15

    This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration of fusion break-in phenomena and configuration scoping. Specific emphasis is placed on first wall structural response, evaluation of neutronic parameters, assessment of thermomechanical behavior and characterization of tritium release. The tests will be conducted with three unit cell arrays/sub-modules. The development approach includes: (1) design the unit cell/sub-module for low temperature operations and (2) refer to a reactor blanket design and use engineering scaling to reproduce key parameters under ITER wall loading conditions, so that phenomena under investigation can be measured at a reactor-like level.

  9. Design requirement on HYPER blanket fuel assembly

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S.

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER

  10. Effects of Body Armor Fit on Marksmanship Performance

    Science.gov (United States)

    2016-09-01

    SIMULATORS SIZES(DIMENSIONS) IOTV(IMPROVED OUTER TACTICAL VEST ) U.S. Army Natick Soldier Research, Development and Engineering Center...configurations were counterbalanced to control for order effect. Body Armor. The U.S. Army, standard issue Improved Outer Tactical Vest (IOTV) Generation III...targets at that great of an arc (≥50°) was not operationally realistic. Fig. 2 Improved outer tactical vest (IOTV) Gen III Table 1 Distribution of

  11. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, R. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: rainer.lindau@imf.fzk.de; Moeslang, A. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Rieth, M. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Klimiankou, M. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Materna-Morris, E. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Alamo, A. [CEA-Saclay, SRMA/SMPX, 91191 Gif-sur-Yvette Cedex (France); Tavassoli, A.-A. F. [CEA-Saclay, SRMA/SMPX, 91191 Gif-sur-Yvette Cedex (France); Cayron, C. [CEA-Grenoble, DRT/DTEN/SMP/LS2M, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Lancha, A.-M. [CIEMAT, Avda. Complutense no. 22, 28040 Madrid (Spain); Fernandez, P. [CIEMAT, Avda. Complutense no. 22, 28040 Madrid (Spain); Baluc, N. [CRPP-EPFL, 5232 Villigen PSI (Switzerland); Schaeublin, R. [CRPP-EPFL, 5232 Villigen PSI (Switzerland); Diegele, E. [EFDA Close Support Unit, Boltzmannstr. 2, 85748 Garching (Germany); Filacchioni, G. [ENEA CR Casaccia, Via Anguillarese 301, 00100 S. Maria di Galeria, Rome (Italy); Rensman, J.W. [NRG, MM and I, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands); Schaaf, B. van der [NRG, MM and I, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands); Lucon, E. [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Dietz, W. [MECS, Schoenenborner Weg 15, 51789 Lindlar (Germany)

    2005-11-15

    Within the European Union, the two major breeding blanket concepts presently being developed are the helium cooled pebble bed (HCPB), and the helium cooled lithium lead (HCLL) blankets. For both concepts, different conceptual designs are being discussed with temperature windows in the range 250-550 deg. C for conservative approaches based on reduced activation ferritic-martensitic (RAFM) steels, and in the range 250-650 deg. C for more advanced versions, taking into account oxide dispersion strengthened (ODS) steels. As a final result of a systematic development of RAFM-steels in Europe, the 9% CrWVTa alloy EUROFER was specified and produced in an industrial scale with a variety of product forms. A large characterisation program is being performed including irradiation in materials test reactors between 60 and 450 deg. C ({<=}15 dpa), and in a fast breeder reactor at 330 deg. C up to 30 dpa. EUROFER is resistant to high temperature ageing, and the existing creep-rupture data ({approx}30,000 h, 450-600 deg. C) indicate long-term stability and predictability. The ODS variant of EUROFER shows superior tensile and creep properties compared to EUROFER. Applying a new production route has diminished the problem of lower ductility and inferior impact properties. A reliable joining technique for ODS and RAFM steels employing diffusion welding was successfully developed.

  12. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  13. Development and qualification of functional materials for the EU Test Blanket Modules: Strategy and R and D activities

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, M., E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), 08019 Barcelona (Spain); Poitevin, Y. [Fusion for Energy (F4E), 08019 Barcelona (Spain); Boccaccini, L., E-mail: lorenzo.boccaccini@inr.fzk.de [Institut Fuer Neutronenphysik und Reaktortechnik, FZK, D-76021 Karlsruhe (Germany); Salavy, J.-F., E-mail: jfsalavy@cea.fr [CEA/Saclay, DEN/DM2S, F-91191 Gif-sur-Yvette (France); Knitter, R., E-mail: regina.knitter@imf.fzk.de [Institut Fuer Materialforschung III, FZK, D-76021 Karlsruhe (Germany); Moeslang, A., E-mail: anton.moeslang@imf.fzk.de [Institut Fuer Materialforschung I, FZK, D-76021 Karlsruhe (Germany); Magielsen, A.J., E-mail: magielsen@nrg.eu [NRG Petten, 1755 ZG Petten (Netherlands); Hegeman, J.B.J. [NRG Petten, 1755 ZG Petten (Netherlands); Laesser, R. [Fusion for Energy (F4E), 08019 Barcelona (Spain)

    2011-10-01

    Europe has developed two reference tritium breeder blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both will be tested in ITER under the form of Test Blanket Modules (TBMs). The paper reviews the current status of development and qualification of the EU TBMs functional materials; i.e. ceramic solid breeder materials, beryllium/beryllides multiplier materials and Lithium-Lead liquid metal breeder material Pb-15.7Li. For each functional material the main functional/performance requirements with key qualification issues, current status of the R and D activities and the EU development strategy are presented. In the development strategy major steps considered are listed pointing out importance of the 'Development/qualification/procurement plan', currently under elaboration, for definition of a roadmap of further activities aiming at delivery of qualified functional materials to be used in the European TBMs in ITER.

  14. Design development and manufacturing sequence of the European water-cooled Pb-17Li test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Futterer, M.A.; Bielak, B.; Deffain, J.P.; Giancarli, L.; Li Puma, A.; Salavy, J.F.; Szczepanski, J. [CEA Saclay, Gif-sur-Yvette (France). FDRN/DMT/SERMA; Dellis, C. [CEA Grenoble, DTA-CEREM/SGM, Grenoble (France); Nardi, C. [ENEA Frascati, ERG-FUS-TECN-MEC, Frascati (Italy); Schleisiek, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit

    1998-09-01

    In 1996, the European Community started the development of a water-cooled Pb17Li blanket test module for ITER. First tests are currently scheduled to start with the beginning of the basic performance phase prior to D-T operation. The test module is designed to be a representative for a DEMO breeding blanket and relies on the liquid alloy Pb-17Li as both tritium breeder and neutron multiplier material, and water at PWR pressure and temperature as coolant. The structural material is martensitic steel. The straight, box-like structure of this blanket confines a pool of liquid Pb-17Li which is slowly circulated for ex-situ tritium extraction and lithium adjustment. The box and the Pb-17Li pool are separately cooled, the former with toroido-radial tubes, the latter with a bundle of double-walled U-tubes, equally made of martensitic steel and equipped with a permeation barrier. This paper presents the latest design and three manufacturing schemes with different degrees of technology. Advanced techniques such as solid or powder HIP are proposed to provide design flexibility. With a 3D neutronics analysis, the power and tritium generation were determined. (orig.) 11 refs.

  15. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  16. Performance evaluation on force control for ITER blanket installation

    Energy Technology Data Exchange (ETDEWEB)

    Aburadani, A., E-mail: aburadani.atsushi@jaea.go.jp [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Takeda, N.; Shigematsu, S.; Murakami, S.; Tanigawa, H.; Kakudate, S. [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Nakahira, M.; Hamilton, D.; Tesini, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► It is crucial issues to avoid any jamming between the blanket modules and the keys. ► Force control for AC servo motor was developed to reduce excessive loads. ► This jam prevention force control method is directly measured and controlled by AC servo motor controllers. ► In the recent test, the module was passively positioned onto keys using the torque control method. -- Abstract: The most critical issue for the ITER blanket installation is to avoid any jamming between the blanket modules and the keys as a result of excessive loading during the module installation process. This is complicated by the limited clearance of 0.5 mm between the modules and the keys. To solve these technical issues, force control, such as controlling the torque for the AC servo motors, was developed to reduce excessive loads which may have an impact on the end-effector and to defer the forces acting on the groove of the blanket. This jam prevention force control method is directly measured and controlled by AC servo motor controllers. The AC servo motors are equipped to move the manipulator and end-effector during module installation.

  17. Performance evaluation on force control for ITER blanket installation

    International Nuclear Information System (INIS)

    Aburadani, A.; Takeda, N.; Shigematsu, S.; Murakami, S.; Tanigawa, H.; Kakudate, S.; Nakahira, M.; Hamilton, D.; Tesini, A.

    2013-01-01

    Highlights: ► It is crucial issues to avoid any jamming between the blanket modules and the keys. ► Force control for AC servo motor was developed to reduce excessive loads. ► This jam prevention force control method is directly measured and controlled by AC servo motor controllers. ► In the recent test, the module was passively positioned onto keys using the torque control method. -- Abstract: The most critical issue for the ITER blanket installation is to avoid any jamming between the blanket modules and the keys as a result of excessive loading during the module installation process. This is complicated by the limited clearance of 0.5 mm between the modules and the keys. To solve these technical issues, force control, such as controlling the torque for the AC servo motors, was developed to reduce excessive loads which may have an impact on the end-effector and to defer the forces acting on the groove of the blanket. This jam prevention force control method is directly measured and controlled by AC servo motor controllers. The AC servo motors are equipped to move the manipulator and end-effector during module installation

  18. Development of insulating coatings for liquid metal blankets

    International Nuclear Information System (INIS)

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  19. Overview of the Last Progresses for the European Test Blanket Modules Projects

    International Nuclear Information System (INIS)

    Salavy, J.-F.; Rampal, G.; Boccaccini, L.V.; Meyder, R.; Neuberger, H.; Laesser, R.; Poitevin, Y.; Zmitko, M.; Rigal, E.

    2006-01-01

    The long-term objective of the EU Breeding Blankets programme is the development of DEMO breeding blankets, which shall assure tritium self-sufficiency, an economically attractive use of the heat produced inside the blankets for electricity generation and a sufficiently high shielding of the superconducting magnets for long time operation. In the short-term so-called DEMO relevant Test Blanket Modules (TBMs) of these breeder blanket concepts shall be designed, manufactured, tested, installed, commissioned and operated in ITER for first tests in a fusion environment. The Helium Cooled Lithium-Lead (HCLL) breeder blanket and the Helium Cooled Pebble Bed (HCPB) concepts are the two breeder blanket lines presently developed by the EU. The main objective of the EU test strategy related to TBMs in ITER is to provide the necessary information for the design and fabrication of breeding blankets for a future DEMO reactor. EU TBMs shall therefore use the same structural and functional materials, apply similar fabrication technologies, and test adequate processes and components. This paper gives an overview of the last progresses in terms of system design, calculations, test program, safety and R-and-D done these last two years in order to cope with the ambitious objective to introduce two EU TBM systems for day-1 of ITER operation. The engineering design of the two systems is mostly concluded and the priority is now on the development and qualification of the fabrication technologies. From calculations point of view, the last modelling efforts related to the thermal-hydraulic of the first wall, the tritium behaviour, and the box thermal and mechanical resistance in accidental conditions are presented. Last features of the TBM and cooling system designs and integration in ITER reactor are highlighted. In particular, this paper also describes the safety and licensing analyses performed for each concept to be able to include the TBM systems in the ITER preliminary safety report

  20. Proceedings of the eleventh international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Enoeda, Mikio

    2004-07-01

    This report is the Proceedings of 'the Eleventh International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors, and the Japan-US Fusion Collaboration Framework. This workshop was held in Tokyo, Japan on December 15-17, 2003. About thirty experts from China, EU, Japan, Korea, Latvia, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket. In the workshop, information exchange was performed for designs of solid breeder blankets and test blankets in EU, Russia and Japan, recent results of irradiation tests, HICU, EXOTIC-8 and the irradiation tests by IVV-2M, modeling study on tritium release behavior of Li 2 TiO 3 and so on, fabrication technology developments and characterization of the Li 2 TiO 3 and Li 4 SiO 4 pebbles, research on measurements and modeling of thermo-mechanical behaviors of Li 2 TiO 3 and Li 4 SiO 4 pebbles, and interfacing issues, such as, fabrication technology for blanket box structure, neutronics experiments of blanket mockups by fusion neutron source and tritium recovery system. The 26 of the presented papers are indexed individually. (J.P.N.)

  1. Study on the temperature control mechanism of the tritium breeding blanket for CFETR

    Science.gov (United States)

    Liu, Changle; Qiu, Yang; Zhang, Jie; Zhang, Jianzhong; Li, Lei; Yao, Damao; Li, Guoqiang; Gao, Xiang; Wu, Songtao; Wan, Yuanxi

    2017-12-01

    The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.

  2. Kinematic analysis on rail development into vacuum vessel for ITER blanket maintenance

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Shibanuma, Kiyoshi

    2006-01-01

    The vehicle manipulator system for blanket maintenance is used as a main driving mechanism for rail development, and three driving mechanisms d1, d2 (or d2') and d3 are used as cycle sequence of the repeated operations for rail development. This repeated operation can develop the articulated rail into the vacuum vessel. The rail development scenario, kinematic analysis model for rail development without any driving mechanisms in the rail joints, equations defined the angular between two rail links, identification of rail link at repeated operation, numerical analysis results on rail deployment under the forced position control of l i+1 , new rail development scenario using two driving mechanisms d1 and d2''under one cycle sequence of the repeated operations, and rail development test are reported. (S.Y.)

  3. Trade-off study of liquid metal self-cooled blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of this study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. The primary results of the study are as follows: a) the lithium-lead blanket achieves a higher TBR with a smaller blanket thickness relative to the lithium blanket; b) the lithium blanket generates more energy per fusion neutron relative to the lithium-lead blanket; c) among the possible reflector materials, the carbon reflector produces the highest TBR; d) the high-Z reflector materials (Mo, Cu, W, or steel) generate more energy per fusion neutron and produce smaller TBRs relative to the carbon reflector; e) lithium-6 enrichment is required for the lithium-lead blanket to reduce the total blanket thickness; and f) the energy deposition per fusion neutron reaches a saturation as the blanket thickness, the fraction of the high-Z material in the reflector, or the reflector zone thickness increases (this allows one to design the blanket for a specific TBR without reducing the energy production)

  4. Workshop on cold-blanket research

    International Nuclear Information System (INIS)

    1977-05-01

    The objective of the workshop was to identify and discuss cold-plasma blanket systems. In order to minimize the bombardment of the walls by hot neutrals the plasma should be impermeable. This requires a density edge-thickness product of nΔ > 10 15 cm -2 . An impermeable cold plasma-gas blanket surrounding a hot plasma core reduces the plasma wall/limiter interaction. Accumulation of impurities in this blanket can be expected. Fuelling from a blanket may be possible as shown by experimental results, though not fully explained by classical transport of neutrals. Refuelling of a reacting plasma had to be ensured by inward diffusion. Experimental studies of a cold impermeable plasma have been done on the tokamak-like Ringboog device. Simulation calculations for the next generation of large tokamaks using a particular transport model, indicate that the plasma edge profile can be controlled to reduce the production of sputtered impurities to an acceptable level. Impurity control requires a small fraction of the radial space to accomodate the cold-plasma layer. The problem of exhaust is, however, more complicated. If the cold-blanket scheme works as predicted in the model calculations, then α-particles generated by fusion will be transported to the cold outside layer. The Communities' experimental programme of research has been discussed in terms of the tokamaks which are available and planned. Two options present themselves for the continuation of cold-blanket research

  5. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion—Programme Management Unit, Boltzmannstr. 2, 85748 Garching (Germany); Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, SERMA, LPEC, 91191 Gif-sur-Yvette (France); Moro, F. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2016-11-01

    Highlights: • Breeder blanket concepts for DEMO—design features. • Neutronic characteristics of breeder blankets. • Evaluation of Tritium breeding potential. • Evaluation of shielding performance. - Abstract: This paper presents nuclear performance issues of the HCPB, HCLL, DCLL and WCLL breeder blankets, which are under development within the PPPT (Power Plant Physics and Technology) programme of EUROfusion, with the objective to assess the potential and suitability of the blankets for the application to DEMO. The assessment is based on the initial design versions of the blankets developed in 2014. The Tritium breeding potential is considered sufficient for all breeder blankets although the initial design versions of the HCPB, HCLL and DCLL blankets were shown to require further design improvements. Suitable measures have been proposed and proven to be sufficient to achieve the required Tritium Breeding Ratio (TBR) ≥ 1.10. The shielding performance was shown to be sufficient to protect the super-conducting toroidal field coil provided that efficient shielding material mixtures including WC or borated water are utilized. The WCLL blanket does not require the use of such shielding materials due to a very compact blanket support structure/manifold configuration which yet requires design verification. The vacuum vessel can be safely operated over the full anticipated DEMO lifetime of 6 full power years for all blanket concepts considered.

  6. Mosaic Transparent Armor System Final Report CRADA No. TC02162.0

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Breslin, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-29

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and The Protective Group, Inc. (TPG) to improve the performance of the mosaic transparent armor system (MTAS) for transparent armor applications, military and civilian. LLNL was to provide the unique MTAS technology and designs to TPG for innovative construction and ballistic testing of improvements needed for current and near future application of the armor windows on vehicles and aircraft. The goal of the project was to advance the technology of MTAS to the point that these mosaic transparent windows would be introduced and commercially manufactured for military vehicles and aircraft.

  7. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  8. Overview of EU activities on DEMO liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Malang, S.; Reimann, J.; Perujo, A.

    1994-01-01

    The present paper gives an overview of both design and experimental activities within the European Union (EU) concerning the development of liquid metal breeder blankets for DEMO. After several years of studies on breeding blankets, two blanket concepts are presently considered, both using the eutectic Pb-17Li: the dual-coolant concept and the water-cooled concept. The analysis of such concepts has permitted to identify the experimental areas where further data are required. Tritium control and MHD-issues are, at present, the activities on which is devoted the greatest effort within the EU. (authors). 4 figs., 4 tabs., 39 refs

  9. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  10. Long-term survivability of riprap for armoring uranium-mill tailings and covers: a literature review. [203 references

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.G.; Long, L.W.; Begej, C.W.

    1982-06-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon suppression cover applied to uranium mill tailings. Because the radon suppression cover and the tailings must remain intact for up to 1000 years or longer, the riprap must withstand natural weathering forces. This report is a review of information on rock weathering and riprap durability. Chemical and physical weathering processes, rock characteristics related to durability, climatic conditions affecting the degree and rate of weathering, and testing procedures used to measure weathering susceptibilities have been reviewed. Sampling and testing techniques, as well as analyses of physical and chemical weathering susceptibilities, are necessary to evaluate rock durability. Many potential riprap materials may not be able to survive 1000 years of weathering. Available techniques for durability testing cannot adequately predict rock durability for the 1000-year period because they do not consider the issue of time (i.e., how long must riprap remain stable). This report includes an Appendix, which discusses rock weathering, written by Dr. Richard Jahns of Stanford University.

  11. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  12. Design and fabrication methods of FW/blanket and vessel for ITER-FEAT

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K. E-mail: iokik@itereu.de; Barabash, V.; Cardella, A.; Elio, F.; Kalinin, G.; Miki, N.; Onozuka, M.; Osaki, T.; Rozov, V.; Sannazzaro, G.; Utin, Y.; Yamada, M.; Yoshimura, H

    2001-11-01

    Design has progressed on the vacuum vessel and FW/blanket for ITER-FEAT. The basic functions and structures are the same as for the 1998 ITER design. Detailed blanket module designs of the radially cooled shield block with flat separable FW panels have been developed. The ITER blanket R and D program covers different materials and fabrication methods in order make a final selection based on the results. Separate manifolds have been designed and analysed for the blanket cooling. The vessel design with flexible support housings has been improved to minimise the number of continuous poloidal ribs. Most of the R and D performed so far during EDA are still applicable.

  13. Design and fabrication methods of FW/blanket and vessel for ITER-FEAT

    International Nuclear Information System (INIS)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Kalinin, G.; Miki, N.; Onozuka, M.; Osaki, T.; Rozov, V.; Sannazzaro, G.; Utin, Y.; Yamada, M.; Yoshimura, H.

    2001-01-01

    Design has progressed on the vacuum vessel and FW/blanket for ITER-FEAT. The basic functions and structures are the same as for the 1998 ITER design. Detailed blanket module designs of the radially cooled shield block with flat separable FW panels have been developed. The ITER blanket R and D program covers different materials and fabrication methods in order make a final selection based on the results. Separate manifolds have been designed and analysed for the blanket cooling. The vessel design with flexible support housings has been improved to minimise the number of continuous poloidal ribs. Most of the R and D performed so far during EDA are still applicable

  14. Embedded Fiber Optic Sensors for Integral Armor

    National Research Council Canada - National Science Library

    Fink, Bruce

    2000-01-01

    This report describes the work performed with Production Products Manufacturing & Sales (PPMS), Inc., under the "Liquid Molded Composite Armor Smart Structures Using Embedded Sensors" Small Business Innovative Research...

  15. Transformation: Transition From a Heavy to a Lighter Family of Armored Fighting Vehicles

    National Research Council Canada - National Science Library

    Petty, Thomas

    2001-01-01

    Since the end of World War II, the single event with greatest impact on the development of armor was the war that did not happen-the expected conflict between the United States and the Soviet Union...

  16. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    International Nuclear Information System (INIS)

    Pereslavtsev, Pavel; Bachmann, Christian; Fischer, Ulrich

    2016-01-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, "6Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  17. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pereslavtsev, Pavel, E-mail: pavel.pereslavtsev@kit.edu [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Fischer, Ulrich [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, {sup 6}Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  18. Patterned Armor Performance Evaluation for Multiple Impacts

    National Research Council Canada - National Science Library

    De

    2003-01-01

    .... Performance characteristics of an ideal patterned armor with respect to multiple hits are discussed, and the types of single-shot ballistic data needed to quantify that performance are presented...

  19. Flibe blanket concept for transmuting transuranic elements and long lived fission products

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful

  20. Composite beryllium-ceramics breeder pin elements for a gas cooled solid blanket

    International Nuclear Information System (INIS)

    Carre, F.; Chevreau, G.; Gervaise, F.; Proust, E.

    1986-06-01

    Helium coolant have main advantages compared to water for solid blankets. But limitations exist too and the development of attractive helium cooled blankets based on breeder pin assemblies has been essentially made possible by the derivation from recent CEA neutronic studies of an optimized composite beryllium/ceramics breeder arrangement. Description of the proposed toroidal blanket layout for Net is made together with the analysis of its main performance. Merits of the considered composite Be/ceramics breeder elements are discussed

  1. Armor in Vietnam

    Science.gov (United States)

    1976-05-01

    battles a-Riuot the insurgent enemy, especially with armor. French contingents were present in Tndo Chinh P-w early as 1852, but it was not until 1884...committed to Vietnam were straight infantry. These troons er•A tran -norted in hn4±{ copters and usually airlifted to the battle zone; however, once...0STAINf0 FROM VKTNAM NATIONAL MAP SERVICE (NOS) PHU-YEN OCTOBER 19665 OARLAC ......... KKAN1+ HOA QLWA- DUC TUYEN- DUC PHUOC- NINH_ C;ry OF -10 T CAM RANK TAY

  2. Computed tomography of the ''armored brain''

    International Nuclear Information System (INIS)

    Ludwig, B.; Nix, W.; Lanksch, W.

    1983-01-01

    A classified chronic subdural hematoma may cover the surface of the cerebral hemispheres to such an extent that one can talk of an ''armored brain''. Pathogenesis, clinical course and treatment are discussed based on the computed tomograms of five cases. (orig.)

  3. Development of a remote handling system for replacement of armor tiles in the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Adachi, J.; Kakudate, S.; Oka, K.; Seki, M.

    1995-01-01

    The armor tiles of the Fusion Experimental Reactor (FER) planned by JAERI are categorized as scheduled maintenance components, since they are damaged by severe heat and particle loads from the plasma during operation. A remote handling system is thus required to replace a large number of tiles rapidly in the highly activated reactor. However, the simple teaching-playback method cannot be adapted to this system because of deflection of the tiles caused by thermal deformation and so on. We have developed a control system using visual feedback control to adapt to this deflection and an end-effector for a single arm. We confirm their performance in tests. (orig.)

  4. On blanket concepts of the Helias reactor

    International Nuclear Information System (INIS)

    Wobig, H.; Harmeyer, E.; Herrnegger, F.; Kisslinger, J.

    1999-07-01

    The paper discusses various options for a blanket of the Helias reactor HSR22. The Helias reactor is an upgrade version of the Wendelstein 7-X device. The dimensions of the Helias reactor are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 4.75 T, maximum field 10 T, number of field periods 5, fusion power 3000 MW. The minimum distance between plasma and coils is 1.5 m, leaving sufficient space for a blanket and shield. Three options of a breeding blanket are discussed taking into account the specific properties of the Helias configuration. Due to the large area of the first wall (2600 m 2 ) the average neutron power load on the first wall is below 1 MWm .2 , which has a strong impact on the blanket performance with respect to lifetime and cooling requirements. A comparison with a tokamak reactor shows that the lifetime of first wall components and blanket components in the Helias reactor is expected to be at least two times longer. The blanket concepts being discussed in the following are: the solid breeder concept (HCPB), the dual-coolant Pb-17Li blanket concept and the water-cooled Pb-17Li concept (WCLL). (orig.)

  5. Report to the Attorney General on Body Armor Safety Initiative Testing and Activities

    National Research Council Canada - National Science Library

    2005-01-01

    On November 17, 2003, Attorney General John Ashcroft announced the U.S. Department of Justice's Body Armor Safety Initiative in response to concerns from the law enforcement community regarding the effectiveness of body armor in use...

  6. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  7. Magnetoconvection in HCLL blankets

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Buehler, L.

    2014-01-01

    In the present work we consider magneto-convective flows in one of the proposed European liquid metal blankets that will be tested in the experimental fusion reactor ITER. Here the PbLi alloy is used as breeder material and helium as coolant. In order to finalize the design of the helium cooled lead lithium (HCLL) blanket, studies are still required to fully understand the behavior of the electrically conducting breeder under the influence of the intense magnetic field that confines the fusion plasma and in case of non-uniform thermal conditions. Liquid metal HCLL blanket flows are expected to be mainly driven by buoyancy forces caused by non-isothermal operating conditions due to neutron volumetric heating and cooling of walls, since only a weak forced ow is foreseen for tritium extraction in external ancillary systems. Buoyancy can therefore become very important and modify the velocity distribution and related heat transfer performance of the blanket. The present numerical study aims at clarifying the influence of electromagnetic and thermal coupling of neighboring fluid domains on magneto-convective flows in geometries relevant for the HCLL blanket concept. According to the last design review two internal cooling plates subdivide the fluid domain into three slender flow regions, which are thermally and electrically coupled through common walls. First a uniform volumetric heat source is considered to identify the basic convective patterns that establish in the liquid metal. Results are then compared with those obtained by applying a realistic radial distribution of the power density as obtained from a neutronic analysis. Velocity and temperature distributions are discussed for various volumetric heat sources and magnetic field strengths.

  8. Overview of the TFTR Lithium Blanket Module program

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-01-01

    The LBM (Lithium Blanket Module) is an approximately cubic module, about 80 cm on each side, with construction representative of a helium-cooled lithium oxide fusion reactor blanket module. Measurements of neutron transport and tritium breeding in the LBM will be made in irradiation programs first with a point-neutron source, and subsequently with the D-D and D-T fusion-neutron sources of the TFTR. This paper summarizes the objectives of the LBM program, the design, development and construction of the LBM, and progress in the experimental tests

  9. Code development for analysis of MHD pressure drop reduction in a liquid metal blanket using insulation technique based on a fully developed flow model

    International Nuclear Information System (INIS)

    Smolentsev, Sergey; Morley, Neil; Abdou, Mohamed

    2005-01-01

    The paper presents details of a new numerical code for analysis of a fully developed MHD flow in a channel of a liquid metal blanket using various insulation techniques. The code has specially been designed for channels with a 'sandwich' structure of several materials with different physical properties. The code includes a finite-volume formulation, automatically generated Hartmann number sensitive meshes, and effective convergence acceleration technique. Tests performed at Ha ∼ 10 4 have showed very good accuracy. As an illustration, two blanket flows have been considered: Pb-17Li flow in a channel with a silicon carbide flow channel insert, and Li flow in a channel with insulating coating

  10. Stress analysis of the tokamak engineering test breeder blanket

    International Nuclear Information System (INIS)

    Huang Zhongqi

    1992-01-01

    The design features of the hybrid reactor blanket and main parameters are presented. The stress analysis is performed by using computer codes SAP5p and SAP6 with the three kinds of blanket module loadings, i.e, the pressure of coolant, the blanket weight and the thermal loading. Numerical calculation results indicate that the stresses of the blanket are smaller than the allowable ones of the material, the blanket design is therefore reasonable

  11. Heat-pipe liquid-pool-blanket concept for the Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Johnson, G.L.

    1981-01-01

    The blanket concept for the tandem mirror reactor described in this paper was developed to produce the medium temperature heat (approx. 850 to 950 K) for the General Atomic sulfur-iodine thermochemical process for producing hydrogen. This medium temperature heat from the blanket constitutes about 81% of the total power output of the fusion reactor

  12. NET test blanket design and remote maintenance

    International Nuclear Information System (INIS)

    Holloway, C.; Hubert, P.

    1991-01-01

    The NET machine has three horizontal ports reserved for testing tritium breeding blanket designs during the physics phase and possibly five during the technology phase. The design of the ports and test blankets are modular to accept a range of blanket options, provide radiation shielding and allow routine replacement. Radiation levels during replacement or maintenance require that all operations must be carried out remotely. The paper describes the problems overcome in providing a port design which includes attachment to the vacuum vessel with double vacuum seals, an integrated cooled first wall and support guides for the test blanket module. The method selected to remotely replace the test module whilst controlling the spread of contamination is also adressed. The paper concludes that the provisions of a test blanket facility based on the NET machine design is feasible. (orig.)

  13. Design analyses of self-cooled liquid metal blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations

  14. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  15. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  16. Functional trade-off between strength and thermal capacity of dermal armor: Insights from girdled lizards.

    Science.gov (United States)

    Broeckhoven, Chris; du Plessis, Anton; Hui, Cang

    2017-10-01

    The presence of dermal armor is often unambiguously considered the result of an evolutionary predator-prey arms-race. Recent studies focusing predominantly on osteoderms - mineralized elements embedded in the dermis layer of various extant and extinct vertebrates - have instead proposed that dermal armor might exhibit additional functionalities besides protection. Multiple divergent functionalities could impose conflicting demands on a phenotype, yet, functional trade-offs in dermal armor have rarely been investigated. Here, we use high-resolution micro-computed tomography and voxel-based simulations to test for a trade-off between the strength and thermal capacity of osteoderms using two armored cordylid lizards as model organisms. We demonstrate that high vascularization, associated with improved thermal capacity might limit the strength of osteoderms. These results call for a holistic, cautionary future approach to studies investigating dermal armor, especially those aiming to inspire artificial protective materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.; Ott, K.O.; Terry, W.K.

    1987-01-01

    A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented

  18. Breeding blankets for thermonuclear reactors

    International Nuclear Information System (INIS)

    Rocaboy, Alain.

    1982-06-01

    Materials with structures suitable for this purpose are studied. A bibliographic review of the main solid and liquid lithiated compounds is then presented. Erosion, dimensioning and maintenance problems associated with the limiter and the first wall of the reactor are studied from the point of view of the constraints they impose on the design of the blankets. Detailed studies of the main solid and liquid blanket concepts enable the best technological compromises to be determined for the indispensable functions of the blanket to be assured under acceptable conditions. Our analysis leads to four classes of solution, which cannot at this stage be considered as final recommendations, but which indicate what sort of solutions it is worthwhile exploring and comparing in order to be in a position to suggest a realistic blanket at the time when plasma control is sufficiently good for power reactors to be envisaged. Some considerations on the general architecture of the reactor are indicated. Energy storage with pulsed reactors is discussed in the appendix, and a first approach made to minimizing the total tritium recovery [fr

  19. NOEL: a no-leak fusion blanket concept

    International Nuclear Information System (INIS)

    Powell, J.R.; Yu, W.S.; Fillo, J.A.; Horn, F.L.; Makowitz, H.

    1980-01-01

    Analysis and tests of a no-leak fusion blanket concept (NOEL-NO External Leak) are described. Coolant cannot leak into the plasma chamber even if large through-cracks develop in the first wall. Blanket modules contain a two-phase material, A, that is solid (several cm thick) on the inside of the module shell, and liquid in the interior. The solid layer is maintained by imbedded tubes carrying a coolant, B, below the freezing point of A. Most of the 14-MeV neutron energy is deposited as heat in the module interior. The thermal energy flow from the module interior to the shell keeps the interior liquid. Pressure on the liquid A interior is greater than the pressure on B, so that B cannot leak out if failures occur in coolant tubes. Liquid A cannot leak into the plasma chamber through first wall cracks because of the intervening frozen layer. The thermal hydraulics and neutronics of NOEL blankets have been investigated for various metallic (e.g., Li, Pb 2 , LiPb, Pb) and fused salt choices for material A

  20. A numerical study on the disturbance of explosive reactive armors to jet penetration

    Directory of Open Access Journals (Sweden)

    Xiang-dong Li

    2014-03-01

    Full Text Available The disturbance of flat and V-shaped sandwich reactive armor configurations to shaped-charge jet is studied by a numerical approach. The disturbing and cutting effects of the two reactive armor configurations to the jet are successfully captured. The predicted disturbance characteristics and patterns are in fairly good agreement with the X-ray photographic observations. The residual depth of penetration into a semi-infinitive homogeneous steel target behind the reactive armor is computed for a series of jet/armor parameters. For the flat configuration, it is demonstrated that the residual penetration depth is not significantly reduced for a normal impact while it is reduced up to 75% for an oblique impact. In comparison, the V-shaped configuration reduces the penetration depth of the jet to 90%, and it is observed that the penetration depth is not sensitive to the V-shaped angle.

  1. Tritium inventory and permeation in liquid breeder blankets

    International Nuclear Information System (INIS)

    Reiter, F.

    1990-01-01

    This report reviews studies of the transport of hydrogen isotopes in the DEMO relevant water-cooled Pb-17Li blanket to be tested in NET and in a self-cooled blanket which uses Pb-17Li or Flibe as a liquid breeder material and V or Fe as a first wall material. The time dependences of tritium inventory and permeation in these blankets and of deuterium and tritium recycling in the self-cooled blanket are presented and discussed

  2. Standard Methodology for Assessment of Range of Motion While Wearing Body Armor

    Science.gov (United States)

    2013-09-30

    76 STANDING STATURE (with Footwear ...Thanks also to Natick Soldier Research, Development and Engineering Center and the Soldier Integrated Protection Team and those project officers who...being fit into their best body armor size for that configuration): • Standing Stature (with footwear ) • Seated Stature At the goniometer station

  3. Miniaturized hand held microwave interference scanning system for NDE of dielectric armor and armor systems

    International Nuclear Information System (INIS)

    Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Meitzler, Thomas J.; Green, William

    2011-01-01

    Inspection of ceramic-based armor has advanced through development of a microwave-based, portable, non-contact NDE system. Recently, this system was miniaturized and made wireless for maximum utility in field applications. The electronic components and functionality of the laboratory system are retained, with alternative means of position input for creation of scan images. Validation of the detection capability was recently demonstrated using specially fabricated surrogates and ballistic impact-damaged specimens. The microwave data results have been compared to data from laboratory-based microwave interferometry systems and digital x-ray imaging. The microwave interference scanning has been shown to reliably detect cracks, laminar features and material property variations. The authors present details of the system operation, descriptions of the test samples used and recent results obtained.

  4. Welding techniques development of CLAM steel for Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)], E-mail: lcj@ipp.ac.cn; Huang Qunying; Wu Qingsheng; Liu Shaojun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Lei Yucheng [Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Muroga, Takeo; Nagasaka, Takuya [National Institute for Fusion Science, Toki, Jifu, 509-5292 (Japan); Zhang Jianxun [Xi' an Jiaotong University, Xi' an, Shanxi, 710049 (China); Li Jinglong [Northwestern Polytechnical University, Xi' an, Shanxi, 710072 (China)

    2009-06-15

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  5. Acquisition of the Armored Medical Evacuation Vehicle

    National Research Council Canada - National Science Library

    2000-01-01

    .... The platform for the AMEV is an upgraded M2A0 Bradley Fighting Vehicle variant, which has the turret removed, the roof squared off and raised 13 inches, a 600 horsepower engine, and additional armor...

  6. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    , low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section

  7. Applications of the aqueous self-cooled blanket (ASCB) concept to the Next European Torus (NET)

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Bogaerts, W.; Cardella, A.; Chazalon, M.; Danner, W.; Dinner, P.; Libin, B.

    1987-01-01

    The Aqueous Self-Cooled Blanket Concept (ASCB) leads to a low-technology blanket design that relies on just structural material and coolant with small amounts of lithium compound dissolved in the coolant to provide for tritium production. The application of the ASCB concept in NET is being considered as a driver blanket that would operate at low temperature and low pressure and provide a reliable environment for machine operation during the technology phase. Shielding and tritium production are the primary objectives for such a low-technology blanket. Net tritium breeding is not a design requirement per se for a driver blanket for NET. A DEMO relevant ASCB based blanket test module with (local) tritium self-sufficiency and energy recovery as primary objectives might also be tested in NET if future developments confirm their viability

  8. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  9. Conceptual design of Blanket Remote Handling System for CFETR

    International Nuclear Information System (INIS)

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  10. Blanket comparison and selection study. Final report. Volume 1

    International Nuclear Information System (INIS)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li 2 O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N 2 ) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li 2 O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  11. Blanket comparison and selection study. Final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  12. Blanket comparison and selection study. Final report. Volume 3

    International Nuclear Information System (INIS)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li 2 O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N 2 ) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li 2 O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  13. Blanket comparison and selection study. Final report. Volume 2

    International Nuclear Information System (INIS)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li 2 O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N 2 ) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li 2 O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  14. Fusion blankets for high efficiency power cycles

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Usher, J.L.

    1980-04-01

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  15. Self-cooled blanket concepts using Pb-17Li as liquid breeder and coolant

    International Nuclear Information System (INIS)

    Malang, S.; Deckers, H.; Fischer, U.; John, H.; Meyder, R.; Norajitra, P.; Reimann, J.; Reiser, H.; Rust, K.

    1991-01-01

    A blanket design concept using Pb-17Li eutectic alloy as both breeder material and coolant is described. Such a self-cooled blanket for the boundary conditions of a DEMO-reactor is under development at the Kernforschungszentrum Karlsruhe (KfK) in the frame of the European blanket development program. Results of investigations in the areas of design, neutronics, magneto-hydrodynamics, thermo-mechanics, ancillary loop systems, and safety are reported. Based on recent progress, it can be concluded that the boundary conditions of a DEMO-reactor can be met, tritium self-sufficiency can be obtained without using beryllium as an additional neutron multiplier, and tritium inventory and permeation are acceptably low. However, to complete judge the feasibility of the proposed concept, further studies are necessary to obtain a better understanding of the magneto-hydrodynamic phenomena and their effects on the thermal-hydraulic performance of a fusion reactor blanket. (orig.)

  16. Electromagnetic analysis of ITER shield blanket under VDE

    International Nuclear Information System (INIS)

    Kang Weishan; Chen Jiming; Wu Jihong; Wang Mingxu

    2010-01-01

    Electromagnetic force and torque of ITER shield blanket system and their surrounding major component under vertical displacement event (VDE) were calculated with finite element method. ANSYS APDL was used to simulate the shape and magnitude of plasmas current dynamically in the VDE course, and external magnetic field was imposed, then the induced current distribution inside the all conductor including the blanket was obtained from the calculation. The force and torque for every blanket module was obtained to assess the safety of blanket system under VDE. (authors)

  17. Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

    Science.gov (United States)

    Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI

    2017-11-01

    The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.

  18. Modeling the Biodynamical Response of the Human Thorax with Body Armor from a Bullet Impact

    National Research Council Canada - National Science Library

    Lobuono, John

    2001-01-01

    The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax's biodynamical response...

  19. Modeling the Biodynamical Response of the Human Thorax With Body Armor From a Bullet Impact

    National Research Council Canada - National Science Library

    Lobuono, John

    2001-01-01

    The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax's biodynamical response...

  20. Neutronic design for the TFTR lithium blanket module

    International Nuclear Information System (INIS)

    Cheng, E.T.; Engholm, B.A.; Su, S.D.

    1981-01-01

    The preliminary design of a lithium blanket module (LBM) to be installed and tested in the TFTR has been performed under subcontract to PPPL and EPRI. The objectives of the LBM program are calculation and measurement of neutron fluences and tritium production in a breeding blanket module using state of art techniques, comparison of calculations with measurements, and acquisition of operational experience with a fusion reactor blanket module. The neutronic design of the LBM is one of the key areas of this program in which the LBM composition and geometry are optimized and the boundary material effects on the tritium production in the blanket module are explored. The concept of employing sintered Li/sub 2/O pellets in tubes is proposed for the blanket design

  1. LMFBR Blanket Physics Project progress report No. 2

    International Nuclear Information System (INIS)

    Forbes, I.A.; Driscoll, M.J.; Rasmussen, N.C.; Lanning, D.D.; Kaplan, I.

    1971-01-01

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238 U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  2. Fracture mechanical analysis of tungsten armor failure of a water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-11-15

    Highlights: • The FEM-based VCE method and XFEM were employed for computing K{sub I} (or J-integral) and predicting progressive cracking, respectively. • The most probable pattern of crack formation is radial cracking in the tungsten armor block. • The most probable site of cracking is the upper interfacial region of the tungsten armor block adjacent to the top position of the copper interlayer. • The initiation of a major crack becomes likely, only when the strength of tungsten armor block is significantly reduced from its original strength. - Abstract: The inherent brittleness of tungsten at low temperature and the embrittlement by neutron irradiation are its most critical weaknesses for fusion applications. In the current design of the ITER and DEMO divertor, the high heat flux loads during the operation impose a strong constraint on the structure–mechanical performance of the divertor. Thus, the combination of brittleness and the thermally induced stress fields due to the high heat flux loads raises a serious reliability issue in terms of the structural integrity of tungsten armor. In this study, quantitative estimates of the vulnerability of the tungsten monoblock armor cracking under stationary high heat flux loads are presented. A comparative fracture mechanical investigation has been carried out by means of two different types of computational approaches, namely, the extended finite element method (XFEM) and the finite element method (FEM)-based virtual crack tip extension (VCE) method. The fracture analysis indicates that the most probable pattern of crack formation is radial cracking in the tungsten armor starting from the interface to tube and the most probable site of cracking is the upper interfacial region of the tungsten armor adjacent to the top position of the copper interlayer. The strength threshold for crack initiation and the high heat flux load threshold for crack propagation are evaluated based on XFEM simulations and computations

  3. 27 CFR 478.149 - Armor piercing ammunition manufactured or imported for the purpose of testing or experimentation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Armor piercing ammunition... Armor piercing ammunition manufactured or imported for the purpose of testing or experimentation. The provisions of §§ 478.37 and 478.99(d) with respect to the manufacture or importation of armor piercing...

  4. Preliminary Analysis for K-DEMO Water Cooled Breeding Blanket Using MARS-KS

    International Nuclear Information System (INIS)

    Lee, Jeong-Hun; Kim, Geon-Woo; Park, Goon-Cherl; Cho, Hyoung-Kyu; Im, Kihak

    2014-01-01

    In the present study, thermal-hydraulic analyses for the blanket concept are being conducted using the Multidimensional Analysis of Reactor Safety (MARSKS) code, which has been used for the safety analysis of a pressurized water reactor. The purposes of the analyses are to verify the applicability of the code for the proposed blanket system, to investigate the departure of nucleate boiling (DNB) occurrence during the normal and transient conditions, and to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. In this paper, the thermal analysis results of the proposed blanket design using the MARS-KS code are presented for the normal operation and an accident condition of a reduced coolant flow rate. Afterwards, the plan for the whole blanket system analysis using MARSKS is introduced and the result of the first trial for the multiple blanket module analysis is summarized. In the present study, thermal-hydraulic analyses for the blanket concept were conducted using the MARS-KS code for a single blanket module. By comparing the MARS calculation results with the CFD analysis results, it was found that MARS-KS can be applied for the blanket thermal analysis with less number of computational meshes. Moreover, due to its capability on the two-phase flow analysis, it can be used for the transient or accident simulation where a phase change may be resulted in. In the future, the MARS-KS code will be applied for the anticipated transient and design based accident analyses. The investigation of the DNB occurrence during the normal and transient conditions will be of special interest of the analysis using it. After that, a methodology to simulate the entire blanket system was proposed by using the DLL version of MARS-KS. A supervisor program, which controls the multiple DLL files, was developed for the common header modelling. The program explicitly determines the flow rates of each module which can equalize

  5. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  6. Liquid metal cooled blanket concept for NET

    International Nuclear Information System (INIS)

    Malang, S.; Casal, V.; Arheidt, K.; Fischer, U.; Link, W.; Rust, K.

    1986-01-01

    A blanket concept for NET using liquid lithium-lead both as breeder material and as coolant is described. The need for inboard breeding is avoided by using beryllium as neutron multiplier in the outboard blanket. Novel flow channel inserts are employed in all poloidal ducts to reduce the MHD pressure drop. The concept offers a simple mechanical design and a higher tritium breeding ratio compared to water- and gas-cooled blankets. (author)

  7. Beryllium R&D for blanket application

    Science.gov (United States)

    Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.

    1998-10-01

    The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.

  8. Heat transfer problems in gas-cooled solid blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  9. Design study of blanket structure based on a water-cooled solid breeder for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Youji; Tobita, Kenji; Utoh, Hiroyasu; Tokunaga, Shinji; Hoshino, Kazuo; Asakura, Nobuyuki; Nakamura, Makoto; Sakamoto, Yoshiteru

    2015-10-15

    Highlights: • Neutronics design of a water-cooled solid mixed breeder blanket was presented. • The blanket concept achieves a self-sufficient supply of tritium by neutronics analysis. • The overall outlet coolant temperature was 321 °C, which is in the acceptable range. - Abstract: Blanket concept with a simplified interior for mass production has been developed using a mixed bed of Li{sub 2}TiO{sub 3} and Be{sub 12}Ti pebbles, coolant conditions of 15.5 MPa and 290–325 °C and cooling pipes without any partitions. Considering the continuity with the ITER test blanket module option of Japan and the engineering feasibility in its fabrication, our design study focused on a water-cooled solid breeding blanket using the mixed pebbles bed. Herein, we propose blanket segmentation corresponding to the shape and dimension of the blanket and routing of the coolant flow. Moreover, we estimate the overall tritium breeding ratio (TBR) with a torus configuration, based on the segmentation using three-dimensional (3D) Monte Carlo N-particle calculations. As a result, the overall TBR is 1.15. Our 3D neutronics analysis for TBR ensures that the blanket concept can achieve a self-sufficient supply of tritium.

  10. Numerical simulations of semi-armor-piercing warhead penetrating aircraft carrier target

    OpenAIRE

    Dong Sangqaing; Cai Xinghui; Wang Guoliang; Gao Yunliang; Lu Jiangren

    2015-01-01

    FEM models of semi-armor-piercing warhead penetrating aircraft carrier deck are established, which are validated by related experimental data. Base on the models, the process of semi-armor-piercing warhead penetrating aircraft carrier deck with different incidence angles and attack angles are carried out. The results show that incidence angles have no remarkable influence on penetration capability of the projectile under the circumstance of zero attack angle. Ductility reaming damage mode and...

  11. Technical evaluation of major candidate blanket systems for fusion power reactor

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Seki, Masahiro; Minato, Akio

    1987-03-01

    The key functions required for tritium breeding blankets for a fusion power reactor are: (1) self-sufficient tritium breeding, (2) in-situ tritium recovery and low tritium inventory, (3) high temperature cooling giving a high efficiency of electricity generation and (4) thermo-mechanical reliability and simplified remote maintenance to obtain high plant availability. Blanket performance is substantially governed by materials selection. Major options of structure/breeder/coolant/neutron multiplier materials considered for the present design study are PCA/Li 2 O/H 2 O/Be, Mo-alloy/Li 2 O/He/Be, Mo-alloy/LiAlO 2 /He/Be, V-alloy/Li/Li/none, and Mo-alloy/Li/He/none. In addition, remote maintenance of blankets, tritium recovery system, heat transport and energy conversion have been investigated. In this report, technological problems and critical R and D issues for power reactor blanket development are identified and a comparison of major candidate blanket concepts is discussed in terms of the present materials data base, economic performance, prospects for future improvements, and engineering feasibility and difficulties based on the results obtained from individual design studies. (author)

  12. MIT LMFBR blanket physics project progress report No. 7, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Driscoll, M.J.

    1976-01-01

    Work during the period was devoted primarily to a range of analytical/numerical investigations, including evaluation of means to improve external blanket designs, beneficial attributes of the use of internal blankets, improved methods for the calculation of heterogeneous self-shielding and parametric studies of calculated spectral indices. Experimental work included measurements of the ratio of U-238 captures to U-235 fissions in a standard blanket mockup, and completion of development work on the radiophotoluminescent readout of LiF thermoluminescent detectors. The most significant findings were that there is very little prospect for substantial improvement in the breeding performance of external blankets, but internal blankets continue to show promise, particularly if they are used in such a way as to increase the volume fraction of fuel inside the core envelope. An improved equivalence theorem was developed which may allow use of fast reactor methods to calculate heterogeneously self-shielded cross sections in both fast and thermal reactors

  13. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    Chapin, D.L.; Green, L.; Lee, A.Y.; Culbert, M.E.; Kelly, J.L.

    1979-09-01

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO 2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li 2 O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  14. Reducing beryllium content in mixed bed solid-type breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Shimwell, J., E-mail: mail@jshimwell.com [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Lilley, S.; Morgan, L.; Packer, L.; Kovari, M.; Zheng, S. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); McMillan, J. [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-11-01

    Highlights: • The ratio of breeder ceramic to neutron multiplier of breeder blankets was varied linearly with depth. • Blankets with varying composition were found to perform better than uniform composition breeder blankets. • It was also possible to reduce the amount of beryllium required by the blanket. - Abstract: Beryllium (Be) is a precious resource with many high value uses, the low energy threshold (n,2n) reaction makes Be an excellent neutron multiplier for use in fusion breeder blankets. Estimates of Be requirements and available resources suggest that this could represent a major supply difficulty for solid-type blanket concepts. Reducing the quantity of Be required by breeder blankets would help to alleviate the problem to some extent. In addition, it is important that the reduction in the Be quantity does not diminish the blanket's performance in key aspects such as the tritium breeding ratio (TBR), energy multiplication and peak nuclear heating. Mixed pebble bed designs allow for the multiplier fraction to be varied throughout the blanket. This neutronics study used MCNP 6 to investigate linear variations of the multiplier fraction in relation to blanket depth, in order to better utilise the important multiplying Be(n,2n) and breeding reactions. Blankets with a uniform multiplier fraction showed little scope for reduction in Be mass. Blankets with varying multiplier fractions were able to simultaneously use 10% less Be, increase the energy amplification by 1%, reduce the peak heating by 7% and maintaining a sufficient TBR when compared to the performance achievable using a uniform composition.

  15. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    International Nuclear Information System (INIS)

    Li, Jia; Jiang, Kecheng; Zhang, Xiaokang; Nie, Xingchen; Zhu, Qinjun; Liu, Songlin

    2016-01-01

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  16. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  17. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    idealized calculation of the CBIS ejecta-blanket elevation profile minutes after the impact was carried out founded on well established rules for explosion and impact-generated craters. This profile is shown here to match the volume of the upland deposits ≥170 km from the crater center. Closer to the crater, much of the "postdicted" ejecta blanket has clearly been removed by erosion. Nevertheless the Shirley and fossil-free Bacons Castle Formations, located between the upland deposits and the CBIS interior and veneering the present day surface with units ∼10-20 m deep, are respectively identified as curtain- and excavation-phase ejecta. The neritic-fossil-bearing Calvert Formation external to the crater is deduced to be of Eocene age (as opposed to early Miocene as currently believed), preserved by the armoring effects of the overlying CBIS ejecta composed of the (distal) upland deposits and the (proximal) Bacons Castle Formation. The lithofacies of the in-crater Calvert Formation can only have resulted from inward mass wasting of the postdicted ejecta blanket, vestiges of which (i.e. the Bacons Castle and Shirley Formations) still overlap the crater rim and sag into its interior, consistent with this expectation. Because there appear to be a total of ∼10 000 km2 of CBIS ejecta lying on the present-day surface, future research should center the stratigraphic, lithologic, and petrologic properties of these ejecta versus both radial distance from the crater center (to identify ejecta from different ejection stages) and circumferentially at fixed radial distances (to detect possible anisotropies relating the impact angle and direction of approach of the impactor). The geological units described here may comprise the best preserved, and certainly the most accessible, ejecta blanket of a major crater on the Earth's surface and therefore promise to be a boon to the field of impact geology. As a corollary, a major revision of the current stratigraphic column of the M

  18. Preparing soft-bodied arthropods for arthropods for microscope examination: Armored Scales (Insects: Hemiptera: Diaspididae)

    Science.gov (United States)

    Proper identification of armored scales (Hemiptera: Diaspididae) requires preparation of the specimen on a microscope slide. This training video provides visual instruction on how to prepare armored scales specimens on microscope slides for examination and identification. Steps ranging from collect...

  19. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Sato, Satoshi; Hatano, Toshihisa; Tokami, Ikuhide; Kitamura, Kazunori; Miura, Hidenori; Ito, Yutaka; Kuroda, Toshimasa; Takatsu, Hideyuki

    1997-05-01

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  20. MIT LMFBR blanket research project. Final summary report

    International Nuclear Information System (INIS)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  1. Dragon Skin - How It Changed Body Armor Testing in the United States Army

    Science.gov (United States)

    2015-09-01

    members of this committee who have their kids at one time or another wearing body armor in theater, either Iraq or Afghanistan. And that includes... YouTube has pictures of Dragon Skin body armor testing on the Internet and Wikipedia has posted a carefully documented description of the history of

  2. Production and characterization of ceramics for armor application

    International Nuclear Information System (INIS)

    Alves, J.T.; Lopes, C.M.A.; Assis, J.M.K.; Melo, F.C.L.

    2010-01-01

    The fabrication of devices for ballistic protection as bullet proof vests and helmets and armored vehicles has been evolving over the past years along with the materials and models used for this specific application. The requirements for high efficient light-weight ballistic protection systems which not interfere in the user comfort and mobility has driven the research in this area. In this work we will present the results of characterization of two ceramics based on alumina and silicon carbide. The ceramics were produced in lab scale and the specific mass, scanning electron microscopy (SEM) microstructure, Vickers hardness, flexural resistance at room temperature and X-ray diffraction were evaluated. Ballistic tests performed in the selected materials showed that the ceramics present armor efficiency. (author)

  3. Activation analysis and waste management for blanket materials of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    International Nuclear Information System (INIS)

    Jiang, Jieqiong; Yuan, Baoxin; Zou, Jun; Wu, Yican

    2014-01-01

    The preliminary studies of the activation analysis and waste management for blanket materials of the multi-functional experimental fusion–fission hybrid reactor, i.e. Multi-Functional eXperimental Fusion Driven Subcritical system named FDS-MFX, were performed. The neutron flux of the FDS-MFX blanket was calculated using VisualBUS code and Hybrid Evaluated Nuclear Data Library (HENDL) developed by FDS Team. Based on these calculated neutron fluxes, the activation properties of blanket materials were analyzed by the induced radioactivity, the decay heat and the contact dose rate for different regions of the FDS-MFX blanket. The safety and environment assessment of fusion power (SEAFP) strategy, which was developed in Europe, was applied to FDS-MFX blanket for the management of activated materials. Accordingly, the classification and management strategy of activated materials after different cooling time were proposed for FDS-MFX blanket

  4. Thermomechanical analysis of the DFLL test blanket module for ITER

    International Nuclear Information System (INIS)

    Chen Hongli; Wu Yican; Bai Yunqing

    2006-01-01

    The finite element code is used to simulate two kinds of blanket design structure, which are SLL (Quasi-Static Lithium Lead) and DLL (Dual-cooled Lithium Lead) blanket concepts for the Dual Functional Lithium Lead-Test Blanket Module (DFLL-TBM) submitted to the ITER test blanket working group. The temperature and stress distributions have been presented for the two kinds of blanket structure on the basis of the structural design, thermal-hydraulic design and neutronics analysis. Also the mechanical performance is presented for the high temperature component of blanket structure according to the ITER Structural Design Criteria (ISDC). The rationality and feasibility of the two kinds of blanket structure design of DFLL-TBM have been analyzed based on the above results which also acted as the theoretical base for further optimized analysis. (authors)

  5. Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO

    International Nuclear Information System (INIS)

    Catalan, J.P.; Ogando, F.; Sanz, J.; Palermo, I.; Veredas, G.; Gomez-Ros, J.M.; Sedano, L.

    2011-01-01

    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO F US based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils and material damage (dpa, gas production) to estimate the operational life of the steel-made structural components in the blanket and vacuum vessel (VV). In order to optimize the shielding of the coils different combinations of water and steel have been considered for the gap of the VV. The used neutron source is based on an axi-symmetric 2D fusion reaction profile for the given plasma equilibrium configuration. MCNPX has been used for transport calculations and ACAB has been used to handle gas production and damage energy cross sections.

  6. Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Bong Guen Hong

    2018-02-01

    Full Text Available A configuration of a fusion-driven transmutation reactor with a low aspect ratio tokamak-type neutron source was determined in a self-consistent manner by using coupled analysis of tokamak systems and neutron transport. We investigated the impact of blanket configuration on the characteristics of a fusion-driven transmutation reactor. It was shown that by merging the TRU burning blanket and tritium breeding blanket, which uses PbLi as the tritium breeding material and as coolant, effective transmutation is possible. The TRU transmutation capability can be improved with a reduced blanket thickness, and fast fluence at the first wall can be reduced.  Article History: Received: July 10th 2017; Received: Dec 17th 2017; Accepted: February 2nd 2018; Available online How to Cite This Article: Hong, B.G. (2018 Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor. International Journal of Renewable Energy Development, 7(1, 65-70. https://doi.org/10.14710/ijred.7.1.65-70

  7. Improving the Success of Light Armored Vehicle Drivers: A Qualitative Descriptive Narrative Study

    Science.gov (United States)

    Byrd, Dathan

    2016-01-01

    This qualitative descriptive narrative research was the first known study to collect participants' perceptions on the effectiveness of the Marine Corps' Light Armored Vehicle driver training. The general problem was the Marine Corps' vague guidance on curriculum development, instruction, and assessment for driver training of the Light armored…

  8. Liquid metal flows in insulating elements of self-cooled blankets

    International Nuclear Information System (INIS)

    Molokov, S.

    1995-01-01

    Liquid metal flows in insulating rectangular ducts in strong magnetic fields are considered with reference to poloidal concepts of self-cooled blankets. Although the major part of the flow in poloidal blanket concepts is close to being fully developed, manifolds, expansions, contractions, elbows, etc., which are necessary elements in blanket designs, cause three-dimensional effects. The present investigation demonstrates the flow pattern in basic insulating geometries for actual and more advanced liquid metal blanket concepts and discusses the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp and linear expansions with and without manifolds, etc., have been considered. They demonstrate the attractiveness of poloidal concepts of liquid metal blankets, since they guarantee uniform conditions for heat transfer. If changes in the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should always flow in the radial-poloidal plane), the disturbances are local and the slug velocity profile is reached roughly at a distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig.)

  9. Blanket options for high-efficiency fusion power

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  10. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  11. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  12. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  13. An overview of the development of the first wall and other principal components of a laser fusion power plant

    International Nuclear Information System (INIS)

    Sethian, John D.; Raffray, A. Rene; Latkowski, Jeffery; Blanchard, James P.; Snead, Lance; Renk, Timothy J.; Sharafat, Shahram

    2005-01-01

    This paper introduces the JNM Special Issue on the development of a first wall for the reaction chamber in a laser fusion power plant. In this approach to fusion energy a spherical target is injected into a large chamber and heated to fusion burn by an array of lasers. The target emissions are absorbed by the wall and encapsulating blanket, and the resulting heat converted into electricity. The bulk of the energy deposited in the first wall is in the form of X-rays (1.0-100 keV) and ions (0.1-4 MeV). In order to have a practical power plant, the first wall must be resistant to these emissions and suffer virtually no erosion on each shot. A wall candidate based on tungsten armor bonded to a low activation ferritic steel substrate has been chosen as the initial system to be studied. The choice was based on the vast experience with these materials in a nuclear environment and the ability to address most of the key remaining issues with existing facilities. This overview paper is divided into three parts. The first part summarizes the current state of the development of laser fusion energy. The second part introduces the tungsten armored ferritic steel concept, the three critical development issues (thermo-mechanical fatigue, helium retention, and bonding) and the research to address them. Based on progress to date the latter two appear to be resolvable, but the former remains a challenge. Complete details are presented in the companion papers in this JNM Special Issue. The third part discusses other factors that must be considered in the design of the first wall, including compatibility with blanket concepts, radiological concerns, and structural considerations

  14. An overview of the development of the first wall and other principal components of a laser fusion power plant

    Science.gov (United States)

    Sethian, John D.; Raffray, A. Rene; Latkowski, Jeffery; Blanchard, James P.; Snead, Lance; Renk, Timothy J.; Sharafat, Shahram

    2005-12-01

    This paper introduces the JNM Special Issue on the development of a first wall for the reaction chamber in a laser fusion power plant. In this approach to fusion energy a spherical target is injected into a large chamber and heated to fusion burn by an array of lasers. The target emissions are absorbed by the wall and encapsulating blanket, and the resulting heat converted into electricity. The bulk of the energy deposited in the first wall is in the form of X-rays (1.0-100 keV) and ions (0.1-4 MeV). In order to have a practical power plant, the first wall must be resistant to these emissions and suffer virtually no erosion on each shot. A wall candidate based on tungsten armor bonded to a low activation ferritic steel substrate has been chosen as the initial system to be studied. The choice was based on the vast experience with these materials in a nuclear environment and the ability to address most of the key remaining issues with existing facilities. This overview paper is divided into three parts. The first part summarizes the current state of the development of laser fusion energy. The second part introduces the tungsten armored ferritic steel concept, the three critical development issues (thermo-mechanical fatigue, helium retention, and bonding) and the research to address them. Based on progress to date the latter two appear to be resolvable, but the former remains a challenge. Complete details are presented in the companion papers in this JNM Special Issue. The third part discusses other factors that must be considered in the design of the first wall, including compatibility with blanket concepts, radiological concerns, and structural considerations.

  15. An overview of the development of the first wall and other principal components of a laser fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sethian, John D. [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Av. SW, Washington, DC 20375 (United States)]. E-mail: sethian@this.nrl.navy.mil; Raffray, A. Rene [University of California, San Diego, La Jolla, CA 92093 (United States); Latkowski, Jeffery [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Blanchard, James P. [University of Wisconsin, Madison, WI 53706 (United States); Snead, Lance [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Renk, Timothy J. [Sandia National Laboratory, Albuquerque, NM 87185 (United States); Sharafat, Shahram [University of California, Los Angeles, Los Angeles, CA 90095 (United States)

    2005-12-15

    This paper introduces the JNM Special Issue on the development of a first wall for the reaction chamber in a laser fusion power plant. In this approach to fusion energy a spherical target is injected into a large chamber and heated to fusion burn by an array of lasers. The target emissions are absorbed by the wall and encapsulating blanket, and the resulting heat converted into electricity. The bulk of the energy deposited in the first wall is in the form of X-rays (1.0-100 keV) and ions (0.1-4 MeV). In order to have a practical power plant, the first wall must be resistant to these emissions and suffer virtually no erosion on each shot. A wall candidate based on tungsten armor bonded to a low activation ferritic steel substrate has been chosen as the initial system to be studied. The choice was based on the vast experience with these materials in a nuclear environment and the ability to address most of the key remaining issues with existing facilities. This overview paper is divided into three parts. The first part summarizes the current state of the development of laser fusion energy. The second part introduces the tungsten armored ferritic steel concept, the three critical development issues (thermo-mechanical fatigue, helium retention, and bonding) and the research to address them. Based on progress to date the latter two appear to be resolvable, but the former remains a challenge. Complete details are presented in the companion papers in this JNM Special Issue. The third part discusses other factors that must be considered in the design of the first wall, including compatibility with blanket concepts, radiological concerns, and structural considerations.

  16. Neutronic optimization of solid breeder blankets for STARFIRE design

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.A.

    1980-01-01

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture

  17. Liquid metal blanket module testing and design for ITER/TIBER II

    International Nuclear Information System (INIS)

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs

  18. Thermal-stress analysis and testing of DIII-D armor tiles

    International Nuclear Information System (INIS)

    Baxi, C.B.; Anderson, P.M.; Reis, E.E.; Smith, J.P.; Smith, P.D.; Croesmann, C.; Watkins, J.; Whitley, J.

    1987-10-01

    It is planned to install about 1500 new armor tiles in the DIII-D tokamak. The armor tiles currently installed in DIII-D are made by brazing Poco AXF-5Q graphite onto Inconel X-750 stock. A small percentage of these have failed by breakage of graphite. These failures were believed to be related to significant residual stress remaining in graphite after brazing. Hence, an effort was undertaken to improve the design with all-graphite tiles. Three criteria must be satisfied by the armor tiles and the hardware used to attach the tiles to the vessel walls: tiles should not structurally fail, peak tile temperature must be less than 2500 K, and peak vessel stresses must be below acceptable levels. A number of alternate design concepts were first analyzed with the two-dimensional finite element codes TOPAZ2D and NIKE2D. Promising designs were optimized for best parameters such as thicknesses, etc. The two best designs were further analyzed for thermal stresses with the three-dimensional codes P/THERMAL and P/STRESS. Prototype tiles of a number of materials were fabricated by GA and tested at the Plasma Materials Test Facility of the Sandia National Laboratory at Albuquerque. The tests simulated the heat flux and cooling conditions in DIII-D. This paper describes the 2-D and 3-D thermal stress analyses, the test results and logic which led to the selected design of the DIII-D armor tiles. 5 refs., 7 figs., 3 tabs

  19. Statistical description of flume experiments on mixed-size bed-load transport and bed armoring processes

    Science.gov (United States)

    Chen, D.; Zhang, Y.

    2008-12-01

    The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.

  20. Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Sato, Satoshi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Konno, Chikara; Edao, Yuki; Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Thermo-hydraulic calculation in the TBM at the water ingress event has been done. • Shielding calculations for the ITER equatorial port #18 were conducted by using C-lite model. • Prototypic pebbles of Be{sub 17}Ti{sub 2} and Be{sub 12}V had a good oxidation property similar to Be{sub 12}Ti pebble. • Li rich Li{sub 2}TiO{sub 3} pebbles were successfully fabricated using the emulsion method by controlling sintering atmosphere. • New tritium production/recovery experiments at FNS have been started by using ionization chamber as on-line gas monitor. - Abstract: The development of a water cooled ceramic breeder (WCCB) test blanket module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and development of DEMO blanket, R&D has been performed on the module fabrication technology, breeder and multiplier pebble fabrication technology, tritium production rate evaluation, as well as structural and safety design activities. The fabrication of full-scale first wall, side walls, breeder pebble bed box and back wall was completed, and assembly of TBM with box structure was successfully achieved. Development of advanced breeder and multiplier pebbles for higher chemical stability was continued for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium transport simulation technology, investigation of the TBM neutron measurement technology and the evaluation of the tritium production and recovery test using D-T neutron in the fusion neutron source (FNS) facility has been performed. This paper provides an overview of the recent achievements of the development of the WCCB Blanket in Japan.

  1. EU contribution to the procurement of the ITER blanket first wall

    International Nuclear Information System (INIS)

    Lorenzetto, Patrick; Banetta, Stefano; Bellin, Boris; Boireau, Bruno; Bucci, Philippe; Cicero, Tindaro; Conchon, Denis; Dellopoulos, Georges; Hardaker, Stephen; Marshall, Paul; Nogué, Patrice; Pérez, Marcos; Gutierrez, Leticia Ruiz; Samaniego, Fernando; Sherlock, Paul; Zacchia, Francesco

    2016-01-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  2. EU contribution to the procurement of the ITER blanket first wall

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, Patrick, E-mail: Patrick.Lorenzetto@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Boireau, Bruno [AREVA NP, Centre Technique, 71200 Le Creusot (France); Bucci, Philippe [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Cicero, Tindaro [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Conchon, Denis [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Dellopoulos, Georges [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Hardaker, Stephen [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Marshall, Paul [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Nogué, Patrice [AREVA NP, Centre Technique, 71200 Le Creusot (France); Pérez, Marcos [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Gutierrez, Leticia Ruiz [Iberdrola Ingeniería y Construcción S.A.U., Avenida Manoteras 20, 28050 Madrid (Spain); Samaniego, Fernando [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Sherlock, Paul [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Zacchia, Francesco [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain)

    2016-11-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  3. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  4. Effect of blanket assembly shuffling on LMR neutronic performance

    International Nuclear Information System (INIS)

    Khalil, H.; Fujita, E.K.

    1987-01-01

    Neutronic analyses of advanced liquid-metal reactors (LMRs) have generally been performed with assemblies in different batches scatter-loaded but not shuffled among the core lattice positions between cycles. While this refueling approach minimizes refueling time, significant improvements in thermal performance are believed to be achievable by blanket assembly shuffling. These improvements, attributable to mitigation of the early-life overcooling of the blankets, include reductions in peak clad temperatures and in the temperature gradients responsible for thermal striping. Here the authors summarize results of a study performed to: (1) assess whether the anticipated gains in thermal performance can be realized without sacrificing core neutronic performance, particularly the burnup reactivity swing rho/sub bu/, which determines the rod ejection worth; (2) determine the effect of various blanket shuffling operations on reactor performance; and (3) determine whether shuffling strategies developed for an equilibrium (plutonium-fueled) core can be applied during the transition from an initial uranium-fueled core as is being considered in the US advanced LMR program

  5. Environmental considerations for alternative fusion reactor blankets

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Young, J.R.

    1975-01-01

    Comparisons of alternative fusion reactor blanket/coolant systems suggest that environmental considerations will enter strongly into selection of design and materials. Liquid blankets and coolants tend to maximize transport of radioactive corrosion products. Liquid lithium interacts strongly with tritium, minimizing permeation and escape of gaseous tritium in accidents. However, liquid lithium coolants tend to create large tritium inventories and have a large fire potential compared to flibe and solid blankets. Helium coolants minimize radiation transport, but do not have ability to bind the tritium in case of accidental releases. (auth)

  6. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    Science.gov (United States)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  7. Structural impact of armor monoblock dimensions on the failure behavior of ITER-type divertor target components: Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; You, Jeong-Ha, E-mail: you@ipp.mpg.de

    2016-12-15

    Highlights: • Quantitative assessment of size effects was conducted numerically for W monoblock. • Decreasing the width of W monoblock leads to a lower risk of failure. • The Cu interlayer was not affected significantly by varying armor thickness. • The predicted trends were in line with the experimental observations. - Abstract: Plenty of high-heat-flux tests conducted on tungsten monoblock type divertor target mock-ups showed that the threshold heat flux density for cracking and fracture of tungsten armor seems to be related to the dimension of the monoblocks. Thus, quantitative assessment of such size effects is of practical importance for divertor target design. In this paper, a computational study about the thermal and structural impact of monoblock size on the plastic fatigue and fracture behavior of an ITER-type tungsten divertor target is reported. As dimensional parameters, the width and thickness of monoblock, the thickness of sacrificial armor, and the inner diameter of cooling tube were varied. Plastic fatigue lifetime was estimated for the loading surface of tungsten armor and the copper interlayer by use of a cyclic-plastic constitutive model. The driving force of brittle crack growth through the tungsten armor was assessed in terms of J-integral at the crack tip. Decrease of the monoblock width effectively reduced accumulation of plastic strain at the armor surface and the driving force of brittle cracking. Decrease of sacrificial armor thickness led to decrease of plastic deformation at the loading surface due to lower surface temperature, but the thermal and mechanical response of the copper interlayer was not affected by the variation of armor thickness. Monoblock with a smaller tube diameter but with the same armor thickness and shoulder thickness experienced lower fatigue load. The predicted trends were in line with the experimental observations.

  8. Analysis of Terminal Metallic Armor Plate Free-Surface Bulging

    National Research Council Canada - National Science Library

    Rapacki, Jr, E. J

    2008-01-01

    .... Terminal ballistic performance evaluations of penetrators and armors are often performed via statistical analyses to obtain a velocity or obliquity at which the expected probability of perforation...

  9. Neutron dosimetry for the TFTR Lithium-Blanket-Module program

    International Nuclear Information System (INIS)

    Harker, Y.D.; Tsang, F.Y.; Caffrey, A.J.; Homeyer, W.G.; Engholm, B.A.

    1981-01-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-a-kind neutronics experiment involving a prototypical fusion reactor blanket module with a distributed neutron source from the plasma of the TFTR at Princeton Plasma Physics Laboratory. The objectives of the LBM program are: (1) to test the capabilities of neutron transport codes when applied to fusion test reactor blanket conditions, and (2) to obtain tritium breeding performance data on a typical design concept of a fusion-reactor blanket. This paper addresses the issues relative to the measurement of neutron fields in the LBM, presents the results of preliminary design studies concerning neutron measurements and also presents the results of blanket mockup experiments performed at the Idaho National Engineering Laboratory

  10. Manufacturing and joining technologies for helium cooled divertors

    International Nuclear Information System (INIS)

    Aktaa, J.; Basuki, W.W.; Weber, T.; Norajitra, P.; Krauss, W.; Konys, J.

    2014-01-01

    Highlights: • The manufacturing and joining technologies developed at KIT for helium cooled divertors are reviewed and critically discussed. • Various technologies have been pursued and further developed aiming divertor components with very high quality and sufficient reliability. • Very promising routes have been found for which however still R and D works are necessary. • Technologies developed are also useful for other divertor and even blanket concepts, particularly those with tungsten armor. - Abstract: In the helium cooled (HC) divertor, developed at KIT for a fusion power plant, tungsten has been selected as armor as well as structural material due to its crucial properties: high melting point, very low sputtering yield, good thermal conductivity, high temperature strength, low thermal expansion and low activation. Thereby the armor tungsten is attached to the structural tungsten by thermally conductive joint. Due to the brittleness of tungsten at low temperatures its use as structural material is limited to the high temperature part of the component and a structural joint to the reduced activation ferritic martensitic steel EUROFER97 is foreseen. Hence, to realize the selected hybrid material concept reliable tungsten–steel and tungsten–tungsten joints have been developed and will be reported in this paper. In addition, the modular design of the HC divertor requires tungsten armor tiles and tungsten structural thimbles to be manufactured in high numbers with very high quality. Due to the high strength and low temperature brittleness of tungsten special manufacturing techniques need to be developed for the production of parts with no cavities inside and/or surface flaws. The main achievement in developing the respective manufacturing technologies will be presented and discussed. To achieve the objectives mentioned above various manufacturing and joining technologies are pursued. Their later applicability depends on the level of development

  11. Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics

    Science.gov (United States)

    2011-08-01

    Atlantic Treaty Organization NIJ National Institute of Justice OTV Outer tactical vest PBI Polybenzimidazole PBO Polybenzobisoxazole PET ...grenades and mortar rounds, is performed in accordance with the North Atlantic Treaty Organization (NATO) Standardization Agreement (STANAG) 2920.6...LEVELS IN SOFT BODY ARMOR The design of woven fabrics for armor applications is complex because it requires an understanding of the related

  12. Safety and environmental impact of the dual coolant blanket concept. SEAL subtask 6.2, final report

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Dammel, F.; Gabel, K.; Jordan, T.; Schmuck, I.

    1996-03-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four concepts under development, namely two of the solid breeder type and two of the liquid breeder type. At the Forschungszentrum Karlsruhe one blanket concept of each line has been pursued so far with the so-called dual coolant type representing the liquid breeder line. In the dual coolant concept the breeder material (Pb-17Li) is circulated to external heat exchangers to carry away the bulk of the generated heat and to extract the tritium. Additionally, the heavily loaded first wall is cooled by high pressure helium gas. The safety and environmental impact of the dual coolant blanket concept has been assessed as part of the blanket concept selection excercise, a European concerted action, aiming at selecting the two most promising concepts for futher development. The topics investigated are: (a) Blanket materials and toxic materials inventory, (b) energy sources for mobilisation, (c) fault tolerance, (d) tritium and activation products release, and (e) waste generation and management. No insurmountable safety problems have been identified for the dual coolant blanket. The results of the assessment are described in this report. The information collected is also intended to serve as input to the EU 'Safety and Environmental Assessment of Fusion longterm Programme' (SEAL). The unresolved issues pertaining to the dual coolant blanket which would need further investigations in future programmes are outlined herein. (orig.) [de

  13. Ballistic Resistance of Armored Passenger Vehicles: Test Protocols and Quality Methods

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey M. Lacy; Robert E. Polk

    2005-07-01

    This guide establishes a test methodology for determining the overall ballistic resistance of the passenger compartment of assembled nontactical armored passenger vehicles (APVs). Because ballistic testing of every piece of every component of an armored vehicle is impractical, if not impossible, this guide describes a testing scheme based on statistical sampling of exposed component surface areas. Results from the test of the sampled points are combined to form a test score that reflects the probability of ballistic penetration into the passenger compartment of the vehicle.

  14. A Feasible DEMO Blanket Concept Based on Water Cooled Solid Breeder

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Y.; Tobita, K.; Utoh, H.; Hoshino, K.; Asakura, N.; Nakamura, M.; Tanigawa, H.; Mikio, E.; Tanigawa, H.; Nakamichi, M.; Hoshino, T., E-mail: someya.yoji@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho (Japan)

    2012-09-15

    Full text: JAEA has conducted the conceptual design study of blanket for a fusion DEMO reactor SlimCS. Considering DEMO specific requirements, we place emphasis on a blanket concept with durability to severe irradiation, ease of fabrication for mass production, operation temperature of blanket materials, and maintainability using remote handling equipment. This paper present a promising concept satisfying these requirements, which is characterized by minimized welding lines near the front, a simplified blanket interior consisting of cooling tubes and a mixed pebble bed of breeder and neutron multiplier, and approximately the same outlet temperature for all blanket modules. Neutronics calculation indicated that the blanket satisfies a self-sufficient production of tritium. An important finding is that little decrease is seen in tritium breeding ratio even when the gap between neighboring blanket modules is as wide as 0.03 m. This means that blanket modules can be arranged with such a significant clearance gap without sacrifice of tritium production, which will facilitate the access of remote handling equipment for replacement of the blanket modules and improve the access of diagnostics. (author)

  15. 106-17 Telemetry Standards. Annex A.4. Asynchronous Recorder Multiplexer Output Re-Constructor (ARMOR)

    Science.gov (United States)

    2017-07-01

    Output Re-Constructor 1. General This standard defines the recommended multiplexer format for single-channel data recording on small-format (1/2 in...which is 1-based, is determined by the position of the channel’s module in the ARMOR system . The first input channel found in the ARMOR system is

  16. Imploding-liner reactor nucleonic studies: the LINUS blanket

    International Nuclear Information System (INIS)

    Dudziak, D.J.

    1977-09-01

    Scoping nucleonic studies have been performed for a small imploding-liner fusion reactor concept. Tritium breeding ratio and time-dependent energy deposition rates were the primary parameters of interest in the study. Alloys of Pb and LiPb were considered for the liquid liner (blanket), and tritium breeding was found to be more than adequate with blankets less than 1 m thick. However, neutron leakages into the solid cylinder block surrounding the liquid liner are generally quite high, so considerable effort was concentrated on minimizing these values. Time-dependent calculations reveal that 89% of the energy is deposited in the blanket within 2 μs. Thus, LINUS's blanket should remain intact for the requisite neutron and gamma-ray lifetimes

  17. Improved structure and long-life blanket concepts for heliotron reactors

    International Nuclear Information System (INIS)

    Sagara, A.; Imagawa, S.; Mitarai, O.

    2005-01-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14m is selected to permit a blanket-shield thickness of about 1m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R and D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated. (author)

  18. Improved structure and long-life blanket concepts for heliotron reactors

    Science.gov (United States)

    Sagara, A.; Imagawa, S.; Mitarai, O.; Dolan, T.; Tanaka, T.; Kubota, Y.; Yamazaki, K.; Watanabe, K. Y.; Mizuguchi, N.; Muroga, T.; Noda, N.; Kaneko, O.; Yamada, H.; Ohyabu, N.; Uda, T.; Komori, A.; Sudo, S.; Motojima, O.

    2005-04-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R&D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated.

  19. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms

    International Nuclear Information System (INIS)

    Chintapalli, Ravi Kiran; Mirkhalaf, Mohammad; Dastjerdi, Ahmad Khayer; Barthelat, Francois

    2014-01-01

    Crocodiles, armadillo, turtles, fish and many other animal species have evolved flexible armored skins in the form of hard scales or osteoderms, which can be described as hard plates of finite size embedded in softer tissues. The individual hard segments provide protection from predators, while the relative motion of these segments provides the flexibility required for efficient locomotion. In this work, we duplicated these broad concepts in a bio-inspired segmented armor. Hexagonal segments of well-defined size and shape were carved within a thin glass plate using laser engraving. The engraved plate was then placed on a soft substrate which simulated soft tissues, and then punctured with a sharp needle mounted on a miniature loading stage. The resistance of our segmented armor was significantly higher when smaller hexagons were used, and our bio-inspired segmented glass displayed an increase in puncture resistance of up to 70% compared to a continuous plate of glass of the same thickness. Detailed structural analyses aided by finite elements revealed that this extraordinary improvement is due to the reduced span of individual segments, which decreases flexural stresses and delays fracture. This effect can however only be achieved if the plates are at least 1000 stiffer than the underlying substrate, which is the case for natural armor systems. Our bio-inspired system also displayed many of the attributes of natural armors: flexible, robust with ‘multi-hit’ capabilities. This new segmented glass therefore suggests interesting bio-inspired strategies and mechanisms which could be systematically exploited in high-performance flexible armors. This study also provides new insights and a better understanding of the mechanics of natural armors such as scales and osteoderms. (paper)

  20. Fusion-reactor blanket-material safety-compatibility studies

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

    1982-11-01

    Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO 2 , Li 2 ZrO 3 , Li 2 SiO 3 , Li 4 SiO 4 and LiTiO 3 ) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li 7 Pb 2 alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li 17 Pb 83 alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li 17 Pb 83 alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns

  1. Probabilistic safety assessment of the dual-cooled waste transmutation blanket for the FDS-I

    International Nuclear Information System (INIS)

    Hu, L.; Wu, Y.

    2006-01-01

    The subcritical dual-cooled waste transmutation (DWT) blanket is one of the key components of fusion-driven subcritical system (FDS-I). The probabilistic safety assessment (PSA) can provide valuable information on safety characteristics of FDS-I to give recommendations for the optimization of the blanket concepts and the improvement of the design. Event tree method has been adopted to probabilistically analyze the safety of the DWT blanket for FDS-I using the home-developed PSA code RiskA. The blanket melting frequency has been calculated and compared with the core melting frequencies of PWRs and a fast reactor. Sensitivity analysis of the safety systems has been performed. The results show that the current preliminary design of the FDS-I is very attractive in safety

  2. Fabrication and testing of small scale mock-ups of ITER shielding blanket

    International Nuclear Information System (INIS)

    Hatano, Toshihisa; Sato, Satoshi; Suzuki, Satoshi; Yokoyama, Kenji; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki; Ohara, Yoshihiro

    1998-12-01

    Small scale mock-ups of the primary first wall, the baffle first wall, the shield block and a partial model for the edge of the primary first wall module were designed and fabricated incorporating most of the key design features of the ITER shielding blanket. All mock-ups featured the DSCu heat sink, the built-in SS coolant tubes within the heat sink and the SS shield block. CFC tiles was used as the protection armor for the baffle first wall mock-up. The small scale shield block mock-up, integrated with the first wall, was designed to have a poloidal curvature specified in the ITER design. Fabrication routes of mock-ups were decided based on the single step solid HIP of DSCu/DSCu, DSCu/SS and SS/SS reflecting the results of previous joining techniques development and testing. For attaching the CFC tiles onto DSCu heat sink in the fabrication of the baffle first wall mock-up, a two-step brazing was tried. All mock-ups and the partial model were successfully fabricated with a satisfactory dimensional accuracy. The small scale primary first wall mock-up was thermo-mechanically tested under high heat fluxes of 5-7 MW/m 2 for 2500 cycles in total. Satisfactory heat removal performance and integrity of the mock-up against cyclic high heat flux loads were confirmed by measurement during the tests and destructive examination after the tests. Similar high heat flux tests were also performed with the small scale baffle first wall mock-up under 5-10 MW/m 2 for 4500 cycles in total resulting in sufficient heat removal capability and integrity confirmed by measurements during the tests. (author)

  3. Japanese contributions to ITER testing program of solid breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Kuroda, Toshimasa; Yoshida, Hiroshi; Takatsu, Hideyuki; Maki, Koichi; Mori, Seiji; Kobayashi, Takeshi; Suzuki, Tatsushi; Hirata, Shingo; Miura, Hidenori.

    1991-04-01

    ITER Conceptual Design Activity (CDA), which has been conducted by four parties (Japan, EC, USA and USSR) since May 1988, has been finished on December 1990 with a great achievement of international design work of the integrated fusion experimental reactor. Numerous issues of physics and technology have been clarified for providing a framework of the next phase of ITER (Engineering Design Activity; EDA). Establishment of an ITER testing program, which includes technical test issues of neutronics, solid breeder blankets, liquid breeder blankets, plasma facing components, and materials, has been one of the goals of the CDA. This report describes Japanese proposal for the testing program of DEMO/power reactor blanket development. For two concepts of solid breeder blanket (helium-cooled and water-cooled), identification of technical issues, scheduling of test program, and conceptual design of test modules including required test facility such as cooling and tritium recovery systems have been carried out as the Japanese contribution to the CDA. (author)

  4. The EC conceptual design proposal of a water-cooled convertible blanket for ITER

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Baraer, L.; Bielak, B.; Raepsaet, X.; Salavy, J.F.; Sedano, L.; Szczepanski, J.; Quintric-Bossy, J.; Severi, Y.

    1993-01-01

    For several years the EC laboratories have developed breeding blankets for DEMO. From this experience, it has been derived a proposal of tritium breeding blanket for the Extended Performance Phase (EPP) of ITER. The general basic ideas are the following: (i) the switch from the shielding blanket used during the BPP to the breeding blanket for the EPP should not require segments replacement ('convertible' blanket): (ii) its use should not have significant impact on the Basic Performance Phase (BPP); (iii) design and used materials should assure good safety standards and acceptable public perception; (iv) the blanket coolant should be compatible with the coolant required in the high heat-flux components (e.g. divertor, etc.; (v) the required R and D should fit with the ITER time schedule; (vi) the blanket should be able to withstand large power excursions and to accept long downtimes. The proposed design consists of a water-cooled liquid metal blanket, using the eutectic Pb-17Li during the EPP and a non-breeding Pb-alloy (Pb-18Mg or Pb-50Bi) during the BPP. Each segment is basically formed by a box containing the alloy, cooled by an array of poloidal hairpin-type cooling tubes and reinforced by toroidal and radial stiffeners. The coolant tubes are double-walled tubes allowing leak detections. The selected First Wall (FW) is a toroidally-drilled steel plate with brazed water-cooling U-tube. The structural material is austenitic stainless steel (316L(N)) which limits the maximum acceptable neutron fluence to about 1 MWa/m 2 . The advantages of using other structural materials requiring longer leadtimes, such as ferritic/martensitic steels, are also briefly discussed

  5. Beryllium R and D for blanket application

    Energy Technology Data Exchange (ETDEWEB)

    Dalle Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Longhurst, G.R. [Idaho National Engineering Lab., Idaho Falls (United States); Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-10-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.) 29 refs.

  6. Beryllium R and D for blanket application

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Scaffidi-Argentina, F.; Kawamura, H.

    1998-01-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.)

  7. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1978-01-01

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  8. Development and testing of a zero stitch MLI blanket using plastic pins for space use

    OpenAIRE

    畠中, 龍太; 宮北, 健; 杉田, 寛之; Saitoh, Masanori; Hirai, Tomoyuki; Hatakenaka, Ryuta; Miyakita, Takeshi; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki

    2014-01-01

    New types of MLI blanket have been developed to achieve high thermal performance while maintaining production and assembly workability equivalent to the conventional type. Tag-pins, which are widely used in commercial applications to hook price tags to products, are used to fix the films in place and the pin material is changed to polyetheretherketone (PEEK) for use in space. Thermal performance is measured by using a boil-off calorimeter, in which a rectangular liquid nitrogen tank is used t...

  9. Mechanisms of stability of armored bubbles: FY 1996 Final Report

    International Nuclear Information System (INIS)

    Rossen, W.R.; Kam, S.I.

    1996-11-01

    Theoretical and experimental studies examine how a coating, or open-quotes armor,close quotes of partially wetted solid particles can stabilize tiny bubbles against diffusion of gas into the surrounding liquid, in spite of the high capillary pressures normally associated with such bubbles. Experiments with polymethylmethacrylate (PNMA) beads and carbonated water demonstrate that armored bubbles can persist for weeks in liquid unsaturated with respect to the gas in the bubbles. This question is of concern regarding gas discharges from waste tanks at the Hanford reservation. The stresses on the solid-solid contacts between particles in such cases is large and could drive sintering of the particles into a rigid framework. Stability analysis suggests that a slightly shrunken bubble would not expel a solid particle from its armor to relieve stress and allow the bubble to shrink further. Expulsion of particles from more stressed bubbles at zero capillary pressure is energetically favored in some cases. It is not clear, however, whether this expulsion would proceed spontaneously from a small perturbation or require a large initial disturbance of the bubble. In some cases, it appears that a bubble would expel some particles and shrink, but the bubble would approach a final, stable size rather than disappear completely. This simplified analysis leaves out several factors. For instance, only one perturbation toward expelling a solid from the armor is considered; perhaps other perturbations would be more energetically favored than that tested. Other considerations (particle deformation, surface roughness, contact-angle hysteresis, and adhesion or physical bonding between adjacent particles) would make expelling solids more difficult than indicated by this theoretical study

  10. Blanket safety by GEMSAFE methodology

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Saito, Masaki

    2001-01-01

    General Methodology of Safety Analysis and Evaluation for Fusion Energy Systems (GEMSAFE) has been applied to a number of fusion system designs, such as R-tokamak, Fusion Experimental Reactor (FER), and the International Thermonuclear Experimental Reactor (ITER) designs in the both stages of Conceptual Design Activities (CDA) and Engineering Design Activities (EDA). Though the major objective of GEMSAFE is to reasonably select design basis events (DBEs) it is also useful to elucidate related safety functions as well as requirements to ensure its safety. In this paper, we apply the methodology to fusion systems with future tritium breeding blankets and make clear which points of the system should be of concern from safety ensuring point of view. In this context, we have obtained five DBEs that are related to the blanket system. We have also clarified the safety functions required to prevent accident propagations initiated by those blanket-specific DBEs. The outline of the methodology is also reviewed. (author)

  11. Materials development for ITER shielding and test blanket in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.M., E-mail: Chenjm@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wu, J.H.; Liu, X.; Wang, P.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wang, Z.H.; Li, Z.N. [Ningxia Orient Non-ferrous Metals Group Co. Ltd., P.O. Box 105, Shizuishan (China); Wang, X.S.; Zhang, P.C. [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621900 (China); Zhang, N.M.; Fu, H.Y.; Liu, D.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2011-10-01

    China is a member of the ITER program and is developing her own materials for its shielding and test blanket modules. The materials include vacuum-hot-pressing (VHP) Be, CuCrZr alloy, 316L(N) and China low activation ferritic/martensitic (CLF-1) steels. Joining technologies including Be/Cu hot isostatic pressing (HIP) and electron beam (EB) weldability of 316L(N) were investigated. Chinese VHP-Be showed good properties, with BeO content and ductility that satisfy the ITER requirements. Be/Cu mock-ups were fabricated for Be qualification tests at simulated ITER vertical displacement event (VDE) and heat flux cycling conditions. Fine microstructure and good mechanical strength of the CuCrZr alloy were achieved by a pre-forging treatment, while the weldability of 316L(N) by EB was demonstrated for welding depths varying from 5 to 80 mm. Fine microstructure, high strength, and good ductility were achieved in CLF-1 steel by an optimized normalizing, tempering and aging procedure.

  12. ITER driver blanket, European Community design

    International Nuclear Information System (INIS)

    Simbolotti, G.; Zampaglione, V.; Ferrari, M.; Gallina, M.; Mazzone, G.; Nardi, C.; Petrizzi, L.; Rado, V.; Violante, V.; Daenner, W.; Lorenzetto, P.; Gierszewski, P.; Grattarola, M.; Rosatelli, F.; Secolo, F.; Zacchia, F.; Caira, M.; Sorabella, L.

    1993-01-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  13. Calculation of Equivalent Resistance for Ground Wires Twined with Armor Rods in Contact Terminals

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available Ground wire breakage accidents can destroy the stable operation of overhead lines. The excessive temperature increase arising from the contact resistance between the ground wire and armor rod in the contact terminal is one of the main reasons causing the breakage of ground wires. Therefore, it is necessary to calculate the equivalent resistance for ground wires twined with armor rods in contact terminals. According to the actual distribution characteristics of the contact points in the contact terminal, a three-dimensional electromagnetic field simulation model of the contact terminal was established. Based on the model, the current distribution in the contact terminal was obtained. Subsequently, the equivalent resistance of a ground wire twined with the armor rod in the contact terminal was calculated. The effects of the factors influencing the equivalent resistance were also discussed. The corresponding verification experiments were conducted on a real ground wire on a contact terminal. The measurement results of the equivalent resistance for the armor rod segment showed good agreement with the electromagnetic modeling results.

  14. Tokamak blanket design study, final report

    International Nuclear Information System (INIS)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m 2 and a particle heat flux of 1 MW/m 2 . Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma

  15. Tokamak blanket design study, final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.

  16. Summary of the target-blanket breakout group

    Energy Technology Data Exchange (ETDEWEB)

    Capiello, M.; Bell, C. [Los Alamos National Laboratory, NM (United States); Barthold, W.

    1995-10-01

    This breakout group discussed a number of topics and issues pertaining to target and blanket concepts for accelerator-driven systems. This major component area is one marked by a broad spectrum of technical approaches. It is therefore less defined than other major component areas such as the accelerator and is at an earlier stage of technical needs and task specification. The working group did reach a number of general conclusions and recommendations that are summarized. The Conference and the Target/Blanket Breakout Group provided a first opportunity for people working on a variety of missions and concepts to get together and exchange information. A number of subcritical systems applicable for a spectrum of missions were proposed at the Conference and discussed in the Breakout Group. Missions included plutonium disposition, energy production, waste destruction, isotope production, and neutron scattering. The Target/Blanket Breakout Group also defined areas where parameters and data should be addressed as target/blanket design activities become more detailed and sophisticated.

  17. Pulsed activation analyses of the ITER blanket design options considered in the blanket trade-off study

    International Nuclear Information System (INIS)

    Wang, Q.; Henderson, D.L.

    1995-01-01

    Pulsed activation calculations have been performed on two blanket options considered as part of the ITER home team blanket trade-off study. The objective was to compare the activity, afterheat and waste disposal rating (WDR) results of a composite blanket-shield design for the continuous operation approximation to a pulsed operation case to determine whether the differences are at most the duty factor as predicted by the two nuclide chain model. Up to a cooling period of 100 years, the pulsed activity and afterheat values were below the continuous oepration results and well within (except for one afterheat value) the maximum deviation predicted by the two nuclide chain model. No differences in the WDR values were noted as they are, to a large extent, based on long-lived nuclides which are insensitive to short-term changes in the operation history. (orig.)

  18. Damage Assessment in TiB2 Ceramic Armor Targets

    National Research Council Canada - National Science Library

    Rupert, Nevin

    2001-01-01

    The interaction between long rods and ceramics is only partially understood; however, this understanding is essential in the design of improved performance of impact-resistant materials and armor system design applications...

  19. Axial blanket enrichment optimization of the NPP Krsko fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    2001-01-01

    In this paper optimal axial blanket enrichment of the NPP Krsko fuel is investigated. Since the optimization is dictated by economic categories that can significantly vary in time, two step approach is applied. In the first step simple relationship between the equivalent change in enrichment of axial blankets and central fuel region is established. The relationship is afterwards processed with economic criteria and constraints to obtain optimal axial blanket enrichment. In the analysis realistic NPP Krsko conditions are considered. Except for the fuel enrichment all other fuel characteristics are the same as in the fuel used in the few most recent cycles. A typical reload cycle after the plant power uprate is examined. Analysis has shown that the current blanket enrichment is close to the optimal. Blanket enrichment reduction results in an approximately 100 000 US$ savings per fuel cycle.(author)

  20. Trade-off study of liquid-metal self-cooled blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    A trade-off study of liquid-metal self-cooled blankets was carried out to define the performance of these blankets with respect to the main functions in a fusion reactor, and to determine the potential to operate at the maximum possible values of the performance parameters. The main purpose is to improve the reactor economics by maximizing the blanket energy multiplication factor, reduce the capital cost of the reactor, and satisfy the design requirements. The main parameters during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the 6 Li enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, the impact of different reactor design choices on the performance parameters was analyzed. The effect of the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, the coolant choice for the nonbreeding inboard blanket, and the neutron source distribution were part of the trade-off study. In addition, tritium breeding benchmark calculations were performed to study the impact of the use of different transport codes and nuclear data libraries. The importance and the negative effect of high TBR on the energy multiplication motivated the benchmark calculations

  1. First wall and blanket module safety enhancement by material selection and design decision

    International Nuclear Information System (INIS)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems

  2. Processing and waste disposal needs for fusion breeder blankets system

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1988-01-01

    We evaluated the waste disposal and recycling requirements for two types of fusion breeder blanket (solid and liquid). The goal was to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under U.S. Nuclear Regulatory Commission regulations. Described in this paper are the radionuclides expected in fusion blanket materials, plans for reprocessing and disposal of blanket components, and estimates for the operating costs involved in waste disposal. (orig.)

  3. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    Carvalho, S.H. de.

    1980-03-01

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author) [pt

  4. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.

    1986-01-01

    A new conceptual design of a fusion reactor blanket simulation facility was developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBR), because experiments conducted in it have resulted in the discovery of deficiencies in neutronics prediction methods. With this design, discrepancies between calculation and experimental data can be fully attributed to calculation methods because design deficiencies that could affect results are insignificant. Inelastic scattering cross sections are identified as a major source of these discrepancies. The conceptual design of this FBBR analog, the fusion reactor blanket facility (FRBF), is presented. Essential features are a cylindrical geometry and a distributed, cosine-shaped line source of 14-MeV neutrons. This source can be created by sweeping a deuteron beam over an elongated titanium-tritide target. To demonstrate that the design of the FRBF will not contribute significant deviations in experimental results, neutronics analyses were performed: results of comparisons of 2-dimensional to 1-dimensional predictions are reported for two blanket compositions. Expected deviations from 1-D predictions which are due to source anisotropy and blanket asymmetry are minimal. Thus, design of the FRBF allows simple and straightforward interpretation of the experimental results, without a need for coarse 3-D calculations

  5. Epoxy blanket protects milled part during explosive forming

    Science.gov (United States)

    1966-01-01

    Epoxy blanket protects chemically milled or machined sections of large, complex structural parts during explosive forming. The blanket uniformly covers all exposed surfaces and fills any voids to support and protect the entire part.

  6. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  7. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  8. 18 CFR 284.303 - OCS blanket certificates.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false OCS blanket certificates. 284.303 Section 284.303 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Pipelines on Behalf of Others § 284.303 OCS blanket certificates. Every OCS pipeline [as that term is...

  9. Low cost, high yield IFE reactors: Revisiting Velikhov's vaporizing blankets

    International Nuclear Information System (INIS)

    Logan, B.G.

    1992-01-01

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a ''Bang per Buck'' figure-of-merit approx-gt 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant

  10. Cassette blanket and vacuum building: key elements in fusion reactor maintenance

    International Nuclear Information System (INIS)

    Werner, R.W.

    1977-01-01

    The integration of two concepts important to fusion power reactors is discussed. The first concept is the vacuum building which improves upon the current fusion reactor designs. The second concept, the use of the cassette blanket within the vacuum building environment, introduces four major improvements in blanket design: cassette blanket module, zoning concept, rectangular blanket concept, and internal tritium recovery

  11. Progress in fusion reactors blanket analysis and evaluation at CEA

    International Nuclear Information System (INIS)

    Proust, E.; Gervaise, F.; Carre, F.; Chevereau, G.; Doutriaux, D.

    1986-09-01

    In the frame of the recent CEA studies aiming at the development, evaluation and comparison of solid breeder blanket concepts in view of their adaptation to NET, the evaluation of specific questions related to the first wall design, the present paper examines first the performances of a helium cooled toroidal blanket design for NET, based on innovative Beryllium/Ceramics breeder rod elements. Neutronic and thermo-mechanical optimisation converges on a concept featured by a breeding capability in excess of 1.2, a reasonnable pumping power of 1% and a narrow breeder temperature range (470+-30 deg C of the breeder), the latter being largely independent of the power level. This design proves naturally adapted to ceramic breeder assigned to very strict working conditions, and provides for any change in the thermal and heat transfer characteristics over the blanket lifetime. The final section of the paper is devoted to the evaluation of the heat load poloidal distribution and to the irradiation effects on first wall structural materials

  12. The Future Role of Armor in Central-Eastern Europe

    National Research Council Canada - National Science Library

    Lorincz, Gabor

    2003-01-01

    ... attrition based military cultures. It seems since the end of the Cold War the armor community has had identity problems caused by the events and the triggered military solutions of the last ten years...

  13. The state of the art report on the fabrication of FW blanket for the fusion reactor and mock-up development in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Whan; Baek, Jong Hyuk; Park, Jeong Yong; Kim, Hyun Gil; Jeong, Yong Hwan

    2004-08-01

    Blanket-shield system in ITER is the component where it directly is faced with high-heat plasma. Function of blanket is to sustain extremely high temperature environment as well as to remove heat flux generated its surface. It mainly consists of plasma facing part, heat sinking part and structural part. Plasma facing part is made of armour materials such as beryllium, tungsten and carbon fiber composite. Heat sinking part is made of copper alloy to maximize heat transfer into flowing coolant inside of blanket. Structural material is used in 316LN stainless steel. As joining such dissimilar materials emerged as an issue, many developed countries have spurred the development of joint technology. This technical report was focused on the activities of EU regarding joining beryllium, copper and stainless steel. EU have adopted to Hot Isostatic Pressing (HIP) to join beryllium, copper and stainless steel. Although brazing process is not actively investigated compared as HIP, it still investigated in some countries to support HIP. Fabrication of mock-up is accomplished by CEA in France to finish small scale mock-up in 1996, medium and large scale mock-up in 1997. In recent, FRAMATOME in EU has focused on manufacturing prototype used for ITER.

  14. The state of the art report on the fabrication of FW blanket for the fusion reactor and mock-up development in Europe

    International Nuclear Information System (INIS)

    Kim, Jun Whan; Baek, Jong Hyuk; Park, Jeong Yong; Kim, Hyun Gil; Jeong, Yong Hwan

    2004-08-01

    Blanket-shield system in ITER is the component where it directly is faced with high-heat plasma. Function of blanket is to sustain extremely high temperature environment as well as to remove heat flux generated its surface. It mainly consists of plasma facing part, heat sinking part and structural part. Plasma facing part is made of armour materials such as beryllium, tungsten and carbon fiber composite. Heat sinking part is made of copper alloy to maximize heat transfer into flowing coolant inside of blanket. Structural material is used in 316LN stainless steel. As joining such dissimilar materials emerged as an issue, many developed countries have spurred the development of joint technology. This technical report was focused on the activities of EU regarding joining beryllium, copper and stainless steel. EU have adopted to Hot Isostatic Pressing (HIP) to join beryllium, copper and stainless steel. Although brazing process is not actively investigated compared as HIP, it still investigated in some countries to support HIP. Fabrication of mock-up is accomplished by CEA in France to finish small scale mock-up in 1996, medium and large scale mock-up in 1997. In recent, FRAMATOME in EU has focused on manufacturing prototype used for ITER

  15. Joint Markov Blankets in Feature Sets Extracted from Wavelet Packet Decompositions

    Directory of Open Access Journals (Sweden)

    Gert Van Dijck

    2011-07-01

    Full Text Available Since two decades, wavelet packet decompositions have been shown effective as a generic approach to feature extraction from time series and images for the prediction of a target variable. Redundancies exist between the wavelet coefficients and between the energy features that are derived from the wavelet coefficients. We assess these redundancies in wavelet packet decompositions by means of the Markov blanket filtering theory. We introduce the concept of joint Markov blankets. It is shown that joint Markov blankets are a natural extension of Markov blankets, which are defined for single features, to a set of features. We show that these joint Markov blankets exist in feature sets consisting of the wavelet coefficients. Furthermore, we prove that wavelet energy features from the highest frequency resolution level form a joint Markov blanket for all other wavelet energy features. The joint Markov blanket theory indicates that one can expect an increase of classification accuracy with the increase of the frequency resolution level of the energy features.

  16. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  17. Instant decoys for armored vehicles. A literature survey

    NARCIS (Netherlands)

    Webb, R.; Leenders, J.

    2000-01-01

    The TNO Prins Maurits Laboratory is involved with projects that deal with vulnerability of armored vehicles. Such activities take place in both national and international programs and are especially performed in the group Weapon Effectiveness. One of the other groups within TNOPML is the group

  18. Progress and achievements of the ITER L-4 blanket project

    International Nuclear Information System (INIS)

    Daenner, W.; Toschi, R.; Cardella, A.

    2001-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined. The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  19. Progress and achievements of the ITER L-4 blanket project

    International Nuclear Information System (INIS)

    Daenner, W.; Toschi, R.; Cardella, A.

    1999-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined.The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  20. Tritium transport in the water cooled Pb-17Li blanket concept of DEMO

    International Nuclear Information System (INIS)

    Reiter, F.; Tominetti, S.; Perujo, A.

    1992-01-01

    The code TIRP has been used to calculate the time dependence of tritium inventory and tritium permeation into the coolant and into the first wall boxes in the water cooled Pb-17Li blanket concept of DEMO. The calculations have been performed for the martensitic steel MANET and the austenitic steel AISI 316L as blanket structure materials, for water or helium cooling and for convective or no motion of the liquid breeder in the blanket. Tritium inventories are rather low in blankets with MANET structure and higher in those with AISI 316L structure. Tritium permeation rates are too high in both blankets. Further calculations on tritium inventory and permeation are therefore presented for blankets with TiC permeation barriers of 1 μm thickness on various surfaces of the blanket structure and for blankets with any permeation barriers in function of their thickness, tritium diffusivities, tritium surface recombination rates and atomic densities. These last calculations have been performed for a blanket with coatings on the outer surfaces of the blanket and with a tritium residence time of 10 4 s and for a blanket with coatings on both sides of the cooling tubes and stagnant Pb-17Li in the blanket. The second case for a blanket with MANET structure presents a very interesting solution for tritium recovery by permeation into and pumping from the first wall boxes. (orig.)

  1. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  2. Composite treatment of ceramic tile armor

    Science.gov (United States)

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  3. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  4. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    International Nuclear Information System (INIS)

    Daigo Tsuru; Mikio Enoeda; Masato Akiba

    2006-01-01

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  5. Assessment of alkali metal coolants for the ITER blanket

    International Nuclear Information System (INIS)

    Natesan, K.; Reed, C.B.; Mattas, R.F.

    1994-01-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper will address the thermodynamics of interactions between the liquid metals (i.e., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data will be used to assess the long-term performance of the first wall in a liquid metal environment

  6. Analysis of ER string test thermally instrumented interconnect 80-K MLI blanket

    International Nuclear Information System (INIS)

    Daly, E.; Pletzer, R.

    1992-04-01

    An 80-K Multi Layer Insulation (MLI) blanket in the interconnect region between magnets DD0019 and DD0027 in the Fermi National Accelerator Laboratory (FNAL) ER string was instrumented with temperature sensors to obtain the steady-state temperature gradient through the blanket after string cooldown. A thermal model of the 80-K blanket assembly was constructed to analyze the steady-state temperature gradient data. Estimates of the heat flux through the 80-K MLI blanket assembly and predicted temperature gradients were calculated. The thermal behavior of the heavy polyethylene terapthalate (PET) cover layers separating the shield and inner blanket and inner and outer blankets was derived empirically from the data. The results of the analysis predict a heat flux of 0.363--0.453 W/m 2 based on the 11 sets of data. These flux values are 33--46% below the 80-K MLI blanket heat leak budget of 0.676 W/m 2 . The effective thermal resistance of the two heavy PET cover layers between the shield and inner blanket was found to be 2.1 times that of a single PET spacer layer, and the effective resistance of the two heavy PET cover layers between the inner blanket and outer blanket was found to be 7 times that of a single PET spacer layer. Based on these results, the 80-K MLI blanket assembly appears to be performing more than adequately to meet the 80-K static IR heat leak budget. However, these results should not be construed as a verification of the 80-K static IR heat leak, since no actual heat leak was measured. The results have been used to improve the empirically based model data in the 80-K MLI blanket thermal model, which has previously not included the effects of heavy PET cover layers on 80-K MLI blanket thermal performance

  7. A review of fusion breeder blanket technology, part 1

    International Nuclear Information System (INIS)

    Jackson, D.P.; Selander, W.N.; Townes, B.M.

    1985-01-01

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  8. Accelerator driven heavy water blanket on circulating fuel

    International Nuclear Information System (INIS)

    Kazaritsky, V.D.; Blagovolin, P.P.; Mladov, V.R.; Okhlopkov, M.L.; Batyaev, V.F.; Stepanov, N.V.; Seliverstov, V.V.

    1997-01-01

    A conceptual design of a heavy water blanket with circulating fuel for an accelerator driven transmutation system is described. The hybrid system consists of a high-current linear accelerator of protons and 4 targets, each placed inside a subcritical blanket

  9. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  10. Progress in blanket designs using SiCf/SiC composites

    International Nuclear Information System (INIS)

    Giancarli, L.; Golfier, H.; Nishio, S.; Raffray, R.; Wong, C.; Yamada, R.

    2002-01-01

    This paper summarizes the most recent design activities concerning the use of SiC f /SiC composite as structural material for fusion power reactor breeding blanket. Several studies have been performed in the past. The most recent proposals are the TAURO blanket concept in the European Union, the ARIES-AT concept in the US, and DREAM concept in Japan. The first two concepts are self-cooled lithium-lead blankets, while DREAM is an helium-cooled beryllium/ceramic blanket. Both TAURO and ARIES-AT blankets are essentially formed by a SiC f /SiC box acting as a container for the lithium-lead which has the simultaneous functions of coolant, tritium breeder, neutron multiplier and, finally, tritium carrier. The DREAM blanket is characterized by small modules using pebble beds of Be as neutron multiplier material, of Li 2 O (or other lithium ceramics) as breeder material and of SiC as shielding material. The He coolant path includes a flow through the pebble beds and a porous partition wall. For each blanket, this paper describes the main design features and performances, the most recent design improvements, and the proposed manufacturing routes in order to identify specific issues and requirements for the future R and D on SiC f /SiC

  11. 75 FR 25208 - Announcement of Body Armor Research Needs Meeting

    Science.gov (United States)

    2010-05-07

    ... manufacturing community (including fiber producers, fabric producers, and armor manufacturers) and government..., passport issuing country, passport number, city of birth, country of birth, date of birth, gender, title...

  12. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  13. Materials science problems of blankets in Russian concept of fusion reactor

    International Nuclear Information System (INIS)

    Solonin, M.I.

    1998-01-01

    Structural materials, beryllium and tritium breeding materials proposed for blanket of Russian reactor DEMO and Test Modules for ITER are discussed. Main requirements for the materials are concerned with basis current designs of blankets and modules and possibility meet of ones for presence and developed alloys and materials discussed considered. Main properties and results of test of ferrite-martensite and vanadium alloys for DEMO and Test Modules are cited. Beryllium compositions used as component of first wall and neutron multiplier are discussed. Liquid lithium and ceramic (lithium orthosilicate) are treated as tritium breeding materials. Russian development of reactor experimental unit for tritium breeding zone using beryllium, lithium ceramic and ferrite-martensite alloys for structural materials is presented. (orig.)

  14. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    Science.gov (United States)

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. The fusion blanket program at Chalk River

    International Nuclear Information System (INIS)

    Hastings, I.J.

    1986-03-01

    Work on the Fusion Blanket Program commenced at Chalk River in 1984 June. Co-funded by Canadian Fusion Fuels Technology Project and Atomic Energy of Canada Limited, the Program utilizes Chalk River expertise in instrumented irradiation testing, ceramics, tritium technology, materials testing and compound chemistry. This paper gives highlights of studies to date on lithium-based ceramics, leading contenders for the fusion blanket

  16. Designing an Innovative Composite Armor System for Affordable Ballistic Protection

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Cui, Yushun; Rose, Douglas; Socks, Adria; Ostberg, Donald

    2006-01-01

    .... This paper focuses on the frontal armor plate and back plate design problems with demonstration examples, including both results of the virtual prototyping and ballistic testing for proof-of-concept...

  17. Fabrication and testing of small scale mock-ups of ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Suzuki, Satoshi; Yokoyama, Kenji; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-12-01

    Small scale mock-ups of the primary first wall, the baffle first wall, the shield block and a partial model for the edge of the primary first wall module were designed and fabricated incorporating most of the key design features of the ITER shielding blanket. All mock-ups featured the DSCu heat sink, the built-in SS coolant tubes within the heat sink and the SS shield block. CFC tiles was used as the protection armor for the baffle first wall mock-up. The small scale shield block mock-up, integrated with the first wall, was designed to have a poloidal curvature specified in the ITER design. Fabrication routes of mock-ups were decided based on the single step solid HIP of DSCu/DSCu, DSCu/SS and SS/SS reflecting the results of previous joining techniques development and testing. For attaching the CFC tiles onto DSCu heat sink in the fabrication of the baffle first wall mock-up, a two-step brazing was tried. All mock-ups and the partial model were successfully fabricated with a satisfactory dimensional accuracy. The small scale primary first wall mock-up was thermo-mechanically tested under high heat fluxes of 5-7 MW/m{sup 2} for 2500 cycles in total. Satisfactory heat removal performance and integrity of the mock-up against cyclic high heat flux loads were confirmed by measurement during the tests and destructive examination after the tests. Similar high heat flux tests were also performed with the small scale baffle first wall mock-up under 5-10 MW/m{sup 2} for 4500 cycles in total resulting in sufficient heat removal capability and integrity confirmed by measurements during the tests. (author)

  18. Interactions of D-T neutrons in graphite and lithium blankets of fusion reactors

    International Nuclear Information System (INIS)

    Ofek, R.

    1986-05-01

    The present study deals with integral experiment and calculation of neutron energy spectra in bulks of graphite which is used as a reflector in blankets of fusion reactors, and lithium, the material of the blanket on which lithium is bred due to neutron interactions. The collimated beam configuration enables - due to the almost monoenergeticity and unidirectionality of the neutrons impinging on the target - to identify fine details in the measured spectra, and also facilitates the absolute normalization of the spectra. The measured and calculated spectra are generally in a good agreement and in a very good agreement at mesh points close to the system axis. A few conclusions may be drawn: a) the collimated beam source configuration is a sensitive tool for measuring neutron energy spectra with a high resolution, b) the method of unfolding proton-recoil spectra measured with a NE-213 scintillator should be improved, c) MCNP and DOT 4.2 may be used as complementary codes for neutron transport calculations of fusion blankets and deep-penetration problems, d) the updating of the cross-section libraries and checking by integral experiments is highly important for the design of fusion blankets. The present study may be regarded as an important course in the research and development of tools for the design of fusion blankets

  19. First-wall/blanket materials selection for STARFIRE tokamak reactor

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed

  20. ITER Blanket First Wall (WBS 1.6{sub 1}A)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kim, H. G.; Kim, J. H. (and others)

    2008-03-15

    International Thermonuclear Experimental Reactor (ITER) project is the international collaboration one for the commercialization of nuclear fusion energy through the technical and engineering verification. In ITER project, we plan to procure the blanket systems which has the risk of technology and cost when it is newly developed. We are developing the manufacturing process and joining technology for the ITER blanket to complete the procurement with qualified blanket system. To evaluate the soundness of manufacturing process, specimen and mock-up tests are being prepared. Finally, we can obtain the key technology of nuclear fusion reactor especially on the blanket design, joining and manufacturing technology through the present project and these technologies will help the construction of Korea fusion DEMO reactor and the development of commercial nuclear fusion reactor in Korea. In 1st year, through the fabrication of the Cu/SS and Be/Cu joint specimen, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The optimized HIP conditions (1050 .deg. C, 150 MPa, 2 hr for Cu/SS and 580 - 620 .deg. C, 100-150 MPa, 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint and NDT such as UT (10 MHz, 0.25 inch D, flat type) and ECT. Several mock-ups were fabricated for confirming the joint integrity and NDT. specimens fabricated with these mock-ups were used in mechanical tests including microstructure observation. The mock-ups were used in the HHF test after the developed NDT. In 2nd year, PHHT of Cu was investigated in order to recover its mechanical properties, and the pre-qualification mock-up were fabricated against the Qualification Program and sent to RF for HHF testing in TSEFEY. FW fabrication and joining procedure were documented in the form of the TSD. Qualification mock

  1. Optimization of seed-blanket type fuel assembly for reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shelley, Afroza; Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi

    2003-10-01

    Parametric studies have been performed for a PWR-type reduced-moderation water reactor (RMWR) with the seed-blanket type fuel assembles to achieve a high conversion ratio, negative void reactivity coefficient and a high burnup by using MOX fuel. From the viewpoint of reactor safety analysis, the fuel temperature coefficients were also studied. From the result of the burnup calculation, it has been seen that ratio of 40-50% of outer blanket in a seed-blanket assembly gives higher conversion ratio compared to the other combination of seed-blanket assembly. And the recommended number of (seed+blanket) layers is 20, in which the number of seed (S) layers is 15 (S15) and blanket (B) layers is 5 (B5). It was found that the conversion ratio of seed-blanket assembly decreases, when they are arranged looks like a flower shape (Hanagara). By the optimization of different parameters, S15B5 fuel assembly with the height of seed of 1000 mmx2, internal blanket of 150 mm and axial blanket of 400 mmx2 is recommended for a reactor of high conversion ratio. In this assembly, the gap of seed fuel rod is 1.0 mm and blanket fuel rod is 0.4 mm. In S15B5 assembly, the conversion ratio is 1.0 and the burnup is 38.18 GWd/t in (seed+internal blanket+outer blanket) region. However, the burnup is 57.45 GWd/t in (seed+internal blanket) region. The cycle length of the core is 16.46 effective full power in month (EFPM) by six batches and the enrichment of fissile Pu is 14.64 wt.%. The void coefficient is +21.82 pcm/%void, however, it is expected that the void coefficient will be negative if the radial neutron leakage is taken into account in the calculation. It is also possible to use S15B5 fuel assembly as a high burnup reactor 45 GWd/t in (seed+internal blanket+outer blanket) region, however, it is necessary to decrease the height of seed to 500 mmx2 to improve the void coefficient. In this reactor, the conversion ratio is 0.97 and void coefficient is +20.81 pcm/%void. The fuel temperature

  2. Feasibility study of incore fission chamber application for neutron flux measurements on the NET blanket

    International Nuclear Information System (INIS)

    Bertalot, L.

    1987-01-01

    A feasibility study has been carried out on the use of in-core fission chambers as neutron diagnostic tools to perform neutron flux measurements on the blanket component of NET. The high neutron and gamma fluxes and the severe thermal-mechanical and magnetic conditions of the blanket structure have been taken into account in this analysis. Preliminary design criteria and specifications of an in-core detector are presented for NET application. A research and development programme is outlined which aims to obtain more information on the tecnological constraints arising from the severe conditions of the NET blanket

  3. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Li, Min; Lv, Zhongliang; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Wang, Xiaoliang; Zheng, Jie; Ye, Minyou

    2015-10-15

    Highlights: • A helium cooled solid blanket was proposed as a candidate blanket concept for CFETR. • Material selection, basic structure and gas flow scheme of the blanket were introduced. • A series of performance analyses for the blanket were summarized. - Abstract: To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and is being designed mainly to demonstrate 50–200 MW fusion power, 30–50% duty time factor, tritium self-sustained. Because of the high demand of tritium production and the realistic engineering consideration, the design of tritium breeding blanket for CFETR is a challenging work and getting special attention. As a blanket candidate, a helium cooled solid breeder blanket has been designed with the emphasis on conservative design and realistic blanket technology. This paper introduces the basic blanket scheme, including the material selection, structural design, cooling scheme and purge gas flow path. In addition, some results of neutronics, thermal-hydraulic and stress analysis are presented.

  4. US-DOE Fusion-Breeder Program: blanket design and system performance

    International Nuclear Information System (INIS)

    Lee, J.D.

    1983-01-01

    Conceptual design studies are being used to assess the technical and economic feasibility of fusion's potential to produce fissile fuel. A reference design of a fission-suppressed blanket using conventional materials is under development. Theoretically, a fusion breeder that incorporates this fusion-suppressed blanket surrounding a 3000-MW tandem mirror fusion core produces its own tritium plus 5600 kg of 233 U per year. The 233 U could then provide fissile makeup for 21 GWe of light-water reactor (LWR) power using a denatured thorium fuel cycle with full recycle. This is 16 times the net electric power produced by the fusion breeder (1.3 GWe). The cost of electricity from this fusion-fission system is estimated to be only 23% higher than the cost from LWRs that have makeup from U 3 O 8 at present costs (55 $/kg). Nuclear performance, magnetohydrodynamics (MHD), radiation effects, and other issues concerning the fission-suppressed blanket are summarized, as are some of the present and future objectives of the fusion breeder program

  5. The evolution of US helium-cooled blankets

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.

    1991-01-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America (US). These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket configuration for helium-cooled fusion power and experimental reactors. (orig.)

  6. A study on the enhancement of the reliability in gravure offset roll printing with blanket swelling control

    International Nuclear Information System (INIS)

    Kim, Ga Eul; Woo, Kyoohee; Kang, Dongwoo; Jang, Yunseok; Lee, Taik-Min; Kwon, Sin; Choi, Young-Man; Lee, Moon G

    2016-01-01

    In roll-offset printing (patterning) technology with a PDMS blanket as a transfer medium, one of the major reliability issues is the occurrence of swelling, which involves absorption of the ink solvent in the printing blanket with repeated printing. This study developed a method to resolve blanket swelling in gravure offset roll printing and performed experiments for performance verification. The physical phenomena of mass and heat transfer were applied to fabricate a device based on convection drying. The proposed device managed to effectively control blanket swelling through drying by blowing air and additional temperature control. The experiments verified that printing quality (in particular the variation of the width of printed patterns) was maintained over 500 continuous printing. (paper)

  7. Li2O-pebble type tritium breeding blanket for fusion experimental reactor, 1

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Iida, Hiromasa; Tanaka, Yoshihisa

    1984-01-01

    The fusion experimental reactor is the next stage device in Japan, which is planned to be constructed following the critical plasma experimental device JT-60 being constructed at present. The breeding blanket installed in nuclear fusion reactors is one of most important structures, and it is required to satisfy the fundamental performance of producing and continuously recovering tritium as the nuclear fusion fuel, and other requirement in good coordination. The Li 2 O pebble type breeding blanket that Kawasaki Heavy Industries Ltd. has examined is the concept for resolving the problems of the mass transfer and thermal stress cracking of Li 2 O, which are important in blanket design. In this paper, the concept and characteristics of this breeding blanket are discussed from the viewpoint of the breeding and continuous recovery of tritium, the ease of manufacture and the maintenance of soundness. The breeding blanket is composed of breeding region, tritium purge region, cooling region, plasma stabilizing conductors and blanket container. Li 2 O is excellent in its tritium breeding performance and heat conductivity. The functions required for the breeding blanket, the fundamental structure, the examples of breeding blanket concept, the selection of breeding blanket concept, the characteristics of Li 2 O pebble type blanket and its future prospect are described. (Kako, I.)

  8. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  9. Evaluation of potential blanket concepts for a Demonstration Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Chapin, D.L.; Chi, J.W.H.; Kelly, J.L.

    1978-01-01

    An evaluation has been made of several different blanket concepts for use in a near-term Demonstration Tokamak Hybrid Reactor (DTHR), whose main objective would be to produce a significant amount of fissile fuel while demonstrating the feasibility of the tokamak hybrid reactor concept. The desirability of a simple design using proven technology plus a proliferation resistant fuel cycle led to the selection of a low temperature and pressure water-cooled, zircaloy clad ThO 2 blanket concept to breed 233 U. The nuclear performance and thermal-hydraulics characteristics of the blanket were evaluated to arrive at a consistent design. The blanket was found to be feasible for producing a significant amount of fissile fuel even with the limited operating conditions and blanket coverage in the DTHR

  10. The transpiration cooled first wall and blanket concept

    International Nuclear Information System (INIS)

    Barleon, Leopold; Wong, Clement

    2002-01-01

    To achieve high thermal performance at high power density the EVOLVE concept was investigated under the APEX program. The EVOLVE W-alloy first wall and blanket concept proposes to use transpiration cooling of the first wall and boiling or vaporizing lithium (Li) in the blanket zone. Critical issues of this concept are: the Magnetohydrodynamic (MHD) pressure losses of the Li circuit, the evaporation through a capillary structure and the needed superheating of the Li at the first wall and blanket zones. Application of the transpiration concept to the blanket region results in the integrated transpiration cooling concept (ITCC) with either toroidal or poloidal first wall channels. For both orientations the routing of the liquid Li and the Li vapor has been modeled and the corresponding pressure losses have been calculated by varying the width of the supplying slot and the capillary diameter. The concept works when the sum of the active and passive pumping head is higher than the total system pressure losses and when the temperature at the inner side of the first wall does not override the superheating limit of the coolant. This cooling concept has been extended to the divertor design, and the removal of a surface heat flux of up to 10 MW/m 2 appears to be possible, but this paper will focus on the transpiration cooled first wall and blanket concept assessment

  11. Virtual Experiments to Determine Behind-Armor Debris for Survivability Analysis

    National Research Council Canada - National Science Library

    Prakash, Anand

    2004-01-01

    .... This data is currently generated by conducting laboratory experiments in a standard set-up in which each threat projectile is fired on the actual armor and the BAD pattern is captured on witness plates...

  12. Source-to-incident flux relation for a tokamak fusion test reactor blanket module

    International Nuclear Information System (INIS)

    Imel, G.R.

    1982-01-01

    The source-to-incident 14-MeV flux relation for a blanket module on the Tokamak Fusion Test Reactor is derived. It is shown that assumptions can be made that allow an analytical expression to be derived, using point kernel methods. In addition, the effect of a nonuniform source distribution is derived, again by relatively simple point kernel methods. It is thought that the methodology developed is valid for a variety of blanket modules on tokamak reactors

  13. Effect of nature convection on heat transfer in the liquid LiPb blanket for FDS-II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongyan; Chen Hongli [Huaibei Coal Industry Teachers Coll. (China). Dept. of Physics; Zhou Tao [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics

    2007-07-01

    The He-cooled liquid LiPb tritium breeder (SLL) blanket concept is one of options of the blanket design of the fusion power reactor (FDS-II). The SLL blanket could be developed relatively easily with lower LiPb outlet temperature and slower LiPb flow velocity that allows the utilization of relatively mature material technology. The velocity of the liquid LiPb in the blanket is very slowly only in order to extract tritium. The magnetohydrodynamic (MHD) flow and heat transfer become very complex resulting from the differential heating of walls of the channels, especially adjacent to the First Wall (FW), and internal heat sources inside of the liquid LiPb. It is necessary to analyse the effect of the buoyancy-driven LiPb MHD flow on heat transfer in the channels with electrically and thermally conducting walls adjacent to the FW. The nature convection of the liquid LiPb, due to thermal diffusion, in the poloidal channel adjacent to the FW in the presence of the strong magnetic field of the SLL blanket has been considered and studied. The specially numerical MHD code based on the computational fluid dynamic software has been developed for analysis of the buoyancy-driven MHD flow. The properties of buoyantly convective flows have been investigated for various thermal boundary conditions. The numerical analysis was performed for the effect of nature convection on heat transfer of the liquid LiPb MHD flow in the poloidal channel in the SLL blanket. For the strong temperature gradient in the blanket and internal heat flux of Liquid LiPb, the three-dimensional temperature distributions of the LiPb, the FW and other walls have been given. Finally, The effect of the ratio of MHD buoyancy on the heat transfer characteristics of the LiPb flow have been calculated and presented. (orig.)

  14. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  15. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  16. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  17. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  18. Progress on DEMO blanket attachment concept with keys and pins

    International Nuclear Information System (INIS)

    Vizvary, Zsolt; Iglesias, Daniel; Cooper, David; Crowe, Robert; Riccardo, Valeria

    2015-01-01

    Highlights: • DEMO blanket attachment system with keys and pins (without using bolts). • Blanket segments are preloaded by progressively designed springs. • Blanket back plate flexibility has a major impact on spring design. • Mechanical analysis of other components indicates no unresolvable issues. • Thermal analysis indicates acceptable temperatures for the support system. - Abstract: The blanket attachment has to cope with gravity, thermal and electromagnetic loads, also it has to be installed and serviced by remote handling. Pre-stressed components suffer from stress relaxation in irradiated environments such as DEMO. To circumvent this problem pre-stressed component should be either avoided or shielded, and where possible keys and pins should be used. This strategy has been proposed for the DEMO multi-module segments (MMS). The blanket segments are held by two tapered keys each, designed to allow thermal expansions while providing contact with the vacuum vessel and to resist the poloidal and radial moments the latter being dominant at 9.1 MNm inboard and 15 MNm outboard. On the top of the blanket segment there is a pin which provides vertical support. At the bottom another vertical support has to lock them in position after installation and manage the pre-load on the segments. The pre-load is required to deal with the electromagnetic loads during disruption. This is provided by a set of springs, which require shielding as they are preloaded. These are sized to cope with the force (3 MN inboard, 1.4 MN outboard) due to halo currents and the toroidal moment which can reverse. Calculations show that the flexibility of the blanket segment itself plays a significant role in defining the required support system. The blanket segment acts as a preloaded spring and it has to be part of the attachment design as well.

  19. Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST

    International Nuclear Information System (INIS)

    Wu, Y.

    2007-01-01

    A dual functional lithium-lead (DFLL) test blanket module (TBM) concept has been proposed for testing in the International Thermonuclear Experimental Reactor (ITER) and the Experimental Advanced Superconducting Tokamak (EAST) in China to demonstrate the technologies of the liquid lithium-lead breeder blankets with emphasis on the balance between the risks and the potential attractiveness of blanket technology development. The design of DFLL-TBM concept has the flexibility of testing both the helium-cooled quasi-static lithium-lead (SLL) blanket concept and the He/PbLi dual-cooled lithium-lead (DLL) blanket concept. This paper presents an effective testing strategy proposed to achieve the testing target of SLL and DLL DEMO blankets relevant conditions, which includes three parts: materials R and D and small-scale out-of-pile mockups testing in loops, middle-scale TBMs pre-testing in EAST and full-scale consecutive TBMs testing corresponding to different operation phases of ITER during the first 10 years. The design of the DFLL-TBM concept and the testing strategy ability to test TBMs for both blanket concepts in sequence and or in parallel for both ITER and EAST are discussed

  20. Nuclear characteristics of D-D fusion reactor blankets, (1)

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  1. Development of pipe welding, cutting and inspection tools for the ITER blanket

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  2. Optimization of beryllium for fusion blanket applications

    International Nuclear Information System (INIS)

    Billone, M.C.

    1993-01-01

    The primary function of beryllium in a fusion reactor blanket is neutron multiplication to enhance tritium breeding. However, because heat, tritium and helium will be generated in and/or transported through beryllium and because the beryllium is in contact with other blanket materials, the thermal, mechanical, tritium/helium and compatibility properties of beryllium are important in blanket design. In particular, tritium retention during normal operation and release during overheating events are safety concerns. Accommodating beryllium thermal expansion and helium-induced swelling are important issues in ensuring adequate lifetime of the structural components adjacent to the beryllium. Likewise, chemical/metallurgical interactions between beryllium and structural components need to be considered in lifetime analysis. Under accident conditions the chemical interaction between beryllium and coolant and breeding materials may also become important. The performance of beryllium in fusion blanket applications depends on fabrication variables and operational parameters. First the properties database is reviewed to determine the state of knowledge of beryllium performance as a function of these variables. Several design calculations are then performed to indicate ranges of fabrication and operation variables that lead to optimum beryllium performance. Finally, areas for database expansion and improvement are highlighted based on the properties survey and the design sensitivity studies

  3. Survivability of ancient man-made earthen mounds: implications for uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Lindsey, C.G.; Mishima, J.; King, S.E.; Walters, W.H.

    1983-06-01

    As part of a study for the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory (PNL) is investigating long-term stabilization techniques for uranium mill impoundments. Part of this investigation involves the design of a rock armoring blanket (riprap) to mitigate wind and water erosion of the underlying soil cover, which in turn prevents exposure of the tailings to the environment. However, the need for the armoring blanket, as well as the blanket's effectiveness, depends on the stability of the underlying soil cap (radon suppression cover) and on the tailings themselves. Compelling evidence in archaeological records suggests that large man-made earthen structures can remain sound and intact for time periods comparable to those required for the stabilization of the tailings piles if properly constructed. We present archaeological evidence on the existence and survivability of man-made earthen and rock structures through specific examples of such structures from around the world. We also review factors contributing to their survival or destruction and address the influence of climate, building materials, and construction techniques on survivability

  4. Design requirement on KALIMER blanket fuel assembly duct

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, H. Y.; Nam, C.; Kim, J. O.

    1998-03-01

    This document describes design requirements which are needed for designing the blanket fuel assembly duct of the KALIMER as design guidance. The blanket fuel assembly duct of the KALIMER consists of fuel rods, mounting rail, nosepiece, duct with pad, handling socket with pad. Blanket fuel rod consists of top end plug, bottom end plug with solid ferritic-martensitic steel rod and key way blanket fuel slug, cladding, and wire wrap. In the assembly, the rods are in a triangular pitch array, and the rod bundle is attached to the nosepiece with mounting rails. The bottom end of the assembly duct is formed by a long nosepiece which provides the lower restraint function and the paths for coolant inlet. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. (author). 20 refs., 4 figs

  5. Activation and afterheat analyses for the HCPB test blanket

    International Nuclear Information System (INIS)

    Pereslavtsev, P.; Fischer, U.

    2007-01-01

    The Helium-Cooled Pebble Bed (HCPB) blanket is one of two breeder blanket concepts developed in the framework of the European Fusion Technology Programme for performance tests in ITER. The recent development programme focussed on the detailed engineering design of the Test Blanket Module (TBM) and associated systems including the assessment of safety and licensing related issues with the objective to prepare for a preliminary Safety Report. To provide a sound data basis for the safety analyses of the HCPB TBM system in ITER, the afterheat and activity inventories were assessed making use of a code system that allows performing 3D activation calculations by linking the Monte Carlo transport code MCNP and the fusion inventory code FISPACT through an appropriate interface. A suitable MCNP model of a 20 degree ITER torus sector with an integrated TBM of the HCPB PI (Plant Integration) type in the horizontal test blanket port was developed and adapted to the requirements for coupled 3D neutron transport and activation calculations. Two different irradiation scenarios were considered in the coupled 3D neutron transport and activation calculations. The first one is representative for the TBM irradiation in ITER with a total of 9000 neutron pulses over a three (calendar) years period. It was simulated by a continuous irradiation for 3 years minus the last month and a discontinuous irradiation with 250 pulses (420 s pulse length, 1200 s power-off in between) over the last month. The second (conservative) irradiation scenario assumes an extended irradiation time over the full anticipated lifetime of ITER according to the M-DRG-1 irradiation scenario with a total first wall fluence of 0.3 MWa/m 2 . For both irradiation scenarios the radioactivity inventories, the afterheat and the contact gamma dose were calculated as function of the decay time. Data were processed for the total activity and afterheat of the TBM, its constituting components and materials including their

  6. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  7. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  8. Fusion blankets for catalyzed D--D and D--He3 reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β noncircular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphynyl coolant

  9. Fusion blankets for catalyzed D--D and D--3He reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1977-01-01

    Blanket designs are presented for catalyzed D-D (Cat-D) and D-He 3 fusion reactors. Because of relatively low neutron wall loads and the flexibility due to non-tritium breeding, blankets potentially should operate for reactor life-times of approximately 30 years. Unscheduled replacement of failed blanket modules should be relatively rapid, due to very low residual activity, by operators working either through access ports in the shield (option 1) or directly in the plasma chamber (option 2). Cat-D blanket designs are presented for high (approximately 30%) and low (approximately 12%) β non-circular Tokamak reactors. The blankets are thick graphite screens, operating at high temperature to anneal radiation damage; the deposited neutron and gamma energy is thermally radiated along internal cavities and conducted to a bank of internal SiC coolant tubes (approximately 4 cm. ID) containing high pressure helium. In the D-He 3 Tokamak reactor design, the blanket consists of multiple layers (e.g., three) of thin (approximately 10 cm.) high strength aluminum (e.g., SAP), modular plates, cooled by organic terphenyl coolant

  10. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    International Nuclear Information System (INIS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-01-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  11. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Science.gov (United States)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  12. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Moon, Se Youn; Hong, Bong Guen [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-10-15

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  13. Adaptation of the HCPB DEMO TBM as breeding blanket for ITER : Neutronic and thermal analyses

    International Nuclear Information System (INIS)

    Aquaro, D.; Morellini, D.; Cerullo, N.

    2006-01-01

    Two breeding blanket are presently developed in Europe for the DEMO reactor: the first one, the Helium Cooled Lithium Lead (HCLL) uses a liquid breeder while the other , the Helium Cooled Pebble Bed (HCPB), uses a solid breeder in form of pebble bed. The modules of these blankets, called Test Blanket Modules (TBM) will be located in correspondence of the equatorial ports of ITER in order to be tested. ITER FEAT was designed with shielding blankets, therefore in the final stage of the experiment, in the foreseen tritium -deuterium operation phase, the tritium will be supplied to the reactor and not produced inside it. Since the production of tritium is of main importance for the feasibility of a nuclear fusion reactor, perhaps in the ITER final stage, the shielding blanket could be substituted by means of a breeding blanket. The geometry and composition of this breeding blanket would be, of course, similar to that of TBM which demonstrated to have the best performances. This paper illustrates a neutronic and thermal analysis of an hypothetical triziogen blanket for ITER FEAT made similar to a HCPB test module. The main aims of the performed analyses are to determine the Tritium Breeding Ratio (TBR) considering different solid breeders (Li 4 SiO 4 and Li 2 TiO 3 ) with different enrichment in 6 Li and different structural materials (a 9%CRWVTa reduced activation ferritic martensitic steel (EUROFER) or ceramic matrix composites like SiCf/SiC). The breeding blanket design is compared considering the highest value of TBR and the verification of the temperature constraints ( 550 o C for the steel, 950 o C for the breeder and 650 o C for the Beryllium). The neutronic analyses have been performed by means of MCNP-4C code and the thermal analyses using the MSC-MARC code. A TBR about equal 1 was obtained with a SiCf/SiC structural material and a Li 4 SiO 4 breeder. The performed analyses have to be considered preliminary and an academic exercise, nevertheless they could give

  14. The TFTR lithium blanket module program

    International Nuclear Information System (INIS)

    Jassby, D.L.; Bertone, P.C.; Creedon, R.L.; File, J.; Graumann, D.W.

    1985-01-01

    The Lithium Blanket Module (LBM) is an approximately 80X80X80 cm cubic module, representative of a helium-cooled lithium oxide fusion reactor blanket module, that will be installed on the TFTR (Tokamak Fusion Test Reactor) in late 1986. The principal objective of the LBM Program is to perform a series of neutron transport and tritium-breeding measurements throughout the LBM when it is exposed to the TFTR toroidal fusion neutron source, and to compare these data with the predictions of Monte Carlo (MCNP) neutronics codes. The LBM consists of 920 2.5-cm diameter breeder rods constructed of lithium oxide (Li 2 O) pellets housed in thin-walled stainless steel tubes. Procedures for mass-producing 25,000 Li 2 O pellets with satisfactory reproducibility were developed using purified Li 2 O powder, and fabrication of all the breeder rods was completed in early 1985. Tritium assay methods were investigated experimentally using both small lithium metal samples and LBM-type pellets. This work demonstrated that the thermal extraction method will be satisfactory for accurate evaluation of the minute concentrations of tritium expected in the LBM pellets (0.1-1nCi/g)

  15. Dynamic lift on an artificial static armor layer during highly unsteady open channel flow

    OpenAIRE

    Spiller, Stephan Mark; Ruther, Nils; Friedrich, Heide

    2015-01-01

    The dynamic lift acting on a 100 mm × 100 mm section of a static armor layer during unsteady flow is directly measured in a series of physical experiments. The static armor layer is represented by an artificial streambed mold, made from an actual gravel bed. Data from a total of 190 experiments are presented, undertaken in identical conditions. Results show that during rapid discharge increases, the dynamic lift on the streambed repeatedly exhibits three clear peaks. The magnitude of the obse...

  16. Application of nondestructive ion beam analysis to measure variations in the elemental composition of armor materials

    Energy Technology Data Exchange (ETDEWEB)

    Pallone, Arthur. E-mail: art.pallone@murraystate.edu; Demaree, John; Adams, Jane. E-mail: jadams@arl.army.mil

    2004-06-01

    Lightweight, state-of-the-art armors rely on ceramics for their enhanced performance. One goal of the United States Army is to expand the industrial base of companies that provide the armors. A systematic study of armor performance as a function of ceramic stoichiometry will result in a better understanding of the fundamental relations between composition and mechanical performance. One ceramic of interest is aluminum oxynitride (AlON). The stoichiometries of representative samples of AlON were investigated with the nondestructive techniques of Rutherford backscattering spectrometry and resonant nuclear reaction analysis. Future tests of the performance of the AlON samples are to be correlated with the stoichiometries, and hence will lead to optimum, standardized processes for the manufacture of the AlON.

  17. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es; Fernández, Iván; Rapisarda, David; Ibarra, Angel

    2016-11-01

    Highlights: • We perform neutronic calculations for the preliminary DCLL Blanket design. • We study the tritium breeding capability of the reactor. • We determine the nuclear heating in the main components. • We verify if the shielding of the TF coil is maintained. - Abstract: In the frame of the newly established EUROfusion WPBB Project for the period 2014–2018, four breeding blanket options are being investigated to be used in the fusion power demonstration plant DEMO. CIEMAT is leading the development of the conceptual design of the Dual Coolant Lithium Lead, DCLL, breeding blanket. The primary role of the blanket is of energy extraction, tritium production, and radiation shielding. With this aim the DCLL uses LiPb as primary coolant, tritium breeder and neutron multiplier and Eurofer as structural material. Focusing on the achievement of the fundamental neutronic responses a preliminary blanket model has been designed. Thus detailed 3D neutronic models of the whole blanket modules have been generated, arranged in a specific DCLL segmentation and integrated in the generic DEMO model. The initial design has been studied to demonstrate its viability. Thus, the neutronic behaviour of the blanket and of the shield systems in terms of tritium breeding capabilities, power generation and shielding efficiency has been assessed in this paper. The results demonstrate that the primary nuclear performances are already satisfactory at this preliminary stage of the design, having obtained the tritium self-sufficiency and an adequate shielding.

  18. Thermal-Fatigue Analysis of W-coated Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Kim, Suk Kwon; Park, Seong Dae; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, a new W/FMS joining methods, W coating with plasma torch, have been developed. The HHF test conditions are found by performing a thermal-hydraulic and thermo-mechanical analysis with the conventional codes such as ANSYSCFX and .mechanical especially for considering the two-phase condition in cooling tube.

  19. Calculations of tritium breeding ratio and inventory distributions of FEB blanket

    International Nuclear Information System (INIS)

    Deng Baiquan

    2001-01-01

    Based on the design features of FEB reactor blanket, the tritium breeding ratio and tritium concentrations in liquid lithium of each breeding zone have been calculated after 10 days full power operation for outboard blanket and one day operation for inboard blanket. The comparisons with the results calculated by Monte-Carlo code MORSE-CGT are made. Meanwhile the inventory in beryllium multiplier after one-year full power operation has also been estimated. An important conclusion has been drew the thermal hydraulic design should be careful to guarantee the blanket temperature should not rise as high as 680 degree C

  20. Uranium self-shielding in fast reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kadiroglu, O.K.; Driscoll, M.J.

    1976-03-01

    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  1. DEMO relevance of the test blanket modules in ITER-Application to the European test blanket modules

    International Nuclear Information System (INIS)

    Magnani, E.; Gabriel, F.; Boccaccini, L.V.; Li-Puma, A.

    2010-01-01

    Test blanket module (TBM) testing programme in ITER as a support to DEMO design is a very important step on the road map to commercial fusion reactors although it is an ambitious task. Finding as much as possible DEMO relevant tests in view of the future DEMO blanket design is therefore a major goal since ITER and DEMO environment and loading conditions are different. To clarify and quantify the meaning of the DEMO relevance, criteria using a structural, functional and behavioural representation of the breeding blanket acting as a system are investigated. Then, a three-step strategy is proposed to carry out TBM DEMO relevant tests associated with a TBM design modification strategy. Key parameters should intensively be used as target for TBM characterization and numerical code validation. When assessing the relevance, on the other hand, not only the actual difference between DEMO and ITER values should be considered, but also whether the analyzed phenomena have a threshold and a range of applicability, as numerical simulations are usually permitted within these limits. The proposed methodology is at the end applied to the design of the HCLL TBM breeding unit configuration.

  2. Evaluation of steam as a potential coolant for nonbreeding blanket designs

    International Nuclear Information System (INIS)

    Stevens, H.C.; Misra, B.; Youngdahl, C.K.

    1978-01-01

    A steam-cooled nonbreeding blanket design has been developed as an evolution of the Argonne Experimental Power Reactor (EPR) studies. This blanket concept complete with maintenance considerations is to function at temperatures up to 650 0 C utilizing nickel-based alloys such as Inconel 625. Thermo-mechanical analyses were carried out in conjunction with thermal hydraulic analysis to determine coolant chennel arrangements that permit delivery of superheated steam at 500 0 C directly to a modern fossil plant-type turbine. A dual-cycle system combining a pressurized water circuit coupled with a superheated steam circuit can produce turbine plant conversion efficiencies approaching 41.5%

  3. Front-facing fluoropolymer-coated armor composite

    OpenAIRE

    Gamache, Raymond M.; Roland, Charles M.; Fragiadakis, Daniel M.

    2018-01-01

    Patent A front-facing armor system utilizing a composite laminate backed by a high hardness substrate. The composite laminate comprises a series of first and second layers. The first layer of the bi-layer laminate system is a polymer with a density of at least 1.8 g/ᵌ and having both an amorphous and crystalline phase, and having phase transformation pressure of at least 0.5 GPa at a temperature of 20° C. The second layer of each bi-layer provides acoustic impedance ...

  4. Tritium containment and blanket design challenges for a 1 GWe mirror fusion central power station

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1976-06-01

    Tritium containment and removal problems associated with the blanket and power-systems for a mirror fusion reactor are identified and conceptual process designs are devised to reduce emissions to the environment below 1 Ci/day. The blanket concept development proceeds by starting with this emission goal of 1 Ci/day and working inward to the blanket. At each decision point, worker safety, operational labor costs, and capital cost tradeoffs are contrasted. The conceptual design uses air for the reactor hall with a continuous catalytic oxidizer-molecular sieve adsorber cleanup system to maintain a 40 μCi/m 3 tritium level (5 μCi/m 3 HTO) against 180 Ci/day leakage from reactor components, energy recovery systems, and process piping. This blanket contains submodules with Li 2 Be 2 O 3 --Be for tritium breeding and submodules with Be for mostly energy production. Tritium production in both is handled by separately containing this breeding material and scavenging this container with lithium vapor-doped helium gas stream

  5. Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, C., E-mail: chiara.mistrangelo@kit.edu; Bühler, L.

    2014-10-15

    Highlights: • MHD flows in model geometries of DCLL blanket manifolds. • Study of velocity, pressure distributions and flow partitioning in parallel ducts. • Flow partitioning affected by 3D MHD pressure drop and velocity distribution in the expanding zone. • Reduced pressure drop in a continuous expansion compared to a sudden expansion. - Abstract: An attractive blanket concept for a fusion reactor is the dual coolant lead lithium (DCLL) blanket where reduced activation steel is used as structural material and a lead lithium alloy serves both to produce tritium and to remove the heat in the breeder zone. Helium is employed to cool the first wall and the blanket structure. Some critical issues for the feasibility of this blanket concept are related to complex induced electric currents and 3D magnetohydrodynamic (MHD) phenomena that occur in distributing and collecting liquid metal manifolds. They can result in large pressure drop and undesirable flow imbalance in parallel poloidal ducts forming blanket modules. In the present paper liquid metal MHD flows are studied for different design options of a DCLL blanket manifold with the aim of identifying possible sources of flow imbalance and to predict velocity and pressure distributions.

  6. Studies on steps affecting tritium residence time in solid blanket

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1987-01-01

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  7. Tritium inventory in Li2ZrO3 blanket

    International Nuclear Information System (INIS)

    Nishikawa, M.; Baba, A.

    1998-01-01

    Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO 2 blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO 2 blanket is applied to a Li 2 ZrO 3 blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments. (orig.)

  8. Application of vanadium alloys to a fusion reactor blanket

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center)

    1984-05-01

    Vanadium and vanadium alloys are of interest in fusion reactor blanket applications due to their low induced radioactivity and outstanding elevated temperature mechanical properties during neutron irradiation. The major limitation to the use of vanadium is its sensitivity to oxygen impurities in the blanket environment, leading to oxygen embrittlement. A quantitative analysis was performed of the interaction of gaseous impurities in a helium coolant with vanadium and the V-15Cr-5Ti alloy under conditions expected in a fusion reactor blanket. It was shown that the use of unalloyed V would impose severe restrictions on the helium gas cleanup system due to excessive oxygen buildup and embrittlement of the metal. However, internal oxidation effects and the possibly lower terminal oxygen solubility in the alloy would impose much less severe cleanup constraints. It is suggested that V-15Cr-5Ti is a promising candidate for certain blanket applications and deserves further consideration.

  9. Heat Loads Due To Small Penetrations In Multilayer Insulation Blankets

    Science.gov (United States)

    Johnson, W. L.; Heckle, K. W.; E Fesmire, J.

    2017-12-01

    The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to ease the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fourier’s Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at ∼76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.

  10. Modeling of liquid-metal corrosion/deposition in a fusion reactor blanket

    International Nuclear Information System (INIS)

    Malang, S.; Smith, D.L.

    1984-04-01

    A model has been developed for the investigation of the liquid-metal corrosion and the corrosion product transport in a liquid-metal-cooled fusion reactor blanket. The model describes the two-dimensional transport of wall material in the liquid-metal flow and is based on the following assumptions: (1) parallel flow in a straight circular tube; (2) transport of wall material perpendicular to the flow direction by diffusion and turbulent exchange; in flow direction by the flow motion only; (3) magnetic field causes uniform velocity profile with thin boundary layer and suppresses turbulent mass exchange; and (4) liquid metal at the interface is saturated with wall material. A computer code based on this model has been used to analyze the corrosion of ferritic steel by lithium lead and the deposition of wall material in the cooler part of a loop. Three cases have been investigated: (1) ANL forced convection corrosion experiment (without magnetic field); (2) corrosion in the MARS liquid-metal-cooled blanket (with magnetic field); and (3) deposition of wall material in the corrosion product cleanup system of the MARS blanket loop

  11. Processing and waste disposal representative for fusion breeder blanket systems

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1987-01-01

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made

  12. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  13. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    International Nuclear Information System (INIS)

    Munipalli, Ramakanth; Huang, P.-Y.; Chandler, C.; Rowell, C.; Ni, M.-J.; Morley, N.; Smolentsev, S.; Abdou, M.

    2008-01-01

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as 'canonical',) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  14. Evaluation of compost blankets for erosion control from disturbed lands.

    Science.gov (United States)

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier

  15. Applications of the Aqueous Self-Cooled Blanket concept

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.J.; Varsamis, G.; Wrisley, K.; Deutch, L.; Gierszewski, P.

    1986-01-01

    In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids

  16. Potential and problems of an aqueous lithium salt solution blanket for NET

    International Nuclear Information System (INIS)

    Kuechle, M.; Bojarsky, E.; Dorner, S.; Fischer, U.; Reimann, J.; Reiser, H.

    1987-07-01

    The report describes design studies on a water cooled in-vessel shield blanket for NET and its modification into an aqueous lithium salt blanket. The shield blankets are exchangable against breeding blankets and fulfill their shielding and heat removal functions. Emphasis is on simplicity and reliability. The water cooled shield is a large steel container in the shape of the blanket segment which is filled by water and containes a grid structure of poloidally arranged steel plates. The water flows several times in poloidal direction through the channels formed by the steel plates and is thereby heated up from 40degC to 70degC. When the water is replaced by an aqueous lithium salt solution the shield can be converted into a tritium breeding blanket without any design modification or invessel component replacement. When compared with other concepts this blanket has the advantage that the solution can replace water cooling also in the divertor and in segments dedicated to plasma heating and diagnostics, what increases the coverage considerably. Extensive three-dimensional neutronics calculations were done which, together with literature studies on candidate materials, corrosion, and tritium recovery led to a first assessment of the concept. There is an indication that no major corrosion problems are to be expected in the low temperature region envisaged. Tritium recovery capital costs were estimated to be in the 20 MECU to 50 MECU range and tritium breeding ratio is comparable to the best breeding blanket. (orig./GG) [de

  17. Current Status on the Korean Test Blanket Module Development for testing in the ITER

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Suk Kwon; Bae, Young Dug; Yoon, Jae Sung; Jung, Ki Sok

    2010-01-01

    Korea has proposed and designed a Helium Cooled Molten Lithium (HCML) Test Blanket Module (TBM) to be tested in the International Thermonuclear Experimental Reactor (ITER). Ferrite Martensitic (FM) steel is used as the structural material and helium (He) is used as a coolant to cool the first wall (FW) and breeding zone. Liquid lithium (Li) is circulated for a tritium breeding, not for a cooling purpose. Main purpose for developing the TBM is to develop the design technology for DEMO and fusion reactor and it should be proved through the experiment in the ITER with TBM. Therefore, we have developed the design scheme and related codes including the safety analysis for obtain the license to be tested in the ITER. In order to develop and install at the ITER, several technologies were developed in parallel; fabrication, breeder, He cooling, tritium extraction and so on. Figure 1 shows the overall TBM development scheme. In Korea, official strategy for developing the TBM is to participate to other parties' concept such as US and EU ones, in which PbLi (lead lithium eutectic), He, and FM steel were used for liquid breeder, coolant, and structural material, respectively

  18. Design and analysis of breeding blanket with helium cooled solid breeder for ITER-TBM

    International Nuclear Information System (INIS)

    Yuan Tao; Feng Kaiming; Chen Zhi; Wang Xiaoyu

    2007-01-01

    Test blanket module (TBM) is one of important components in ITER. Some of related blanket technologies of future fusion, such as tritium self-sufficiency, the exaction of high-grade heat, design criteria and safety requirements and environmental impacts, will be demonstrated in ITER-TBM. In ITER device, the three equatorial ports have allocated for TBM testing. China had proposed to develop independently the ITER-TBM with helium cooled solid breeder in 12th meeting of test blanket workgroup (TBWG-12). In this work, the preliminary design and analysis for Chinese HCSB TBM will be carried out. The TBM must be contains the function of the first wall, breeding blanket, shield and structure. Finally, in the period of preliminary investigation, HCSB TBM design adopt modularization concept which is helium as coolant and tritium purge gas, ferritic/martensitic steel as structural material, Lithium orthosilicate (Li 4 SiO 4 ) as tritium breeder, beryllium pebble as neutron multiplier. TBM is allocated in standard vertical frame port. HCSB TBM consist of first wall, backplate, breeding sub-modules, caps, grid and support plate, and breeding sub-modules is arranged by layout of 2 x 6 in blanket box. In this paper, main components of HCSB TBM will be described in detail, also performance analysis of main components have been completed. (authors)

  19. Hydroxyapatite-armored poly(ε-caprolactone) microspheres and hydroxyapatite microcapsules fabricated via a Pickering emulsion route.

    Science.gov (United States)

    Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu

    2012-05-15

    Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Availability analysis of the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-01-01

    The ITER blanket remote handling system (BRHS) is required to replace 440 blanket first wall panels in a two-year maintenance period. To investigate this capability, an availability analysis of the system was carried out. Following the analysis procedure defined by the ITER organization, the availability analysis consists of a functional analysis and a reliability block diagram analysis. In addition, three measures to improve availability were implemented: procurement of spare parts, in-vessel replacement of cameras, and simultaneous replacement of umbilical cables. The availability analysis confirmed those measures improve the availability and capability of the BRHS to replace 440 blanket first wall panels in two years. (author)

  1. Status of fusion reactor blanket evaluation studies in France

    International Nuclear Information System (INIS)

    Carre, F.; Chevereau, G.; Gervaise, F.; Proust, E.

    1985-03-01

    In the frame of recent CEA studies aiming at the evaluation and at the comparison of various candidate blanket concepts in moderate power conditions (Psub(n) approximately 2 MW/m 2 ), the present work examines the neutronic and thermomechanical performances of a water cooled Li 17 Pb 83 tubular blanket and those of a helium cooled canister blanket taking advantage of the excellent breeding capability of composite Beryllium/LiAlO 2 (85/15%) breeder elements. The purpose of the following discussion is to justify the impetus for these reference concepts and to summarize the state of their evaluation studies updated by the continuous assimilation of calculations and experiments in progress

  2. Nondestructive ultrasonic characterization of armor grade silicon carbide

    Science.gov (United States)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy

  3. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    International Nuclear Information System (INIS)

    Hamm, L.L.

    1998-01-01

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers

  4. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Noda, Kenji

    1998-03-01

    This report is the Proceedings of ''the Sixth International Workshop on Ceramic Breeder Blanket Interactions'' which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: 1) fabrication and characterization of ceramic breeders, 2) properties data for ceramic breeders, 3) tritium release characteristics, 4) modeling of tritium behavior, 5) irradiation effects on performance behavior, 6) blanket design and R and D requirements, 7) hydrogen behavior in materials, and 8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li 2 TiO 3 , tritium release behavior of Li 2 TiO 3 and Li 2 ZrO 3 including tritium diffusion, modeling of tritium release from Li 2 ZrO 3 in ITER condition, helium release behavior from Li 2 O, results of tritium release irradiation tests of Li 4 SiO 4 pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  5. Weldability and Impact Energy Properties of High-Hardness Armor Steel

    Science.gov (United States)

    Cabrilo, Aleksandar; Geric, Katarina; Jovanovic, Milos; Vukic, Lazic

    2018-03-01

    In this study, the weldability of high-hardness armor steel by the gas metal arc welding method has been investigated. The study was aimed at determining the weakness points of manual welding compared to automated welding through microhardness testing, the cooling rate, tensile characteristics and nondestructive analysis. Detailed studies were performed for automated welding on the impact energy and microhardness in the fusion line, as the most sensitive zone of the armor steel weld joint. It was demonstrated that the selection of the preheating and interpass temperature is important in terms of the cooling rate and quantity of diffusible and retained hydrogen in the weld joint. The tensile strength was higher than 800 MPa. The width of the heat-affected zone did not exceed 15.9 mm, measured from the weld centerline, while the impact energy results were 74 and 39 J at 20 and - 40 °C, respectively.

  6. Armor of cermet with metal therein increasing with depth

    Science.gov (United States)

    Wilkins, M.L.; Holt, A.C.; Cline, C.F.; Foreschner, K.E.

    1973-07-01

    The system described consists of a ceramic matrix having a gradient of fine ductile metallic particles dispersed therein in an amount of from 0.0%, commencing at the front or impact surface of the armor, to about 2 to 15% by volume along the interface to the back of the system. (auth)

  7. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  8. Some new ideas for Tandem Mirror blankets

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.

    1981-01-01

    The Tandem Mirror Reactor, with its cylindrical central cell, has led to numerous blanket designs taking advantage of the simple geometry. Also many new applications for fusion neutrons are now being considered. To the pure fusion electricity producers and hybrids producing fissile fuel, we are adding studies of synthetic fuel producers and fission-suppressed hybrids. The three blanket concepts presented are new ideas and should be considered illustrative of the breadth of Livermore's application studies. They are not meant to imply fully analyzed designs

  9. Evaluation of US demo helium-cooled blanket options

    International Nuclear Information System (INIS)

    Wong, C.P.C.; McQuillan, B.W.; Schleicher, R.W.

    1995-10-01

    A He-V-Li blanket design was developed as a candidate for the U.S. fusion demonstration power plant. This paper presents an 18 MPa helium-cooled, lithium breeder, V-alloy design that can be coupled to the Brayton cycle with a gross efficiency of 46%. The critical issue of designing to high gas pressure and the compatibility between helium impurities and V-alloy are addressed

  10. Electromagnetic effects involving a tokamak reactor first wall and blanket

    International Nuclear Information System (INIS)

    Turner, L.R.; Evans, K. Jr.; Gelbard, E.; Prater, R.

    1980-01-01

    Four electromagnetic effects experienced by the first wall and blanket of a tokamak reactor are considered. First, the first wall provides reduction of the growth rate of vertical axisymmetric instability and stabilization of low mode number interval kink modes. Second, if a rapid plasma disruption occurs, a current will be induced on the first wall, tending to maintain the field formerly produced by the plasma. Third, correction of plasma movement can begin on a time scale much faster than the L/R time of the first wall and blanket. Fourth, field changes, especially those from plasma disruption or from rapid discharge of a toroidal field coil, can cause substantial eddy current forces on elements of the first wall and blanket. These effects are considered specifically for the first wall and blanket of the STARFIRE commercial reactor design study

  11. Molten salt cooling/17Li-83Pb breeding blanket concept

    International Nuclear Information System (INIS)

    Sze, D.K.; Cheng, E.T.

    1985-02-01

    A description of a fusion breeding blanket concept using draw salt coolant and static 17 Li- 83 Pb is presented. 17 Li- 83 Pb has high breeding capability and low tritium solubility. Draw salt operates at low pressure and is inert to water. Corrosion, MHD, and tritium containment problems associated with the MARS design are alleviated because of the use of a static LiPb blanket. Blanket tritium recovery is by permeation toward the plasma. A direct contact steam generator is proposed to eliminate some generic problems associated with a tube shell steam generator

  12. ITER solid breeder blanket materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li 2 ,O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 ) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized

  13. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  14. Ferritic steels for the first generation of breeder blankets

    International Nuclear Information System (INIS)

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  15. Game-Changing Photovoltaic Flexible Blanket Solar Array Technology with Spectrolab Flexsheets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) in collaboration with Spectrolab, Inc. has developed a modular multi-junction photovoltaic flexible blanket technology that uses...

  16. Effects of buffer thickness on ATW blanket performance

    International Nuclear Information System (INIS)

    Yang, W. S.; Mercatali, L.; Taiwo, T. A.; Hill, R. N.

    2001-01-01

    This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy ( and lt; 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level

  17. Effects of Buffer Thickness on ATW Blanket Performance

    International Nuclear Information System (INIS)

    Yang, W.S.; Mercatali, L.; Taiwo, T.A.; Hill, R.N.

    2002-01-01

    This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level. (authors)

  18. Heating an aquaculture pond with a solar pool blanket

    Energy Technology Data Exchange (ETDEWEB)

    Wisely, B; Holliday, J E; MacDonald, R E

    1982-01-01

    A floating solar blanket of laminated bubble plastic was used to heat a 0.11 ha seawater pond of 1.3 m depth. The covered pond maintained daily temperatures 6 to 9/sup 0/C above two controls. Local air temperatures averaged 14 to 19/sup 0/C. Oysters, prawns, seasquirts, and fish in the covered pond all survived. After three weeks, the blanket separated. This was the result of pond temperatures exceeding 30/sup 0/C, the maximum manufacturer's specification. Floating blankets fabricated to higher specifications would be useful for maintaining above-ambient temperatures in small ponds or tanks in temporary situations during cold winter months and might have a more permanent use.

  19. Neutronics design aspects of reference ARIES-I fusion blanket

    International Nuclear Information System (INIS)

    Cheng, E.T.

    1990-12-01

    A SiC composite blanket concept was recently conceived for a deuterium-tritium burning, 1000 MW(e) tokamak fusion reactor design, ARIES-I. SiC composite structural material was chosen due to its very low activation features. High blanket nuclear performance and thermal efficiency, adequate tritium breeding, and a low level of activation are important design requirements for the ARIES-I reactor. The major approaches, other than using SiC as structural material, in meeting these design requirements, are to employ beryllium, the only low activation neutron multiplying material, and isotopically tailored Li 2 ZrO 3 , a tritium breeding material stable at high temperature, as blanket materials. 5 refs., 4 figs., 2 tabs

  20. Effects of buffer thickness on ATW blanket performances

    International Nuclear Information System (INIS)

    Yang, Won Sik

    2001-01-01

    This paper presents the preliminary results of target and buffer design studies for a lead-bismuth eutectic (LBE) cooled accelerator transmutation of waste (ATW) system, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using an 840 MWt LBE cooled ATW design, the effects of buffer thickness on the blanket performances have been studied. Varying the buffer thickness for a given blanket configuration, system performances have been estimated by a series of calculations using MCNPX and REBUS-3 codes. The effects of source importance change are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. As the irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. The results show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable

  1. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets

    International Nuclear Information System (INIS)

    Krauss, W.; Konys, J.; Holstein, N.; Zimmermann, H.

    2011-01-01

    In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the μm-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.

  2. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, W., E-mail: wolfgang.krauss@kit.edu [Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Konys, J.; Holstein, N.; Zimmermann, H. [Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2011-10-01

    In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the {mu}m-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.

  3. Two-phase-flow cooling concept for fusion reactor blankets

    International Nuclear Information System (INIS)

    Bender, D.J.; Hoffman, M.A.

    1977-01-01

    The new two-phase heat transfer medium proposed is a mixture of potassium droplets and helium which permits blanket operation at hih temperature and low pressure, while maintaining acceptable pumping power requirements, coolant ducting size, and blanket structure fractions. A two-phase flow model is described. The helium pumping power and the primary heat transfer loop are discussed

  4. Blast venting through blanket material in the HYLIFE ICF reactor

    International Nuclear Information System (INIS)

    Liu, J.C.; Peterson, P.F.; Schrock, V.E.

    1992-01-01

    This work presents a numerical study of blast venting through various blanket configurations in the HYLIFE ICF reactor design. The study uses TSUNAMI -- a multi-dimensional, high-resolution, shock capturing code -- to predict the momentum exchange and gas dynamics for blast venting in complex geometries. In addition, the study presents conservative predictions of wall loading by gas shock and impulse delivered to the protective liquid blanket. Configurations used in the study include both 2700 MJ and 350 MJ fusion yields per pulse for 5 meter and 3 meter radius reactor chambers. For the former, an annular jet array is used for the blanket geometry, while in the latter, both annular jet array as well as slab geometries are used. Results of the study indicate that blast venting and wall loading may be manageable in the HYLIFE-II design by a judicious choice of blanket configuration

  5. Peningkatan mutu blanket karet alam melalui proses predrying dan penyemprotan asap cair

    Directory of Open Access Journals (Sweden)

    Afrizal Vachlepi

    2017-06-01

    Full Text Available Most of Indonesian rubber products SIR 20 are made from the material of raw rubber obtained from smallholders. However, the quality of this material is not good enough. Thus, quality improvement has to be carried out by manufacturers. The liquid smoke used during the blanket hanging process can improve the quality of the rubber products SIR 20. This research aimed to determine and study the effects of liquid smoke spraying and blanket hanging duration on the drying factor, the dry rubber content, technical quality, vulcanization characteristics, and physical properties of vulcanized natural rubber. Treatments consisted of various hanging duration (6, 8, and 10 days, and without hanging and spraying (with and without spraying of liquid smoke. The results showed that the spraying of liquid smoke on natural rubber blankets could improve the technical quality of the natural rubber, especially the values of Po and PRI. The spraying of liquid smoke could reduce the blanket hanging duration to 6-8 days. The blankets sprayed with liquid smoke had the optimum cure time of around 15 minutes and 19 seconds and the scorch time of around 3 minutes and 22 seconds. These values indicated that the vulcanization characteristics of blankets which were sprayed with liquid smoke were generally better than those of blankets which were not sprayed with liquid smoke

  6. Experimental program for the Fast Breeder Blanket Facility, FBBF

    International Nuclear Information System (INIS)

    Ott, K.O.; Clikeman, F.M.; Johnson, R.H.; Borg, R.C.

    1976-01-01

    The work performed in the reporting period was primarily concerned with the development of the experimental program (Task A) and with the pre-analysis of future loadings and the impact upon the permanent loading of the two converter regions, which contain 4.8 percent enriched UO 2 rods. It appears necessary that a neutron poison (B 4 C) be placed in the converter (transformer) regions in order to hold, also for future loadings, the k/sub eff/ of a hypothetically flooded FBBF well below 1. Since it is planned to use the same welded converter regions for all experiments, the required B 4 C loading needs to be determined prior to the first blanket loading. Further the equipment needs have been identified (Task D), the 252 Cf-source has been requested on a loan basis (Task E). First discussions with ANL on blanket experiments have been initiated

  7. Main features and potentialities of gas-blanket systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    A review is given of the features and potentialities of cold-blanket systems, with respect to plasma equilibrium, stability, and reactor technology. The treatment is concentrated on quasi-steady magnetized plasmas confined at moderately high beta values. The cold-blanket concept has specific potentialities as a fusion reactor, e.g. in connection with the desired densities and dimensions of full-scale systems, refuelling, as well as ash and impurity removal, and stability. (author)

  8. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    International Nuclear Information System (INIS)

    Hill, R.N.; Ott, K.O.

    1988-01-01

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab

  9. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  10. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    International Nuclear Information System (INIS)

    1978-01-01

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified

  11. Development of a control system for a heavy object handling manipulator. Application to a remote maintenance system for ITER blanket module

    International Nuclear Information System (INIS)

    Yoshimi, Takashi; Tsuji, Kouichi; Miyagawa, Shinichi; Kubo, Tomomi; Kakudate, Satoshi; Tada, Eisuke

    2001-01-01

    This paper describes a control system for the heavy object handling manipulator. It has been developed for the blanket module remote maintenance system of ITER (International Thermonuclear Fusion Experimental Reactor). A rail-mounted vehicle-type manipulator is proposed for the precise handling of a blanket module which is about 4 tons in weight. Basically, this manipulator is controlled by teaching-playback technique. When grasping or releasing the module, the manipulator sags and the position of the end-effector changes about 50 [mm]. Applying only the usual teaching-playback control makes the smooth operation of setting/removing modules to/from the vacuum vessel wall difficult due to this position change. To solve this proper problem of heavy object handling manipulator, we have developed a system which uses motion patterns generated from two kinds of teaching points. These motion patterns for setting/removing heavy objects are generated by combining teaching points for positioning the manipulator with and without grasping the object. When these motion patterns are applied, the manipulator can transfer the object's weight smoothly at the setting/removing point. This developed system has been applied to the real-scale mock-up of the vehicle manipulator and through the actual module setting/removing experiments, we have verified its effectiveness and realized smooth maintenance operation. (author)

  12. Flow balancing in liquid metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Morley, N.B.

    1995-01-01

    Non-uniform flow distribution between parallel channels is one of the most serious concerns for self-cooled liquid metal blankets with electrically insulated walls. We show that uncertainties in flow distribution can be dramatically reduced by relatively simple design modifications. Several design features which impose flow uniformity by electrically coupling parallel channels are surveyed. Basic mechanisms for ''flow balancing'' are described, and a particular self-regulating concept using discrete passive electrodes is proposed for the US ITER advanced blanket concept. Scoping calculations suggest that this simple technique can be very powerful in equalizing the flow, even with massive insulator failures in individual channels. More detailed analyses and experimental verification will be required to demonstrate this concept for ITER. (orig.)

  13. Preliminary analyses of neutronics schemes for three kinds waste transmutation blankets of fusion-fission hybrid

    International Nuclear Information System (INIS)

    Zhang Mingchun; Feng Kaiming; Li Zaixin; Zhao Fengchao

    2012-01-01

    The neutronics schemes of the helium-cooled waste transmutation blanket, sodium-cooled waste transmutation blanket and FLiBe-cooled waste transmutation blanket were preliminarily calculated and analysed by using the spheroidal tokamak (ST) plasma configuration. The neutronics properties of these blankets' were compared and analyzed. The results show that for the transmutation of "2"3"7Np, FLiBe-cooled waste transmutation blanket has the most superior transmutation performance. The calculation results of the helium-cooled waste transmutation blanket show that this transmutation blanket can run on a steady effective multiplication factor (k_e_f_f), steady power (P), and steady tritium production rate (TBR) state for a long operating time (9.62 years) by change "2"3"7Np's initial loading rate of the minor actinides (MA). (authors)

  14. Sensitization of Naturally Aged Aluminum 5083 Armor Plate

    Science.gov (United States)

    2015-07-29

    5 - 1 - SENSITIZATION OF NATURALLY AGED ALUMINUM 5083 ARMOR PLATE INTRODUCTION Aluminum -magnesium alloys are important for both ship...boundaries [3,4]. The magnesium-rich phase (normally β-Al3Mg2) is highly anodic with respect to the surrounding aluminum phase, thus is susceptible... alloys , and with varying amounts of debris scattered about the surface consistent with corrosion product, Figure 2b, that often forms over time within

  15. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji [ed.

    1998-03-01

    This report is the Proceedings of `the Sixth International Workshop on Ceramic Breeder Blanket Interactions` which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: (1) fabrication and characterization of ceramic breeders, (2) properties data for ceramic breeders, (3) tritium release characteristics, (4) modeling of tritium behavior, (5) irradiation effects on performance behavior, (6) blanket design and R and D requirements, (7) hydrogen behavior in materials, and (8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li{sub 2}TiO{sub 3}, tritium release behavior of Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} including tritium diffusion, modeling of tritium release from Li{sub 2}ZrO{sub 3} in ITER condition, helium release behavior from Li{sub 2}O, results of tritium release irradiation tests of Li{sub 4}SiO{sub 4} pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  16. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  17. Tritium transport modeling at system level for the EUROfusion dual coolant lithium-lead breeding blanket

    Science.gov (United States)

    Urgorri, F. R.; Moreno, C.; Carella, E.; Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Ibarra, A.

    2017-11-01

    The dual coolant lithium lead (DCLL) breeding blanket is one of the four breeder blanket concepts under consideration within the framework of EUROfusion consortium activities. The aim of this work is to develop a model that can dynamically track tritium concentrations and fluxes along each part of the DCLL blanket and the ancillary systems associated to it at any time. Because of tritium nature, the phenomena of diffusion, dissociation, recombination and solubilisation have been modeled in order to describe the interaction between the lead-lithium channels, the structural material, the flow channel inserts and the helium channels that are present in the breeding blanket. Results have been obtained for a pulsed generation scenario for DEMO. The tritium inventory in different parts of the blanket, the permeation rates from the breeder to the secondary coolant and the amount of tritium extracted from the lead-lithium loop have been computed. Results present an oscillating behavior around mean values. The obtained average permeation rate from the liquid metal to the helium is 1.66 mg h-1 while the mean tritium inventory in the whole system is 417 mg. Besides the reference case results, parametric studies of the lead-lithium mass flow rate, the tritium extraction efficiency and the tritium solubility in lead-lithium have been performed showing the reaction of the system to the variation of these parameters.

  18. 18 CFR 284.284 - Blanket certificates for unbundled sales services.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Blanket certificates for unbundled sales services. 284.284 Section 284.284 Conservation of Power and Water Resources... Sales by Interstate Pipelines § 284.284 Blanket certificates for unbundled sales services. (a...

  19. Computation Method Comparison for Th Based Seed-Blanket Cores

    International Nuclear Information System (INIS)

    Kolesnikov, S.; Galperin, A.; Shwageraus, E.

    2004-01-01

    This work compares two methods for calculating a given nuclear fuel cycle in the WASB configuration. Both methods use the ELCOS Code System (2-D transport code BOXER and 3-D nodal code SILWER) [4] are compared. In the first method, the cross-sections of the Seed and Blanket, needed for the 3-D nodal code are generated separately for each region by the 2-D transport code. In the second method, the cross-sections of the Seed and Blanket, needed for the 3-D nodal code are generated from Seed-Blanket Colorsets (Fig.1) calculated by the 2-D transport code. The evaluation of the error introduced by the first method is the main objective of the present study

  20. Methods to enhance blanket power density in low-power fusion devices

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01

    The overall objective of this task is to investigate the extent to which the power density in the FED breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow testing of advanced reactor blanket modules on INTOR at representative conditions. The tentative approach adopted for this task consists of three parts. First, the requirements for augmented heating of the test module are outlined for different applications of interest. Second, methods are identified which have potential for augmenting the heating power in a test module, and this list of methods is narrowed to those which appear to be most useful. Finally, these methods are examined in more detail to determine the practical benefits of employing each